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Abstract 
 

Basigin and Embigin are members of the immunoglobulin superfamily that 

function as cell adhesion molecules. Studies of Basigin null mice revealed reproductive 

sterility, increased pain sensitivity, and blindness.  It is thought that the mechanism 

causing blindness involves misexpression of monocarboxylate transporter 1 (MCT1) in 

the absence of Basigin.  It is known that the transmembrane domain of Basigin interacts 

with MCT1.  In the absence of Basigin, MCT1 does not localize to the plasma membrane 

of expressing cells and photoreceptor function is disrupted.  Studies of the Basigin null 

mouse brain suggest that MCT1 is properly expressed, which suggests a separate 

mechanism causes the increased pain sensitivity in these animals, and also that a different 

protein directs MCT1 to the plasma membrane of expressing cells in mouse brain.  

Embigin is known to interact with MCT2 in neurons and with MCT1 in erythrocytes.  It 

is not known, however, if Embigin normally interacts with MCT1 in the mouse brain or if 

Embigin acts to compensate for the lack of Basigin in the Basigin null animals. 

Therefore, the purpose of this study was to determine if Embigin normally interacts with 

MCT1, 2, or 4 in the mouse brain and if so, whether the interaction is similar to that 

between Basigin and MCT1.  Expression of Basigin, Embigin, MCT1, MCT2, and MCT4 

in mouse brain was assessed via immunoblotting and immunohistochemical analyses.  In 

addition, recombinant protein probes corresponding to the Embigin transmembrane 

domain were generated for ELISA binding assays using endogenous mouse brain MCTs. 

It was determined that the proteins in question are rather ubiquitously expressed 

throughout the mouse brain, and that the cell adhesion molecules Basigin and Embigin 

may be co-expressed in the same cells as the MCT2 and MCT4 transporter proteins.  In 

addition, it was determined that the Embigin transmembrane domain does not interact 

with the MCTs. The data therefore suggest that MCTs do not require Basigin or Embigin 

for plasma membrane expression in mouse brain. 

 



 

Introduction 
 

The brain is known to be “the most complex piece of matter in the universe” 

(Bear et al., 2007).  Therefore, understanding this organ has created quite a challenge. 

Neuroscientists have broken down descriptive and functional aspects of the brain into 

several levels including molecular, cellular, systematic, behavioral and cognitive.  The 

molecular view-point of the brain examines molecules that allow neuron growth and 

communication, and can monitor what enters and leaves the neurons.  Cellular studies of 

the brain show that various neurons interact with one another and can influence each 

other.  An examination of the systems or complex circuits of neurons reveals that there is 

an increase in complexity as each circuit varies in how sensory information is analyzed 

and movements are executed. In addition to basic senses and movements, the brain is able 

to regulate mood and behavior through normal contributions from these systems.  Finally, 

the cognitive abilities of the brain allow for mental imagery, the use of language, and 

self-awareness, indicating how extensive the brain’s functions are and why it remains an 

area of enormous interest and exploration (Bear et al., 2007). 

The cognitive component of brain function, in addition to discriminative and 

affective-motivational aspects, unites to produce the sensation of pain that is consciously 

experienced (Casey, 1999).  Pain is the feeling or perception arising from the body, 

caused by nociception or the sensory process through which painful stimuli are signaled 

(Bear et al., 2007). This feeling varies among individuals as mood and emotional state 

can alter the perception of pain. In patients suffering from chronic diseases, the presence 

of pleasant music, photographs and humorous films reduced pain perception while 

elements negatively affecting emotions appeared to increase pain (Villemure and 
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Bushnell, 2002). The stimuli initiating nociception is perceived as aching, throbbing, 

irritating, sore, stinging, and miserable or unbearable sensations, that are relayed from 

various tissues throughout the body. Although receptors for nociception appear in most 

body tissues including skin, bone, muscle, blood vessels, heart, and the majority of 

internal organs, they are absent from the brain (Bear et al., 2007).  

The physiological aspect of pain requires the stimulation of receptors, referred to 

as nociceptors, which are free, branching, unmyelinated nerve endings that signal when 

body tissue is being damaged or is undergoing threat of damage (Bear et al., 2007). A 

variety of nociceptors are present, each responding to different stimuli including 

mechanical nociceptors conveying strong pressure, thermal nociceptors recognizing 

extreme temperatures, chemical nociceptors relaying reaction to histamine or other 

chemicals and polymodal nociceptors which are the most abundant and respond to all 

stimuli (Bear et al., 2007).  

In nociception, fibers carry information to the central nervous system (CNS) for 

interpretation at different rates due to differences in action potential, conduction, and 

velocities.  This signaling produces two distinct pain perceptions, Aδ fibers relay the first 

pain, which is described as fast or sharp, and the C fibers are responsible for the duller, 

longer lasting pain (Bear et al., 2007).  The fibers follow either the spinothalamic 

pathway, traveling from the spinal cord to the brain, or the trigeminal pain pathway, 

starting at the head or face and relaying back to the brain (Figure 1.1).  Activation of cell 

bodies in the dorsal root ganglia initiates the spinothalamic pathway as signals relay into 

the dorsal horn of the spinal cord. The fibers enter the spinal cord, branching up and  
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Figure 1.1: The spinothalamic (A) and trigeminal (B) pain pathways. The spinothalamic 
sensory travels from the spinal cord to the brain whereas the trigeminal signaling is 
initiated in the face or head and relays back to the brain. 
(http://www.ncbi.nlm.nih.gov/books/NBK10967/) 
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down, traveling one or two segments within the zone of Lissauer.  From this point they 

synapse on cells in the substantia gelatinosa, a region in the outer part of the dorsal horn.  

The signal continues through axons of second order neurons, which receive sensory input 

from primary afferents (Bear et al., 2007). The axons immediately decussate and follow 

the spinothalamic track running along the ventral surface of the spinal cord.  

Spinothalamic fibers extend through the spinal cord, medulla, pons, and midbrain, finally 

synapsing at the thalamus.  The trigeminal pain pathway follows a similar process, using 

second order axons to synapse at the thalamus.  From here, information from both 

pathways is projected to various areas of the cerebral cortex (Bear et al., 2007).  

 

The Brain 

 The brain can be divided into four main regions, including the cortex, midbrain, 

hindbrain and cerebellum (Figure 1.2).  The main features of each region of the brain, and 

how they relate to nociception, are described below. 

 

Cortex: The forebrain, also referred to as the cortex, is made up of two critical structures 

that further differentiate, the diencephalon and the telencephalon (Bear et al., 2007). The 

telencephalon is comprised of the olfactory bulbs and two cerebral hemispheres. The gray 

matter in the telencephalon comprises the basal telencephalon and the cerebral cortex, 

which is one of the most important structures in the forebrain. The prefrontal cortex is 

responsible for perception, conscious awareness, cognition and voluntary action (Bear et 

al., 2007). The diencephalon differentiates into two important structures as well, the  
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Figure 1.2: The human brain.   Four main regions of the brain: Cortex, Midbrain, 
Hindbrain and Cerebellum are indicated.   The overall structure and placement of the 
different regions is shown (http://linsenbardt.net/?p=2497). 
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thalamus and hypothalamus. The hypothalamus controls basic bodily functions, while the 

thalamus is part of the forebrain that receives sensory information regarding vision, 

audition, and somatic sensation, which it then relays onto the cerebral cortex (Bear et al., 

2007). The cortex is then able to distinguish sensory inputs, thoughts, and actions that are 

constantly changing or weakly established.  The cortex is essential in cognitive control, 

as it keeps the patterns of activity representing goals and the means to achieve them in 

order.  It is not, however, necessary for performing behaviors occurring automatically, 

such as orientation to an unexpected sound or movement (Miller and Cohen, 2001).   

The cortex is also an extremely important structure for perceiving, analyzing, and 

suppressing pain stimuli.  It has been found that stimulation of the thalamus or cerebral 

cortex can suppress the responses of spinothalamic or trigeminothalamic tract neurons 

leading to the inhibition of nociception (Casey, 1999).  One specific part of the cortex, 

the anterior cingulate cortex (ACC), is crucial for pain processing. It is involved in 

working memory and attentional processing, meaning it is able to shift focus toward or 

away from the pain.  The ACC also plays a role in learning associations between neutral 

and aversive stimuli in classical conditioning, which is important for avoidance of future 

damage in reoccurring situations.  Finally, containing higher motor areas allows the ACC 

to control defense preparation (Buchel et al., 2002).  The structures responsible for the 

brain defense system include the hypothalamus, periaqueductal gray (PAG), and 

amygdala. The circuits of this system integrate the myriad endocrine and autonomic 

responses that are associated with behaviors that are aggressive-defensive (Hsieh et al., 

1995).  The cortex is therefore an important part of pain regulation and sensation (Figure 

1.1). 
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Midbrain: The midbrain is an intermediate for information passing between the spinal 

cord and forebrain. Its neurons are contributors to sensory systems and control of 

movement (Bear et al., 1997). This region of the brain can be divided into three parts 

including the tectum, tegmentum, and cerebral aqueduct. The tegmentum is specifically 

involved in the control of voluntary movement.  The tectum is further differentiated into 

two structures, the superior and inferior colliculi, both important for sensory signaling 

(Bear et al., 2007). 

 The midbrain is essential for somatic pain perception and suppression.  The 

periaqueducal gray matter (PAG) is a zone of neurons in the midbrain that receives 

signals from many brain structures, particularly those for emotions.  In turn, the PAG has 

neurons with axons descending into regions of the medulla, specifically the raphe nuclei, 

which is located in the hindbrain.  These neurons extend to the dorsal horn of the spinal 

cord and are able to depress activity of the nociceptive neurons.  This explains the 

correlation between extreme emotions, stress or determination, and the ability so suppress 

feelings of pain (Bear et al., 2007). Clinically the PAG has been targeted with electrical 

stimulation in order to create a state of analgesia and reduce pain for patients (Bear et al., 

2007). 

 

Hindbrain: The hindbrain also serves as an important intermediate for information being 

passed between the forebrain and spinal cord (Bear et al., 2007). Morphologically distinct 

bulges within its walls referred to as rhombomeres characterize it; these organized 

segments dictate cranial development in vertebrate embryos (Carpenter et al., 1993). 
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Another characterizing and crucial part of the hindbrain includes the medulla oblongata, 

responsible for sensory functions. The medulla holds cranial nerve nuclei, which supply 

somatic sensation from the spinal cord to the thalamus (Bear et al., 1997). In the event 

that cells from the cranial nerves are destroyed, loss of feeling or anesthesia ensues. An 

indifference to painful stimuli, even if no other sensory deficits occur, can be detrimental. 

