
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

1997

Hardware Interfacing in the Broadcast Industry Using Simple Hardware Interfacing in the Broadcast Industry Using Simple

Network Management Protocol (SNMP) Network Management Protocol (SNMP)

Walter H. Schuller Jr.
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Computer Sciences Commons

Suggested Citation Suggested Citation
Schuller, Walter H. Jr., "Hardware Interfacing in the Broadcast Industry Using Simple Network
Management Protocol (SNMP)" (1997). UNF Graduate Theses and Dissertations. 339.
https://digitalcommons.unf.edu/etd/339

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 1997 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F339&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fetd%2F339&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/339?utm_source=digitalcommons.unf.edu%2Fetd%2F339&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

HARDWARE INTERFACING IN THE BROADCAST INDUSTRY USING SIMPLE
NETWORK MANAGEMENT PROTOCOL (SNMP)

by

Walter H. Schuller Jr.

A thesis submitted to the
Department of Computer and Information Sciences in partial

fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

August, 1997

The thesis ~Hardware Interfacing in the Broadcast Industry
using Simple Network Management Protocol (SNMP)" submitted
by Walter H. Schuller Jr. in partial fulfillment of the
requirements for the degree of Master of Science in Computer
and Information Sciences at the University of North Florida.

Approved by the thesis committee:

Thesis Adviser and Committee Chairman

Dr. Ralph Butler

Dr. Robert F. Rogg1o

Accepted for the Department of Computer and Information
Sciences:

Dr. Charles N. Winton
Chairperson of the Department

Accepted for the College of Computing Sciences and
Engineering:

Dr. Charles N. Winton
Acting Dean of the College

Accepted for the University:

Dr. William J: Wilson
Dean of Graduate Studies

- ii -

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Acknowledgment

I wish to thank my wife and children for their understanding

and support during this education experience. I would also

like to thank the management of W.J.X.T. TV-4 (my employer)

for all their support as well. Thanks to all involved, I am

a better person for what I have been allowed to accomplish.

- iii -

CONTENTS

List of Figures . vi

Abstract

Chapter

Chapter

... vii

1: An Introduction . 1

2: SNMP Theory and Implementation 6

Chapter 3: Procedure 19

Chapter 4: Tools and Documentation 26

Chapter 5: Duplication of Experiment 30

5.1 Verification of Experiment 30

5.2 Modification of Experiment 33

5.3 Proxy Agent Modification 34

5. 4 Manager Modification . 36

Chapter 6: Program Operating Instructions 39

6.1 Agent Programs 39

6. 2 Manager Programs . 41

Chapter 7: Results and Conclusion 43

References . 4 8

Appendix A: Microsoft Visual C++ 50

Appendix B: Dart Communications Specialty Toolkit 53

Appendix C: MarshallSoft Windows Standard Communications

Library . 60

Appendix D: SynOptics (SMICng) MIB Compiler 63

Appendix E: Imagine Serial Converter 67

Appendix F: PicNet Networkable Modules 68

- iv -

Appendix G: Sony Protocol of Remote-1 Connector 71

Appendix H: MIB Objects Used in this Thesis 72

Appendix I: Example of Other Possible MIBs 80

Appendix J: Software Listings 86

Appendix K: Glossary of Terms Used 117

Vita ... 119

- v -

FIGURES

Figure 1: Typical Interface Scheme 1

Figure 2: Interfacing via LAN and SNMP 2

Figure 3: Sony Tape Machine and Audio/Video Switcher .. 3

Figure 4: Equipment Interconnection 4

Figure 5: The Five SNMP Control Primitives 8

Figure 6: Object Identifier Tree 11

Figure 7: Sample Experimental MIB 13

Figure 8: Typical MIB Compiler 15

Figure 9: How It All Works 18

Figure 10: Equipment Interconnection for Testing 21

Figure 11: Proxy Agent Screen 23

Figure 12: SNMP Management Screen 24

Figure 13: Equipment Setup 31

Figure 14: Roptine to Send a Command String 35

Figure 15: Sample Serial Command Strings 36

Figure 16: Example SNMP Manager Message Routine 37

Figure 17: Agent Screen 40

Figure 18: Manager Screen 41

Figure 19: Control of Master Air Switcher and Sources .. 44

Figure 20: GPI Expansion Example 46

Figure 21: SNMP Classes and Functions 54

Figure 22: Sample Code "Hello World". 60

Figure 23: MarshallSoft Communications APis 61

Figure 24: Sample Include File. 64

Figure 25: PicNet Module Configuration 69

- vi -

ABSTRACT

Communication between various broadcast equipment plays a

major role in the daily operation of a typical broadcast

facility. For example, editing equipment must interface

with tape machines, production switchers must interface with

font generators and video effect equipment, and satellite

ground controllers must interface with satellite dishes and

receivers. Communication between these devices may be a

simple hardware handshake configuration or a more elaborate

software based communications via serial or parallel

interfacing. This thesis concerns itself with the software

interfacing needed to allow various dissimilar types of

equipment to communicate, and therefore, interface with each

other. The use of Simple Network Management Protocol (SNMP)

in a non-typical manner for the purpose of hardware

interfacing is the basis for this work.

- vii -

Chapter 1

INTRODUCTION

One of the problems continuously facing the broadcast

industry is how to interface various types of equipment from

different manufacturers. Unfortunately, standardization of

hardware interfacing is not as prevalent in the broadcast

industry as it is in others. Because of this lack of

standardization, manufacturers are forced to write machine

specific code when attempting to interface micro-processor

based equipment. This software is used for communications

between the dissimilar devices over various topologies, and

this arrangement often causes a second problem. Each unit

must be directly connected with the other unit to which it

is interfacing; therefore, physical location becomes an

issue. This complicates equipment installation and is an

Device 1
Direct Link

Device 2

Interpreter Device 3

Figure 1: Typical Interface Scheme

- 1 -

inefficient use of expensive signal wire. Another technique

is to use a third computer as an interpreter between two

products wishing to communicate. This machine receives

communication control codes from one device and translates

the request into the required command string for the other

device. Obviously, this is a very inefficient use of

hardware. Figure 1 shows the two typical types of

interfacing used in the broadcast industry today.

A more efficient and standard interfacing scheme is needed,

and could be easily employed. Local Area Networks (LANs)

are becoming common in the broadcast industry, and should be

considered as a medium for communication between broadcast

equipment. The problem of hardware dependent code for

communicating and interfacing could be eliminated by use of

a standard network protocol. One such established protocol

Device 2

Manager

Device 1 LAN
Device 3

Agent
UDP/IP SNMP Protocol

Agent

Figure 2: Interfacing via LAN and SNMP

- 2 -

used for network monitoring is the Simple Network Management

Protocol (SNMP) of the TCP/IP suite. Although SNMP was not

intended for this type of equipment interfacing, it is ~y

belief that SNMP could be used for limited equipment

interfacing between different manufacturers; thus,

eliminating the need for hardware dependent software. Each

manufacturer would simply provide a network interface (such

as Ethernet), an SNMP agent server, and a MIB for its

product. This established protocol would allow other

manufacturers to easily communicate, and thereby interface,

with the other vendor's equipment by the use of a SNMP

manager (Figure 2). Previously released products could be

retrofitted by constructing a network interface with a proxy

server for the device.

Figure 3: Sony Tape Machine and Audio/Video Switcher

- 3 -

In this work, I shall explore the feasibility of using SNMP

as a common interface. With this protocol, I hope to

control an audio/video vertical interval switcher (figure

3), a Sony tape machine (BVU-800) (figure 3), and an

emergency transmitter controller as examples of my proposal.

The transmitter controller was designed and constructed by

this student as a senior project while working on an

undergraduate degree in electrical engineering. In all

three cases, I will use personal computers running Windows

95 as proxy agents and managers (the programs should run

equally as well with Windows 3.11). Physical control will

be through the serial ports of the computer. This should

prove the validity of using SNMP for equipment control as

well as the possibility of retrofitting existing equipment.

Speed and efficiency of equipment control as well as network

traffic problems as a result of this type of interface will

PC 1
Ethernet LAN

~anager
UDP/IP SNMP

PC 2

Proxy
Agent

Seri

Broda cast
Equipment

al I Parallel
Interface

Figure 4: Equipment Interconnection

- 4 -

be studied. This work will also include examples of

proposed MIBs for other types of broadcast equipment that

could possibly be controlled using SNMP.

It is not the intent of this thesis to educate the reader in

all aspects of SNMP or the broadcast environment, nor is it

the intent of this thesis to exercise every possible

combination of equipment interaction. This thesis only

attempts to prove the concept of using the Simple Network

Management Protocol to interface dissimilar units of

broadcast equipment.

- 5 -

Chapter 2

SNMP - THEORY AND IMPLEMENTATION

The Simple Network Management Protocol (SNMP) is a TCP/IP

based protocol used for network management. Network

elements (printers, routers, servers, and etc.) can be

monitored and/or controlled through this management tool.

Communications is based on a client/server arrangement. The

client (network manager) communicates with a server (SNMP

agent). Together, the manager and agent software maintain a

common database called the Management Information Base (MIB)

for each controlled or monitored device. Limited control of

a device, such as system reset, is performed by changing a

MIB variable which causes the agent to act accordingly.

Monitoring of an element is accomplished by requesting the

agent program to provide MIB data corresponding to the

monitored function desired.

It should be noted that this unique protocol can be used for

more than just network monitoring. It has also been used to

monitor heating and cooling control networks, automotive

traffic networks, chemical and industrial processes and many

other real-time system applications. Over time, this simple

protocol has proven to be quite useful in applications other

than its intended use.

- 6 -

This protocol is purposely designed to be small in size in

order to keep processor overhead and network traffic as low

as possible. The SNMP agent software is usually quite small

(often less than 64k) . The protocol uses the polling

technique and UDP (User Datagram Protocol) to help keep

efficiency as high as possible. The simplicity of the

connectionless datagrams of UDP helps with debugging as

well. " As network debugging in the face of changing routes

will certainly mean losing packets, retaining this control

from the transport service (layer 4) was considered

essential. Since a network management protocol will be run

continuously it is mandatory that it consume as minimal

network resource as possible. UDP allows the necessary

control over packet transmissions, packet size and content

(packetization) . It was a natural choice" [Satz] .

SNMP uses WELL KNOWN port numbers 161 and 162. Management

request and agent responses use port 161 while agent trap

messages use port 162. Basically, the manager program

obtains a port address from its pool of unused ports, and

includes this address as the source in the SNMP message

being sent to port 161 of the agent program. The agent

program uses the source address of the manager for the

GET-RESPONSE message. The agent program uses port 162 as

its target address of the manager for all TRAP messages.

- 7 -

The SNMP protocol supports five control primitives. Three

are used by the manager software while the other two are

used by the agent software. The manager uses GET REQUEST to

obtain status information of the device from an agent. The

agent uses a GET RESPONSE message to provide that

information. If the amount of data is too great for one

message, then the agent will send what it can and the

manager will request the next packet of data using the GET

NEXT REQUEST.

MANAGER

MANAGER

MANAGER

AGENT

AGENT

GET REQUEST - Used to request MIB
data.

GET NEXT REQUEST - Used to get next
sequential data unit from MIB.

SET REQUEST - Used to set variables
in MIB.

GET RESPONSE - Used to respond to
GET REQUEST, GET NEXT REQUEST, and
SET REQUEST.

TRAP - Used to report unsolicited
device event information.

Figure 5: The Five SNMP Control Primitives

A manager can also set the values of various object

identifiers (variables) which in some cases will cause the

agent software to take appropriate action on the device.

Finally, an agent using the trap message format can alert

- 8 -

the manager to a change in device status such as a system

error.

The generated action by the agent server in response to the

manipulation of objects within the MIB by the managing

client is the basis of this thesis. Setting, or resetting,

objects will cause the agent to control various functions of

an interfaced device. However, notice that the agent

program is doing all the work in this implementation which

is opposite to the way the protocol was designed. Under

normal operation, SNMP puts more of the work load on the

manager program to prevent the agent from robbing system

resources from its host device. The work-loaded agent

should not be a problem in my implementation due to the

nature of the equipment being controlled. Much of the time,

the hardware is waiting for the next command. The speed of

the controlling processor is considerably faster than the

mechanics of the machine or the user operating it.

A couple of other characteristics of the SNMP may be worth

noting. All implementations of SNMP must be able to receive

messages of at least 484 octets in size; however, UDP

packets can be as large as 65k. In most normal

implementations of SNMP, the manager polls the agents on

regular intervals (typically 15 minutes) .

- 9 -

For equipment not able to handle SNMP, another device with

an agent package can act as a proxy agent for the unit. For

example, an agent running on a workstation can be used as a

proxy agent for a printer which is attached to that

workstation. Proxy agents are also useful for load

reduction on heavily used equipment. The system running the

proxy agent will take the task of management off the

overworked system. As stated previously, this thesis

employs proxy agents for control of the various broadcast

devices used.

The Management Information Base (MIB) uses only a few

different types of data to describe the status, performance,

configuration, and etc. of a device. Each device has its

own MIB which is used for its control and status reporting.

The fundamental ASN.1 data types used with SNMPv1 are NULL,

OCTET STRING, INTEGER, and OBJECT INDENTIFIER. All other

data types are derived from these basic units and are

described in MIBs which were declared in early RFC's. This

practice of deriving new data types is still in practice.

Every variable in a MIB must be referenced by its object

identifier name. An object identifier is authoritatively

named using a tree structure similar to the DNS of the

Internet (figure 6). Most variables start with the numeric

name of 1.3.6.1.2.1 which corresponds to a textual name of

iso.org.dod.internet.mgmt.mib. Two exceptions to this are

- 10 -

vendor-specific MIBs whose variables start with the numeric

name of 1.3.6.1.4.1 and the experimental MIBs with the

numeric names of 1.3.6.1.3. These identifiers correspond to

textual name of iso.org.dod.internet.private.enterprises and

iso.org.dod.internet.experiment respectively. This thesis

Figure 6: Object Identifier Tree

used the experimental identifier prefix, and a partial

example of a MIB created for this project is shown in figure

7 (next page) . The IMPORT of "experimental" from

RFC1155-SMI sets the prefix of the modules to 1.3.6.1.3

(iso.org.dod.internet.experiment).

- 11 -

It should be noted that only node leaves of the MIB name

tree may be referenced. Variables are referenced by adding

an index to the numeric identifier. A variable name has the

following format: OBJECET INDENTIFIER.INDEX. One of a kind

objects have a zero for their index. For example, a

variable known as udpinDatagrams would be referenced as

1.3.6.1.2.1.7.1.0 which corresponds to the text identifier

of iso.org.dod.internet.mgmt.mib.udp.udpinDatagrams.O, and

the variable know as txExciterA (following page) would be

referenced as 1.3.6.1.3.3.0 which corresponds to

iso.org.dod.internet.experiment.txExciterA. These and other

detailed examples can be found in Understanding SNMP MIBs by

David Perkins and Evan McGinnis.

- 12 -

THESIS-MIB DEFINITIONS : := BEGIN

Title:
Date:
By:

UNF Thesis MIB Examples
May 1997
Walter Schuller <wschul@osprey.unf.edu>

IMPORTS
experimental
OBJECT-TYPE

FROM RFC1155-SMI
FROM RFC-1212;

-- Objects for TRANSMITTER control MIB

txPowerUp OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes transmitter power to be
increased by a predetermined amount."

: : = { xmi t 1 }

txPowerDown OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes transmitter power to be
decreased by a predetermined amount."

: : = { xmi t 2 }

txExciterA OBJECT-TYPE

END

SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes exciter A to be activated."
:: = { xmit 3 }

Figure 7: Sample Experimental MIB

- 13 -

MIBs often need to be checked for correct syntax and/or

translated into various useable output formats, such as data

structures, which may be directly inserted into a program's

source code, or which may be read directly by SNMP

management or agent applications at run-time. A special MIB

compiler is used to perform these functions. "MIB compilers

tend to be greatly misunderstood tools. This term is

usually applied to a MIB syntax checker authors use to

ensure that their MIBs are written in the correct form, but

it also applies to an entire class of tools that perform

functions as diverse as drawing tree representations of a

MIB, to automatically generating C code for a management

application or agent" [325, Perkins]. Basically, MIB

compilers are simple translators which work with an adapted

sub-set of the ASN.l description language. Note that an

ASN.l compiler should not be used as a MIB compiler because

this type of compiler might not recognize the SNMP

adaptations of the ASN.l language.

MIB compilers are similar in construction to regular

compilers. They often require multiple passes during the

compiling process (see figure 4). The first phase of

compiling is done in the front-end. This is where the

syntax checking is performed. Output from this phase is an

intermediate code which is fed to the back-end compiler.

