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Abstract 

The prototype Alphavirus, Sindbis virus (SIN), relies on cyclic transmission between the 
mosquito and vertebrate hosts in order to be maintained in nature.  This broad host range 
suggests that alphaviruses use a universally expressed molecule for attachment.  Heparan 
sulfate proteoglycan (HSPG), a ubiquitous SIN receptor present on the cell surface of 
most eukaryotic cells, has been reported in the salivary glands and midguts of 
mosquitoes.  These organs are essential for virus transmission from this hematophageous 
invertebrate.  Variable host cell response in the mosquito following intrathoracic 
inoculation with SIN has been documented. In this study, per os infection of Aedine 
species with variants of SIN was used to determine organ specific responses to virus as 
well as the temporal kinetics of SIN dissemination via leg assay.  Analysis indicated 
AR339 virus dissemination in samples at day 14 days post infection (p.i.).  TR339 was 
identified at day 12 in legs of virus fed individuals.  AR339, the HSPG adapted variant 
resulted in SIN-associated pathology in salivary glands of Aedes albopictus. This 
pathology was limited to lateral lobes, while the median lobe remained unaffected.  
Infection with TR339, a HSPG-independent variant, did not result in virus-associated 
pathology in the salivary gland to day 28 post infection.  Immunohistochemistry 
determined that HSPG was located in the lateral lobe duct region of the salivary glands.  
It has been suggested that human lactoferrin (hLF) may interfere with virus receptor 
attachment and is involved in inhibition of virus infection in vertebrate cells. To that end, 
the effects of bovine LF inhibition on virus attachment were compared between AR339 
and TR339 in the mosquito cell line C7-10.  Cytopathic effect was observed earlier and 
with greater intensity in TR339 infected monolayers when compared to AR339 infected 
monolayers.  This suggests that bovine LF has an inhibitory effect on AR339 infection in 
invertebrate cells, possibly due to this variants use of HPSG for attachment. 
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Chapter 1: Introduction 

Arthropod borne viruses (arboviruses) are ubiquitous etiological agents that are 

significant causes of disease in humans and animals.  They are usually maintained by 

continuously cycling between insect and vertebrate hosts (Fields, 2001). The arbovirus 

with the widest geographical distribution is Sindbis (SIN) virus (Yuill, 1986). Sindbis, a 

member of the Family Togaviridae, Genus Alphavirus, is enveloped with an icosohedral 

capsid (Fields, 2001).  Its genome is a single stranded RNA of approximately 11.7kb, 

with a 5' cap and 3' polyadenylated tail that serves directly as messenger RNA (mRNA) 

in a host cell (Strauss and Strauss, 1994).  SIN has become the prototype Alphavirus used 

in research applications, partly due to its biological safety level 2 status and lack of 

pathology in infected humans (Taylor et al., 1955) 

Sindbis virus was first recognized in Culex species of mosquitoes from the town 

of Sindbis, Egypt in 1952 (Taylor et al., 1955). This arbovirus is ornithophilic in nature, 

which may account for its widespread geographical distribution.  Besides being recovered 

from seven species of Culex (the main vector), SIN has been isolated from two species of 

Aedes, two species of Mansonia and one species of Anopheles (Yuill, 1986) and is 

capable of replication in Ae. aegypti and Ae. albopictus under laboratory conditions 

(Schiefer and Smith, 1974).  Aedes aegypti and Ae. albopictus are invasive, exotic species 

that have successfully invaded numerous countries.  Aedes aegypti is the most important  



2 
 

vector for dengue virus with Ae. albopictus being the second most important (Gubler and 

Kuno, 1997; Lounibous, 2002).   

Although Ae. albopictus, first detected in the United States in 1985 (Sprenger and 

Wuithiranyagool, 1986), is not a natural vector of SIN, the recent isolation of the eastern 

equine encephalitis (EEE) virus from this mosquito in the wild extended the vector range 

of Ae. albopictus to include the Alphaviruses (Mitchell et al., 1992). The global 

distribution, vector status, and previous research conducted to assesses SIN interaction 

with larval cell clones derived from Ae. albopictus and adult Ae. albopictus make this an 

appropriate species for further study (Brown and Condreay, 1985). Additionally, the 

susceptibility of  Ae. aegypti and Ae. albopictus to  SIN, as well as being endemic to 

Florida, makes them suitable for experimentation.   

The hematophageous female mosquito is the biological vector of arboviruses 

(Fields, 2001).  Active replication of arboviruses in the mosquito host is essential for the 

persistence of virus in a given environment.  Horizontal transmission is the primary 

documented mechanism of Alphavirus transmission in the wild and laboratory 

(Chamberlin, 1980). Lack of evidence for a vertical transmission route for SIN indicates 

that feeding physiology of female mosquitoes is integral to virus transmission. 