Individuals with congenital absence of pain, even with early training to avoid damaging 

situations can develop progressive degeneration of joints and spinal vertebrae. This can 

lead to skeletal deformation, degeneration, infection and possibly death. Even low levels 

of nociceptive activity occurring during everyday tasks are vital for indication of strain 

on one’s body from a prolonged posture or particular movement (Bear et al., 2007). 

Therefore, any analgesia can be potentially harmful to an individual. 

The medulla also contains nine nuclei that make up the raphe nucleus. This 

serotonin-influenced nucleus regulates mood, pain and wakefulness as it fires most when 

awake and controls sleep/wake cycles. The raphe nucleus has axons projecting into the 

spinal cord through the dorsal horn. These axons are able to decrease nociceptive neuron 

activity, alleviating pain (Bear et al., 1997). The medulla is also the site of pyramidal 

decussation, where axons cross from one side to the other prior to entering the spinal 

cord. This crossing is the reason one side of the cortex controls movement on the 

opposite side of the body (Bear et al., 1997).  

 

Cerebellum: This section of the brain is referred to as the “little brain” since it contains as 

many neurons as the rest of the brain combined, despite being smaller in size (Allen et 

al., 1997; Bear et al., 2007). The cerebellum is crucial for coordinated and accurate 
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movements of the ipsilateral (same) side of the body (Bear et al., 2007). It’s ability to 

perform this function is based on taking in all the information as it is physiologically 

connected with virtually all levels of the central nervous system (CNS) through 

monosynaptic and multi-synaptic pathways (Allen et al., 1997).  The cerebral cortex 

sends information specifying the goals of intended movement via the pons and once the 

message reaches the cerebellum, it calculates the precise muscle contractions required to 

reach the intended goal (Bear et al., 2007).  

  The traditional view of the cerebellum having only one function, to coordinate 

movement, is evolving as studies show it may be involved in non-motor functions 

including complex problem solving, verbal learning and memory, attention and sensory 

discrimination (Allen et al., 1997). The previous studies showed that when performing an 

attention task, involvement of the motor system was unnecessary to produce cerebellar 

activation shown via anatomical magnetic resonance imaging (MRI). The attention to 

sensory information alone was sufficient to elicit activation of this region (Allen et al., 

1997).  This impact could then indirectly influence pain perception, as current research 

indicates individuals whose attention is diverted from pain perceive it as less intense 

(Villemure and Bushnell, 2002).  However, if the individual’s attention is not actively 

directed elsewhere, the painful stimulus dominates over competing non-painful ones.  

Although it is quite clear that attention can modulate pain, an understanding of the 

precise cognitive mechanisms behind this is not yet understood (Bantick et al., 2002).    

In 1987, Ekerot and colleagues also showed that the cerebellum was involved in 

nociception, as an increase in nociceptor signaling caused an increase of activity in 

pathways and neurons of the cerebellum (reviewed in Saab and Willis, 2003).  There is 
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speculation that this increase in activity is simply due to an intention to perform a motor 

response rather than sensory perception.  Further testing, using positron emission 

tomography (PET) and functional magnetic resonance imaging (fMRI) showed 

perception of acute heat pain, the warm-discrimination task, muscle pain, capsaicin-

evoked pain, and allodynia caused increased blood volume or flow in the cerebellar 

vermis and regions lateral to it (Saab and Willis, 2003).  The significance of this lies in 

the assumption that synaptic activity is the cause of the increase of regional blood 

volume. The spike in blood flow indicates the presence of the noxious stimuli to the 

various sensory indicators in the brain, which leads to pain (Saab and Willis, 2003).  

 Further evidence from Ekerot and colleagues indicated cerebellum influence on 

pain perception is derived from the postsynaptic dorsal column (PSDC) pathway. This 

pathway relays visceral nociceptive information to the dorsal column nuclei and relief 

from pain is acquired by interrupting the path (Saab and Willis, 2003). A region of the 

cerebellum, the caudal vermis, also holds individual Purkinje cells stimulated by visceral 

noxious stimulation. Although the same cells could be evoked for a similar response 

repeatedly, it was unclear what pathway(s) relayed the information to the Purkinje cells 

(Saab and Willis, 2003).   

Despite several studies, the role of the cerebellum in nociception and pain 

perception is still inconclusive. There is speculation that an underlying intention to 

perform a motor response is the cause of increased cerebellar activity (Saab and Willis, 

2003). Other areas of the brain more traditionally known for pain mechanisms are still 

credited and clinical evidence to support the cerebellum’s role in nociception is required.  
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Basigin 

Cell adhesion molecules can be classified into four groups including cadherins, 

integrins, the immunoglobulin superfamily, and selectins, based on biochemical structure  

(Tachikui et al., 1999). The neuronal synapse, or region of contact used in pathways for 

information transfer, is affected by cell adhesion molecules, which utilize guidance cues 

to mediate precise connections (Tessier-Labigne, 1994).  

The cell adhesion molecule named Basigin is a transmembrane glycoprotein that 

is a member of the immunoglobulin (Ig) superfamily and possesses two Ig-like 

extracellular domains (Figure 1.3).  Classification within the Ig superfamily is based on 

conservation of folding of the extracellular domain, in which two β sheets are sandwiched 

together (Halaby and Mornon, 1998).  The function of this class of proteins includes cell 

adhesion, immunological recognition, and signal reception (Tachikui et al., 1999).  The 

protein portion of Basigin has a mass of 27 kDa and the glycosylated form ranges from 

43 to 66 kDa, depending on the tissue in which it is expressed (Igakura et al., 1996; 

Ochrietor et al., 2003).  The name or title of the gene product also varies according to the 

species and tissue in which it is found.  In rat, Basigin is referred to as CE9 (Hubbard et 

al., 1985) or OX47 (Fossum et al., 1991); while in mouse it is gp42 (Altruda et al., 1989) 

or CD147.  In chicken, Basigin is called HT7 (Seulberger et al., 1990), neurothelin 

(Schlosshauer and Herzog, 1990) and 5A11 (Fadool and Linser, 1993); but in humans it 

is leukocyte activation antigen, M6 (Kasinrerk et al., 1992), EMMPRIN or tumor cell-

derived collagenase (Biswas et al., 1995).  Each of these proteins, despite being found in 

different species, possesses high amino acid sequence similarity (Toyama et al., 1999).
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Figure 1.3: A diagram of the Basigin molecule.  Basigin is a single-pass transmembrane 
protein with two extracellular Ig domains at the amino terminus, and a cytosolic carboxy 
terminus. Basigin consists of ~250 amino acids. The extracellular portion, which contains 
the Immunoglobulin domains, is ~185 amino acids, the transmembrane domain contains 
24 amino acids, and the intracellular domain is ~39 amino acids (Artwork courtesy of 
Paul Gambon). 
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The human Basigin gene is located on chromosome 19p13.3, while the mouse 

Basigin gene is found on chromosome 10 centimorgan (cM) position 42.2. The Basigin 

gene consists of eight exons, which can be spliced differently to yield multiple gene 

products (Miyauchi et al., 1991; Mouse genome database, 5/2011). An additional Basigin 

gene product includes Basigin-2, which contains an identical amino acid sequence to 

Basigin, with an extra 116 amino acids near the amino-terminus (Ochrietor et al., 2003). 

Basigin-2 possesses three extracellular Ig domains as a result of inclusion of exon 1A in 

the transcript.  In contrast to Basigin, Basigin-2 is only expressed in the retina, 

specifically on the surface of photoreceptor cell bodies and inner segments. This limited 

expression of the glycoprotein Basigin-2 implies a fundamental and specialized role 

within the retina (Ochrietor et al., 2003). 

The biological functions of Basigin are diverse.  However, like the majority of the 

proteins belonging to the immunoglobulin superfamily, it mainly participates in cell 

adhesion and pattern recognition (Halaby and Moron, 1998).  Basigin is widely 

distributed and is found in mitral cells in the olfactory bulb and Purkinje cells in the 

cerebellum. Basigin is also found in the thalamus, cerebral cortex, and limbic system, as 

well as other areas and various organs (Fan et al., 1998b).  The protein is involved in 

immune responses, tumor invasion, and neuronal processes affecting vision, behavior, 

and olfaction.  Other functions of Basigin include physiological events including 

spermatogenesis, sperm-egg interaction, and embryo implantation (Nakai et al., 2006).  

The importance of Basigin for these processes is demonstrated by Basigin knockout 

mice, which have a targeted deletion of the Basigin gene.  These animals are blind (Hori 
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et al., 2000; Ochrietor et al., 2002), reproductively sterile (Igakura et al., 1998), and have 

decreased pain tolerance (Naruhashi et al., 1997). 

  

Monocarboxylate transporters and Metabolism 

Moncarboxylate transporters, as the title implies, assume the responsibility of 

transporting monocarboxylates such as lactate, pyruvate and ketone bodies, which are 

vital for intracellular pH regulation and energy supply (Liu et al., 2008).  This function is 

performed using proton or sodium gradients to co-transport the substrates across plasma 

membranes. The quick movement of monocarboxylates across the plasma membrane is 

imperative for cellular metabolism and metabolic communication between tissues (Liu et 

al., 2008). All members of the monocarboxylate transporter (MCT) family have the same 

structure consisting of 10-12 transmembrane helical domains with both amino and 

carboxy termini, as well as a large loop region between transmembrane domains 6 and 7, 

within the cytosol (Wilson et al., 2005).   

While there are currently 14 members of the monocarboxylate transporter family 

that have been isolated and characterized from different tissues (Halestrap and Meridith, 

2004), the main focus in this study will be on MCT1, 2 and 4.  The focus on these 

particular MCTs is due to reports that they directly mediate lactate and pyruvate 

transport, unlike others in this family, which play roles in the transport of thyroid 

hormone, bumetanide, and L-tyrptophyan (Liu et al., 2008; Manoharan et al., 2006). 

