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Abstract 

Confidence Bands for Nonlinear Regression Functions can be found 

analytically for a very limited range of functions with a restrictive parameter space. 

A computer intensive technique, the Monte Carlo Method will be used to develop an 

algorithm to find confidence bands for any given nonlinear regression functions with 

a broader parameter space. 

The logistic regression function with one independent variable and two 

parameters will be used to test the validity and efficiency of the algorithm. The 

confidence bands for this particular function have been solved for analytically by 

Khorasani and Milliken (1982). Their derivations will be used to test the Monte Carlo 

algorithm. 



Chapter 1 - Introduction 

A substantial level of statistical research has been undertaken on finding point 

estimates for parameters of regression functions and confidence regions for these 

parameters. However, there does not seem to exist much literature on the development 

of confidence bands about the nonlinear regression function. We will consider the 

problem of constructing confidence bands for nonlinear regression models. 

For a given non-linear regression function: 

y= f(x;~ + E (1) 

where.!! is a rx 1 vector of parameters, the Maximum Likelihood Estimator (M.L.E.) 

of ~ is i which is obtained by maximizing the likelihood function. The maximum 

likelihood estimator,j, may be found explicitly or for those functions where it is not 

possible to do so, a computer intensive technique may be employed. Thus the 

Maximum Likelihood function is the nonlinear regression function defmed in (1) 

evaluated at B. i.e. 

1\ 1\ 

E(y,.!! ) = f (x; e) (2) 
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A (l-a)x 100 % confidence band for a nonlinear regression function is defined 

to be two functions, YL(X) and Yu(x) between which we are (l-a)x100 % confident 

that the true function will completely lie as illustrated in Fig 1. 

y 
-yu(x) 

-"""y (x) 
~ 

}'L(x) 

~------------__ x 

Fig.l A non-linear regression function with upper and lower confidence bands 

Our goal is thus to fmd the two functions ydx) and Yu(x) for any given non-

linear regression function. When it is not possible to do so analytically, we will try 

to do so by utilizing computer intensive techniques. 

Statistical Background 

We will assume that the estimator i is asymptotically distributed as a 

multivariate normal random variable with mean!!t and covariance matrix V, where!!t 

is the true value of!!. (Myers and Milton, 1991). 
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Let us defme : 

L( ~ ) = Log likelihood function of ~ = In f (Xl>X2, .... ,"n; ~ 

and we will defme 

A(~l' ~)= -2 (L(~l) - L(~». (3) 

An asymptotic result we may use is that A(~ , ~t) is distributed as a X2 random 

variable with r degrees of freedom (Neter, Wasserman and Kutner, 1990). i.e. 

A@,~t) - X2 (r). (i is the Maximum Likelihood Estimator for ~. 

Confidence region for ~ 

If all the components of i ( al ,~,~ , ..... ,ar ) were statistically independent of 

each other, then the confidence region for ~ would assume the shape of a ellipsoid 

centered at i with axes parallel to the coordinate axes. A frequently used geometric 

A 

figure used to approximate this confidence region is a rectangular box, centered at ~, 

with sides proportional to the standard errors of the respective ai'S (Fig 2) . If 

independence between the ~'s is assumed, a confidence region of probability (I-a) 

can be obtained by producing r confidence intervals, one for each parameter, with 

individual confidence level ~. 
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However, since independence between the .fs cannot and should not be 

assumed, the true confidence region for .!! takes on an approximate ellipsoid form, 

encompassed almost within this parallelogram as shown in Fig 3. To fmd the 

confidence region for.!!\ we may use all the .!!'s with In likelihoods close to that of 

i. We can thus defme the confidence region for .!!t as : 

{ All.!! such that },,( i , .!! ) < X2
(I_U) (r) } 

-' 
" 

/ 
-' 

I 
I 
I 
I 

• I 
I 
I 
I ~ I _ 

)-------------------- ---

fi'l 
Figure 2 

The rectangular box used to 
approximate confidence region for .!! 

Figure 3 
The true confidence region for.!! , 

the ellipsoid 

(4) 

Another approach in defming the confidence region for .!! involves the 

covariance matrix Y. This approach was taken by Khorasani and Milliken (1982) 

when they found confidence bands for a logistic regression function with two 

parameters. This method states that asymptotically ~ - i ? y- I (.!! - i ) is distributed 

as an approximate X 2 with r degrees of freedom. The corresponding confidence 

region for .!!t would therefore be defined to be: 

{ All.!! such that ~ - i? y-I (.!! - i) :s; X2
(I_U) (r) } (5) 
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The shape of this confidence region takes on an exact ellipsoid fonn and can 

be used to fmd the confidence bands for a nonlinear function. 

Confidence Bands for the Non-Linear Regression Function 

Both the approaches introduced above may be used to translate confidence 

regions for ~ to confidence bands for the function which has ~ as its parameters. 

The upper and lower functions that defme the confidence bands for f (x~.!D, 

(Yu(x) and YL (x)) respectively, can be found by using the definitions: 

Yu(x) = max { f(x~.!D ~ ~ E CR} and YL(X) = min { f(x~.!D ~ ~ E CR } (6) 

where CR is the confidence region for.!!t and we choose various x's from the domain. 

We then evaluate the maximum and minimum values of the function at each Xi in this 

domain using the defmitions given above. This would give us the upper and lower 

confidence bands for the function. 

The analytic approach was employed by Khorasani and Milliken (1982) in 

finding confidence bands for two specific non-linear regression functions ( the logistic 

regression function and the Michaelis-Menten Kinetic model, both with two 

parameters). This method employed the confidence region based on equation (5) and 

took advantage of the fact that the shape was that of an ellipsoid. 
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We can therefore use the confidence region for ~ as defmed by the boundaries 

of the ellipsoid, to fmd a confidence band for the regression function. The bands 

would be defined by the value of the function evaluated at different .f s chosen from 

the edges of the ellipsoid. 

To generalize an analytical approach to solve for confidence bands of other 

non-linear regression function is not a trivial task. An increase in size of the parameter 

space or an introduction of complicated models may prove to exceed the limitations 

of a mathematical approach. 

The Monte-Carlo Method we will employ will allow us to expand this range 

to many more non-linear functions with a much broader parameter space than what 

can be achieved theoretically. 

Our method for fmding the confidence band will rely on the asymptotic 

distribution of A(i, ~). We will choose ~'s from a neighborhood around i and use 

those .!!'s that fall inside the confidence region for ~t , i.e. pass the log-likelihood test. 

An application - The logistic regression function. 

The logistic regression function is used to model the probability of the 

occurrence of an event under conditions described by a variable. 



7 

The logistic regression function for two parameters is therefore defmed to be: 

(7) 

where Y is 1 if the event occurs and 0 if it does not (Agresti, 1990). 

Khorasani and Milliken (1982) utilized analytical techniques to find 

confidence regions for 81 and 82 and hence confidence bands for the above function. 

Details of their calculations are attached in Appendix A. They employed the ellipsoid 

mentioned previously. They chose different points on the ellipsoid which gave them 

maximum and minimum values for f ( x ~ ~ ) using the following equations : 

(8) 

where I = Information matrix 
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Thus at each value of x in the domain, we evaluate two new values of 82 and 

corresponding values of 81 , This gives us points on the boundary of the ellipsoid at 

which we evaluate the logistic regression function to obtain maximum and minimum 

values of the function at that x. When we plot these points for various x's, we will 

obtain two curves which will defme the upper and lower confidence bands for the 

specified logistic function. We will attempt to use these calculations to verify our 

Monte Carlo results. 

The limitations of analytical methods can be seen in the fact that for any 

logistic regression function with more than two parameters, the evaluation of equation 

(6) becomes quite complicated. The calculations for confidence bands for nonlinear 

regression functions other than the one specified above do not seem to have been 

explored extensively, presumably because of the broad nature of the forms that these 

functions can take. Our methods will attempt to generalize the results so that we may 

be able to fmd reasonable confidence bands for any specified function with a 

reasonable number of parameters. 

