
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2002

Performance Evaluation and Comparison of CORBA Performance Evaluation and Comparison of CORBA

Implementations for the Java Platform Implementations for the Java Platform

Irina K. Grant
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Computer Sciences Commons

Suggested Citation Suggested Citation
Grant, Irina K., "Performance Evaluation and Comparison of CORBA Implementations for the Java
Platform" (2002). UNF Graduate Theses and Dissertations. 189.
https://digitalcommons.unf.edu/etd/189

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2002 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fetd%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/189?utm_source=digitalcommons.unf.edu%2Fetd%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

PERFORMANCE EVALUATION AND COMPARISON OF CORBA
IMPLEMENTATIONS FOR THE JAVA PLATFORM

by

Irina K. Grant

A graduate project submitted to the
Department of Computer and Information Sciences

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

April,2002

The graduate project" Performance Evaluation and Comparison of COREA
Implementations for the Java Platform" submitted by Irina K. Grant in partial fulfillment
of the requirements for the degree of Master of Science in Computer and fuformation
Sciences has been

Approved by the graduate project committee: Date

Dr. Roger'Eggen
Project Director

ano
Chai erson of the Department

Dr. Charles N. Wmton
Graduate Director

1l

Signature deleted

Signature deleted

Signature deleted

ACKNOWLEDGMENT

I would like to thank my project director, Dr. Roger Eggen, for his support and guidance

of the project.

I would like to thank Dr. Sanjay Ahuja who brought to my attention the Distributed

Systems through his lectures and instruction.

I would like to thank my husband and my mother for their encouragement and support.

iii

CONTENTS

List of Figures ... vi

List of Tables ... vii

Abstract .. viii

Chapter 1: Introduction .. l

Chapter 2: CORBA .. 2

Chapter 3: LAMIMPI .. 5

3.1 LAM History ... 6

Chapter 4: Project Description ... 8

4.1 Characteristics of the cluster ... 8

4.2 The Nature of the Application ... 9

4.3 Client Application ... 11

4.4 Server Application ... 12

4.5 CORBA Services ... 13

Chapter 5: Testing .. 14

Chapter 6: Results .. 15

6.1 Orbix 2000 ... 16

6.1.1 Quantitative Comparison .. 16

6.1.2 Qu<).litative Comparison .. 17

6.2 VisiBroker ... 18

6.2.1 Quantitative Comparison .. 18

6.2.2 Qualitative Comparison .. 18

6.3 ORBacus .. 20

IV

6.3.1 Quantitative Comparison .. 20

6.3.2 Qualitative Comparison .. 20

6.4 Java 2 ORB .. 21

6.4.1 Quantitative Comparison .. 21

6.4.2. Qualitative Comparison ... 22

6.5 LAMlMPI .. 23

6.5.1 Quantitative Comparison .. 23

6.5.2 Qualitative Comparison .. 23

Chapter 7: Conclusion ... 26

References .. 27

Appendix A .. 29

Appendix B .. 32

VITA .. 38

v

FIGURES

Figure 1: One Client! Four Servers model used in this project ... 10

vi

TABLES

Table 1: Comparison of Features and Services of CORBA Implementations 25

vii

ABSTRACT

Middleware is a software layer between the applications, services and the operating

system that provides an abstraction to the application programmer. It masks the

heterogeneous nature of the network and provides such services as remote calls, naming

service, transaction process abilities, and security services. Common Object Request

Broker Architecture (CORBA) is a middleware design that is implemented through the

use of Object Request Broker (ORB), which is a software component that,allows

communication between the remote objects and applications that use them in a distributed

environment. CORBA applications can run on almost any platform, operating system,

and support different languages. There are many types of distributed object middleware

on the market such as Sun's Java 2 ORB, Inprises's VisiBroker for Java, IONA's

ORBacus for Java, and IONA's Orbix 2000 for Java. Because of these various products, it

is difficult to select the product that will provide the specific requirements for one's

application. The goal of this project is to evaluate the above-mentioned implementations

of the CORBA standards and, additionally, CORBA was compared to LAMIMPI for

efficiency. The results of this project should provide developers and novices studying

distributed systems the necessary data to evaluate and select the most efficient CORBA

product to meet their specific design requirements, and provide a methodology for further

evaluation.

viii

Chapter 1

INTRODUCTION

Accomplishing complex computational tasks efficiently in today's computer environment

requires using either distributed systems or parallel processing. Due to the increased

number of different types of computer networks and the growth within these networks,

one of which is the Internet, completing these tasks requires selecting the most

expeditious implementation of the various CORBA products or LAMIMPI. With a great

variety of the CORBA middleware products available, research should be done to choose

a product that will complement the application. In this project, four middleware products

will be evaluated quantitatively and qualitatively. To make a quantitative comparison, the

performance obtained in each case will be measured by response time during client/server

communication. To make a qualitative comparison, each distributed object middleware is

compared from a programmer's criteria. Additionally, COREA is compared to LAMIMPI

for efficiency purposes to provide a baseline. The results of this project will be helpful for

developers by establishing a basis for testing other CORBA implementations. This

project also will be helpful for students or those who would like to learn about different

distributed object middleware such as Java 2 ORB, VisiBroker for Java, ORBacus for

J ava, and Orbix 2000 for Java.