These three transporters are thought to require ancillary proteins such as Basigin or 

Embigin (gp70) for appropriate expression and activity in the plasma membrane 

(Manoharan et al., 2006).  
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MCT1 (SLC16A) is expressed in a wide variety of tissues including the heart, 

brain, and retina (Bergersen, 2007; Halestrap and Price, 1999).  Expression of MCT1 in 

the brain is seen in endothelial cells of the capillaries, in both the membrane facing the 

basal lamina, as well as that facing the lumen of the vessels (Bergersen, 2007).  In 

particular, the neonatal brain expresses high levels of MCT1, indicating the transport of 

lactate and ketone bodies across the cerebral microvasculature at high rates (Halestrap 

and Price, 1999).  Studies indicate that MCT1 facilitates lactic acid uptake for 

gluconeogenesis in the liver and kidney of certain species and for oxidation in red 

skeletal muscle fibers and heart (Ovens et al., 2010).  Erythrocytes and cells experiencing 

hypoxic conditions use MCT1 for lactic acid efflux (Ovens et al. 2010).  The intermediate 

affinity transporter can be inhibited by stilbene disulfonate derivatives such as DIDS and 

4,4’-dibenzamido-stilbene-2,2’-disulfonate (DBDS).   

As the most widely distributed MCT family member, MCT1 is typically co-

expressed with Basigin (Clamp et al., 2004; Wilson et al., 2009).  It was proposed that 

glutamic acid residue positioned as the center of the transmembrane domain of Basigin 

interacts with MCT1 (Kirk et al., 2000); however it has since been determined that the 

interactions between Basigin and MCT1 are hydrophobic in nature (Finch et al., 2009).  

If MCT1 is incubated with DIDS for prolonged periods, it becomes cross-linked to the 

glycoprotein Embigin, which is a member of the same subset of the Ig superfamily as 

Basigin (Bergersen, 2007; Wilson et al., 2009). 

MCT2 (SLC16A7) is a higher-affinity transporter and is not as widely distributed 

as MCT 1, despite sharing 60% amino acid sequence identity (Bergersen, 2007; Halestrap 

and Price, 1999; Ovens et al., 2010). The high binding affinity of MCT2 is important, as 
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it allows the transporter to take up extracellular lactate for energy when glucose levels 

decrease below homeostatic range and lactate concentrations are therefore low (Pierre et 

al., 2000; Pellerin and Magistretti, 1994).  MCT2 is found in neurons, specifically in the 

postysynaptic density at glutamatergic synapses in the cerebellum and hippocampus.  Its 

distribution, along with MCT4, at the synapse supports the proposed glutamate-lactate 

shuttle between neurons and astrocytes (Bergersen, 2007).  The function of MCT2 in the 

brain is supposedly linked to glutamatergic synaptic transmission (Bergersen, 2007). 

MCT4 expression typically occurs in skeletal muscles and white muscle fibers or 

highly glycolytic cells in which it facilitates lactic acid efflux from the tissue (Juel and 

Halestrap, 1999; Ovens et al., 2010). The expression of this lower affinity transporter can 

be up-regulated by cells via Hypoxia-inducible factor 1 (HIF-1α) under hypoxic 

conditions (Ovens et al., 2010). The low affinity of MCT4 does not hinder its transport of 

lactate since skeletal muscle and glycolytic cells produce significant concentrations of 

lactate. This concentration gradient allows MCT4 to adequately export, rather than 

import lactate (Halestrap and Price, 1999; Bonen et al., 2000).  

In the brain, substrates other than glucose can be used as a source of energy 

metabolism.  There is evidence of large amounts of ketone body utilization in newborn 

babies shortly after birth and newborn rats during the suckling period (Daniel et al., 1977; 

Vannucci and Duffy, 1974).  As animals mature, the brain becomes more glucose 

dependent upon entering adulthood and ketone body utilization decreases. Contradictions 

of this occur during periods of exercise or when glucose is being highly utilized while 

lactate concentration is high, then the brain uses lactate as an energy source (Pellerin, 

2005; Dalsgaard et al., 2004). There is also evidence from in vitro studies that lactate, 
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rather than glucose, is the major neuronal energy substrate for tissue surviving an 

ischemic insult. It’s been determined that lactate has neuroprotective properties in the 

hippocampus and cultured neurons after deprivation of glucose or oxygen, which 

simulates the conditions encountered during a stroke (Bergersen, 2007).  At times when 

lactate concentrations are low, lactate can still be utilized if a high affinity transporter, 

such as MCT2, is present (Bergersen et al., 2005).  Other in vitro studies have shown that 

neurons, even when both lactate and glucose substrates are available, will select lactate as 

an energy source (Bouzier-Sore et al., 2003).  

 Further evidence portrays neurons’ preference for extracellular lactate over 

intracellular lactate, which could be released from nearby astrocytes (Itoh et al., 2003; 

Aubert et al., 2005).  Astroglial cells utilize glucose in in vitro studies, suggesting that 

astrocytes produce the lactate and export it for use by the neurons (Itoh et al., 2003). 

Therefore, the presence of lactate is important for proper neuron function.  

 

Basigin Null Mice 

The importance of Basigin for functions previously discussed is demonstrated by 

Basigin knockout mice, which were developed by Takashi Muramatsu and his research 

team in the 1990s (Igakura et al., 1998).  These animals have a targeted deletion of the 

Basigin gene, created by extracting 0.2 kB from the first exon in the gene and replacing it 

with a neomycin resistance gene.  This new construct was then recombined in cultured 

pluripotent mouse embryonic stem (ES-D3) cells, resulting in male chimeric mice that 

were mated with C57BL/6 female mice.  The herterozygotes produced in the F1 

generation were then interbred to produce the Basigin null mice whose genotypes were 



 18 

verified with Southern blot analyses (Igakura et al., 1998).  These animals are blind (Hori 

et al., 2000, Ochrietor et al., 2002), reproductively sterile (Igakura et al., 1998), and have 

increased pain sensitivity (Naruhashi et al., 1997). 

Behavioral studies conducted on normal and Basigin null mice revealed several 

abnormalities in sensory and memory functions in the knockout animals. In terms of 

deficiencies within the nervous system, the mice have an altered sense of pain perception.  

Although it was originally thought that Basigin null mice have learning and memory 

deficiencies, it has since been determined that the null mice do not likely have learning or 

memory deficiencies, as the behavioral tests for these deficiencies rely on visual cues and 

the mice are blind (Hori et al., 2000).  A different behavioral test conducted by Naruhashi 

et al., (1997) to examine pain tolerance, an electric sensitivity or foot shock test, 

delivered shock to individual mice placed in a dark compartment through a grid using an 

isolated stimulator.  The electric current was raised in intervals of 0.03 mA given in 0.5 

sec intervals until the mouse flinched, vocalized, or jumped, and the current was 

recorded.  In comparison with the wild-type and heterozygous mice, the mutant mice 

required significantly less current for vocalization or jumping (Naruhashi et al., 1997).  

This was explained by two factors.  Signals from the peripheral sensory neurons are 

relayed through nerve cells in the thalamus. Basigin in the thalamus, which was found 

intensely expressed in the anterodorsal and reticular nuclei via in situ hybridization, could 

then be involved in output from sensory neurons (Fan et al, 1998b; Naruhashi et al., 

1997). Alternatively, Basigin in the cerebral cortex could be involved in the sensory 

signal network (Naruhashi et al., 1997). Expression of Basigin was ubiquitous in the 

cerebral neocortex, with elevated levels in pyramidal neurons of the Vth layer (Fan et al., 
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1998b). Therefore, signaling from the cerebral cortex and thalamus could be affected by 

the lack of Basigin in null mice causing the increased pain sensitivity. 

The blindness of Basigin null mice is thought to be caused by the absence of 

MCT 1 and MCT4 expression in the retina, resulting in a metabolic deficiency due to 

inadequate lactate transport between Müller glial cells and photoreceptors (Philip et al., 

2003).  This transport is thought to be conducted by a shuttle system consisting of 

Basigin-2 and MCT1 and/or 4 in the membrane of photoreceptor cells and Basigin and 

MCT1and/or 4 in the membrane of Müller glial cells. The Müller cells use glucose as the 

main source of metabolic energy.   Since glycolysis in Müller cells often out-paces 

aerobic respiration, lactate is produced and released to serve as a substantial source of 

metabolic energy for neurons (Poitry-Yamate et al., 1995). In the absence of the lactate 

metabolon in the retina, which occurs in the absence of Basigin gene products, 

photoreceptors are not supplied with lactate as an energy source, and they do not function 

(Philp et al., 2003).  Hence the mice are blind from the time of eye opening (Ochrietor et 

al., 2002). The lactate metabolon that likely exists in the mouse retina is comparable to 

metabolic shuttling in muscle, in which lactate is transported out of fast glycolytic 

skeletal muscle fibers by MCT4 to oxidative skeletal muscle fibers expressing MCT1. 

These systems could also potentially explain the astrocyte-neuron coupling hypothesis of 

Vanucci and Duffy (1974), as neurons are found to consume lactate produced by 

astroglia. 

Studies performed by the Ochrietor laboratory at the University of North Florida 

sought to assess MCT expression in the Basigin null mouse brain to determine whether a 

metabolic defect similar to that occurring in the retina was the reason for sensory pain 
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deficiencies of the Basigin null mice. This was completed by comparing cerebral 

membrane-associated expression of MCTs in normal and Basigin null mice. Results from 

that study indicate that MCT expression (MCT1, MCT2, and MCT4) is not down 

regulated at the membrane (Ochrietor et al., 2010b), which suggests that the cause of 

sensory pain deficiencies in Basigin null mice is not faulty neural metabolism. In 

addition, the data suggest that a different molecule associates with MCTs in the brain for 

their expression at the membrane.  This group hypothesized that Embigin, a 

transmembrane glycoprotein that belongs to the Basigin subset of Ig superfamily 

molecules, interacts with MCTs for their proper insertion into the plasma membrane.  It 

was also determined that the concentration of Embigin in Basigin null mouse brains was 

similar to that in normal mouse brain (Ochrietor, personal observation). This suggests 

that Embigin is the normal accessory protein for MCT expression and is not 

compensating for the absence of Basigin in the null animals. Since Basigin and Embigin 

share significant amino acid sequence homology, it is reasonable to propose that the 

interaction between Embigin and MCTs is similar to that of Basigin and MCTs. 

