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ABSTRACT 
 

Abstract 

 

A review of the literature applying Multilayer Perceptron (MLP) based Artificial Neural 

Networks (ANNs) to market forecasting leads to three observations: 1) It is clear that 

simple ANNs, like other nonlinear machine learning techniques, are capable of 

approximating general market trends  2) It is not clear to what extent such forecasted 

trends are reliably exploitable in terms of profits obtained via trading activity  3) Most 

research with ANNs reporting profitable trading activity relies on ANN models trained 

over one fixed interval which is then tested on a separate out-of-sample fixed interval, 

and it is not clear to what extent these results may generalize to other out-of-sample 

periods.  Very little research has tested the profitability of ANN models over multiple 

out-of-sample periods, and the author knows of no pure ANN (non-hybrid) systems that 

do so while being dynamically retrained on new data.  This thesis tests the capacity of 

MLP type ANNs to reliably generate profitable trading signals over rolling training and 

testing periods.  Traditional error statistics serve as descriptive rather than performance 

measures in this research, as they are of limited use for assessing a system’s ability to 

consistently produce above-market returns.  Performance is measured for the ANN 

system by the average returns accumulated over multiple runs over multiple periods, and 

these averages are compared with the traditional buy-and-hold returns for the same 

periods. 
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In some cases, our models were able to produce above-market returns over many years.  

These returns, however, proved to be highly sensitive to variability in the training, 

validation and testing datasets as well as to the market dynamics at play during initial 

deployment.  We argue that credible challenges to the Efficient Market Hypothesis 

(EMH) by machine learning techniques must demonstrate that returns produced by their 

models are not similarly susceptible to such variability. 
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Chapter 1:  Introduction 

INTRODUCTION 

 

1.1 Equity Markets and the Pursuit of Returns 

 

The US stock market is by far the largest equity market in the world.  By some accounts, 

US equities represent as much as 54% of global market capitalization [Goldstein15]  The 

market capitalization of stocks listed on the New York Stock Exchange (NYSE) reached 

more than $20 trillion in 2015 alone, and NYSE total trading volume in January of 2016 

topped 42 billion shares [NYSE16] Market participants- be they fund managers, 

institutional investors, hedge funds of various sizes, or retail investors- operate in the 

equities markets (among other markets) for the purposes of earning returns on their 

money.  The higher the return the better, and market participants have always and 

continue to look for advantages that will help them maximize this return.  The term edge 

refers a trading advantage allowing a participant to outperform other investors, in 

general, and to outperform the market rate of return in particular.  Yet, despite a large 

body of theory and research devoted to the study of financial markets, sustainable trading 

advantages have proven elusive for most market participants [Brown95]. 

 

The limitations of financial forecasting models have been made manifest not only by 

spectacular collapses of firms such as Long-Term Capital Management in the late 1990s- 
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a hedge fund co-founded by two Nobel Laureates in Economics, which flourished briefly 

by exploiting some of the newest and most esoteric financial theories of the time, but 

also by the observation made above: fund managers rarely outperform benchmark rates 

of return reliably [Lowenstein00]. 

 

The advent of machine learning techniques provided obvious candidates to aid the 

development of financial forecasts.  In particular, Artificial Neural Networks (ANNs), 

with their ability to handle nonlinear processes without the need to specify model 

parameters, showed promise in improving these models.  However, the extent to which 

such tools can provide a sustainable trading advantage over other market participants to 

extract excess returns is not clear.  One reason for this lack of clarity, we argue, is that 

much of the research done with ANN forecasting models employs methodology unsuited 

to this pursuit. 

 

A bedrock theory of finance, The Efficient Market Hypothesis (EMH), claims there are 

no persistent market advantages to be had.  A more detailed explanation of this theory is 

presented in chapter 2, but the upshot of EMH is that the nature of markets is such that 

we should not expect any of these techniques to provide us with a reliable edge.  This 

refutation of the efficacy of market strategies is not limited to mathematical models.  It 

extends to all manner of financial planning with designs on beating the market (or market 

index) rate of return.  Yet, a massive industry exists to do just this.  Mutual fund 

managers, boutique hedge funds and financial advisors of all stripes market themselves 

as gatekeepers to esoteric financial wisdom.  Implicit in the very idea of such wisdom is 
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a rejection of EMH, for if market returns cannot be reliably exceeded there is no need for 

financial advisors or active fund managers.  Basket funds mirroring one or another of the 

major indices are the only logical investment choices in such a scenario. 

 

While informational asymmetries and sporadic analytical advantages may provide some 

participants with a temporary edge, even the weakest form of EMH holds that such an 

edge is unsustainable and thus unreliable for purposes of modelling future returns.  The 

sheer number of participant’s means there will always be a few managers with multi-year 

track records of beating the market, but these high flyers always seem to eventually get 

pulled back into more earthly orbits [Goetzmann94].  An oft cited (and somewhat 

derisive) analogy, offered in its original form by [Malkiel99], where a group of 

blindfolded monkeys throw darts at a board populated with the names of listed securities 

helps explain this phenomenon- at least in part.  If each monkey throws, say, 20 darts and 

so selects 20 securities, after a year half of these monkeys will have outperformed the 

other half as “stock pickers”.  At the next annual dart throwing/stock picking monkey 

retreat, half of those monkeys who outperformed their peers the first year will do so 

again the next year.  After the third year, there will be several monkeys with a 3-year 

track record of outperforming their peers.  Inevitably, this fact will be featured 

prominently on their firms’ prospectuses to attract new monkey investors.  But by years 

four and five, most of these hot streaks will have stalled. 

 

In the real world, it may be that some stellar track records have to do with the skill of 

real, human fund managers and/or with the suitability of their investment approach 
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relative to the market dynamics in effect during the time the track records were achieved.  

But better-than-average track records are a statistical inevitability in games with many 

players and a large element of chance, and as such they do not by themselves provide 

evidence for the attainability of a sustainable investment or trading edge. 

 

1.2 Considerations for Forecasting Models 

 

Whether or not any given fund manager’s outperformance may be attributed to skill, 

there is no doubt that the domain within which such professionals operate is a highly 

complex and specialized universe.  Some understanding of this universe is helpful, and 

probably necessary, if we aim to operate within it autonomously in pursuit of market 

besting returns in spite of a core body of theory arguing for the futility of our mission.  

Trading strategies developed for the purpose of outperforming the market are informed 

(or at least ought to be informed) by an understanding of how markets work, at the 

mechanical level, and by forecasting models that account, perhaps implicitly, for the 

technical and psychological forces which move prices.  The construction of a forecasting 

model may thus be well served to consider the motivations of market participants, the 

types of trading strategies and the execution mechanisms those participants employ, and 

the psychological and behavioral tendencies that play a large role in determining the 

perceptions of value and risk which drive price discovery.  To the extent an 

understanding of these features provides us with a perspective on the dynamics 

underlying market behavior, this perspective can inform our decisions during model 

development. 
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Before discussing neural networks and the particulars of our forecasting model, we touch 

on some practical and theoretical concepts which relate to its development and to our 

methodological approach- or which simply provide context for our endeavor.  We 

discuss EMH in more detail along with the related Random Walk hypothesis.  We talk 

about some of the mechanisms, often computerized, by which securities are traded, and 

we touch on technical analysis as it relates to discovering psychologically meaningful 

price patterns.  We briefly discuss Game Theory and take a related tangent into 

evolutionary biology in an effort to illustrate a dynamic that, if projected to markets, may 

offer insight into the observation that trading strategies, as they start to become 

profitable, tend to become ineffectual in fairly short order- only to re-emerge later with 

renewed viability.  

 

1.3 Artificial Neural Networks 

 

Artificial Neural Networks (ANN) are function approximating mathematical models 

which process inputs in a way that bears analogy to the how brain cells (i.e. neurons) 

process sensory information.  Layers of neuronal nodes receive inputs via weighted 

connections (think parameters and coefficients) from the various input or intermediary 

nodes of the preceding layer and transform these into output by way of an activation 

function.  The ability of such networks to handle non-linear relationships between the 

inputs without the need to specify those relationships makes them especially useful for 

modelling complex processes like those in play with price time series.  The Multilayer 
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Perceptron is a common form of ANN and one we will make use of in our research.  We 

will thus describe how ANNs and their MLP strains work in general, and we will discuss 

their use in market forecasting models in particular. 

 

1.4 Problem Statement and Research Goal 

 

The application of machine learning techniques to market forecasting has been explored 

by a wide variety of researchers.   Artificial Neural Networks (ANN) have figured 

prominently in this area.  We find some common shortcomings with respect to the 

generalizability of such research. While predictive performance using statistical error 

measures may generalize over multiple test intervals, return performance may not 

because: 

1. Statistical error measures are not strongly correlated with profitability. 

2. Benchmark comparisons will be more or less favorable for different test periods 

(vs. B&H, for example). 

3. Return performance may vary with market conditions and may thus be 

susceptible to poor timing relative to initial deployment (a system may not be 

able to recover from a period of poor returns when it occurs early in deployment). 

4. The underlying dynamics by which prices are generated may not remain constant 

over time (predictive factors or the relationships between them may change). The 

future may not resemble the past. 

Additionally, in research where return performance is reported, we find some cases 

which appear to apply trading rules developed after observing the behavior of a predictor 
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upon the primary test set. We believe this raises questions of bias being built into some 

reported results with respect to return performance.  

 

We argue these concerns provide reason for skepticism relative to ANN research 

claiming to undermine EMH.  Some of these previous studies may very well be 

indicative of sustainable trading advantages obtained through the use of ANNs, but such 

claims would be stronger where none of the issues above is present.  Consequently, the 

goal of this thesis is to test the ability of ANNs to provide trading signals that produce 

market besting returns reliably and portably, and thus pose a challenge to EMH, using a 

methodology which: 

1 Measures results primarily in terms of dollar-valued returns rather than statistical 

error measures. 

2 Forecloses the possibility of results that are the product of a fortuitous sequence of 

predictive signals projected onto a fixed-interval test period by using uniquely 

initialized MLPs trained on up-to-date data prior to each set of predictions. 

3 Seeks to demonstrate the repeatability of our results by performing multiple tests 

upon the same intervals, with the prediction sequence of each run resulting from an 

MLP ensemble that is dynamically, and thus uniquely, trained over each run. 

4 Attempts to show that return performance, rather than performance relative to 

simple error measures, can be generalized to multiple test sets over various date 

ranges.  

5 Ensures trading results are not biased due to selectively applying rules determining 

when or how our ANN’s output, or signal, will be considered actionable 
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subsequent to having observed the relationship between the price and prediction 

(signal) sequences over the test period. 

 

To the extent we can demonstrate success with ANNs with such an approach, it may 

provide a more convincing argument for the use of ANNs in market trading decisions 

and a more rigorous approach for conducting this research in the future.  However, we 

will argue that a failure to do so may be a more consequential outcome.  While the use of 

ANNs should not be discounted as tools to guide trading behavior due to the results of 

one study, it is reasonable to argue that the higher bar set here should be met for claims 

against EMH to be persuasive.  Accordingly, the contribution of this research will have 

more to do with methodology than with elegant algorithms or idiosyncratic ANN 

implementations, but some energy will be expended refining the model in order to 

compete with the results reported by previous research.  We argue that, regardless of any 

limitations inherent in our implementation, past and future claims of success with ANNs 

in obtaining above market returns will be strengthened by successful studies applying 

methodology similar to that employed here. 
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Chapter 2:  Background and Related Wor k 

BACKGROUND AND RELATED WORK 

 

2.1 Financial Theory and Trading Behavior 

 

The trading of financial securities is done with a great many approaches and is aided by 

tools and methods borrowed from a large number of disciplines.  Machine Learning and 

Artificial Intelligence are commonly applied to the discovery and improvement of 

trading algorithms.  Wall Street hires a large number PhDs in mathematics, physics, 

computer science, statistics and finance [Quants13] to develop and refine these 

approaches.  Large institutions have mandates to buy and sell large amounts of assets, 

and brokerage traders are tasked with executing these orders at the most favorable terms 

achievable.  Increasingly, brokers accomplish this task with the use of algorithms 

implemented on automatic trading systems.  Efforts to divine the dynamics governing 

price discovery and speculative behavior in highly liquid markets are central to much of 

financial theory, and these may be approached with reference to many disciplines.  If our 

goal is simply to apply ANNs to the production of broad market forecasts, then the day-

to-day dynamics of trading activity might be considered superfluous to our endeavor.  

But if it is our intention is to employ machine learning techniques to generate real-time 

trading signals, then some understanding of both financial theory and trading mechanics 

is in order.
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We discuss some of these issues here to provide context for our task, and we reference 

this context to inform the construction of our forecasting model and trading strategy as 

we go forward. 

 

2.1.1 Technical Analysis, Random Walks and EMH 

 

Technical Analysis (TA) is an approach to investing that analyzes the statistics generated 

by market activity with an eye toward finding patterns useful for choosing future 

investments. While many investors and traders use TA tools in combination with 

fundamental information, TA is agnostic with respect to such fundamental data.  Rather, 

TA attempts to discern supply-demand patterns from past price-volume data, and to infer 

likely future price directions, often contingent upon how prices progress relative to key 

technical hurdles.  Various mathematical indicators coupled with charting and 

visualization tools may be transposed onto price charts for purposes of divining useful 

patterns.  Moving averages, Candlestick charts, trend-lines and Bollinger Bands are just a 

few amongst a great many such indicators.   The value of any security, however, is of no 

concern for TA.  Rather, it is the behavior represented in the price charts that provides 

indications about future prices.  See [Murphy99] for and extended explanation of TA 

techniques.  

 

Utterly incongruous with TA is the school of thought in finance which holds that 

fluctuations of asset prices are, for all practical purposes, merely random sequences.  The 

Random Walk Hypothesis (RWH), much debated in the latter 20th century thanks to its 
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popularization in [Malkiel73], can be traced as far back as the mid-19th century 

[Regnault63].  More often credited is [Bachelier00], upon which the modern 

conceptualization is predicated.  Simply stated, RWH holds that market prices move with 

the same practical indeterminism as particles exhibiting Brownian Motion and are thus 

observationally equivalent to a random series.  Speculation, by this view, is but a feeble 

enterprise. 