For the mosquito to become capable of transmission, virus must first reach and 

replicate in the salivary glands. Female mosquito salivary glands are paired organs 

located in the thorax.  Each gland consists of three lobes - two identical lateral lobes and 

one median lobe.  The lateral lobes consist of proximal, intermediate and distal regions, 

while the median lobe consists of a short neck region and a distal region.  Each lobe has a 
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central duct encircled by a layer of epithelial cells that are bound externally by a basal 

lamina (Clements, 1996).  These ducts connect with one another to form a common 

salivary duct that opens at the base of the hypopharynx (Dhar, 2003). While the male 

salivary glands are also tri-lobed, they are morphologically and functionally dissimilar 

due to the lack of distal portions on all three lobes (Clements, 1996). These distal regions 

produce apyrase involved in blood feeding (Ribeiro et al., 1984; James and Rossignol, 

1991) and express a female enriched gene (James et al., 1991). 

An electron microscopy study of the salivary glands of female Aedes aegypti by 

Janzen and Wright (1971), illustrates that lobes are made up of three glandular and two 

non-glandular regions.  Although the ultra-structural appearance at the distal portions of 

the lateral and median lobes appears comparable, the increased refractile quality of the 

median lobe may demonstrate that it is chemically distinct (Janzen and Wright, 1971).  

Orr and colleagues (1961) suggested that two different components are secreted from the 

three glandular areas of the salivary gland: a carbohydrate-protein complex from the 

proximal and distal portions of the lateral lobes and a mucopolysaccharide from the 

median lobe.  These dissimilarities between the lobes suggest that this tissue may provide 

a means for preventing the spread of arthropod-borne diseases.   

Because Alphaviruses have a broad host range in nature, replicating in 

mammalian, avian, arthropod and amphibian species (Fields, 2001), it has been suggested 

that they use a universally-expressed molecule for attachment.  Adaptation of SIN to 

grow in tissue culture or in animals has generated virus mutants that can be used to 

evaluate strain-specific differences in receptor usage (Klimstra et al., 1998).  Following 

passage in BHK-21 cells, SIN has a positively-charged amino acid substitution in viral 
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spike protein E2, which allows it to attach to heparan sulfate proteoglycan (HSPG) 

(Waarts et al., 2005).  Heparan sulfate proteoglycans, which are present on the cell 

surface of most eukaryotic cells, have net negative charges.  It has been suggested that a 

charge interaction might a play significant role in Alphavirus attachment (Klimstra et al., 

1998). 

A number of infectious agents such as Dengue virus, herpes simplex, Hepatitis C, 

malaria and HIV are known to use the negative charge of cell surface 

glycosaminoglycans to attach, enter and replicate in animal cells (Sinnis et al., 2007).  

Dengue virus, which enters mammalian cells using HSPG, is transmitted to humans by 

mosquitoes and may utilize HSPG in the mosquito to localize to the salivary gland (Chen 

et al., 1997).  A recent study by Sinnis et al. (2007) definitively demonstrated that 

mosquitoes contain HSPGs that are concentrated in the salivary glands as well as the 

midgut.   

The salivary glands and gut-associated visceral muscles are essential to mosquito 

blood feeding behavior and therefore play a very important role in virus transmission. It 

has been reported that SIN replicates to a high titer in Ae. albopictus organs, including 

salivary glands, under laboratory conditions (Bowers et al., 1995).  Structural and 

immunological evidence of SIN-associated pathology was observed in the salivary glands 

and insect midgut-associated visceral muscle, tissues known to contain HSPG (Bowers et 

al., 2003).  Proximal lateral salivary gland lobes appeared distended and distal lateral 

lobes were grossly disrupted in SIN-infected cells.  Also, virus antigen and virus-

associated pathology were limited to the proximal and distal regions of the lateral lobes, 

whereas neither morphological damage nor virus was detected in the median lobe.  
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Since Alphavius virions bind to receptors that are highly conserved between 

species, it was suggested that binding of human lactoferrin (hLF) to cell-surface HSPGs 

may inhibit virus infection (van der Strate et al., 2001).  They hypothesized that 

lactoferrin can prevent virus cell attachment and entry by binding to the virus particle or 

by binding to cell-surface molecules that viruses use as receptors or co-receptors.  In an 

effort to prevent the entry of SIN, Waarts et al. (2005) successfully demonstrated that 

hLF prevents infection of a host cell by HSPG-adapted Alphaviruses [a tissue culture-

adapted strain of SIN (TRSB) or  Semliki forest virus (SFV)] via blocking viral 

attachment receptor HSPG on the surface of baby hamster kidney (BHK) cells.  Both SIN 

and SFV cause gross morphological changes in the salivary glands of Ae. albopictus and 

Ae. aegypti respectively (Bowers et al., 2003; Mims et al., 1966).  

Human lactoferrin is an 80-kDa cationic glycoprotein produced by epithelial cells. 

As a result, hLF is present in mucosal secretions such as tears, saliva, gastrointestinal 

fluids, and in high concentrations in human breast milk (Kanyshkova et al.,  2001). 