The output of this phase is determined by which back-end

- 14 -

MIB
Back-End

Front-End
Back-End

Graphic

Back-End

Error Log

Figure 8: Typical MIB Compiler

compiler is chosen. It could be a graph displaying the MIB

overview, a report displaying all errors, source code

providing a structure definition for the MIB, or a special

format that a manager or agent program could read during

run-time.

The MIB compiler used in this thesis was the SNMP Management

Information Compiler - Next Generation (SMICng) by SynOptics

Communications, Inc. It can be obtained from this company

or from a CDROM included with the text Understanding SNMP

MIRa. It was mainly used to check for correct syntax of the

experimental MIBs included in this work.

The Simple Network Management Protocol is not perfect.

Although the SNMP protocol appears to be quite simple (only

five primitives), the MIB is somewhat more complicated.

- 15 -

Combined with the BER encoding rules, SNMP is not as simple

to implement as the name implies. The protocol has also

been criticized for its inefficient use of bandwidth. This,

in part, is due to the polling technique, and the

transmission of needless information, such as the version

number and large data handles with each transmission packet.

Another disadvantage is due to the unreliability of the UDP

protocol; however, due to its simplicity when compared to

TCP, it is also one of its strengths.

Some of these and other problems have been addressed in

version 2 of this protocol (SNMPv2) . Improvements deal with

larger data retrieval, manager to manager communications,

new MIB definitions, and security enhancements. Other

shortcomings are addressed in the OSI version of management

protocol. Common Management Information Protocol (CMIP) has

a larger set of primitives and a core set of data elements.

However, due to its complexity in protocol, CMIP also has

disadvantages which help to make the SNMP more attractive.

Unfortunately, SNMPv2 and CMIP have not enjoyed wide

acceptance in an industry. Note that this thesis will only

concern itself with Version 1 (SNMPv1).

SNMP is well suited for hardware interfacing because of how

it was designed. Abstract Syntax Notation 1 (ANS.1) and

Basic Encoding Rules (BER) were used when developing this

protocol. Abstract Syntax Notation is a machine independent

- 16 -

high level data definition language; however, it does not

state how this data is to be stored or encoded. A subset of

ASN.l is used to describe SNMP messages as well as all

fields in the MIBs. Basic Encoding Rules (BER) are used to

define how the data types of ASN.l are to be encoded and

later transmitted. It is this machine independent data type

definitions and their corresponding encoding that makes this

protocol so well suited for interfacing. If all parties

agree to predetermined data types and encoding schemes, then

communications between dissimilar micro-processor based

equipment is greatly simplified. Problems such as

big-endian I little-endian, dissimilar variable lengths and

types, and improper hardware handshaking are greatly

reduced.

The reader should now have enough information on this

protocol to understand the theory behind how SNMP is being

used in this thesis. As stated previously, SNMP will be

employed for hardware control instead of network monitoring

and management. The following figure briefly describes the

concept behind the use of SNMP in this thesis.

- 17 -

SNMP for Hardware Interfacing

o SNMP Agent program is embedded in the controlled

equipment.

• SNMP Manager program is embedded in the controlling

equipment.

• Manufacturer supplies MIB for each of its products that

supports this protocol.

• Controlling equipment reads MIB for control and monitor

objects.

• SNMP Manager sets or resets MIB objects (SET REQUEST)

causing the SNMP Agent to control broadcast equipment.

• SNMP Manager reads MIB objects (GET REQUEST) for machine

status (such as tape timecode).

• SNMP Agent is doing all the work (similar to distributed

processing) .

• SNMP Manager has no knowledge of how requested operations

are being handled by the Agent program.
Figure 9: How It All Works

- 18 -

Chapter 3

PROCEDURE

A stable operating platform was needed to begin this

project, and this became the first objective. I originally

started this project working with a UNIX based system. I

wanted to use an existing and fully developed SNMP toolkit,

as it was not my intention to develop the needed software

drivers for this protocol. I was not trying to prove that I

could write the code for SNMP; I needed only to use this

protocol as a message carrier. The actual interface

software for the various hardware devices would be done

within the agent programs. The manager programs would

simply provide a user interface; however, in actual practice

of my concept, this function would be built into the

controlling equipment. I was also concerned about using a

non-standard version of this protocol. Had it been proven

that the implemented version of SNMP was somewhat flawed, it

would have negated my final results. Therefore, I attempted

to locate a fully developed and tested API of this protocol.

Unfortunately at the time, I was unable to find a commercial

UNIX based product that fulfilled my needs; however, I was

able to find a TCP/IP and SNMP tool-kit (from Dart

Communications) for the windows operating system. This

dictated my development to be done on this platform.

- 19 -:

Having chosen an SNMP API, I then needed to choose a

software compiler. I could have purchased the Microsoft

Visual Basic version of this tool kit from Dart

Communications; however, I felt that the language C would

provide more flexibility. With this in mind, I purchased

the C++ version of this product and used Microsoft's Visual

C++ as my main compiler. This one decision cost me

approximately one extra semester in time. I was forced to

teach myself Window programming using the Microsoft's

Software Development Kit (SDK) due to restrictions within

the SNMP toolkit from Dart Communications (see appendix).

I also utilized two other products while developing this

thesis. One was the "Windows Standard Communications

Library" by MarshallSoft Computing, Inc.. This is a

communications library for use with windows compilers, and

it's one of the best that I have ever used. It should be

noted that this company has a version for DOS as well. The

second product was a PicNet Networkable Module from Software

Interphase. This is a hardware device which converts serial

input to parallel output. It was used to help interface

between the PC based proxy agent and the audio/video

vertical interval switcher. Both of these products are

described in some detail in chapter 6 and the appendixes.

Other less notable tools used in this project are described

as well.

- 20 -

Personal Computer Broadcast Equipment
SNMP Proxy Agent

RS232

n ~erial Port ::>erial Port I
Ethernet
UDP/IP

_j Personal Computer
SNMP Manager

(User Interface)

Figure 10: Equipment Interconnection for Testing

Two personal computers (PCs) were used to develop the

software. One computer would act as a proxy agent for the

.equipment to be interfaced, and the other would act as the

manager with a graphical user interface. Both units were

networked together using Boca 10BaseT Ethernet cards. The

two computers used the Windows 95 operating system. One PC

was a 133 MHz Pentium based machine and the other was a 120

MHz 586 based unit.

As previously stated, I used a PC as a proxy agent to

interface with the various pieces of broadcast equipment. I

could have used parallel I/O, serial I/O or specially

designed hardware for the interfacing. Fortunately, many

vendors make available some type of serial I/O for computer

interfacing with their equipment. Each vendor normally

supplies the required codes which will allow another

computer to control their product; however, at times this

- 21 -

information is not always easy to obtain. I chose to use

the serial I/0 exclusively; thereby, providing as much

software reuse as possible. Remember, the manner in which

the proxy agent interfaces to the hardware is not important

here. Under normal circumstances, this interface would be

an integral part of the product. Again, this thesis only

wishes to prove the practical use of SNMP in controlling I

interfacing broadcast equipment.

Software development began by inspecting and greatly

modifying the provided samples that came with the SNMP API

tool-kit from Dart Communications. This provided a good

starting point, although the sample programs were used in

quite a different manner than the way I wished to use this

product. Nevertheless, these sample programs provided a

wealth of information and I credit Dart Communications for a

number of subroutines used within my software.

Basically the three pairs of programs (manager/agent) for

each piece of hardware to be interfaced, are very similar.

I used object oriented design methods to take advantage of

software reuse between the program modules. The similarity

is most prevalent between the three versions of proxy

agents. Visually, the three versions look almost identical

(see figure 11), but internally they are quite different.

It is the proxy agent programs that perform the actual

interface between the PCs and the various types of broadcast

- 22 -

-- '-.- ,,_-

- 1• SKf"~~colftmur~ic:ati«l¥,0;,_- 1 · ·

: ,] Re..J.~c~;..~l '"'N""'o.:-cN~=-,-' __ -, _"-'-_ ..._..:__.....-;....:;_-:.....;_~1·_ •• _._._-_ll·_•-·--·-·------, _

:· . :j~ . .
i . .

1
JNONE ;J:< •.

-~ ~> _ Response _ . __ .-_.J·--_-_:

;jc>_ .
j' ·--;--.----..,-C-, ~~:~,,-j,-•,1

i ,-

Figure 11: Proxy Agent Screen

equipment. This is where knowledge of the manufacturer's

hardware comes into play. The proxy agent programs perform

the necessary command translations between the received

interface request from the SNMP manager and the appropriate

serial I/0 command string needed to instruct the equipment

to perform the requested operation. Thus, the proxy agent

program is doing a great deal of computing, and can be

thought of as a form of distributed processing. This

distributed processing also helps to keep network traffic to

a minimum while providing the necessary hardware interface

to the manager program. In other words, the manager program

does not need to know anything about how the agent's

hardware works. This is the basic idea behind this thesis.

- 23 -

The manager programs are visually, as well as internally,

different. These programs rely on user intervention for

this demonstration; however, like the agent software, the

management operation should be embedded within the

controlling equipment. For example, a production

switcher would also be running the management software

within; thus, negating the need for a proxy manager. Figure

12 shows one of the manager interface screens.

Communications between the manager and agent was

accomplished by polling the appropriate agent when

necessary. Therefore, the manager program had full control

; ,, r,-lran!mitter Readinll~.r'-~c:":":.-:-::• ~,...,.'-~·""'-/ _---~-:....,.-..:......~--'-"-'""""
j . - - Network Status I UDP Port Opened

-·1 , - _. , -.• _ c _- -. -c.

j, Via.~al Pwr APfate KV
- j-

1 --- r
)i

-t - ~-.aJ ~--- ~~

1,•'

.lf~telV'
J:-- .. . -t ..----~

- ·J(_

i t

- -

_GEN ON

,AfRO L ~ 'GENOFF T

Figure 12: SNMP Management Screen

- 24 -

of the system at all times. The agent program simply

performed requested functions.

Not all the functions of SNMP were employed. For example,

agent notification to the manager was not implemented, nor

was the use of TRAP messages. Acknowledgment feedback was

also not used in this project. Visual observation was

enough to verify correct operation of the controlled

equipment.

The MIBs developed for this project are quite simple. No

use of tables were necessary, and only INTEGER and OCTET

STRING data types were used. The integer types were used to

pass monitoring values from the proxy agent to the manager

programs. Octet string data types were used as control

switches. Setting one of these would signal the agent

program to cause the associated function to be performed on

the interfaced equipment. A listing of the MIB objects used

in this work is included in the appendix along with examples

of other possible MIBs for various broadcast devices. An

exhaustive collection of possible equipment interfacing MIBs

has not been provided; however, these few selected examples

should give the reader a good idea of the different types

of equipment that could be controlled through the use of

SNMP.

- 25 -

Chapter 4

TOOLS AND DOCUMENTATION

This chapter will concern itself with the various tools used

in the development of this thesis. A short synopsis will be

given for each tool in this chapter. Additional information

on the product will be presented in the appendixes.

The main tool used was Microsoft's Visual C++ compiler

version 1.5. The CASE tool was used to create the manager

and agent programs. I could have used a later version of

Visual C++; however, I wanted to stay in the 16 bit

environment for compatibility with Windows 3.xx. I also

preferred the overall feel of the editor and debug tool

included within the package. The use of version 1.5 caused

no problems. See appendix A for further information on this

product.

One other compiler was used in this project; however, it was

not used to compile or generate source code. I am referring

to a MIB compiler and it was only used to check for proper

syntax of my experimental MIB modules. I used the SNMP

Management Information Compiler - Next Generation (SMICng)

from SynOptics. I could have used this compiler to generate

source code for implementing the MIBs, but I chose to use

the string tables of Microsoft Visual C++ instead. Using

the compiler for syntax checking did point out a number of

- 26 -

errors in the way I was setting up my MIB as well as

identifying various syntax errors. It was a worthwhile

exercise. See appendix D for more information.

Along with the two compilers, I also purchased two software

toolkits. One toolkit was from Dart Communications and

provided the libraries for the SNMP and UDP protocols. As

stated previously, it was not my intention to write the

SNMP, UDP, or IP protocols. I only wished to use this

protocol family in the implementation of this thesis. This

toolkit provided the necessary C++ classes for use with the

SNMP protocol. The other toolkit was an asynchronous

communications library for use with windows. This product

came in the form of a Dynamic Link Library (DLL), and was

compatible with the Windows API provided by Microsoft. This

library provided the necessary APis for the serial interface

between the agent computer and the broadcast equipment. A

notable feature of this library is the high baud rate which

can be obtained. It supports baud rates as high as 57600

with any word size. I needed this feature because the Sony

tape machine required a baud rate of 38800. More

information of both of these products can be obtained in the

appendixes. See appendix B for Dart Communications and

appendix C for MarshallSoft.

As stated previously, vendors usually make available the

information on any software protocols needed to interface a

- 27 ~

computer with their equipment. Sometimes this is provided

with the equipment documentation; unfortunately, this is

often not the case. The information must be obtained

separately and often purchased. The Sony protocol is an

example of this. First I had to locate the information and

then it had to be purchased. The first obstacle proved to

be much harder than the second. It seems that a request for

this type of information is not common, and I had a very

hard time obtaining the part number for the product. To

save the reader from having to experience the same ordeal, I

have included all necessary information needed to obtain a

copy of this manual in appendix G. This manual describes

the Sony Remote-1 protocol for the BVW-10, BVW-11, BVW-15,

BVW-35, BVW-40, BVW-60, BVW-65, BVW-70, BVW-75, and BVW-96

models of tape machines. Through experimentation, I found

the protocol to work fairly well with other Sony models as

well. For example, many commands worked well with the

BVU-800 videocassette recorder. Of course, other books and

documents on the subject of Simple Network Management

Protocol were obtained as well; however, these are given in

the reference section of this document. This manual is

described here and in the appendix due to the necessity of

the contained information and due to the problems obtaining

the document.

Two additional hardware devices were used to help with the

hardware interfacing between the proxy agent computer and

- 28 -

the targeted broadcast equipment. One device used was a

RS232-to-RS422 topology converter. It was used to convert

the RS232 serial output from a computer to the required

RS422 input of the Sony tape machine. The product was

designed for Sony tape machines and works well with the

required high baud rate. The second device was a type of

serial-to-parallel converter. The PicNet module provides

eight separate relays for output control. Its input is a

serial command stream which directs the addressed module to

set or reset targeted relays. This device was used as an

interface between a computer's serial port and the

audio/video switcher. It was used in a similar fashion to a

General Purpose Interface (GPI). Like the others, more

information on both these devices can be located in the

appendixes.

The only other equipment needed for this project is a couple

of network interface cards and the appropriate cabling. I

chose to use a couple of Boca lOBaseT Ethernet cards which

were NE2000 compatible. Instead of wiring hubs, I simply

used a special "twist cable." This cable is easy to make

and is nothing more than a cable with the pairs swapped at

each end.

- 29 -

Chapter 5

DUPLICATION OF EXPERIMENT

This chapter will focus on instructing the reader in

recreating the experiments done in this thesis. This

chapter should provide a good starting point for anyone

wishing to continue with these studies.

The software source and executable code is provided on the

enclosed floppy disk for the reader's use. For verification

of the experiments, only the executable files should be

necessary; however, for continuation of the work, the C/C++

source code will be needed along with copies of the

Specialty Tookkit from Dart Communications and the

MarshallSoft Windows Standard Communications Library. This

should not prove to be a problem; trial copies of both

toolkits are available from the vendors (see appendix). I

grant permission for use of my source code to anyone wishing

to further this work or to simply experiment with SNMP.

5.1 Verification of Experiments

Recreation of the original experiments requires the

executable files along with the two runtime files named

P16help.exe and Wsc.dll. As stated previously, all files

are provided on the accompanying disk with this thesis. Two

- 30 -

personal computers running Windows 95 or 3.xx will also be

necessary. The original experiment communicated using

TCP/IP on Ethernet; however, Ethernet is not a requirement

for this project; just a WinSock version of TCP/IP. The

experiment should work even if SLIP or PPP is used between

machines; however, this has not been verified. Note that

both computers will need to have a fixed IP address. RS232

topology was used for communications between the proxy agent

computer and the controlled broadcast equipment (see

accompanying figure) . The actual protocol used between the

proxy agent and interfaced equipment is device related.

