
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2008

A Workflow Visual Modeler and Its Interface to Existing Workflow A Workflow Visual Modeler and Its Interface to Existing Workflow

Management Systems Management Systems

Jyoti Chaturvedi
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Computer Sciences Commons

Suggested Citation Suggested Citation
Chaturvedi, Jyoti, "A Workflow Visual Modeler and Its Interface to Existing Workflow Management
Systems" (2008). UNF Graduate Theses and Dissertations. 187.
https://digitalcommons.unf.edu/etd/187

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2008 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fetd%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/187?utm_source=digitalcommons.unf.edu%2Fetd%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

A WORKFLOW VISUAL MODELER AND ITS INTERFACE TO
EXISTING WORKFLOW MANAGEMENT SYSTEMS

by

Jyoti Chaturvedi

A thesis submitted to the
School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

May, 2008

The thesis "A Workflow Visual Modeler and Its Interface
to Existing Workflow Management Systems" submitted by
Jyoti Chaturvedi in partial fulfillment of the
requirements for the degree of Master of Science in
Computer and Information Sciences has been

Approved by the thes's committee: Date

I'Ll {f /u :2
Chairperson

Accepted for the School of Computing:

lano, Ph.D.
Dir ctor of the School

Accepted for the College of Computing, Engineering, and
Construction:

Neal S. Coulter, Ph.D.
Dean of the College

Davi<>1E.'w.Fenner, Ph. D.
Dean of the Graduate School

11

Signature deleted

Signature deleted

Signature deleted

Signature deleted

Signature deleted

Signature deleted

ACKNOWLEDGEMENTS

First, I would like to thank Dr. Arturo Sanchez-Ruiz for

accepting my request to be my thesis advisor and guide for

this work. His continuous encouragement during the

research and the time he dedicated towards it are worth

more than just thanks.

In addition, I would like to thank my spouse for his

support, during my year of work on this thesis. My

children deserve a big thank you, as well, for their

understanding of the importance of my work and for

excusing my absence from some of their activities during

this time.

iii

List of Figures

List of Tables .

List of Abbreviations

Abstract .

Chapter 1: Introduction

CONTENTS

Chapter 2: A Survey of Existing WfMSs

2.1 JBoss jBPM

2.2 Zebra

2.3 YAWL.

2.4 XFlow

2.5 Enhydra JaWE

2.6 WFGenSystem-UNF

Chapter 3: A Survey of Modeling Notations

Chapter 4: Diagramming Tools and Frameworks

4.1 JGraphPad Pro

4.2 ILOG JViews Diagrammer

4.3 Business Process Visual Architect

4.4 Enterprise Architect

4.5 Enhydra JaWE .

4.6 Java Swing and Java 2D Frameworks

4.7 JGraph and JGraphLayout Frameworks

iv

vi

viii

ix

x

1

6

6

7

8

10

10

11

14

19

19

20

20

21

21

22

22

Chapter 5 : The VM: Software Architecture and
Implementation 24

Chapter 6 : Case Studies 31

6.1 Case Study 1 : WFGenSystem-UNF 32

6.2 Case Study 2 : XFlow 39

Chapter 7: Conclusions and Future Work 44

7.1 Conclusions 44

7.2 Future Work 45

References . 46

Appendix A: WfMSs, Diagramming Tools and Frameworks 50

Appendix B: BPMN and UML Notation Comparison 51

Appendix C: JGraph XML Schema 61

Appendix D: WFGenSystem-UNF-Visual System
Demonstration: UNF HelpDesk Example .. 63

Appendix E: XFlow System Demonstration:
SimpleWorkflow Example 105

Vita . 114

v

LIST OF FIGURES

Figure 1: WfMC Workflow Reference Model Taken
from [WfMC95] . 3

Figure 2: JBoss jBPM Graphical Process Designer
Eclipse Plug-in . . 7

Figure 3: Zebra GUI Designer 8

Figure 4: YAWL Editor. 9

Figure 5: Enhydra JaWE in Together Professional 11

Figure 6: Interaction Style Currently Used by
WFGenSystem-UNF to Design, Update and
Modify a Workflow 12

Figure 7: VM Architecture 25

Figure 8: VM Toolbar 26

Figure 9: A Simple Workflow Using the Rich User
Interface 27

Figure 10: Process Sub-Menu 28

Figure 11: Flow Sub-Menu 28

Figure 12: Workflow Sub-Menu 28

Figure 13: VM Architecture with Respect to Integration
with WFGenSystem-UNF and XFlow
Applications . 31

Figure 14: WFGenSystem-UNF Architecture Diagram
with the Integration of VM 33

Figure 15: Details of the VM Integration with
WFGenSystem-UNF 33

Figure 16: VM Integrated with WFGenSystem-UNF 34

vi

Figure 17: Workflow Properties Dialog 37

Figure 18: Process Properties Dialog 37

Figure 19: Flow Properties Dialog . 38

Figure 20: VM Applet Integrated with XFlow 40

Figure 21: Workflow Properties Dialog for XFlow 42

Figure 22: XFLOW File Output from VM 43

vii

LIST OF TABLES

Table 1: User Interface Packages

Table 2: Available Methods of Interface Class

Table 3: Classes of Package
edu.unf.soc.vm.connectivity

Table 4: Classes of Package
edu.unf.soc.vm.connectivity.db

Table 5: Classes of Package
edu.unf.soc.vm.connectivity.dialog

Table 6: Classes of Package
edu.unf.soc.vm.connectivity

Table 7: Classes of Package
edu.unf.soc.vm.connectivity.db

Table 8: Classes of Package
edu.unf.soc.vm.connectivity.dialog

Table 9: Methods Implemented for XFlow

viii

26

29

35

35

36

41

41

41

42

AD

API

BPEL

BPM

BPMI

BPMN

BP-VA

GUI

JaWE

OMG

OASIS

RFP

UML

VM

WfMC

WfMS

XSD

YAWL

LIST OF ABBREVIATIONS

Activity Diagrams

Application Programming Interface

Business Process Execution Language

Business Process Management

Business Process Management Initiative

Business Process Modeling Notation

Business Process Visual Architect

Graphical User Interface

Java Workflow Editor

Object Management Group

Organization for the Advancement of
Structured Information Standards

Request for Proposal

Unified Modeling Language

Visual Modeler

Workflow Management Coalition

Workflow Management System

XML Schema Definition

Yet Another Workflow Language

ix

ABSTRACT

The rapid growth and complexity of today's businesses have

created a need for business process management approaches

that will promote the efficient functioning of these

organizations. Users of business process management tools

greatly benefit from using visual process modeling

capabilities. Cross-business interaction sets forth the

need for standardization of notations in designing these

models.

The goal of this thesis is to study state of the art

business process management notations and state of the art

diagramming frameworks associated with building a Visual

Modeler that can be easily integrated with existing

workflow management systems. This thesis presents a Visual

Modeler that has been created based on the research

findings. Two case studies are presented, which show how

the modeler has been effectively integrated as part of two

completely different workflow management systems.

x

Chapter 1

INTRODUCTION

A workflow can be simply defined as the routing of

documents and/or tasks through a network of processes. The

Workflow Management Coalition (WfMC) defines the term

workflow as "the automation of a business process, in

whole or part, during which documents, information or

tasks are passed from one participant to another for

action, according to a set of procedural rules H [WfMC99]

Two categories of workflows are worth mentioning:

scientific workflows and business workflows. The former is

mostly concerned with routing of data through various

algorithms, applications and services. The latter

concentrates on business processes, including (among

others) scheduling, and dependencies. These are not

necessarily data-driven but rather are human-driven (e.g.,

to conduct a meeting) .

A workflow management system (WfMS) is a software system

that completely automates the definition, management, and

execution of workflows. Typical elements of a WfMS include

- 1 -

a modeling component that enables administrators and

analysts to define process and activities, an execution

interface seen by end-users, and a workflow engine that

performs the coordination of processes and activities.

The WfMC published the Workflow Reference Model [WfMC95]

to characterize the major components and interfaces of a

generic WfMS architecture (see Figure 1). The model

suggests five interfaces a WfMS should support. Interface

1 defines process definition and modeling tools. Interface

2 defines progression of processes, activities, and work

items in the client application. Interface 3 defines an

invoked application interface that allows the workflow

engine to invoke other applications. Interface 4 defines

workflow enactment services to enable interaction with

other workflow systems. Interface 5 defines administration

and monitoring of the entire workflow system.

- 2 -

Process
Definition Tools

InterfacE' 1 ~
Illter!:1C'e 5

\\'ork!1o\y API and Intel'chanf!<:' tOI1l1at, Interface 4

\Vod:l1o\\' EIl~C'tment Seryice Othel Workflow
Adllllni,tratioll , En<1ctmE'nt Sernce(sj ,
& MonltorJllu

Too}s ' .' Workflcl\\ I Workt1ow i Eng me(s ') _r-- En!::,11lE'(\ ') j
f--'--

Interfnce 2 ~ t Interface 3

W01"k11o\\ ! lin'o!;ed
Client i ApphcMiom Applicatlom

Figure 1: WfMC Workflow Reference Model Taken from
[WfMC95]

The Workflow Generator and Tracking System (WFGenSystem-

UNF)l is a generic WfMS, which allows end-users to define

documents, workflow networks, and workflow systems. This

system, which implements three of the five recommended

interfaces, was developed by Stacy Hutchings, in

cooperation with Dr. Arturo Sanchez, as part of her MS

project [Hutchings05]. The three interfaces of the

Workflow Reference Model, implemented in the WFGenSystem-

UNF are Interface 1, Interface 2, and Interface 5.

Currently, workflow engineers design/modify/update a

workflow in WFGenSystem-UNF, by defining the states,

1 See http://orquidea.ccec.unf.edu:BOBO/WFGenSystem-UNF/, if a loading exception is
thrown ("Exception UNAVAILABLE"), please just press the "reload" button of your browser.

- 3 -

transitions, and outgoing/incoming strategies for the

underlying process network, using a menu-driven interface.

This thesis deals with the construction of a visual

workflow modeler and its integration with existing

workflow systems through a well-defined architecture. A

case study is presented which shows how the visual modeler

was integrated with two completely different WfMS:

WFGenSystem-UNF and XFlow.

More specifically, preparing this thesis entailed:

1. Researching state of the art WfMS architectural

blueprints.

2. Researching state of the art business process management

(BPM) notations.

3. Researching state of the art diagramming frameworks.

4. Implementing a Visual Modeler (VM) using the research

findings.

5. Interfacing the modeler with existing WfMS.

6. Deploying and testing the integrated software systems.

- 4 -

The rest of this document is organized as follows:

Chapter 2 covers a survey of existing WfMSs and their

visual modeling capabilities. Chapter 3 reviews the

business process modeling notations. Chapter 4 describes

available diagramming frameworks and tools, and explores

their usability with a visual modeler. Chapter 5 describes

the Visual Modeler architecture and implementation.

Chapter 6 presents case studies of integration of a VM

with existing WfMSs. Finally, Chapter 7 presents

conclusions and recommendations for future development.

- 5 -

Chapter 2

A SURVEY OF EXISTING WfMSs

There are several commercial and open source WfMSs

available. In this thesis, the following systems are

reviewed: JBoss jBpm, Zebra, YAWL, Enhydra JaWE, XFlow,

and WFGenSystem-UNF. These systems provide business

modeling functionality. Some of the systems are intended

for developers rather than for end users. Few of these

systems have a graphical user interface (GUI) for creating

and editing workflows, but none of these systems use

Business Process Modeling Notation (BPMN) as a diagramming

notation.