 

Less severe (but only slightly so) for the speculator’s endeavor is the Efficient Market 

Hypothesis (EMH).  Propounded by [Fama65], EMH states that modern markets are 

efficient and, being so, incorporate all information relevant to an asset’s price 

immediately, thus leaving no room for speculators to gain returns exceeding those of the 

overall market.  While the strong form of the hypothesis implies RWH, the weakest form 

allows that asymmetries in fundamental information may occasionally provide excess 

returns.  However, even this weak form holds there are no serial correlations in the time 

series represented by asset prices.  Future prices, by this view, are entirely determined by 

information not contained in previous prices.  It follows that we cannot systematically 

exploit past prices to gain an edge on the future. 

 

Obviously, we cannot hold out EMH as our pricing model, on the one hand, and claim to 

apply technical analysis profitably, on the other.  Nevertheless, both are intuitive.  Assets 

do seem to follow predictable patterns at times, and traders have gained legendary status 

by exploiting technical patterns in spectacular fashion [Faith07].  Yet, markets do seem 
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to incorporate information very, very quickly; and our technical tools fail us utterly all 

too often. 

 

Absent some reconciling logical framework, it seems we must reject either EMH or the 

tools of TA if we are to lay claim to a coherent view of market behavior.  Perhaps 

technical analysis is but another example of information being assimilated by efficient 

markets?  TA may merely provide tools for describing the dynamics of past price 

histories, while the market’s assimilation of TA’s products renders these tools impotent 

to discern the new dynamics created by their mass digestion.  The results from 

[LeBaron92] suggest as much.  These indicate that, while nonlinear price regularities 

seem to exist, they are unstable over time.  [Chen97] Also found such regularities by 

applying Genetic Programming, but the authors noted the cost of discovery likely limited 

profitable exploitation. 

 

2.1.2 Program Trading 

 

Program trading represents a broad set of computer executed trading strategies employed 

by financial firms and speculators.    Perhaps the best publicized, if not infamous, kind of 

program trading is High Frequency Trading (HFT).  Firms executing HFT strategies aim 

to take advantage of informational asymmetries brought about by speed advantages 

gained from highly optimized hardware-software systems that are co-located with the 

exchanges they trade on.  Such systems provide multi-millisecond visibility advantages 

to order books, allowing for instantaneous profits to be made by gaming both sides of the 
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bid/offer spread.  Put another way, HFT systems make their living by knowing what 

buyers and sellers are willing to do (pay/accept) before either is exposed to this same 

information from would-be counterparties.  This kind of algorithmic trading essentially 

amounts to high-tech, rapid-fire arbitrage.  Lewis [Lewis14]  provides a detailed, albeit 

non-academic, account of this type of trading activity. 

 

Long standing and more innocuous forms of program trading are essentially automated 

versions of traditional brokerage strategies for buying and selling large blocks of shares.  

These strategies are typically what Wall Street people mean when they refer to 

algorithmic trading, and they are designed to minimize both the market impact 

(unfavorable price changes resulting from trading activity) and the transaction costs 

associated with the execution of larger orders.  Volume Weighted Average Price 

(VWAP) and Percentage of Volume (POV) are common benchmarks the algorithms 

attempt to beat with various implementations [Johnson10].  Still other types of 

programming trading are quantitative trading, where participants try to predict short term 

price moves to obtain quick profits on transient market moves, and statistical arbitrage 

strategies which spot short to medium term anomalies in the price ratios of correlated 

securities. 

 

Perhaps the most important thing to understand about all of this effort toward profitable 

price prediction is that, for a given security in a given market, opportunities to exploit 

recent patterns require early awareness and are constrained by finite liquidity.  As 

formerly profitable patterns are discovered and exploited by more market participants, 
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those opportunities will cease to be profitable.  Knowledge essentially undermines itself 

as resulting behaviors cause patterns to cease to mean what they just meant.  Patterns 

which formerly served as reliable buy signals come to be exploited by sellers, and sell 

signals are likewise then exploited by buyers, and then this situation breaks down in turn.  

Yet there will inevitably be discoverable, and thus temporarily exploitable, patterns 

reflecting this new situation- so long as this new situation holds.  This counterbalancing 

dynamism, we argue, constrains our ability to generalize about any fixed system’s 

predictive abilities on a continuing basis.  Static price forecasts produced by predictive 

models developed (or trained) over fixed time intervals would seem inappropriate tools if 

one views the trading environment in this way.  This characterization of price behavior 

relies on informal observation more than theory or empirical testing, but support for it 

can be found in [Faith07, Lempérière14 & Clark12]. 

 

These dynamics are of critical importance for anyone attempting to trade in the equity 

markets based on signals provided by forecasting models.  Underlying fundamental 

conditions will likely drive prices over the intermediate to long term, but the multifarious 

and ever present pursuit of a technical trading edge by so many market participants may 

create short term price behaviors that confuse forecasting models into loss-making trade 

signals.  If past price patterns proved not to be reliably exploitable as a consequence of 

this condition, well, that is exactly what EMH proponents have been trying to tell us.  A 

forecasting model powerful enough to undermine EMH would have to be highly 

adaptable to ever changing conditions. 
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2.1.3 Game Theory for Lizards 

 

Game Theory provides a way to think about the ways in which self-interested 

participants interact strategically with one another.  As such, it offers insights for a 

number of disciplines including economics, psychology, computer science, political 

science and biology, to name a few.   The root of Game Theory’s academic tree stems 

from Jon Von Neumann’s work on zero-sum-games [Von Neumann44], though 

discussions of matters with which it is concerned can be found throughout written 

history.  With respect to economics and finance, Game Theory typically thinks of 

individuals as rational, self-interested agents attempting to maximize some sort of utility 

function.  Games (defined settings where behavioral choices determine the results of 

individual utility functions) may be zero-sum, or they may reward cooperation.  Markets, 

of course, exhibit zero-sum games between participants and are amenable to such 

models.  Because the applicability of game theory crosses so many domains, it provides 

rich metaphorical soil for conceptualizing the dynamics of many types of systems.  

Tilling that soil, we will look to a game theoretic view of the plight of some peculiar 

lizards as a means to illustrate a view of market behavior which informs our 

methodological approach.  

 

The notion of an Evolutionary Stable Strategy (ESS), a product of the application of 

Game Theory to the evolution of behavior, refers to those strategies employed by species 

which, once adopted by all members, cannot be invaded or overrun by an initially rare 

outside strategy.  [Sinervo96] Studied territorial and sexual selection patterns of male 
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side-blotched lizards.  Three distinct phenotypes of male lizards compete for female 

resources in this species.  Males with orange coloring about their throats are physically 

dominant over all others and control the largest ranges of territory.  Blue throated males 

dominate yellow throated males but control smaller territories than orange throated 

members.  Males with yellow stripes on their throats are known as “sneakers” and do not 

control territories.  Rather, they look like receptive females bearing the same markings 

and engage in a subterfuge for reproductive advantage.  Each “morph”, then, employs a 

distinct strategy for procuring females relative to the other two morphs.  Statistics for the 

relative frequencies of morphs over a six-year period demonstrated that no morph 

maintained an ESS, as the frequencies of morphs fluctuated dramatically from one year 

to the next.  In particular, the authors observed every morph was vulnerable when it was 

prevalent, and that the morph least represented in any given year always faired best the 

following year. 

 

It seems too clever by half to extrapolate a theory of markets from a slice of biology, and 

we are not proposing one1.  But then game theory is concerned with dynamics rather than 

domains, and the dynamics here comport with our observations on the fortunes of market 

strategies.  We will not stretch our arguably tangential metaphor much further, except to 

say the idea that strategic success is but a prelude to strategic futility, that this is also true 

in the reverse, and that each position comes back around in a roughly (if very roughly) 

cyclical fashion; well, this is our informal model for understanding the alternating 

success and failure of market strategies.  We might say that the thing which EMH 

                                                           
1 But see (Soros, 2003). Mr. Soros is concerned with human behavior rather than the colors of lizards’ 

throats, but similar implications can be said to follow from his view of markets. 
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proscribes, and the thing we must prove to exist if we wish to controvert it, is an ESS 

where the market serves as our environment and profitability as our success measure.  

 

This line of thought will have implications for the design of our ANN based system.   As 

we will discuss in more detail in the next chapter, most ANNs are trained over a fixed in-

sample period.  If we view market activity as evolving in a loosely cyclical fashion, 

where it is not just price trends but also the suitability of strategies best used to exploit 

those trends that are in constant flux, then confining the training of our model to a fixed 

period would seem an inadequate approach to predicting prices.  Consequently, our 

model will be trained in an iterative fashion not often employed in the literature. 

 

2.2 Artificial Neural Networks 

 

The simplest artificial neural network is the single-layer perceptron, popularized by 

Frank Rosenblatt in the early 1960’s [Rosenblatt58].  A single layer of output nodes (or 

neurons) is fed input data via weighted connections.  These output neurons fire when the 

sum of the products of the inputs and weights are above a specified threshold.  Raw data 

are converted into a set of feature activations and, through training, perceptrons learn to 

weight each feature such that the weights represent how much evidence a feature 

provides in favor or against the current input being an example of the pattern or value we 

wish to recognize, or predict, via the outputs.  As these types of ANNs are severely 

limited, in particular by their inability to discover patterns which are not linearly 
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separable [Minsky69], we do not discuss training algorithms with respect to the single-

layer perceptron. 

 

The most common type of ANN is the multilayer perceptron (MLP). These are Feed-

Forward Networks (FFN), meaning they process information in one direction.  The first 

layer in these networks is the input layer and the last layer is the output layer.  These 

networks compute a series of transformations on the data vectors from the input layer via 

one or more hidden layers of neurons where data arrive by directed, weighted 

connections and proceeds transformed to the output layer (perhaps via additional hidden 

layers).  With the exception of the input layer, each node (or neuron) processes inputs via 

an activation function such that the activities of neurons in each layer are non-linear 

functions of the activities in the preceding layer.  [Hornik89] demonstrated that an MLP 

with a single hidden layer is capable of approximating any continuous function.  Because 

of the general ubiquity of MLPs and their centrality to our research, we occasionally 

appear to interchange the terms MLP and ANN in this document.  However, the term 

ANN should be considered to refer to Neural Networks in the more general sense. 

 

Recurrent ANNs allow for directed cycles in their connection graph.  This distinguishes 

them from FFNs, which allow no such cycles.  These cycles may capture temporal 

relationships and thus may provide for more complex descriptions.   Recurrent networks 

are much more challenging to train than feed-forward networks.  They are, however, 

more biologically realistic, and the element of memory introduced by recurrent cycles 

make them potentially more powerful.  They are also a very natural way to model 
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sequential data.  Two of the most common recurrent structures are Elman networks and 

Jordan networks [Elman90, Jordan86]. 

 

Many more variations of ANNs exist (probabilistic neural networks, or PNNs, are 

another common form), and hybrid systems combining neural networks with fuzzy sets, 

genetic algorithms and all manner of machine learning exotica are quite common [e.g., 

Asadi12, de Oliveira13, Fang14].   

 

The method by which ANNs are trained must be appropriate to the specific ANN 

structure and usually takes account of efficiency considerations.  The standard back-

propagation algorithm used to train MLPs employs gradient-descent optimization to find 

the local minima of the error function, and the weights of the connections are adjusted 

with each instance encountered by the amount of a specified learning rate parameter.  

This is accomplished over multiple (often very many) iterations, or epochs, over the 

entire training set.  The algorithm may be (and usually is) extended with a momentum 

parameter that helps smooth out some of the oscillations of the gradient which can slow 

down learning.  While a higher rate of momentum can cause faster convergence, it brings 

with it a risk of early convergence onto local minima.  It is thus common to reduce the 

learning rate in conjunction with using higher rates of momentum. 

 

Other training techniques use multiple optimization procedures for faster training, as 

does the Levenberg-Marquardt algorithm [Levenberg44] which interpolates between 

back-propagation and Gauss-Newton optimization.  Additionally, genetic algorithms 
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may be used to determine MLP weights.  Resilient Backpropagation, or RPROP 

[Riedmiller92], uses a special update value for every neural connection, similar to the 

learning rate of backpropagation, which is automatically determined rather than pre-

specified as a parameter (only the initial update value must be specified).  RPROP has 

been shown to perform more efficiently than backpropagation.   Because finding the right 

combination of learning rate and momentum can be extremely time consuming when 

constructing many MLPs, RPROP provides a significantly less resource intensive 

training option. 

 

For an MLP with a single hidden layer, determining the appropriate number of hidden 

nodes is an imprecise endeavor requiring experimentation.  A common heuristic is to 

begin by taking the mean of the nodes in the input and output layers [Heaton08]. 

 

2.3 Neural Networks and Market Forecasting 

 

Research with ANNs in financial modeling began in earnest in the early 1990s 

[Franses98].  Because ANNS are capable of approximating almost any nonlinear 

function with arbitrarily high precision (given enough hidden nodes), they are much 

better than traditional linear econometric models at discovering highly complex 

relationships between the lagged components of many financial time series.  This 

precision comes at some cost, however.  Because ANNs are non-parametric statistical 

models, they do not lend themselves to parametric interpretation.  They are essentially 

“black-box” functions that, while highly capable of discovering nonlinear relationships, 
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provide little information about the nature of the relationships discovered.  This situation 

means ANNs suffer in terms of their explanatory value for specific models, and it makes 

for challenges with model selection- for example, determining the number hidden nodes 

to include or the particular transformation function(s) to be applied. 

 

The black-box aspect of ANNs is a tolerable drawback in a forecasting model used 

merely as a trading tool, so long as their approximating abilities may be generalized 

sufficiently to future data.  For a given model, however, there is no assurance of the 

degree to which the precision achieved in approximating an in-sample time series will 

extend to the future outputs of that series.  The forecasting ability of ANNs thus depends 

on the similarity between the unknown data-generation processes (including noise) in 

effect during the interval in which the ANN was trained and those of the future interval 

for which we desire forecasts.  This fact has methodological implications for our 

research, but here we simply remark that the dangers of both over-fitting and under-

fitting a model to in-sample (training) data are serious concerns, and that the further a 

model extends forecasts beyond its in-sample period, the less reliable we might expect it 

to be as a forecasting tool. 