The main problem for the reader in duplicating this

experiment will be gaining access to the hardware which was

interfaced. Oddly, obtaining access to a Sony tape machine

Personal Computer
SNMP Proxy Agent

Serial Port

TCP/IP

Personal Compute
SNMP Manager

(User Interface)

Broadcast Equipment

Serial Port

Figure 13: Equipment Setup

- 31 -

may prove to be the easiest. These tape machines are very

popular in the academic environment as well as the

broadcasting and production industry. Although a Sony

BVU-800 was used with this project, any of the Beta series

machines should work due to the similarities in the Sony

remote protocol between the various models. Of course, this

is not guaranteed. The PicNet can be easily obtained from

the vender (see appendix) and then used to interface any

other device which uses a simple General Purpose Interface

(GPI). Unfortunately, the transmitter remote control will

probably not be accessible to the reader. The unit was

designed and built by this student in partial fulfillment of

the requirements for an electrical engineering degree. In

other words, only one of these devices exist, and Post

NewsWeek (WJXT) has it. However, the documentation for the

project should still be on file in the Department of

Engineering of the University of North Florida. This

document contains all necessary information on the hardware

and software needed to understand the internal operation of

the unit, or even duplicate the project.

After making all necessary hardware connections, the

appropriate software may be executed on the computers. The

software programs work in manager/agent pairs. One pair is

for the Sony tape machine interface (Sony a/m.exe), one for

the transmitter interface(xmit a/m.exe), and one for the

switcher interface(switch a/m.exe). Simply choose the

- 32 -

appropriate pair depending on what hardware the system will

be interfacing. The agent program should be installed on

the computer which physically connects to the interfaced

device. The manager program is installed on the other

computer. Program operation is described in its own

chapter.

5.2 Modification of Experiments

As indicated above, the easiest way to experiment with

controlling other types of equipment is with the PicNet

Networkable Module (see appendix). The necessary proxy

agent source code for this module is already written and

compiled. All that remains is to connect the eight relays

to an appropriate GPI on the equipment needed to be

controlled.

For further studies with this project, the software source

code must be modified. Due to the properties of Object

Oriented Design, this should not be a great burden. Using

the Visual C++ compiler will also greatly simplify window

reconstruction. All source, definition, and project files

are included with this thesis. Note that Visual C++ version

1.5 was used. If a higher version is to be used, the

project and definition files may need to be recreated. It

is also worth noting that the Microsoft's Foundation Class

- 33 -

library (MFCs) was not used. Instead, functions and classes

from Microsoft's standard 16 bit API were employed.

5.3 Proxy Agent Modification

The agent program can be easily modified for other types of

I/0 interface (serial, parallel, etc) by simply

modifying one C++ class identified as Ccontrol. This class

is defined in the file named CLASSES.CPP, and the file

titled CCONTROL.CPP has the C/C++ code for all the functions

used within the class. Calls to this class can be found in

the CAGENT.CPP and SNMPAP.CPP listings. CAGENT.CPP is where

the virtual functions of the CSnmpAgent class are described,

and an instance of the Ccontrol class is declared and

utilized in these member-function calls. SNMPAP.CPP is the

source code which is responsible for setting up the main

window. An instance of the Ccontrol class is also declared

in this part of the program for the "Test" selection.

The use of a serial port for the interface between the

computer and the interfaced equipment is not necessary. The

parallel port or any other hardware input/output (I/O) may

be used for this purpose. Simply modify the Ccontrol class

to handle the new hardware, or create an additional class.

If the serial interface is chosen, then modification of this

class should be very simple. The member-function call for

- 34 -

sending a serial command to a hardware device is

Ccontrol::send_cmd(int *cmdptr). This function takes a

character pointer to an array of hexadecimal codes which

represent the required serial string.

int Ccontrol::send_cmd(int *cmdptr)

int i=O, num, count 0;

num = *cmdptr;

for (count=1;count<num+1;count++)
{

SioPutc(Port,*(cmdptr +count));
}

return 0;

Figure 14: Routine to Send a Command String

The first hexadecimal code indicates how many bytes to send.

The remainder bytes are transmitted to the interfaced

equipment, and are machine/function dependent. Thus, by

modifying or creating a new string array, control of

different equipment or equipment functions is possible. See

figures 13 and 14 for examples.

- 35 -

II Sony Tape Control Cormnand Strings

int sony_who[) {3,0xOO,Oxll,Oxll};
int sony_enable[) {3,0xOO,Oxld,Oxld};
int sony _play [) = {3,0x20,0x0l,Ox21};
int sony_ time [] = {4,0x6l,Ox0c,Ox0l,Ox6e};
int sony_stop[) = {3,0x20,0xOO,Ox20};
int sony_rewind [) {3,0x20,0x20,0x40};

Figure 15: Sample Serial Cormnand Strings

The actual MIB object identifiers are located in a string

table which can be easily edited by use of the App Studio of

Visual C++ (version 1.5). The IsEqual function, located in

the file CALLS.CPP, is used to obtain the object identifier

from the string table and compare it to the received

identifier.

The Ccontrol class is the main area of interest for

modification of the agent program. The remainder of the

code will require little modification.

5.4 Manager Modification

The manager program will be a little more difficult to

modify. Most of the needed changes will be with the main

window layout. Window control objects (buttons) are

associated with a member-function calls of the class

SnmpManager. The function MainWnd OnCormnand will contain

- 36 -

the code where the various buttons are decoded and used to

send the correct SNMP message to the agent program. An

example is given below.

case IDC PLAY:

fObjectType = SNMP OCTET STRING;

fstrcpy(szObjectid, GetString(hinst,
IDS_SonyPlay));

lpszObjectid=szObjectid;

lpszObjectValue = "1";

pav->pSnmpManager->state =
SNMPM STATE SETOBJECT;

pav->pSnmpManager->SendSetRequest(

pav->pSnmpManager->szRemoteHost, IPPORT SNMP,
"public", 1, 1, (LPSTR FAR*) -

break;

&lpszObjectid, (LONG FAR*)
&lpszObjectValue, &fObjectType);

Figure 16: Example SNMP Manager Message Routine

Like the agent program, the MIB object identifiers are

located in a string table. The function GetString, in file

CALLS.CPP, is used to obtain the MIB object identifier from

the string table for use with the member-function call to

the SnmpManger.

- 37 -

Note that the SNMP object type being sent must match the

type declared within the agent program. In the example

above, note that the object type is an octet string.

Changes in these two areas should be all that is really

necessary to use the manager program with a modified agent

program. The rest of the code need not change much, if at

all.

- 38 -

Chapter 6

PROGRAM OPERATING INSTRUCTIONS

This chapter deals with the operation of both types of

programs. Note that basically all three program pairs

(manager/agent) work the same.

As stated previously, all files are provided on the

accompanying disk supplied with this thesis. Two personal

computers running Windows 95 or 3.xx will also be necessary.

The two computers communicate using WinSock TCP/IP on

Ethernet. Ethernet is not a requirement for this project;

just TCP/IP. Note that both computers will be required to

have a fixed IP address.

RS232 topology is used for communications between the proxy

agent computer and the controlled broadcast. Any cables

necessary will have to be supplied by the user.

Program termination presents no problems and does not

require any special shutdown sequence. Terminate the

programs in any fashion when operation is complete.

6.1 Agent Programs

The operation of the agent program is quite simple and

somewhat limited. User interaction with the agent program

- 39 -

is not really necessary, but the program can be used to

monitor operations and SNMP messages between the two

computers. Status windows on the program screen are

provided for this purpose.

The agent programs also have a test feature which exercises

the interfaced equipment in some fashion. This proves that

the proxy agent computer is talking with the device. Note

the test button in the figure below. All three agent

programs operate in a similar fashion.

p SNNP Cammunic;:ttions :cc-'·::~>>~· c~
I' · .. · . • ~·:~·~· ,....; .. '"""'·· _..;._-..;.._..;.__....;.......;_
l ·.· .. Received Command . .. - ·c~ ...

- . - --.---~--!;=-~:-- - :=,._--­

I'

l· . Ccimmand Exect.tl.,d
J.
l ;:· r ·· 1NONE

I:
·~:.

Figure 17: Agent Screen

- 40 -

6.2 Manager Programs

Operation of the manager programs is moderately self

explanatory. The only exception to this is how one makes

the initial contact with an agent program. The process is

simple. Note the button labeled "Query Agents" on the

window screen. This is used to query any agents on the

network. If any agent programs are listening, they will

respond with a message indicating their IP address. The

address will appear in the edit window above the button.

"Clicking" on the IP address of the machine with the desired

proxy agent program will complete the connection.

~---r--· ': ~ :- \:' -'
i

! -

--- - -- ----- i i

-nli~col:te

i;- - - -_ ~ ' -- :- '

' 1 Jape Machi~e ControF :. - 1: - - --- . _- - --

: i'; .. -- REVE;8SE
~- : r--
, -_I· __ - ___ ,
i~--l,, l - . '' -.,-

i r ;, -. EJE[;I.:
',:'- -J-

. L -~------~--Ci·i~

- -.- ._---·~ >- <'Cc ']_

r- :~·AJJto~lil1N·~~~:r---_-

, l n¥dJi~ec:od.tjl_j,
.,......_ ___ __.,..."'-'--' -__ : F ... --- -•----. -- · ,·- k

~-----~" ~~~;-. '-~ 7- ~-j_j

~-- ,- ~- - ~-. ,-- ~-'

- --- PLAY, ·. T: ·-···•- FllnwARP

Figure 18: Manager Screen

- 41 -

Once connected with the agent program, operation of the

manager program is accomplished by merely doing a "point and

click" on the desired function indicated by the control

buttons displayed in the window.

- 42 -

Chapter 7

RESULTS AND CONCLUSION

All three systems performed as predicted, and I was quite

pleased with the overall response of the systems. The

transmission speed of the data packets over 10 MBit Ethernet

did not prove to be a significant factor in system reaction

time.

I was most concerned with reading timecode (time markings

recorded on the video tape used for location purposes) from

the tape machine. Had the transmission time been

significant, the reported timecode would have been

inaccurate; however, this was not the case. Also note that

the program only polled the tape machine for a timecode

reading when the user initiated the event. Perhaps constant

timecode updates would prove to be a problem; however, due

to the distributed processing nature of the agent program,

this situation could easily be avoided. For example,

instead of the manager program searching for a certain

timecode by constantly requesting a time reading, the agent

program could be sent the desired time and it could perform

the search.

The transmitter control system and the video/audio switcher

responded well also, but these devices were not real-time

critical.

- 43 -

The system was developed and mainly tested using two

personal computers networked together via lOBaseT Ethernet.

The system was also tested on an existing LAN (lOBaseT)

which has about 80 client machines attached. The increase

in network traffic did not appear to cause any degrade in

the performance of the tested system.

As this thesis has demonstrated, SNMP can be used as an

interfacing protocol. Although it may not be desirable for

critical real-time applications, it definitely can be used

I

Tape 1

SNMP Ager
I
I

I

I

Air

I
Transmitte~ ---

UDP

Video I Audio Signal

Control Signal

Master Air Switcher I SNMP Agen): - -
I I p--------..---,

- 1 - SNMP Managlr

)3eta Ca t Tape 2 !Audio Ca

Librar
SNMP Aaent SNMP Agen

I I

I I

SNMP Agen I I
I I

I

~t
Font

Generator

I SNMP Agen

I
I

I

I

Controllinc
Computer
System

1 I I I I
L ______ _I ______ I ______ !__ ________ I ____ ~

Figure 19: Control of Master Air Switcher and Sources

- 44 -

with the majority of machine control purposes in the typical

broadcast environment. This system could be employed in

controlling devices such as master-control switchers (Fig.

12), production switchers, audio consoles, audio cart

machines, house routers, character generators, transmitters,

cameras, robotics camera pedestals, tape machines, satellite

receivers and antennas (dishes), and various types of test

equipment. In addition, this protocol could be used to

interface the specialized text editing computers within a

news department with various types of production equipment.

This would enable these computers to be used for controlling

scheduled tape recordings, signal routing, creation of

graphic playback list, character generator loading with

story slugs, and the like. Response time needed for many of

these types of operations is well within the capabilities of

this protocol.

The use of the PicNet serial-to-parallel converter points to

another use of this interfacing scheme. General Purpose

Interfaces (GPis) are often used to enable simple contact

closure control of equipment. For example, an editing

machine may provide several GPis which can be set or reset

on editing events such as a video cut or at a certain

timecode. This contact closure could trigger a font

generator or, perhaps, an audio cart. Although simple, GPis

are often used and there never seems to be enough GPI

connections. Perhaps SNMP could be used as a GPI expander

- 45 -

Tape Editor

SNMP
UPD/IP

General Purpose Interface (GPI) Expander

GPI Ports

Figure 20: GPI Expansion Example

as well. For example, instead of requiring the equipment to

have a physical connection for each GPI, it could simply

support many virtual GPis via this protocol. A GPI expander

unit housing the agent program would supply the necessary

I/O ports. The originating equipment (tape editor in figure

13) would simply modify the required port variable of the

corresponding GPI MIB. The expander would set or reset the

required port. This is basically how the PicNet module is

being used in this project.

This thesis has shown that the SNMP protocol can be used for

more than just monitoring network equipment; it can be used

for complex control purposes as well. Because of Abstract

Syntax Notation 1 (ASN.1), Basic Encoding Rules (BER), and

the Management Information Base (MIB), dissimilar

- 46 -

micro-processor based hardware can easily communicate. The

use of MIBs would allow for easy software configuration for

each device being controlled. Combined, these features make

SNMP a possible solution for the broadcast industry.

A better solution might be to design an interface protocol

explicitly for the industry. I recommend that the ASN.l,

BER, and MIBs be employed if this is done. Perhaps this

thesis has demonstrated the framework of a future protocol.

- 47 -

REFERENCES

[Comer94]
Comer, Douglas E. and Stevens, David L.
Internetworking with TCP/IP. Prentice Hall, 1994.

[Feit95]

[3M]

Feit, Sidnie.
McGraw-Hill,

SNMP, A Guide to Network Management.
1995.

3M Company, Mincom Division.
Switcher Instruction Manual.

Video Bridging
Camarillo, CA.

[Parker94]
Parker, Timothy. Teach Yourself TCP/IP in 14 Days.
Sams, 1994.

[Perkins97]
Perkins, David and McGinnis, Evan. Understanding SNMP
Milia. Prentice Hall, 1997.

[Peterson95]
Peterson, David M. TCP/IP Networking, A Gujde to the
IBM Environment. McGraw-Hill, 1995.

[Piscitello94]
Piscitello David M. and Chapin, Lyman A. Open Systems
Networking TCP/IP and OSI. Addison-Wesley, 1994.

[Satz96]
Satz, Greg L. "Origins of SNMP." The Simple Times
(March/April 1992), pp 2-5. Online. Internet.
3/16/96.

[Sony88]
Sony Corporation. Sony ProtocoJ of Remote-1 (9 Pin)
Connector. Japan, 1988.

[Stevens94]
Stevens, W. Richard. TCP/IP Illustrated, Volume 1.
Addison_Welley, 1994.

- 48 -

RFCs

RFC 1089 SNMP Over Ethernet.

RFC 1155 Structure and Identification of Management
Information for TCP/IP Based Internets.

RFC 1157 A Simple Network Management Protocol.

RFC 1158 Management Information Base Network Management of
TCP/IP Based Internets: MIB-II.

RFC 1212 Concise MIB Definitions.

RFC 1213 Management Information Base for Network
Management of TCP/IP Based Internets: MIB-II.

RFC 1215 A Convention for Defining Traps for use with the
SNMP.

- 49 -

APPENDIX A

Microsoft Visual C++ Version 1.5

While being one of the most complicated tools I have ever

used, it is also one of the best. This product is a

complete Windows development CASE tool employing Object

Oriented Programming (OOP) in the C++ language. The product

includes a compiler, project manager, build utility,

browser, debugger, resource editor, a text editor, a

graphics editor, and a couple of wizards.

The AppWizard is a program used to help create a skeleton

Window source program. The ClassWizard is used to create

new classes, and to browse existing ones. The Wizards

greatly help in the development of a Microsoft Foundation

Class (MFC) OOP program, but it does nothing for a program

developed using only the Software Development Kit (SDK)

functions.

The AppStudio is used to create graphic interfaces, and to

assign variable names to the various data items on a screen.

This tool is also used to generate String Tables, and these

are tables used to create string constants. I used these

tables to keep the MIB object identifiers for the manager

and agent programs. The AppStudio can be used with MFC and

SDK programs equally.

- 50 -

As indicated above, this compiler can be used with Microsoft

Foundation Classes as well as the Software Development Kit

classes; however, it can also be used on ANSI and DOS code

as well. One of the project options is to create a QuickWin

program. This is a program which will take DOS or even UNIX

ANSI C/C++ code and creates a program which can be executed

in the Windows environment. QuickWin is great for porting

old DOS or UNIX programs to Windows; very little code

modification is necessary.

The debug capabilities of this tool is worth the price of

the entire package. The ease with which one can set break

points, monitor variables and arrays, and step through code

can save hours of debugging time.