2.1 JBoss jBPM

JBoss jBPM is an open source WfMS that can be used as a

standalone application or can be embedded within a Java

application (standard or enterprise edition) [jBPM]. JBoss

jBPM provides a process definition language called jPDL

for defining process workflows in Java [jPDL]. Also

included, as part of the package, is the jBPM graphical

- 6 -

designer, which is currently available as an Eclipse plug-

in (see Figure 2) The graphical designer is not based on

BPMN. JBoss jBPM is available for most operating systems.

: ,

2.2

• L ~ ~ifl;pl!:'

t...=-Erc

1 >,

v' '" <rl:J::.~ 1.'«"..,-,·
;ev,1lwyfco H!llm~.;,.'

"--,:E'I~fSI;;~",~~

Lc l'lIll

O!~-,r""It:Swltl,l.,r,,",s D~,..)bi'Ir",,""lt CIe$'\l' S:.tn:.",,:

'..-: "·Ta'.1... 1.'/\ ''':'~:'
Of Ie i'Hh1ril(ln,)lmfl'

f)utAi:l""~ J~·"iiifl.:.C £\.+d~at1.Ylr [; f10p?llk!'~ t." tJ

~p~'tl I V.:;h.8
~Ionle hOld~j"n!Qle;t

Figure 2: JBoss jBPM Graphical Process Designer
Eclipse Plug-in

Zebra

Zebra is an open source workflow engine developed in Java

[Zebra]. It includes a GUI designer developed in Visual

Basic. The graphical designer is not based on BPMN. Zebra

is available for most operating systems, provides

7 -

persistence through Hibernate, and has an interface for an

XML loader. Figure 3 shows a screen shot of this system.

.N.e~. ~~t~lo.p~rr~~~s~.1. <I .1. x
II- x:

.. . J\

•••••••••••••• r ~ .. <c~".,J •••• • •••••••
Y Join

Name
...