 

Kuan and Liu [Kuan95] had mixed success with MLPs in predicting five exchange rates 

against the US Dollar.  For at least some of these series they were able to demonstrate 

significant performance in terms of Mean Squared Prediction Error (MSPE) and sign 

prediction (hit rate) of MLPs over the random walk model.  These MLPs, using only the 

lagged values of their respective time series as inputs, were simple autoregressive (AR) 
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models.  Gencay [Gencay99] followed the above research by feeding k-nearest-neighbor 

time-series into a feed-forward network for the purpose of predicting spot foreign 

exchange rates across five currency pairs with data from January 2, 1973 to July 7, 1992.  

Results of this study show a 7.9% improvement in returns over the RWH model on out-

of-sample data, as well as more accurate sign (direction) predictions.  In [Fernandez-

Rodrıguez00], technical trading rules determined by an ANN trained and tested on 

percentage returns of the Madrid Stock Exchange performed better than a buy-and-hold 

strategy in bear and stable markets, while performing worse in bull markets.  The authors 

here follow the Gencay model in using the returns from the nine previous days as inputs 

to predict short term time series patterns. 

 

It is important to point out how the latter two models differ from the former.  Where 

Kuan and Lu were attempting to estimate the values of exchange rate time series, Gencay 

and Fernandez-Rodriguez et al looked at the returns of those series.  These obviously 

produce very different regression lines, with the latter crossing between positive and 

negative percentages for both actual and predicted values.  These signed values provide 

obvious trading signals for choosing between long and short (or cash) positions.  Of 

course, it isn’t necessary that that we observe the zero line as the absolute signal (though 

these studies do).  As we discuss in Chapter 5, we can require that the signal achieve 

some level of magnitude beyond the zero line before changing our market position, 

depending on our investment or trading strategy. 
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Autoregressive models which consider only the lagged values of a time series for which 

predictions are desired might be expected to suffer from their narrow concern with the 

relationships between the values of the series itself.  Markets do not operate in a vacuum, 

and their sensitivity to exogenous events is hardly a matter of debate.  How and under 

what conditions external forces exert their influence on market prices most certainly is a 

matter of seemingly boundless debate amongst financial practitioners, however.  ANN 

models, given their non-parametric structure, are not good candidates for elucidating the 

nature of these relationships.  Their approximating abilities for nonlinear functions 

nevertheless make them very good candidates for discovering these relationships 

implicitly - even if the nature of the discoveries remain unclear.  Autoregressive Models 

with Exogenous Inputs (ARX), which incorporate relevant external information, might 

thus be expected to provide significant forecasting improvements over simple AR 

models. 

 

Brabazon et al provides a good example of an ARX model [Brabazon06].  Here, a range 

of exogenous market index values and derived indicators are used as inputs along with 

the last value in the series to predict values for the FTSE 100 index 5 days forward.  

Altogether, these variables produce an input layer with 10 nodes (plus a bias node).  The 

greater the number of inputs, the more hidden nodes will typically be required to capture 

the greater number of relationships.  Brabazon’s MLP uses 6 hidden nodes and produces 

outputs in the range of [-1, 1].  This output range reflects the normalization of inputs into 

this same range and the use of the hyperbolic tangent function as the transformation 

function.  Rather than rely on the predictions of a single MLP, where the initial weights 
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used for the backpropagation algorithm can produce very different approximation results, 

25 MLPs were trained and the predictions of each were averaged to produce a single 

output value.   De-normalized outputs having absolute values greater than 1.5% 

(predicted +/- return) were taken as long or short signals in the system constructed to test 

the usefulness of the model for trading over subsequent test periods.  As expected under 

the hypothesis that markets are dynamic, the out-of-sample performance- measured both 

by standard error measures for the MLPs and by the returns of the trading system- 

deteriorated with each subsequent test period.  The trading system did produce modest 

returns over buy-and-hold in the first and second test periods, however, and similar 

results were also found when training a single MLP with a genetic algorithm (GA), 

where stacking MLPs isn’t necessary because using GAs avoids the problem of poor 

weight initialization. 
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Chapter 3:  Methodological Concerns for Forecasting Returns w ith Anns  

 

METHODOLOGICAL CONCERNS FOR FORECASTING RETURNS WITH ANNs 

 

A review of the literature on the use of ANNs and, more specifically, MLPs for 

forecasting price trends in financial markets suggests these models can provide useful 

information to financial practitioners.  Yet, despite a number of studies reporting better 

than benchmark returns from trading systems constructed upon these structures, a closer 

look at this research raises suspicions as to the ability of MLP based forecasts to provide 

reliably profitable trading signals.  We discuss the reasons for such suspicions in the 

pages that follow.  First, we construct a simple example model for purposes of 

illustration. 

 

3.1 An Example Model 

 

Let us construct an MLP for predicting index closing values for the S&P 500, the Dow 

Jones Industrial Average, and the Nasdaq 100 index values2.  Our example MLP is of the 

ARX statistical variety and uses the lagged 10 closing values of each index along with 

the lagged 10 closing values of the Prime (Federal Funds) interest rate.  This gives us a 

total of 40 input neurons.  Remembering that our purpose here is demonstrative rather 

than formal, we use a rather large, non-optimized structure with 2 hidden layers of 41 

                                                           
2 The code for this example MLP was provided by http://www.codeproject.com/Articles/175777/Financial-predictor-via-neural-

network.  Trading statistics were the product of our calculations. 

http://www.codeproject.com/Articles/175777/Financial-predictor-via-neural-network
http://www.codeproject.com/Articles/175777/Financial-predictor-via-neural-network
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nodes each and an output layer of 4 nodes (1 for each series), each of which produces 

continuous outputs.  This gives us a structure of 40-41-41-4 (we ignore the interest rate 

predictions, however). A rough visualization of this MLP can be seen in Figure 1. 
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Figure 1: Example MLP (Bias nodes not shown) 

 

We train our MLP on daily closing index values from January 1, 1990 through January 1, 

2010, stopping training after 1,000 epochs.  We make predictions for each index from 

January 2, 2010 through May 5, 2011 (based on the previous 10 values in the series), for 

a total of 81 predictions for each index.  Graphs of actual and predicted values for each of 

the 3 stock indices are shown in Figure 2 (we ignore the Federal Funds Rate predictions). 
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Figure 2: Graph of actual vs. predicted values for example MLP 

    

The results of this example model now in hand, we reference it in the context of specific 

methodological concerns. 

 

3.2 Measuring Forecast Performance 

 

As can be seen in Figure 2, worries that the approximating ability of our MLP will suffer 

when extended to out-of-sample data do not appear to be warranted.  Indeed, each of our 

forecasts has a Pearson Product Moment Correlation Coefficient (PPMCC) above 0.95 

and the Root Mean Squared Errors of our predictions range from 1.05% to 1.50%, 

depending on the index and its value when measured. 

 

Given how well our MLP approximates future values, would we have profited by trading 

based on the signals provided over the out-of-sample period?  After our initial MLP 

training, if at the end of each trading day during the out-of-sample period we had bought 
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or sold- based on the price predictions of our example MLP- any of a half dozen 

securities whose values mirror the S&P 500 index, we would have outperformed the 

S&P by more than 60% over a period of less than 4 months. 

 

That kind of performance is impressive.  It is also ephemeral.  We need only look to our 

example MLP’s predictions for the other 2 indices to see just how unreliable the above 

trading results likely are.  Despite sporting PPMCCs of above 0.95 and RMSE values 

comparable to those for the S&P index, had we traded securities reflecting the NASDAQ 

and Dow averages we would have underperformed these indices by more than 59% and 

81%, respectively. 

 

The idea that standard error measures may be inappropriate, or at least insufficient, for 

measuring the ability of approximating systems to produce profitable trade signals is not 

new.  Diebold and Mariano point out the economic loss functions aren’t amenable to 

textbook error measures like Mean Squared Prediction Error (MSPE) and the like 

[Diebold12].  This is because loss functions in economics, particularly as they pertain to 

investment decisions, are typically non-Gaussian, non-zero mean and contain both serial 

and contemporaneous correlations.  Pearson and Timmermann demonstrated these 

measures are not strongly related to profitable trading [Pesaron92].  Yet a surprising 

amount of research cites these error measures exclusively as principal evidence for the 

profitability of exploiting ANNs for this purpose.  We see this in Birgul [Birgul03] where 

multiple MLPs are said to better predict values for the Istanbul Stock Exchange than 

other methods, in Constantinou et al [Constantinou06] which looks at using ANNs for 
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predicting Cyprus Stock Exchange values, and with Jaruszewicz and Mańdziuk 

[Jaruszewicz04] where next day predictions are made for the Japanese NIKKEI index.  

The ANNs used in these studies do appear to outperform when approximating these 

markets, but the relationship between approximation capacity and profitable trading 

remains tenuous.  Kanas and Yannopoulos [Kanas01] provide more convincing evidence 

of ANN forecasting superiority by demonstrating their relative forecast outperformance, 

using error measures designed by Diebold and Mariano [Diebold12], which account for 

the messiness inherent to economic loss functions.  Yet, even here, the lack of any 

attempt to demonstrate generalizable, above benchmark returns leaves us less than 

persuaded. 

 

Leitch and Tanner [Leitch91] argue that a system’s ability to forecast the direction or 

sign of market returns, sometimes referred to as hit rate, is more closely related to 

profitability than traditional error measures.  This is most certainly true, but it also has 

limitations for this purpose.  This is because the determining factor for profitability is not 

the ratio of hits to misses but rather the magnitude of gains on hits relative to the 

magnitude of losses on misses.  Indeed, profitable systems need not have a high hit rate 

at all, and some famous trend following systems are known to have had hit rates of less 

than 20% [Faith07].  So long as the many losses are minimal and the relatively few 

successes are very large, such systems can be extremely profitable.  But systems 

attempting to achieve many small gains are indeed dependent on higher hit rates for 

profitability, as hits must outnumber misses when average gains and average losses per 

trade are near equal.  However, such systems suffer during times of low volatility when 
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their returns are less likely to compensate for the costs of active trading.  They are also 

vulnerable to extreme moves, as small returns amassed over many trades can be wiped 

out by one extreme move in the wrong direction.  Nonetheless, hit rate is a useful 

measure, and we see it cited in the literature frequently [e.g., Mizuno98, Pan05, Neto10, 

Tsai09]. 

 

3.3 Issues with Out-of-sample Testing 

 

Though the returns produced for the S&P 500 failed to generalize to the other two 

indices, we might postulate that our example MLP’s trading performance on the S&P 

500 has validity for reasons internal to the data generation process producing this index 

series.  After all, there are 500 securities composing this index (as opposed to 30 and 100 

for the Dow and NASDAQ 100), and we can imagine that this larger, broader 

composition of securities might produce time series vectors which are more reliably 

predictive of future price direction and/or the magnitude of price changes, once they are 

processed by our MLP.  Unfortunately, that is not the case here.  Three subsequent 

training and testing runs produced predictions and trading returns for the S&P 500 that 

were comparably bad or worse than those obtained for the Dow and NASDAQ indices 

on the first run.  Our very first result set, in terms of trading performance, appears to have 

been an anomaly.  Table 1 provides the results of 5 additional runs for each index and 

compares the average returns produced by following the predictions produced by these 

runs to the Buy & Hold strategy over the same period.  As with the previous results, 

PPMCC statistics suggest the MLP is provides very good price level approximations.  
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Our approximations, however, appear to be too imprecise to allow us to capitalize on 

them in order to reliably beat the B&H return from these indexes over the period. 

 

 

Table 1: 5 Runs of Example MLP with B&H Comparisons 

 

That we can produce these exceptional trading results, however specious, speaks to 

another methodological concern when investigating the ability of ANNs to provide 

profitable trading signals.  For any finite out-of-sample test period, we are likely to find a 

profitable set of predictions- given enough parameter tweaks and testing runs, or with 

just a little luck.  The autoregressive nature of ANNs will usually get the predictions “in 

the ballpark”- but then so will a Monte Carlo simulator.  Thus, finding one or more 

profitable sets of predictions over a given period provides little support for a claim that 

any single, uniquely trained MLP will generalize to profitable predictions going forward.  

It just means that we can be confident in our ability to back-fit profitable returns to the 

recent future- so to speak. 

 

Yet, back-fitting profits to futures’ past seems to be a prevalent approach for researchers 

proclaiming the death of EMH at the hands of machine learning techniques, in general, 

Ex. S&P 

Ret. (pts)

Ex. S&P 

Ret. (%)

Ex. S&P 

PPMCC

Ex. NDSQ 

Ret. (pts)

Ex. NDSQ 

Ret. (%)

Ex. NDSQ 

PPMCC

Ex. Dow 

Ret. (pts)

Ex. Dow 

Ret. (%)

Ex. Dow 

PPMCC

63.12 5.66 0.9309 201.55 8.88 0.9314 324.19 3.11 0.9322

103.26 9.26 0.9620 399.83 17.62 0.9285 131.01 1.26 0.9577

-110.14 -9.88 0.9589 -58.41 -2.57 0.9715 -65.05 -0.62 0.9584

21.32 1.91 0.9665 -114.29 -5.04 0.9665 389.63 3.74 0.9665

21.20 1.90 0.9648 -15.49 -0.68 0.9747 -538.85 -5.17 0.9406

 Ex. Avg. 19.75 1.77 0.96 82.64 3.64 0.95 48.19 0.46 0.95

      B&H 91.68 8.22 242.77 10.70 739.27 7.09

vs. B&H (71.93) (6.45) (160.13) (7.06) (691.08) (6.63)

Returns From Example MLP (5 Runs)
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and with ANN techniques in particular.  Fortunately, most researchers in this area do not 

make such grandiose claims.  Nevertheless, there remains the essential problem of how 

well we can expect excess returns produced over one period (or date range) to generalize 

to another. 

 

The total returns of any trading or investment system, no matter how effective, are highly 

dependent on when trades (or investments) are made.  Specifically, the intermediate and 

possibly long-term returns on a given purchase (or short sale) of shares will depend 

largely on whether that purchase takes place at the bottom or top of a market boom/bust 

cycle, or somewhere between.  This is a mere function of the share price, and thus the 

number of shares bought or sold, at the time of investment. 