Preabsorbtion of cultured vertebrate cells with hLF strongly inhibited infection of cells by 

HS-adapted alphaviruses (TRSB and SFV), but did not inhibit infection by the non-

adapted SIN strain TR339 (Waarts et al., 2005). The development of mosquito tissue-

culture cell lines that can be serially passaged in the laboratory by Singh (1967) has 

provided a means for comparative studies of the replication of Alphaviruses in vertebrate 

and invertebrate-derived cells (Brown, 1985).  Previous research using the Ae.  albopictus 

larval cell line C7-10 (Karpf et al., 1997) demonstrated that the acute phase of SIN 

infection results in a cytopathic effect (CPE), leading to high death rates of cells that are 

similar to the SIN pathogenicity observed in BHK-21 cells. The ability of lactoferrin to 
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decrease infectivity of SIN in this invertebrate cell line was evaluated. Lactoferrin 

demonstrated the ability to limit infection of C7-10 cells by the SIN tissue culture 

adapted strain, AR339.  

The purpose of this investigation was to correlate the presence of biochemical 

differences within the salivary gland lobes with the SIN-associated pathology in regions 

of that organ. This was accomplished by the localization of HSPG to precise regions of 

the salivary glands.  Furthermore, a mode of inhibition of SIN attachment to the cell 

surface receptor HSPG was studied.   
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Chapter 2: Methods and Materials 

Virus Production  

AR339 (original isolate) and TR339 (consensus sequence) were used in all virus 

experimentation and maintained in a biological safety level 2 laboratory. TR339 (kindly 

provided by Brown/Hernandez Research Group, North Carolina State University) was 

generated from a cDNA clone. AR339 (ATCC, Manassas, VA) was previously grown 

and plaque purified, by Dr. Doria Bowers before being aliquoted and frozen at -80°C.  

 

Growth and Maintenance of Colony Mosquitoes 

Colonized Ae. albopictus (Lake Charles Strain) and Ae. aegypti (Rockefeller 

Strain) were maintained at 25.5°C + 0.5, 70-80% relative humidity and a 16:8 (light/dark) 

photoperiod in white plastic bucket cages with mesh lids with no more than 350 

mosquitoes per cage (Gerberg, 1970). Mosquito eggs were hatched in 1.0% nutrient broth 

consisting of 1 gram nutrient powder (Becton Dickson Microbiology Systems, Spanks, 

MD) per 100 ml tap water. First instar larvae were distributed approximately 300/pan of 

1.5L tap water and fed a 2% liver powder suspension (ICN Biochemicals, Cleveland, 

OH). Post emergent adults were supplied with honey-soaked cellucotton as a 

carbohydrate source and water soaked cotton ad libitum (Mustermann, 1985). The 

carbohydrate meal was placed on top of the cage, allowing mosquitoes to feed through 
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the mesh while the water source was placed in plastic cups inside of the cage for direct 

contact. 

 

Artificial Membrane Feeding 

Mosquitoes were offered defibrinated bovine blood (Colorado Serum, INC, 

Denver, CO) at 5 to 7 days post emergence as a protein source. The carbohydrate source 

was removed from the cages 24 hours prior to a blood feed. A glass, water jacketed 

artificial membrane feeder was used to maintain the blood at a temperature of 37°C. This 

glass feeder has a central column and wide base opening through which a blood meal can 

be accessible to the mosquitoes (Figure 1). Collagen sausage casing (32mm cow hide; 

www.sausagemaker.com, Buffalo, NY) was hydrated in de-ionized water and used to 

cover the wide base of the glass feeder. This served as the membrane through which the 

mosquitoes imbibed their blood meal. This was offered for 1 hour in order to provide a 

protein source for egg production or as a mode of infection when virus was added. Mated 

female mosquitoes were used for all experiments.  
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Figure 1.  Artificial membrane feeding apparatus. A glass, water jacketed artificial 
membrane feeder was used to maintain the blood at a temperature of 37°C. This glass 
feeder has a central column and wide base opening through which a blood meal can be 
accessible to the mosquitoes. 
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Virus Infection of Mosquitoes 

Adult, female, free-mated mosquitoes were fed a virus/blood suspension 5 to 7 

days post emergence via the artificial membrane system described above. Seventy-two 

hours prior to feeding, females were isolated from the males as follows. Mosquitoes were 

vacuum aspirated into a collection tube and cold anesthetized by placing the collection 

tube into a -20° C freezer for 3 minutes. The mosquitoes were subsequently transferred to 

a glass Petri dish with a watch glass cover and maintained on a chill plate at 4° C. 

Females were identified and placed into a cage with a final count of 50 female 

mosquitoes per cage. They were allowed to awaken and were supplied with honey and 

water. Twenty-four hours prior to feeding, the carbohydrate meal was removed from the 

cage.  