,.<':\ ~ Manual
A
Splft

Null

Screen

Split

SubProcess
Join

................
~~~""? ••• '= ·· •. ~ •• s 

::::::::::::: :11======lJ::::::::::::: ............................................... v .............................................. 
( 1 > < 

Figure 3: Zebra GUI Designer 

2.3 YAWL 

Yet Another Workflow Language (YAWL) is a workflow/BPM 

system [YAWL]. YAWL consists of a workflow engine and a 

visual editor. It is developed in Java. YAWL uses an XML 

schema, XQuery, XPath, and XForms for data storage and 

- 8 -



management. YAWL uses JGraph for the workflow visual 

editor and uses its own lexicon as notation. Figure 4 

shows a screen shot of this system. 

Figure 4: YAWL Editor 

- 9 -



2.4 XFlow 

XFlow is an open source J2EE-based process management 

system that provides a platform for building, executing, 

and managing business processes and workflows [XFlow]. 

XFlow runs within a servlet container and comes with JBoss 

server implementation. XFlow does not provide any 

graphical workflow modeler or process monitoring 

capabilities. 

2.5 Enhydra JaWE 

Enhydra Java Workflow Editor (JaWE) is a workflow process 

editor based on the WfMC's XPDL specifications for the 

workflow file format [JaWE]. JaWE uses Enhydra Shark as 

the workflow engine, also based on XPDL specifications, to 

make a complete WfMS. XPDL stands for XML Process 

Definition Language used to represent the Workflow Process 

Diagram [XPDL]. XPDL provides the means to save and 

exchange the process diagram among applications. JaWE XPDL 

editor can be used with any notation-based diagram that 

can generate XPDL format files. The workflow editor is not 

based on any standard business process notation (see 

Figure 5). 

- 10 -



i~'"f.d~ r~"~~~~_~,.....jro%.~_l-~-.t ___ " __ _ 

I' ;' ,J ,: I ' 'I ,[J J (I > ~ <'; ,: '( ! n IC' I .;; "" i 
t~ hnrr.l1!l bt«rf:1~ ~';5(l/i!S QrUrPrttQlNl"lJ} ___________ -,-___ -",',"'" Cc.;."'''''l:::.\ .. ::.;'''':::~::.:,=, ... =,,~:::.==,'::.''\::.:'loJ=''''.::''''''':~;::":::\::;_''''::::,~=-''':::"",=!V.:<pd=,. 

_I~~:!~~.~-~~~~~~I ~~I~~~~~~L __ 
. j'M M] - -~-. II 

,J":' .'k 

Figure 5: Enhydra JaWE in Together Professional 

2.6 WFGenSystem-UNF 

WFGenSystem-UNF is a web application, developed by stacy 

Hutchings as part of her MS project. It generates 

customizable web-based document WfMSs [Hutchings05]. The 

motivation for and focus of WFGenSystem-UNF are the needs 

of the end user. The system's workflow engineer interface 

provides functionality to define a form, a workflow, and a 

process definition. Figure 6 shows the current style 

- 11 -



WFGenSystem-UNF offers to final users, which is form-

driven. 

"'urkfluw Gt'lh'l'ntor nud n-ad;.iug S~'sh'lU 
'I i J I, h'l-t, ~ ,',I ),j 

WorUlow l~b.l: 
De~ctlpfjon: 

Mode: ,Ocs.1q'l v 
Delete WorUlow: I 

Ve-r~l(lt'I: 

Cre:.ted By: 
ModJIIlldBy: 

Figure 6: Interaction Style Currently Used by WFGenSystem-
UNF to Design, Update and Modify a Workflow 

Either the systems with embedded visual modelers, 

discussed in the previous sections, do not provide easy 

integration with existing applications, do not use a 

standard notation, or do not provide clearly defined 

interfaces so they can be used as a standalone application 

with full menu options to manipulate diagrams. Appendix A 

summarizes the advantages and disadvantages of the various 

- 12 -



systems and tools. Table Al shows that not every system 

studied provides graphical designing capability. None of 

the systems with a graphical designer have graphical 

designer user interface customization flexibility. None of 

these systems use BPMN for workflow. Graphical designer of 

these systems cannot be integrated with other WfMSs. The 

only exception is Enhydra JaWE, which has graphical 

designer that can only be integrated with desktop-based 

WfMSs. 

The VM developed as part of this work solves all of the 

above problems. It provides a visual interface to define 

workflows using a standard notation, and offers features 

such as editing, saving, and updating of workflows. The VM 

can easily be integrated with any WfMS application through 

well-defined interfaces (see Appendix A) . 

- 13 -



Chapter 3 

A SURVEY OF MODELING NOTATIONS 

The Unified Modeling Language's (UML) 2.0 Activity 

Diagrams (AD) and BPMN provide notations for graphically 

specifying workflow-based business processes [Bock03]. In 

this thesis UML 2.0 ADs and BPMN are reviewed and 

compared, from the perspective of some of the workflow 

patterns proposed by van der Aalst et al. [van der 

Aalst03], as shown in Appendix B. 

The BPMN, developed by BPM Initiative (BPMI) and now 

maintained by Object Management Group (OMG)2, provides a 

graphical notation for expressing business processes in a 

business process diagram [OMG]. The objective of BPMN is 

to support BPM by both technical users and business users, 

by providing them with a notation that is intuitive to 

business users, yet able to represent the semantic of 

complex processes. The BPMN specification also provides a 

mapping from the visual elements of the notation to the 

underlying constructs of execution languages, particularly 

2 The OMG is an international, open membership, not-for-profit computer industry 
consortium. 

- 14 -



the Business Process Execution Language for Web Services 

(BPEL4WS)3 [Andrews03]. The introduction of BPMN creates a 

bridge between the business and IT layers of an 

organization. As Stephen A. White describes: 

The primary goal of BPMN is to provide a notation 
that is readily understandable by all business users, 
from the business analysts that create the initial 
drafts of the processes, to the technical developers 
responsible for implementing the technology that will 
perform those processes, and finally, to the business 
people who will manage and monitor those processes 
[White04A] . 

UML is a language with a very broad scope that covers a 

large and diverse set of application domains. Not all of 

its modeling capabilities are necessarily useful in all 

domains or applications. The modeling concepts of UML are 

grouped into language units. ADs are intended for modeling 

computational and business/organizational processes. 

UML 2.0 AD and BPMN share many of the same shapes for the 

same purposes. There are some differences among the visual 

elements, with BPMN containing fewer core objects and 

having variations on these objects to handle the 

complexities that might arise in modeling processes. As 

3 BPEL4WS, provides a language for the formal specification of business processes and 
business interaction protocols. 

- 15 -



shown in Table B3 (see Appendix B), BPMN offers separate 

notations for displaying variations of flow. BPMN uses 

notations consistently, for example, a diamond for a 

decision and a rectangle for activity. UML 2.0 AD and BPMN 

notations provide similar representations for most of the 

control-flow patterns. The only exception is ADs do not 

have an adequate graphical representation of the 

Interleaved Parallel Routing pattern and the Synchronizing 

Merge pattern. 

BPMN and UML 2.0 AD can be used as a graphical front-end, 

to capture BPEL process descriptions. BPEL is an XML-based 

language for the definition of business processes. BEA, 

IBM, Siebel Systems, and Microsoft developed the first 

version of BPEL. It was named BPEL4WS [Andrews03]. BPEL4WS 

1.1 was submitted to the Organization for the Advancement 

of Structured Information Standards (OASIS) for 

standardization purposes [OASIS]. The OASIS technical 

committee came up with the name Web Services BPEL, version 

2.0 in September 2004. This led to a broader acceptance of 

BPEL in industry and it emerged as a standard to address 

business process integration needs. BPEL is a language 

that allows business analysts to define business processes 

consistently, within or across companies. Because BPEL is 

- 16 -



based on XML standards, it ensures interoperability when 

integrating with other systems. The OASIS technical 

committee did not suggest any graphical notation for Web 

Services BPEL. BPMN can be used as a graphical front-end, 

to capture BPEL process descriptions. White described a 

translation from BPMN to BPEL [White05]. An approach for 

the transformation of AD and BPMN, in the context of BPEL, 

is described by Kalnins [Kalnins06] , while Ouyang et al. 

came up with a more detailed translation and developed a 

tool for translating BPMN to BPEL [Ouyang06]. 

"The two diagrams [BPMN and UML 2.0 AD] also share the 

characteristic of being a view (a diagram) for the 

Business Process Definition metamodel being developed 

through an RFP [request for proposal] process in the OMG" 

[White04B]. Wohed et al. conducted a study for pattern-

based analysis of BPMN and UML 2.0 AD and concluded that 

BPMN and UML 2.0 AD are almost fully overlapping 

[Wohed05] . 

In 2001, the BPMN effort started to create a notation to 

draw business process diagrams for business people to use. 

In 1994, the UML effort started to standardize modeling 

for software development for technical people. The ADs 

- 17 -



were included subsequently, in an effort to refine UML for 

business people, but it is still more technically 

oriented. The membership of the BPMI Notation Working 

Group represents a large segment of the BPM community. 

They have come to a consensus that BPMN should serve as 

the standard. For these reasons, BPMN was chosen as the 

notation for the VM. 

- 18 -



Chapter 4 

DIAGRAMMING TOOLS AND FRAMEWORKS 

The Visual Modeler that was developed as part of this 

thesis was built using a diagramming framework. In this 

chapter, we present a review of some frameworks that were 

considered. 

4.1 JGraphPad Pro 

JGraphPad Pro is a commercial tool used to create diagrams 

such as graphs, database layouts, and business process 

workflows using BPMN. It uses the JGraph and JGraphLayout 

packages, which are open source frameworks, and allows 

easy integration with existing applications. It provides 

customization of icons and configuration of the 

application, using XML. JGraphPad Pro offers additional 

features needed for the integration of the VM with other 

components. However, it is priced at $1,495, which 

prevented us from purchasing it for this work. 

- 19 -



4.2 ILOG JViews Diagrammer 

ILOG JViews Diagrammer provides a set of configurable Java 

components for creating graphical editing, visualization, 

supervision, and monitoring tools. The Diagrammer includes 

a customizable BPMN modeler that can be used with desktop 

or web applications. The developer license for Diagrammer 

is priced at $4,000, which also was not within the budget 

for this work. 

4.3 Business Process Visual Architect 

Business Process Visual Architect (BP-VA) is a standalone 

BPMN-based visual diagramming tool. BP-VA is a desktop-

based tool that provides limited customization options for 

integration. BP-VA cannot run in a browser and cannot be 

integrated with an existing web-based application, as it 

requires full installation on a client's machine with a 

valid license key for execution. BP-VA is priced at $99 

and is part of the Visual Paradigm Suite priced at $1,999. 

- 20 -



4.4 Enterprise Architect 

Enterprise Architect is a UML 2.0-based modeling tool. It 

is a full featured desktop application, but does not 

provide support for BPMN, for process flow diagrams. The 

purpose of this research work was to build a VM, which 

supported BPMN; therefore, the UML notation-based tool was 

not the right fit. However, even with the current 

configuration of this tool, which does provide support for 

BPMN, it could not be integrated because it requires 

complete installation on the client's machine, with a 

separate license for its use. This tool is priced at $135. 

4.5 Enhydra JaWE 

Enhydra JaWE is the first open source graphical workflow 

process editor based on the WfMC XPDL specification 

[XPDL]. Professional and community editions of this tool 

are available. Both the editions are available as plug-ins 

for Borland Together Software [BT] and the commercial 

product is called Together Workflow Editor [TWE]. The 

professional edition provides more features than the 