- 1 -

Chapter 2

CORBA

CORBA is a standard architecture for distributed object systems. It allows a

heterogeneous collection of objects to interoperate [CoulourisOl]. The Object

Management Group (OMG), established in 1989 with eight original members, is a 760-

plus-member organization whose charter is to provide a common architectural framework

for object-oriented applications based on widely available interface specifications

[Rosenberger98]. The OMG achieves its goals with the establishment of the Object

Management Architecture (OMA), of which CORBA is a part [Rosenberger98]. This set

of standards delivers the common architectural framework on which applications are built

[Rosenberger98]. The OMA consists of the ORB function, object services, common

facilities, domain interfaces, and application objects [Rosenberger98]. CORBA's role in

OMA is to implement the ORB function [Rosenberger98].

The major components of the CORBA architecture are IDL, ORB, CORBA Services, and

lIOP. Interface Definition Language (IDL) is an implementation-independent language

that provides a way of describing interfaces of the remote objects in CORBA. ORB

provides the interactions between remote objects and the applications that use them.

CORBA has a wide array of services. Naming Service is one of the standard services in

CORBA that allows remote clients to locate remote objects on the network. The Internet

- 2 -

Inter-ORB Protocol (lIOP) handles the lOW-level communication between processes in a

CORBA context [Flanagan99].

Since this project evaluates the results of various CORBA middleware, it is important to

understand how distributed systems operate. Distributed systems allow hardware or

software components located at networked computers to communicate by passing

messages. Some of these characteristics are as follows:

• Allows multiple components in a system to run concurrently, such as multiple servers

handling multiple client requests at the same time [CoulourisOl].

• Absence of a global clock meaning that programs cooperate not by any shared idea of

time, but by passing messages. Because there are limits to the accuracy with which

computers in a network can synchronize their clocks, thus, there is no single global

notion of time [CoulourisOl].

• Ability to allow independent failure of components, meaning that one of the servers

can be taken down while the other servers are still effectively functioning

[CoulourisOl].

The main reason for constructing and using distributed systems is the ability to share

various resources such as hardware and software components. The hardware components

can be printers and disks, and the software components can be files, databases and

different data objects. Since these components may have many differences, the

distributed system must be capable accepting new components, handling an increasing

- 3 -

number of users, absorbing software and hardware failures, and making the number of

servers in the system transparent to the end user. In order to accomplish these differences,

middleware becomes an important component in a distributed system.

- 4 -

Chapter 3

LAM/MPI

LAM (Local Area Multicomputer) is an MPI programming environment and

development system for heterogeneous computers on a network [Laml]. With LAM, a

dedicated cluster or an existing network computing infrastructure can act as one parallel

computer solving one problem [LamI].

MPI (Message Passing Interface) is a library, that specifies the names, calling sequences,

and results of subroutines to be called from Fortran programs, the functions to be called

from C programs, and the classes and methods that make up the MPI C++ library

[Gropp99]. The programs that are written in Fortran, C, and C++ are compiled with

ordinary compilers and linked with the MPI library. MPI is the message-passing model,

where processes communicate via messages and have separate address spaces.

Communication occurs when a portion of one process's address space is copied into

another process's address space [Gropp99]. This operation is cooperative and occurs only

when the first process executes a send operation and the second process executes a

receive operation [Gropp99].

- 5 -

3.1 LAM History

LAM was originally developed at the Ohio Supercomputer Center [Lam2]. Since then,

the original members of the LAM Team moved to other jobs, and LAM became an

orphaned project [Lam2]. The Laboratory for Scientific Computing (LSC) at the

University of Notre Dame, headed by Dr. Andrew Lumsdaine, adopted LAM and hosted

it in its servers [Lam2]. Soon after LAM was adopted by Notre Dame, version 6.2b was

released, which contained some unreleased work from the original LAM Team, and a few

contributions from the new Notre Dame LAM Team. Version 6.2b proved to be stable

and robust in a variety of Unix environments [Lam2]. Development on LAM has

continued by the Notre Dame LAM Team; the release of 6.3.2 included several new

debugging features for user MPI programs, new environmental controls, and a variety of

bug fixes from the original6.2b release [Lam2]. Debugging parallel programs, which has

been problematic in the past, is now much easier due to relaxations in LAM's process

model [Lam2]. In the fall of 2001, Dr. Lumsdaine and the LSC moved to Indiana

University. The LSC was renamed the Open System Laboratory (OSL) and all LSC

projects, including LAM, moved from Notre Dame to Indiana with Dr. Lumsdaine

[Lam2J.