 

Embigin 

Embigin is a transmembrane glycoprotein and another member of the same subset 

of the Ig superfamily as Basigin.  Like its sister molecule, Embigin contains an N-

terminus with two extracellular Ig domains, a single transmembrane sequence containing 

a glutamic acid residue, and a small intracellular C terminus domain.  The mouse 

Embigin gene is found on mouse chromosome 13 (Muramatsu and Miyauchi., 2003).  

Formerly referred to as gp 70, it is structurally related to Ig molecules and shares 28% 
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overall amino acid sequence identity with Basigin and 50% amino acid sequence identity 

with Basigin in the transmembrane domains (Fan et al., 1998a; Tachikui et al., 1999; 

Figure 1.4). The Embigin protein is 30 kDa in mass, while the glycosylated form appears 

as a 66-90 kDa molecule (Fan et al., 1998a). Previously published data suggest that 

Embigin regulates cellular activity during cell differentiation and tissue remodeling by 

mediating intercellular recognition (Tachikui et al., 1999).  Integrin activity is involved 

when Embigin is over-expressed, leading to cell-substratum adhesion (Tachikui et al., 

1999).   

Previous studies indicate the expression of Embigin is more restricted than 

Basigin, and although strongly expressed in mouse embryos between days 5.0 and 9.0 of 

gestation, it is only weakly expressed in adult organs (Fan et al., 1998a). The high 

expression of Embigin in mice is evident during preimplantation and appears localized in 

the endoderm for early postimplantation embryogenesis (Huang et al., 1990; Fan et al. 

1998a).  Embigin is also intensely expressed in the visceral yolk sac and embryonic gut 

around day 8.5 of embryogenesis.  In the embryonic ectoderm and mesoderm, on the 

other hand, there is only weak to moderate expression (Fan et al., 1998a).  This trend 

carries to the brain where Embigin levels appear much lower (Fan et al., 1998a).  Adult 

rats show further variation of Embigin mRNA expression, as seminal vesicles portray the 

lowest detectable levels, while the heart, lungs, and liver are slightly higher. The kidney, 

testes, and brain show detectable expression levels of Embigin mRNA as well (Guenette 

et al., 1997).   

Other studies of Embigin allow further understanding of this protein and its 

various influences. The expression of Embigin suggests that it could be involved in 
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Figure 1.4: Amino acid sequences of the transmembrane domains of Basigin and 
Embigin.  The two sequences were aligned via BLAST software 
(ftp://ftp.ncbi.nlm.nih.gov/blast/db/).  Significant amino acid identity (50%) was 
observed between the two sequences within their transmembrane domains.  Amino acids 
that are identical in both Basigin and Embigin are indicated by asterisks (*).  The amino 
acids used by Basigin in the interaction with MCT1 are shown in blue.   

Basigin       M A A L W P F L G I V A E V L V L V T I I F I Y 
                                *       * * *      *     * *  *          *  *    * *                                      
Embigin       L V P L  K P F L A I L A E V  I  L L VA I I L L C 
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tumorigenesis, contributing to the malignant state by interacting with the extracellular 

matrix (ECM).  Embigin regulates cell growth and differentiation in response to 

components of the extracellular environment (Guenette et al., 1997).  The mRNA levels 

of Embigin are elevated in embryonal carcinoma cells with different differentiation 

potentials, supporting its involvement in cancer development (Huang et al., 1990).  

Studies have also proposed that cell adhesion mediated by Embigin requires an integrin 

accessory molecule (Guenette et al., 1997).  This idea is based on enhanced cell-

substratum adhesion that was calcium-dependent and inhibited by antibodies specific for 

integrins and ligands with an exposed arginine-glycine-aspartate (RGD) sequence 

(Guenette et al., 1997). 

An important similarity exists between Basigin and Embigin, as the 

transmembrane regions of both proteins are highly conserved among species (Tachikui et 

al., 1999; Figure 1.4).  This structural feature suggests Embigin and Basigin can form 

protein complexes in the plasma membrane (Tachikui et al., 1999).  Both glycoproteins 

are thought to be accessory proteins for MCT expression at the plasma membrane as 

MCT1 and 4 are found to interact with Basigin whereas MCT2 interacts with Embigin  

(Wilson et al., 2005). Further studies have also indicated that lysine residues within the 

extracellular domain of Embigin can be crosslinked to MCT1 if erythrocytes are 

incubated with DIDS, strengthening the concept of an interaction between Embigin and 

MCTs (Poole and Halestrap, 1997; Wilson et al., 2009). 

The purpose of the present study was to characterize the expression of membrane 

associated Basigin, Embigin, and MCTs 1, 2, and 4 in the normal mouse brain as a 
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whole, as well as its dissected parts.  The study is aimed at determining whether Embigin 

normally interacts with MCT1, MCT2, and MCT4 in the mouse brain, and if so, whether 

the interaction is similar to that between Basigin and MCT1.  A model of a lactate shuttle 

system for the brain, which contains Embigin, MCT2, and MCT4, is shown in Figure 1.5. 
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Figure 1.5: The proposed lactate shuttle in the brain. A shuttle complex similar to that 
thought to exist within the retina was proposed for the mouse brain. The shuttle consists 
of a complex of Embigin (red structures) and MCT4 (blue ovals) on glial cells and a 
complex of Embigin and MCT2 (green ovals) on neurons.  The complex is thought to 
transport lactate from glial cells to neurons.   
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Material and Methods 

 
Generation of mouse brain membrane-associated protein extracts 

Normal mice were sacrificed according to an accepted protocol (UNF 

IACUC #10-009) and the brains were removed immediately and dissected into four parts: 

cortex, midbrain, hindbrain and cerebellum.  The brain sections were homogenized in 

detergent lysate buffer (150 μL hindbrain and cerebellum; 265 μL midbrain; 500 μL 

cortex; Invitrogen Corporation, Carlsbad, CA; 10 mM Tris pH 7.4, 100 mM NaCl, 1 mM 

EDTA, 1 mM EGTA, 1 mM NaF, 20 mM Na4P2O7, 2 mM Na3VO4, 1% Triton X-100, 

10% glycerol, 0.1% SDS 0.5% deoxycholate and supplemented with 1mM PMSF 

[Pierce/ThermoScientific, Rockford, IL]), incubated on ice for 30 minutes, and cleared by 

centrifugation at 12,000 rpm for 15 minutes. After centrifugation, the supernatants were 

transferred to 1.5 ml microcentrifuge tubes (USA Scientific, Orlando, FL) and stored at   

-80°C. 

The protein concentrations of the tissue samples were determined using a 

Coomassie (Bradford) Protein Assay (Pierce/Thermo Scientific).  Dilutions of bovine 

serum albumin (BSA, Pierce/Thermo Scientific) were prepared as standards 

ranging from 0.2 mg/ml to 1.0 mg/ml. Aliquots (5 μl) of each standard were transferred 

to individual wells of a 96-well polystyrene EIA/RIA microplate (Corning, Corning, 

NY). Water (5 μl) was used as a blank. Samples of mouse brain extracts were analyzed 

both undiluted (5μL) or prepared at either a dilution of 1:5 or 1:2 in distilled water (5 L 

total volume) and transferred to wells of the same 96-well plate.  All wells received 250 

μl Coomassie (Bradford) reagent. The absorbance of each standard and sample was 

measured at 595 nm using a BioTek Powerwave XS plate reader (Biotek Instruments, 
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Winooski,VT). The average absorbance for each standard was calculated and used to 

generate a standard curve for BSA using Microsoft Excel Software (Redmond, WA). The 

standard curve was used to perform a linear regression and the protein concentrations of 

brain extracts were determined from the graph.  

 

Analysis of protein extracts via SDS-PAGE and electroblotting 

Aliquots (100 μg each, 20 μl total volume) of mouse brain tissue were transferred 

to 0.5 ml microcentrifuge tubes (USA Scientific). To each sample, 6.6 μl of LDS buffer 

(Invitrogen Corporation) and 1.5 μl of β-mercaptoethanol (Fisher, Fairlawn, NJ) were 

added per 50 μg of sample protein.  Samples were heated to 95 °C for 5 minutes.  

Proteins (50 μg per lane) were separated within individual wells of a 4-12% gradient 

polyacrylamide gel using BupH Tris-HEPES SDS running buffer (Pierce/Thermo 

Scientific).  Other wells contained Prosieve® marker protein (10 μl, Lonza, Rockland, 

ME).  The proteins were electrophoresed at 120 volts until the dye front fully migrated 

through the gel. 

The polyacrylamide gel was placed in a pan with protein transfer buffer (25 mM 

Tris base, 190mM glycine, 0.1% SDS, 20% methanol).  A transfer chamber was prepared 

by placing pre-cut pieces of sponge pad (Invitrogen Corporation) into the chamber, 

followed by a pre-cut piece of Whatman #1 filter paper (Whatman, Piscataway, 

NJ).  Next, the gel was placed in the chamber, and covered with a pre-cut piece of 

nitrocellulose transfer membrane (Osmonics/GE, Minnetonka, MN) followed by a second 

piece of Whatman #1 filter paper.  The remaining space in the chamber was filled with 

more pre-cut pieces of sponge pad.  The chamber was sealed and placed in the SureLock 
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apparatus (Invitrogen Corporation), and then subjected to 30 volts of current for 60 

minutes.  The apparatus was disassembled and the nitrocellulose paper was incubated in 

20 ml Fast Green stain (0.1 % fast green in a solution of methanol, acetic acid, and H2O 

in a 5:1:5 ratio) and destained with three changes of 50 ml de-staining solution 

(methanol, acetic acid, and H2O in a 5:1:5 ratio).  The blots were stored in water at room 

temperature until the immunoblotting analyses were performed. 