community edition. The editor can only be used as part of 

- 21 -



the Together Workflow Editor software, thus was not the 

right tool for this work. The community edition is free 

and the professional edition of Together Workflow Editor 

is available for $699. 

4.6 Java Swing and Java 20 Frameworks 

Java Swing [SWING] and Java 20 [JAVA20] graphical packages 

provide a rich set of libraries to build GUls, graphs, and 

diagrams. The business process flow diagrams created using 

these set of libraries do not provide any interactive 

features. To make a powerful VM requires a layout engine, 

user interface, and an adapter. Though not impossible, 

creating a layout engine from scratch would be an 

extensive task, thus was outside of the scope of this 

project, due to time constraints. The framework is free to 

download, but was not used for the project, because of the 

need to create a layout engine. 

4.7 JGraph and JGraphLayout Frameworks 

JGraph provides a very extensive set of packages to custom 

build a business process-diagramming tool. It provides a 

swing-like GUI package for the interface and a layout 

- 22 -



package, providing automatic positioning functionality and 

ease of use. These features enable rapid application 

development and deployment. JGraph and JGraphLayout are 

available for $495 for commercial use and are free for 

non-commercial use. 

Of the tools and frameworks evaluated (see Appendix A), 

the JGraph and JGraphLayout frameworks seemed to be the 

best fit for this work, due to following reasons. These 

frameworks provide support for BPMN notation, rich set of 

application programming interfaces (API) for user 

interface, powerful layout engine that promised to reduce 

development time, flexibility to integrate with web-based 

applications, and API for creating custom database or XML 

adapter. JGraph and JGraphLayout applications cannot run 

inside a browser, but can be integrated with web 

applications, using the Web start technology or as an 

Applet. The web version of JGraph and JGraphLayout, called 

MxGraph, is currently available as a beta version only 

[MXGRAPH]. MxGraph is capable of providing interactive 

workflow diagrams inside a browser. This would have been 

the right framework for the study, but because it was not 

available for our purposes at that time, we decided upon 

the JGraph and JGraphLayout frameworks. 

- 23 -



Chapter 5 

THE VM: SOFTWARE ARCHITECTURE AND IMPLEMENTATION 

The VM is a standalone Java application for designing 

BPMN-based workflows. The VM is based on open source 

packages, JGraph and JGraphLayout, the Java 1.5 Swing 

package, and Java 1.5 SDK. JGraph provides the ability to 

easily create workflow components like nodes, ports, and 

the interconnectivity mechanism, while JGraphLayout 

provides the implementation of layout algorithms and graph 

resizing capabilities, making the task of designing 

complex workflows simpler. The JGraph package API provides 

ways to persist data, in the form of XML documents or 

directly to a database. The VM built as part of this 

thesis uses an XML document for storing the workflow 

definition. 

The VM can design workflows using interactive user input 

or modified existing workflows, by taking input in the 

form of an XML file validated against the JGraph XML 

Schema (see Appendix C). The designed workflows are 

- 24 -



persisted in the form of an XML file conformant to a 

JGraph XML Schema. 

The architecture of the VM built as part of this thesis 

aims at enabling an easy integration of this tool with 

existing WfMS. Two major components define The VM's 

architecture: the VM user interface and the connectivity 

module. The user interface provides designing 

capabilities, whereas the connectivity interface provides 

a communication channel between the user application and 

the VM's user interface. Figure 7 provides an overview of 

the architecture. 

'lisl1nl IVlodeler Package 

l\Ioflelt>i' 

WOl*flow XMLData 

Figure 7: VM Architecture 

- 25 -



The VM application (user interface module) consists of two 

packages, as described in Table 1. 

Package Description 

edu.unf.soc.vm.ui Package which consists of the base 
modeler and all User Interface (UI) 
components of the BPMN used in the 
workflow design 

edu.unf.soc.vm Package which consists of the 
extension of the base modeler, to 
provide XML persistence of the 
workflow and sub-menus for the 
workflow object properties 

Table 1: User Interface Packages 

The user interface provides a limited set of BPMN notation 

that can be used in the workflow design. Figure 8 shows 

the toolbar available for workflow designing and editing, 

including the set of BPMN entities. 

Figure 8: VM Toolbar 

The toolbar buttons available are the following, from left 

to right: Save, Start, Process, OR-Split/OR-Merge, AND-

Split/AND-Merge, Deferred Choice, End, Toggle Connect 

Mode, Undo, Redo, Bring to Front, Send to Back, Reset 

- 26 -



Zoom, Zoom In, Zoom Out, Group, Ungroup, Collapse, Expand, 

and Expand All. 

Using the rich user interface toolbar, a simple workflow 

can be designed in few mouse clicks. As workflow objects 

are created, unique default labels are assigned to them. 

The workflow in the Figure 9 shows two processes and three 

labels. The start and end states have the default labels, 

Start and End, which cannot be modified. 

I~J [~ICiJC~Jl~I~J<?F-i] [~l I-~T~:[~i 
---~--------~--~~--~--~---.----~--------- .. ------~--~-----------

I 

8 Label 

4Mb 

Figure 9: A Simple Workflow Using the Rich User Interface 

The user interface also provides an option to edit 

individual properties of the workflow objects. Figure 10 

shows sub-menu options for the selected process, Process 

2. Figure 11 shows sub-menu options for the selected flow, 

Label 5. Figure 12 shows the sub-menu options for the 

workflow. The properties option can be customized by the 

user through the connectivity interface. 

- 27 -



labEl 4 

Remove Process 

Figure 10: Process Sub-Menu 

Remove Flow 

Figure 11: Flow Sub-Menu 

'-shelll 

I C_~~~;kri_~_w~~r~f!_~~]~-_:~~J! Remove Workflow 
--"-~-------. _._---"---

Figure 12: Workflow Sub-Menu 

The connectivity interface module is provided for 

customization of the user interface and custom 

implementation of the VM. The module consists of a Java 

package, edu.unf.soc.vm.connectivity, with one interface 

class that can be implemented, as required. The methods in 

the interface class are listed in Table 2. 

- 28 -



Interface edu.unf.soc.vm.connectivity.ModelerConnection: 

Method Description 

displayWorkflowProperties() Method to display workflow 
properties, invoked from 
the workflow sub-menu of VM 

displayProcessProperties() Method to display process 
properties, invoked from 
the process sub-menu of VM 

displayFlowProperties() Method to display flow 
properties, invoked from 
the flow sub-menu of VM 

getNewWorkflowId() Method to return the 
workflow id when a new 
workflow is created 

readWorkflow () Method to read the saved 
XML representation of the 
workflow 

removeWorkflow() Method to remove the 
workflow and its related 
information 

removeProcess() Method to remove the 
process and its related 
information 

removeFlow () Method to remove the flow 
and its related information 

saveWorkflow () Method to save the XML 
representation of the 
workflow and related 
information 

saveProcess() Method to save the process 
information 

saveFlow () Method to save the flow 
information 

Table 2: Available Methods of Interface Class 

Together the VM user interface and connectivity interface 

make the VM customizable. They can be added to any 

existing workflow application to enhance the workflow 

- 29 -



design capabilities. The next chapter details the case 

studies for two applications, showing how the required 

interfaces were customized. 

- 30 -



Chapter 6 

CASE STUDIES 

Figure 13 shows how the same VM was integrated with two 

different types of applications, using the same user 

interface and custom connectivity. The WFGenSystem-UNF 

application uses database persistence and the XFlow 

application uses file system persistence. 

XFlow 

Custom Im})lementation 
Fol' 

:'I:Flow 

Figure 13: VM Architecture with Respect to Integration 
with WFGenSystem-UNF and XFlow Applications 

- 31 -



6.1 Case study 1: WFGenSystem-UNF 

WFGenSystem-UNF is a web-based document workflow 

management system. WFGenSystem-UNF has been implemented, 

using the model view controller architectural pattern. It 

uses Java server pages for the user interface, MySQL for 

database persistence, and consists of multiple modules. 

The modules, categorized based on the user group, are 

Administrator, Workflow Engineer, and Workflow User. The 

Administrator module provides user and system management. 

The Workflow Engineer module provides form, workflow, and 

process management. The Workflow User module provides task 

management. This case study focused on the workflow 

management of the Workflow Engineer module. Figure 14 and 

Figure 15 demonstrate the VM integration with WFGenSystem-

UNF, in two levels of details. 

- 32 -



( 
f 
i 

l 

JSP 

781 Modeler AP~et 

/'" \ 
/'" 

S 11 ./ 
V,.:'II Dab 

JSF 

,--~~ 

Business Lay:r 

cowoller 
Ft~me'II~lk Fr-:sentatlon (Fe-Ill} I TI'c~ -I ~ ~ 
/ ____ --1- -- __ olasses __ 

I Strut. --- l---'/ 1 '\ FrcnH'IIOIJ.i vv C. "",.,,~.~ , f 

I Acton -r r", o~sse-s 

C~"ri.';0- ~-_ -- ~-- ~-___ --,-- ------- _ I _:=b:0 
Model I Sc M.pOAO classes .... -- , ____ ~---- __ 1.--"" -- ----- I , ------------, 

I l-----XflL. SaL maps -

E~-~~J 

Figure 14: WFGenSystem-UNF Architecture Diagram 
with the Integration of VM 

Visual Modeler 

I 
Im.j)ke 
VlsjJal Modeler 

E xpcrl XM L File 

Pro03SS 
User Inplrt 

Retrieve 
XMLFile 

CUet. 
FileSystetn 

DB 
AdalJtet 

S1oreX~L File 
( 

Figure 15: Details of the VM Integration with 
WFGenSystem-UNF 

- 33 -



The VM was integrated with WFGenSystem-UNF in the form of 

an embedded applet. Clicking on New or Edit Workflow from 

the Design Workflow menu option of the Workflow Management 

tab starts the VM (see Figure 16). 

,\+orkflow Generator and Tracking System 

, !lEW WORKFLOW 

;visual Modeler 

-----
Done 

I 
I 
~ 

Figure 16: VM Integrated with WFGenSystem-UNF 

The customization to integrate the VM with WFGenSystem-UNF 

was done by implementing an instance of the connectivity 

module to target this specific integration. The packages 

and their methods are described in Tables 3-5. 

- 34 -



Package edu.unf.soc.vm.connectivity: 

Class Description 

ModelerConnection Interface definition with the 
available methods 

ModelerConnectionFactory Factory class to get the 
instance of the 
ModelerConnection 
implementation 

ModelerConnectionImpl Implementation class that 
implements the interface 
methods 

ModelerConnectionHelper Helper class with methods 
used in the 
ModelerConnectionImpl 

Table 3: Classes of Package edu.unf.soc.vm.connectivity 

Package edu.unf.soc.vm.connectivity.db: 

Class Description 

Workflow Class to represent the workflow 
database entity used by WFGenSystem-
UNF for persistence of workflow data 

WorkflowVersion Class to represent the workflowversion 
database entity 

Process Class to represent the state database 
entity 

Flow Class to represent the transition 
database entity 

DeferredChoice Class to represent the deferredchoice 
database entity 

Table 4: Classes of Package edu.unf.soc.vm.connectivity.db 

- 35 -



Package edu.unf.soc.vm.connectivity.dialog: 

Class Description 

WorkflowDialog Class to create the Workflow properties 
dialog 

ProcessDialog Class to create the Process properties 
dialog 

FlowDialog class to create the Flow properties 
dialog 

Table 5: Classes of Package 
edu.unf.soc.vm.connectivity.dialog 

Using the VM, a new workflow in the WFGenSystem-UNF can be 

designed following these steps: 

1 From the Workflow Management menu in WFGenSystem-

UNF, choose the Design Workflow option. 

2 Select the New Workflow option from the selection 

list, to design a new workflow. 

3 The VM applet starts with the Workflow Properties 

dialog (see Figure 17). Enter the Label, 

Description, and the Mode, then click Save. 

- 36 -



Mode: IDeSign 1 ...... 1 

Figure 17: Workflow Properties Dialog 