LAMIMPI is intended to be an open implementation of MPI. Since version 6.5.5,

LAMIMPI has been licensed under the familiar revised BSD license. LAM 6.5.6 is now

- 6 -

the officially supported version of LAM. All prior versions are neither available nor

supported [Lam2].

In this project, a LAM version 6.4-a3 was used that is identical to LAM 6.3.2 except that

it includes support for Interoperable MPI (IMPI) [Lam3]. This is an alpha release

[Lam3].

- 7 -

Chapter 4

Project Description

The purpose of this project is to determine the most efficient CORBA implementation.

Comparison of Orbix 2000, VisiBroker, ORBacus, and Java 2 ORB, is the focus of this

project. For baseline purposes, the application is also implemented using LAMIMPI.

4.1 Characteristics of the cluster

This application was developed on a Beowulf cluster. Applications for four ORBs tested

ran on Vega, and Node1 through Node 9 machines. Name service and Oribx services

(some of them were accepted by default during Orbix configuration) ran on Vega

machine. Server applications ran on Node 2 through Node 9. Client application ran on

Node 1 machine. All the Node machines run Red Hat Linux 7.1 version, with 128

megabytes of RAM, that have a single processor of 450 MHz. Vega runs also Red Hat

Linux 7.1 version, and consists of four tightly-coupled CPUs each of which is 500 MHz,

with 1.5 gigabytes of RAM. LAMIMPI application ran on Node1 through Node 9. It was

booted from Nodel machine. The following versions of software used by this project are:

• Orbix 2000 1.2

• VisiBroker 4.5.1

• ORBacus 4.0.4

- 8 -

• Java 2 ORB 1.3.1

• LAMfMPI 6.4-a3

For the location of the files on CD refer to Appendix A.

4.2 The Nature of the Application

The practical nature of this project can be demonstrated in the following example. You

have already an existing network in your company, but a new project development

requires additional use of a mainframe. One of the options is to buy it, investing much

needed capital, or to use the existing network and develop a distributed application. What

can be the possible solution? One of the advantages of distributed systems is that they can

have more computing power than a mainframe in terms of speed. In terms of economics,

computers linked together can give a better price/performance ratio than mainframes.

Extensibility and incremental growth is another advantage of distributed systems, as it is

possible to gradually scale up (in terms of processing power and functionality) by adding

more sources (both hardware and software). This can be done without disruption of the

system. So the solution can be to use the client/server model for computation that is

depicted on Figure 1. This project measures the results of implementing one such

solution.

- 9 -

Figure 1: One Client! Four Servers model used in this project

The applications for COREA implementations were written in Java. The application for

LAMIMPI implementation was written using C language. For this project, the number of

servers specified was 1,2,4, or 8. Array size specified was 0, 10000,20000,40000, or

80000. Operations implemented were reply, search, or sort. Reply operation was

implemented to measure strictly communication time. The number of steps in this

operation is a constant. By using this operation, there was "null" work done on the server

side, and to ensure two-way communication, server sends a string back at the client's

request. For the search operation, a sequential search was implemented. The execution

time for this algorithm is O(n). The input for search operation was an array of sorted

- 10-

numbers generated by the client application where search was done to find the last

element of the array initially created by the client. This type of operation would be

considered as a medium load on the server. For the sort operation, an insertion sort was

implemented. The execution time for sorting is O(n) when initial array is sorted, that is,

only one comparison is made on each pass. The execution time is 0(nI\2) when the array

is sorted in reverse order. The input for sort operation was an array of random numbers

that was also generated by the client application. This type of operation would be

considered as a heavy load on the server. In this project, for all CORBA implementations

and LAMlMPI, the efficiency was measured by timing the communication process and

the work on the server side. Therefore, for the sort operation, the merge of the sorted

arrays is irrelevant to our study. The timer used for CORBA implementations was

provided by System class that is located in java.lang package. The timer used for

LAMIMPI implementation is provided by MPI routine, MPC WtimeO.

4.3 Client Application

Client application obtains the following arguments from the command-line such as

number of servers, array size, and operation. Also, depending on the CORBA

implementations or LAMIMPI, other arguments were added to the command line. The

following characters were supplied for the command-line to specify the particular

operation: In' is for reply operation, IS' is for searching, and Itt is for sorting. For reply

- 11 -

operation the size of the array will be zero. For the search and sort operations, the size of

the array will be 10000,20000,40000, or 80000. When all arguments are obtained from

the command line then the array is generated by the client application. For the reply

operation there is no array generated. For the search operation a sorted array in ascending

order is created. For the sort operation an array of random numbers is generated. Then the

data size was divided evenly by the number of servers. When all the necessary data is

obtained by the client application, a request is sent to the server. The client application is

multi-threaded, so the array was distributed concurrently among all the servers. If the

number of servers is one, then the entire array will be passed to the server application.

The goal of the client application is to measure the communication process and the work

that is done on the server side. As a result, the output of the client application is the time

in seconds. Instructions for compiling and running client application are contained in

Appendix A.