The Monte-Carlo Method for finding confidence bands for non-linear 

regression functions will generate parameter estimates inside the confidence region 

of !l that can be used to approximate maximum and minimum values for the function 

at various values in the domain of X. 



Chapter 2 - Monte Carlo Technique for Confidence Bands 

The question of how to translate the confidence region for .!!.t to confidence 

bands for the nonlinear regression function (as defmed in equation 6) is what we are 

attempting to answer. Analytical approaches have been suggested for very specific 

functions. We will employ a computer intensive method, the Monte Carlo 

Technique, to solve this problem for the general class of non-linear regression 

functions. 

Let us smnmarize the steps in the Monte-Carlo Method for fmding confidence 

bands for non-linear regression functions. The detailed steps will be discussed later 

in this chapter. 

1. Find a Maximum Likelihood estimate for the parameters .!!.. 

2. Choose.!!.* randomly from a region around e.( e is the MLE for .!!..). We will 

employ a multivariate uniform distribution and a multinormal distribution to 

choose the a*'s. 

3. Check to see if this particular !}.* passes the log likelihood test. Proceed to next 

step if test is passed; return to step 2 if .!!.* is not in the confidence region of 

at. 
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4. Evaluate the function at each value ofx in the domain. If the function exceeds 

previous largest value at that particular x, designate this function value to be 

the new upper value. Do a similar test for the lower function value for each x. 

5. Return to step 2 to choose another .!!* using the same distribution employed 

above. Repeat the loop a large number of times to obtain enough.!!*'s from 

the confidence region. 

6. Tabulate the maximum and minimum function values for the x's chosen in the 

domain. These will defme the upper and lower confidence bands. 

A flow chart describing the algorithm is shown in Fig. 4. 

The logistic regression function 

To develop confidence bands for non-linear regression functions, we will 

concentrate on the logistic regression function with two parameters as defmed in 

Chapter 1, i.e. 

(9) 

Y is a categorical variable which takes on a value of 1 if an event occurs and 0 

otherwise, and X is a variable thought to affect Y. 



No 

Figure 4 

Monte Carlo Technique for finding Confidence Bands 

Find M.L.E. e 

1 
Set upper and lower curves at 

" function values evaluated at e.i.e. 
" YL(X) := f (x ; .!! ) 
" Yu(x) := f (x;.!!) 

1 
Choose a.!!* from a neighborhood around i . .,.--. 

( Use a multivariate uniform or normal distribution to do so) 

1 
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Is A( i , .!!* ) < X2
(1_a) (r) 

Repeat loop large 
number of imes 

Evaluate function at e* for each Xi in domain. ___ .....J 

If f(xj ; .!!*) < Ydx) then Ydx) := f (x ;.!!* ) 
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Since Khorasani and Milliken solved analytically to fmd confidence bands for 

the logistic regression function with two parameters, we will be able to compare our 

results to their theoretical conclusions. We should note, however, that our techniques 

should generalize for any given non-linear regression function with a given parameter 

space. 

The fITst step in our procedure involves finding point estimates for our 

parameters. We will find the Maximum Likelihood Estimates (M.L.E.) for 81 and 82. 

This is done by maximizing the likelihood function: 

II ( 1 + e 61+62%) 
alii 

(10) 

To fmd the optimal values for 81 and 82 we need to differentiate the log 

likelihood function with respect to each parameter. It is not possible, however, to fmd 

closed fonn expressions for 61 and 62 when we attempt to solve for these maximum 

likelihood estimates. We thus have to fmd an alternative technique to fmd these 

estimated parameter values for a given data set and this is where a computer intensive 

method comes in useful. 
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We will fmd the values of 81 and 82 for which the log likelihood function 

attains the maximum in 3 dimensional space. 

We are restricted by the routines available to us to fmding the value of a set 

of parameters for which a function achieves its minimum. We will thus try to 

minimize the negative log likelihood function, which accomplishes the same goal. 

We will use the gradient method to fmd this minimum, that is, we will use the 

method which utilizes the gradient of the function (found by differentiating the 

function with respect to the two parameters) to search for the minimum value of the 

negative log likelihood function. 

The Gradient Method for finding the M.L.E. for !! 

The Gradient Method that we will employ to fmd the M.L.E for ~ is the 

Method of Steepest Descent. We use the fact that steepest slope to a function occurs 

when the gradient is perpendicular to the tangent of the function at any point. Thus 

to get to the minimum of a function, we may follow this slope to the least value of the 

function in the domain. Details of this method follow in the next section. 



The Search for the M.L.E. 

• We may note that rewriting our logistic regression function as: 

In [ [(x) ] 
1-[(x) 

14 

(11) 

we obtain a linear relationship between the left hand side and the independent 

variable x, and thus we may find a reasonable guess for the value of 81 and 82 

by looking at the slope and intercept of this linear relationship given the data. 

This can be used as the starting point in our search for 81 and ~. 

• With our starting values, we use the routine Linmin (Press et al) to search 

along the gradient of the function that we seek to minimize at these starting 

values. If we make note of the fact that the steepest slope at a certain point is 

defined by its gradient at this point, an efficient method of finding a path to the 

minimum for this function would be to follow the steepest slope. Thus the 

direction vector that we will use for the next step of the search is dictated to 

us by the gradient of the function at this point. 

• When we reach the minimum value of the function along this gradient vector 

(which is found by Linmin), we may change directions by calculating the 

gradient of the function at that point and entering in a scaled value of the 

gradient as our new direction vector. 
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• We repeat the above step, taking turns switching directions according to our 

gradients until we find a value of [81 , ~] which has not changed significantly 

from the last [8 1 , 82 ] by fmding the norm of the vectors and comparing it to 

a predefmed value. This value is defmed to be our tolerance and we end the 

search when this tolerance is reached or when we achieve a predetermined 

number of maximum iterations. 

• The value of [8 1 , 82 ] we obtain fmally is our best estimate of the true 

parameter value which will maximize the likelihood function. 

Standard error of the estimates 

We will need to fmd the standard error of the estimates that we found above 

since we will require these to defme a confidence region for ~. 

The standard error can be obtained from the asymptotic covariance matrix V, 

which is defined to be [E[-HHI (press et ai, 1989). H is the Hessian matrix (i.e. the 

second partial derivative of the log-likelihood function with respect to each parameter 

in the main diagonal, and with respect to each other in the off diagonal). The Hessian 

matrix is presented in Appendix B. 
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The asymptotic covariance matrix can be found by inverting the expected value 

of the negative Hessian matrix. The variances of 6. and ~ will be found in the main 

diagonal and the covariance [6. , 62 ] will be in the off-diagona1. 

Finding the Confidence Bands for a non-linear regression function 

Once we have found the M.L.E for.!!. and standard error for the estimates, a 

confidence band for the function can be constructed. We will use the asymptotic 

distribution of A( i, .!!.t) to fmd the confidence region for .!!.t . 

A detailed account of the steps we will follow to find the confidence bands for 

the function are presented below: 

1) Find the Maximum Likelihood Estimator for 8. 

As explained in the previous section, we will find the M.L.E. for .!!. 

by the method of steepest descent. This will give us a point estimate i upon 

which we can center our confidence region for .!!.. 



5 std. dev. (61) 

Figure 5 
The rectangular box that will be 

used to select the o""s 

2) Choose a.!!* from the neighborhood around ~. 

5 std. dev. 
(9 .. ) 
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We may randomly choose the .!! *, s by usmg two well known 

distributions. The ftrst that we shall explore is the bivariate uniform and the 

other will be the bivariate normal distribution. 