The blots were incubated in Blotto (2% instant powdered milk in TBS— 

137 mM Sodium Chloride, 20 mM Tris, 0.1% Tween-20) for one hour at room 

temperature or overnight at 4°C, and then the lanes were cut into strips to allow for 

simultaneous incubation of the various sections of brain (cortex, midbrain, hindbrain, and 

cerebellum) with antibodies specific for Basigin (Ochrietor et al., 2003), MCT1 

(Millipore/Chemicon, Billerica, MA), MCT2 (Millipore/Chemicon), or MCT4 

(Millipore/Chemicon). To each of 4 Petri dishes were added strips of nitrocellulose 

containing normal mouse brain proteins and 10 ml Blotto.  Next, the rabbit anti-mouse 

polyclonal antibodies named above were each added to a dish containing a blot (10 μl 

each).  The samples were gently shaken at 70 rpm at 37°C for 60 minutes. Samples were 

washed with several changes of 20 ml TBS.  Then, 10 ml of Blotto containing polyclonal 

Alkaline Phosphatase-conjugated goat anti-rabbit secondary antibody (5 μl; 

Pierce/Thermo Scientific) was added to each dish.  Blots were shaken at 70 rpm at 37° C 

for 30 minutes and washed in TBS as described.  An alkaline phosphatase substrate (Bio-

Rad, Hercules, CA) was used to develop each blot, as directed in the manufacturer’s 

instructions. Blots were incubated in ~10 ml of substrate at room temperature, with 

shaking, until signal developed. Blots were dried and imaged using a Gel Logic 1500 
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Imaging System (Carestream Health, Inc., Rochester, NY) with Molecular Imaging 

software (Kodak, Rochester, NY). For each analysis, Microsoft Excel software was used 

to calculate the mean intensity of the signals. The highest mean intensity signal was set to 

100% and the other samples were compared. 

 

Histological analysis of mouse brain 

Mice were sacrificed via an accepted protocol (UNF IACUC#10-009) and the 

brains were immediately removed and fixed in a 4% paraformaldehyde solution for 48 

hours.  Tissues were then transferred into 70% ethanol and stored at 4°C.  Tissues were 

dehydrated in increasing concentrations of ethanol (70% to 100%) and then paraffin-

embedded using a Microm STP 120 Spin Tissue Processor (Microm International 

/Pierce/Thermo Scientific, San Jose, CA).  Sections were cut using a model 820 rotary 

microtome (American Optical, Southbridge, MA) set at 5 micron thickness.  Sections 

were transferred from the microtome to a warm water bath.  After warming, sections 

were adhered to microscope slides (Fisher Scientific) treated with a drop of poly-L-lysine 

to facilitate adhesion.  Slides containing tissue sections were stored at room temperature. 

For histochemistry, tissue sections were rehydrated by incubation in Citrisolv 

(Fisher Scientific) for three rounds of 10 minutes each, followed by 5 minute washes in 

decreasing concentrations (100% to 70%) of ethanol.  Sections were stained with cresyl 

violet according to the  MasterTech staining protocol (American MasterTech Scientific, 

Inc., Lodi, CA).  Briefly, after dehydration, sections were rinsed in H2O, and then placed 

in cresyl violet solution for 10 minutes, followed by a rinse in H2O.  Each section was 

then dipped in 70% reagent alcohol 10 times.  Next, sections were dipped in absolute 
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alcohol 3 times, followed by clarification in Citrisolv for 3 rounds of 5 minutes each.  A 

drop of permount (Fisher Scientific) was added to each slide, and a 22 x 40 mm cover 

slip (Fisher Scientific) was applied. 

For immunohistochemistry, sections were rehydrated as described and incubated 

in a pre-incubation solution (TBS containing 2% normal goat serum and 0.0015% Triton 

X-100) for 60 minutes at 37º C in a humid chamber.  Pre-incubation medium was 

removed and 200 μl of primary antibody solution was added to the slides, which were 

incubated at 37º C for 60 minutes in a humid chamber. The antibodies used include 

those specific for Basigin (diluted 1:200 in the pre-incubation buffer; Ochrietor et al., 

2003), MCT1, MCT2, MCT4, tubulin (diluted 1:100 in pre-incubation buffer; Millipore), 

and Embigin (diluted 1:100 in pre-incubation buffer; Pierce Scientific).  Slides were 

washed 10 times each by adding TBS solution to each slide and then pouring it off after 

one minute. Secondary antibody solutions were prepared by adding Alexa-Fluor 594 

polyclonal goat-anti-rabbit antibodies (diluted 1:100 in pre-incubation buffer; Invitrogen 

Corporation). Aliquots of 200 μl of secondary antibody solution were added to each slide 

as appropriate.  After 30 minutes of incubation at 37°C in a humid chamber, the slides 

were washed as described. A nucleic acid stain was used in the final wash step, the 1,5-

bis{[2-(di-methylamino) ethyl]amino}-4, 8-dihydroxyanthracene-9, 10-dione (DRAQ-5) 

was incubated on the slides for 5 minutes are room temperature in a 1:1000 dilution 

(Ochrietor et al., 2010a). The slides were then washed a final time as described and 

mounted. A drop of a solution made by dissolving a small flake of p-phenylenediamine in 

30% glycerol was added to each tissue sample and coverslips were applied to the slides.  

All slides were stored at -20º C.  The sections were imaged using a TCS SP5 II confocal 
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microscope (Leica, Deerfield, IL) equipped with Leica Confocal Software for image 

acquisition and adjustment at the University of Florida Whitney Laboratory for Marine 

Biosciences.  Microsoft PowerPoint software was used to generate the figures. 

 A colormetric detection method was also utilized for immunohistochemistry in 

which the sections were again rehydrated as described and incubated in the pre-

incubation solution at 4°C overnight. Pre-incubation medium was removed and 200μl of 

primary antibody solution was added to the slides, which were incubated at 37°C for 60 

minutes in a humid chamber then at 4°C overnight. The antibodies used include those 

specific for Basigin (diluted 1:200 in the pre-incubation buffer; Ochrietor et al., 2003), 

MCT1, MCT2, MCT4 (diluted 1:100 in pre-incubation buffer; Millipore) and Embigin 

(diluted 1:100 in pre-incubation buffer; Pierce Scientific). Slides were washed 10 times 

each by adding TBS solution to each slide then pouring if off after a minute. Secondary 

antibody solution, ImmPRESS Reagent Kit, Anti-Rabbit Ig (Vector Laboratories Inc.; 

Burlingame, CA) was then incubated at room temperature for 60 minutes. The slides 

were then rinsed with 3 washes of PBS at 5 minutes per wash and incubated with 

ImmPACT DAB (Vector Laboratories Inc.) for 5 minutes at room temperature. This 

incubation was followed by a 5 minute running tap water rinse, then incubation in Methyl 

Green (Vector Laboratories Inc.) at 37°C for 60 minutes. The slides were then rinsed with 

tap water for two minutes followed by several washes of increasing concentrations (95% 

to 100%) of ethanol for 5 seconds each. The sections were then incubated in Citrosolv 

(Fisher Scientific) for three rounds of 5 minutes each. The cover slips were then mounted 

with Cytoseal 60 (American Mastertech Scientific Inc., Lodi, CA) and imaged using a 
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Fisher Scientific Micromaster microscope with digital camera and Micron software 

(Fisher Scientific). 

 

Recombinant Embigin transmembrane domain plasmid production 

Expression plasmids containing the cDNA for the entire Embigin transmembrane 

domain, as well as truncated versions of the domain were produced by PCR and 

annealing of oligonucleotides respectively. Primer sequences are shown in Table 2.1.  

The PCR setup included 1μL mouse cerebellum cDNA; 1μL of the forward primer 

(EmbTMF), 1μL of the reverse primer (EmbTMR), 25μL of the Ex Taq mix (TAKARA 

Corporation, Madison, WI), for a total volume of 50 μL in a 500 μL microcentrifuge tube 

(USA Scientific).  A three step cycling protocol was used: 95°C for 30 seconds, 55°C for 

30 seconds, 68°C for two minutes; for a total of 30 cycles.  

All PCR products were analyzed by gel electrophoresis using a 1% agarose gel 

with 1X Tris-boric acid-EDTA (TBE) buffer.  Once the gel was documented, the PCR 

products were extracted from the gel using a sharp scalpel and placed in a 1.5 centrifuge 

tube (USA Scientific).  DNA was purified from gel fragments via the QIAquick gel 

extraction kit (QIAGEN, Valencia, CA), following the protocol of the manufacturer.  To 

the excised product was added 180 μL QG buffer.  The mixture was incubated at 42°C 

for 10 minutes to dissolve the gel.  Then 60 μL of isopropanol was added and the entire 

volume was transferred to a QIAquick spin column and centrifuged at 13,000 rpm for 1 

minute.  After discarding the flow through, 500 μL of QG Buffer and 750 μL Buffer PE 

were used separately to wash the column, followed by centrifugation at 13,000 rpm for 

one minute, with the flow through discarded after each wash.  A final spin was conducted  
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Table 2.1: Primers used for amplification of the Embigin transmembrane domain. 
 
 
Name 

 
Sequence 

  pETEmbXF 
 

5' CACCATGCGCTCGCACACTGGC 3' 
pETEmbXRV 

 
5' GAAGCTCAGCACAACCAGCTCATT 3' 

pETEmbTMF 5' CACCCTGGTGCCCCTCAAGCCA 3' 
pETEmbTMRV 5' ACAAAGCAGAATGATGGCCACCA 3' 
pETEmbTM6RV 5' TGGCTTGAGGGGCACCAG 3' 
pETEmbTM19F 5' CACCGCCATCATTCTGCTTTGT 3' 

pETEmbTM24RV 5' ACAAAGCAGAATCATGGC 3' 
pETEmbTM7F 5' CACCTTTCTGGCCATACTTGCC 3' 
pETEmbTM12RV 5' GGCAAGTATGGCCAGAAA 3' 
pETEmbTM13F 5' CACCGAAGTCATCCTCTTGGTG 3' 
pETEmb18RV 5' CACCAAGAGGATGACTTC 3' 
pETBasXFwd 5' CACCATGGCGGCGGCGCTGCTG 3' 
pETBasXRV 

 
5' GCGGCTCCGCACACGCAGTGAG 3' 
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at 13,000 rpm for 1 minute to clear any residual ethanol from Buffer PE.  The column 

was then placed in a clean 1.5 mL microcentrifuge tube (USA Scientific) and 30 μL of  

elution buffer was applied to the center of the membrane and incubated for 1 minute.  

The column was centrifuged for one minute at 13,000 rpm to recovers the PCR product. 

For annealing of oligonucleotides, appropriate forward and reverse primers, (100 

pmol/μL of each) and 1μL of a 20x annealing buffer (0.2 M Tris-HCL pH 7.9, 40 mM 

MgCl2, 1M NaCl and 20 mM EDTA), in a total volume of 20 μL, were combined and 

heated to 90°C for 5 min. The mixture was slowly cooled to room temperature.  