4.4 Server Application

The goal of the server application is to satisfy the client request. Depending on

parameters supplied by the client, server application performs a particular task. For the

reply operation, there is no data sent by the client application, and the server sends a reply

string back to the client. For the search operation, the server application receives an array

and a search key. The key is the' last element of the array that was generated initially by

- 12 -

the client that will be found in only one server. If the element was found, the server sends

an index of the array that contains that element to the client. Otherwise, negative one is

returned. For the sort operation, the server receives an array, sorts it implementing

insertion sort, and sends a sorted array back to the client. Instructions for compiling and

running server application are contained in Appendix A.

4.5 CORBA Services

CORBA Naming Service was used to allow the client to locate remote objects on the

network. Every CORBA implementation tested establishes its environment allowing

communication to occur. Prior to running the server application, the Naming Service has

to be started, which is then followed by the running of the client application. Each of the

CORBA implementations has its own way of invoking Naming Service. For the Orbix

2000, additional services will be running with the Naming Service as the background

processes due to the Orbix 2000 configuration. In this project for simplicity, a Korn Shell

script was written to start Service(s) for each of the CORBA applications. To run this

script, type at the prompt run.ksh. To stop Naming Service or Orbix 2000 services, use

dd.ksh script.

- 13 -

Chapter 5

TESTING

Performance for each distributed parallel application was measured by response time in

seconds. The client application creates a thread for each server. Each thread is initialized

sequentially. The timer starts immediately before thread initializations, and stops when

the last thread completes the task. That means that the client receives a response from the

server, which in turn completes either searching, sorting, or simply sends a reply string

back to the client. The response time is the difference between stop and start time.

The experiments performed were: one client/one server; one client/two servers; one

client/four servers; and one client/eight servers. Then for each of these experiments, tasks

evaluated were search, sort, and reply operations. The array size was 10K, 20K, 40K, and

80K for searching and sorting. Tests were performed on the various combinations ten

times each in order to obtain an average operation processing time. The total number of

tests performed was 1800. For each of the 5 products (four CORBA implementations and

LAMlMPI), there were 10 reply tests for each of the 4 server combinations, 40 search

tests for each of the 4 server combinations, and 40 sort test for each of the 4 server

combinations.

- 14 -

Chapter 6

RESULTS

In this section quantitative and qualitative comparison will be provided for all the

implementations of CORBA and LAMIMPI. A quantitative comparison is based on the

performance of each middleware product and MPI that was obtained by measuring

response time during client/server communication. A qualitative comparison is made

based upon ease of environment configuration, application time development, ease of

use, and difference in architecture and services for CORBA implementations.

General Observations:

• There is a clear ranking of products from best to worst that does not change across

the various applications for all operations. Java 2 ORB performs closer to

LAMIMPI than the other products. Orbix 2000 performs significantly worse than

LAMIMPI for reply and search operations.

• For the sort operation, there is a marked improvement in performance as the

number of servers is increased.

• All the products are significantly worse than LAMIMPI for all operations other

than sort for 4 and 8 servers.

• The variance between VisiBroker and ORBacus is fairly insignificant across all

operations.

- 15 -

• For the search operation, as servers are added the performance levels out for all

products regardless of array size.

• For graphs of results see Appendix B.

• For comparison of services and features of the CORBA implementations, see

Table 1 [McKeller01].

6.1 Orbix 2000

6.1.1 Quantitative Comparison

For reply and search operations, Orbix 2000 performs significantly worse than the other

CORBA implementations for medium or light workloads. However, as the workload is

increased, as for example, in the sort operation where the array size is increased, the

percentage of variance versus the other CORBA implementations is reduced. Therefore,

Orbix 2000 is more efficient as workload and servers are added. Across all operations,

Orbix 2000 is the weakest performer versus the other CORBA implementations and

LAMIMPI.

- 16 -

6.1.2 Qualitative Comparison

Orbix 2000 is a commercially available CORBA implementation from Iona

Technologies. It complies with CORBA 2.3 specifications. The Orbix 2000 allows

development and deployment of large-scale enterprise applications in C++ and Java.

Orbix 2000 provides a unique code generation toolkit named "genie" that generates a

complete client-server application automatically by using an IDL file. Developing an

application by using "genie" allows the programmer to concentrate on the business

application logic, thereby saving time in the overall development process. "Genie" can

also be used for debugging purposes. For example, it can be used for an auto-generated

server to debug a client application. Orbix 2000 provides support for single and multi-

threaded applications. It also allows spanning a large number of hosts across a network

and can be extended with new hosts, therefore, is highly scalable. Orbix 2000 provides

several useful services, such as naming service, object transaction service, and event

service. Orbix 2000 supports POA (Portable Object Adapter) as do VisiBroker and

ORBacus. POA provides portability on the server side that acts as an intermediary

between the object implementation and ORB. It provides such fundamental services as

object creation, servant registration, and request dispatching. While developing an

application with Orbix 2000 was fairly easy, its configuration was extremely

cumbersome. For this application, file-based domain configuration was used [Orbix2].