The Uniform 

The 8*'s will be chosen from a bivariate uniform distribution as shown 

in Fig.S above. The ellipse which is shown will separate the .!!*'s that 

will pass the log-likelihood test from those that will not. The.!! * ' s that will pass 

the test will be those that fall inside the ellipse. The length and width of the 

box will be about 5 standard deviations of eland e 2 respectively. This will 

allow us to choose a very large percentage of all possible .!!*'s. 
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The disadvantage of using a rectangular box is that possibly a relatively 

small percentage of all the .!!*'s will actually pass the log-likelihood test since 

we will be getting many ~*'s far from the center, [81 , ~]. Thus we may have 

to choose a very large number of ~*'s to give us reasonable results when 

rmding the confidence bands. On the other hand, we can intuitively say that 

the ~ * ' s that will play a leading role in deftning the upper and lower 

confidence bands of the functions will probably be on the outer edges of the 

ellipse. We may therefore have more chances of catching these ~ *' s when we 

use the rectangular box. 

The Multi-Normal 

The e *, s will be chosen from a bivariate normal distribution centered 

at~with variance and covariance defined by the asymptotic covariance matrix 

V that we obtained when we found the M.L.E. By the inherent shape of the 

bivariate normal distribution, we can see that many more ~*'s will be chosen 

closer to i and thus will pass the log-likelihood test more often. The 

disadvantage would be that because of the proximity of the ~ * ' s to i, the outer 

edges of the ellipse may not be reached as often as it would be for the 

rectangular box. 
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Since both distributions have their positive and negative points, we will 

use both and see which will give us the better results. 

3) Checking to see if the .!!*'s pass the log-likelihood test. 

We will calculate A~,J!*) = -2 (L@ - L@*»). If this value is less than 

the X2 value for 2 d.f. at a prescribed a-level. (5.99 if a = 0.05), we will 

proceed to the next step. If the test is not passed, we return to step 2 to choose 

another J!* by the method of choice. 

4) Setting the confidence bands 

For each Xi' we will evaluate the function with the J!* that passed the 

test. At each Xj, if the function value, f( Xj, J!*), exceeds the previous maximum 

upper function value, then this new value will become the new upper value 

Yu (Xi) . Similarly, if the function value evaluated at ~* is smaller than the 

previous minimum lower value, then we will assign this new value the label 

of lower function value, YL(XJ, Obviously, only one of the two assignments 

may be made on any one ~ *. On the ftrst run through, the previous upper and 

lower function value is the function evaluated at i as specifted in step 1. 

Therefore, for each J!* that passes through this step, we can potentially broaden 

the conftdence bands. 
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5) The next e*. 

We return to step 2 to choose another ~* and go through steps 3 and 4 

with this ~*. We will continue this loop for a large number of ~*'s so 

that we may give the outer edges of the ellipse a chance of having a ~* picked 

from its locale. Obviously, the more ~*'s we choose, the better our confidence 

bands will be. There is no danger of the band becoming "too wide" since the 

~*'s that will cause this to happen will not pass the log-likelihood test in the 

first place. The time required for the algorithm to run will increase with the 

number of iterations, thus the use of computer time is a restriction on how 

many ~*'s we may choose. 

6) The final confidence bands 

We can now produce a table of the lower and upper function values for 

each Xj in the domain. If we plot the fmallower and upper function values for 

each Xj in the domain, the curve that joins these points will be the (I-a.) IOO % 

confidence band for the non-linear regression function given a certain data set. 



Chapter 3 - Results 

The algorithm that we have discussed in the previous chapter should work for 

any non-linear regression function with a reasonable number of parameters. We will 

use this algorithm to fmd upper and lower confidence bands (Equation 6) for the 

logistic regression function with two parameters. This particular function was chosen 

because of the work done by Khorasani and Milliken, who solved for the confidence 

band for f(x~ analytically. We will therefore be able to compare the results that we 

obtain from our Monte-Carlo method with their theoretical conclusions. 

To test the algorithm for this application, we will generate a data set from a 

logistic distribution with a given set of two parameter values. 

Generating the data 

We will randomly generate a data set which follows a logistic regression 

distribution by the following process : 

• We ftrst choose the true values of 81 and 82 • 
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• We will then produce an array of the independent variable X over a 

predetennined domain. A random number generator which produces numbers 

from a uniform distribution over the interval [0,1] will be used and then the 

number will be scaled according to the specified domain. 

• A corresponding array of the categorical variable Y will also be produced. 

This variable Y will assume values of 0 or 1 depending upon whether or not 

a random number generated from a uniform distribution is less than or greater 

than the logistic regression function evaluated at the corresponding value of 

X given the true values of 81 and 82 • That is, we evaluate the logistic 

regression function for the particular Xi' Recall that this number will take on 

a value in the interval [0,1]. We then generate another random number from 

the uniform distribution on [0,1]. If this generated number is less than the 

evaluated number then Y will take on the value 1, otherwise it will assume the 

value O. 

F or our example, we will generate a data set of 100 pairs of (X, Y) values, 

where the X variable may take on any value between 0 and 10. The true values of 81 

and 82 we shall enter will be 81 = -2.94 and 82 = 0.51. 
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The Maximum Likelihood Estimate 

Once we generate the data, the next step is to calculate the Maximwn 

Likelihood Estimate (M.L.E.) for the two parameters, 81 and 82 • 

For the data that we have generated, we fmd the M.L.E. 's of 81 and 82 to be 

-3.225 and 0.617 respectively. The asymptotic covariance matrix for 91, ~ was found 

to be: 

[
0.1987 

V-
-0.0332 

-0.0332] 

0.0067 

The tolerance level had been set at 10-7 and the maximum number of iterations 

allowed was 200. 

Confidence Bands for the logistic regression function 

As we noted previously, we may use one of two methods to sample from the 

confidence region for.!!, i.e. sampling from the uniform and the multivariate normal 

distributions. We will discuss briefly the results of both these methods. 



24 

The Unifonn 

As we noted earlier, we chose the ~*'s from a bivariate unifonn 

distribution centered atjwith a range of 2.5 standard deviations on either side 

of eland e 2' This gave us 5 standard deviations as the width of each side of 

the box as illustrated in Figure 5. 

We decided to choose 100 e*' s from this distribution. The number that 

passed the log-likelihood test (at a = 0.05) was 32 out of these 100. These 32 

~ * ' s were used to create a confidence band for the function by the method 

described in Chapter 2. 

We divided the domain of X [0,10], into 50 equal subintervals and 

found the maximum and minimum function values at each endpoint of these 

subintervals using the ~ *, s that passed the test. We thus had 51 ~' s on which 

we could calculate the maximum and minimum function values and thus plot 

the upper and lower confidence bands. The curve which joins these maximum 

and minimum values will defme the upper and lower confidence bands 

respectively. (These bands, as well as the curves for the M.L.E. and the true 

parameters are illustrated in Fig. 6. The evaluations of the function values are 

given in the tables in Appendix C) . 
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1.0 .--------.-------,-----.----,---------,. 

0.8 

0.6 

0.4 

0.2 

Lower Band 
0.0 ""'--------'-------'-------'-------'------' 

o 2 4 6 8 10 

x 

Figure 6 
Confidence Bands produced using Uniform Method 

We may note that the true cmve is completely inside the confidence 

bands for the defmed domain. This can be seen both in the graph and in the 

function values. 

1.0 

0.8 

0.6 
x 

0.4 

0.2 

0.0 
0 2 4 6 8 10 

X 

Figure 7 
KhorasanilMiIliken and Monte Carlo Confidence Bands 

(Uniform Method) 
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To check the accuracy of our techniques, we may use the analytical 

results developed by Khorasani and Milliken. A plot of our confidence bands 

is shown along with theirs in Fig. 7. We may note the fact that our bands are 

narrower than theirs. We will address this issue in our discussion in next 

chapter. For each Xi> we calculated the difference between the Khorasani/ 

Milliken and the Monte Carlo upper band. A similar difference was found for 

the lower band. A plot of these differences is shown in Fig. 8. 
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Figure 8 
Plot of differences between Khorasanil Milliken and the 

Monte Carlo bands for each Xl in the domain 
(Uniform Method) 
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The Bivariate Nonnal 

We repeated the steps that we took above with the exception that we 

now choose the e*' s from a bivariate nonnal distribution centered at e with the 

standard errors derived from the asymptotic covariance matrix V. 