The two variations of SIN, AR339 and TR339, were used at a titer of 7.4 x 107  

plaque forming units (pfu)/ml.  Stock virus was diluted in 1X Modified Eagles Medium 

(MEM; Invitrogen, Carlsbad, CA) as needed.  After being allowed to feed on the infected 

blood for 1 hour, fully engorged mosquitoes were vacuum aspirated, cold anesthetized 

and carefully isolated. These engorged mosquitoes were then placed in cages labeled 

“Virus Offered (AR339, TR339 or Control)” and maintained as described.  

 

Cell Culture 

 BHK-21 cells were cultured at 37º C, 5% CO2 in MEM  supplemented with 10% 

fetal bovine serum (Gibco, Carlsbad, CA), 10% tryptose phosphate broth, 20ug/ml 

Gentamycin  and 2.5 ug/ml Amphotericin-B to make it complete (MEM-C; Renz and 

Brown, 1976). Cultured cells were maintained in 25 cm2 flasks until needed.  
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Cytopathic Effect Assay 

  A leg from a single virus-offered individual was collected at varying days (0, 1, 5, 

7, 9, 12, 14) post feed.  An individual was isolated from the cage, cold anesthetized and a 

single mid leg was removed using alcohol-cleaned forceps. Each isolated leg was placed 

in an appropriately labeled 1.7 ml pre-lubricated conical microcentrifuge tube along with 

10 glass beads. The legs were stored at -80 º C until the assay was performed.  At time of 

assay, the legs were triturated in 500µl 3% Fetal Bovine Serum/Phosphate Buffered 

Saline (PBS) using a vortex mixer. Preconfluent BHK-21 cells, cultured in 12-well 

plates, were challenged with 2µl aliquots of virus samples, which served as the positive 

controls, or 500µl of supernatent from a single triturated leg removed from an individual 

mosquito. The supernatent was incubated with the cells directly for 1 hour at room 

temperature on a Vari-Mix (Thermo Scientific, Waltham, MA) platform rocker. After 

incubation, 1.5 ml of MEM-C was added to the wells and they were incubated at 37º C, 

5% CO2.  Cytopathic effect (CPE) was monitored at 24 and 48 hours post exposure. Cells 

were observed through a Leica microscope (Bannockburn, IL) for CPE, characterized by 

cell rounding and retraction from the substrate, leaving gaps in the monolayer. 

 

Salivary Gland Isolation  

Non-blood-fed female mosquitoes were cold anesthetized as described.  

Mosquitoes were placed on a glass microscope slide with a few drops of cold PBS while 

viewed through a Leica dissection stereomicroscope (Bannockburn, IL). Thumb forceps 

and insect pins were used to remove the salivary glands. Following removal of salivary 

glands, the PBS was wicked away from the salivary gland with filter paper (Whatman, 
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London, England). Tissues were then incubated in 4% paraformaldehyde/0.1 M Na 

Cacodylate buffer for 1 hour at room temperature followed by 3 rinses with PBS. The 

microscope slides containing the fixed tissue were stored in a slide box at -20 °C and 

sealed with parafilm for up to a month prior to immunohistochemistry.  

 

Localization of HSPG on Salivary Glands  

All immunohistochemistry assays were performed in a humidity chamber to 

prevent desiccation of tissue. Salivary glands, on glass slides, were incubated in blocking 

solution of PBS containing 10% Normal Goat Serum (NGS)  for 30 minutes at room 

temperature. The blocking solution was wicked away with filter paper and the tissue was 

incubated in 250 µl of the primary antibody, HSPG C17 (Hybridoma Bank, Iowa City, 

IA), at a 1:100 dilution in PBS containing 2% NGS, for 2 hours at room temperature. The 

tissue was washed with PBS and incubated with 250 µl of the secondary antibody, FITC-

conjugated goat anti-mouse IgG (Sigma-Aldrich, St. Louis, MO), in a 1:60 dilution of 

PBS containing 2%NGS, for 30 minutes at room temperature. Again, the tissue was 

washed and slides were mounted with 0.25 ml Vecta Shield (Sigma-Aldrich, St. Louis, 

MO), covered with 1.5mm thick coverslips and observed using an Olympus BX60 

epifluorescence microscope (Tokyo, Japan) equipped with a U-MWU dual filter. A 

KE/SE digital camera captured the images, which were processed using a SPOT/RT 

program (Diagnostic Instruments Inc., Flint, MI).   
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Label of SIN in Midgut of Ae. aegypti  

Midguts were dissected out of cold-anesthetized TR339 virus-offered individuals 

at consecutive days (0, 1, 5, 7, 10, 12, 14) post feed and placed into ice-cold acetone for 5 

minutes. Organs were placed on microscope slides and frozen as described. At time of 

labeling, midguts were incubated in a blocking solution consisting of PBS containing 

10% NGS for 30 minutes at room temperature. The blocking solution was wicked away 

with filter paper and the tissue was incubated with 250 µl of the primary antibody rabbit 

anti-SINV, diluted 1:100 in PBS containing 2% NGS, for 2 hours at room temperature. 