For cloning into the pET102 (D/TOPO) vector (Invitrogen Corporation), 1.0 μL 

salt solution, 1.0 μL pET102 vector, and 4.0 μL of annealed plasmid or gel-purified PCR 

product were combined in a 500 μL centrifuge tube (USA Scientific) and incubated for 5 

minutes at room temperature. A negative control plasmid was also generated by 

incubating 1.0 L pET102 vector with 1.0 L salt solution and 4.0 L of water for 5 

minutes at room temperature.  These plasmids (2 μL) were then each transformed into 50 

μL of chemically competent Top 10 cells (Invitrogen Corporation) following the protocol 

of the manufacturer.  The cells were mixed via stirring with the pipette and then 

incubated on ice for 30 minutes.  The cells were heat-shocked by incubating at 42°C for 

30 seconds.  The tube was immediately placed on ice for one minute and then 250 μL of 

Super Optimal Catobolite repression broth (S.O.C.) medium (Invitrogen Corporation) 

was added.  The transformed cells were incubated at 37°C with shaking (220 rpm) for 

one hour.  The entire mixture was then spread onto Luria-Bertani (LB) agar (BD/Fisher 

Scientific, Woodlawn, NJ) plates containing carbenicillin (Fisher Scientific; 50 μg/mL).  

The plates were inverted and incubated at 37°C overnight.  Multiple colonies were then 
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picked with a toothpick from the LB-agar plate the following day and added to 25 L of 

water in a 500 L tube (USA Scientific) to generate water cultures.   

The colonies were screened using M13R and PD13 primers (Table 2.2). The 

reaction included 25 μL EX-Taq mix (TAKARA Corporation), 5 μL of the water culture, 

and 0.5 μM of each primer in a total volume of 50 μL. The reaction was subjected to PCR 

amplification using a protocol as follows: 95°C for 2 minutes, and 30 cycles of 95°C for 

30 seconds, 55°C for 30 seconds, and 72°C for two minutes. The amplified PCR products 

were then analyzed on a 1% agarose gel in 1X TBE buffer. Colonies producing PCR 

products of the approximate number of base pairs were thought to contain the 

recombinant DNA insert. These positive colonies (5 μL of water culture) were grown 

overnight at 37°C with shaking (220 rpm) in 3 mL of Luria Bertani broth containing 

carbenicillin (50 μg/mL, Fisher Scientific). 

The plasmids contained in positive colonies were purified using the QIA prep spin 

Miniprep Kit (QIAGEN).  An aliquot of overnight culture (1.5 mL) was placed into a 1.5 

mL microcentrifuge tube (USA Scientific) and centrifuged at 13,000 rpm for one minute. 

The supernatant was removed and the pellet was resuspended in P1 buffer (250 μL). 

Buffer P2 (250 μL) was added to the cells and mixed by gently inverting the tube five 

times.  Buffer N3 (350 μL) was added to the solution and also mixed gently by inverting 

the tube five times.  The mixture was centrifuged at 13,000 rpm for 10 minutes.  The 

supernatant was then placed into a QIAprep spin column in a 1.5 mL collection tube 

using a fine transfer pipette (SAMCO, Morrisville, NC).  The column was centrifuged at 

13,000 rpm for one minute and the flow-through was discarded.  The plasmid DNA was 

washed with 500 μL of PB buffer and the column was centrifuged for one minute at  
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Table 2.2: Vector primers used for sequencing 

Name Sequence 
  PD13 5' CTGGCCGTCGTTTTAC 3' 

M13 Rev 5' CAGGAAACAGCTATGA 3' 
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13,000 rpm. The flow-through was discarded.  The spin column was washed with 750 μL 

of buffer PE and centrifuged for one minute at 13,000 rpm.  The flow-through was 

discarded.  The column was centrifuged for one minute at 13,000 rpm to remove residual 

ethanol.  Then buffer EB (50 μL) was added to the center of the membrane.  The column 

was incubated for 1 minute and then centrifuged at 13,000 rpm for 1 minute to recover 

the plasmid DNA. 

The sequence of each construct was verified via automated DNA sequencing.  

The sequencing was conducted using the Beckman-Coulter Quick Start kit (Fullerton, 

CA).  Six μL of the purified plasmid was placed into a 500 μL centrifuge tube and 

incubated for 5 minutes at (96oC).  Cycle sequencing was initiated by adding 4 μL 

Quickstart mix (Beckman-Coulter) and 2 μL T7 Reverse primer (1 pmol/μL; Invitrogen 

Corporation) to the denatured plasmid.  The following cycling parameters were used: 30 

cycles of 96°C for 20 seconds, 50°C for 20 seconds, 60°C for 4 minutes.  The reaction 

mixture was placed into a clean 1.5 mL microcentrifuge tube (USA Scientific) containing 

5 μL of stop solution (2 μL of 3M sodium acetate, pH 5.2; 2 μL of 100 mM Na2-EDTA, 

pH 8.0; and 1μL of 20 mg/ml glycogen).  Sixty μL of cold 100% ethanol was added and 

the solution was thoroughly mixed and immediately centrifuged at 14,000 rpm for 15 

minutes.  The supernatant was removed with a fine transfer pipette (SAMCO).  The pellet 

was washed twice with 200 μL of 70% ethanol and centrifuged at 14,000 rpm for two 

minutes at each wash.  Again, a fine transfer pipette was used to remove the supernatant.  

The precipitated DNA was then dried in Savant Speed Vac SC 100 for 10 minutes.  

Sample loading solution (25 μL; Beckman-Coulter) was used to resuspend the dried 
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pellet, which was then analyzed using a Beckman-Coulter CEQ 8000 genetic analyzer 

(Fullerton, CA).  

 

Expression and purification of Histidine-tagged recombinant proteins 

One of each of the expression vectors generated as well as the control probe were 

individually transformed into BL21 star (DE3) cells (Invitrogen Corporation) following 

the protocol of the manufacturer.  Two μL of plasmid was added to 50 μL of cells in a 3 

mL tube and the mixture was incubated on ice for 30 minutes.  The cells were heat 

shocked by incubation at 42°C for 30 seconds and then immediately transferred to ice for 

two minutes.  Room temperature S.O.C. medium (250 μL; Invitrogen Corporation) was 

added to the cells and they were incubated at 37°C with shaking (220 rpm) for one hour.  

The entire reaction mixture was transferred to 10 mL LB containing carbenicillin (50 

μg/mL; Fisher Scientific, Waltham, MA) and incubated at 37°C with shaking (220 rpm) 

overnight. 

The entire 10 mL of overnight inoculation was transferred to an Erlenmeyer flask 

containing 250 mL of LB with carbenicillin (Fisher Scientific; 50 μg/mL).  The culture 

was incubated at 37°C with shaking (220 rpm) for three hours.  The cultures were then 

induced in midlog growth with 250 μL of 1mM Isopropyl β-D-thiogalactopyranoside 

(IPTG, Fisher Scientific,) and allowed to grow overnight at 37°C with shaking (220 rpm). 

The induced overnight culture was divided into 6 centrifuge tubes.  Cultures were 

pelleted by centrifugation at 3000×g for 15 min at 4°C and the bacterial cells were 

resuspended in 10 mL total volume of TALON Xtractor Buffer (Clontech, Mountain 

View, CA). The entire resuspension was then incubated with lysozyme (100 μL; 
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Clontech) and DNase I (1 U/μL; Fisher Scientific) for 10 minutes at room temperature 

with shaking.  A protein lysate was formed via centrifugation at 10,000×g for 20 min at 

4°C which was then applied to a TALON metal affinity resin (Clontech) for purification.  

The TALON metal resin (Clontech) was prepared by resuspending the TALON 

metal affinity resin through vortexing.  Two milliliters of the resin was transferred to a 50 

mL centrifuge tube and centrifuged at 700×g for two minutes at 4°C.  The supernatant 

was discarded.  The resin was washed with 10 mL of 1X equilibration/wash buffer 

(Clontech), mixed briefly and centrifuged at 700×g for two minutes at 4°C.  This 

equilibration step was repeated. 

The bacterial supernatant was added to the resin and allowed to incubate at room 

temperature with shaking (100 rpm) for 20 minutes.  The mixture was centrifuged at 

700×g for five minutes at 4°C.  The supernatant was discarded and the pellet was washed 

with 10 mL of 1X equilibration/wash buffer.  The solution was then centrifuged at 700×g 

for five minutes and the supernatant was discarded again.  This wash step was repeated 

once.  One milliliter of the 1X equilibration/wash buffer was added to the pellet and the 

mixture was vortexed briefly.  This solution was then transferred to a 2 mL disposable 

column that was included in the TALON purification kit (Clontech).  The column was 

held vertically until the resin settled.  The buffer was then drained from the column into a 

waste beaker.  The column was washed with 5 mL of 1X equilibration/wash buffer.  The 

purified protein was eluted with 5 mL of 1X elution buffer.  Fractions of 0.5 mL were 

collected and analyzed at 280 nm.  Fractions showing peak absorbances were stored in     

-80°C until further use. 
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 The protein concentration of each recombinant protein was determined using the 

Coomassie (Bradford) Protein Assay as previously described.  

 

 

ELISA assays 

Sandwich ELISA analyses served as binding assays (Finch et al., 2009) in which 

antibodies specific for MCT1, MCT2 or MCT4 (all from Millipore) coated onto wells of 

a 96 well plate at 0.05 μg/mL in phosphate buffered saline (PBS; 100 μL total volume) 

and incubated overnight at 4°C.  Unbound capture antibody was removed and the wells 

washed with PBS-T (PBS plus 0.25% Tween-20).  Bovine serum albumin (BSA; 100 

μg/mL) was added to each well (100 μL total volume) and incubated at 37°C for 30 

minutes.  Unbound BSA was removed by a PBS-T wash.  Mouse brain proteins (100 

μg/mL) were added to the wells (100 μL total volume) and incubated at 37°C for 30 

minutes.  Unbound mouse brain proteins were removed by a PBS-T wash.  Embigin 

transmembrane domain or vector control probes (100 μg/mL; ~5 moles) were added to 

appropriate wells (100 μL total volume) and incubated for 30 min at 37°C.  Unbound 

probes were removed by a PBS-T wash.  An antibody specific for C-terminal 6XHis 

(Invitrogen Corporation) was then applied to appropriate wells (1:1000 dilution, 100 μL 

total volume) and incubated for 30 min at 37°C.  Unbound C-terminal 6XHis was 

removed by a PBS-T wash.  Alkaline Phosphatase (AP)-conjugated goat anti-mouse IgG 

(AP-GAM; Pierce/Thermo Scientific) was added to appropriate wells (1:1000 dilution, 

100 μL total volume) and incubated at 37°C for 30 min.  Unbound AP-GAM was 

removed by a PBS-T wash.  Alkaline phosphatase substrate, (PNPP; Pierce/Thermo 
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Scientific) was then added to each well and allowed to incubate at room temperature for 

30 min or until color development was observed.  Reactions were stopped by adding 2 N 

NaOH (50 μL) and the absorbance at 405 nm was recorded.  All runs were performed in 

duplicate.  The average absorbance for each probe was calculated and plotted using 

Microsoft Excel software. 