We again decided to choose 100.!!*' s from this distribution but this time 

we noted a marked difference in the number of .!!*'s that passed the log-

likelihood test. The number that passed the test when the.!! * ' s were chosen 

from a bivariate nonnal distribution was 93 out of the 100 chosen. 
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Figure 9 
Confidence Bands produced using Normal Method 

We found the confidence bands for the function using these .!!*'s by the 

same technique as before. The values of the upper and lower band as well as 
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for the true parameters and the M.L.E. is given in Appendix C. A plot of our 

confidence bands is shown in Fig. 9. Our bands are shown in comparison to 

the KhorasanilMilliken bands in Fig. 10. A plot of the differences between 

our band and the KhorasanilMilliken is illustrated in Fig. 11. 
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Figure 11 
Plot of the differences between the KhorasanilMilIiken and 

the Monte Carlo bands for each Xi in the domain 
(Normal Method) 
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Examination of the accuracy of the Monte Carlo confidence bands 

Another test of the validity of our results may be found by repeating our 

method a large number of times, using different simulated data sets and noting the 

frequency of the occurrence of the confidence bands completely enclosing the true 

curve. That is, for a 95 % confidence band, we would expect the true curve to be 

completely inside the confidence bands around 950 out of every 1000 repetitions. 

TheUnifonn 

We generated 1000 different data sets using the same true value of ~ on each 

occasion and created 1000 confidence bands for the logistic regression function, each 

time sampling 100 ~*'s. We found that when the ~*'s were chosen from a bivariate 

uniform distribution as defmed above, our confidence bands enclosed the true curve 

86.2 % of the time in the specified domain. When we increased the number of 

sampled ~*' s from 100 to 1000 for each iteration, the proportion of times the Monte-

Carlo bands captured the true curve increased to 93.2%. A 99% confidence interval 

for the true proportion of times our bands would completely enclose the true curve 

is between 91.1% and 95.3%. In comparison, the proportion of times the true curve 

was completely inside the Khorasani / Milliken confidence band was 95.2%. 
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The mean percentage of ~*'s that passed the log-likelihood test on each 

iteration was 34.160/0 with standard deviation of 2.80/0. 

The Bivariate N onnal 

As we did for the bivariate unifonn case, we generated 1000 data sets given 

the true parameter values to see how well our confidence bands perfonned. The 

proportion of times that our confidence bands totally captured the true curve when we 

sampled 100 ~*'s was 85.8%. When we increased the number of ~*'s sampled to 

1000, we saw an increase of this capture rate to 92.9%. A 99% confidence interval 

for the true proportion of times that the Monte Carlo bands would enclose the true 

curve is 90.8% to 95.0%. We will discuss the implication of these results in the 

following chapter. 

The mean proportion of ~*'s that passed the log-likelihood test on each 

iteration was 94.87% with standard deviation of 0.67%. 



Chapter 4 - Discussion 

As we can see from the results when we apply the Monte Carlo Technique to 

fmd confidence bands for non-linear regression functions, our bands are narrower 

than those found by analytical means. 

An example is the logistic regression function with two parameters. The bands 

that were obtained by the analytical methods derived by Khorasani and Milliken were 

broader than those obtained by us, where we utilized computer intensive techniques. 

This fact can be attributed to the fact that the ~ * 's used by the theoretical methods 

were chosen from the edges of the ellipse which defmed the confidence region for ~t. 

The ~*' s that we sampled, either from the uniform or the normal distributions, did not 

always come from the absolute edge of the ellipsoid. Hence, if for any particular Xi> 

the ~ * used to maximize the upper band, or minimize the lower, did not fall on the 

edge of the confidence region, then at that particular Xj , our bands would be narrower 

than the KhorasaniJMilliken bands. We did, however, achieve the maximum value for 

the upper band and the minimum value for the lower band at a couple of points in the 

domain of X, as can be seen in Figures 8 and 11, where the difference between our 

bands and those found by theoretical means was O. It can be concluded, therefore, that 

at these points the ~*'s we sampled were on the edge of the confidence region 

ellipsoid. 
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When we repeated our algorithm 1000 times for different randomly generated 

data sets, at an a-level of 0.05, we found that when the .!!.*'s were sampled from a 

bivariate uniform distribution, our confidence bands totally encompassed the true 

function 93.20/0 of the time. When the.!!.*'s were sampled from the bivariate normal 

distribution, the true curve was captured 92.9% of the time. The KhorasanilMilliken 

bands enclosed the true curve 95.20/0 of the time. This is further confmnation of our 

earlier conclusions that our bands are slightly narrower than the analytical ones and 

can be attributed to the reasons that we discussed earlier. 

Let us briefly discuss the slight discrepancy between the results for the uniform 

and the normal methods for sampling the .!!.*'s. As we noted earlier, the uniform 

distribution chooses.!!. *, s indiscriminantly from a prescribed range and hence is just 

as likely to choose a.!!.* further away from i as it is to choose one relatively closer. 

It is these distant e * ' s that maximize the width of the confidence bands since the 

further away from~ a particular!!.* is, the more likely it is to fall near the boundaries 

of the ellipse and therefore to maximize the width of the confidence bands. 
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Ifwe sample from the normal distribution, however, we are more likely to get 

~ *' s closer to i and thus we do not fmd many ~ *' s near the edges of the ellipsoid 

which would maximize the width of the band. A e * chosen from a bivariate normal 

distribution is much more likely to pass the log-likelihood test as can be seen from our 

results (an average of 94.87% passed compared to an average of 34.16% for the 

" uniform distribution), but once this test is passed, it is likely to be too close to ~ to 

maximize the width of the band. Hence the band for the normal distribution method 

is likely to be narrower than the one for the uniform. Therefore the normal 

distribution band will enclose the true curve on average less frequently than the 

uniform. 

Though the successful capture rate of the true curve for our method may not 

seem to compare favorably with the theoretical results (especially for the normal 

case), it should be stressed that the power of our method comes from the generality 

of our algorithm. Thus when the non-linear function is such that analytical means 

cannot be employed to fmd confidence bands, the Monte Carlo method can be 

employed to a better than reasonable level of success. 
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Implications and Recommendations 

How can we improve the efficiency of our methods ? The most obvious way 

would be to increase the number of samples of~*' s that we take. This would increase 

the number of~*'s that pass the log-likelihood test and also increase the probability 

of getting!!. *, s closer to the boundaries of the confidence region of ~t • This would 

either get us closer to the maximum upper limit or the minimum lower limit for a 

particular !!. *. Hence, as a result a maximum width for the confidence band can be 

achieved. 

Evidence of this improvement can be seen from the fact that when we 

increased the number of!!. *, s sampled from 100 to 1000, the capture rate of the true 

curve improved dramatically for both methods (86.2% to 93.2% for the uniform and 

85.8% to 92.9% for the normal). Recall that only those !!.*'s that pass the log-

likelihood test will playa part in the shaping of confidence bands. Therefore there is 

no chance of us broadening the bands more than they should be. 

The disadvantage in increasing the volume of samples of!!. *, s is the increased 

time required for the algorithm to execute and thus more computer resources will be 

required for the method to run. 
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Another option in increasing the success rate for our method would be fmding 

an improved method of sampling the .!!*'s. If we could choose the .!!*'s only from a 

band close to the edge of the ellipse (Fig. 12), then that would improve the frequency 

of those.!! *, s that had a legitimate role to play in defming the confidence bands. As 

we have sunnised, the closer the sampled.!!* is to the edge of the confidence region, 

the better chance it has of broadening the confidence bands. 

Figure 12 
Sampling from an elliptical band 
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The next step in the development of the algorithm would be to try it on the 

logistic regression function with more than two parameters. We could also increase 

the number of independent variables as a way to generalizing the algorithm. 