4 Using the toolbar in the modeler, design the 

workflow. 

5 Edit the Process Label and Flow Label, and 

properties, using the corresponding dialog boxes 

(see Figures 18 and 19) . 

. Process Properties 

! Process Lahel: 

, Particmant: 

Initial state: 

[-------- -----------
,Dellartment 

IN~- v 

Can Cancel Instance: f~~:T-';J 
Can Close Instance: r~-o - r~] 

Reassign: 
r.----T-] 
,No L ..... _ 

Figure 18: Process Properties Dialog 

- 37 -



Flow Properties :;:::::::}};:::::::::::::;::: ;:::?<>::({:<>:>::::<><> 
Flow Label: 5 

Assignment stratemr.l~~;I'~~=~~', _ 
DC Label: 

~----~-~->-~-----~~-~~ --------------, .... 

DC DescrjJ)tion: 

Save 

Figure 19: Flow Properties Dialog 

6 Use the Save option in the toolbar to create the 

individual workflow States, Transitions, and 

Workflow Definitions. 

7 Publish the Workflow for use by the Definition 

Management module. 

Use of the VM in this application seemed to make the 

visualization of a complex workflow easier and faster. 

Appendix D presents a demonstration of the WFGenSystem-

UNF-Visual application, using the VM from the design of 

the workflow network to the implementation of a complete 

system. 

- 38 -



6.2 Case study 2: XFlow 

XFlow is a JEE-based process management system. XFlow runs 

in an EJB and Servlet container, using JBoss 4.0 and 

Tomcat for container implementation. XFlow does not have 

any GUI for workflow design or workflow process 

monitoring. The VM can easily be integrated with XFlow. 

XFlow1.2.1, used in this study, is distributed in the form 

of a compressed zip file. The XFlow package comes with the 

JBoss 4.0 (bundled with Tomcat) server and some workflow 

examples that can be deployed and tested on the XFlow 

server. The XFlow package does not provide any interface 

to design workflows. Currently, users define their 

workflows using a text editor to create an XML file that 

validates to the XFLOW file schema. For this case study, 

the VM connectivity module was implemented for the XFlow 

application, so it generates the XML files, which conform 

to the XML schema for XFlow. 

The XFlow server can be deployed and run from a MS Windows 

or UNIX shell. For this case study, the Windows version of 

XFlow was used, running on the Windows XP Professional 

operating system and the Java 1.4.2 15 SDK. 

- 39 -



The VM application is launched as an Applet, using the 

Java Applet Viewer, as shown in Figure 20. Once the VM 

starts, a workflow can be designed. 

Figure 20: VM Applet Integrated with XFlow 

To generate the XML output «file>.xflow) , the 

connectivity module was implemented, using the packages 

identified in Tables 6-8. 

- 40 -



Package edu.unf.soc.vm.connectivity: 

Class Description 

ModelerConnection Interface definition with the 
available methods 

ModelerConnectionFactory Factory class to get the 
instance of the 
ModelerConnection 
implementation 

ModelerConnectionImpl Implementation class that 
implements the ,interface 
methods 

ModelerConnectionHelper Helper class with methods used 
in the ModelerConnectionImpl 

Table 6: Classes of Package edu.unf.soc.vm.connectivity 

Package edu.unf.soc.vm.connectivity.db: 

Class Description 

Workflow Class to represent the workflow properties 

Table 7: Classes of Package edu.unf.soc.vm.connectivity.db 

Package edu.unf.soc.vm.connectivity.dialog: 

Class Description 

WorkflowDialog Class to create the Workflow 
dialog 

Table 8: Classes of Package 
edu.unf.soc.vm.connectivity.dialog 

The interface methods implemented for the XFlow 

integration are identified in Table 9: 

- 41 -

properties 



Method Description 

readWorkflow () Method to get the existing 
workflow XML file 

saveWorkflow () Method to save the workflow 
XML file and create input 
file to XFlow 
«file>.xflow) 

displayWorkflowProperties() Method to display workflow 
properties dialog (see 
Figure 21) 

Table 9: Methods Implemented for XFlow 

Workflow Title: 11<--__________ -' 
OK 

Figure 21: Workflow Properties Dialog for XFlow 

The VM generates the output XFLOW file, as shown in Figure 

22. Appendix E presents a demonstration of the XFlow 

application, using the VM to design a workflow. 

The VM can be integrated with virtually any application, 

web-based or desktop. This is possible if a correct 

implementation of the interfaces in the connectivity 

module is provided. 

- 42 -



<xflow name="Simple'W"orkflow"> 
<nodes> 

<node id="StartNode" type="Start"/> 
<node id="Pl" type="Process"/> 
<node id="P2" type="Process"/> 
<node id="P3" type="Process"/> 
< node id = "P4" t ype= "Pl.'ocess" / > 
<node id="P5" type="Process"/> 
<node id="EndNode" type="End"/> 

</nodes> 
< transi tions> 

<transition from="StartNode" to="Pl"/> 
<transition from="Pl" to="P2"/> 
<transition from="P2" to="P3"> 

<rule>[intValue &It; 10]</rule> 
(/transition> 
<transition from="P2" to="P4"> 

<rule>[intValue &gt;= 10]</rule> 
</transi tion> 
<transition from="P3" to="P5"/> 
<transition from="P4" to="P5"/> 
<transition from="P5" to="EndNode"/) 

</transitions> 
</xflow> 

Figure 22: XFLOW File Output from VM 

- 43 -



7.1 Conclusions 

Chapter 7 

CONCLUSIONS AND FUTURE WORK 

A wide variety of WfMSs were reviewed. Not all of the 

systems reviewed were created based on the needs of the 

end user. Few WfMSs provide a GUI for defining workflows. 

The goal of this work was to enhance existing WfMSs, by 

providing a Visual Modeler for visually defining 

workflows, using BPMN. 

The VM was designed to empower end users to define complex 

workflow diagrams easily. While one of the applications 

used as a test case (WFGenSystem-UNF) allows end-users to 

define one component at a time for the workflow (i.e., 

states, transitions, and rules), the VM allows users to 

define these components as a whole, giving users a high-

level perspective of the workflow design. XFlow, the 

second application tested, natively uses an XML editor for 

creating workflows. In this case, the VM provided for a 

visual representation of the workflow design. 

- 44 -



A complex and powerful WfMS may remain under utilized, 

when workflows are defined using a non-friendly interface. 

The VM enhances existing WfMSs, as demonstrated in the 

case studies, making them more manageable for a wider 

community of users. 

The VM was designed so the integration with existing 

systems can be approached in a systematic and clear 

manner, by implementing well-defined interfaces. This was 

also demonstrated in the case studies. 

7.2 Future Work 

The current VM implements a subset of the BPMN, namely: -

Process, Start and End Event, OR-Split, OR-Merge, AND-

Split, AND-Merge, and Deferred Choice. Implementation of 

the whole BPMN set would enhance the VM modeling 

capabilities. 

It is possible to add an option, which would allow users 

to design their workflows using a grid. This would make 

alignment and placement of workflow objects easier and 

more precise, resulting in a more organized layout. 

- 45 -



REFERENCES 

Print Publications: 

[Bock03] 
Bock, C., "UML 2 Activity and Action Models," Journal 

of Object Technology 2, 4, (July-August, 2003), 
pp. 43-53. 

[Hutchings05] 
Hutchings, S., "An End-User Development Approach to 

Building Customizable, Web-Based, Document Workflow 
Management Systems," MS Project, Department of 
Computer and Information Sciences, University of 
North Florida, Jacksonville, 2005. 

[Kalnins06] 
Kalnins, V., "Use of UML and Model Transformations 

for Workflow Process Definitions," Communications of 
the 7th International Baltic Conference on Databases 
and Information Systems, Vilnius, Lithuania (July, 
2006), pp. 3-14. 

[Ouyang06] 
Ouyang, C., W. M. P. van der Aalst, M. Dumas, and A. H. M. 

ter Hofstede, "Translating BPMN to BPEL," BPM Center 
Report, BPM-06-02 (2006). 

[van der Aalst03] 
van der Aalst, W. M. P., A. H. M. ter Hofstede, B. 

Kiepuszewski, and A. Barros, "Workflow Patterns," 
Distributed and Parallel Databases 14, 3, (July, 
2003), pp. 5-51. 

[WfMC95] 
Workflow Management Coalition (WfMC), "The Workflow 

Reference Model," TCOO-1003 (January, 1995). 

[WfMC99] 
Workflow Management Coalition (WfMC), "Terminology & 

Glossary," TC-1011, 3 (February, 1999), pp. 8. 

- 46 -



[White04A] 
White, S. A., "Introduction to BPMN," BPTrends, (July, 

2 0 0 4), pp. 1. 

[White04B] 
White, S. A., "Process Modeling Notations and Workflow 

Patterns," BPTrends, (March, 2004), p. 24. 

[White05] 
White, S. A., "Using BPMN to Model a BPEL Process," 

BPTrends, (March, 2005). 

[Wohed05 ] 
Wohed, P., W. M. P. van der Aalst, M. Dumas, A. H. M. ter 

Hofstede, and N. Russell, "Pattern-based Analysis of 
BPMN - An extensive evaluation of the Control-flow, 
the Data and the Resource Perspectives," BPM Center 
Report, BPM-05-26 (2005). 

Electronic Sources: 

[Andrews03] 
Andrews, T., "Business Process Execution Language for Web 

Services," BEA Systems, (May, 2003), 
ftp://www6.software.ibm.com/software/developer/librar 
y/ws-bpel.pdf, last accessed October 27, 2007. 

[BT] 
Borland Together, 

http://www.borland.com/us/products/together/ 
index.html, last accessed October 27, 2007. 

[JaWE] 
Enhydra Java Workflow Editor, 

http://www.enhydra.org/workflow/shark/index.html, 
last accessed October 27, 2007. 

[JAVA2D] 
Java 2D API, Sun Microsystems, 

http://java.sun.com/products/java-media/2D/, last 
accessed October 27, 2007. 

- 47 -



[j BPM] 
JBoss jBPM, http://www.jboss.com/products/jbpm. last 

accessed October 27, 2007. 

[JGraph] 
Java Graph Visualization and Layout, 

http://www.jgraph.com/. last accessed October 27, 
2007. 

[j POL] 
jBPM Process Definition Language, 

http://docs.jboss.org/jbpm/v3/userguide/jpdl.html, 
last accessed October 27, 2007. 

[MVC] 
Java BluePrints - J2EE Patterns, Model-View-Controller, 

http://java.sun.com/blueprints/patterns/MVC-
detailed.html, last accessed October 27, 2007. 

[MXGRAPH] 
JGraph mxGraph, 

http://www.mxgraph.com/pages/en/index.html. 
last accessed October 27, 2007. 

[OASIS] 
OASIS Web Services Business Process Execution Language, 

http://www.oasis-
open.org/committees/tc_home.php?wg abbrev=wsbpel, 
last accessed October 27, 2007. 

[OMG] 
Object Management Group, http://www.omg.org/, last 

Accessed October 27, 2007. 

[STRUTS] 
Struts, The Apache Software Foundation, 

http://struts.apache.org/, last revised October 18, 
2007, last accessed October 27, 2007. 

[SWING] 
Creating a GUI with JFC/Swing, The Java Tutorials, 

http://java.sun.com/docs/books/tutorial/uiswing/, 
last accessed October 27, 2007. 

- 48 -



[TWE] 
Together Workflow Editor, 

http://www.together.at/together/prod/twe/index.html. 
last accessed October 27, 2007. 

[Web Start] 
Java Web Start Technology, 

http://java.sun.com/products/javawebstart/, 
last accessed October 27, 2007. 

[WfMOpen] 
WfMOpen Project, http://wfmopen.sourceforge.net/. last 

accessed October 27, 2007. 

[XFlow] 
XFLOW Process Management System, 

http://xflow.sourceforge.net/, last accessed October 
27, 2007. 

[XPDL] 
XML Process Definition Language, 

http://www.wfmc.org/standards/XPDL.htm. last 
accessed October 27, 2007. 

[YAWL] 
Yet Another Workflow Language, 

http://www.yawl-system.com/. last accessed 
October 27, 2007. 

[Zebra] 
Zebra Workflow, http://zebra.berlios.de/, last accessed 

October 27, 2007. 

- 49 -



f-'l 
Pl 

Comparison ofWfMSs, Diagramming Tools and Frameworks with the VM 
tJ 
f-' 
(J) i 

Gr<lphical Graphical 
~ 
I-' 

0 
0 
S 

'"d 
Pl 
H 
f-'-
Ul 
0 
~ 

ITj 0 
H t-n 
Pl 
S :8 

Graphical Designer Designer 
Graphical Designer User Integration Integration Workflow 
Workflow Interface BPMN for with Desktop with Web XMl 
Designer Customization Workflow Based WflvlS Based WfMS Persistence 

Existin~, WfMSs: 
JBoss jBPM X X 
Zebra X X 
YAWL X X 
XFlow X 
Enhydra JaWE X X X 
WFGenSvstem-UNF 

:8 
t-n :s: 
C/) 
Ul 

tJ 
H 
~ 
GJ 
S; 
:s: :s: ~ H 'lJ Z 'lJ GJ t':I 

Vl (J) t-n 
0 ~ :s: 
I o C/) 

H Ul 
X' ... 
Ul 

tJ 
f-'-
Pl 

LQ 

Tools and Frameworks: 
JGra(JhPad Pro X X X X X 
ILOG Jviews Diagrammer X X X X X 
Business Process - Visual 
Architect X X X 

Z f-'l tJ 0 H 0 X t-' 
C/) 

~ 
~ 
Z 
tJ 

H 
Pl 
§ 
f-'-
~ 

LQ 

Enterprise Architect X X 
Enhvdra JaWE X X X 
Java Swing and Java 2D 
Frameworks'" X X 

ITj 
~ 
~ :s: 
M 
:8 
0 

f-'l 
0 
0 

JGraph and JGraphLayout 
Frameworks" X X X X X X 

~ 
!A! 