 

This is obviously true for the buy-and-hold (B&H) investment strategy.  For example, 

purchase of an S&P 500 tracking security in December 31, 2000 would have yielded an 

investor a return of -0.019% by January 3 of 2013 (before dividend reinvestments), 

whereas an equivalent dollar investment would have yielded that same investor a total of 

73% had she bought her shares on March 3, 2003.  Comparisons of a strategy’s returns to 

B&H are thus heavily fraught, for such returns may be flat or negative for an extended 

period, thus inflating the alternate strategy’s performance by comparison. 

 

For strategies other than B&H, the consequences of poor timing may be even more 

dramatic.  Any strategy that attempts to ‘time the market’ with long and short trades, for 

example, will incur periods of large run-ups and large drawdowns, where it is either right 



 

 

 

33 

or wrong for a relatively extended period, even if that strategy’s long-term success rate is 

stable.  Should either be the case early in a strategy’s deployment, short-term returns may 

be inflated or suppressed enough to impact the returns for the entire period under 

consideration.  We can’t know how a system would have performed had the situation 

been different unless we test it against periods where it was different. 

 

Crucial to the establishment of a systems ability to generalize is its ability to repeat good 

performance given slight variations in initial parameters and the datasets tested against.  

While a statically trained system with fixed connection weights will always produce the 

same outputs if given the same inputs, the system must be robust to slight changes to the 

training and testing datasets if it is to be expected generalize to new data.  For example, 

will our return performance maintain its superiority over B&H if we add or drop portions 

of the training data, or if we shift forward or back the date of initial testing/deployment?  

Will our finely tuned model parameters, perhaps ideal for our test dataset, be suited to 

future datasets?  Such variants must be tested against to be sure we haven’t merely 

stumbled upon a profitable but arbitrary prediction sequence. 

 

Yet, such variability is rarely tested against.  If you have trained an ANN and employed 

it profitably over a finite out-of-sample period then, if the profitability of that ANN’s 

predictions is a reliable phenomenon, that profitability ought to be reproducible on 

subsequent training and testing runs over slightly modified training and testing intervals, 

and over the same datasets using alternative initialization parameters.  Every run need not 

be better than our benchmark, and we might expect some runs to be downright losers; but 
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we ought to be able to beat our benchmark on average- and to at least beat it more than 

once.  In addition, if we wish to have confidence that our thus validated system is not 

somehow reliant on features particular to our choice of training and testing intervals, this 

system and its associated profitability should be at least somewhat generalizable to other, 

distinct intervals. 

 

We are unaware of research demonstrating that profits produced by MLP generated 

signals are consistently reproducible or temporally portable in this way.  Testing this 

hypothesis is a key goal of this thesis. 

 

3.4 Rules Bias 

 

Research on the profitability of ANN based predictive systems often applies very simple 

trading rules.  Like our example MLP, many systems attempt to predict returns for the 

next day and simply enter the market, long or short3, based on the value of the ANN 

signal.  Other systems, however, have more elaborate criteria for taking or changing 

market positions.  These more elaborate sets of rules require extra scrutiny when testing 

them against historical data.  In particular, we need to ensure that the trading rules are not 

fitted to suit our forecasting signal’s behavior over the out-of-sample period. 

 

                                                           
3Short selling is a mechanism by which market participants can profit from a security’s decline in price. 

Shares are borrowed (usually in an automated fashion from your broker’s inventory) and then sold at the 

market price with the expectation of repurchasing them later at a lower price. Should the share price rise, 

the short position loses money until the shares are repurchased. 
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A strategy developed after observing the peculiarities of a predictive signal over a given 

period, and then tested against that period, will tend to imbue one’s results with a 

particularly pernicious kind of bias.  However sound the methodologies producing the 

predictive signal, however accurate the signal may be otherwise, returns reported using a 

trading strategy tailored to suit a signal’s behavior over the test period will be highly 

suspicious.  If this is done, there is no reason to think those rules will perform similarly 

upon future data to which they were not similarly tailored. 

 

This is not to say a trading strategy should not take into account the behavior of the ANN 

signal, relative to a post-training dataset, in order to derive good trading rules.  But data 

used for developing the rules of a trading strategy are not appropriately incorporated into 

the reporting of the results of that strategy.  Rather, valid trading results require that the 

rules be defined a priori, or that the results are computed using out-of-sample datasets 

subsequent to those upon which the rules were developed, lest we confuse a talent for 

back-fitting one curve to another for the precision of our predictor.  It is sometimes hard 

to know the degree to which this bias is incorporated into specific studies employing 

complex strategies, but an absence of explicit safeguards against it suggests its presence.  

This is the case with [Brabazon06], where the basis for setting a 1.5% (absolute value) 

predicted return threshold criteria for taking positions in either direction is not made 

clear.  In other cases, this bias is introduced overtly (if perhaps unknowingly), with 

trading rules being developed with a direct view to the out-of-sample data [Kuo98].  We 

will take explicit steps to minimize this type of bias
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Chapter 4:  Requirements and Strategic Goals 

REQUIREMENTS AND STRATEGIC GOALS 

 

4.1 An Overview of Requirements 

 

EMH says nothing about the ability of forecasters to produce quality approximation 

models and, in weak form, does not preclude the occasional achievement of above-

market returns due to some intermittent informational advantage, perhaps gained by use 

of such models4.  Rather, EMH precludes any such advantage from being sustained and 

thus systematically exploited over time.  As we attempted to show in the last chapter, 

research with ANN based models appears to have yet to undercut this claim 

convincingly.  However, this failure doesn’t necessarily serve to bolster EMH.  This is 

because, given the design issues we discussed in the last chapter, ANN research with 

market forecasting has yet to present EMH with a frontal test- at least not one of which 

we are aware. 

 

To prove an advantage is reliable, we are required to demonstrate that the advantage can 

be obtained with some consistency, rather than be merely discoverable via trial and error 

or by back-fitting trading rules to a particular predictor’s performance on a test-set.  

Demonstrating this requires that we show more than just our system’s ability to produce 

                                                           
4 Heretofore, EMH should be taken to refer to the weak form exclusively, unless otherwise specified. 
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a profitable prediction sequence over a given time period.  The difference between 

positive and negative returns, or between better-than or worse-than market returns, may 

be largely determined by only a few hit or miss predictions during an out-of-sample 

sequence.  As we demonstrated in chapter 2, we are likely to stumble across a sequence 

of predictions that produce trading profits; we must show that the process by which our 

prediction sequences are generated is one which outperforms our benchmark reliably.  

That process depends not only on our model’s initial structure, but also on the training of 

the model.  The weight parameters determining the out-of-sample prediction sequence 

will vary from one training run to the next and, consequently, so will the quality of our 

predictions.  But if- given the same training data and the same out-of-sample test set- the 

average of prediction sequences for individually trained MLPs can be shown to produce 

above market returns over repeated training and testing runs, then we will have closed off 

the possibility that our success was merely the result of weight parameters having been 

propitiously set over a particular training run.  It follows that we should train multiple 

MLPs and use averaged rather than unique prediction sequences for the production of our 

trading signals.  Brabazon employs this technique successfully [Brabazon06].  

Unfortunately, the results suffer from both an acknowledged failure to demonstrate 

robustness to time and from the apparent introduction of rules bias5. 

 

Even if we can show that the averaged output of our MLPs provides reliably profitable 

prediction sequences for a given out-of-sample period, this profitability may nevertheless 

                                                           
5Brabazon does not make any claims as to EMH, nor does he suggest his results demonstrate a sustainable 

trading edge. He merely demonstrates the how MLPs can be used in a trading system as well as the 

degradation of that system’s performance over time.  He goes on to suggest that a more dynamic approach 

is warranted. 
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depend on features which are unique to this period.  Indeed, as Brabazon demonstrates 

and as we might expect from our discussion on market dynamics [Brabazon06], an MLP 

trained over a fixed interval tends to lose predictive power as its predictions extend 

further into the out-of-sample period.  However, spurious outperformance resulting from 

a lucky or biased fit to the features of a fixed dataset can endure over multiyear out-of-

sample test periods, depending on the frequency of signal generation and the distribution 

of returns over that period.  It follows that, if we are desirous of undermining the claims 

of EMH, we are required to show that our system not only trains reliably well on one 

fixed dataset in order to predict another, but that it can maintain this reliability while 

incorporating new series values over time.  We will want to show that, as time goes on, 

we can retrain our MLPs with newer data vectors and make forward predictions over 

more recent intervals which continue to produce above-market returns.  Fundamentally, 

if we wish to claim our predictor can be systematically exploited for the production of 

above-market returns, as is required to challenge EMH, we need to demonstrate that it is 

robust to time. 

 

Our last high level requirement is that our predictive system be free of any rules bias 

introduced by tailoring our trading signals to our test dataset.  This error is very easy to 

make by, for example, introducing a magnitude threshold which our signal must meet to 

be considered actionable after observing this signal’s behavior on the out-of-sample 

period.  Should we introduce any complexity to the rules by which signals will be 

considered actionable, these results will be thus qualified. 
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4.2 Strategic Goal and Timeframe 

 

Our strategic goal will be to beat the returns of the S&P 500 index over a 15+ year 

period.  A common trading strategy employed in the literature is to maintain or reverse 

one’s market position each day based on the sign of the trading signal for the next day.  

For example, if we are currently hold a long position in the market and our trading signal 

for the next day is negative, we would liquidate our long position and open a new short 

position at market close.  Should our trading signal turn positive just before market close 

of the following day, we would reverse positions again; otherwise we would hold our 

current position.  There are two obvious concerns with this approach. 

 

First, we are asking a lot from our ANN by insisting it provide reliable predictions on a 

daily basis.  While our ANN may do well at approximating short and medium term 

trends, immediate directional moves may have little to do with these.  In fact, training our 

ANN to produce reliable predictions on a daily basis will likely come at the expense of 

its ability to produce reliable short to medium term predictions, as the former likely 

requires different sensitivities than do the latter.   

 

Second, our trading costs are a function of our trading activity, and trading on daily 

signals is a fairly active strategy.  Unless our ANN is exceptionally accurate, we are 

unlikely to beat the market after trading costs are considered.  This will be doubly true 

during times of low volatility where directional moves are small and compensate us even 
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less for the cost of capitalizing on them.  Our system comports with our broader strategic 

goal, and in so doing is be better served by being only moderately active. 

 

We pursue our longer-term trading goal by attempting to profit from significant market 

downturns by shorting the market at opportune times.  We attempt to do so without 

sacrificing the bulk of returns provided by long-term upward trends.  Achieving this goal 

requires not only that we short the market at auspicious times, but that we re-enter long 

positions after market pullbacks in time to catch the largest portion of the next upward 

move.  Simple as this may sound, it is hardly that.  Every investment bank, hedge fund 

and active speculator participating in our market of choice would have attempted to 

accomplish this very thing in real-time during any historical period we might study.  Few 

did, and few do with long-term regularity; there is indeed reason to be skeptical about the 

likelihood of demonstrating such ability.  Nevertheless, profiting from both significant 

downward trends along with upward market trends is the broad strategic goal that guides 

the timeframes for which we make predictions with our ANN.  Consequently, we 

measure our timeframe in weeks rather than days.  
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Chapter 5:  Methodology  and Model 

METHODOLOGY AND MODEL 

 

5.1 Machine Learning Framework 

 

Encog is a machine learning framework which provides a large variety of functionality 

for machine learning projects [Heaton08].  It is free and open-source software, and the 

source-code can be obtained in either C# or Java.  We use the C# source code here. 

 

While Encog provides a great deal of functionality for neural networks, our use of the 

framework is confined to functions for building and training MLPs.  Functionality related 

to normalization, file manipulation and windowing, while provided by Encog, is 

developed from scratch to suit the specific needs of this project. 

 

5.2 Testing Regimes 

 

We implement two testing regimes, Dynamic Training & Testing (DTT) and another, 

similar design which employs what we call Dynamic Validation (DV).  Each 

methodology makes extensive use of windowing techniques common to time series data.   
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Windowing is used for both testing and training fixed architecture MLPs in our models.  

The giving of distinct names to our methods here should not be taken as a claim 

regarding originality. 

 

5.2.1 Dynamic Training & Testing (DTT) 

 

As we’ve specified, DTT rolls the data windows forward for both training sets and test 

sets such that newer predictions are consistently produced by MLPs trained on data 

immediately preceding the test set, thus allowing the model to adapt to changes in 

underlying market dynamics.  While we can roll the training interval forward one data 

point at a time, thus producing prediction test sets of size one, efficiency concerns and 

preliminary work suggest we are better served by allowing each trained ensemble of 

MLPs to make multiple predictions. Figure 3 provides a visualization of how the testing 

and training periods are rolled forward. 
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Figure 3: DTT Training Sets and Test Sets 

 

Figure 3 shows two training sets and two test sets based on weekly data where each test 

set is 25 weeks long.  The training sets shown here are 50 weeks long, though these may 

be either longer or shorter so long as they slide forward a number of periods equal to 

those of the test sets, which themselves may be varied between tests but remain fixed for 

all runs within a test (for our tests, all training sets are 25 weeks, which is also the length 

as the test sets). 

 

To illustrate, the ensemble trained on the data from training window 1 is tested against 

the inputs and forward returns from test window 1.  The training set then rolls forward a 

number of periods equal to the size of each test set, becoming training set 2, and once a 

new MLP ensemble is trained on this new data it makes predictions for 5-week forward 
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returns using the data derived from the period covered by test window 2 as input.  The 

actual returns (outcomes) for the S&P 500 index upon which the MLPs are trained and 

tested against are determined at runtime by jumping five records ahead in the dataset and 

calculating the percentage change since the date of input6. 

 

5.2.2 Dynamic Validation (DV) 

 

Dynamic Validation works similarly to DTT in the way training and test windows roll 

forward, but rather than train one MLP ensemble, we split the training set into fifths and 

train five ensembles.  We then test these against a validation set immediately following 

(plus the number of forward periods predicted) the test set, and we choose the ensemble 

with the best hit record- in terms of predicting market direction on the validation set- as 

the ensemble to make predictions on the test set.  Figure 4 provides a visualization of DV 

for a single test window. 

 

                                                           
6The training and test windows are shown here as being directly adjacent to one another. 