This product's massiveness and flexibility are also one of

its disadvantages. The environment is complex and somewhat

difficult to master for someone who has not been introduced

to the OOP and Windows environment. Remember that

event-driven coding is used with this product unlike the

normal sequential coding practice. Skeleton Window

programs can be easily generated with little effort;

however, one quickly runs into problems when options are

added to the resultant code. The concepts and language

syntax are not where the problems lie. In my opinion, the

difficulty is with the necessary documentation. Even if one

has mastered C++, this product cannot be easily used without

- 51, -

hours of study from more that one source. It should be

noted that Microsoft has made a good effort to remedy this

situation. Many examples and a good deal of documentation

is provided with the package. An understanding of the

Object Oriented Programming methodology will also greatly

help to understand thought process behind the great CASE

tool.

If one is familiar with the Borland family of compilers,

then this tool may seem to be unnecessarily complex;

nonetheless, the extra effort will be rewarded. This is one

of the best compilers that I have used.

- 52 -

APPENDIX B

Dart Communications Specialty Toolkit (PowerTCP)

Dart Communication produces a number of TCP/IP based

toolkits. They support the 16 and 32 bit versions of the

Microsoft C++ compiler, Visual Basic, Delphi, PowerBuilder,

and ActiveX. The Standard Toolkit provides libraries for

TCP, TELNET, FTP, SMTP, POP3, and VT220 emulation. The

Specialty Toolkit used in this thesis has libraries for UDP,

TFTP, and SNMP. This is the toolkit used to provide the

necessary SNMP protocol with UDP support in this thesis.

PowerTCP provides five type of interfaces. For the C

compiler, C++ class libraries and DDL are provided, and for

the other languages mentioned above, VCL components, Visual

Basic custom controls and OLE custom controls are provided.

The Specialty Toolkit provided two classes which were used

in this thesis. The classes and their functions are

presented in figure 21. All components interface with a

Winsock layer. Although 16 and 32 bit C++ versions are

available, I used the 16 bit for compatibility between

Windows 3.xx and Windows 95.

The package comes with a number of very good sample programs

written for use with Visual C~+; however, the code was

written using the Software Development Kit (SDK) instead of

the Microsoft Foundation Classes (MFC) . I bring this up

- 53 -

CPowerUdp:

Public Member Functions:

CPowerUdp ~CpowerUdp Connect Close Send State

Virtal Member Functions:

ExceptionEvent ConnectEvent RecvEvent SendEvent

Constants

PT_EXCEPTION PT_STATE

CPowerSnmp:

Public Member Functions:

CPowerSnmp ~CPowerSnmp Connect Close State Trap

SendGetNextRequest Send Get Request SendSetRequest

SendGetRequest SendTrap

Virtal Member Functions:

ExceptionEvent RecvSnmpEvent RecvTrapEvent SendEvent

ConnectSnmpEvent RecvTrapEvent

Constants

PT_EXCEPTION PT_STATE SNMP_ERROR SNMP_TYPE

SNMP _OBJECT_ TYPE SNMP _TRAP

Figure 21: SNMP Classes and Functions

because I had difficulty getting the SNMP Classes to work

with a window program based on MFCs. I called technical

support and received very little help. I was finally told

that the product did not support the MFC environment. I

really don't believe this, and I'm sure that if I were more

experienced with the MFC environment, I could have made it

work. Therefore, I created the necessary windows interface

in my projects using SDKs. This did cause some additional

- 54 -

development time due to my unfamiliarity to these classes

and procedures.

I have no problem recommending this product. The preceding

problem was the only one found with this product; it

performed flawlessly. Documentation was adequate and

supplemented the provided example code very well. The

classes were very straight forward and easy to use.

Purchase of a toolkit grants the programmer to royalty-free

use of the product. The following four pages contain the

licensing information from the Dart Communication toolkit.

The text was taken from their provided documentation without

modification. The last section (PowerTCP Sample Application

Documentation) references use of the example programs.

Dart Communications can be reached at the location provided

below. A thirty day trial package can be downloaded for

many of their products from the company's Web site.

Products not listed on the Web site may still be offered as

a trial package if you write or call the company.

Dart Communications
6647 Old Thompson Road
Dewitt, NY
Tel: (315) 431-1024
Faxl: (315) 431-1025
E-mail support@dart.com
http:/ /www.dart.com

- 55 -

PowerTCP Licensing Options
May 23, 1996
Version 2.0

Thank you for purchasing this PowerTCP Toolkit. It includes one Development License and one
Royalty-Free License for your development and distribution purposes. Additional licensing is no longer
required, but you may find it desirable for completely transparent operation or if software maintenance is
desired.

Dart Communications offers 3 licensing options to meet the needs of most developers. Just choose the one
that's best for you!

PowerTCP Royalty-Free License (included with every toolkit)

All applications written with PowerTCP Toolkits version 2.0 will run in any WinSock-compliant
environment with no special set-up or licensing required. A minimized icon is visible when your
application is using PowerTCP that identifies your company as a PowerTCP Licensee.

This license is adequate when PowerTCP product identification does not conflict with application goals
and software maintenance is not required.

PowerTCP End-User License (1 is included)

A serial number is installed on each runtime system in the local WIN.INI file (the presence of this serial
number disables PowerTCP product identification so that PowerTCP operation is completely transparent).
This license applies to all protocols and development interfaces implemented in the PowerTCP product
line.

This license is appropriate for limited numbers of deployed applications where PowerTCP product
identification is not desired.

PowerTCP OEM Partner Subscription (available separately)

For ISVs and other customers with stringent support requirements, the OEM Partner Subscription
establishes Dart Communications as your network programming support arm. For a fixed annual fee, this
license provides you with:

+ the right to use any of the libraries for the protocol being licensed (e.g. right to update from VBX to
OCX with the only cost being a new OCX Toolkit)
+ priority software maintenance and support with resolution within 5 working days of notification
+ free Toolkit of choice upon annual renewal
+ optional escrow account for software source
+ time & material guarantees for engineering support
+ access to Dart's expert technical support team

Thank you for your interest in our line of PowerTCP products. Please contact me if I can be of assistance
in anyway.

Sincerely,

Allison G. Smith
Account Manager

- 56 -

TE~CALADDENDUM

Installation

When the PowerTCP Toolkit is installed on your system, P16HELP.EXE is stamped with your company
name when SETSN16.EXE is run during the installation process (you can run SETSN16.EXE at any time
to modify this stamp ... just include the full path and file spec for SETSN16.EXE as a command line
parameter). Pl6HELP.EXE (the License Manager Application) can be run interactively to manage the
license that is currently installed on your system. It will also identify your company as licensee of
PowerTCP. SETSN16.EXE can be run without a command line parameter to modify or install the
End-User or Trial License in your WIN.INI file.

For all licenses except OEM Partner Subscriptions, Pl6HELP.EXE is loaded when you use a PowerTCP
component. For this reason, Pl6HELP.EXE must be distributed as runtime support along with the
PowerTCP component(s) you are using. PowerTCP will not operate unless this file is included with your
distribution. Ifyou do not wish to distribute Pl6HELP.EXE with your product, then you should
investigate our OEM license.

PowerTCP Royalty-Free License

When Pl6HELP.EXE is loaded by your PowerTCP component and no End-User License is found, then
the Royalty-Free license is assumed. A minimized icon is then shown that, when restored to normal
window size, identifies the PowerTCP product and your company name as licensee.

PowerTCP Trial License

The PowerTCP 30-day trial license, available by contacting Dart's sales office, is inserted as a WIN.INI
entry as follows:

[Dart Communications]
PowerTCP License=30-xxxxxxx-xxxxx

PowerTCP will not operate after the 30-day period expires. You should contact Dart for a PowerTCP
Toolkit.

PowerTCP End-User License

The PowerTCP End-User license, included with all PowerTCP Toolkits and available separately, is
inserted as a WIN.INI entry as follows:

[Dart Communications]
PowerTCP License= 1 00-xxx:xxxx-xxxxx

PowerTCP will operate transparently on your behalf, with no PowerTCP icon visible.

PowerTCP OEM Partner Subscription

Dart will issue you a serial number that disables all license checking. Pl6HELP.EXE is not needed as
run-time support, and need not be distributed with your product. By using the OEM Partner License,
PowerTCP operates transparently on your behalf, with minimum resource utilization.

License Summary

- 57 -

By offering these license options, Dart Communications hopes to provide a good licensing solution for
most situations. Thank you for using PowerTCP, the most advanced TCP/IP Toolkit available today!

Copy of Shrink-wrap License Agreement

POWERTCP SOFTWARE LICENSE AGREEMENT

This is a legal agreement between you (either an individual or entity) and Dart Communications. By
opening the sealed software packet you are agreeing to the terms of this agreement. If you do not agree to
the terms of this agreement, promptly return the unopened software packet and the accompanying items
(including written materials) to the place you obtained them for a full refund.

GRANT OF LICENSE. This License Agreement permits you to use one copy of the enclosed PowerTCP
software program (the "SOFTWARE") on a single computer. The SOFTWARE is in "use" on a computer
when it is loaded into temporary memory (i.e. RAM) or installed into permanent memory (e.g. hard disk
or other storage device) of that computer. PowerTCP must be licensed for each programmer that uses it.
This License Agreement is non-sublicenseable.

COPYRIGHT. The SOFTWARE is owned by Dart Communications and is protected by United States
copyright laws and international treaty provisions. Therefore, you must treat the SOFTWARE like any
other copyrighted material (e.g. a book or musical recording) except that you may either (a) make one
copy of the SOFTWARE solely for backup or archival purposes, or (b) transfer the SOFTWARE to a
single hard disk provided you keep the original solely for backup or archival purposes. You may not copy
the written materials accompanying the SOFTWARE.

OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you may transfer the
SOFTWARE and accompanying written materials on a permanent basis provided you retain no copies and
the recipient agrees to the terms of this agreement. You may not reverse engineer, decompile, or
disassemble the SOFTWARE.

TERMINATION. This license is effective until terminated. This license will terminate automatically
without notice if you fail to comply with any provision of this license. Upon termination, you must cease
all use of the program and return it, including any archival copies ofPowerTCP.

LANGUAGE SOFTWARE is defined to be .EXE, .LIB, .DLL, .VBX and .OCX files that you link to your
software. You have a royalty-free right to staticly link to or reproduce and distribute LANGUAGE
SOFTWARE provided that you: (a) distribute the LANGUAGE SOFTWARE only in conjunction with
and as part of your end-user application. As used herein, the term "end-user application" does NOT
include development tools, or any application or utility that requires that the user distribute the
LANGUAGE SOFTWARE; (b) do not distribute any .LIC license files; (c) do not use Dart
Communcation's name, logo, or trademarks to market your software product; and (e) agree to indemnity,
hold harmless, and defend Dart Communications from and against any claims or lawsuits, including
attorney's fees, that arise or result from the use or distribution of your software product. The LANGUAGE
SOFTWARE are those files in the SOFTWARE that are identified in the accompanying materials as
required during the execution of your software program.

An "end-user application" is an application that may not be copied or redistributed by the user. An
application that will be incorporated into another application is not an end-user application. If all or any
portion of your application is redistributed by your customer, your application is not an end-user
application. If you want to use PowerTCP in an application that is not an end-user application, you should
contact Dart Communications to obtain information on other licensing options.

This Agreement is governed by the laws of the State ofNew York.

- 58 -

U.S. Government Restricted Rights. The Software and documentation are provided with Restricted Rights.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in subparagraph (c)(1)
of The Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs (c)(1)(ii) and (2) of Commercial Computer Software- Restricted Rights at 48 CFR
52.227-19, as applicable. Supplier is Dart Communications, 6647 Old Thompson Road, Syracuse, NY
13211.

PowerTCP Sample Application Documentation

This document describes the sample applications shipped with PowerTCP. You can learn how
PowerTCP works by looking at the samples. You may also use sections of code from the samples
in your own software.

All PowerTCP samples are described here. The PowerTCP Standard Toolkit includes 10 samples
and PowerTCP Specialty Toolkit includes 4 samples. All samples are provided with C, C++,
Visual Basic, PowerBuilder and Delphi source code, depending on the toolkit purchased.

- 59 -

APPENDIX C

MarshallSoft Windows Standard Communications Library

This is an asynchronous communications C/C++ dynamic link

library (DLL) for Windows. It uses the standard Windows

API; therefore, it is compatible with any other programs

which also use the Windows' API. Because it's a DLL, it can

support most of the popular C/C++ compilers. Examples,

along with the makefiles, are provided for Borland, Watcom,

and Microsoft.

The library contains over twenty-five functions for serial

communications, and it is very straight-forward to use.

Note the following code which can be used to output the

message "Hello World" through serial port COMl.

SioReset(COM1,128,128);

SioPuts(COMl,"Hello World",ll);

SioDone(COMl);

Figure 22: Sample Code "Hello World"

Simplicity and flexibility are the main features of this

product. The software can handle baud rates of up to 57600,

with any word bit combination. The high baud rate

capability was the main reason I chose this product. I

- 60 -

needed a 38800 baud rate to interface with the Sony tape

machine. The Request-To-Send(RTS)line can be set or reset

at any time, and the Data-Carrier-Detect(DCD) and

Clear-To-Send(CTS) lines can be easily read. Flow control

can be either hardware (RTS/CTS), software (Xon/Xoff), or

none. Transmit and receive buffer sizes can be set

independently, and the buffers can be monitored and cleared

at will. All four serial ports can be addressed, and port

status can be monitored. The library even came with a

special DLL for modem control using the modem AT command

set.

SioBaud
SioBrkSig
SioCTS
SioDCD
SioDone
SioDSR
SioDTR
SioFlow
SioGetc
SioGets
Siolnfo
SioParms
SioPutc
SioPuts
SioReset
SioRl
SioRTS
SioRxClear
SioRx.Que
SioStatus
SioTxClear
SioTxQue
SioUnGetc

Figure 23:

Function Summary

Sets the baud rate of the selected port.
Asserts, cancels, or detects BREAK
Reads the Clear to Send (CTS) modem status bit.
Reads the Data Carrier Detect (DCD) status bit.
Terminates further serial processing.
Reads the Data Set Ready (DSR) modem status bit.
Set, clear, or read the Data Terminal Ready (DTR).
Enables I disables hardware flow control.
Reads the next character from the serial line.
Reads a character string from the serial line.
Returns information such as library version.
Sets parity, stop bits, and word length.
Transmit a character over a serial line.
Transmit a character string over a serial line.
Initialize a serial port for processing.
Reads the Ring Indicator (Rl) modem status bit.
Sets, clears, or reads the Request to Send (RTS).
Clears the receive buffer.
Returns the number of characters in the RX queue.
Returns the serial line status.
Clears the transmit buffer.
Returns the number of characters in the TX queue. I
"Un-gets" (puts back) a specified character.

MarshallSoft Communications APis

- 61 -

The preceeding function summary (figure 23), obtained from

the documentation, is provided to demonstrate the power and

flexibility of the product.

The beauty of the toolkit is that it is available for DOS as

well, and it uses basically the same function calls. This

makes porting code from DOS to Windows quite painless. The

product even supports other languages such as Pascal and

Visual Basic.

I've used this product for years and recommend it highly. I

have had few, if any, problems with the software. The

company does supply technical support, but I've never needed

it. A trail copy can be downloaded from the company's Web

site or BBS. The selling price is more than fair.

MarshallSoft can be reached at the following location.

MarshaiiSoft Computing, Inc.
Post Office Box 4543
Huntsville, Al 35815

BBS: (205) 880-9748
Tel: (205) 881-4630

E-mail: info@marshalsoft.com
www.marshallsoft.com

- 62 -

APPENDIX D

SynOptics (SMICng) MIB Compiler

SNMP Management Information Compiler - Next Generation

The MIB compiler used with this thesis is the updated form

of the popular SMIC from Bay Networks. SMIC is still freely

available from this company, and the full SMICng version is

available from SynOptics. I used a somewhat limited version

which came with the textbook Understanding SNMP MIBs. The

book is excellent and so is the compiler.

This product can be used on a variety of operating system

platforms. SMICng is written in portable C code (source and

makefiles available) making it easy to port to various

systems. The CDROM has versions for MSDOS/Windows, Sun

Solaris 2.x, Sun SunOS4.x, HP HPUX, IBM AIX, and Linux.

SMICng can be used alone to simply check MIB syntax, or it

can be used to produce an intermediate output for use with

back-end compilers to generate MIB representations in other

formats such as schema files, data structures, and code for

application development. These optional back-end compilers

can be supplied by the vendor or they can be written by the

user. The format of the intermediate code is well

documented and should prove to be easily parsed. One

popular output format from this compiler is the MOSY v7.1.

- 63 -

The MOSY format is part of the ISO Development Environment

(ISODE) package.