The tissue was washed as described and incubated with 250 µl of the secondary antibody, 

FITC-conjugated goat anti-rabbit IgG (Millipore, Billerica, MA), at a 1:40 dilution in 

PBS containing 2% NGS, for 30 minutes at room temperature. The tissue was washed as 

described and slides were mounted with Vecta Shield and observed using an Olympus 

BX60 epifluorescence microscope. 

 

Lactoferrin Inhibition in C7-10 Cells 

Ae. albopictus larval cells (C7-10; the C7-10 clone is from the laboratory of 

Victor Stollar [1977]) were grown in MEM-C at 28°C in 5% CO2.  Cells were plated in 

12-well plates and grown to preconfluency. Bovine lactoferrin (LF; Sigma-Aldrich) was 

diluted in MEM supplemented with 10% fetal bovine serum to 100 ug/ml, 200 ug/ml and 

300 ug/ml. The solutions were incubated on the cells for 1 hour at RT on a platform 

rocker. The LF was removed and viral variants AR339 or TR339 were diluted to 2.7 x 

107 pfu/ml in the LF/MEM suspension. This was done for each concentration of LF. The 

diluted virus/LF/MEM suspension was then added to corresponding wells and allowed to 
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adsorb to cells at RT for 1 hour on a platform rocker. After incubation, the cells were 

washed five times with PBS and 1.5 ml of MEM-C was added. Cells were incubated 

overnight and CPE was monitored at 24 and 48 hours post infection through a Leica 

microscope (Bannockburn, IL). CPE is characterized by cell rounding and retraction from 

the substrate, which leaves gaps in the monolayer.  
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Chapter 3: Results and Discussion 

Dissemination of virus variants 

 Temporal analysis of virus dissemination following engorgement on an infectious 

blood meal was conducted. Female Ae. aegypti mosquitoes were allowed to ingest 

artificial blood meals containing either AR339 or TR339. A control group was offered a 

mock blood meal containing MEM at an equal volume as the virus inoculum. Imbibed 

virus particles must somehow escape the midgut of the mosquito and travel to the 

salivary gland through the hemolymph. Virus escape was measured through leg assays at 

days 0, 1, 5, 7, 9, 12 and 14 post feed (Table 1).  Analysis indicated AR339 virus 

dissemination in samples at day 14 days post infection (p.i.).  TR339 was identified at 

day 12 in legs of virus fed individuals.  Analysis of legs from control groups never 

exhibited CPE.  These results were reproduced in three separate trials.  
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Table 1.  Dissemination of virus variants. Temporal analysis of virus dissemination from 
the midgut of the mosquito Ae. aegypti.  A single leg from a virus fed mosquito was 
removed at varying time-points p.i. and triturated in media. This suspension was then 
adsorbed on BHK-21 cells and CPE was monitored.  Dissemination of AR339 was first 
detected at day 14 p.i. and TR339 at day 12 p.i. +, CPE; -, No CPE 

        

Days Post Infection 

0-9    12    14 

AR339    ---   ---    + 

TR339    ---    +    + 

Control   ---   ---   --- 
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TR339 infection of Ae. aegypti midgut 

Within the mosquito, SIN encounters barriers to infection and dissemination that 

are critical determinants of vector competence. The first barrier that the virus must 

overcome is the midgut. Posterior midguts are constructed of a monolayer of simple 

cuboidal/columnar epithelium and a basal lamina all surrounded by visceral musculature 

(Clements, 1996). Tracheal branches and nerve branches surround this peristaltic organ 

(Clements, 1996). Following dissection of midguts from virus-fed individuals, essentially 

no contaminating tissues such as fat bodies were observed in any of the dissected tissues. 

Temporal and spatial analysis of TR339 infection was detected by immunofluorescence 

labeling of SIN antigen on whole-mount tissue preparations of the Ae. aegypti midgut at 

days 2, 5 and 10 p.i.  Virus antigen was not present at day 2 p.i. (results not shown).  

Virus antigen was also not detected in tissues from the control mock-infected group 

(Figure 2). TR339 was detected in the midgut of per os infected Ae. aegypti at day 5 p.i. 

(Figure 3B). A focus of infected tissue was restricted to a small patch at the posterior 

midgut.   By day 10 p.i. the area of tissue containing virus was extended greatly to 

include a large portion of the posterior midgut (Figure 4B).  
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Figure 2. Midgut immunohistochemistry following artificial blood meal. Fluorescence 
image of Ae. aegypti midgut at 5 days post feed per os to which only MEM without virus 
was offered. Immunolabeled for SIN.  Magnification Bar – 100 µm 
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Virus-associated pathology in the salivary glands 

Previous research by Bowers et al. (2003) showed that gross pathology is co-

localized with virus antigen in the proximal and distal lateral lobes of the salivary glands 

following intrathoracic inoculation with SIN. These results were reproduced in per os 