Programmatically, there is, and must be, a gap between these windows equal to the number of weeks 

forward for which returns are predicted in order not to bias the latter part of training with outcomes from 

the first part of the test period.  As these gap weeks are always incorporated into the next training set, we 

elected not to display them to avoid any unnecessary confusion. This is also true for Dynamic Validation. 
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Figure 4: Dynamic Validation Training and Testing Intervals 

 

Figure 4 assumes that the fifth ensemble performed best on the validation set, and the 

arrow labeled “Best Fit” denotes that this ensemble has been selected to make predictions 

over the next test interval.  As with Figure 3, the intervals over which each ensemble is 

trained may contain more or fewer periods than the validation and testing intervals, but 

we always roll forward a number of periods equal to those of both the validation and test 

sets. 

 

Note that our validation method is distinct from standard 5-fold cross-validation in 

several ways.  We do not scramble the order of input vectors as is common with 

validation; nor are we validating single partitions of the validation set on the remainder 

of the validation set.  This is partly because our input vectors contain temporally 

sensitive indicators.  In addition, in order to maintain the flexibility to modify the number 

of periods forward for which we make predictions (during preliminary testing), the actual 
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outcome associated with any input vector during training is determined only when our 

program starts running.  Scrambling the vector ordering would present a significant 

programming hurdle given our program’s design (Encog provides functionality for this, 

but it is incompatible with both our design and our intention).  However, the primary 

reason for using this method is to take advantage of potential serial correlations by 

choosing the MLP ensemble best suited to making predictions for the validation window 

immediately preceding the test window.  Of course, should the return pattern within a 

validation window be distinctly different in character from that of the test window, we 

can expect to get poor results for predictions made over that test window.  Figure 4 is a 

good example of such a case. 

 

A final distinction of this validation process results from the criteria for determining the 

best performing ensemble.  As with DTT, each ensemble is trained to minimize overall 

error.  However, ensembles are validated according to their hit rate performance.  While 

validation based on RMSE would be a reasonable choice, we have made the argument 

previously that maximizing directional accuracy may be preferable to minimizing the 

magnitude of predicted error.  A plausible consequence of this decision is that predicted 

directional accuracy (equivalent to hit rate) may improve, even if correlations between 

predicted and actual magnitude changes decrease. 

 

5.3 Prediction Target 

 

Predictions are made for the 5-week percentage change (5-week delta) of the S&P 500 

index, rather than for actual series values.  Percentage change corresponds to the 
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percentage return obtained from having bought a single share of the index.  For short 

sales, the sign of the return is simply reversed.  As mentioned in chapter 2, predicting 

return percentages provides a simple directional signal based on the sign of MLP output.  

If desired, a magnitude threshold may be applied to MLP signals (outputs).  In this case, 

an MLP ensemble’s (continuous) output is required to reach a pre-specified magnitude 

above or below zero before a change in trading position is triggered.  These features 

make return percentage the preferred prediction target here.  

 

Of course, it is important to guard against rules bias should any complexity be introduced 

to the trading rules.  Using zero as the cutoff for MLP output to determine long and short 

trading decisions eliminates the potential for rules bias, and this is the cutoff used for the 

first round of tests.  Because, over time, upward market moves tend to significantly 

outnumber downward moves, it may be useful to apply a threshold for taking short 

positions.  For one round of tests, a threshold of -1.0% is introduced for taking short 

positions such that in these tests we remain in, or reverse into, a long market position 

(betting the market will go up) when a negative prediction fails to surpass the threshold.  

Setting this threshold in advance provides some cover from biasing results via post-test 

manipulations.  Any positive or negative affect on P&L performance should be taken as 

suggestive rather determinative, however. 
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5.4 Input Parameters 

 

Our model is of the ARX variety (Autoregressive with Exogenous Inputs, discussed in 

Chapter 2), and we include two exogenous variables as well as variables derived from the 

price series itself which implicitly provide information about relative changes.  Each 

input vector thus forms a distinct instance composed of multiple input factors.  Our raw 

(pre-normalization) inputs are listed below: 

1. S&P 500 Raw Index Value 

2. 2-period percent change of S&P 500 Index 

3. 5-period percent change of S&P 500 Index 

4. Ratio of 2-period and 5-period Simple Moving Averages 

5. Ratio of 5-period and 20-period Simple Moving Averages 

6. Ratio of 7-period and 55-period Simple Moving Averages 

7. Bar Summary: (high–low) / (close–open) * (volume / avg. volume) 

8. 5-period percent change of Brent Crude Oil Closing Value  

9. 5-period percent change of Trade Weighted U.S. Dollar Index 

 

A dataset composed of inputs covering the date range from January 1992 through June of 

1997 was used to test the value of various input parameters.  Our starting list of candidate 

model inputs consisted of the fundamental and technical indicators used in [Brabazon06] 

along with several additional technical indicators we wished to investigate.   While more 

sophisticated methods exist for determining the value of various model inputs, our 

methodology consisted of adding candidate inputs one at a time while using the 5-week 
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returns of the S&P 500 and the current index value as our base inputs.  Input candidates 

which did not provide additional predictive value in terms of hit rate and RMSE were 

discarded.  More information about the datasets used for our models is available in the 

appendix. 

 

Several indicators which were expected to provide predictive value were dropped during 

preliminary testing after performing poorly according the above criteria.  These include 

the CBOE Volatility Index (VIX), the Gold Fixing Price of the London Bullion Market 

and various interbank interest rates and bond yield spreads. The Bar Summary indicator 

is a customized indicator based primarily on intuition.  Preliminary tests without it 

performed slightly worse than those where it was included.  It was thus selected as an 

input.  

 

Rather than recap the evidence supporting the influence of specific factors on market 

behavior, we will defer to previous research the justification for our input selection.  See 

Brabazon and Kanas and Yannopoulos for some examples [Brabazon06, Kanas01].  We 

note that any choice of inputs, given the virtually infinite set from which to choose (or 

invent), will necessarily have a large subjective component. 
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5.5 Testing Dataset & Prediction Intervals 

 

The dataset used to test our models covers the period from 1/15/1997 to 1/30/2015.  The 

three primary historical datasets from which all indicators are derived are the S&P 500 

index, Brent Crude Oil Futures, and the Trade Weighted US Dollar index for Major 

Currencies.  The S&P 500 dataset contains attributes for the date, the weekly open, high, 

low and closing prices, and the weekly volume for each data row.  The Brent and US 

Dollar datasets contain attributes for dates and closing prices only.  The Brent and US 

Dollar datasets were obtained from the US Federal Reserve FRED database, while the 

S&P 500 dataset was obtained from Yahoo Finance.  Each dataset is stored separately in 

an XML file and input arrays are built by deriving values from selected attributes at 

runtime.  The correct (actual) values, which MLP outputs attempt to predict, are also 

determined at runtime via configuration parameters. 

 

Lagged indicators of various lengths based on previous index values are used as inputs, 

and thus the date of the first prediction depends on the holdout data required by our 

slowest indicator (here, the longest moving average) and the starting date chosen.  Thus, 

the starting point refers to the first vector stored when we run our program, and vectors 

utilized for training and testing occur later in the series after those required for indicator 

construction.  Data are normalized prior to being input to the models.   

 

Figure 5 provides snapshots of the XML files which are accessed at runtime, and the 

values derived from each are listed alongside the snapshots.  Figure 6 shows the raw and 
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normalized versions of one input vector. Figure 7 provides a visualization of the MLP 

model. 

 

 

Figure 5: XML Files and Description of Values Derived from Each File 

 



 

 

 

52 

 

Figure 6: A) Raw Input Vectors B) Normalized Input Vector 

 

Because we suspected performance is somewhat, perhaps largely, dependent upon our 

entry point (the point where we make our first prediction), we used several distinct 

starting dates. 

 

Because our inter-market input attributes cross exchanges and international borders, 

missing values for some attributes occasionally occur on days for which the S&P Index 

trades due to differing holiday schedules of the various exchanges. We thus filter from 

the above period any instances for which all input attributes were not available, such that 

each input instance represents a trading day where all exchanges recorded values for the 

relevant indices.  However, because we are using weekly data here, this process has 

minimal impact on the dataset. 

 

A) 1275.1 3.981 8.358 1.025 1.09 1.102 1.72 12.323 -2.535 -3.53
price 2-wk chg 5-wk chg ratio 2-5 ratio 5-20 ratio 7-55 bar smry crude dollar frwd return

B) -0.2649 0.3713 0.5743 0.5102 0.886 0.7297 0.3102 0.2711 -0.2649 -0.32
price 2-wk chg 5-wk chg ratio 2-5 ratio 5-20 ratio 7-55 bar smry crude dollar frwd return

Raw Inputs Actual Future Return  

Normalizded Inputs Actual Norm. Return
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Figure 7: MLP Model. Inputs are from Figure 6 

 

Unless otherwise stated, the periodicity of tests is weekly.  Weeks were chosen rather 

than days because, while good results may be obtained over shorter periods with daily 

data, weekly data proved more conducive to accuracy over extended testing.  

Consequently, predictions and trading P&L calculations are made at five week intervals, 

which requires the trading system to stick with each prediction for a 5-week period.   
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5.6 Sliding Training and Testing Windows 

 

In keeping with our strategic goal of long-term market outperformance, our MLP 

generates predictions every five weeks.  Our design is uncommon to most research with 

ANNs related to market forecasting (though hardly unique in general) in that for each 

trained ensemble of MLPs a maximum of five predictions are made (a second round of 

testing makes only one prediction per trained ensemble).  This is because we have chosen 

test windows of 25 calendar weeks, leaving us five 5-week prediction intervals within 

each test window.  Thus, having trained the MLPs over a training window, we average 

the 5-week forward predictions of the MLP ensemble based on the first input vector from 

the test window, and we do this a total of five times (in sequence) within each test 

window, making trading decisions and P&L calculations after each prediction.  We then 

role the training period forward 25-weeks, dropping off the first 25-weeks of data from 

our training window and incorporating the most recent 25 weeks.  The MLP ensemble is 

then trained on this new training period from scratch, and new average predictions are 

provided for the next five 5-week intervals.  And so on it goes for each test window. 

 

No two runs over a complete out-of-sample test set are likely to produce the same 

returns.  This is easy to see when you understand that predictions for every test window 

are the product of a freshly trained MLP ensemble initialized with non-fixed parameters 

(thanks, in part, to the use of RPROP as our training algorithm), and that there are many 

test windows within the entire out-of-sample test set.  For this reason, the entire out-of-

sample test set is traversed a total of thirty times (for our initial tests) in order to produce 
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a single test, with each run producing return, hit rate and other statistics.  Our results for 

these statistics are reported as the averages of these thirty runs.  We also report the best 

and worst run, in terms of returns, for each 30-run test.  The expectation here is that, 

while every run may not produce returns above B&H when using a dynamic system with 

variably initialized parameters, we should expect the average run to outperform this 

benchmark if the selected model inputs maintain their predictive value over the full test 

set. 

 

There are several advantages to the above design.  Averaging MLP predictions has been 

shown to produce significantly better predictive performance than using a single 

predictor [Brabazon02], and using an average makes anomalous results much less likely.  

By always incorporating the most recent data, our MLP remains sensitive to underlying 

changes in market dynamics and should thus be more robust to time.  Additionally, as 

every five predictions are the result of averaging the predictions of a uniquely trained 

ensemble of MLPs, the five predictions within any single test window can be said to be 

the result of a process fully independent from that of other test windows.  The prospect of 

benefiting from an auspicious training run producing weight parameters which happen to 

be randomly well suited to the complete out-of-sample test set is largely foreclosed with 

this design. 
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5.7 Training Set Size 

 

In chapter 2 we provided a metaphor for understanding market dynamics in the context 

of a biological example illustrating principles from Game Theory.  We discussed the 

inability of any phenotype of side-blotched lizard to gain permanent reproductive 

advantage over other phenotypes and how the relative success of one phenotypic strategy 

portends its decline- and how the relative failure of another phenotypic strategy portends 

its success. Understanding that the metaphor is but a loose one, it is nevertheless useful 

when considering the length of our training period.  As the underlying processes 

generating a price sequence become better understood by market participants and are 

subsequently altered as attempts to exploit this understanding increase, the understanding 

upon which these attempts at exploitation are based may cease, at least temporarily, to be 

valid.  The resulting new situation is not likely to be novel, however, and we may expect 

at least its partial likeness to be revealed by the intermediate past. 

 

If we accept this way of thinking about market dynamics, then there may be a danger in 

incorporating only a short history of examples in our training windows.  This is because 

a short history will likely lead to an overweighting of recent relationships which may 

soon breakdown, and no information about relevant dynamics further historically 

removed will have been supplied to mitigate predictions predicated on these recent, but 

increasingly less valid, relationships.  Of course, the more history we include, the further 

diluted currently valid short term relationships will become by more removed, perhaps 

less currently relevant examples.  We may thus sacrifice short term precision by 
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attempting to sensitize our predictor to longer term dynamics.  But as our strategic goal is 

to profit from major rather than minor trends, incorporating a longer history of training 

examples would seem to be a logical choice. 

 

Preliminary testing with weekly data, however, does not support using a longer-term 

training history with DTT.  Rather, this testing appears to support the idea that the 

dilution which occurs with extended training sets is more detrimental to accuracy/hit rate 

than are the informational limitations of shorter, more current training sets.  While we 

can produce some runs which perform well using a longer training period, such results 

are few and far between.  We get more consistent results, and thus presumably a more 

reliable predictor, by using a 25-week training period.   The average run also appears to 

produce a higher final account balance, which is our ultimate measurement when 

attempting to challenge EMH. 

 

Dynamic Validation somewhat mitigates the issue of historical information loss caused 

by shorter training sets.  This is because the predictor (ensemble) is selected from 

amongst 5 MLP ensembles which, while each is of a length of only 25 weeks, are taken 

from a set of 125 weeks.  In essence, Dynamic validation allows us to cherry-pick the 

more relevant short-term history from amongst a larger history based on its performance 

on the validation set.  Of course, should the validation set be distinctly different in 

character from the test set, then we would expect our selected ensemble to perform 

poorly on that test. 
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5.8 Training Algorithm 

 

Because we are training an ensemble of MLPs on many overlapping datasets, our 

methodology benefits from a training algorithm untethered to a single set of training 

parameters.  If we were to use a standard backpropagation algorithm, any particular 

settings for learning rate and momentum may, or may not, train any one MLP to perform 

on the training set with sufficiently minimal error to generalize to a test set.  While we 

introduce early stop strategies for MLPs failing to train to our predetermined error rate, 

putting such insufficiently trained MLPs into service is a means of last resort.  As 

discussed in chapter 2, resilient backpropagation, which does not require us to specify 

rates for learning rate or momentum, provides us with the best option for training a large 

number of MLPs for each of many training windows without predetermining appropriate 

parameter values for learning rate and momentum in advance. 