C/) 

f-' 
Ul 

Visual Modeler X X X X X X 
Pl 
~ * These frameworks only provide basic capabilities that can be used to build a 
0.. workflow designer with above features. 



APPENDIX B 

BPMN AND UML NOTATION COMPARISON 

This appendix presents the results of comparing UML 2.0 
ADs and BPMN, as visual notations that can be used by 
users to specify workflow-based business processes. Tables 
B1-B5 contain a summary of the visual elements used by 
each notation. Tables B6-B9 contain a comparison of these 
two notations from the perspective of how they support van 
der Aalst's workflow patterns [van der Aalst03]. 

- 51 -



1-3 
PJ 
tr 
I-' 
CD 

Comparison of Activity/State/Action &Control Nodes of BPMN and UML Notations 

IJ:1 BPMN 1.0 urvlL 2.0 
I-' Element Description Notation Element Description Notation 

() 
0 
.§ 
PJ 
H 
f-'-
en 

Event An event is something that "happens" Action An action element describes a 
duri ng the course of a busin ess basic process or transformation 

Gl process. These events affect the flow that occurs within a sy stem. It is 
of the process and usually have a the basic functional unit within an 
cause (trigger) or an impact (result). Activity diagram. Actions can be 
The re are three types of Events, thought of as children of activities. 

0 
~ 

based on when they affect the flow: 
Start, Intermediate, and End. 

VI 
0 

N 
t-h 

IJ:1 
'l:I 

Start Start Event indicates where a Initial The initial element is used by the 
particular process will start. 0 ActMty and State Machin e diagrams • ::s: Initial 

Z 
PJ 
~ 
0... 

Intermediate Intermediate Events occur between a Depicts an exit from the system but 
Start Event and an End Event. It will has no effect on other executing flows 
affect the flow of the process, but will 0 1 in the activity Q9 

q 
::s: 
t-' 

Z 
0 
rt 

not start or (directly) terminate the 
process. Flow·Final 

End As the name implies, the End Event 
0 

Final Indicates the completion of an activity 
indicates where a process will end. ® 

PJ 
rt Final 
f-'-
0 
~ en 



Comparison of Activity/State/Action &Control"!odes of BPMN and UM~ Notations 
1-,3 
OJ 
t} 
f-' 

BPMN 1.0 UMl2.0 
Element Description Notation Element Description Notation 

CD Process A Task is an atomic activity that is Activity An activity organizes and specifies 
IJ:J 
N 

n 
0 

included within a Process. A Task is the participation of subordinate Activity 
used when the work in the Process is 0 behaviors, such as sub·activities or 
not broken d own to a finer level of actions, to rellectthe control and data 
Process Model detail. 1l0w of a process 

,§ 
OJ 
H 
1-'. 
(jJ 

0 
~ 

Sub·Process The details of the Sub-Process are not Sub·Activity A subactivity element is a pointerto a 
visible in the Diagram. A "plus" sign in 

G:' 
child Activity diagram 

the lower-center of the shape Sub·Aotivity· 

indicates that the activity is a Sub· Example 

Process and has a lower-level of ~ 
0 detail. 

Ul t-h w 
IJ:J 
'"C1 
::s:: 
Z 
OJ 
~ 

Receive BPMN uses Process notation with Receive A receive element is used to define 
[Receive] label to indicate Receive @ Activity the acceptance or receipt of a 2:3 Z action request. Movementfrom a receive 

element occurs only once receipt is 
fulfilled according to its specification. Event 

0.. The receive element comes in two 
c:: 
::s:: 
t"i 

Z 

Send BPMN uses Process notation with Send Activity The send element is used to depi ct 
[Send] label to indicate Send action [Sendj the action of sending a signal 8 Send CUirent 

IsweList 
0 
rt 
OJ 
rt 
1-'. 
0 
~ 
(jJ 

Group The grouping can be used for ,----- Region There are two types of regions 
documentati on or analysis purposes. I I supported. Expansion region AND , /-----------

Regicn . Interruptible activity region 
I I 

, 
-.--- , , ... -- --------



f-3 
Comparison of Transition/Edges of BPMN and UML Notations 

PJ 
ty' BPMN 1.0 UMl2.0 
f-' 
(]) 

Element Description Not<ltion Element Description Not<ltion 
i 

ttl w 

0 
0 
,§ 

Normal Flow Normal Sequence Flow refers to Control Flow The control flow is a connector linking 
the flow that originates from a two nodes in an Activity diagram. Control 

( Aclion H Aclion ) Start Event and continues through .. flow connectors bridge the flow between 
activities via altemative and parallel activity nodes, by directing the flow to the 
paths until it ends at an End targ et node once the source node's 
Event. acU'lity is completed. 

PJ 
t-i 
1-'. 

Uncontrolled Flow Uncontrolled flow refers to flow that 
is not affected by any conditions 

en 
0 
::J 

or does not pass through a .. 
Gateway. 

Vl 
0 

.j::.. 
H1 

Conditional Flow Sequence Flow can have conditio n 
expressions that are evaluated at 
runtime to determine whether or 

ttl not the flow will be used. If the 
'"0 
3: 
Z 
PJ 
::J 
0.. 

conditional flow is outgoing from <> '" 
an activity, then the Sequence 

I Flow will have a mini· diamond at 
the beginning of the line. 

I 

C1 
3: 

Default Flow For Data-Based Exclusive 
Decisions or Inclusive Decisions, 

t:-< one type of flow is the Default 

Z condition flow. This flow will be ; 
; .. 

0 used only if all the other outgoing 
rt 
PJ 
rt 

conditional flow is not true at 
runtime. 

1-'. 
0 
::J en 

Message Flow A Message Flow is used to show 
the flow of messages between two 

0--------[> entities that are prepared to send 
and receive them. - -- ---- ----_. __ .... __ ... - -



Comparison of Transition/Edges of BPMN and UML Notations 

I-:i 
P> 
ty' 

BPMN 1.0 UML2.0 
Element Descril>tion Not<ltion Element Description Not<ltion 

I-' 
(D 

to 
~ 

n 
0 

Exception Flow Exception Flow occurs 0 utside the (0] Interrupt Flow The interrupt flow is a toolbox element 
Normal Flow of the Process and is used to define the two UML concepts of 111'w", -1 "w,,,,: Pl. t'u'b "~''''~il based upon an Intermediate Event connectors for E,'(ception Handler and ! _/_-, I 

that occurs during the performance Interrupti ble Activity Region. An interrupt J I 

15 

of the Process. Exo::ption ,( J 
flow is al so known as an activity edge. 

Flow l 
S 
"d 
P> 
i"i 
f-'. 
(Jl 

0 
:J 
0 

Vl H1 

Compensation Compensation Association occurs 
r~ Association outside the Normal Flow of the 

Process and is based upon an ~~ event 

c~ 
/os9lciatlon 

Vl 
to 
'1J ::;;;: 
Z 

P> 
:J 
0. 

Data Object Data Objects are considered Object Flow Object flows are used in Activity 
Artifacts because they do not have diagrams and state Machines. When 

1s-iJAdiv~2) 1 any direct effect on the Sequence D used in an Activity diagram, an object 
Flow or Message Flow of the flow connects two elements, with 
Process, but they do provide specific data passing through it. 

information about what activities Name 

c::: ::;;;: 
require to be performed and/or 
what they produce. 

t-l Decision This Decision represents a Decision This node represents a point in an 

Z 
0 
rt 
P> 
rt 
f-'. 
0 
:J 
(Jl 

branching point where Altematives Condition 1 activity where a single incoming edge 

~ 
are based on conditional k> branches into several outgoing edges. 
expressions contained within the You typi cally use constraints, also 
outgoing Sequence Flow. Only called guard conditions, on the 
one of the Alternatives will be Condition 2 

outgoing edges to determine which 
chosen, edge should be followed. A decision 

may be shown by labeling multiple 
output transitions of an action with 
different guard conditions. 

-_ .. _-



1-3 
OJ 
tJ 
i-' 
(]) 

Comparison of Transition/Edges of BPMN and UML Notations 
to 
U1 

BPMN 1.0 urvlL 2.0 

() 
0 

~ 
OJ 
r: 
/-'-
(/l 

0 
::J 

Element Description Not<ltion Element Description Notation 
Merge BPMN uses the term "merge" to Merge This node represents a point in an 

liJ refer to the e)(clusive combining of 

~ 
activity where several incoming edges 

two or more paths into one path come together into a single outgoing 
(also known as an a OR-Join). edge. 

I 

0 
VI 
0\ 

J--h 

I to 
'l:I 

~ 
OJ 
::J 

Fork Fork or AND-Split is a place in the Fork This node represents a point in an 

I Process where activities can be 

~ 
activity where a single incoming flow --t<:: I performed concurrently, rather is split into several outgoing flows. 

than sequentially. 

P-
c::: 
~ 
l:--i 

Z 
0 
rt 

Join Synchronization or an AND-Join is 

~ 
Join This node represents a point in an 

I~-'I 
a place in the Process to combine activity where several incoming flows 
two or more parallel paths into one are synchronized into a single 
path. J outgoing flow. 

OJ 
rt --- ----_ ... -

/-'-
0 
::J 
(/l 



VI 
C

 o 
~
 

..... o 
Z ..J 
~
 

::> 
1:J 
C

 (G
 

Z ~ 
Il.. 
III 
0

) 

,5 VI 
::J 
VI 
C

 
"-

~ Il.. 
VI 
VI 
11) 
(.) 
o "-
Il.. 
..... o c o VI 
'i:: 
(G

 
0.. 
E

 o 
u 

Q
) 

u 
,.. 

c 
:: 

Q
) 

Q
) 

=' 
;:: 

C
" 

r:: 
Q

) 

0-
(/) 

I
~
 

, 
II () 

, 
J \ 

" 
~. 

-0
 

C
 

~
 

.'!::! 
0.. 
(/) 

Q
i 

=----. 
~::!: 
ro 

0
-

o..(/) 

C
 

.e 
ro N

 
'c 2 
..s::: 
u c » 

(/) 

.... 2.. Q
) 

.~ 
o 

..s::: 
o Q

) 
.2: 
(f) 
=' "...... 
u
~
 

X
 

0
-

W
(/) 

T
ab

le B
6: 

C
om

parison 
o

f BPM
N 

and 
UM

L 
P

ro
cess 

P
a
tte

rn
s 

-
57 -



(h
 

C
 

0
, 

~
.
 

15 Z
: 

-I: 
:2 
::> 
'tJ 
C

 
(G

 

Z
, 

:2 
a.. III 
0

) 
,5' 
(h 
::J 
(h 
C

' 
... ~ a.. (h 
(h 
10 
o o ... a.. ..... o C

 o (h 
'i: 
(G

 
0-
E

 o 
u 

Q
) 

e' 
Q

) 

:2 
:: 
~
 

... <I> 
0

-
*= 

E
 

~
 

0-
i:7:i 

/ 
~
-
~
 , 

r 
" 

J 
I \ --,. 

~
/
 

I 

{ ,,<> _'1 
'\ 

/ 
~
~
 '> 

J l 
v 

) 

,,'( _
/ 

'~r 
~
,
 

,~-
1

\ 
,~ 

f,' 
'. 

" \ 
/ /1 

~',' 
-
\1

 
'i 

CJ i"-, I \' 

~
-

( ! t, \, ~ -Q
) 

(.) 
'0

 
..c 
<-.) 
Q

) 

E-..... "'5 
:z , Ii _

J
L

:J
 

Q
) 

0
)
 

..... Q
) 

:2 Q
) 

o.. 
..... "'5 
:2 

C
 

~
J
 ~ 

v 1 
-r 

,-

I 

J l, 
u 

~
,
 

r -
) 

~\ 
( 
~
~
 

I 
-

( l 
I I 

< 

\ 
-

/ 

-~t 
I 

i' l 

, '!"' 
} 

,
-
-
~
 

j 
! 

'---~ 

\ ) 

T
ab

le B
7: 

C
om

parison 
o

f BPM
N 

and UM
L 

P
ro

cess 
P

a
tte

rn
s 

-
58 -



( J 
\' I 

( 
'\ 

~ 
" 

~, 
I 

u J 
\ 

;; l 
>: t" 

" 
tS " 

" 
"
f
'
~
 

L 1 t. 
~-r+-r.. 
) j ~ 

r 
j 

.1 
{ 

\ 
(f) 

1 

\ 
.. 1 

c: 

1 
1 

\ 

0 
"', 

',> 
.
~
 

t:1 
I', 

(J 
I,) 

-
/ 

0 
J
,_

. 
1 

" 
J 

Z
, 

~, 
) 

1 :Jc., 
...I: 

" 
'" 

'., 
~
 

I 
! 

l 
::> ' 

rL
 

/ 
'l . " 

"0 
(
\
 

( 
) 

c: 
l 

< J 
~
 

(11 
~
 

l 
z, 

:!E 
j 

~
:
 

=> 
Il. 
III 
0> 
c: 

'(h 

r 

( 
'\ 

::J 

Jr 
I 

I~p 
(f) 

i' 
I, 

c: 
to 

:r 
:... 

;;80 
C

l) 
I 

,W
,.-I 

t:: 
\ 

, 
, 

, 
(11, 

I 
I 

Il. 
~/*><~ 

(f) 
" ,':·1 

.
,
 

,. 
" 

f 
I 

(f) 
I 

' 
/ 

/ 

t 
! 

C
l) 

j 
I 

u 0 :... 
Il. 

" 
" 

{,~ 
., 

I" 
.... 

, 

0 c: 
' .. 

j 
• 

j 
~ 

0 
I 

" 
(f) 

_I 
L 

.IlL
 

.£: 
> 

(11 
I 

, 
0-

J/ 
.(

 

I i;~ 
E

 
%

 
0 

:!E 
! 's: t 

U
 

0-
j 

/t;~;1 
co 

,f: 
"-

0 
Q

 
J 

- ro 
2 

s:: 
.... 'E 

'+
-

t: 
0 

<I> '8 
'S 

;: 
~
 

(/) 
0 

0-
is 

z 

T
ab

le B
8: 

C
om

parison o
f BPM

N 
and UM

L 
P

ro
cess 

P
a
tte

rn
s 

-
59 -



f-:3 
PJ 
tr 
f-' 
CD 

to 
'-0 

() 
0 
.§ 
PJ 
H 
f-'. 
[JJ 
0 
::J 
0 
t-h 

to ro 0\ 3: 0 Z 
I 

PJ 
::J 
0-
C 
3: 
t-' 

ro 
H 
0 
0 
CD 
[JJ 
[JJ 

ro 
PJ 
It 
It 
CD 
H 
::J 
[JJ 

Comparison of Process Patterns using BPMN and UML f\J()tations 

Pattern IBPMN UML 
Synchronizing Merge 

Arbitrary Cycles 

I c· 

,--.; --~, 

i,'~ : '--'(0' '\'O'~ , >, // --------~, '\..." ,// ~ 
, . 
,---,._ .... : 

~\ ("--"Ii:' .\ r 
-.., 

"~,-/ 

~ 

'--~ c 
(i:::""'~,x-;" . 

'''.... ./ 

--
.:,~}, :<-°7~ 

J " I 
/"'--- \. )1 

'~' 

~~-.:-'-' ~-~--,>-----~-=I r~ --~' --~-' , ,",. ,I 
~ - • -. - • -- _·c ' -: -,~oC' • -.' ~.c..., , I ___ ~ __ ~_w __ --_~ --_ ,I -. ; 



APPENDIX C 

JGRAPH XML SCHEMA 

What follows is the XML Schema Definition (XSD) file 
generated from the JGraph XML output file of the diagram 
using Altova XMLSpy product. 

<?xml version="l.O" encoding="UTF-B"?> 
<!--W3C Schema generated by XMLSpy v2007 reI. 3 spl 
(http://www.altova.com)--> 
<xs:schema xmlns:xs=''http://www.w3.org/200l/XMLSchema''> 

<xs:element name="void"> 
<xs:complexType> 

<xs:choice minOccurs="O"> 
<xs:element ref="double"/> 
<xs:element ref="object"/> 

maxOccurs="unbounded"/> 

<xs:element ref="void" maxOccurs="unbounded"/> 
<xs:sequence> 

<xs:element ref="string" 

<xs:choice minOccurs="O"> 
<xs:element ref="boolean"/> 