A slightly altered ELISA protocol was used to analyze relative Embigin 

concentrations in the various parts of the brain examined (cortex, midbrain, hindbrain, 

and cerebellum).  Mouse brain proteins from each section were coated onto wells of a 96 

well plate at 100 mg/mL in PBS (100 μL total volume). The plate was incubated at 37°C 

for 1 hour.  Then the protein was removed and without washing, an antibody specific for 

Embigin (Pierce Scientific, Rockford, IL) was applied to appropriate wells (1:100 

dilution, 100 μL total volume) and incubated for 30 min at 37°C.  Unbound Embigin 

antibody was removed by a PBS-T wash.  Alkaline Phosphatase (AP)-conjugated goat 

anti-mouse IgG (AP-GAM; Pierce/Thermo Scientific) was added to appropriate wells 

(1:100 dilution, 100 μL total volume) and incubated at 37°C for 30 min.  Unbound AP-

GAM was removed by a PBS-T wash.  Alkaline phosphatase substrate, (PNPP; Pierce 

/Thermo Scientific) was added to each well and allowed to incubate at room temperature 

until color development was observed.  Reactions were stopped by adding 2 N NaOH (50 

μL) and the absorbance at 405 nm was recorded.  All runs were performed in duplicate.  

The results were then averaged and plotted in a bar graph using Microsoft Excel 

software.  
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 Results 
   

Studies have shown that amino acids within the transmembrane domain of 

Basigin are required for the interaction with MCT1 (Finch et al., 2009).  In the absence of 

Basigin (in the Basigin null mouse neural retina), MCT1 and MCT4 do not localize to the 

plasma membranes of expressing cells and photoreceptor function is disrupted (Philp et 

al., 2003).  Increased pain sensitivity is another abnormality evident in Basigin null mice 

(Naruhashi et al., 1997).  A recent study conducted by the Ochrietor laboratory at the 

University of North Florida indicated that MCT expression is not altered in the Basigin 

null mouse brain (Ochrietor et al., 2010b).  It was hypothesized by this laboratory that 

Embigin acts as the accessory protein for MCT expression in that tissue.  Therefore, a 

primary objective of this study was to characterize the expression of Basigin, Embigin, 

and MCTs 1, 2, and 4 in mouse brain, to determine if Embigin is the normal accessory 

protein for MCT1, MCT2, and MCT4 in that tissue.  Another primary objective of this 

study was to determine if the interaction between Embigin and MCT2 is similar to that of 

Basigin and MCT1 in the neural retina.  

Initially, the relative concentrations of Basigin, Embigin, and MCT1, MCT2, and 

MCT4 were determined via immunoblotting and ELISA analyses.  Mouse brains were 

divided into four sections (cortex, midbrain, hindbrain, and cerebellum) and detergent-

soluble (membrane fraction) protein lysates were prepared from each section.  

Immuoblotting analyses indicated that Basigin is expressed throughout the brain, with the 

cerebellum having the greatest relative expression (Figure 3.1).  Only a single signal at 

~50 kDa was observed on all brain blots when the Basigin-specific antibody was used, 

which indicates that the Basigin-2 gene product is not present in the brain.  Embigin  
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Figure 3.1: A) Basigin expression in mouse brain. Mouse brains were sectioned into four 
regions: Cortex (CTX), midbrain (M), hindbrain (H), and cerebellum (CBL), and protein 
lysates were generated for each region. The protein lysates were subjected to SDS-PAGE 
and subsequent immunoblotting analyses using an antibody that recognizes both Basigin 
gene products (Ochrietor et al., 2003). A representative blot is shown in panel A. 
Densitometry analyses were performed and are shown in panel B. Greatest expression 
was observed in the cerebellum, which was set at 100%. Expression in the other regions 
was determined relative to that found in the cerebellum. Error bars represent the standard 
deviation among duplicate trials. 
 

 

 

CTX M H CBL 
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expression throughout the mouse brain was measured via ELISA analysis.  It was 

determined via densitometry analyses that hindbrain and cerebellum have the greatest 

relative expression (Figure 3.2). 

The analyses also revealed that MCT1 (Figure 3.3) and MCT4 (Figure 3.4) 

expression is apparent in all four examined sections of mouse brain. It was determined 

via densitometry that little variance of MCT1 or MCT4 expression is found in the four 

regions, all showing similar levels of expression. Immunoblotting results for MCT2 

expression revealed a low concentration of the protein among the various sections of 

brain, as the MCT2 signals were visibly lighter than those for the other MCTs examined. 

The highest MCT2 expression was noted in the midbrain (Figure 3.5).   

 The results of the immunoblotting analyses, in which it was determined that all 

proteins in question are found rather ubiquitously throughout the brain, led to questions 

about whether they are expressed on the same cells within the mouse brain.  Therefore, 

paraffin-embedded sections of normal mouse brain were prepared for histological and 

immunohistochemical analyses.  Because all of the antibodies for the proteins of interest 

were prepared in rabbits, each antibody was used separately in the immunohistochemical 

analyses.  When one compares the images captured using each antibody on successive 

sections of tissue, it appears that Basigin, Embigin, MCT2, and MCT4 are expressed by 

cell bodies, which were identified by DRAQ5 staining of nuclear DNA (Figure 3.6). This 

is further supported by slides prepared via an alternative protocol in which MCT2 and 

MCT4 again appear expressed in cell bodies (Figure 3.7). There may be some overlap of 

signal for each antibody used, which suggests that these proteins are co-expressed within  
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Figure 3.2: Embigin expression in mouse brain. Mouse brains were sectioned into four 
regions: Cortex, midbrain, hindbrain, and cerebellum, and protein lysates were generated 
for each region. Mouse brain proteins from each section were subjected to an ELISA 
assay using an antibody specific for Embigin followed by an Alkaline Phosphatase (AP)-
conjugated goat anti-rabbit IgG. Alkaline phosphatase substrate was added to each well 
and allowed to incubate until color development was observed. Reactions were stopped 
with 2 N NaOH and the absorbance at 405 nm was recorded. All runs were performed in 
duplicate. The results were then averaged and plotted.  Standard deviations are 
represented by the error bars.  
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Figure 3.3: MCT1 expression in mouse brain. Mouse brains were sectioned into four 
regions: cortex (CTX), midbrain (M), hindbrain (H), and cerebellum (CBL), and protein 
lysates were generated for each region. The protein lysates were subjected to SDS-PAGE 
and subsequent immunoblotting analyses using an antibody that recognizes MCT1 
(Millipore/Chemicon). A representative blot is shown in panel A. Densitometry analyses 
were performed and are shown in panel B. The largest mean intensity was set as 100% 
and the other mean intensities were compared. Error bars represent the standard deviation 
among duplicate trials. 
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A. 

 
 
B.  
 

 
 
 
Figure 3.4: A) MCT4 expression in mouse brain. Mouse brains were sectioned into four 
regions: Cortex (CTX), midbrain (M), hindbrain (H), and cerebellum (CBL), and protein 
lysates were generated for each region. The protein lysates were subjected to SDS-PAGE 
and subsequent immunoblotting analyses using an antibody that recognizes MCT4 
(Millipore). A representative blot is shown in panel A. Densitometry analyses were 
performed and are shown in panel B. Greatest expression was observed in the hindbrain, 
which was set at 100%. Expression in the other regions was determined relative to that 
found in the hindbrain. Error bars represent the standard deviation among duplicate trials. 
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B.  

     
 
 
Figure 3.5: A) MCT2 expression in mouse brain. Mouse brains were sectioned into four 
regions: Cortex (CTX), midbrain (M), hindbrain (H), and cerebellum (CBL), and protein 
lysates were generated for each region. The protein lysates were subjected to SDS-PAGE 
and subsequent immunoblotting analyses using an antibody that recognizes MCT2 
(Millipore). A representative blot is shown in panel A. Densitometry analyses were 
performed and are shown in panel B. Greatest expression was observed in the midbrain, 
which was set at 100%. Expression in the other regions was determined relative to that 
found in the midbrain. Error bars represent the standard deviation among duplicate trials.  
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Figure 3.6: Protein expression in the mouse brain.  Paraffin-embedded normal mouse 
brain sections were subjected to immunohistochemical analyses using antibodies specific 
for Basigin (A, red); Embigin (B, red); MCT1 (C, red); MCT4 (D, red); and MCT2 (E, 
red).  A negative control slide was also generated using the Alexa-Fluor 594 polyclonal 
goat anti-rabbit secondary antibody (F, red) and the DNA-binding dye DRAQ5 (F and G, 
blue).  Comparison of panels F and G with the others suggests that Basigin, Embigin, 
MCT2, and MCT4 are expressed by cell bodies within the brain and may be expressed by 
the same cells.  MCT1 appears to be expressed by blood vessel endothelial cells 
(arrowheads), although a similar pattern of signal was observed using the secondary 
antibody alone (compare F with C).  The magnification bars shown in panels A-E 
represent 50 m. 
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Figure 3.7: Protein expression in mouse brain. Paraffin-embedded normal mouse brain 
sections were subjected to immunohistochemical analyses using antibodies specific for 
Basigin (B); Embigin (C); MCT1 (D); MCT2 (E); and MCT4 (F). A negative control 
slide was also generated using the ImmPRESS Anti-Rabbit Ig Peroxidase antibody (A). 
Comparison of panels E and F with others suggests that MCT2 and MCT4 are expressed 
by cell bodies within the brain and may be expressed by the same cells. MCT 1 appears 
to be expressed by blood vessel endothelial cells. Panel B shows Basigin expression 
throughout the tissue, in both cell bodies and blood vessel endothelial cells. Panel C 
shows that Embigin expression is concentrated in cell bodies as well. The magnification 
bars shown in panels A-D and F represent 127 and that in panel E represents 254 μm.