 

As mentioned above, a consequence of using RPROP as our training algorithm is that no 

two MLPs, let alone MLP ensembles, will necessarily be weighted identically on 

successive runs over a test set.  If our MLP ensembles were constructed with fixed 

initialization parameters for each structure within the ensemble, then we could expect 

repeated runs over identical datasets to produce identical results.  This, indeed, is how 

most MLP models are built.  This is logical, particularly where the properties of the 

dataset are expected to be relatively stable.  Market returns do not likely result from a 

stable data generation process, however, and we have little confidence that parameters 

optimized for our test dataset would be optimal in the future.  There may thus be merit in 
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repeating performance over the same dataset with MLPs whose initialization parameters 

are varied with each test window and with each test run.  This requires each test be 

composed of multiple runs over the test dataset, however, and leaves us with a range of 

results rather than a single result for each test.  Performance measures are thus averaged 

over all runs for a given test over a given test period, and highs and lows are reported for 

return results. 

 

5.9 Hidden Layers & Hidden Nodes 

 

Previous research and preliminary testing suggest we use no more than one hidden layer 

(HL) in our MLP structures.  While, in some cases, we found a second hidden layer with 

a large number of nodes benefited DTT during preliminary testing, these results were not 

consistent enough to warrant inclusion in our study.  Our model contains a single hidden 

layer of six hidden nodes. 

 

The model was arrived at by starting with the heuristic of taking the mean of the input 

and output layers suggested in [Heaton08] and through preliminary testing over the 

dataset used during input selection.  The six hidden nodes also comport with 

[Brabazon06] where the structure used consists of 10 inputs and the output, as with our 

MLPs, is continuous.  We have therefore borrowed, albeit after much preliminary testing, 

our structure from [Brabazon06], minus one input node.  Our input factors, however, are 

distinct. 
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While it can often make sense to prune noncontributing connections from an MLP 

structure, that is not the case here.  The number of MLPs required by our design, the 

potentially changing dynamics underlying market price discovery combined with the use 

of a fixed MLP structure, and the specification dictating that only a few predictions are 

made per uniquely trained MLP ensemble makes pruning both impractical and 

undesirable.  Thus, all of our MLPs are fully connected. 

 

5.10 Output Layer 

 

MLPs produce continuous output for this model, and each singular output from each 

MLP is taken as a prediction of the index’s 5-week forward return.  The outputs from all 

MLPs in an ensemble (one ensemble for every training window) are then averaged to 

produce the final prediction used to make long or short trading decisions.  By providing a 

measure of magnitude to return predictions, rather than merely a binary choice between 

positive or negative outcomes, continuous output allows us to apply thresholding to our 

trading decisions.  Additionally, customized features of our methodology pertaining to 

data normalization and dynamically constructed datasets integrate poorly with Encog’s 

classification features. 
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5.11 Data Normalization and Activation Function 

 

Data normalization most often squeezes input values into a range of [0, 1] or [-1, 1], and 

it is common to use a sigmoidal function for the former range and the hyperbolic tangent 

(TANH) function for the latter.  Because we are predicting both positive and negative 

returns, TANH is a natural choice.  However, as normalized values are de-normalized 

prior to signal processing, there is no mathematical reason to insist on the wider range.   

 

A fact about data normalization of which we were unaware, but that became clear during 

preliminary testing, is that normalization is best done in segments when the dataset 

extends over many years and the range of values expands over time- rather than 

normalizing all input vectors over the entire dataset.  It should be obvious that it makes 

little sense to train an MLP that will make predictions on S&P 500 index values from, 

say, 1999 with data vectors normalized using high values which include data from the 

year 2016, or with low values that include the year 1950.  Such values are simply not 

within the range of possible outcomes we might reasonably expect the market to produce 

in the year 1999.  The issue is particularly pronounced where we use raw rather than 

percentage change values as inputs, but it is also possible that percentage change 

fluctuations behave differently as the range of raw historical values increases over time.  

For this reason, we normalize vector inputs prior to training each MLP ensemble based 

on the data values from the period upon which each ensemble will be trained. 
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5.12 Trading System and P&L Calculations 

 

The S&P 500 tracking security we trade in order to calculate returns is an Exchange 

Traded Fund that goes by the symbol SPY.  This ETF trades at one tenth the value of the 

S&P 500 futures contract and thus allows us to begin trading with a modest trading 

account balance of $10,000.  We do not take any direct account of dividend distributions 

or costs related to short selling in our calculations.  Trading costs are computed to be 

$10.00 per trade such that a completed trade, entry and exit, amounts to a $20.00 

reduction of our trading account balance from which we purchase shares or sell them 

short.  Unlike a buy & hold market strategy where the number of shares would remain 

constant regardless of their price (assuming no dividend reinvestment), a long-short 

strategy creates fluctuations in the number of shares traded over time.  A successful short 

trade increases our account balance at the same time the share price is falling, allowing 

us to buy more shares once we reverse our position.  A failed short trade, where the price 

continues to rise against our short position, reduces our purchasing power when we 

reverse our market position.  We thus must determine the number of shares we can buy 

or sell short, given our current account balance, after exiting each trade and prior to 

entering a new one. 

 

Our strategy is always ‘in-the-market’, meaning that at no time will we be sitting in cash.  

Rather, MLP ensemble signals above zero cause us to either continue or reverse into a 

long market position, and signals below zero cause us to either continue or reverse into a 

short position.  These signals, however, are only provided at the end of each prediction 
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period.  Thus, when we get a buy signal (MLP output > 0), we maintain a long position 

for a minimum of 5 weeks (as we are predicting returns 5 weeks forward), and a new 

signal is not generated until the end of these 5 weeks.  At that time, we decide to either 

stay in our current position or reverse to the opposite position depending on the sign of 

the new signal. 
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Chapter 6:  Results and Analysis 

 RESULTS AND ANALYSIS 

 

Before discussing our results, it may be helpful to visualize the composition of an 

averaged equity curve in order to make clear what each ending equity balance represents.  

Figure 8 displays thirty equity curves composing the average curve of a single test for 

which the average ending equity balance (represented by the thick blue line) is reported. 

 

 

Figure 8: Average Equity Curve Composition: Thirty Runs Compose a Single Test 

 

Figure 8 demonstrates one way in which our results must be distinguished from other 

studies.  Because training is dynamic and RPROP does not fix parameters for learning 
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rate and momentum, no two runs are likely produce the same sequence of predictions.  

We must, therefore, look at the equity curves from multiple runs to see how our predictor 

would have likely performed over a given period.  While a range of equity curves (or 

their average) is perhaps less satisfying than a single result, we believe these provide a 

more realistic expectation for how a real-time system might perform. 

 

6.1 Dynamic Training & Testing 

 

Our tests for DTT cover several date ranges in order to assess the robustness of our 

results to the varied features of different test sets.  The importance of this approach can 

be seen by looking at the DTT and B&H equity curves produced by a preliminary test 

which covers January 1999 through February 2009, and comparing this with other results 

achieved using DTT. 

 



 

 

 

66 

 

Figure 9: DTT Avg. Equity Curve vs. B&H, Jan-99 to Feb-09 

 

In figure 9 we see DTT produces, on average, returns well above those produced by a 

B&H strategy for the period.  Our chart stops right near the bottom of the 2007 – 2009 

market downturn (and crash), where B&H returns from January 1999 were 

approximately -37%.  In contrast, our long-short strategy produces returns of just over 

59%, and these appear to be on the rise as this chart ends. 

 

This would be a good place to declare victory and go to press.  But if we extend our test 

out through December of 2015 we see that our superior performance, while extending 

over multiple years, is nonetheless transitory. 
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Figure 10: Averaged Equity Curve, 30 runs 

 

We see in Figure 10 that while DTT maintains above market returns over most of this 

16-year period, these returns level off in late 2004 and fall below those of a booming 

market in early 2012.  As importantly, returns for the long-short strategy from 2004 

forward are net negative.  Thus, we turn from good performance to breakeven 

performance after 2005, and then to outright poor performance after early 2009.  Put 

another way, the same structure with the same inputs, while being repeatedly retrained 

over the period, ceases to produce reliable predictions seven years into the 17-year test 

period.   

 

It is important to remember that each of the above figures shows the average of thirty 

equity curves, and are thus unlikely to be anomalous.  Indeed, the shift in fortunes of 
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DTT around the mid-2000s may suggest a change in the underlying data generation 

processes by which index prices occur. 

 

As we vary the start dates of our test runs the limitations of this predictive system 

become clear.  Table 2 summarizes the full list of tests performed with DTT.  Despite 

extraordinary returns for a run starting in 1997 with the single layer structure, the 

remainder of the table demonstrates that such returns could not have been achieved 

reliably with this system.  Seeing that such returns are nonetheless achievable and 

repeatable for select start dates, despite being produced by an otherwise unreliable 

system, we might reasonably question the practice of reporting a system’s returns for a 

single test over a fixed testing period. 

 

 

Table 2: Dynamic Training & Testing 

 

6.2 Dynamic Validation 

 

For our tests employing Dynamic Validation, S&P 500 closing values are removed as 

inputs, because the complete training set takes place over a two-and-a-half-year period.  

Start 

Date

End 

Date

Avg. 

Hit 

Rate

Avg. 

Hit 

Pct

Max 

ending 

Equity

Min 

Ending 

Equity

Avg. DTT 

Ending 

Equity

end_B&H 

equity

Total 

Rolling 

Return

Total 

B&H 

Return

# Runs 

Beat 

B&H

DTT vs 

B&H

Jan-97 Mar-15 1.39 0.58 $61,151 $47,288 $47,224 $27,617 372.2% 176.2% 29/30 $19,607

Jan-98 Apr-15 1.07 0.52 $12,611 $3,896 $8,331 $21,652 -16.7% 116.5% 0/30 ($13,321)

Sep-98 Dec-15 1.18 0.54 $16,872 $10,457 $12,544 $20,728 25.4% 107.3% 0/30 ($8,184)

Jan-99 May-15 1.34 0.57 $28,614 $11,436 $19,990 $17,406 99.9% 74.1% 24/30 $2,584

Jun-04 Jun-15 1.03 0.51 $5,734 $2,641 $3,867 $18,847 -61.3% 88.5% 0/30 ($14,980)

Dynamic Training & Testing
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Price values earlier in the training sets thus tend to be far removed from those of the test 

sets and will not reflect realistic prices for a test set that occurs significantly later in the 

date range.  As with DTT, Dynamic Validation testing was done using multiple start 

dates. 

 

6.2.1 Results with Dynamic Validation 

 

Dynamic Validation appears to do a much better job of beating B&H, excluding costs 

from holding short positions on ex-dividend dates, for starting dates between 1997 and 

2001.  This performance breaks down, however, where our tests begin after 2001.  Table 

3 provides detailed averages for the thirty runs performed for each test interval.  

  

 

Table 3: Dynamic Validation Test Results. The neural model for DV Tests is 9-6-1 

 

While model output is continuous, hit rate essentially evaluates the model’s success as a 

binary classifier and is equivalent to accuracy. Looking at the above table, we see that hit 

Test #
Start 

Date

End    

Date

Avg. 

Hit 

Rate

Avg. 

Hit 

Pct

Max DV 

End 

Equity

Min DV 

End 

Equity

DV Avg. 

Ending 

Equity

End B&H 

Equity

Total DV 

Return

Total 

B&H 

Return

# Runs 

Beat 

B&H

DV vs 

B&H

1 Jan-97 Mar-15 1.25 0.55 $69,557 $11,096 $36,559 $27,617 265.6% 176.2% 21/30 $8,941

2 Jan-98 Apr-15 1.21 0.55 $44,608 $9,793 $21,805 $21,652 118.1% 116.5% 13/30 $154

3 Jan-99 May-15 1.41 0.58 $53,979 $15,240 $26,928 $16,656 169.3% 66.6% 27/30 $10,273

4 Jan-00 May-15 1.2 0.54 $30,919 $4,970 $17,937 $14,859 79.4% 48.6% 22/30 $3,078

5 Jan-01 May-15 1.46 0.59 $44,050 $16,494 $27,520 $16,438 175.2% 64.4% 30/30 $11,082

6 Jan-02 Jun-15 1.24 0.55 $25,393 $7,047 $13,636 $18,779 36.4% 87.8% 4/30 ($5,143)

7 Dec-03 Dec-15 1.35 0.57 $32,256 $4,293 $15,041 $18,514 50.4% 85.1% 5/30 ($3,473)

8 Mar-04 Apr-15 1.23 0.55 $19,139 $3,968 $10,949 $18,809 9.5% 88.1% 1/30 ($7,860)

9 Sep-04 Apr-15 1.34 0.57 $31,712 $6,569 $16,212 $19,129 62.1% 91.3% 6/30 ($2,917)

10 Jun-05 Jan-16 1.12 0.53 $14,771 $4,757 $10,104 $16,964 1.0% 69.6% 0/30 ($6,860)
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rates remain well above 1.0 for all tests, and that hit percentages (percentage of 

directional moves predicted correctly) are between 54% and 59% irrespective of our 

average ending equity being above or below that of B&H.  The differences in average 

ending equity balances, and thus performance- while being correlated with hit rates at a 

0.596 PPMCC- are best predicted by the ratios of outperforming tests to total tests.  As is 

to be expected, these are greater where our average ending equity is higher, and they 

suggest our model, despite its lack of fixed initialization parameters, has some measure 

of reliability over these intervals.  Clearly, if we wish to employ a similar model in live 

trading, or should we wish to challenge the notion of an efficient market, we must 

understand what distinguishes these intervals from those where our model performs 

poorly.    

 

6.3 Analysis of Dynamic Validation 

 

What is most striking about the results from Dynamic Validation shown in Table 3 is not 

the difference in outcomes between runs starting earlier from those begun later, but rather 

that the latter intervals, despite apparently being mere subsets of the former, should be 

those for which the model performs poorly.  After all, Dynamic Validation seems to have 

performed quite well over these very same timeframes where testing started prior to 

2002, so why should it perform so poorly when tests are begun in 2003 and beyond? 