The Michaelis-Menten Kinetic model and the linear regression model are two 

functions upon which there are theoretical results for rmding confidence bands. For 

the Michaelis-Menten model with two parameters: 

(12) 

Khorasani and Milliken (1982) developed an analytical approach to rmding the 

confidence bands. 

The linear regression model with two parameters : 

(13) 

has the Working-Hotelling approach for finding confidence bands (Neter, 

Wasserman and Kutner, 1990). These two models and respective analytical 

approaches can be used as further tests of our Monte-Carlo methods. 
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Conclusion 

For any given nonlinear regression function, we may use the Monte Carlo 

method to fmd confidence bands for the true function curve. We can therefore fmd, 

given a set of values for the independent variables, a point estimate for the value of 

the dependant variable as well as an interval within which we have a certain degree 

of confidence that the true function value will lie for that set of independent variables. 



Appendix A 

Khorasani and Milliken's Method for rmding Confidence Bands for the logistic 

regression function with two parameters. 

61 

Figure 13 
The ellipse which defines the confidence region 

for ( 61 , 62 ) in the logistic regression model 

The logistic response model is : 

where f ( x ; 81 , 82 ) is the probability of response corresponding to dose x and 81 and 

82 are the parameters of the model. 
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Let 81 and ~ be the maximum likelihood estimators of the parameters. Then, 

for a large sample, a 100(1- ex) % confidence ellipse for the parameters is: 

where Ii / s are the estimated components of the information matrix (Brand et al 1973) 

I.e. 

,. 

,. 

,. 

To find the maximum and minimum off (x;6 h 62) over the confidence region 

(the ellipse) we may fmd the extremal values of "-(x) over the ellipse where 

For a fixed value of x, the extremal values of "-(x) occur when the line with slope x 

is tangent to the boundary of the ellipse as shown in Fig. 13. 
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Therefore, we wish to find extremal values of A = 81 +82 x where 81 and 82 are 

the parameters and x is the value of the independent variable. 

Minimum and maximum values are attained when these lines are tangent to the 

ellipse. i.e. au a(u-&) 
- = -x or equivalently when = -x 
a~ a(~-~) 

Using implicit differentiation: 

or 

or 

a (6 1 - ( 1) 112 (6 1 - ( 1) + 122 (6 2 - ( 2) 
----=-[ ]=-x 
a (62 - ( 2 ) III (6 1 - ( 1) +112 (6 2 - ( 2 ) 

122 - 112 x 
where K (x) = ---

112 - III X 

To lie on the ellipse : 

Therefore: 

are the pair of values of81 and 82 that will give the maximum and minimum function 

values for any Xi in the domain. 



AppendixB 

The Hessian Matrix 

The Hessian Matrix is defmed as : 

021n L o21n L 

o 62 
1 

o 6 1 62 

H= 
o2lnL o21n L 
o 62 61 o 62 

2 

where L = Likelihood function = f (Xl' x2 , ......... , ~ ; 81 , 8 2 ) 

and 81 , 8 2 are the parameters of the function. 



Appendix C 

Results of Monte-Carlo Method and Khorasani-Milliken Confidence Bands for data 
generated for a logistic regression model with two parameters over the domain [0,10] of 

the independent variable x 

M-C : Monte Carlo Method. 

K-M : Analytical Method suggested by Khorasani and Milliken. 

Indep. M-C M-C K-M MLE True K-M M-C M-C 
variable lower lower lower 

1\ e e upper upper upper 
x value value value value value value value value 

Uniform Normal Normal Uniform 

0.0 0.0136 0.0136 0.0132 0.0382 0.0502 0.1058 0.0905 0.0905 

0.2 0.0160 0.0160 0.0154 0.0430 0.0533 0.1143 0.0989 0.0989 

0.4 0.0187 0.0187 0.0180 0.0484 0.0609 0.1235 0.1079 0.1079 

0.6 0.0220 0.0220 0.0211 0.0544 0.0670 0.1333 0.1177 0.1177 

0.8 0.0258 0.0258 0.0246 0.0611 0.0736 0.1438 0.1282 0.1282 

1.0 0.0302 0.0302 0.0287 0.0686 0.0809 0.1550 0.1394 0.1394 

1.2 0.0353 0.0353 0.0335 0.0769 0.0888 0.1670 0.1516 0.1516 

1.4 0.0413 0.0413 0.0390 0.0862 0.0974 0.1798 0.1645 0.1645 

1.6 0.0483 0.0483 0.0453 0.0964 0.1068 01.935 0.1784 0.1784 

1.8 0.0564 0.0564 0.0525 0.1077 0.1169 0.2080 0.1931 0.1931 

2.0 0.0657 0.0657 0.0608 0.1201 0.1279 0.2235 0.2088 0.2088 

2.2 0.0764 0.0764 0.0703 0.1338 0.1397 0.2399 0.2253 0.2253 

2.4 0.0888 0.0888 0.0810 0.1488 0.1524 0.2572 0.2428 0.2428 

2.6 0.1029 0.1029 0.0932 0.1651 0.1660 0.2756 0.2612 0.2612 

2.8 0.1189 0.1189 0.1068 0.1828 0.1806 0.2950 0.2804 0.2804 

3.0 0.1371 0.1371 0.1219 0.2019 0.1962 0.3156 0.3005 0.3005 

3.2 0.1576 0.1576 0.1387 0.2225 0.2128 0.3372 0.3214 0.3214 
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Indep. M-C M-C K-M M.L.E True K-M M-C M-C 
" variable lower lower lower 6 6 upper upper upper 

x value value value value value value value value 
Unifonn Nonnal Nonnal Unifonn 

3.4 0.1804 0.1804 0.1572 0.2446 0.2304 0.3599 0.3448 0.3448 

3.6 0.2058 0.2058 0.1773 0.2681 0.2490 0.3837 0.3693 0.3693 

3.8 0.2315 0.2315 0.1991 0.2930 0.2685 0.4087 0.3944 0.3944 

4.0 0.2541 0.2541 0.2223 0.3192 0.2891 q.4348 0.4201 0.4201 

4.2 0.2781 0.2781 0.2469 0.3466 0.3105 0.4619 0.4463 0.4463 

4.4 0.3034 0.3034 0.2726 0.3751 0.3327 0.4900 0.4788 0.4788 

4.6 0.3300 0.3300 0.2993 0.4044 0.3557 0.5190 0.5119 0.5119 

4.8 0.3577 0.3577 0.3267 0.4344 0.3794 0.5488 0.5449 0.5449 

5.0 0.3864 0.3864 0.3545 0.4650 0.4037 0.5790 0.5775 0.5775 

5.2 0.4152 0.4152 0.3824 0.4957 0.4285 0.6095 0.6095 0.6095 

5.4 0.4407 0.4407 0.4104 0.5266 0.4536 0.6399 0.6405 0.6405 

5.6 0.4665 0.4665 0.4381 0.5572 0.4790 0.6700 0.6704 0.6704 

5.8 0.4924 0.4924 0.4654 0.5874 0.5045 0.6994 0.6990 0.6990 

6.0 0.5184 0.5184 0.4923 0.6169 0.5300 0.7279 0.7261 0.7261 

6.2 0.5444 0.5444 0.5185 0.6456 0.5553 0.7550 0.7517 0.7517 

6.4 0.5700 0.5700 0.5441 0.6733 0.5803 0.7807 0.7756 0.7756 

6.6 0.5953 0.5953 0.5689 0.6999 0.6049 0.8047 0.7978 0.7978 

6.8 0.6201 0.6201 0.5929 0.7251 0.6290 0.8269 0.8183 0.8183 

7.0 0.6443 0.6443 0.6161 0.7490 0.6525 0.8473 0.8372 0.8372 

7.2 0.6678 0.6678 0.6385 0.7715 0.6752 0.8659 0.8544 0.8544 

7.4 0.6905 0.6905 0.6599 0.7925 0.6972 0.8826 0.8702 0.8702 

7.6 0.7123 0.7123 0.6806 0.8121 0.7183 0.8976 0.8844 0.8844 

7.8 0.7332 0.7332 0.7003 0.8302 0.7385 0.9109 0.8973 0.8973 

8.0 0.7530 0.7530 0.7191 0.8469 0.7577 0.9228 0.9089 0.9089 

8.2 0.7719 0.7719 0.7371 0.8622 0.7759 0.9332 0.9192 0.9192 

8.4 0.7897 0.7897 0.7542 0.8762 0.7931 0.9423 0.9286 0.9286 

8.6 0.8064 0.8064 0.7704 0.8890 0.8094 0.9503 0.9385 0.9385 
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Indep. M-C M-C K-M M.L.E True K-M M-C M-C 
variable lower lower lower 