- 17 -

6.2 VisiBroker

6.2.1 Quantitative Comparison

For reply operation, Visibroker performs better than Orbix, but Java 2 ORB outperforms

it significantly. Adding additional processors does not improve response time. As more

servers are added, the response time increases due to the communication overhead. For

the search operation, there are no significant results obtained when the number of servers

and array sizes are increased. For the sort operation, one client/one server, and one

client/two servers, VisiBroker performance is tied with all other CORBA

implementations. Overall, for sort operation, response time is significantly improved as

the number of servers is increased. This means if sufficient work has to be done on the

server side, it is worthwhile to add additional processors.

6.2.2 Qualitative Comparison

VisiBroker is another commercially available CORBA implementation Inprise product

from Borland Software Corp., and is CORBA 2.3 compliant. Its features include location

service, naming service, and event service. Additional tools are "Smart Agent" and the

"Object Activation Daemon". Smart Agent (osagent) is a dynamic, distributed directory

service that locates the implementation requested by the client. Multiple Smart Agents on

- 18 -

the network can cooperate in order to provide load balancing at a high availability for the

client to access object implementations. The Object Activation Daemon can be used to

automatically start the implementation upon client request. VisiBroker provides native

support for single and multi -threading management. It also provides the interceptor

feature, as do Orbix 2000 and ORBacus, which provides a framework to add ORB

behavior such as security, transactions, or logging. Although, BOA (Basic Object

Adapter) is being depreciated, VisiBroker 4.0 will still support BOA functionality [Visi].

VisiBroker provides a feature known as Quality of Services that "allows to define

properties that influence how the connection is made" [Visi]. Another feature of

VisiBroker, and also Orbix 2000 and ORBacus, is a Dyn-Any interface that allows the

dynamic creation of basic and constructed data types at run time. VisiBroker also offers

IR (Interface Repository) that contains information about CORBA objects and enables

clients to learn about or update interface descriptions at runtime [Visi]. Excellent

documentation, including clear and understandable examples, greatly assisted the

development of applications using VisiBroker.

- 19 -

6.30RBacus

6.3.1 Quantitative Comparison

For all servers combinations, all operations, and array sizes, ORBacus performance is

slightly better than VisiBroker, but follows the same pattern of performance when

additional servers are added.

6.3.2 Qualitative Comparison

ORBacus is a CORBA compliant product for C++ and Java, and is free for non-

commercial use. There was no complicated configuration. One of the ORBacus features

is Implementation Repository (IMR) that "provides support for indirect binding for

persistent object references" [ORBacus]. The advantage of this indirect binding is that it

loosens the coupling between client and server. Therefore, changing location of the server

will not affect the client. IMR also can activate server using Object Activator Daemon

(OAD). CORBA Properties Service permits you to annotate an object with extra

attributes (called properties) that were not defined by the object's IDL Interface

[ORBacus]. Properties can represent any values because they can make use of CORBA

Any Data type [ORBacus]. ORBacus has Time Service that provides operations related to

time and intervals. ORBacus has Event Service, which allows some applications to

exchange information without explicitly knowing about one another. Since a server is

- 20-

sometimes not aware of the nature and number of clients that are interested in the data the

server has to offer, a special mechanism is required that provides decoupled data transfer

between servers and clients. ORBacus provides Trading Service that is similar to

Naming. Both of them are needed to locate objects. In Trading Service, an object is not

published by name, so a server advertises an object based on the kind of services

provided by the object. A client locates of object of interest by asking the Trading Service

to find all objects that provide a particular service. A CORBA Interface Repository (IFR)

is essential for applications using dynamic futures of CORBA, such as Dynamic

Invocation Interface and DynAny. The IRF holds IDL type definitions and can be queried

and traversed by applications.

6.4 Java 2 ORB

6.4.1 Quantitative Comparison

For Java 2 ORB, when there is no work to be done on the server side, for instance, reply

operation, adding servers does not improve the results. For the sort operation, adding

another processor improves the results significantly. In the case where the experiment

was performed on sort operation with eight servers and array size of 80K, Java 2 ORB

outperformed LAMIMPI. This result can be explained because Java applications for all

- 21 -

CORBA implementations are multithreaded. Therefore, data is sent to each of the server

concurrently. LAMIMPI is not multithreaded. According to MPI documentation, MPI

library can be called only in single thread. Thus, in LAMIMPI application data is sent to

all the servers sequentially. Also, MPI uses send and receive functions to pass messages.

Function send_MPIO is blocking. For example, in the case with eight servers, the last

server cannot sort data until all the other servers receive it. This is what creates additional

time. Compared to all other CORBA implementations, such as Orbix 2000, VisiBroker,

and ORBacus, across all operations, servers combinations and array size, this is the most

efficient product that exhibits the best performance.