<xs:element ref="int"/> 
<xs:element ref="object"/> 

</xs:choice> 
</xs:sequence> 

</xs:choice> 
<xs:attribute name="property" type="xs:string"/> 
<xs:attribute name="method" type="xs:string"/> 
<xs:attribute name="index" type="xs:byte"/> 
<xs:attribute name="id" type="xs:string"/> 

</xs:complexType> 
</xs:element> 
<xs:element name="string" type="xs:string"/> 
<xs:element name="object"> 

<xs:complexType> 
<xs:choice minOccurs="O"> 

maxOccurs="unbounded"/> 

maxOccurs="unbounded"/> 

<xs:element ref="int" maxOccurs="unbounded"/> 
<xs:sequence> 

<xs:element ref="null" minOccurs="O"/> 
<xs:element ref="void" 

</xs:sequence> 
<xs:sequence> 

<xs:element ref="string"/> 
<xs:choice> 

<xs:element ref="int" 

- 61 -



<xs:element ref="void" 
maxOccurs="unbounded"/> 

</xs:choice> 
</xs:sequence> 
<xs:sequence> 

maxOccurs="unbounded"/> 

maxOccurs="unbounded"/> 

maxOccurs="unbounded"/> 

<xs:element ref="object" 

<xs:sequence minOccurs="O"> 
<xs:sequence minOccurs="O"> 

<xs:element ref="array" 

<xs:element ref="boolean"/> 
</xs:sequence> 
<xs:element ref="void" 

</xs:sequence> 
</xs:sequence> 

</xs:choice> 
<xs:attribute name="idref" type="xs:string"/> 
<xs:attribute name="id" type="xs:string"/> 
<xs:attribute name="class" type="xs:string"/> 

</xs:complexType> 
</xs:element> 
<xs:element name="null"> 

<xs:complexType/> 
</xs:element> 
<xs:element name="java"> 

<xs:complexType> 
<xs:sequence> 

<xs:element ref="object"/> 
</xs:sequence> 
<xs:attribute name="version" use="required" 

type="xs:string"/> 
<xs:attribute name="class" use="required" 

type="xs:string"/> 
</xs:complexType> 

</xs:element> 
<xs:element name="int" type="xs:short"/> 
<xs:element name="double" type="xs:decimal"/> 
<xs:element name="boolean" type="xs:boolean"/> 
<xs:element name="array"> 

<xs:complexType> 
<xs:sequence> 

<xs:element ref="void" minOccurs="O" 
maxOccurs="unbounded"/> 

</xs:sequence> 
<xs:attribute name="length" use="required" 

type="xs:byte"/> 
<xs:attribute name="class" use="required" 

type="xs:string"/> 
</xs:complexType> 

</xs:element> 
</xs:schema> 

- 62 -



APPENDIX 0 

WFGENSYSTEM-UNF-VISUAL SYSTEM DEMONSTRATION: 
UNF HELPDESK EXAMPLE 

This appendix presents a demonstration of the WFGenSystem-
UNF-Visual application, using the VM from the design of 
the workflow network to the implementation of a complete 
system. The complete system is assembled by creating a 
form, creating a workflow, creating a workflow definition 
to link the form and workflow, and creating a workflow 
system using the workflow definition. The example here 
shows how to create a sample workflow system, UNF 
HelpDesk, using the VM. 

As shown in Figure 01, the user logs in to WFGenSystem-
UNF-Visual application. 

""or){Oow GCI1<:'r:ttor :md Tr.,ckil1~ S),!>lern 

LogIn 

tttNr'JmC 

, ............... . 

Figure 01: The Login Screen 

- 63 -



As shown in Figure D2, the Workflow Engineer can design a 
form, using the Design Form option from the Form 
Management menu. 

"I'''' J 

Figure D2: Design Form Option 

- 64 -



As shown in Figure D3, the Workflow Engineer enters a form 
label and optional description, to add a new form. Figure 
D4 and Figure D5 show that the user adds pages and 
sections to the form. 

\"orkl1ow Gc-ncrator OInd Trucking Syslc-m 

fC-Hfllll:ci 

(Jcklllftl"Ia.: 

C'C'MtlC,. 
IJ(<!ifINI€":,. 

lksign A New FOl"m 

~'l;~ ~>:'<l.'t',1 c(...;,~, 

::(':'1;-''::- vJ~'- t·) ~jt:(,!" /1!~ (~:'j~!l. 

; (.,,~-?"! ~' 
r 

Figure D3: Design Form - Form Tab 

- 65 -



I 

"'orkfJo\\, Gc-nt'r;&tor :1I1d Tr.:1cking System 

P{1elltd: 
(Nl1el: 

Figure D4 

Design A New l'o\'m 

Design Form - Pages Tab 

,,'ot"ldlo\\' GNu;,'r3tor and Tr:tckingSystem 

~e(~'Xlllt~el 

f\)lIl': 

e,der: 
~1I;,t(' S\,:,<;lIon: 

.,'1, 

f,IH; ~~e-~!<:n 
iF'?,! Or..:- v, 

J)esign A New Form 

Figure D5: Design Form - sections Tab 

- 66 -



Before adding the controls to the form, the Workflow 
Engineer creates form list categories to be used on the 
form, by selecting Manage Form List from the Form 
Management menu. The Category tab is shown in Figure D6 
and the Item tab is shown in Figure D7. 

Cn~f1te or Modil,;\' A 1'00'm List 

Cl:tIt'O~'I)·. /It·;t.;,l--r.TYf<' 
C":-l(liphUfI! :')':): !16)~~ :~!~<,~ fo.' h:l) fe\:.·J:~· ~~$!e(' 

tl(Vu': ~ 

Crc"ledC:n 
"";-<5,'1('\10/: 

Figure D6: Manage Form Lists - Category Tab 

- 67 -



Oc\t1!'ite{l'; r 

Figure 07 Manage Form Lists Item Tab 

- 68 -



As shown in Figure DB, the Workflow Engineer adds controls 
to the form. The form can be viewed, as shown in Figure 
D9. 

C«lt!cllYI)C! 

Sclt"!ILiS1! 
CM1roOtLtb<:l: 

TCCWlU 

c.er~U1· .. '''ue-: 

\'Mlh: 

"";1"11: 
~IHHl': 

Cnter! 
~I~l~ (",ntlOI: 

~«" 

Design A New Form 

l_~~_ _ _ ~~ ______ ~~ _"~ __ " __ <"~ _""" _____ ~ _____ _ 

Figure DB: Design Form - Controls Tab 

u:;(,rf-:~:t-::(I----==::-======:------------------I 
U)l~rIlL1fL' 

'\Jlr')t'.,,,,,~ 

O~1111~ 

" __ ~ __ < ________ "_<_-_~_<_::c I 
~ - -" - - - , 

:_ SLP,lCI': ~~_1 v 1 

Figure D9: Design Form - View Form Tab 

- 69 -



The Workflow Engineer can define roles, to be used in the 
workflow, from the Manage Roles option of the Workflow 
Management menu, as shown in Figure D10. 

\rorJdlow G('n('1°ator unci Tr.:lcking S"51~m 

'C\:~ 'r 
"J(oUy P./t!ll~: ~'i')r)r,)," 
,IJ~ ~r?! ::;Y,-~ 

Figure D10: Manage Roles Option 

- 70 -



As shown in Figure 011, the Workflow Engineer creates a 
custom role and, in Figure 012, adds Account Members to 
that role. Group members can also be added to the role, 
shown in Figure 013. 

\\'ol"kOow G<'lIcrOtlor imd Tr~ckil1~ S)"stem 

Fir,I(>; 

IXj(;,pIiCJfI: 
i~1t' ~~W"" ~'1~t~~_II~:': 
;,-\~t~-!;('~I ~;i S;;~IW t.!~~f 

C ro!',~t(>r1 (1/: h(tl (t .~'1)',c<'j \ i~i0-;:'i'('" '::, ~~ F', 
1'0:.;:/11("11 vy: J(f."j C~,"ly,{,'j \ lio.)>:::;,,7 \I~,::V 

" .. ' 

Figure 011: Manage Roles -Roles Tab 

,"1''',,1 ' \', \ 1"1'11',',1. i 1)1_1/\1_ 

Figure 012: Manage Roles - Account Members Tab 

- 71 -

as 



Figure D13: Manage Roles Group Members Tab 

- 72 -



Then the Workflow Engineer designs the workflow, using the 
Design Workflow option from the Workflow Management menu 
(Figure 014). 

"'orkflow Gc-Jlc:-rntol' :..nd Tr;tckiu!; S>':,;l~l'n 

,.11 

Figure 014: Design Workflow Option 

- 73 -



The Workflow Engineer can modify an existing workflow, by 
selecting it from the dropdown list. She can create a new 
workflow, by selecting the option New Workflow, as shown 
in Figure 015. 

\Vorkflow Grn('r.;'ltor and TTil.('ktng Sy~trm 

Design A New "'ol'kflow 

Figure 015: Create New Workflow 

- 74 -



The VM starts and the Workflow Properties dialog is 
displayed. The Workflow Engineer enters the workflow name 
and description for the new workflow, as shown in Figure 
D16. 

l\~o1"ldlo\\' Generator :md Tr.:\cking System 

V/urMltto',1 abr:~ H~lf' R"·;;.·:-::I S~I·~t~·.11 
{NOIill-C~:;f-tlJ- ~ ;-:.:-fi~-I-'-'-~·;:-';':C'1I~1 

S;MJ 

Figure D16: Workflow Properties Dialog 

- 75 -

, .. ,',,' .j 



The Workflow Engineer can design the workflow, 
VM toolbar as shown in Figure 017. 

Figure 017: VM 

- 76 -

using the 



The Workflow Engineer designs the workflow, by laying out 
the processes (states) and flows (transitions), as shown 
in Figure D18. 

v, .". "/ 

»('o;i8n ;\ Nt'.\\' \Vlwktlow 

Figure D18: Initial Workflow Design 

- 77 -



The Workflow Engineer saves the workflow design and starts 
defining the process properties, as shown in Figure D19. 
The Workflow Engineer then defines the flow properties, as 
shown in Figure D20. 

Oc~ign ,\ N('w Workflow 

Figure D19: Process Properties Dialog 

- 78 -



\"oa'ht1ow Gcntorntor :mrll'r:tckilll; S~·$l('JU 

Design:\ /'i(',w Workt1ow 

Figure D20: Flow Properties Dialog 

- 79 -



After the workflow process and flow properties are saved, 
the workflow design can be moved to Test mode, as shown in 
Figure 021, in order to create a workflow definition. 

\\'orldlow G(lnt"r~tQr nnd Tr~C"kins S,,-stcnl 

J)('~igll" :';CW Workt1ow 

,. 

Figure 021: Workflow Mode Changed To Test 

- 80 -



The final designed workflow diagram for the HelpDesk 
System is shown in Figure D22. 

i\I"dif~· A J'llhlislw<1 WorkO(.w 

Figure D22: HelpDesk System Workflow Diagram 

- 81 -



The Workflow Engineer then creates a process definition to 
associate the design Help Request Details form and the 
HelpDesk workflow, by selecting Design Definition from the 
Definition Management menu, as shown in Figure D23. 

\\"orkOow GC'lIcrator and Tr~ckint;. S),slcom 

Figure D23: Definition Management - Design Definition 

- 82 -



The Workflow 
description, 
form and the 
D24. 

Engineer 
and then 
HelpDesk 

creates a definition label and 
selects the Help Request Details 
System workflow, as shown in Figure 

\\'orl"Oow Gt.I:ne-r~t()r :mu Trlicltius S~~telll 

i't'4"'ofJon Ut;d; 
Ce~('"IJlri{lf'rl 

i ~!vlk'::;v:)t .)!:::~ .• I IO!NI 

I~!~'~':'!S":S~~~N'."\ ,,:vi'<-t v' 

f,rt'lr,iNf~?r: Jri01I~h'!H·.f:~' ! l'~".'J:,"'" ~':J I,t~ 

UO';fTlfIt>tI'&t: 

I-
I 

Figure D24: Design Definition - Definition Tab 

- 83 -



The Workflow Engineer selects the fields to display on the 
pending tasks page from the Queue Fields tab, as shown in 
Figure D25. 

""orkOow G(>n~r;ttQI" nnd Tr",ddng System 

1),,~jllll t\ :"\('W \VorJdlow n"fillilio" 

Figure D25: Design Definition - Queue Fields Tab 

- 84 -



The Workflow Engineer creates the form rules and 
transition rules from the Rules tab, as shown in Figure 
026. All the rules can be viewed from the View Rules tab, 
as shown in Figure 027. 

\rorkflow GC'lIcritlor and l"r':\t king System 

I • . • • . _ ' 

l;o1lhc!l Co I,,".ltll,~h·. ; f'<,",H ,/. '«~ t, ~.y .. (-,~rr'.; .. 

VJI~,Ht)r, F~,-"(> !~t~?'1/. ~,,'~Wt v 

!HQor ',~n!~'Dt'i 

Figure 026: Design Definition - Rules Tab 

- 85 -



v, '<.'1 \.'", li(.ft(l,H.,,~:, 

Figure 027 Design Definition View Rules Tab 

- 86 -



The Workflow Engineer publishes the process definition. 
The Administrator then creates the system definition, by 
selecting Manage Systems from the System Management menu, 
as shown in Figure D28. 

'\"orJdlo\\, Gc-nC'rator .md Tr.:tddng System 

Figure D28: System Management - Manage System 

- 87 -



The Administrator defines the system label, 
and style sheet to be used with the system, 
tab, as shown in Figure 029. 

"'orkflllw GCIlt-rOltor llnd TT.,'\C'kill~ System 

~'/e,I~m l,I;(l1 
I::,-:~(!)pllon 

Pt-:H,TIllt>; 

S~IIH.H"l-l 

v:: ;'::I,f v, 

(fC""tf>dS,: l,('/(h')r\(;!1 \1,'G~I~~(j1 t~l!.wV 

lJ;;;oJlrtt"j81' Jt""J(~,',"}"('JI \l;t!-!,I~tf,l? l(L~' F~' 

description, 
on the System 

Figure 029: Manage System - System Tab 

- 88 -



The Administrator associates 
definition with the system, 

the published process 
as shown in Figure D30. 

"'orldlow Gcn<-r3tor :md Tr.3.C'"kinl; S),sl'l'm 

Cr.'nt" or ]\!o<li( __ ,\ S~'slt'lH 

.,"1 

Figure D30: Manage System - System Processes Tab 

- 89 -



The created UNF HelpDesk System is then available in the 
Select a System menu, as shown in Figure D31. 

: ''',: ) 

Figure D31: Select a System - UNF HelpDesk 

- 90 -



The User selects a system to get the task management 
component, as shown in Figure D32. 

Figure D32: UNF HelpDesk - Select a Workflow 

- 91 -



The User adds a new workflow instance, by selecting the 
Add New Instance menu. The system presents the User with 
the Help Request Oetails form, as shown in Figure 033. 

. .. ~ . . . .'. ~. .. . 

lf1c:;rS":I.o:n-------------------------------, 
Ulrol:l'I.)(III: 

'Ir:PlrJllOn 
Ct'I ... I~ 

Figure 033: UNF HelpOesk - Add New Instance 

-92-



User Task Management lists the new instance (ID 14) with 
initial status of Dispatch, as shown in Figure D34. 

Figure D34: UNF HelpDesk - Pending Queue 

- 93 -



The User selects the 10 of the instance, to view the task, 
as shown in Figure 035. The Summary tab displays the 
details of the form. The Comments tab displays the history 
of the instance, as shown in Figure 036. 

~!J.~~·~~.~~·WM~---------------------------------------------------
In:'u ~:fym'ItI~:dD/'; ..'J:(,I;~'Cf)J·~~'t_:s ~t'..-r;ltf}.,:~;.: UIl'~~:Ol·st(~(PJf . Cti,ie--r,1 !-~t~'Q ,tU· .. "Jld)_ .A"'Oflf"j"O :'J/O:IICh"1Uf"'~ 

.J •••• 

\x",s~n,~----------------------------------------------------------------------. 
u.,:, ' .. HlIl: 

Arpl('o,hrtn 
D~16J,. 

I L ___________________ _ 

Figure 035: View Instance Details - Summary Tab 

- 94 -



