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Software Compatibility Testing

Consider the following problem: Assume we have downloaded 7
new programs to our computer. We have enough memory to run
at most 3 of them at a time. What is the most efficient way to test
if each pair of programs is pairwise compatible with each other?
Assume the simultaneous operation of any k programs (k < 3)
takes 1 minute?

Possible solutions:

Test every 3 element subset: (;) = 35 minutes

Test each pair of programs: (;) = 21 minutes

These solutions are wasteful, as they test the same sets of
programs multiple times. Can a waste-free scheme be
constructed?

Block Designs

A block design (S, B), or simply B, consists of a set S of v vertices
and a collection B of b non-empty subsets of S.

If in a design, each block consists of k vertices, then the design is
called uniform or k-uniform.

A block design is called incomplete if there exists a block in B that
does not contain all vertices of S; otherwise it is complete.

If each vertex of a design occurs in exactly r blocks, then the
design is called regular or r-regular.

[A,B)
{—1 (_--T} B has k = 2 vertices in each
A D block, and each vertex occurs in
B — iB' C’i r = 3 blocks.
(B, D)
{C,D}

Balanced Incomplete Block Designs

If in a k-uniform, r-regular incomplete design (S, B), each pair of
vertices occurs together in exactly A blocks, we say that (S, B) is a
balanced incomplete block design, or BIBD, of parameters

(b,v,7,k,1).

The computer program problem from the Introduction section
can be modelled by the following BIBD of parameters

(/,7/,3,3,1), where each program corresponds to one of the
verticesinS ={4,B,C,D,E,F,G}:

(A, B,D)

(B,C,E}
* Each program is tested with each (A, F.C)

other one exactly 4 = 1 time. B= {AE,G)
* The block size is k = 3 {B.F..G}

(C,D,G)
(D,E,F)

A block design can be represented by an incidence matrix A that
has v rows that correspond to each of the vertices and b columns
that correspond to each block of the design.

An entry a;; can assume a value of 0 or 1: 1 if the vertex i
appears in the block j, otherwise 0.

ATt o 1 1 0 0 0
B{1 1 0 0 1 0 0
clo 1 1 0 0 1 0
A= pDil1 o o0 o0 0 1 1
Elo 1 0 1 0 0 1
Flo o 1 0 1 0 1
Glo o o0 1 1 1 0

Theorem (Fisher’s Inequality): if a BIBD exists, then b = v, that is,
every BIBD has at least as many blocks as it has vertices.

Proof idea: Let A be the incidence matrix of a BIBD. Richard

Brualdi proves that the determinant of A times its transpose

AAY = (r = D)V 1(r + (v — 1)A). Since A < r, this determinant
is nonzero. Thus, AAT is invertible. This implies the rank of AAT is
equal to v. So, the rank of A is at least v, and since A is a v-by-b
matrix, we have b > v.

Triple Systems

Balanced block designs with block size k = 3 are called Steiner
triple systems.

Steiner triple systems are extremely powerful; they can be
constructed easily if v and A are known:

- A(v—1) b_Av(v—l)
2 6

r

A Steiner triple system with k fixed at 1 is known as a Kirkman
triple system.

Kirkman triple systems were made famous by the following
problem posed by Thomas Kirkman in The Lady’s and
Gentleman’s Diary, a British mathematical journal from the
1850s:

VI. Query; by the Rev, Twos. P. Kirkman, Croft, near Warrington.
Fifteen young ladies in a school walk out three abreast for seven days in suc-
cession: it is required to arrange them daily, so that no two shall walk twice

abreast.

A Kirkman triple system can easily be constructed to solve this
problem withr = 7and v = 15:

{0,1,2}  {0,3,4}  {0,5,6}  {0,7,8}
{3,7,11}  {1,7,9}  {1,8,10}  {1,11,13}
{4,9,14}  {2,12,13} {2,11,14} {2,4,5}
{5,10,12} {5,8,14} {3,9,13}  {3,10,14}
{6,8,13}  {6,10,11} {4,7,12}  {6,9,12}

{0,9,10}  {0,11,12} {0,13,14}
{1,12,14} {1,3,5}  {1,4,6}
{2,3,6}  {2,8,9}  {2,7,10}
{4,8,11}  {4,10,13} {3,8,12}
{5,7,13}  {6,7,10}  {5,9,11}
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