6.4.2. Qualitative Comparison

Java 2 ORB is free software that is CORBA 2.3 compliant and was very easy to use to

develop applications. There is sufficient documentation available through web sites and

books. Java 2 ORB is language independent, that is, any exported CORBA objects can be

implemented in different languages, such as C, C++, or Ada. One of the disadvantages is

that compared to other CORBA implementations, applications that are developed with

Java 2 ORB can be written only in Java. The other of the disadvantages is that it lacks

many services available in other CORBA products, namely, event service, trading

service, object transaction service, and location service. The only service that is provided

by Java 2 ORB is Naming Service. Another disadvantage is that the current version of

- 22-

Java 2 ORB does not support POA as do other CORBA implementations. Another

disadvantage is that Java 2 ORB is the only ORB that does not support single thread

option. Despite all these disadvantages, this is a great tool with which to learn and

develop simple distributed applications.

6.5 LAMIMPI

6.5.1 Quantitative Comparison

LAMIMPI application was used as an indicator by looking at which CORBA

implementations can be analyzed, and their performance will be evaluated based on

LAMIMPI results. For all combinations of the servers, across all the operations, and

regardless size of the array, results obtained for LAMIMPI demonstrate the best

performance. With the exception of Java 2 ORB the variance was fairly significant versus

the CORBA implementations.

6.5.2 Qualitative Comparison

LAM is a freeware implementation of the Message Passing Interface standard [Lam4].

The MPI standard is the de facto industry standard for parallel applications [Lam4]. LAM

- 23-

tends to be "cluster friendly" by using small daemons to effect fast process control,

application startup/shutdown, etc [Lam4]. LAMIMPI was easy to learn and also to

develop the application, which is a monolithic, where client and server are implemented

in one program. The problem with such an application is that it is difficult to debug, and

as the complexity of the program increases, it becomes cumbersome and difficult to

maintain. Another issue is that LAM is not thread - safe, but it can be used in multi-

threaded applications. Languages used with MPIILAM are Fortran, C, and C++.

It was easy to set environment for this application. To obtain all the results for

LAMlMPI, this application can be invoked from one machine therefore it was easy to

run. There are also many web sites and books published that provide sufficient

information about implementations of LAMIMPI.

- 24-

Feature Orbix 2000 VisiBroker ORBacus Java20RB LAMIMPI
ID L supports code Yes Yes Yes No N/A
generation for
multiple languages
Single & Multi Yes Yes Yes Multi-thread Single
threading support only thread only
POA support Yes Yes Yes Not in N/A

current
version

Policy support Yes Yes Yes No N/A
Dyn-Any Yes Yes Yes No N/A
Interface Repository Yes Yes Yes No N/A
Implementation Yes Yes Yes No N/A
Repository with
Object Activation
Daemon
Naming Service Yes Yes Yes Yes N/A
Event Services Yes Yes Yes No N/A
Location Service Yes Yes No No N/A
Transaction Service Yes No No No N/A
Code Generator Yes No No No N/A
Time to develop 20 9 10 25hrs 15hrs
Time to configure 35hrs 0 4hrs 0 2hrs
Ease of Not as easy Easy Easy Easy Easy
implementation

Table 1: Comparison of Features and Services of CORBA Implementations

- 25 -

Chapter 7

CONCLUSIONS

In conclusion, selection of an appropriate middleware product is largely a function of the

work to be performed. For a light workload, a product that is easy to use might be

preferable to one that might be slightly faster. For a heavy workload, faster is definitely

better, even if it requires more time during the development process. This project

produced test results which were very consistent across varying ranges of operations and

workload in that the four products tested maintained their relative ranking throughout all

operations, and indicated that Java 2 Orb was the best implementation available to satisfy

a variety of requirements.

- 26-

REFERENCES

[ColourisOl]
Colouris, George, J. Dollimore, and T. Kindberg, Distributed Systems Concepts and

Design, Addison-Wesley, 2001

[Flanagan99]
Flanagan, D., et aI, Java Interprise in a Nutshell, O'Reilly & Associates, Inc., 101 Morris

Street, Seabastopol, CA, 1999

[Gropp99]
Gropp, W., Lusk, E., and Skjellum,A., Using MPI, the MIT Press Cambridge,

Massachusetts, London, England, 1999

[Javal]
Java™ IDL, main page http://java.sun.com/j2se/1.3/docs/guide/idl/index.html

[Java2]
Java ™ IDL FAQ, http://java.sun.com/j2se/l.3/docs/guide/idl/jidIFAQ.html

[Java3]
Java™ IDL, about idlj compiler, http://java.sun.com/products/jdklidl/index.html

[Laml]
LAM / MPI Parallel Computing, main page http://www.lam-mpi.org

[Lam2]
The History of LAMlMPI, http://www.lam-mpi.org/history.php

[Lam3]
LAM I MPI Parallel Computing, LAM versions, http://hpc.snu.ac.kr/documentlmpi/laml

