Year of Publication

2011

Paper Type

Master's Thesis

College

College of Computing, Engineering & Construction

Degree Name

Master of Science in Electrical Engineering (MSEE)

Department

Engineering

First Advisor

Dr. Alan Harris

Second Advisor

Dr. Gerald Merckel

Third Advisor

Dr. Nick Hudyma

Abstract

The unprecedented growth in demand for digital media has led to an all-time high in society’s demand for information. This demand will in all likelihood continue to grow as technology such as 3D television service, on-demand video and peer-to-peer networking continue to become more common place. The large amount of information required is currently transmitted optically using a wavelength division multiplexing (WDM) network structure. The need to increase the capacity of the existing WDM network infrastructure efficiently is essential to continue to provide new high bandwidth services to end-users, while at the same time minimizing network providers’ costs. In WDM systems the key to reducing the cost per transported information bit is to effectively share all optical components. These components must operate within the same wavelength limited window; therefore it is necessary to place the WDM channels as close together as possible. At the same time, the correct modulation format must be selected in order to create flexible, cost-effective, high-capacity optical networks. This thesis presents a detailed comparison of Differential Quadrature Phase Shift Keying (DQPSK) to other modulation formats. This comparison is implemented through a series of simulations in which the bit error rate of various modulation formats are compared both with and without the presence of forward error correction techniques. Based off of these simulation results, the top performing modulation formats are placed into a multiplexed simulation to assess their overall robustness in the face of multiple filtering impairments.

Share

COinS