~~~""'.' La~"~ ________________________________________________________ _ 

Ji~1j (h:hJr."Jj,
11'~lm07 D 41 m

Figure 036:

I

View Instance Details - Comments Tab

- 95 -

The Transition Tab shows transition choices to the User,
as shown in Figure D37. The User sends the request to the
Department Queue and assigns it to Support Repl, as shown
in Figure D38.

Figure D37: View Instance Details - Transition Tab

- 96 -

!':I"'+'.H1!4ifP ~u" .. · __ ,,-____________________________ _
rO(OOP>~IO~filO.J""": ~~~~~~G

l&mW£1

Figure D38: View Instance Details - Transition Tab

- 97 -

Selected instance is then removed from the pending tasks
of the User, as shown in Figure 039. Support Rep1 logs in
and views his pending tasks. The workflow instance 10 14
is listed, as shown in Figure 040.

Figure 039: Pending Tasks for User

- 98 -

Figure 040: Pending Tasks for Support Repl

- 99 -

Support Rep1 transitions the instance to Work In Progress,
while working on the request. The pending task is listed
in the Work In Progress queue, as shown in Figure 041.

Figure 041: Pending Tasks for Support Rep1

-100-

Support Repl transitions the instance to Resolved, when
the task is complete. The request is listed as Resolved in
the pending tasks queue for the User, as shown in Figure
D42.

Figure D42: Pending Tasks for User

-101-

The User updates the request to Pending User status, while
verifying the resolution. The request is listed as Pending
User, in the pending tasks queue for the User, as shown in
Figure 043.

I,

13 11J)4.'",007 tZ4I N.r J,ol Ch3tJ"i:--~
~- -----~-~-.--~. --.-~~~~,~

H ""~f,'~0071("11 FI.'. J)ot Chal,t",t;i. IJ}'Ul CholJ"i~j
-----~---

J,(II. Chaf,I"l'e;1

Figure 043: Pending Tasks for User

-102-

The User updates the request to Closed status, when the
request is verified. The request is listed as Closed in
the pending tasks queue for the User, as shown in Figure
D44.

tl 11iUl..'2·:(.<,· 12.-'1 MI

H 11<O<~0710·11 Fl.'

J,..:tI Ch:lur.'I!dl

Ji\li Ci·.:fIH.~Ci

Figure D44: Pending Tasks for User

-103 -

The User
from the

can view
Comments

the
tab,

complete
as shown

status log
in Figure

of the
045.

request

.~~u·~".·""u~",, __ ~ __ _

Jj1.fJCl:JfUf\X'I.1,
1"'O~~"il7 12llJ N'
J,.;lj":Nrl)(~'Vlli
11f?:"':L007 f2:la/\\t

.Ji~flC''''>-iIU~\~ill
'I'~_~r~~J~_U_f'l_.' ____ __ " __ ~~ ____________________________________ I
J.~U Ch.1ll1r,tolll
llf~:~(:()11(t,t1 ft',~

Figure 045: Task History

-104-

I

APPENDIX E

XFLOW SYSTEM DEMONSTRATION:
SIMPLEWORKFLOW EXAMPLE

What follows is a demonstration of the XFlow application,
using the VM to design a workflow. The complete process
consists of creating a workflow, deploying the workflow on
the JBoss Server, and executing the workflow. The example
shows how to create a simple workflow, using the VM.

The User starts the VM applet, as shown in Figure El.

Figure El: Start VM using Appletviewer

-105 -

The User designs a simple workflow. While saving the
workflow diagram, the Workflow Title dialog is displayed
for the name of the workflow, as shown in Figure E2.

: VW.J-!J fl.:deit!f

I "'·.cl.' :!.j".~.

Figure E2: Workflow Title Dialog of VM for XFlow

-106-

After the workflow is saved, a XFLOW format workflow file
is generated in the XFlow applet folder. The file is shown
in Figure E3.

:1 in J;J I", '/! ')J' ;:;f b"/ ,i fll)','j "11-*,)J,I d
Eile !;.dit FQ!mat ~iew t!elp

I<?xml versi on="l, 0" encodi n~="UTF-8"?>
<xflow name="simpleworkflow >
<nodes>
<node i d="start" tyee="start "/>
<node id="p1." type='process"/>
<node id="P2" type="process"/>
<node id="P3" type="process"/>

!. <node i d="P4" type="process "/>
<node id="P5" type="process"/>
<node id="End" type="End"/>
</nodes>
<transitions>
<transition from="Start" to="Pl"/>
<transition from="Pl" to="P2"/>
<transition from="P2" to="P3"/>
<transition from="P3" to="P4"/>

• <transition from="P4" to="P5 "/>
<transiti on from="P5" to="End"/>
</transiti ons>
</xflow>

,
i

i
:

.

Figure E3: SimpleWorkflow.xflow Output File

-107-

In a command window, the user starts the JBoss Server,
using the startup scripts distributed with the XFlow
package. The output of the console window after the JBoss
Server startup is shown in Figure E4.

Figure E4: JBoss Server Startup Trace Messages

-108-

In another command window, the user deploys the
SimpleWorkflow, using the DeployModel tool, as shown in
Figure E5.

Figure E5: Deploy SimpleWorkflow using DeployModel

-109-

In another command window, the user runs the Increment
Processes for all the processes, as shown in Figure E6.

Figure E6: Increment Process Started

-110-

In yet another command window, the user now creates an
instance of SimpleWorkflow. Figure E7 shows the workflow
started with a new Workflow 10.

Figure E7: Workflow Instance Created

-111-

The first process of SimpleWorkflow then receives the work
item and waits for a user response, as shown in Figure E8.

Figure E8: Workflow Process Receives a Work Item

-112-

The SimpleWorkflow can be seen in action, when the second
process receives the work item and waits for a user
response, as shown in Figure E9.

Figure E9: SimpleWorkflow in Action

-113 -

VITA

Jyoti Chaturvedi received a Bachelor of Engineering degree

with a major in Electrical Engineering from the Government

Engineering College, Ujjain, MP, India, and a Master of

Business Administration degree with a major in Marketing

from Jawaharlal Nehru Institute of Business Management,

Ujjain, MP, India. She expects to receive Master of

Science degree in Computer and Information Sciences from

the University of North Florida in May 2008. Dr. Arturo

Sanchez-Ruiz of the University of North Florida is serving

as Jyoti's thesis advisor.

Jyoti currently works as a database Web specialist for the

Florida Virtual School. Prior to this, she was employed as

a marketing executive at Biochem Synergy, Ltd., India; a

visiting faculty member at Prestige Institute of

Management and Research, India; a software developer at

Harbour Management Consultants, Bedford, MA; a systems

analyst at Amdocs, Inc., Champaign, IL; and a software

engineer at Adtec Digital, Jacksonville, FL.

-114 -

	A Workflow Visual Modeler and Its Interface to Existing Workflow Management Systems
	Suggested Citation

	Title Page
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Chapter 1: INTRODUCTION
	Chapter 2: A SURVEY OF EXISTING WfMSs
	2.1 JBoss jBPM
	2.2 Zebra
	2.3 YAWL
	2.4 XFlow
	2.5 Enhydra JaWE
	2.6 WFGenSystem-UNF

	Chapter 3: A SURVEY OF MODELING NOTATIONS
	Chapter 4: DIAGRAMMING TOOLS AND FRAMEWORKS
	4.1 JGraphPad Pro
	4.2 ILOG JViews Diagrammer
	4.3 Business Process Visual Architect
	4.4 Enterprise Architect
	4.5 Enhydra JaWE
	4.6 Java Swing and Java 20 Frameworks
	4.7 JGraph and JGraphLayout Frameworks

	Chapter 5: THE VM: SOFTWARE ARCHITECTURE AND IMPLEMENTATION
	Chapter 6: CASE STUDIES
	6.1 Case study 1: WFGenSystem-UNF
	6.2 Case study 2: XFlow

	Chapter 7: CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.2 Future Work

	REFERENCES
	Appendix A: WfMSs, Diagramming Tools and Frameworks
	Appendix B: BPMN and UML Notation Comparison
	Appendix C: JGraph XML Schema
	APPENDIX D: WFGENSYSTEM-UNF-VISUAL SYSTEM DEMONSTRATION:UNF HELPDESK EXAMPLE
	APPENDIX E: XFLOW SYSTEM DEMONSTRATION:SIMPLEWORKFLOW EXAMPLE