 

To see just how dramatic this difference in performance is over the post-2001 period 

relative to tests begun earlier, we can transpose the averaged equity curves for tests 5 and 
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6 from table 3, as shown in Figure 11.  What this shows is that, despite maintaining 

comparable performance through 2006, the equity curve from test 6 begins 

underperforming around this time.  The reason for this difference points to a unique 

challenge with testing predictive systems’ ability to produce excess returns. 

 

 

Figure 11: Comparison of Two runs of DV Offset by One Year 

 

Remember that each MLP ensemble makes, in our tests here, a total of five predictions 

over a 25-week period prior to being retrained for further predictions.  While it is true 

that, from January 2002 forward, the MLP ensemble producing the equity curve which 

begins in 2002 spans the same time interval as the curve which began in 2001, the inputs 

and outputs, as well as the training and validation datasets, are not identical because the 

dates from which the inputs are taken are offset from between one to four weeks.  Thus, 

the holdout, training and validation periods encompass slightly different dates for the 
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MLP ensembles producing the two curves, and the input/output pairs of the test datasets 

do not correspond.  For example, whereas 2/08/2002 is the first output date in the series 

of five predictions for curve 5, it is the third in the series for curve 6.  This means the 

MLP ensemble for curve 5 is validated against the period from 7/6/2001 through 

1/4/2004 for the 25-week test set encompassing 2/8/2002, whereas the ensemble for 

curve 6 is validated against 4/27/2001 through 10/26/2001 for the test set encompassing 

that date.  This makes for a 10-week difference, not only between validation sets, but for 

the training sets and the hold-out data used to produce the indicator inputs to our MLP 

ensembles.  This difference in data history persists over the entire test period through 

2015. 

 

We can demonstrate that it is indeed this 10-week difference that produces the disparity 

in our average returns by running a fresh set of 30 runs after aligning the historical data 

of curve 6 with that of curve 5.  We can see in Figure 12 that this alignment indeed 

produces forward returns similar to curve 5. 

 

One rationale for testing multiple start dates was the concern that return results may 

suffer if a system is initially deployed during a market period for which it is poorly 

suited.  We can say, here, that our variability in performance is related to slight 

variability in the datasets of each overlapping date range, rather than to any particular 

date of deployment. 
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The reader may be tempted to conclude that the dependency of our results on the 

historical date ranges used by our system is merely a flaw in methodology.  After all, 

there is no requirement that five predictions be made for each validated MLP ensemble.  

Couldn’t the problem be solved by simply by making one prediction for each ensemble, 

thus eliminating the vicissitudes of returns occasioned by variability in our data 

histories?  Partly, yes. 

 

 

Figure 12: Re-aligned Input Dates

 

Modifying DV such that only one prediction is made per trained MLP ensemble, we get 

results comparable to those of Figure 12.  Yet, the 5-week forward prediction still creates 

five sets of mutually exclusive input/output pairs, and a test can only cover one set of 

pairings over a single run.  For example, if the first input date in 2002 is 2/8, both the 
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output and next input date will be 3/22, and the output for 3/22 will occur on 4/26.  The 

input/output pairings occurring in-between these dates (2/22 and 3/29, for example) will 

not have been part of the test.  This issue of distinct pairings exists only for testing 

datasets, where MLP output result in trading decisions and where P&L calculations must 

be made.  For training and validation purposes, all pairings are used. 

 

Despite this issue, the differences in datasets are significantly less when we make only 

one prediction per trained ensemble.  Moreover, as there are only five possible datasets 

for a given date range for 5-week forward predictions, we can test each of these. We do 

so with our third set of tests.  However, with an eye toward improving return 

performance, we make a slight modification to our trading methodology. 

 

6.4 Single Prediction Dynamic Validation with Thresholding 

 

As we noted in chapter 2, previous research indicates that ANN forecasts may perform 

relatively poorly in markets trending strongly upward.  When we consider returns, rather 

than just error rates, this problem may be exasperated.  In particular, if our market 

strategy involves shorting or exiting the market based on the predictive signals produced 

by our ANN model, then signals incorrectly predicting negative returns are costly in 

upward trending markets, where they are less likely to be correct.  We see in Figure 12 

that the returns with DV, despite being above buy-and-hold, are mostly flat from 2003 

through 2007 when the market was in a boom period.  Thus, despite having moved ahead 

of buy-and-hold during the previous downturn, DV fails to benefit from the upward 
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trend.  We find this repeatedly when we breakdown individual tests.  It is clear that the 

model produces signals which, while often correct, too often predict negative returns 

during upward trending markets. 

 

One method of mitigating the impact of negative predictions in upward markets is to 

insist such predictions cross a certain magnitude threshold before they are considered 

actionable.  A threshold merely changes the rules governing how signals are acted upon 

(in terms of trading), rather than the production of the signals themselves. It has no 

bearing, as used here, on the neural model.  As part of a system, ANN based or 

otherwise, attempting to overcome the constraints of EMH, however, it is an acceptable 

tool. 

 

If you remember, our strategic goal is to obtain at or near market returns in upward 

markets while also profiting from downward moves.  Large downward moves- while 

often dramatic in magnitude- tend to be more short-lived than upward trends.  By 

thresholding negative MLP signals such that they are not considered actionable short of a 

specified magnitude, we may be able to minimize the impact of incorrect negative signals 

during upward trends.  The obvious cost of this technique is that the system is slower to 

act upon accurate negative signals, and thus may be slower to respond to downturns, or 

perhaps even miss them entirely. 

 

We have also discussed a concept we coined “Rules Bias” in previous chapters.  A 

problem here, if we wish to add a threshold to the system, is that we have already gotten 
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a partial view of the system’s performance over the complete test set.  How can we now 

implement a threshold without committing the error of back-fitting our rules to suit our 

predictor’s behavior? 

 

Remember in Chapter 5 we set our threshold in advance of running our tests.  This 

eliminates any potential bias produced by observing our predictor’s behavior on the test 

set, so long as we do not then vary our threshold to improve returns. Here, we do not. 

 

As discussed in the last chapter, for Single Prediction DV we chose a -1.0% threshold for 

acting upon negative signals.  Consequently, should our MLP ensemble predict a -0.8% 

return for any 5-week forward period, for example, this signal would not be strong 

enough to induce our trading system to exit a long market position and go short.  If we 

were already in a short position, then this -0.8% signal would cause us to reverse into a 

long position.  We should note that, while our trading behavior is in this way different, 

our MLP measurements are unchanged.  A -0.8% MLP signal, while not inducing a short 

position, is still considered a hit if the 5-week forward returns are at all negative, and it is 

a miss if they are positive.  Hence, our hit rates and hit percentage calculations still 

reflect the accuracy of the MLP ensemble’s sign predictions.  Only the P&L calculations 

are different. 

 

Single Prediction DV takes considerably more time and resources per run.  For this 

reason, we limit our ensemble size to twelve and perform only 10 runs per test, rather 

than 30.  We perform tests for four different years (1999, 2001, 2003, and 2005).  
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Anticipating that our MLPs may be sensitive to each of the five datasets available within 

a given date range, we perform five tests over five consecutive weeks for each of these 

years in order that every test dataset (or set of input/output pairings) is tested for each 

starting year.  Table 4 shows the results of these tests. 

 

 

Table 4: Single Prediction DV with Thresholding 

 

Single Prediction DV with Thresholding appears to produce better results than the DTT 

method, but it underperforms B&H for four of the five subsets in 2003.  For each year 

except 1999, at least one test performs worse or only marginally better than B&H.  For 

every year, the results vary substantially depending on the start week chosen. 

Start Date End Date

Avg. Hit 

Rate

Avg. Hit 

Pct

Max DV 

End 

Equity

Min DV 

End 

Equity

DV Avg. 

Ending 

Equity

End B&H 

Equity

Total Avg 

DV 

Return

Total B&H 

Return

# Runs 

Beat B&H

DV vs 

B&H

2/26/99 12/11/15 1.3 0.56 $41,106 $15,008 $25,626 $16,300 156.3% 63.0% 7/10 $9,326

3/5/99 11/13/15 1.18 0.54 $27,031 $9,884 $18,593 $15,982 85.9% 59.8% 7/10 $2,611

3/12/99 10/16/15 1.15 0.53 $31,886 $9,128 $21,885 $15,858 118.9% 58.6% 9/10 $6,027

3/19/99 9/18/15 1.46 0.59 $31,670 $84,058 $53,747 $15,077 437.5% 50.8% 10/10 $38,670

3/26/99 8/21/15 1.45 0.59 $47,831 $20,315 $27,630 $15,373 176.3% 53.7% 10/10 $12,257

2/23/01 1/8/16 1.54 0.61 $45,759 $11,357 $28,827 $15,568 188.3% 55.7% 9/10 $13,259

3/2/01 12/11/15 1.31 0.57 $28,809 $12,891 $19,523 $16,502 95.2% 65.0% 9/10 $3,021

3/9/01 11/13/15 1.22 0.55 $25,539 $7,985 $17,708 $16,589 77.1% 65.9% 5/10 $1,119

3/16/01 10/16/15 1.18 0.54 $37,684 $11,373 $18,580 $17,688 85.8% 76.9% 4/10 $892

3/24/01 9/18/15 1.41 0.58 $46,776 $17,833 $33,310 $17,230 233.1% 72.3% 10/10 $16,080

2/21/03 1/29/16 1.24 0.55 $36,398 $10,187 $21,805 $22,894 118.1% 128.9% 3/10 ($1,089)

2/28/03 1/1/16 1.42 0.59 $39,297 $18,869 $26,316 $24,322 163.2% 143.2% 5/10 $1,994

3/7/03 12/4/15 1.29 0.56 $26,450 $10,077 $16,721 $25,310 67.2% 153.1% 1/10 ($8,589)

3/14/03 11/6/15 1.21 0.55 $23,794 $11,217 $18,265 $25,400 82.7% 154.0% 0/10 ($7,135)

3/21/03 10/9/15 1.24 0.55 $23,173 $8,971 $15,224 $22,567 52.2% 125.7% 2/10 ($7,343)

2/18/05 2/26/16 1.34 0.57 $9,963 $23,190 $15,730 $16,363 57.3% 63.6% 5/5 ($633)

2/25/05 1/29/16 1.26 0.56 $26,602 $12,693 $18,655 $16,104 86.6% 61.0% 8/10 $2,551

3/4/05 1/1/16 1.57 0.61 $33,603 $20,335 $26,306 $16,760 163.1% 67.6% 10/10 $9,546

3/11/05 1/8/16 1.38 0.58 $28,139 $9,222 $18,527 $16,145 85.3% 61.5% 7/10 $2,382

3/1/8/05 1/15/16 1.27 0.56 $26,595 $14,688 $19,054 $15,983 90.5% 59.8% 8/10 $3,071

1999

2001

2003

2005
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6.4.1 Analysis of Single Prediction Dynamic Validation with Threshold 

 

Single Prediction DV minimizes the differences in training sets, validation sets and 

indicator inputs such that they only differ by a single 5-week period from one input date 

to the next.  This being the case, it would be surprising to get such divergent prediction 

results between input weeks simply as a result of such minor differences in historical 

datasets.  The alternative explanation is that the differences in test datasets (the five 

input/output pair sequences resulting from 5-week forward predictions) are the source of 

the high variability in performance.  Figure 13 provides a visualization of how the 

datasets for the 2003 tests differ for the first three predictions of each sequence. 

 

 

Figure 13: Five Distinct Test Sets Resulting from 5-week Forward Predictions 

 

Looking at average equity curves for 2003 in table 4, we see a large difference between 

the average equity curves starting on February 28 and on March 7.  If we take the best 

run (of the ten runs composing the average) from the February 28th curve and the worst 
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run from the March 7th curve, we can compare how they differ.  For example, if the 

divergence in return performance between prediction sequences, offset by a mere week, 

is the result of variability in the historical dataset, then we would expect to see a large 

number of differences between the sign predictions made by our MLP ensembles for 

each sequence.  On the other hand, if the divergence is related more to the variability of 

input/output pairings between the two test datasets, then we would expect there would be 

poor correspondence between the outcomes of those sign predictions, as measured by the 

number of hits and misses that correspond to one another between sequences. 

 

For the 132 predictions made for each of these datasets, the predicted market directions 

from a given week of the first dataset (starting 2/28/03) are equal to the predictions made 

the very next week (starting 3/7/03) a total of 107 times.  However, the outcomes of these 

predictions (i.e. whether they are hits or misses) are equivalent between these datasets 

only 83 times out of the 134 predictions.  Thus, the more impactful factor accounting for 

the divergence in return performance between these two prediction sequences is the 

difference between input/output pairs (the subsets of the complete test set), despite these 

being offset by a mere week. 

 

 
Table 5: Best Run 2/28/03 vs Worst Run 3/7/03 

 

2/28/2003 76 56

3/7/2003 75 57

Start Date

107

Hits Misses

# equal 

predictions

#  equal 

outcomes

83
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It appears, then, that our MLP structure is only effective at making predictions which 

produce above market returns for a subset (or several subsets) of the weekly market data 

covering the date ranges for which we have conducted tests, and success is dependent on 

when during the date range the system is deployed.  In conducting our preliminary tests 

to find a suitable structure, date ranges were typically incremented by multiples of 5 (25, 

50, 100), and this practice created many test sets composed of the same input/output 

pairs where the date ranges overlapped between tests.  And while our structure seems to 

work effectively in many cases, it is ineffective for others. 

 

6.5 Revisiting DTT (Analysis) 

 

Results which indicate a high variability in return performance for Dynamic Validation 

(and for Single Prediction Dynamic Validation with Thresholding) raise a question: Does 

this performance variability hold with other ANN testing methodologies?  Does it hold 

for DTT?  Recall that, despite one outstanding average equity return curve from 1997 

through 2015, most tests starting later in the testing date range underperformed B&H for 

DTT tests.  Is the over performing test using a different set of input/output pairs than the 

others, and would our performance change if we were to align these pairings for the later 

tests? 

 

Rerunning each of the DTT tests after aligning both the input/output dates and the 

historical datasets (because we are back to using MLP ensembles which make five 

predictions each before retraining) with those of the 1997 test provides an answer (here, 
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we use tests of 10 runs each).  As can be seen in Table 6, DTT performs quite well for all 

date ranges when the test and historical datasets are aligned with those of the 1997 test.  