Operation of the compiler is fairly simple. An include file

is created which configures the various options during

compile time. The MIB to be compiled is identified in this

include file as well. The name of this file is the command

line argument to the program call. An example of an include

file follows.

Include File for SMICng Compiler

file: videoproc.inc
Modules referenced by module VIDEOPROC-MIB

#condinclude "rfcll55.inc"
#condinclude "rfcl212.inc"

RFC1155-SMI
RFC-1212

-- MIB module
#push Opt

Remove strict checking
Options:

C - check size/range present
W - don't allow size/range for items in a sequence
7 - restrict INTEGER values below 2G-l
R - check (in Vl) that INDEX objs are read-only
S - require (in V2) that IMPORTS be specified for items in compliances
B - strong checking for size/range of items in index clause

#removeopt "C w 7 R s B"

Loosen checking
Options:

4 - allow non-standard access for objects
K - allow (in vl) zero valued enums
0 - allow (in v2) hyphens in labels for enumerated values
P- allow (in v2) hyphens in descriptors(identifiers)
T - no check (in v2) of proper access for items in groups
M - no check (in v2) that all NTs and accessible OTs are in a group
F - allow integer/integer32 index items without a range
G - allow unused IMPORTS and textual conventions
N - no check (in v2) of access of objects in notifications
I - use (in vl) the v2 rules for checking ACCESS of index items

--#addOpt "4 K 0 P T M F G N I"
#addOpt "F" -- allow integer/integer32 index items without a range

#condinclude "videoproc.mib"
#popOpt

Figure 24: Sample Include File

- 64 -

All referenced RFC's and other modules must be in a

directory pointed to by a system variable or must be in the

local directory. The package comes with many stripped and

corrected MIBs, obtained from RFCs, for use with source MIBs

to be compiled.

The compiler comes with a surprisingly rich set of features.

The following is a partial list of features provided by the

accompanying text (Perkins and McGinnis, 425).

• Can read Multiple input files.

• Parses MIBs written in the syntax defined by SNMPvl SMI,

concise MIB, and trap format document(RFC1155, RFC1212,

RFC1215).

• Parses MIBs written in the syntax defined by SNMPv2 SMI,

SNMPv2 Textual Conventions, and SNMPv2 conformance

documents (RFC1442, FRC1443, and RFC1444).

• Parses multiple MIB modules in one input stream.

• Check the validity of IMPORTS clauses.

• Resolves textual conventions and checks that their usage

is valid.

• Supports use of extended ASN.l size/range constructs.

• Can create SNMPvl MIBs from SNMPv2 MIBs.

• Can create MOSY v7.1 .defs and .tel files.

• Alias assignments for modules and object names.

• Has selective checking of MIB constructs.

• Has extensive MIB syntax checking and can continue syntax

checking after most syntax errors.

- 65 -

• Has extensive checking of MIB constructs.

• Has multiple output options.

• Has conditional compiling of MIB modules based on need.

• Can exclude imported MIB modules from outputs.

• Has extensive help via command line options.

Two other utilities are supplied with the package. The

first is a MIB stripper to remove or strip RFC documents of

the MIB module. Basically, all the supporting text is

removed leaving only the module. The second utility takes

the intermediate output from the compiler and uses it to

create an HTML document for viewing with a Web browser.

This utility was used to generate the HTML representation of

MIBs created with this thesis (see accompanying disk) .

The compiler can be obtained from the following Web site or

by purchasing the text from the publisher.

TEXT:

Understanding SNMP MIBs
Prentice Hall PTR
Upper Saddle River
New Jersey 07458
www.prenhall.com

ISBN 0-13-437708-7

WEBSITE:
www.snmpinfo.com

- 66 -

APPENDIX E

Imagine Serial Converter

This is a hardware product used to convert between RS422/485

and RS232 topology. The device is tailored for Sony tape

machines, and is used to allow a standard RS232 serial

communication port to be used to interface to the RS422

serial port of the tape machine. The unit has a 9 pin

adapter (DB9) for use on the tape machine, and a 25 pin

adapter (DB25) for the RS232 side. The electronics are

contained within the DB25 connector and power is obtained

from the RS232 line (less that 2ma). An optional power

transformer is provided for situations requiring additional

power. The unit supports Sony protocol which runs at 38800

Baud.

The Serial Converter can be purchased from the vendor

directly.

Imagine Products Inc.

581 South Range1ine Road, Suite B-3

Carmel, Indiana 46032

Tel: (317) 843-0706

- 67 -

APPENDIX F

PicNet Networkable Modules

This product was designed for interfacing electrical power

equipment to any computer which has a RS232 serial port.

Each model uses eight relays for controlling current loads,

up to ten amps, for eight different devices, and multiple

modules (255 Max) may be concatenated together to allow

controlling a greater number of devices.

Serial RS232 topology is used for communications between

each module and the controlling computer. The units are

configured to 9600 Baud, 8 data bits, 1 stop bit, and no

parity. Also note that Data Terminal Ready (DTR) must be

low.

The protocol is simple; READ, WRITE, and POLL are the only

three types of commands used with this device. The WRITE

command is used to set or reset the various relays within an

addressed module. The READ command is used to determine a

module's status, and the POLL command is used to determine

the module's model number and revision level of its design.

Each transmitted instruction is composed of a four byte

packet. The first byte determines the type of command to be

issued (READ, WRITE, or POLL) . The second byte represents

the destination station's address, and the third byte is

simply a zero. The fourth byte is determined by the type of

- 68 -

command to be sent. For a WRITE command, the fourth byte

will represent a control mask which is used to determine

which relays will be set or reset within the addressed

module. For READ and POLL messages, the fourth byte is set

to zero. For each byte sent, the module will return an

acknowledgment byte.

This product was used to interface the audio/video switcher

used in this thesis, but it could have been easily used to

interface any device which uses a remote General Purpose

Interface (GPI). In other words, it could be used with any

device requiring either a contact closer or a voltage level

change for the interface. These units provide a convenient

way to enable computer control of various types of equipment

such as security alarms, controlled lighting, and even

robotics.

Controlling

Computer

RS232

PicNet

Module

RS232

PicNet

Module

1/8 Devices

2/8 Devices

1/8 Devices

2/8 Devices

Figure 25: PicNet Module Configuration

- 69 -

The PicNet 8-Port Controller Station is a member of a

product line which supports serial-to-parallel input/output

(I/O). Other products include a 4-port control and sensing

station, a speed controller, and a current detector.

Magnetic, infrared, and photocell sensor kits are available

for use with the current detector.

The unit works as claimed by the vendor, and customer

support is excellent. Any of these products can be obtained

directly from the vendor.

Software Interphase, Inc.

82 Cucumber Hill Road
Foster, RI 02825-1212

Email: sinterphas@aol.com

www.sinterphase.com

Tel: (401) 397-2340 Fax: (401) 397-6814

- 70 -

APPENDIX G

Sony Protocol of Remote-1 (9 Pin) Connector

This is the manual which describes the protocol used with

the serial remote of the Sony Betacam series. Topology as

well as protocol information is given in this text. The

document covers the BVW-10, BVW-11, BVW-15, BVW-35, BVW-40,

BVW-60, BVW-65, BVW-70, BVW-75, and BVW-96 models; however,

the protocol seems to work well with other models. This

suggests that there is some consistence between remot.e

control protocols of various Sony tape machines. For

instance, I found that this protocol worked well, for most

operations, on the BVU-800 U-matic machines. This is one of

the units which was loaned to me by WJXT for experimentation

purposes during this project.

The documentation is not free or public domain. Sony

retains all rights to this information. A copy of this

manual, or protocol manuals for other Sony equipment, can be

purchased only from the Sony Corporation. The part number

of the document used in this thesis is 9-967-137-02.

Sony Broadcast Parts

677 River Oak Parkway

San Jose, CA 95134

Tel: (800) 538-7550

- 71 -

APPENDIX H

MIB Objects Used in this Thesis

and the SMICng Include File

THESIS-MIB DEFINITIONS ::=BEGIN

Title:
Date:
By:

IMPORTS

UNF Thesis MIB Examples
August 1997
Walter Schuller

experimental

OBJECT-TYPE

FROM RFC1155-SMI

FROM RFC-1212;

--**
--* Global Definition of the MIB
--**

Experimental

xmit
tape
switch

OBJECT IDENTIFIER::=
OBJECT IDENTIFIER::=
OBJECT IDENTIFIER::=

experimental 1
experimental 2
experimental 3

--**
--* Object Definitions Start
--**

-- Objects for TRANSMITTER control MIB

txPowerUp OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes transmitter power to be
increased by a predetermined amount."

::= { xmit 1}

txPowerDown OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes transmitter power to be
decreased by a predetermined amount."

::= { xmit 2}

- 72 -

txExciterA OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes exciter A to be activated."
::={xmit3}

txExciterB OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l)}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes exciter B to be activated."
: := { xmit 4 }

txSysOn OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l)}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes transmitter high-voltage plates
to be activated (transmitter on)."

··={xmitS}

txSysOff OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l)}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes transmitter high-voltage plates
to be deactivated (transmitter off)."

::={xmit6}

txAirA OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l)}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes antenna A to be used."
::= { xmit 7}

txAirB OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes antenna B to be used."
· ·= { xmit 8 }

- 73 -

txAirAB OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes antenna A and B to be used

(circular polarized)."
:: = { xmit 9 }

txGenTrans OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes transfer to aux power generator."
··={xmit10}

txGenOn OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes activation of aux power generator."
::= { xmit 11}

txGenOff OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes deactivation of aux power generator."
: : = { xmi t 12 }

txVisPwr OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indication of Visual power output."
· ·= { xmit 13 }

txAurPwr OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indication of Aural power output."
:: = { xmit 14 }

- 74 -

txAPlateKV OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indication of transmitter A plate KVolts."
: : = { xmit 15 }

txAPlateAmp OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indication of transmitter A plate current (Amps)."
::= { xmit 16}

txBPlateKV OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indication of transmitter B plate KVolts."
::= { xmit 17}

txBPlateAmp OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Indication of transmitter B plate current (Amps)."
: : = { xmit 18 }

===

-- Objects for TAPE MACHINE control MIB

sonyPlay OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Sony tape machine to activate PLAY mode."
:: = { tape 1 }

sonyRecord OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Sony tape machine to activate Record mode."
• • = { tape 2 }

- 75 -

sonyForward OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Sony tape machine to activate FORWARD mode."
:: = { tape 3 }

sonyReverse OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Sony tape machine to activate REVERSE mode."
:: = { tape 4 }

sonyJogFwd OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Sony tape machine to activate FORWARD-JOG mode."
:: = { tape 5 }

sonyJogRev OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Sony tape machine to activate REVERSE-JOG mode."
:: = { tape 6 }

sonyEject OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Sony tape machine to activate EJECT mode."
:: = { tape 7 }

sonyTimecode OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0 .. 25))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"Timecode of tape in machine at time of request."
• • = { tape 8 }

- 76 -

sonyStop OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Sony tape machine to STOP operation."
:: = { tape 9 }

-- Objects for Audio I Video SWITCH control MIB

switch1 OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Switch# 1 to activate."
: : = { switch 1 }

switch2 OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Switch# 2 to activate."
: : = { switch 2 }

switch3 OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Switch # 3 to activate."
: : = { switch 3 }

switch4 OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Switch # 4 to activate."
: : = { switch 4 }

switch5 OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(1))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Switch# 5 to activate."
: : = { switch 5 }

- 77 -

switch6 OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Switch# 6 to activate."
• • = { switch 6 }

switch7 OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Switch # 7 to activate."
: : = { switch 7 }

switch8 OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(l))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"When set, causes Switch# 8 to activate."
: : = { switch 8 }

--**
--* Object Definitions End
--**

END

- 78 -

Include File for use with SMICng

file: thesis.inc
Modules referenced by module THESIS-MIB

#condinclude "rfc1155.inc"
#condinclude "rfc1212.inc"

-- MIB module
#pushOpt

Remove strict checking
Options:

RFC1155-SMI
RFC-1212

C - check size/range present
W - don't allow size/range for items in a sequence
7 - restrict INTEGER values below 2G-1
R - check (in V1) that INDEX objs are read-only
S - require (in V2) that IMPORTS be specified for items in

compliances
B - strong checking for size/range of items in index clause

#removeOpt "C W 7 R S B"

Loosen checking
Options:

4 - allow non-standard access for objects
K - allow (in v1) zero valued enums
0 - allow (in v2) hyphens in labels for enumerated values
P- allow (in v2) hyphens in descriptors(identifiers)
T - no check (in v2) of proper access for items in groups
M - no check (in v2) that all NTs and accessible OTs are in a group
F - allow integer/integer32 index items without a range
G - allow unused IMPORTS and textual conventions
N - no check (in v2) of access of objects in notifications
I - use (in v1) the v2 rules for checking ACCESS of index items

--#addOpt "4 K 0 P T M F G N I"
#addOpt "F" -- allow integer/integer32 index items without a range

#condinclude "thesis.mib"
#popOpt

- 79 -

APPENDIX I

Example of Other Possible Mibs

and SMICng Include files

VIDEOPROC-MIB DEFINITIONS ::=BEGIN

Title:
Date:
By:

VideoProc MIB
August 1997
Walter Schuller

Corrunent: Example mib for video processing amplifier

IMPORTS
experimental

OBJECT-TYPE

FROM RFC1155-SMI

FROM RFC-1212;

--**
--* Global Definition of the MIB
--**

Experimental

proc OBJECT IDENTIFIER::= {experimental 4 }

--**
--* Object Definitions Start
--**

-- Objects for VIDEOPROC control MIB

videoLevel OBJECT-TYPE
SYNTAX INTEGER(0 .. 255)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Set video level (O=minimum 255=maximum) ."
:: = { proc 1 }

blackLevel OBJECT-TYPE
SYNTAX INTEGER(0 .. 255)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Set black setup level (O=minimum 255=maximum) ."
· · = { proc 2 }

- 80 -

chromaLevel OBJECT-TYPE
SYNTAX INTEGER(0 .. 255)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Set chroma level (O=minimum 255=maximum) ."
:: = { proc 3 }

huePhase OBJECT-TYPE
SYNTAX INTEGER(0 .. 255)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Set chroma hue (O=maximum conter clockwise 255=minimum
clockwise)."
:: = { proc 4 }

burstLevel OBJECT-TYPE
SYNTAX INTEGER(0 .. 255)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Set burst level (O=minimum
:: = { proc 5 }

whiteClip OBJECT-TYPE
SYNTAX INTEGER(0 .. 255)
ACCESS read-write
STATUS mandatory
DESCRIPTION

255=maximum) . "

"Set white clip level IRE (O=minimum 255=maximum) ."
:: = { proc 6 }

syncLevel OBJECT-TYPE
SYNTAX INTEGER(0 .. 255)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Set sync level (O=minimum 255=maximum) ."
:: = { proc 7 }

--**
--* Object Definitions End
--**

END

- 81 -

Include File for SMICng Compiler

file: videoproc.inc
Modules referenced by module VIDEOPROC-MIB

#condinclude "rfc1155.inc"
#condinclude "rfc1212.inc"

-- MIB module
#pushOpt

Remove strict checking
Options:

RFC1155-SMI
RFC-1212

C - check size/range present
W - don't allow size/range for items in a sequence
7 - restrict INTEGER values below 2G-1
R - check (in V1) that INDEX objs are read-only
S - require (in V2) that IMPORTS be specified for items in

compliances
B - strong checking for size/range of items in index clause

#removeOpt "C W 7 R S B"

Loosen checking
Options:

4 - allow non-standard access for objects
K - allow (in v1) zero valued enums
0 - allow (in v2) hyphens in labels for enumerated values
P- allow (in v2) hyphens in descriptors(identifiers)
T - no check (in v2) of proper access for items in groups
M - no check (in v2) that all NTs and accessible OTs are in a group
F - allow integer/integer32 index items without a range
G - allow unused IMPORTS and textual conventions
N - no check (in v2) of access of objects in notifications
I - use (in v1) the v2 rules for checking ACCESS of index items

--#addOpt "4 K 0 P T M F G N I"
#addOpt "F" -- allow integer/integer32 index items without a range

#condinclude "videoproc.mib"
#popOpt

- 82 -

Example MIB

SCOPE-MIB DEFINITIONS ::=BEGIN

Title:
Date:

Waveform monitor MIB
August 1997

By: Walter Schuller
Comment: Example possible mib for a waveform monitor

IMPORTS
experimental

OBJECT-TYPE

FROM RFC1155-SMI

FROM RFC-1212;

--**
--* Global Definition of the MIB
--**

Experimental

scope OBJECT IDENTIFIER::= {experimental 5}

--**
--* Object Definitions Start
--**

-- Objects for WAVEFORM MONITOR control MIB

scopeMode OBJECT-TYPE
SYNTAX INTEGER {

vector(1),
wafeform(2)

}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Scope type."
: : = { scope 1

waveform OBJECT-TYPE
SYNTAX INTEGER {

horz1(1),
horz2(2),
line(3),

vert(4)
}

ACCESS read-write
STATUS mandatory
DESCRIPTION
"Type of waveform displayed."
: : = { scope 2 }

- 83 -

fields OBJECT-TYPE
SYNTAX INTEGER

even(l),
odd(2)

}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Which field to display."
: : = { scope 3 }

freqResponse OBJECT-TYPE
SYNTAX INTEGER {

flat (1),
lowPass(2)

}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Frequency response."
: : = { scope 4 }

scanLine OBJECT-TYPE
SYNTAX INTEGER (0 .. 255)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Scan line displayed in single line mode."
: : = { scope 5 }

--**
--* Object Definitions End
--**

END

- 84 -

SMICng Include File

file: videoproc.inc
Modules referenced by module SCOPE-MIB

#condinclude "rfc1155.inc"
#condinclude "rfc1212.inc"

-- MIB module
#pushOpt

Remove strict checking
Options:

RFC1155-SMI
RFC-1212

C - check size/range present
W - don't allow size/range for items in a sequence
7 - restrict INTEGER values below 2G-1
R - check (in V1) that INDEX objs are read-only
S - require (in V2) that IMPORTS be specified for items in

compliances
B - strong checking for size/range of items in index clause

#removeOpt "C W 7 R S B"

Loosen checking
Options:

4 - allow non-standard access for objects
K - allow (in v1) zero valued enums
0 - allow (in v2) hyphens in labels for enumerated values
P- allow (in v2) hyphens in descriptors(identifiers)
T - no check (in v2) of proper access for items in groups
M - no check (in v2) that all NTs and accessible OTs are in a group
F - allow integer/integer32 index items without a range
G - allow unused IMPORTS and textual conventions
N - no check (in v2) of access of objects in notifications
I - use (in v1) the v2 rules for checking ACCESS of index items

--#addOpt "4 K 0 P T M F G N I"
#addOpt "F" -- allow integer/integer32 index items without a range

#condinclude "scope.mib"
#popOpt

- 85 -

APPENDIX J

Software Listings

Software listings for one manager and proxy agent is
provided for the reader. Other listings can be obtained
from the included media.