[Lam4]
LAM I MPI Parallel Computing, LAM FAQ: LAM terms and definitions,

http://www .lam-mpi. org/faq/categoryl. php3

[LamS]
LAM / MPI Parallel Computing, One-Step Tutorial: Getting started with LAM,

http://lam-mpi.org/tutorials/one-stepllam.php

- 27 -

[Langsam96]
Langsam, Y., Augenstein, M.J., Tenenbaum A.M., Data Structure Using C and C++,

Prentice Hall, Upper Saddle River, NJ, 1996

[McKellerO 1]
McKeller, Michelle, L., CORBA: A Quantitative and Qualitative Comparison of

Industrial Strength, Commercial CORBA ORBs For The Java Platform,
University of North Florida, Jacksonville, 2001

[ORBacus]
ORBacus for C++ and Java, version 4.0.4 (comes with software distribution)

[Orbix]
Orbix 2000 Programmer's Guide

http://www.iona.comldocs/orbix2000/1.2/pguide-Javalpdf/pguide-Java.pdf

[Orbix2]
Orbix 2000 Administrator's Guide, Configuring a File-Based Domain, ch3,

http://wwwjona.comldocs/orbix20001l.2/adminlpdf/admin. pdf

[Orbix3]
Orbix 2000 Manuals, http://www.iona.comldocs/orbix20001l.2/index.html

[Rosenberger98]
Rosenberger, Jeremy L., Teach YourselfCORBA in 14 Days, Sams Publishing, 1998.

[Visi]
VisiBroker documentation version 4.5

http://www.borland.comltechpubs/books/vbj/vbj45/programmers-
guide/vbj45programmers-guide.pdf

- 28 -

APPENDlXA

Directory Structure for Project CD, Compiling and Running Applications

Project CD contains the following five folders: Documentation, Executables,
Full_Package, Results_xIs, and Source_code.

1. Documentation
This folder contains two files: presentation Power Point slides and write-up in pdf format.

2. Executables
This folder contains scripts to run all the applications and executables. Applications used
in this folder can be run by using run.ksh and run_all.ksh scripts. Note the permission for
these scripts has to be set to 755 to execute them. Scripts that were used to compile
applications were removed from this folder.

3. Full_Package
This folder contains the complete project that includes all source codes and executables
with all the scripts necessary to compile and run these applications. Also, additional text
files with instructions are provided for each application. Zip file for this package is
included.

To zip files or folders:
$> tar -cvf newfile.tar myfile
$> gzip newfile. tar

To unzip files or folders:
$> gzip -vd newfile.tar.gz
$> tar -xvf mewfile.tar

4. Results_xis
This folder contains two files in xIs format that detail results for this project.

5. Source_code folder
This folder contains the source code for the five applications: Orbix 2000 (Orbix2000
folder), VisiBroker (Vbroker folder), ORBacus (ORBacus folder), Java 2 ORB
(Java_IDL folder), and LAMIMPI (Lam folder).

Each of these folders contains the following directories:
home_dicenv that contains the .bash file from the home directory where all the
environment should be set for all the ORBs and LAM.

- 29-

node I_client directory contains java files for the multithreaded client application, idl and
results files.

node2_server (all these server nodes contain files for the server application and idl file)
node3_server
node4 _server
nodeS_server
node6_server
node7 _server
node8_server
node9 _server

vega_name_serv (this is the directory from which naming service runs and stops)

read file (gives you the instruction on how to compile and run a particular application)

For VisiBroker, ORBacus, and Java 2 ORB:
First, to compile your application you need to set environment, then go to the name
service directory, start the name service by running run.ksh script. Next go to the servers
directories and run run.ksh script that compiles and starts the servers. Finally go to the
client directory and use run_all.ksh script to compile and run the client application.

For Orbix 2000:
To configure Orbix, file-based configuration was used, see [Orbix2] reference. The
domain name was igrant3000. It was created on Vega machine. Also, .bashrc file
contains some settings for the application. File in home_dicenv shows how the
additional settings are done. Orbix application has different structure compared to the rest
of the ORBs. Prior to running server and client applications, Orbix services should be
started on Vega machine from the
D:\Burn_this_CD\Source_code\GRAD_PROJ_scode\Orbix2000\vega_name_serv
directory. To run Orbix services, type run.ksh from the command-line. Client and server
applications were generated by using Orbix code generator. Folder node I_client contains
several xml files. The xml file name uses the following format:
build_NumberOfServers_ArraySize_Operation.xml. These xml files are very important.
The initial file generated was build.xml. This file contains the structure where domain
name for the Orbix was specified, name for the executable G ava file name that contains
main function for client and server), and command-line arguments. This file is used by
ant utility that comes with Orbix2000. Scripts such as run1.ksh, run2.ksh, run4.ksh and
run8.ksh set environment for that utility to run, see file anCenv.sh. Orbix client
application can be built only on Vega machine. To build client application, type at the
prompt vega_build.ksh from the nodel_client directory on Vega machine. To run client
application run run_all.ksh script from Node 1 machine. Directory NoPackage in the
node I_client contains source code for client application. The following directories
contain server applications: node2_server, node3_server, node4_server, nodeS_server,