A 
(} (} upper upper upper 

x value value value value value value value value 
Unifonn Nonnal Nonnal Unifonn 

8.8 0.8222 0.8222 0.7857 0.9006 0.8246 0.9572 0.9473 0.9473 

9.0 0.8369 0.8369 0.8003 0.9111 0.8389 0.9633 0.9458 0.9458 

9.2 0.8500 0.8500 0.8140 0.9206 0.8522 0.9685 0.9614 0.9614 

9.4 0.8611 0.8611 0.8269 0.9292 0.8646 0.9730 0.9670 0.9670 

9.6 0.8716 0.8716 0.8390 0.9369 0.8761 0.9769 0.9718 0.9718 

9.8 0.8813 0.8813 0.8505 0.9438 0.8868 0.9802 0.9760 0.9760 

10.0 0.8905 0.8905 0.8612 0.9500 0.8966 0.9831 0.9795 0.9795 



Appendix D 

Programs in Pascal written to find the Confidence Band for a logistic regression function with 
two parameters. The two methods of sampling are from a bivariate uniform distribution and 
a bivariate normal distribution . 

Method 1 Sampling from a bivariate uniform distribution 

Program Monte-Carlo; 

const 
ndim = 2; 
n=2 

type 
glnarray = array (.1..n.) of real ; 
glndim = array (.I .. ndim.) of real ; 
real array = array (.1..200.) of real ; 
plotxarray = array (.1 .. 60.) of real; 

var 
temp,diffi ,diff2 : real ; 
xmax,xmin : real; 
plotx : plotxarray ; 
counter : integer; 
ncom,i,j,k,maxiter : integer; 
pcom, xicom : glnarray ; 
ftol,diff,norml,norm2,fret : real; 
b,lastb,dir,betastar : glnarray ; 
infile, oudile : text ; 
dervO,dervl,dervOI : real; 
det,varl,var2,stdl,std2 : real; 
W,Z,lower,upper: realarray ; 
iseed : integer ; 
trueb : glnarray ; 
xl,xu : real; 
glix 1 ,glix2,glix3: integer; 
glr: ARRAY(.1..97.) OF real; 
ycnt,lambda : real; 
nrep : integer; 



Function Ranl(V AR idum: integer): real~ 
{ This function generates a random number in the interval [0,1] (from Press et al) } 

CONST 
m1=259200~ 

ia1=7141~ 

ic1=54773~ 
rml=3.8580247e-6~ (* l.O/ml *) 
m2=l34456~ 

ia2=8l2l~ 

ic2=284 1 1; 
rm2=7.4373773e-6~ (* l.0/m2 *) 
m3=243000~ 

ia3=456I; 
ic3=5I349; 

V AR j: integer; 

BEGIN 
IF (idum < 0) THEN BEGIN 

glixI := (icI-idum) MOD mI~ 
glixI := (ial *glixI+icI) MOD mI; 
glix2 := glixI MOD m2; 
glixI := (iaI*glixI+icI) MOD mI; 
glix3 := glixI MOD m3; 
FOR j := 1 to 97 DO BEGIN 

glixI := (ial *glixI+icI) MOD mI; 
glix2 := (ia2*glix2+ic2) MOD m2; 
glr(.j.):= (glixI +glix2* rm2)*rm1 

END; 
idum := 1 

END; 
glixI := (ial *glixI+icI) MOD mI; 
glix2 := (ia2*glix2+ic2) MOD m2; 
glix3 := (ia3*glix3+ic3) MOD m3; 
j := 1 + (97*glix3) DIV m3~ 
IF «(j > 97) OR (j < 1» THEN BEGIN 

writeln(,pause in routine RANI'); readln 
END~ 
ranI := glr(.j.); 
glr(.j.):= (glixi +glix2*rm2)*rmI 

END; 
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Procedure GenLog (TrueB : GLNArray; Var X, Y: Realarray; XL,XU: real; var ycnt:real); 
{ Generates an independent variable X in the range [XL, XU] and a corresponding categorical 
Y variable following a logistic distribution } 

Var 
I: integer; 
Func,FIRST,SECOND : real; 
R:real; 

Begin 
ycnt := 0.0; 
for 1:= 1 TO 200 DO 

BEGIN 
X(.I.) := XL + RANI (I SEED) * (XU-XL) ; 
FIRST :=EXP(TRUEB(.I.)+TRUEB(.2.)*X(.I.»; 
SECOND := 1 + EXP(TRUEB(.I.) + TRUEB(.2.) * X(.I.»; 
FUNC := FIRST/SECOND; 
R := RANI (ISEED); 
IF R < FUNC THEN Y(.I.) := 1 ELSE Y(.I.) := 0; 
ycnt := ycnt + y(.i.) 

END 
END; 

(****************************************************************) 

Function FNC ( xt : glnarray;W,Z : real array ) : real; 
{ Calculates the value of the log likelihood function for a given value of X and the 
parameters} 

VAR 
I: INTEGER; 
FIRST,SECOND, THIRD, TEMP: REAL ; 

BEGIN 
TEMP :=0; 
FOR 1:= 1 TO 200 DO 

BEGIN 
FIRST := Z(.I.) * (xt(.l.) + (xt(.2.)*W(.I.»); 
second := LN(I +EXP(xt(.1.)+xt(.2.)*W(.I.»); 
TEMP := TEMP - FIRST + SECOND 

END; 
FNC :=TEMP 

END; 



Function DFuncO (B:GLNARRA Y ; W,Z : REALARRA Y):REAL; 
{ Calculates the first derivative of the In likelihood function W.r.t. the first parameter} 

VAR 
I: INTEGER; 
TEMP,FIRST,SECOND : REAL ; 

BEGIN 
TEMP :=0; 
FOR 1:= 1 TO 200 DO 

BEGIN 
FIRST := -(EXP(B(.1.)+B(.2.)*W(.I.»*(Z(.I.)-1) + Z(.I.»; 
SECOND:= (1 +EXP(B(.1.)+B(.2.)*W(.I.»); 
TEMP := TEMP + (FIRST/SECOND) 

END; 
DFUNCO :=TEMP 

END; 

(*************************************************************) 

Function DFunc1 (B:GLNARRAY; W,Z: REALARRAY):REAL; 
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{ Calculates the first derivative of the In likelihood function w.r.t. the second parameter} 

VAR 
I: INTEGER; 
TEMP,FIRST,SECOND : REAL ; 

BEGIN 
TEMP :=0; 
FOR 1:= 1 TO 200 DO 

BEGIN 
FIRST:=-W(.I.)*(EXP(B(.1.)+B(.2.)*W(.I.»*(Z(.I.)-1) + Z(.I.»; 
SECOND:= (1 +EXP(B(.1.)+B(.2.)*W(.I.»); 
TEMP := TEMP + (FIRST/SECOND) 

END; 
DFUNCI :=TEMP 

END; 
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Function D2FuncO (B:GLNARRAY ~ W,Z : REALARRAY):REAL~ 
{ Calculates the second derivative of the In likelihood function w.r.t. the first parameter} 