- 86 -

Manager Program for Sony Tape Machine

II GENERAL.H
II
II Walter Schuller
II University of North Florida
II
II 1997

#ifndef GENERAL H
#define GENERAL H

#include <stdlib.h>
#include <string.h>
#include "classes.hpp"

typedef struct tagAPPVARS
{

char* szAppName; II name of application
HINSTANCE hinstCtl3d; II 3D control modu1e
HFONT hfontNormal; II font with normal weight
CSnmpManager* pSnmpManager; II our SNMP agent object

APPVARS, *PAPPVARS, FAR *LPAPPVARS;

typedef enum SNMPMSTATE
{
SNMPM_STATE_BROADCAST,
SNMPM_STATE_QUERYHOST,
SNMPM_STATE_ADDRTRANS,
SNMPM STATE SETOBJECT
} ;

#define GWL LPAPPVARS DLGWINDOWEXTRA
#define MAINWNDEXTRA DLGWINDOWEXTRA + sizeof(LPAPPVARS)

II Port 161 is the Well-Known Service for SNMP
#define IPPORT SNMP 161

#endif

II**
II END OF FILE WALT SCHULLER

- 87 -

II SNMPMP.CPP
II Declaration of the Management Windows Program
II
II Walter Schuller
II University of North Florida
II
II 1997
II

#include "general.hpp"
#include "calls.hpp"

II***
II Center Window

void CenterWindow(HWND hwnd)
{
RECT rc;
int ex, cy;

GetWindowRect(hwnd, &rc);
ex GetSystemMetrics(SM CXSCREEN);
cy = GetSystemMetrics(SM=CYSCREEN);

MoveWindow(hwnd, (ex - rc.right + rc.left) I 2,
(cy - rc.bottom + rc.top) I 2,
rc.right- rc.left, rc.bottom- rc.top, TRUE);

II**
II Set the background color of the dialog box, buttons controls and
II static controls to light gray.

HBRUSH AnyWnd OnCtlColor(HWND hwnd, HDC hdc, HWND hwndChild, int type)
{ -
if (CTLCOLOR_BTN == type I I CTLCOLOR DLG == type I I

CTLCOLOR STATIC == type)
{ -
SetBkMode(hdc, TRANSPARENT);
return GetStockBrush(LTGRAY_BRUSH);
}

return NULL;
}

II**
II Initialize the Main Window.

BOOL MainWnd_OninitDialog(HWND hwnd, HWND hwndFocus, LPARAM lParam)
{
PAPPVARS pav = (PAPPVARS) lParam;
LOGFONT logfont;

LPFNCTL3DSUBCLASSDLGEX lpfnCtl3dSubclassDlgEx;

- 88 -

if ((HINSTANCE) HINSTANCE_ERROR != pav->hinstCtl3d)
{
lpfnCtl3dSubclassDlgEx = (LPFNCTL3DSUBCLASSDLGEX)
GetProcAddress(pav->hinstCtl3d, "Ctl3dSubclassDlgEx");
if (lpfnCtl3dSubclassDlgEx)

(*lpfnCtl3dSubclassDlgEx) (hwnd, Oxffff);

CenterWindow(hwnd);

SetWindowLong(hwnd, GWL_LPAPPVARS, (LONG) (LPAPPVARS) pav);

pav->pSnmpManager =new CSnmpManager(GetWindowinstance(hwnd), hwnd);

pav->hfontNormal = (HFONT) SendMessage(GetDlgitem(hwnd,
IDC_SNMPMDESC), WM_GETFONT, 0, 0);

GetObject(pav->hfontNormal, sizeof(LOGFONT), (LPSTR) &logfont);

logfont.lfWeight FW_NORMAL;

pav->hfontNormal CreateFontindirect(&logfont);

SetDlgitemText(hwnd, IDC_STAT, "Port CLOSED");

II Attempt to Open a UDP Port.
pav->pSnmpManager->Connect(NULL, PT_NOFLAGS, NULL, 0);

return FALSE;
}

II**
II Process WM_COMMAND Messages for the Main Window.

void MainWnd_OnCommand(HWND hwnd, int id, HWND hwndCtl, UINT codeNotify)
{

HINSTANCE hinst;

LPSTR lpszObjectid;
LPSTR lpszObjectValue;
char szObjectid[64];

SNMP_OBJECT_TYPE fObjectType;

PAPPVARS pav = (PAPPVARS) GetWindowLong(hwnd, GWL_LPAPPVARS);

hinst = GetWindowinstance(hwnd);

switch (id)
{
case IDC ABOUT:

#ifdef WIN32
AboutDlg Do(hwnd, "SNMP C++l32 Class Library");
#else -
AboutDlg Do(hwnd, "SNMP C++l16 Class Library");
#endif -

break;

- 89 -

case IDC PLAY:

fObjectType = SNMP_OCTET_STRING;

fstrcpy(szObjectid, GetString(hinst, IDS_SonyPlay));

lpszObjectid=szObjectid;

lpszObjectValue = "1";

pav->pSnmpManager->state = SNMPM_STATE_SETOBJECT;

pav->pSnmpManager->SendSetRequest(
pav->pSnmpManager->szRemoteHost, IPPORT SNMP, "public",
1,1, (LPSTR FAR*) &lpszObjectid, (LONG FAR*)
&lpszObjectValue, &fObjectType);

break;

case IDC RECORD:

fObjectType = SNMP_OCTET_STRING;

fstrcpy(szObjectid, GetString(hinst, IDS_SonyRecord));

lpszObjectid=szObjectid;

lpszObjectValue = "1";

pav->pSnmpManager->state = SNMPM_STATE_SETOBJECT;

pav->pSnmpManager->SendSetRequest(
pav->pSnmpManager->szRemoteHost, IPPORT SNMP, "public",
1,1, (LPSTR FAR*) &lpszObjectid, (LONG FAR*)
&lpszObjectValue, &fObjectType);

break;

case IDC FORWARD:

fObjectType = SNMP_OCTET_STRING;

fstrcpy(szObjectid, GetString(hinst, IDS_SonyForward));

lpszObjectid=szObjectid;

lpszObjectValue = "1";

pav->pSnmpManager->state = SNMPM_STATE_SETOBJECT;

pav->pSnmpManager->SendSetRequest(
pav->pSnmpManager->szRemoteHost, IPPORT SNMP, "public",
1,1, (LPSTR FAR*) &lpszObjectid, (LONG FAR*)
&lpszObjectValue, &fObjectType);

break;

case IDC REVERSE:

fObjectType SNMP_OCTET_STRING;

- 90 -

fstrcpy(szObjectid, GetString(hinst, IDS_SonyReverse));

lpszObjectid=szObjectid;

lpszObjectValue = "1";

pav->pSnmpManager->state = SNMPM_STATE_SETOBJECT;

pav->pSnmpManager->SendSetRequest(
pav->pSnmpManager->szRemoteHost, IPPORT SNMP, "public",
1, 1, (LPSTR FAR*) &lpszObjectid, (LONG FAR*)
&lpszObjectValue, &fObjectType);

break;

case IDC STOP:

fObjectType = SNMP_OCTET_STRING;

fstrcpy(szObjectid, GetString(hinst, IDS_SonyStop));

lpszObjectid=szObjectid;

lpszObjectValue = "1";

pav->pSnmpManager->state = SNMPM_STATE_SETOBJECT;

pav->pSnmpManager->SendSetRequest(
pav->pSnmpManager->szRemoteHost, IPPORT SNMP, "public",
1, 1, (LPSTR FAR*) &lpszObjectid, (LONG FAR*)
&lpszObjectValue, &fObjectType);

break;

case IDC EJECT:

fObjectType = SNMP_OCTET_STRING;

fstrcpy(szObjectid, GetString(hinst, IDS_SonyEject));

lpszObjectid=szObjectid;

lpszObjectValue = "1";

pav->pSnmpManager->state = SNMPM_STATE_SETOBJECT;

pav->pSnmpManager->SendSetRequest(
pav->pSnmpManager->szRemoteHost, IPPORT SNMP, "public",
1,1, (LPSTR FAR*) &lpszObjectid, (LONG FAR*)
&lpszObjectValue, &fObjectType);

break;
case IDC GETTIME:
case IDC HOSTLIST:

{
typedef struct tagOBJECTVALUE

{
LPSTR lpsz0bject[14];
char sz0bject[l4] [24];

- 91 -

} OBJECTVALUE, FAR *LPOBJECTVALUE;

LPOBJECTVALUE lpObjectValue;

int i;

lpObjectValue = (LPOBJECTVALUE) GlobalAllocPtr(GPTR,
sizeof(OBJECTVALUE));

for (i = 0; i < 14; ++i)
lpObjectValue->lpszObject[i]=

lpObjectValue->szObject[i] [0];

i = 0;
_fstrcpy(lpObjectValue->lpszObject[O), GetString(hinst,

IDS_SonyTimecode));

ListBox GetText(hwndCtl, ListBox GetCurSel(hwndCtl),
- pav->pSnmpManager->szRemoteHost);

pav->pSnmpManager->state = SNMPM_STATE_QUERYHOST;

pav->pSnmpManager->SendGetRequest(
pav->pSnmpManager->szRemoteHost, IPPORT SNMP,
"public", O, 1, (LPSTR FAR*) lpObjectValue);

MessageBeep(-10);

GlobalFreePtr(lpObjectValue);

break;

II Broadcast a Message to Locate Agents

case IDC QUERYALLHOSTS:
{ -
LPCSTR lpObject;

char szObjectid [] "1. 3. 6 .1. 2 .1.1.1. 0";
lpObject = (LPCSTR) szObjectid;

pav->pSnmpManager->state = SNMPM_STATE BROADCAST;

ListBox_ResetContent(GetDlgitem(hwnd, IDC_HOSTLIST));

pav->pSnmpManager->SendGetRequest("255.255.255.255",
IPPORT SNMP, "public", 1, 1, (LPSTR FAR*) &lpObject);

break; -
}

- 92 -

II**

void MainWnd_OnDestroy(HWND hwnd)
{
PAPPVARS pav = (PAPPVARS) GetWindowLong(hwnd, GWL_LPAPPVARS);

if (PT CLOSED != pav->pSnmpManager->State())
pav=>pSnmpManager->Close(TRUE);

delete pav->pSnmpManager;

PostQuitMessage(O);
}

II**
II Process Main Window Messages

LRESULT CALLBACK MainWnd WndProc(HWND hwnd, UINT msg, WPARAM wParam,
LPARAM lParam) -

{
switch(msg)

{
HANDLE MSG(hwnd, WM INITDIALOG, MainWnd OninitDialog);
HANDLE=MSG(hwnd, WM-COMMAND, MainWnd OnCommand);
HANDLE_MSG(hwnd, WM=DESTROY, MainWnd=OnDestroy);

#ifdef WIN32
HANDLE_MSG(hwnd, WM CTLCOLORBTN, AnyWnd OnCtlColor);
HANDLE MSG(hwnd, WM-CTLCOLORDLG, AnyWnd-OnCtlColor);
HANDLE-MSG(hwnd, WM=CTLCOLORSTATIC, AnyWnd_OnCtlColor);
#else -
HANDLE MSG(hwnd, WM_CTLCOLOR, AnyWnd_OnCtlColor);
#endif-

return DefWindowProc(hwnd, msg, wParam, lParam);
}

II**
II Initialize Application and Establish Message Loop.

int PASCAL WinMain(HINSTANCE hinstCurrent, HINSTANCE hinstPrevious,
LPSTR lpszCmdLine, int nCmdShow)

WNDCLASS wndclass;
HWND hwnd;
MSG msg;
APPVARS av;
LPFNCTL3DREGISTER lpfnCtl3dRegister;
LPFNCTL3DAUTOSUBCLASS lpfnCtl3dAutoSubclass;

av. szAppName = "SNMPM";

#ifdef WIN32
av.hinstCtl3d

#else
LoadLibrary("CTL3D32.DLL");

av.hinstCtl3d LoadLibrary("CTL3DV2.DLL");

#endif

if (av.hinstCtl3d < (HINSTANCE) HINSTANCE ERROR)
av.hinstCtl3d = LoadLibrary("CTL3D.DLL");

- 93 -

if (av.hinstCtl3d >= (HINSTANCE) HINSTANCE_ERROR)
{
lpfnCtl3dRegister = (LPFNCTL3DREGISTER)
GetProcAddress(av.hinstCtl3d, "Ctl3dRegister");

if(lpfnCtl3dRegister)
(*lpfnCtl3dRegister) (hinstCurrent);

lpfnCtl3dAutoSubclass = (LPFNCTL3DAUTOSUBCLASS)
GetProcAddress(av.hinstCtl3d, "Ctl3dAutoSubclass");

if (lpfnCtl3dAutoSubclass)
(*lpfnCtl3dAutoSubclass) (hinstCurrent);

II Register Main Window Class
if (!hinstPrevious)

{
wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hinstance
wndclass.hicon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

RegisterClass(&wndclass);
}

CS HREDRAW I CS VREDRAW;
MainWnd_WndProcT
0;
MAINWNDEXTRA;
hinstcurrent;
Loadicon(hinstCurrent, "MAINICON");
LoadCursor(NULL, IDC_ARROW);
GetStockBrush(LTGRAY_BRUSH);
NULL;
av.szAppName;

II Create the Main Window.
hwnd = CreateDialogParam(hinstCurrent, av.szAppName, O,

(DLGPROC) MainWnd WndProc, (LPARAM) (LPAPPVARS) &av);
ShowWindow(hwnd, nCmdShow);

II Handle Messages
while (GetMessage(&msg, NULL, 0, 0))

if (!IsDialogMessage(hwnd, &msg))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}

if (av.hinstCtl3d >= (HINSTANCE) HINSTANCE_ERROR)
{
LPFNCTL3DUNREGISTER lpfnCtl3dUnregister;
lpfnCtl3dUnregister = (LPFNCTL3DREGISTER)

GetProcAddress(av.hinstCtl3d, "Ctl3dUnregister");
if (lpfnCtl3dUnregister)

(*lpfnCtl3dUnregister) (hinstCurrent);
FreeLibrary(av.hinstCtl3d);
}

return msg.wParam;
}

II**
II END OF FILE WALT SCHULLER

- 94 -

II CLASSES.H
II
II Walter Schuller
II University of North Florida
II
II 1997

#ifndef CLASSES H
#define CLASSES H

#include "\Powertcp\include\conunon.h"
#include "\Powertcp\include\powersnm.hpp"
#include "snmpm.hh"