 51 

 
the tissue.  The expression of MCT1 appears to be restricted to blood vessels.  Although a 

similar signal was observed using the secondary antibody alone in the fluorescence slides 

(Figure 3.6), slides prepared via colormetric detection show MCT1 in blood vessels and 

no signal using the secondary antibody alone (Figure 3.7).  Signals within blood vessel 

endothelial cells were also observed using the antibodies specific for Basigin and MCT4 

(Figures 3.6 and 3.7).      

The cresyl violet histochemical analyses of the sections indicate that the region of 

brain shown is within the midbrain (data not shown).  This assessment is based on the 

presence of the cerebral aqueduct, superficial and deep gray layers of the superior 

colliculus, and the optic nerve layer of the superior colliculus, when compared to 

Franklin and Paxinos (2008).  

The immunoblotting and immunohistochemical results led to questions 

concerning the nature of the molecular interaction between Embigin and the MCTs.  

Since these proteins are expressed rather ubiquitously in the brain and appear to be 

expressed by the same cells (Embigin, MCT2, and MCT4), the ability of the 

transmembrane domain of Embigin to bind to MCT2, MCT4, and MCT1 was then 

examined.  Recombinant protein probes corresponding to the entire putative 

transmembrane domain of Embigin, as well as six-amino acid segments of the domain, 

were prepared by molecular methods for use in ELISA binding analyses.  Initially, the 

ability of the transmembrane domain of Embigin to bind to MCT2 was assessed.  

Endogenous MCT2 was captured from mouse brains and probed with the recombinant 

Embigin transmembrane domain probes.  The association between recombinant Embigin 

transmembrane domain and MCT2 was no different from that of the control protein 
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probe, which consists of the pET102 vector-specific amino acids, and MCT2 (Figure 

3.8).  Similar studies were conducted using endogenous MCT4 (Figure 3.9) and MCT1 

(Figure 3.10), and again it was determined that the transmembrane domain of Embigin 

does not interact with either transporter.  
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Figure 3.8: A sandwich ELISA was performed in which MCT2 was captured from mouse 
brain lysates.  Probes consisting of six amino acid segments of the transmembrane 
domain of Embigin (TM 1-6, TM 7-12, TM 13-18, TM 19-24) or the pET102 vector-
specific amino acids (control) were incubated with MCT2, followed by an antibody 
specific for the 6X-His epitope (Invitrogen Corporation) and alkaline phosphatase (AP)-
conjugated secondary antibody (Thermo Fisher Scientific).  AP substrate was added to 
wells and the reaction was stopped with the addition of 2N NaOH after color 
development.  The absorbance at 405 nm was measured and recorded. Tests were 
performed in duplicate.  Standard deviations are shown as error bars.  No statistically 
significant binding was observed with any of the probes tested.  
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Figure 3.9: A sandwich ELISA was performed in which MCT4 was captured from mouse 
brain lysates.  Probes consisting of six amino acid segments of the transmembrane 
domain of Embigin (TM 1-6, TM 7-12, TM 13-18, TM 19-24) or the pET102 vector-
specific amino acids (control) were incubated with MCT4, followed by an antibody 
specific for the 6X-His epitope (Invitrogen Corporation) and alkaline phosphatase (AP)-
conjugated secondary antibody (Thermo Fisher Scientific).  AP substrate was added to 
wells and the reaction was stopped with the addition of 2N NaOH after color 
development.  The absorbance at 405 nm was measured and recorded. Tests were 
performed in duplicate.  Standard deviations are shown as error bars.  No statistically 
significant binding was observed with any of the probes tested. 
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Figure 3.10: A sandwich ELISA was performed in which MCT1 was captured from 
mouse brain lysates.  Probes consisting of six amino acid segments of the transmembrane 
domain of Embigin (TM 1-6, TM 7-12, TM 13-18, TM 19-24) or the pET102 vector-
specific amino acids (control) were incubated with MCT1, followed by an antibody 
specific for the 6X-His epitope (Invitrogen Corporation) and alkaline phosphatase (AP)-
conjugated secondary antibody (Thermo Fisher Scientific).  AP substrate was added to 
wells and the reaction was stopped with the addition of 2N NaOH after color 
development.  The absorbance at 405 nm was measured and recorded. Tests were 
performed in duplicate.  Standard deviations are shown as error bars.  No statistically 
significant binding was observed with any of the probes tested. 
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Discussion 

 

It has been proposed that the proton-linked monocarboxylate transporters MCT1, 

MCT2, and MCT4 must interact with a cell adhesion molecule of the IgSF for expression 

at the plasma membrane.  Cell adhesion molecules within the Basigin subset of the IgSF 

have specifically been implicated in this role of accessory protein (Kirk et al., 2000; 

Wilson et al., 2005; Bergersen, 2007).  Although it has been documented that MCTs do 

require Basigin for membrane expression (Kirk et al., 2000; Wilson et al., 2002; Philp et 

al., 2003), other studies indicate that MCTs and Basigin do no always have overlapping 

expression (Clamp et al., 2004).  Studies of the Basigin null mouse, by this laboratory, 

indicate that although associations between Basigin and MCT1 occur (Philp et al., 2003) 

via hydrophobic interactions (Finch et al., 2009) in the neural retina, associations 

between Basigin and MCT1 do not occur in the brain (Ochrietor et al., 2010b).  The 

purpose of this study was to determine if Embigin, a member of the Basigin subset of the 

IgSF, is the natural accessory protein for MCTs in the brain, and if so, to determine if a 

hydrophobic association is used. 

Immunoblotting and ELISA analyses were first performed to determine the gross 

expression patterns of Basigin, Embigin, MCT1, MCT2, and MCT4 in the mouse brain.  

Immunoblotting was performed on isolated cortex, midbrain, hindbrain, and cerebellum 

from adult mouse brain using antibodies specific for Basigin and the MCTs, whereas an 

ELISA analysis of the same regions was performed for Embigin, as that antibody does 

not recognize the protein antigen in a denatured form (J. Ochrietor, personal observation).  

It was determined that the proteins of interest are rather ubiquitously expressed 
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throughout the mouse brain, which correlates with the results of previous studies (Fan et 

al., 1998a, Fan et al., 1998b; Morris and Flemlee, 2008; Halestrap and Price, 1999). 

In an effort to better understand the results of the initial biochemical analyses of 

Basigin, Embigin, and MCT expression, immunohistochemical analyses of paraffin-

embedded mouse brain sections were performed.  Although it can be inferred that 

Basigin, Embigin, MCT2, and MCT4 are co-expressed by cells of the midbrain, based on 

the comparison of signals from successive sections, an overlay of signals within a single 

section could not be performed since all antibodies for this study were generated in 

rabbits.  It is intriguing that Basigin appears to be expressed by cells that also express 

MCT2 and/or MCT4, even though it does not direct their expression at the plasma 

membrane (Ochrietor et al., 2010b).  Basigin expression was found throughout the tissue 

on the surface of cell bodies. Expression of Basigin, MCT1, and MCT4 also appear to 

colocalize on blood vessel endothelial cells, which is supported by previous studies of 

mouse neural retina (Ochrietor et al., 2001).  In support of the hypothesis that Embigin is 

the accessory protein for MCT expression in the mouse brain, its expression was 

determined to be similar to that of MCT2 and MCT4 in that tissue.  Based on the pattern 

of expression, it is likely that Embigin is the natural accessory protein for MCT2 and 

MCT4 in mouse brain, and not merely compensating for the lack of Basigin in the 

Basigin null mice, as other recent studies by this laboratory have determined that 

Embigin expression in the Basigin null mouse brain is similar to that of control brains (J. 

Ochrietor, personal observation).  That is to say that Embigin expression is not 

upregulated in the Basigin null mouse brain to compensate for the lack of Basigin 

expression.  
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It was proposed that a shuttle complex is formed in the brain in which Embigin 

interacts with MCT2 on neurons and MCT4 on glial cells to direct their expression to the 

plasma membrane so that transport of metabolites between cells can occur.  This is a 

molecular explanation for the astrocyte-neuron coupling mechanism hypothesized to 

exist within the brain several decades ago (Magistretti, 2006) and similar to a shuttle 

complex hypothesized to exist within the neural retina (Ochrietor and Linser, 2004).  To 

determine whether Embigin directly interacts with MCT2 and MCT4 in a manner similar 

to that of Basigin and MCT1 (Finch et al., 2009), recombinant proteins corresponding to 

the transmembrane domain of Embigin were generated for ELISA binding assays using 

endogenous mouse MCTs.  Although the proteins appear to be expressed by the same 

cells within the brain, there does not appear to be a direct interaction between Embigin 

and MCTs via the transmembrane domain of Embigin.  This should not be completely 

surprising, as although Basigin and Embigin share 50% amino acid similarity in their 

transmembrane domains, the similarity is not within the regions determined to be 

involved in the Basigin-MCT1 association (Finch et al., 2009).  Studies undertaken by 

Kathryn Fletcher in her UNF undergraduate honors thesis indicate that the extracellular 

domain of Embigin also does not interact with MCTs.  A future study, in which the 

Embigin cytoplasmic tail will be assessed, should determine whether any portion of the 

Embigin protein interacts with MCTs.   

Although the data suggest that Embigin and MCTs do not interact, several caveats 

must be discussed.  The studies employed herein only examined the involvement of 

Embigin amino acids and not the associated carbohydrates.  Obviously, no carbohydrates 

are attached to the Embigin molecule within the transmembrane domain, but the 
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possibility exists that extracellular carbohydrate moieties direct the interaction.  In 

addition, while conducting immunoblotting and ELISA assays in this study, the same 

concentrations of recombinant and endogenous proteins were used that had been 

successful in previous binding assays of Basigin and MCT1 (Finch et al., 2009).  It is 

possible that Embigin does in fact bind to the MCTs but at a much lower affinity than the 

Basigin-MCT1 interaction, as Embigin probes may have been used at too low of a 

concentration to generate a visible reaction required in the ELISA.  

The results of this study suggest that Embigin does not participate in a shuttle 

complex with MCTs in the mouse brain, as depicted in Figure 1.5.  However, it is not yet 

known whether another accessory protein acts as the chaperone for MCT expression or if 

MCTs do not need an accessory protein for expression at the plasma membrane.  Future 

studies will be required to uncover the nature of MCT expression in the mouse brain.   
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