VAR 
I: INTEGER; 
TEMP,FIRST,SECOND : REAL ; 

BEGIN 
TEMP :=0; 
FOR 1:= 1 TO 200 DO 

BEGIN 
FIRST := EXP(B(.1.)+B(.2.)*W(.I.)); 
SECOND:= SQR«l +EXP(B(.1.)+B(.2.)*W(J.)))); 
TEMP := TEMP - (FIRST/SECOND) 

END; 
D2FUNCO :=TEMP 

END; 

(***************************************************************) 

Function D2Func1 (B:GLNARRAY; W,Z: REALARRAY):REAL; 
{ Calculates the second derivative of the In likelihood function w. r. t. the second parameter} 

VAR 
I: INTEGER; 
TEMP,FIRST,SECOND: REAL; 

BEGIN 
TEMP :=0; 
FOR 1:= 1 TO 200 DO 

BEGIN 
FIRST := sqr(W(J.)) * EXP(B('1.)+B(.2.)*W(.I.)); 
SECOND:= SQR«l +EXP(B(.1.)+B(.2.)*W(.I.)))); 
TEMP := TEMP - (FIRST/SECOND) 

END; 
D2FUNCl :=TEMP 

END; 
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Function D2FuneOl (B:GLNARRAY; W,Z: REALARRAY):REAL; 
{ Calculates the second derivative of the In likelihood function w.r.t. both the parameters} 

VAR 
I: INTEGER; 
TEMP,FIRST,SECOND: REAL; 

BEGIN 
TEMP :=0; 
FOR 1:= 1 TO 200 DO 

BEGIN 
FIRST := W(.I.) * EXP(B(.1.)+B(.2.)*W(.I.»; 
SECOND:= SQR((1 +EXP(B(.1.)+B(.2.)*W(.I.»»; 
TEMP := TEMP - (FIRST/SECOND) 

END; 
D2FUNCOI :=TEMP 

END; 

(***************************************************************) 

Function Fldim(x: real;W,Z : REALARRA Y): real; 
{ Used by Linmin (Press et al ) to find the minimum of a function along a vector} 

VAR 
j: integer; 
xt: glnarray; 

BEGIN 
FOR j := 1 to ncom DO BEGIN 

xt(.j.):= pcom(.j.)+x*xicom(.j.) 
END; 
fldim := fnc(xt,W,Z) 

END; 

(***********************************************************) 

Function Fune (x:real) : real; 
{ Used by Linmin } 

begin 
func := fldim (x,W,Z) 

end; 



Procedure Mnbrak (var AX,bx,ex,fa,fb,fe : real )~ 
{ Used by Linmin } 

LABEL 1~ 
CONST 
gold=1.618034~ 

glimit=100.0~ 

tiny=I.0e-20; 
VAR 

ulim,u,r,q,fu,dum: real; 
FUNCTION max(a,b: real): real; 

BEGIN 
IF (a> b) THEN max := a ELSE max := b 

END; 
FUNCTION sign(a,b: real): real; 

BEGIN 
IF (b > 0.0) THEN sign := abs(a) ELSE sign := -abs(a) 

END; 
BEGIN 

fa := fune(ax); 
fb := fune(bx); 
IF (fb > fa) THEN BEGIN 

dum :=ax; 
ax :=bx; 
bx:= dum; 
dum:= fb; 
fb := fa; 
fa:= dum 

END; 
ex := bx+gold*(bx-ax); 
fe := fune( ex); 

1: IF (fb >= fe) THEN BEGIN 
r := (bx-ax)*(fb-fe); 
q := (bx-ex)*(fb-fa); 
u := bx-«bx-ex)*q-(bx-ax)*r)l 

(2.0*sign(max(abs(q-r),tiny),q-r»; 
ulim := bx+glimit*(ex-bx); 
IF «bx-u)*(u-ex) > 0.0) THEN BEGIN 

fu := fune(u); 
IF (fu < fe) THEN BEGIN 

ax:= bx; 
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{ procedure MNBRAK continued } 

fa:= tb; 
bx:= u; 
tb := fu; 
GOTO 1 END 

ELSE IF (fu > tb) THEN BEGIN 
cx :=u; 
fc := fu; 
GOTO 1 

END; 
u := cx+gold*(cx-bx); 
fu := func(u) 

END ELSE IF «cx-u)*(u-ulim) > 0.0) THEN BEGIN 
fu := func(u); 
IF (fu < fc) THEN BEGIN 

bx:= cx; 
cx :=u; 
u := cx+gold*(cx-bx); 
tb := fc; 
fc:= fu; 
fu := func(u) 

END 
END ELSE IF «u-ulim)*(ulim-cx) >= 0.0) THEN BEGIN 

u := ulim; 
fu := func(u) 

END ELSE BEGIN 
u := cx+gold*(cx-bx); 
fu := func(u) 

END; 
ax:= bx; 
bx:= cx; 
cx :=u; 
fa:= tb; 
tb := fc; 
fc:= fu; 
GOTO 1 

END 
END; 

52 



Function Brent (ax,bx,ex,tol: real; V AR xmin: real): real; 

{ Used by Linmin } 

LABEL 1,2,3; 
CONST 

itmax=100; 
egold=0.3819660; 
zeps= 1. Oe-l 0; 

VAR 
a,b,d,e,etemp: real; 
fu,fv,fw,fx: real; 
iter: integer; 
p,q,r,toll,toI2: real; 
U,v,w,x,xm: real; 

FUNCTION sign(a,b: real): real; 
BEGIN 

IF (b > 0.0) THEN sign := abs(a) ELSE sign := -abs(a) 
END; 

BEGIN 
IF ax < ex THEN a := ax ELSE a := ex; 
IF ax > ex THEN b := ax ELSE b := ex; 
v:= bx; 
w:=v; 
x:=v; 
e :=0.0; 
fx := fune(x); 
fv := fx; 
fw :=fx; 
FOR iter := 1 to itmax DO BEGIN 

xm := 0.5*(a+b); 
toll := tol*abs(x)+zeps; 
tol2 := 2.0*tol1; 
IF (abs(x-xm) <= (toI2-0.5*(b-a))) THEN GOTO 3; 
IF (abs( e) > toll) THEN BEGIN 

r := (x-w)*(fx-fv); 
q := (x-v)*(fx-fw); 
p := (x-v)*q-(x-w)*r; 
q := 2.0*(q-r); 
IF (q > 0.0) THEN P := -p; 
q := abs(q); 
etemp:= e; 
e:= d; 
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{ Function BRENT continued } 

IF«abs(p) >= abs(O.5*q*etemp)) OR (p <= q*(a-x)) 
OR (p >= q*(b-x))) THEN GOTO 1; 

d := p/q; 
u := x+d; 
IF «(u-a)<toI2) OR «b-u)<toI2)) THEN d := sign(toll,xm-x); 
GOT02 

END; 
1: IF (x >= xm) THEN e := a-x ELSE e := b-x; 

d := cgold*e; 
2: IF (abs(d) >= toll) THEN u := x+d ELSE u := x+sign(toll,d); 

fu := func(u); 
IF (fu <= fx) THEN BEGIN 

IF (u >= x) THEN a := x ELSE b := x; 
v:=w; 
fv:= fw; 
w:=x; 
fw:= fx; 
x :=u; 
fx:= fu 

END ELSE BEGIN 
IF (u < x) THEN a := u ELSE b := u; 
IF «fu <= fw) OR (w = x)) THEN BEGIN 

v:=w; 
fv:= fw; 
w:=u; 
fw:= fu 

END ELSE IF «fu <= fv) OR (v = x) OR (v = 2)) THEN BEGIN 
v:=u; 
fv:= fu 

END 
END 

END; 
writeln('pause in routine BRENT - too many iterations'); 

3: xmin:= x; 
brent := fx 

END; 
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Procedure Linmin (V AR p,xi: glnarray; n: integer; V AR fret: real); 

{ Finds the minimum value of a specified function along a given vector} 

CONST 
tol=1. Oe-4; 

VAR 
j: integer; 
xx,xmin,fx,tb,fa,bx,ax: real; 

BEGIN 
ncom :=n; 
FOR j := 1 to n DO BEGIN 

pcom(.j.) := p(.j.); 
xicom(.j.) := xi(.j.) 