AR339 infected Ae. aegypti in the present study. Salivary glands were dissected out of 

virus offered individuals and observed at the light microscopic level for signs of virus-

associated pathology. At days 14 (Figure 5A)  and 28 (Figure 5B) p.i. pathology was 

sequestered to the proximal and distal regions on the lateral lobes. Tissues of AR339 

offered individuals showed distention and disruption of the lateral lobes, while the 

median lobe remained intact. Attempts to label morphologically disrupted tissue were 

unsuccessful due to the fragility of the specimens. There was a correlation between a 

positive leg assay for the dissected individuals and the noted pathology. Lobe specific 

pathology was not observed in TR339 per os infected mosquitoes (Figure 6) 28 days p.i. 

and the control group (Figure 7).   
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Figure 6.  Effects of HSPG independent virus on salivary glands.  Light microscopy 
image of the salivary gland of Ae. aegypti at 28 days p.i. with TR339 per os. Two sets of 
salivary glands are displayed, connected to the main duct (MD).  The distal lateral lobes 
(DL) and the median lobe (ML) remain intact.  Magnification Bar – 100 µm 
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Figure 7.  Uninfected Ae. aegypti salivary gland.  Light microscopy image of a control 
salivary gland of Ae. aegypti at 28 days post mock infection per os.  The distal lateral 
lobes (DL) and the median lobe (ML) remain intact.  Magnification Bar - 100 µm 
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Localization of HSPG on salivary glands  

 Previous findings of proteomic differences between the lobes of the salivary 

glands (Ribeiro et al., 2007),  as well as the significant finding of HSPG in the salivary 

glands of mosquitoes (Sinnis et al., 2007) offer plausible explanations to the lobe specific 

pathology shown after virus infection. In an attempt to further pin point structural 

differences between salivary gland lobes, an immunohistochemistry label of HSPG was 

performed on whole mount Ae. albopictus salivary gland dissections. HSPG was 

localized to the lateral ducts of the salivary glands in Ae. albopictus mosquitoes (Figure 

8). The HSPG antibody appears to have attached to the filamentous extensions encircling 

the duct lumen in the lateral lobes (Figure 9A), while the median duct appears HSPG 

deficient.  
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Figure 8.  HSPG localization on salivary glands. A.  Fluorescence image of two sets of  
Ae. albopictus salivary glands immunolabeled with HSPG  antibody C17.  The lateral 
lobe ducts show positive labeling of HSPG (thick arrow), while median lobes appear to 
be deficient in HSPG (thin arrow).  B.  Higher magnification view of a salivary gland 
labeled with HSPG. Filamentous extensions of duct cuticle in lateral lobes show positive 
immunofluorescence for  HSPG (arrows).  Magnification Bars – 100 µm 
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Figure 9.  Filamentous extensions of duct cuticle.  Higher magnification views of salivary 
gland lateral lobes  of Ae. albopictus immunolabeled with the HSPG antibody C17 
localizes to the duct. The lumen is shown in A. whereas the ventral aspect of the duct is 
shown in B.  Magnification Bars – 10 µm 
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Lactoferrin inhibition of SIN infection in C7-10 cells 

It is presumed that lactoferrin can prevent virus cell entry by binding to the virus 

particle or by binding to cell-surface molecules that viruses use either as receptors or co-

receptors. In either case, it has been suggested that binding of hLF to cell-surface HSPGs  

is involved in inhibition of viral infection (van der Strate et al., 2001). Preadsorption 

of vertebrate cells with hLF inhibited infection of cells by HSPG-adapted Alphaviruses 

(AR339), but did not inhibit infection by the non-adapted SIN strain TR339.  Here, the 

effects of bovine LF inhibition on virus attachment are being compared between 

mosquito cultured cells.  C7-10 cells were preincubated with bovine LF in three 

concentrations (100, 200 and 300 µg/ml) and virus (107 pfu/ml) was adsorbed onto cell 

monolayers.  Initial results suggested a working concentration of 200 µg/ml to be most 

effective at virus inhibition. This concentration resulted in optimal inhibition of virus 

with no deleterious effects on the cell culture (Figure 10A). Subsequent studies utilized 

this concentration. Cytopathic effect was observed earlier and with greater intensity in 

TR339 infected monolayers (Figure 10C) when compared to AR339 infected monolayers 

(Figure 10B). This suggests that bovine LF has an inhibitory effect on AR339 infection in 

invertebrate cells, possibly due to this variants use of HPSG for attachment. These results 

were reproducible in two trials.  
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Figure 10:  Inhibition of virus-associated CPE in C7-10 cells at 48 hours p.i. A. Control, 
no virus added. Cells remain healthy after addition of 200 µg/ml of LF.  B. AR339 
infected cells preincubated with 200 µg/ml of LF.  CPE is present, but not as extensive as 
C. TR339 infected cells preincubated with 200 µg/ml of LF.  
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Previous studies on SIN-associated pathology in the mosquito did not represent an 

“in the wild” acquisition of virus. Here, per os infection of Aedine mosquitoes with SIN 

variants more accurately portrays virus-host interactions. While the method of infection 

was altered to include a more natural entrance into the host, the effects of the virus on the 

organs of the mosquito were comparable to previous research by Bowers et al. (2003).  