II SNMP Class obtained from Dart Conununications sample

class CSnmpManager : public CPowerSnmp
{
public:

CSnmpManager(HINSTANCE hinst, HWND hwnd);

HWND hwndMain; II identifies the main
HWND hwndAddrTran; II address translation
int nAttList; II current list in our
int state; II type of query being
char szRemoteHost[64]; II name of remote host

window
table
AT table
made

char szLastObjectid[64]; II last object id queired

protected:

} ;

void ConnectSnmpEvent(LPCSTR lpszLocalDotAddr, WORD wLocalPort,
LPCSTR lpszLocalName, WORD wMaxByteCnt);

void RecvSnmpEvent(LPCSTR lpszConununity, DWORD dwRequestid,
SNMP_ERROR codeSnmpError, int nErrorindex, SNMP_TYPE,

MessageType,
UINT nObjects, LPSTR FAR* lpszObjectid, LONG FAR*

lpObjectValue,
SNMP OBJECT TYPE FAR* lpObjectType, LPCSTR lpszRemoteDotAddr,
WORD-wRemotePort);

void ExceptionEvent(PT_EXCEPTION codeError, LPCSTR lpszErrorDesc);

#end if

II**
II END OF FILE WALT SCHULLER

- 95 -

II Cmanager.cpp
II Declaration of the Management Class Functions
II SNMP virtual class functions from Dart Communications samples
II
II
II Walter Schuller
II University of North Florida
II
II 1997
II
II***

#include "general.hpp"
#include "calls.hpp"

II***

CSnmpManager::CSnmpManager(HINSTANCE hinst, HWND hwnd)
CPowerSnmp(hinst), hwndMain(hwnd)

II***
II A UDP Port has been Successfully Allocated

void CSnmpManager::ConnectSnmpEvent(LPCSTR lpszLocalDotAddr, WORD
wLocalPort, LPCSTR lpszLocalName, WORD wMaxByteCnt)

{
SetDlgitemText(hwndMain, IDC_STAT, "UDP Port Opened");
}

II**
II Process SNMP Messages Received

void CSnmpManager::RecvSnmpEvent(LPCSTR lpszCommunity, DWORD
dwRequestid, SNMP ERROR codeSnmpError, int nErrorindex,
SNMP TYPE MessageType, UINT nObjects, LPSTR FAR* lpszObjectid,
LONG FAR* lpObjectValue, SNMP OBJECT TYPE FAR* lpObjectType,
LPCSTR lpszRemoteDotAddr, WORD wRemotePort)

switch (state)
{
case SNMPM STATE BROADCAST:

ListBox_AddString(GetDlgitem(hwndMain,
IDC_HOSTLIST), lpszRemoteDotAddr);

break;

case SNMPM_STATE_QUERYHOST:

HINSTANCE hinst;
UINT i;

- 96 -

hinst = GetWindowinstance(hwndMain);

for (i = 0; i < nObjects; ++i)
{
if (0 fstrcmp(GetString(hinst, IDS_SonyTimecode),

lpszobjectid[i]))
SetDlgitemText(hwndMain,

IDC_TIMECODE, (LPSTR) lpObjectValue[i)+2);

break;
}

default:
break;

II***
II Display Error

void CSnmpManager::ExceptionEvent(PT_EXCEPTION codeError,
LPCSTR lpszErrorDesc)

{
SetDlgitemText(hwndMain, IDC_STAT, lpszErrorDesc);
}

II***
II END OF FILE WALT SCHULLER

- 97 -

Agent Program for Sony Tape Machine

II GENERAL.H
II
II Walter Schuller
II University of North Florida
II
II 1997

#ifndef GENERAL H
#define GENERAL H

#include <stdlib.h>
#include <string.h>

#include "classes.hpp"

II The APPVARS structure contains information used the SNMP Classes

typedef struct tagAPPVARS
{

char* szAppName;
HINSTANCE hinstCtl3d;
HFONT hfontNormal;
CSnmpAgent* pSnmpAgent;

APPVARS, *PAPPVARS, FAR *LPAPPVARS;

#define GWL LPAPPVARS DLGWINDOWEXTRA

II name of application
II 3D control module
II font with normal weight
II our SNMP agent object

#define MAINWNDEXTRA DLGWINDOWEXTRA + sizeof(LPAPPVARS)

II Port 161 is the well-known service for SNMP
#define IPPORT SNMP 161

#endif

II***
II END OF FILE WALT SCHULLLER

- 98 -

II SNMPAP.CPP
II Declaration of the Agent Windows Program
II
II Walter Schuller
II University of North Florida
II
II 1997

#include "general.hpp"
#include "calls.hpp"

II**
II Center Window

void CenterWindow(HWND hwnd)
{
RECT rc;
int ex, cy;

GetWindowRect(hwnd, &rc);
ex GetSystemMetrics(SM CXSCREEN);
cy = GetSystemMetrics(SM=CYSCREEN);

MoveWindow(hwnd, (ex - rc.right + rc.left) I 2,
(cy- rc.bottom + rc.top) I 2,
rc.right- rc.left, rc.bottom- rc.top, TRUE);

II**
II Initialize Main Window.

BOOL MainWnd_OninitDialog(HWND hwnd, HWND hwndFocus, LPARAM lParam)
{
PAPPVARS pav = (PAPPVARS) lParam;
LOGFONT logfont;
LPFNCTL3DSUBCLASSDLGEX lpfnCtl3dSubclassDlgEx;
HINSTANCE hinst = GetWindowinstance(hwnd);

II Enable dialog to use 3D controls.
if ((HINSTANCE) HINSTANCE ERROR!= pav->hinstCtl3d)

{ -
lpfnCtl3dSubclassDlgEx = (LPFNCTL3DSUBCLASSDLGEX)
GetProcAddress(pav->hinstCtl3d, "Ctl3dSubclassDlgEx");
if (lpfnCtl3dSubclassDlgEx)

(*lpfnCtl3dSubclassDlgEx) (hwnd, Oxffff);

CenterWindow(hwnd);

SetWindowLong(hwnd, GWL_LPAPPVARS, (LONG) (LPAPPVARS) pav);

pav->hfontNormal = (HFONT) SendMessage(GetDlgitem(hwnd,
IDC_STATUS), WM_GETFONT, 0, 0);

- 99 -

GetObject(pav->hfontNormal, sizeof(LOGFONT), (LPSTR) &logfont);

logfont.lfWeight FW_NORMAL;

pav->hfontNormal CreateFontindirect(&logfont);

SendDlgitemMessage(hwnd, IDC STATUS, WM_SETFONT,
(WPARAM) pav->hfontNormal, 0);

SetDlgitemText(hwnd, IDC_CMDRESPONSE, "NONE");
SetDlgitemText(hwnd, IDC_CMDEXECUTED, "NONE");
SetDlgitemText(hwnd, IDC_CMDRECEIVED, "NONE");

pav->pSnmpAgent =new CSnmpAgent(GetWindowinstance(hwnd), hwnd);

pav->pSnmpAgent->Connect(NULL, PT_NOFLAGS, NULL, IPPORT_SNMP);

return FALSE;
}

II***
II Process WM_COMMAND Messages from Main Window.

void MainWnd OnCommand(HWND hwnd, int id, HWND hwndCtl, UINT codeNotify)
{ -

switch (id)
{

case IDC TESTBUTTON:
{

II Test the Datacomm Port

II
II

break;
}

Ccontrol ctl;

ctl.Sony forward();
delay(lO);
ctl.Sony rewind();
delay(5);
ctl.Sony_play();
delay(5);
ctl.Sony_time();
SetDlgitemText(hwnd, IDC_TESTWINDOW, ctl.RxBuf);
delay(3);
ctl.Sony record();
delay(5);
ctl.Sony_stop();

11--
case IDC ABOUT:

{
II Display the ABOUT Dialog Box

AboutDlg_Do(hwnd, "SNMP C++l16 Class Library");

- 100 -

break;
}

II***
II Post a WM_QUIT Message and Set the Exit Code to 0.

void MainWnd OnDestroy(HWND hwnd)
{ -
PAPPVARS pav = (PAPPVARS) GetWindowLong(hwnd, GWL_LPAPPVARS);

DeleteObject(pav->hfontNormal);

if (PT CLOSED!= pav->pSnmpAgent->State())
pav~>pSnmpAgent->Close(TRUE);

delete pav->pSnmpAgent;

PostQuitMessage(O);
}

II**
II Set the background color of buttons and static controls to light
gray.

HBRUSH MainWnd_OnCtlColor(HWND hwnd, HOC hdc, HWND hwndChild, int type)
{
if (CTLCOLOR BTN == type I I CTLCOLOR STATIC == type)

{ -
SetBkMode(hdc, TRANSPARENT);
return GetStockBrush(LTGRAY_BRUSH);
}

return NULL;
}

II**
II Process Main Window Messages

LRESULT CALLBACK MainWnd_WndProc(HWND hwnd, UINT msg, WPARAM wParam,
LPARAM lParam)

{
switch(msg)

{
HANDLE MSG(hwnd, WM INITDIALOG, MainWnd OninitDialog);
HANDLE=MSG(hwnd, WM-COMMAND, MainWnd OnCommand);
HANDLE_MSG(hwnd, WM=DESTROY, MainWnd=OnDestroy);

#ifdef WIN32
HANDLE MSG(hwnd, WM CTLCOLORBTN, MainWnd OnCtlColor);
HANDLE-MSG(hwnd, WM=CTLCOLORSTATIC, MainWnd_OnCtlColor);
#else -
HANDLE MSG(hwnd, WM_CTLCOLOR, MainWnd_OnCtlColor);
#endif-

- 101 -

return DefWindowProc(hwnd, msg, wParam, lParam);
}

II***
II Initialize Application and Establish Message Loop.

int PASCAL WinMain(HINSTANCE hinstCurrent, HINSTANCE hinstPrevious,
LPSTR lpszCmdLine, int nCmdShow)

{
WNDCLASS wndclass;
HWND hwnd;
MSG msg;
APPVARS av;
LPFNCTL3DREGISTER lpfnCtl3dRegister;
LPFNCTL3DAUTOSUBCLASS lpfnCtl3dAutoSubclass;

av.szAppName = "SNMPA";

#ifdef WIN32
av.hinstCtl3d LoadLibrary("CTL3D32.DLL");

#else
av.hinstCtl3d LoadLibrary("CTL3DV2.DLL");
if (av.hinstCtl3d < (HINSTANCE) HINSTANCE ERROR)

av.hinstCtl3d = LoadLibrary("CTL3D.ELL");
#endif

if (av.hinstCtl3d >= (HINSTANCE) HINSTANCE_ERROR)
{
lpfnCtl3dRegister = (LPFNCTL3DREGISTER)

GetProcAddress(av.hinstCtl3d, "Ctl3dRegister");

if (lpfnCtl3dRegister)
(*lpfnCtl3dRegister) (hinstCurrent);

lpfnCtl3dAutoSubclass = (LPFNCTL3DAUTOSUBCLASS)
GetProcAddress(av.hinstCtl3d, "Ctl3dAutoSubclass");

if (lpfnCtl3dAutoSubclass)
(*lpfnCtl3dAutoSubclass) (hinstCurrent);

II Register Main Window Class
if (!hinstPrevious)

{
wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hinstance
wndclass.hicon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

RegisterClass(&wndclass);
}

CS HREDRAW I CS VREDRAW;
Mainwnd WndProc7
0; -
MAINWNDEXTRA;
hinstCurrent;
Loadicon(hinstCurrent, "MAINICON");
LoadCursor(NULL, IDC_ARROW);
GetStockBrush(LTGRAY_BRUSH);
NULL;
av.szAppName;

- 102 -

II Create Main Window.
hwnd = CreateDialogPararn(hinstCurrent, av.szAppNarne, 0,

(DLGPROC) MainWnd WndProc, (LPARAM) (LPAPPVARS) &av);
ShowWindow(hwnd, nCrndShow);

II Get and Dispatch Messages
while (GetMessage(&rnsg, NULL, 0, 0))

if (!IsDialogMessage(hwnd, &rnsg))
{
TranslateMessage(&rnsg);
DispatchMessage(&rnsg);
}

if (av.hinstCtl3d >= (HINSTANCE) HINSTANCE_ERROR)
{
LPFNCTL3DUNREGISTER lpfnCtl3dUnregister;

lpfnCtl3dUnregister = (LPFNCTL3DREGISTER)
GetProcAddress(av.hinstCtl3d, "Ctl3dUnregister");

if (lpfnCtl3dUnregister)
(*lpfnCtl3dUnregister) (hinstCurrent);

FreeLibrary(av.hinstCtl3d);
}

return rnsg.wPararn;
}

II**
II END OF FILE WALT SCHULLER

- 103 -

II CLASSES.HPP
II Classes defined
II
II Walter Schuller
II University of North Florida
II
II 1997
II

#ifndef CLASSES H
#define CLASSES H

#include "\Powertcp\include\common.h"
#include "\Powertcp\include\powersnm.hpp"
#include "snmpa.hh"
#include "message.h"
#include "wsc.h"
#include "ascii.h"

II***
II SNMP Agent Class

class CSnmpAgent
{

public CPowerSnmp

public:

CSnmpAgent(HINSTANCE hinst, HWND hwnd);

HWND

char
char
char
char
char
char

hwndMain;

szLocalDotAddr[64];
szSysDescr[64];
szSysObjectid[32];
szSysContact[64];
szSysName[64];
szSysLocation[64];

protected:

} ;

void ConnectSnmpEvent(LPCSTR lpszLocalDotAddr, WORD wLocalPort,
LPCSTR lpszLocalName, WORD wMaxByteCnt);

void RecvSnmpEvent(LPCSTR lpszCommunity, DWORD dwRequestid,
SNMP ERROR codeSnmpError, int nErrorindex, SNMP TYPE

MessageType, UINT nObjects, LPSTR FAR* lpszObjectid, LONG FAR*
lpObjectValue, SNMP_OBJECT_TYPE FAR* lpObjectType, LPCSTR
lpszRemoteDotAddr, WORD wRemotePort);

void ExceptionEvent(PT_EXCEPTION codeError, LPCSTR lpszErrorDesc);

- 104 -

II **
II Ccontrol Class
II Class made from the MarshallSoft toolkit

#endif

class Ccontrol

} ;

{

public:
char RxBuf[128];

public:
Ccontrol(int COMl, int = Baud38400, int =
OddParity, int = OneStopBit, int = WordLength8);

-ccontrol();

void Sony play();
void Sony-stop();
void Sony-rewind();
void Sony-forward();
void Sony-eject();
void Sony-record();
void Sony=time();

private:
int Port;
int BaudCode;
int Parity;
int StopBits;
int DataBits;

char time_buffer[lOO];

int send_cmd(int *cmdptr);

II***
II END OF FILE WALT SCHULLER

- 105 -

II Ccontrol.cpp
II
II Class made from the MarshallSoft toolkit
II Used to control Sony Tape Machines
II
II Walter Schuller
II University of North Florida
II
II 1997

#include "general.hpp"
#include "calls.hpp"

II Sony Tape Control Command Strings

int sony who[]
int sony-enable[]
int sony-play[]
int sony=time[]
int sony stop[]
int sony-rewind[]
int sony-forward[]
int sony-eject[]
int sony-stdby on[]
int sony-stdby-off[]
int sony=record[]
int sony status[]
int sony-auto edit[]
int sony-edit-on[]
int sony-edit-off[]
int sony-in entry[]
int sony-tab plus[]
int sony=in_reset[J
int sony out reset[]
int sony=set=edit[]
int sony_ain_reset[]
int sony aout reset[]
int sony-reset edit[]
int sony=preroll[]
int sony_auto_on[]
int sony_auto_off[]

{3,0xOO,Ox11,0x11};
{3,0xOO,Ox1d,Ox1d};
{3,0x20,0x01,0x21};
{4,0x61,0x0c,Ox01,0x6e};
{3,0x20,0xOO,Ox20};
{3,0x20,0x20,0x40};
{3,0x20,0x10,0x30};
{3,0x20,0x0f,Ox2f};
{3,0x20,0x05,0x25};
{3,0x20,0x04,0x24};
{3,0x20,0x02,0x22};
{4,0x61,0x20,0x2a,Ox08};
{3,0x20,0x42,0x62};
{3,0x20,0x65,0x85};
{3,0x20,0x64,0x84};
{3,0x40,0x10,0x50};
{3,0x40,0x18,0x58};
{3,0x40,0x20,0x60};
{3,0x40,0x21,0x61};
{4,0x41,0x30,0x50,0xc1};
{3,0x40,0x22,0x62};
{3,0x40,0x23,0x63};
{4,0x41,0x30,0xOO,Ox71};
{3,0x20,0x30,0x50};
{3,0x40,0x41,0x81};
{3,0x40,0x40,0x80};