 

 

Table 6: Re-tests with DTT 

 

What appeared to be an extremely poor predictive ANN model appears on second look to 

have similar predictive ability to that of Dynamic Validation for certain input/output 

sequences, and we are able to obtain good results without the use of thresholding.  

However, the limitation inherent in both our models; namely, that their performance is 

highly dependent on which of the five possible test sets is chosen within a given date 

range as well as on when the tests are begun, most certainly dooms any hopes of either 

model generalizing reliably to live markets in their current form.  Yet it is this very 

limitation that may provide us with our most valuable insight into market forecasting 

with ANN models. 

 

 

 

 

Start 

Date

End 

Date

Avg. 

Hit 

Rate

Avg. 

Hit Pct

Max. 

Ending 

Equity

Min 

Ending 

Equity

Avg. 

Ending 

Equity

End B&H 

Equity

Total 

Rolling 

Return

Total 

B&H 

Return

# Runs 

Beat 

B&H 

Rolling 

vs B&H

Jan-98 May-14 1.33 0.57 $36,212 $11,720 $22,109 $19,718 121.1% 97.2% 5/10 $2,391

Sep-98 Dec-14 1.09 0.52 $32,084 $12,581 $21,718 $19,386 117.2% 93.9% 6/10 $2,332

Jan-99 May-15 1.33 0.57 $37,078 $13,441 $26,007 $16,656 160.1% 66.6% 9/10 $9,351

Mar-04 Sep-15 1.27 0.56 $39,600 $15,999 $23,925 $17,818 139.3% 78.2% 8/10 $6,107

DTT Results (Dates Aligned with 1997 Test)
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6.6 Discussion 

 

It is important to understand that the results produced here do not account for the costs of 

being short the SPY (the S&P 500 tracking ETF used as the trading vehicle) on ex-

dividend dates.  Not only does being short a security on ex-dividend dates cause the short 

seller to lose the dividend (along with compounding benefits from reinvesting it), being 

short on ex-dividend dates also requires that the holder of the short position pay the 

dividend.  Obviously, this complicates hypothetical return calculations over a long 

period.  The important thing to take away, however, is that simply beating B&H by some 

marginal dollar amount may not, in fact, beat B&H after these costs are considered. Any 

trading performance successful enough to challenge EMH would be required to account 

for these costs.  As the results produced here do not warrant such a claim, we ignore 

these costs for the remainder of the discussion. 

  

The problem of having more than one test set within a date range is purely a function of 

making predictions more than one period forward.  Predictions with weekly data made on 

a weekly basis with accompanying trading decisions and return calculations can ever 

only be made using a single test set for a specified date range.  For shorter timeframes of 

one to two years, finding a structure which produces reliably good 1-week forward 

predictions proved achievable in preliminary testing.  However, we chose 5-week 

forward predictions because we were unable to obtain reliable returns over the extended 

date range from which our test sets are drawn using single week predictions.  By 

coincidentally dividing this dataset into fifths, we also made the task of finding a reliable 
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structure easier.  In so doing, we have added another dimension to the discussion around 

finding portable, or generalizable, results with ANNs relative to their ability to produce 

above market returns. 

 

Our initial concerns with the portability of a model’s returns were related to 1) the noted 

tendency of ANN predictors to weaken over time when applied to markets 2) the 

differences in returns produced by the B&H strategy over different date ranges that 

create more or less favorable return comparisons, and 3) demonstrating robustness to 

account drawdown periods (periods of poor return performance) should these be 

encountered early in a system’s deployment.  Here, we uncover a fourth consideration for 

models which make predictions more than a single period (day, week, month, year) 

forward.  Such systems prove more reliable to the extent they generalize across each 

division of input/output pairings relative to the possible test sets within a given date 

range. 

 

What if we had used monthly data?  This would allow 4-week forward projections 

without having to skip periods and input/output pairings before making P&L calculations 

(and new trading decisions), say, on the first Friday of every month.  It seems unlikely 

this would create a more reliable MLP based system. This is because we would likely be 

tailoring our predictive system to the return profile of input/output pairings that occur on 

the first Friday of every month, and we might get different returns if we tested it against 

start and end dates that occurred the second Wednesday of every month, for example.  

We would need to show such a system was profitable, on average, regardless of which 
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day of the month our period starts and ends.  This is because, by training and testing 

using only subsets of all possible datasets while making returns the measure of 

performance, we are likely to end up with an ANN structure that is biased toward the 

return profile of that data subset, and this can happen even where the predictions 

themselves differ only slightly between subsets, because the outcomes of those 

predictions may differ significantly.  This can be true even when the model is developed, 

as here, on a date range predating the range where tests were conducted.  Model tweaks 

and input factor adjustments after poor performing tests can produce this bias where the 

dynamics producing the test datasets are not relatively stable.  While the predictor may 

perform, according to traditional error measures, just as well over other subsets of 

input/output pairings, the return profile for these is very likely to be different than the one 

tested against.  The construction of a model that performs well across all possible data 

subsets within a date range, and which does so without respect to where in the date range 

the tests begin, may indeed be an achievable task.  It is, however, a higher bar than is 

typically set for this type of research. 
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Chapter 7:  Conclus ion and Future Work 

CONCLUSION AND FUTURE WORK 

 

7.1 Methodological Limitations and Future Work 

 

Our emphasis on hit rate as a key performance measure and on the sign of MLP outputs 

for determining our trading decisions would seem to call for a model using binary 

classification rather than continuous output.  While this approach would eliminate 

thresholding as a tool for determining actionable signals, it is hard not wonder if our 

results (particularly with DV) would not be better using binary classification. 

Unfortunately, Encog’s classification functionality does not integrate well with the 

customized functionality built into our program.  In particular, for purposes of 

preliminary testing we designed our program to be flexible in several ways relating to 

input selection and the number of periods forward that would be predicted. We 

additionally chose (out of necessity) to normalize data over sliding windows, and we 

incorporated flexibility in determining the range within which the data would be 

normalized.  Encog’s classification features are rather tightly coupled with both 

normalization procedures and data representation, and this provided significant obstacles 

to adding classification as an optional feature to our system. 

 

We were initially concerned that our high-performing tests were the result of our 

structures having been biased toward one or more of the five subsets created by making
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predictions five weeks forward.  While this appears to be at least partially true, it would 

be more plausible as a complete explanation for the variability in our performance if our 

models were of a more sophisticated variety and had we used backpropagation with 

tailored initialization parameters to train them.  In fact, predictions made between 

datasets offset by one week are often identical even when the returns resulting from those 

predictions are quite different due to the offset.  Comparisons between high and low 

performing tests (on different subsets of the dataset) indicated that by far the source of 

variable performance in our tests stems from differences in the actual return outcomes 

related to different input/output pairings more than from variability in the predictions 

made by our MLPs over the various tests.  Thus, to the extent bias was introduced, it 

favored the specific return profile of particular subsets of input/output pairings rather 

than binary hit/miss predictions that were overly tailored to that subset.  As our models 

are so simple as to be almost generic, and because each suffers from the same subset 

related performance variability, we suspect that any bias of this type stems from our 

choices of training set length rather than model architecture. 

 

Our fixed structure and static feature set is quite likely a too rigid model to perform well 

across all the possible partitions of such an extended dataset.  Significant improvement to 

our methodology might be made by using adaptive methods for feature selection and 

architecture determination for each test window. [Swanson97] provides a good example 

of such a methodology for ANNs used to forecast several macroeconomic variables. 
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7.2 Conclusion 

 

The Efficient Market Hypothesis states, in weak form, that above market returns are not 

systematically obtainable over time.  Previous research with ANNs and market 

forecasting has shown them to be very good at modeling future price levels.  However, 

the extent to which ANNs can model future returns with enough precision to undermine 

EMH has yet to be shown determinatively.  While we can find examples in the literature 

which claim to do so, there is limited evidence that returns produced by such models may 

be generalized beyond the datasets upon which they were tested. Additionally, prior 

research indicates that statically trained models, while they may produce good returns for 

finite test periods, are subject to performance degradation over time. 

 

Our Dynamic Training & Testing and Dynamic Validation models employ windowing, 

common with time series data, for both training and testing in order to adapt a 

predetermined architecture with randomized initial parameters to changes in the 

underlying processes by which market prices are generated.  We attempt to minimize the 

problem of performance degradation related to statically trained MLPs with fixed 

architectures and to test for robustness to different market conditions as well as to 

changes in the favorability of benchmark comparisons.  While Dynamic Validation 

proved partially successful in terms of our preferred performance measures (hit rates, 

returns produced above the B&H strategy) with respect to time, both models proved to be 

highly sensitive to variability in the training, validation and testing datasets.  We 

demonstrated this by showing that moderate variability in the historical dataset used to 
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train an ANN structure, and/or very slight variability in the dataset used to test that 

structure’s predictive capacity, may produce spectacularly different returns for the same 

trading system.  Our ability to repeat these results over multiple runs on extended test 

sets with variably initialized model parameters showed that the variability in return 

performance stems more from features inherent to market returns than from incidental 

differences between ANN parameters. 

 

We also demonstrated, with our Dynamic Training & Testing model, that even as ANN 

models may generate predictions which produce good returns over extended periods, 

these may not persist as the underlying dynamics generating market prices change.  In so 

doing, we showed that even dynamic models may fail as their inputs, to the extent these 

remain constant, become less predictive of future returns or the relationships between 

inputs cease to be captured by a fixed model. 

 

In short, this research demonstrated or confirmed several issues relative to the ability of 

an ANN model to produce returns that can generalize to future data: 

1. Even as ANN models may generate predictions which produce good returns over 

extended periods, these may not persist as the underlying dynamics generating 

market prices change. 

2. Accuracy (hit rate) and other standard error measures are not sufficient measures 

of a forecasting model’s ability to produce above market returns.  

3. Return performance may not generalize when a system is deployed during 

unfavorable market conditions. 
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4. Variability in the training and testing dataset may severely impact performance. 

5. Variability in choice of input/output pairings for the model may produce 

dramatically differing return performance even as standard error measures remain 

relatively stable. 

 

The results here leave EMH relatively unscathed.  They are hardly definitive, however.  

While the methodologies employed here are somewhat distinctive for ANN research 

attempting to predict index returns, the ANN structures and trading strategy are rather 

rudimentary.  More sophisticated models might do significantly better against variable 

datasets.  However, such models may prove more credible to the extent they account for 

the kinds of variability described above. 
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Appendix A: The Data 

THE DATA 

  

Then data used for model input are values derived from three datasets.  These are weekly 

attribute values for the S&P 500, Brent Crude Oil futures and the US Dollar Index for 

Major Currencies.  The S&P 500 dataset was downloaded from Yahoo Finance and 

includes weekly values from 1950 through 2016.  The Brent and Dollar datasets were 

downloaded from the US Federal Reserve’s FRED database. The Brent data contain 

dates and weekly closing prices from 1986 through 2016, and the US Dollar Index begins 

in 1973 and also contains weekly closing values through 2016.  Not all data records are 

used, and those which are used depend on the dates chosen at runtime.  Our program also 

provides the flexibility to choose attributes at runtime where the dataset contains more 

than one non-date attribute.  Only those attributes which are required to compute the 

model inputs listed in Chapter 5 are used for the tests reported here, however. 

 

All values input into the models, with the exception of the S&P 500 closing value on the 

date a prediction is made, are derived rather than raw, and these are then normalized 

prior to being input into the models.  These derived values include the percentage 

changes and simple moving average ratios listed in Chapter 5.  With the exception of the 

Bar Summary indicator, these are standardized computations, and they are made by the 

program at runtime. Each dataset was downloaded as a CSV file and then transformed 
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into an XML file to facilitate runtime processing.  Processing each dataset at runtime, 

rather than consolidating the datasets into a flat file, provided flexibility during 
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preliminary testing with respect to attribute selection across multiple datasets and relative 

to the number of periods forward predicted.  A side-by-side view of the first 15 values 

from each csv file can be seen in figure A1. 

 

 

Table 7: Raw CSV Data 

 

Both the CSV and XML files used for our tests are available upon request.

Date Open High Low Close Volume Adj Close Date Close Date Close

1/3/1950 16.66 16.98 16.66 16.98 1927500 16.98 1/3/1986 25.78 1/3/1973 108.2588

1/9/1950 17.08 17.09 16.67 16.67 2722000 16.67 1/10/1986 25.99 1/10/1973 108.3099

1/16/1950 16.72 16.9 16.72 16.9 1486000 16.9 1/17/1986 24.57 1/17/1973 108.3168

1/23/1950 16.92 16.92 16.73 16.82 1338000 16.82 1/24/1986 20.31 1/24/1973 108.2693

1/30/1950 17.02 17.29 17.02 17.29 1878000 17.29 1/31/1986 19.69 1/31/1973 107.8288

2/6/1950 17.32 17.32 17.21 17.24 1584000 17.24 2/7/1986 16.72 2/7/1973 107.5311

2/14/1950 17.06 17.15 16.99 17.15 1950000 17.15 2/14/1986 16.25 2/14/1973 107.087

2/20/1950 17.2 17.28 17.17 17.28 1425000 17.28 2/21/1986 14.39 2/21/1973 101.3312

2/27/1950 17.28 17.29 17.22 17.29 1398000 17.29 2/28/1986 14.25 2/28/1973 100.5567

3/6/1950 17.32 17.32 17.07 17.09 1402000 17.09 3/7/1986 12.27 3/7/1973 99.7613

3/13/1950 17.12 17.49 17.12 17.45 1538000 17.45 3/14/1986 13.07 3/14/1973 99.3603

3/20/1950 17.44 17.56 17.44 17.56 1686000 17.56 3/21/1986 13.45 3/21/1973 100.0502

3/27/1950 17.46 17.53 17.29 17.29 2010000 17.29 3/28/1986 12 3/28/1973 100.4555

4/3/1950 17.53 17.78 17.53 17.78 1752500 17.78 4/4/1986 11.44 4/4/1973 100.7945

4/10/1950 17.85 17.98 17.75 17.96 2250000 17.96 4/11/1986 13.46 4/11/1973 100.7113

BrentS&P 500 US Dollar
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