The initial hypothesis was that attempts to label HSPG on the salivary gland would result 

in localization at the basal membrane of the lateral lobes. Instead data show HSPG 

studded filamentous extensions of the duct cuticle (Figures 8 & 9). While this does not 

offer an initial route of SIN entry into the salivary glands, these experiments provide a 

clearer picture of biochemical differences between the lateral and median lobes of the 

salivary glands in female Aedine mosquitoes.   

Millions of people die of arthropod-borne diseases including malaria, yellow 

fever and dengue fever each year (Hill et al., 2005). Alphaviruses cycle alternately 

between vertebrates and hematophagous insects suggesting that virions bind to receptors 

that are highly conserved between species. The normal function of the cell surface 

molecule HSPG is to bind a diverse group of growth factors, chemokines, enzymes, and 

matrix components. In addition, it is important in the cell surface binding of a number of 

bacteria, parasites, and viruses (Rostand and Esko, 1997). HSPG can serve as an 

attachment receptor for SIN, but contributes significantly to binding and infection only 

when using cell culture-adapted strains (Klimstra, Ryman, and Johnston, 1998). This 

adaptability suggests that SIN rapidly mutates to utilize HSPG when grown in cell 

culture. While binding to cell surface, HSPG is not equivalent in interactions between 

natural SIN isolates and cells in vivo.  It does offer a means to study the mechanisms of 



31 
 

HSPG adapted viruses such as HIV, Dengue Virus and eastern equine encephalitis. This 

study provides evidence of HSPG localization in the salivary glands of Aedine 

mosquitoes. More exacting, HSPG is located in the duct cells of the lateral lobes and was 

absent from the median lobe duct, triad and common duct cells (Figure 8B).  

The proximal and distal ducts of the lateral lobes were analyzed through electron 

microscopy by Janzen and Wright, 1971. They describe their morphology as containing a 

duct whose lumen is about 1.2 pi in diameter, while the duct wall is about 0.5 pi thick. 

There were duct thickenings seen by light microscopy which are regions of fine 

filamentous extensions of the duct cuticle. Maze-like canals (0.1 pi in diameter) penetrate 

the duct in the regions of the filaments.  It is these filamentous extensions that label 

positive for HSPG (Figure 9).  Prior unpublished research by Dr. Doria Bowers showed 

labeling of the same filamentous extensions by phalloidin, an actin binding toxin.  This 

co-localization can be expected because of the documented relationship between actin 

and HSPG (Carey, 1997). The median lobe lacks the filamentous projections of the duct 

cuticle and therefore did not result in a positive antibody label against HSPG.  

Previous studies (Bowers et al., 2003) showing regional discrepancy in virus-

associated pathology within the salivary gland of the mosquito may provide clues to the 

transmission of these diseases between species. The post infection obliteration of the 

lateral lobes of the salivary gland while the median lobe stays intact suggests an 

important biochemical and structural difference.  The current study resulted in gross 

morphologic changes of the proximal and distal lateral lobes in AR339 infected Ae. 

aegypti following per os infection at a titer of 7.4 x 107 pfu/ml. However, this virus-
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associated pathology was not observed in the median lobe (Figure 5). Another 

Alphavirus, SFV, also causes gross morphologic changes in the salivary glands of Ae. 

aegypti (Mims et al., 1966).  

This prominent lateral lobe-specific pathology would appear to be a disadvantage 

to the female mosquito. Her ability to blood feed, an important physiological requirement 

for egg development, (Clements, 1996) is potentially compromised.  Previous studies 

(James and Rossignol, 1991; Marinottinotti and James, 1990; Riberiro, 1992) suggest, 

however, that the median lobe may be essential for insect survival and reproduction. 

Therefore, significant virus-associated pathology of the lateral lobes might not be as 

lethal to insect survival and fitness.  Additionally, acinar cells destroyed by the virus may 

not constitute the sole source of saliva in the mosquito as suggested by Rossignol and 

Spielman (1981).  They established that the salivary ducts of mosquitoes contribute 

volumetrically to the saliva. Transection of the lateral ducts from the salivary gland 

demonstrated the ability of the wall of the duct to produce a significant amount of fluid. 