END; 
ax:= 0.0; 
xx:= 1.0; 
bx :='2.0; 
mnbrak(ax,xx,bx,fa,fx,tb); 
fret := brent(ax,xx,bx,tol,xmin); 
FORj := 1 to n DO BEGIN 

'( , ) , * '(') Xl.J. := xmm Xl .J. ; 
p(.j.) := p(.j.) + xi(.j,) 

END 
END; 

(************************************************************) 

Function Logistic (var beta:glnarray ; x:real ):real; 
{ Calculates the logistic function for a given value X and the parameter vector beta } 

var 
first, second : real ; 

begin 
first := (exp(beta(.1.) + (beta(.2.)*x))); 
second := l+(exp(beta(.1.) + (beta(.2.)*x))); 
logistic := first / second 

end; 
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Procedure Getbetastaruni (var betastar,b :glnarray ; stdl,std2 : real) ; 
{ Samples a betastar from a bivariate uniform distribution centered at b } 

begin 
betastar(.1.) := «ranl(iseed) - 0.5)*5*stdl) + b(.1.); 
betastar(.2.) := «ranl(iseed) - 0.5)*5*std2) + b(.2.) 

end; 

(******************************************************************) 

BEGIN {Main Program} 

TRUEB(.1.) :=-2.94; TRUEB(.2.) := 0.51; 
nrep := 100; 
ISEED := -346834287; 
XL:=0;XU:=10; 
GENLOG(TRUEB,W,Z,XL,XU,ycnt); 
i:= 0; 
b(.1.) := In(ycntl(200-ycnt)); 
b(.2.) := 0.00 ; 

{True value of the parameters} 

{Domain of the independent variable} 

{Starting values for the parameters } 
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maxiter :=200 ; 
ftol := 1.0e-07; 

{Maximum number of iteration to find min} 
{Tolerance level} 

lastb(.1.) :=0.35 ; 
lastb(.2.) := 0.5 ; 
norml := sqr (lastb(.1.) - b(.1.) ); 
nonn2 := sqr (lastb(.2.) - b(.2.) ); 
diff:= sqrt (norml + norm2) ; 
while ( diff> ftol ) and ( i < maxiter ) do 

begin 
lastb(.1.) := b(.1.) ; 
lastb(.2.) := b(.2.) ; 
I := 1+1 ; 
DIR(.I. ):=DFUNCO(B,W,Z)/1 000; 
DIR(.2. ):=DFUNC 1 (B, W,Z)/1 000; 
LINMIN(B,DIR,NDIM,FRET); 
norml := sqr (lastb(.1.) - b(.1.)); 

nonn2 := sqr (lastb(.2.) - b(.2.) ); 
diff:= sqrt (norml + norm2 ) ; 

end; 

{ Finds the M.L.E. for the parameters} 



write(outfile,'Final value of log likelihood function is ')~ 
writeln( outfile,fret: 10:2); 
write(outfile,'Final values of beta hat is I); 
writeln( outfile,b(.I.): 1 0:2,~(.2.): 10:2); 

DERVO := D2FUNCO(B, W,Z); 
DERVI := D2FUNC1(B,W,Z); 
DERV01:= D2FUNC01(B,W,Z); 
DET := (-DERVO*(-DERV1»-SQR(DERV01); 
V ARI := (IIDET)*(-DERV1); {Variances of parameter estimates} 
V AR2 := (IIDET)*(-DERVO); 
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SIDI := SQRT(VAR1); {Std. errors of parameter estimates} 
STD2 := SQRT(V AR2); 
writeln(outfile,'std. dev. of betas is ',stdl: 1O:2,std2: 10:2); 
writeln( outfile); 

j:=I; xmax := xu; xmin := xl; plotx(.I.) := xl; 
while (j <= 51) do {sets the upper and lower band to the M.L.E values} 

begin 
lower(.j.) := logistic(b,plotx(.j.»~ 
upper(.j.) := logistic(b,plotx(.j.»; 
plotx(.j+ 1.) := plotx(.j.) + «xu-xl)/50); 
j:=j+l; 

end; 
counter := 0; 

for k:= 1 to 100 do 
begin 

getbetastaruni (betastar ,b,std 1 ,std2); 
lambda := 2* (-fnc(b,w,z) + fnc(betastar,w,z»; 
if Lambda < 5.99 then {Checks to see iflog-likelihood test is passed} 

begin 
counter := counter + 1; {Counts the number of betas tars that pass the test} 
for j:= 1 to 51 do 
begin 

temp := logistic(betastar,plotx(.j.»; 
if temp < lower(.j.) 
then lower(.j.) := temp; {Sets the lower band if necessary} 
if temp > upper(.j.) 
then upper(.j.) := temp {Sets the upper band if necessary} 

end 
end; 

end; 



writeln( outfile,'Counter is ',counter); 
writeln( outfile); 
writeln( outfile,' xCi) lower betahat upper true'); 
writeln( outfile,' ____ _ ___ I); 
for j:= 1 to 51 do 

writeln( outfile,plotx(.j.): 10: 4 ,lower(.j.) : 10:4, 
logistic(b,plotx(.j.»: 10:4 , upper(.j.): 10:4, 
logistic(trueb,plotx(j. »: 1 0:4); 

writeln( outfile); 
Write (Outfile,'true value of beta 1, beta2 : I); 
Writeln(Outfile, trueb(.I.) :7:5,trueb(.2.) :9:5); 

END. {Main Program} 

Method 2 Sampling from a bivariate normal distribution. 
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The program that samples from a bivariate normal distribution will be identical to the one 
above except that Procedure Getbetastaruni will be replaced by the following procedure and 
a corresponding call to that procedure in the main program. 

Procedure Getbetastarnorm (1:varmatrix;b:glnarray;var betastar :glnarray); 

var 
i :integer; 
sum,zl,z2:real; 

begin 
z 1 :=gasdev(iseed);z2 :=gasdev(iseed); 
betastar(.I.) :=(1(.I,I.)*zl + 1(.1,2.)*z2) + b(.I.); 
betastar(.2.) :=(1(.2,I.)*zl + 1(.2,2.)*z2) + b(.2.); 

end; 

We would also insert the following routines : 

Function Gasdev(V AR idum: integer): real; 
{ Generates a number from the normal distribution with mean 0 and variance 1 } 

VAR 
fac,r,vl,v2: real; 

BEGIN 
IF (gliset = 0) THEN BEGIN 

REPEAT 
vI := 2.0*ranl(idum)-I.O; 



v2 := 2.0*ranl(idum)-1.0; 
r := sqr(vl)+sqr(v2); 

UNTIL (r < 1.0); 
fac := sqrt(-2.0*ln(r)/r); 
gIg set := vI *fac; 
gasdev := v2*fac; 
gliset := 1 

END ELSE BEGIN 
gasdev := glgset; 
gliset := 0 

END 
END; 

(*******************************************************************) 

Procedure Choldc (var a:varmatrix ; n,np :integer;var p :varvector); 
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{ Uses Choleski Decomposition to decompose a matrix into the product of a lower triangular 
matrix and its transpose } 

var 
ij,k : integer; 
sum : real; 

begin 
for i:= 1 to n do 

for j:= 1 to n do 
begin 

end; 

sum := a(.ij.); 
for k:= (i-I) downto 1 do 

sum:= sum - a(.i,k.) * a(.j,k.); 
if (i=j) then 

begin 
If (sum <= 0) then writeln(outfile,'choldc failed'); 
p(.i.) := sqrt(sum) 

end 
else 

a(.j,i.) := sum/p(.i.) 
end 
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