II***
II Constructor

Ccontrol::Ccontrol(int v, int w, int x, int y, int z)
{
Port=v;
BaudCode=w;
Parity=x;
StopBits=y;
DataBits=z;

SioReset(Port, 128, 128);
SioRxClear(Port);
SioParms(Port, Parity, StopBits, DataBits);
SioBaud(Port,BaudCode);
}

- 106 -

II***
II Destructor

Ccontrol::~ccontrol()

{
SioDone(Port);
MessageBeep(-10);
}

II***
II Part of Send Command

int Ccontrol::send_cmd(int *cmdptr)
{

int i=O, num, count = 0;
num = *cmdptr;
for (count=l;count<num+l;count++)

{
II delay(O.l);

SioPutc(Port,*(cmdptr +count));
}

return 0;

II***
II SONY PLAY Command

void Ccontrol::Sony play()
{ -
send cmd(sony play);
} - -

II***
II SONY STOP Command

void Ccontrol::Sony stop()
{ -
send cmd(sony stop);
} - -

II***
II SONY REWIND Command

void Ccontrol::Sony rewind()
{ -
send cmd(sony rewind);
} - -

- 107,-

II***
II SONY FORWARD Command

void Ccontrol::Sony forward()
{ -
send cmd(sony forward);
} - -

II***
II SONY EJECT Command

void Ccontrol::Sony eject()
{ -

send cmd(sony eject);
} - -

II***
II SONY RECORD Command

void Ccontrol::Sony record()
{ -
send cmd(sony record);
} - -

II***
II SONY GET TIMECODE Command

II
II
II 74
II
II

returned data

04 52 15 1 0 fO

F s M F
-40H

version requires the modification of frame field
drop frame

II 74 04 12 15 1 0 fO other version requires no modification of frame
field
II F S M F non-drop frame

II assume drop frame tape format

void Ccontrol::Sony time()
{ -
int i, count=O, drop frame;
char hours[20), mins[20], secs[20], frams[20];

fstrcpy(time_buffer," ") ;

SioRxClear(Port); I* clear port *I

send_cmd(sony_time);

while(SioRxQue(Port)<5) {}; I* wait for return message *I

do
{
delay(0.3);

I* get chars from buffer *I

- 108 -

i = SioGetc(Port);
if (i > -1) *(time_buffer+count) i;
count++;
}

while (i > -1);

*(time_buffer+count) = '\0';

if (*(time_buffer+2)&0x40)

else

count=2;

{
*(time_buffer+2)-=0x40;

drop frame=TRUE;
} -

drop_frame=FALSE;

I* correct for
dropframe *I

II convert time to integer and write results to RxBuf

do

if (*(time buffer+count) > Ox09 &&
*(time_buffer+count) < Ox20) *(time buffer+count)-=6;

else if (*(time buffer+count) > Ox19 &&
*(time_buffer+count) < Ox30) *(time buffer+count)-=12;

else if (*(time buffer+count) > Ox29 &&
*(time buffer+count) < Ox40) *(time buffer+count)-=18;

- else if (*(time buffer+count) > Ox39 &&
*(time buffer+count) < Ox50) *(time buffer+count)-=24;

- else if (*(time buffer+count) > Ox49 &&
*(time buffer+count) < Ox60) *(time buffer+count)-=30;

- else if (*(time buffer+count) > Ox59)
*(time_buffer+count)=60;

count++;

while (count< 6);

itoa(*(time buffer+S), hours, 10);
-itoa(*(time-buffer+4), mins, 10);
-itoa (*(time -buffer+3), sees, 10);
_itoa(*(time=buffer+2), frams, 10);

} ;

fstrcpy(RxBuf," TimeCode ");
fstrcat(RxBuf,hours);
fstrcat(RxBuf,":");
fstrcat(RxBuf,mins);
fstrcat(RxBuf,":");
fstrcat(RxBuf,secs);
fstrcat(RxBuf,":");
fstrcat(RxBuf,frams);

II***
II END OF FILE WALT SCHULLER

- 109 -

II Cagent.cpp
II
II Declaration of the Agent Class Functions
II SNMP virtual class functions from Dart Communications
II
II Walter Schuller
II University of North Florida
II
II 1997
II
II

II***

#include "general.hpp"
#include "calls.hpp"

II***

CSnmpAgent: :CSnmpAgent(HINSTANCE hinst, HWND hwnd)
CPowerSnmp(hinst), hwndMain(hwnd)

II***
II A UDP port has been successfully allocated.

void CSnmpAgent::ConnectSnmpEvent(LPCSTR lpszLocalDotAddr, WORD
wLocalPort, LPCSTR lpszLocalName, WORD wMaxByteCnt)

{
char szStatus[l28];

fstrcpy(szLocalDotAddr, lpszLocalDotAddr);
~sprintf(szStatus, "Listening on port %d. MaxPacketSize %d",

wLocalPort, wMaxByteCnt);

SetDlgitemText(hwndMain, IDC_STATUS, szStatus);
}

II***
II Process Received SNMP Messages.

void CSnmpAgent::RecvSnmpEvent(LPCSTR lpszCommunity, DWORD dwRequestid,
SNMP ERROR codeSnmpError, int nErrorindex, SNMP TYPE MessageType,
UINT-nObjects, LPSTR FAR* lpObjectid, LONG FAR* lpObjectValue,
SNMP OBJECT TYPE FAR* lpObjectType, LPCSTR lpszRemoteDotAddr, WORD
wRemotePort)

{
SNMP OBJECT TYPE fObjectType SNMP_OCTET_STRING;

UINT i;
HINSTANCE hinst GetWindowinstance(hwndMain);

- 110 -

Ccontrol ctl;

char *ptrsz;

codeSnrnpError = SNMP_NO ERROR;

11--
// SNMP GET REQUEST Type Message

switch (MessageType)
{

case SNMP_GET_REQUEST:

lpObjectValue = (LONG FAR*) GlobalAllocPtr(GPTR, nObjects *
sizeof(LONG));

lpObjectType = (SNMP OBJECT TYPE FAR*)
GlobalAllocPtr(GPTR,-nObjects * sizeof(SNMP OBJECT TYPE

FAR*));

for (i = 0; i < nObjects; ++i)
{
if (IsEqual(hinst, IDS_SonyTimecode, lpObjectid[i]))

{

SetDlgitemText(hwndMain, IDC_CMDRECEIVED, "GET
TIMECODE");

SetDlgitemText(hwndMain, IDC_CMDEXECUTED, "SEND
TIMECODE");

ctl.Sony time();
ptrsz = ctl.RxBuf;

SetDlgitemText(hwndMain, IDC_CMDRESPONSE, ptrsz);

lpObjectValue[i] = GetStringProvided(ptrsz);

lpObjectType[i] = SNMP_OCTET_STRING;

SendGetResponse(lpszRemoteDotAddr, wRemotePort,
lpszCommunity, dwRequestid, codeSnrnpError, nErrorindex,
nObjects, lpObjectid, lpObjectValue, lpObjectType);

GlobalFreePtr(lpObjectValue);
GlobalFreePtr(lpObjectType);

break;

1/---
// SNMP SET REQUEST Type Message

case SNMP_SET REQUEST:

- 111 -

for (i = 0; i < nObjects; ++i)
{
if (IsEqual(hinst, IDS_SonyPlay, lpObjectid[i]))

{
SetDlgitemText(hwndMain, IDC_CMDEXECUTED, "START
PLAY");
SetDlgitemText(hwndMain, IDC_CMDRECEIVED, "SET
PLAY");
SetDlgitemText(hwndMain, IDC_CMDRESPONSE,
"COMPLETE");

ctl.Sony_play();

else if (IsEqual(hinst, IDS_SonyStop, lpObjectid[i]))
{
SetDlgitemText(hwndMain, IDC_CMDEXECUTED, "STOP
TAPE");
SetDlgitemText(hwndMain, IDC_CMDRECEIVED, "SET
STOP");
SetDlgitemText(hwndMain, IDC_CMDRESPONSE,
"COMPLETE");

ctl.Sony_stop();

else if (IsEqual(hinst, IDS_SonyReverse, lpObjectid[i]))
{
SetDlgitemText(hwndMain, IDC_CMDEXECUTED, "START
TAPE REVERSE");
SetDlgitemText(hwndMain, IDC_CMDRECEIVED, "SET
REVERSE");
SetDlgitemText(hwndMain, IDC_CMDRESPONSE,
"COMPLETE");

ctl.Sony_rewind();

else if (IsEqual(hinst, IDS_SonyForward, lpObjectid[i]))
{
SetDlgitemText(hwndMain, IDC_CMDEXECUTED, "START
TAPE FORWARD") ;
SetDlgitemText(hwndMain, IDC_CMDRECEIVED, "SET
FORWARD");
SetDlgitemText(hwndMain, IDC_CMDRESPONSE,
"COMPLETE");

ctl.Sony_forward();

else if (IsEqual(hinst, IDS_SonyEject, lpObjectid[i]))
{
SetDlgitemText(hwndMain, IDC_CMDEXECUTED, "EJECT
TAPE");
SetDlgitemText(hwndMain, IDC_CMDRECEIVED, "SET
EJECT");
SetDlgitemText(hwndMain, IDC_CMDRESPONSE,
"COMPLETE");

ctl.Sony_eject();

- 112 -

else if (IsEqual(hinst, IDS_SonyRecord, lpObjectid[i]))
{
SetDlgitemText(hwndMain, IDC_CMDEXECUTED, "START
RECORD");
SetDlgitemText(hwndMain, IDC_CMDRECEIVED, "SET
RECORD");
SetDlgitemText(hwndMain, IDC_CMDRESPONSE,
"COMPLETE");

ctl.Sony_record();

SendGetResponse(lpszRemoteDotAddr, wRemotePort,
lpszCommunity, dwRequestid, SNMP NO ERROR, 0, nObjects,
lpObjectid, lpObjectValue, lpObjectType);

break;

II**
II Display Error Message

void CSnmpAgent::ExceptionEvent(PT EXCEPTION codeError,
LPCSTR lpszErrorDesc) -

SetDlgitemText(hwndMain, IDC_STATUS, lpszErrorDesc);
}

II***
II END OF FILE WALT SCHULLER

- 113 -

Common Calls used by Both Programs

II CALLS.H
II
II Walter Schuller
II University of North Florida
II
II 1997

#ifndef CALLS H
#define CALLS H

#include <time.h>

II prototypes

extern LONG GetLongObject(HWND, int);

extern LPSTR GetString(HINSTANCE, WORD);

extern BOOL IsEqual(HINSTANCE, int, LPSTR);

extern LONG GetStringObject(HWND, int, LPSTR, int);

extern LONG GetStringProvided(LPSTR);

void delay(long);

void sleep(clock_t);

II Function prototypes for CTL3D.DLL

typedef BOOL (CALLBACK* LPFNCTL3DREGISTER) (HINSTANCE);

typedef BOOL (CALLBACK* LPFNCTL3DAUTOSUBCLASS) (HINSTANCE);

typedef BOOL (CALLBACK* LPFNCTL3DSUBCLASSDLGEX) (HWND, DWORD);

typedef BOOL (CALLBACK* LPFNCTL3DUNREGISTER) (HINSTANCE);

extern "C" void AboutDlg_Do(HWND hwnd, LPCSTR lpszLibsUsed);

#endif

II***
II END OF FILE WALT SCHULLER

- 114 -

II CALLS.C
II
II Walter Schuller
II University of North Florida
II
II 1997

#include <stdlib.h>
#include <string.h>
#include "\Powertcp\include\common.h"
#include <time.h>

//**
II delay routine with no cpu sleep

void delay(long sees)
{
long start, finish, ltime;

start= time(<ime);
finish = start + sees;
while (time (<ime) <finish);
return;
}

//***
II delay routine using cpu sleep
// USAGE=> sleep((clock_t)3 *CLOCKS PER SEC);

void sleep(clock t wait
{ -
clock t goal;
goal~ wait+ clock();
while(goal> clock());
}

//**
II Get and return the specified string resource.

LPSTR GetString(HINSTANCE hinst, WORD id)
{
static szBuffer[256];
Loadstring(hinst, id, (LPSTR) szBuffer, 255);
return (LPSTR) szBuffer;
}

//Dart Communications
//***

- 115 -

BOOL IsEqual(HINSTANCE hinst, int id, LPSTR lpsz)
{
return fstrcmp(GetString(hinst, id), lpsz) == 0;
}

//Dart Communications
//***

LONG GetStringObject(HWND hwnd, int id, LPSTR lpsz, int nSize)
{
GetDlgitemText(hwnd, id, lpsz + 2, nSize);
* ((WORD FAR*) lpsz) fstrlen (lpsz + 2);
return (LONG) lpsz;
}

//Dart Communications
//***
II Routine to take a given string and set up for SNMP String Structure
Definition

LONG GetStringProvided(LPSTR lpsz)
{
* ((WORD FAR*) lpsz) fstrlen (lpsz + 2);

return (LONG) lpsz;
}

//***

LONG GetLongObject(HWND hwnd, int id)
{
char szBuffer[ll];

GetDlgitemText(hwnd, id, szBuffer, sizeof(szBuffer));
return atol(szBuffer);
}

//Dart Communications
//***
// END OF FILE WALT SCHULLER

- 116 -

APPENDIX K

Glossary of Terms Used

Acronym Meaning

ANSI American National Standards Institute

API Applications Program Interface

ANS.1 Abstract Syntax Notation 1

BER Basic Encoding Rules

CMIP Common Management Information Protocol

COM x Serial Port x

CTS Clear-To-Send

DCD Data-Carrier-Detect

DLL Dynamic Link Library

DNS Domain Name Server

DTR Data Terminal Ready

FTP File Transfer Program

GPI General Purpose Interface

HTML HyperText Markup Language

I/O Input/Output

ISO International Organization for

Standardization

ISO DE ISO Development Environment

LAN Local Area Networks

MFC Microsoft Foundation Class

MIB Management Information Base

OOP Object Oriented Programming

- 117 -

RFC

RTS

SDK

SMIC

SMICng

SMTP

SNMP

TCP

TCP/IP

TELNET

TFTP

UDP

Request For Comments

Request-To-Send

Software Development Kit

SNMP Management Information Compiler

SNMP Management Information Compiler - Next

Generation

Simple Mail Transfer Protocol

Simple Network Management Protocol

Transmission Control Protocol

Transmission Control Protocol/Internet

Protocol

Telecommunications Network

Trivial File Transfer Protocol

User Datagram Protocol

- 118 -

VITA

Walter Schuller has a Bachelor of Science Degree in

Electrical Engineering from the University of North Florida,

and expects to receive his Master of Science in Computer and

Information Sciences from the same university in December

1997. He also has an Associate in Electronic Technology

from Massey Technical College.

At the time of this writing, Walt was employed as an

engineering supervisor at W.J.X.T. Post Newsweek. Prior to

that, Walt was employed by the Burroughs Corporation, in

Jacksonville, as a field service representative and by Vitro

Services, located at Eglin Air Base, as an electronic

technician working on defense R&D.

Walt has interests in the field of digital communications

and networking. He is also quite interested in hardware

development and robotics.

- 119 -

	Hardware Interfacing in the Broadcast Industry Using Simple Network Management Protocol (SNMP)
	Suggested Citation

	Title Page

	CONTENTS
	FIGURES
	ABSTRACT
	Chapter 1 INTRODUCTION

	Chapter 2 SNMP - THEORY AND IMPLEMENTATION
	Chapter 3 PROCEDURE

	Chapter 4 TOOLS AND DOCUMENTATION

	Chapter 5 DUPLICATION OF EXPERIMENT
	5.1 Verification of Experiments
	5.2 Modification of Experiments
	5.3 Proxy Agent Modification
	5.4 Manager Modification

	Chapter 6 PROGRAM OPERATING INSTRUCTIONS
	6.1 Agent Programs
	6.2 Manager Programs

	Chapter 7 RESULTS AND CONCLUSION
	REFERENCES
	APPENDIX A Microsoft Visual C++
	APPENDIX B Dart Communications Specialty Toolkit
	APPENDIX C
MarshallSoft Windows Standard Communications Library
	APPENDIX D SynOptics (SMICng) MIB Compiler

	APPENDIX E Imagine Serial Converter

	APPENDIX F PicNet Networkable Modules

	APPENDIX G Sony Protocol of Remote-1 (9 Pin) Connector

	APPENDIX H MIB Objects Used in this Thesis

	APPENDIX I Example of Other Possible Mibs

	APPENDIX J Software Listings

	APPENDIX K Glossary of Terms Used