Muangman (1968) successfully transmitted SIN from virus-infected mosquitoes having 

transected salivary ducts to suckling mice, suggesting the passage of secretions across the 

duct wall. Findings that duct-transected mosquitoes imbibe blood conclude that saliva is 

not a prerequisite for blood feeding and virus transmission. Rossignol and Spielman 

(1981) even went so far as to hypothesize that the transmitted virus may have not been 

aspirated from the hemolymph near the open ends of the transected ducts, but instead 

originated in the duct wall. This would coincide with the results presented in the current 

study, illustrating obliteration of the gland acinar cells, while the duct remains intact 

(Figure 5A).  
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Transmission of SIN from a vertebrate host to a mosquito is initiated by the mosquito 

probing the skin of an infected host.  Their proboscis penetrates the vasculature and the blood 

pools are siphoned, allowing SIN to enter the lumen of the mosquito midgut.  The virus 

initially infects the midgut epithelial cells, replicates, and then exits the midgut to infect 

secondary tissues such as fat body and salivary glands (Woodring et al., 1996). 

Productive infection of the midgut is critical for a mosquito species or population to be 

competent to transmit an arbovirus (Black et al., 2002).  The original isolate strain of 

SIN, AR339, has limited dissemination and transmission potential in Ae. aegypti after 

oral infection (Jackson et al., 1993; Seabaugh, 1998). Seabough reported an average virus 

dissemination rate of 39.5% in Ae. aegypti 14 days p.i. This corresponds to the late stage 

dissemination (day 14 p.i.) and lack of virus foci on the midgut p.i. reported in this study.  

Myles et al. (2004) characterized the infection rate and distribution of TR339 virus in the 

midgut of Ae. aegypti mosquitoes and found a greater then 90% midgut infection rate 7 

days p.i.  These results correspond to SIN antigen detected in the midgut of TR339 virus 

infected individuals at day 5 p.i. noted in this study (Figure 3A). The virus initiated 

infection of the midgut with a discrete patch of infection (Figure 3A) that spread, 

resulting in an expanding focus (Figure 4B).  Myles et al. (2004) also reported that the 

spatial and temporal midgut infection pattern for mosquitoes having a disseminated 

infection appeared similar to those with only a midgut infection, but no dissemination. 

This offers a possible explanation to the late dissemination (day 12 p.i. in TR339 infected 

individuals) shown in the current study even though infected midgut tissue is observed at 

day 5 p.i. (Table 1; Figures 3 and 4). 
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The consensus SIN strain, TR339, derived from an infectious clone of the original 

natural AR339 isolate, attaches initially to cells through a low affinity, primarily HS-

independent mechanism (Klimstra et al., 1998). This is in contrast to AR339, which 

utilize cell-surface HSPG molecules as receptors to varying degrees (Byrnes and Griffin, 

1998; Klimstra et al., 1998). The HSPG-dependent cell-surface attachment phenotype 

occurs because of the positive charge amino acid mutations in the E2 attachment protein. 

This mutation is rapidly selected for during passage in cultured cells and is believed to 

either form part of a conformation-dependent, nonlinear, HSPG-binding sequence or to 

promote the exposure of another such site (Klimstra et al., 1998). Interaction of viruses 

with HSPG as a result of tissue-culture adaptation has been reported for several viruses 

(Bernard et al., 2000; Heil et al., 2001; Jackson et al., 1996). Clinical isolates of other 

viruses showed the ability to bind HSPG as well (Goodfellow et al., 2001; Trybala et al., 

2002). 

 It has been suggested that binding of LF to cell-surface HSPGs is involved in 

inhibition of viral infection (van der Strate et al., 2001).  In order to determine whether 

LF results in antiviral activity through interference with virus binding to HSPG receptors 

in the invertebrate host, the effects of LF on SIN-associated pathology of C7-10 cells was 

studied.  Lactoferrin treatment of Ae. albopictus cells, C7-10, did result in a reduced 

virus-associated pathology in AR339 exposed cells (Figure 10B).  This result was 

restricted to the HS-dependent variant, however, as TR339 exposed cells presented 

advanced characteristics of CPE 48 hours p.i. (Figure 10C).  This is similar to the results 

of Waarts et al. (2004) in the vertebrate cell line, BHK-21.  They showed that hLF 

strongly inhibited infection of cells by HS-adapted Alphaviruses, but did not inhibit 
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infection by the non-adapted SIN strain TR339.  At a concentration of 200 µg/ml,  hLF 

caused a 70% reduction in viral plaques for TRSB, 90% reduction for SFV, and no 

reduction for SIN TR339.  

Supplementary supportive evidence of LF anti-microbial activities includes the 

findings by Di Biase et al. (2003).  They showed that mixtures of bovine lactoferrin and 

heparin abolished the anti-adenovirus effect of each compound alone and concluded that 

the anti-adenovirus activity of bovine lactoferrin involves blocking cell-surface HSPGs.  

Additionally, Marchetti et al. (1996) studied the antiviral activity of lactoferrins on HSV-

1 and proposed that lactoferrins block cell receptors for HSV-1, including HSPGs.   

Sindbis virus is an important tool to study the interaction between viruses and 

mosquitoes.  This is because of the availability of the full-length infectious cDNA clones 

and because SIN can infect Aedes aegypti, a mosquito vector, which is important in the 

transmission of dengue and yellow fever viruses. The results of this study offer insight 

into important interactions between the virus and its vector.  
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