- 30-

node6_server, node7 _server, node8_server, and node9 _server. Servers directories have
the same structure as client except that they contain only one build.xml file and directory
NoPackage contains source code for the server application. All the servers applications
have to be built also on Vega machine using vega_build.ksh script from the mentioned
above servers directories. Then go to the specified Node machine and run run.ksh script.
For example, if directory name is node2_server. You should login on Node 2 machine, go
to the appropriate directory, in this case it will be
D:\Bufll_this_CD\Source_code\GRAD_PROJ_scode\Orbix2000\node2_server, and run
run.ksh script. File Readme_Orbix.txt provides additional information on how to run
Orbix application.

For LAMlMPI:
home_dir_env is a directory that contains two files. One of them is a copy of .bashrc file
from your home directory where Lam environment is set. The other file is home_.hosts
which is the contents of the .rhost file that should be also in your home directory. The
following files such as, lamhosts 1, lamhosts2, lamhosts4, and lamhosts8 contain the
address of the node(s) that will be booted. File services.c is a source code for Lam
program. To compile this source code, type 'make' at the prompt. Makefile was created to
make this application. To obtain all the results run this application using run_all.ksh
script. Files Readme.txt and notes_scipttxt provide documentation and examples on how
to compile and run this application.

- 31 -

APPENDIXB

GRAPHS

Average of Reply Operation One Client lOne Server

5 --,-----
4.0983

2.6614

0.3348
0.0002387

ORBIX VisiBroker ORBacus Java 2 ORB lAM'MPI

Average of Reply Operation One Client I Tvuo Servers

6~--~
4.m2

3.4586

0.4598
0.0005363

ORBIX VisiBroker ORBacus Java 2 ORB lAM'MPI

- 32-

-(/) "C
C
0
to)
Q)
(/) -Q)

E
j::

Average of Reply Operation One Client I Four Servers
7 --r--c:::2203----

4.0939

2.9017

0.701

ORBIX VisiBroker ORBacus Java 2 ORB

Average of Reply Operation One Client I Eight Servers

10 9,Ga€>6

8

6

4

2

0
ORBIX VisiBroker ORBacus Java 2 ORB

- 33 -

0.001198

LAfvVMPI

0.0025401

LAfvVMPI

(i)
'tI c
0
(.)
Q)
$,
Q)

E
j::

4.5

3.5

2.5

1.5

0.5

-0.5

5
4
3
2
1
o

Average of Search Operation One Client lOne
Server

.. , """ wc' .. r"" ORBIX -- 'R=
~'}rwVisiBroker

......... ORBacus
~Java 2 ORB

)()()()<
~LAM/MPI

"" v

-------'f01C-------------2-0-K-----'--------2rDK----'----------gOK---

Array Size

Average of Search Operation One Client I Two
Servers

- .,~

ORBIX
~lilf;}-- VisiB roke r
........ ORBacus
~Java 2 ORB

-l--~=:::;:=~t==::;::::=#==;::=~~~ -*- LA M 1M P I

10K 20K 40K SDK
Array Size

- 34-

6
U)
't:J 5 c
o 4
~
~ 3
Q) 2
E
i=

10
Ii) 8 'C
C
0 6 (,)
Q)
III 4 --Q)

E 2 j::

0

Average of Search Operation One Client I Four
Servers

)()(

10K 20K
Array Size

)(

40K

)(

80K

ORBIX
VisiBroker

......... ORBacus
"""*- Java 2 ORB
""'*- LAM/MPI

Average of Search Operation One Client I Eight
Servers

)()()(

10K 20K 40K
Array Size

- 35 -

-
)(

80K

""'~,.""' 0 R B IX
-&- V isiB rake r
-ilr-ORBacus
--3*-Java 2 ORB
~LAM/MPI

Ul
'C
C
0 u
Ql

.!2.
Ql
E
i=

Ul
'C c
0 u
Ql

.!2.
Ql
E
i=

Average of Sort Operation One Client lOne Server

500

400

300

200

100
0

140
120
100

80
60
40
20

0

10K 20K 40K
Array Size

80K

,0 RB IX
-fiM~VlsiBroker

-......ORBacus
-7<E-Java 2 ORB
""*- LAM 1M P I

Average of Sort Operation One Client I Two
S e rv e rs

10K 20K 40K
Array Size

- 36-

80K

ORBIX
--I!Fi--VisiBroker
...... -ORBacus
-7<E-Java 2 ORB
""*- LAM 1M P I

20
Ul
"C 15 c
0
(,)

10 Q) e
Q)

E 5
i=

0

Average of Sort Operation One Client I Four
Servers

10K 20K 40K

Array Size
80K

ORB IX
-i'iiJ"= VisiBroker
....-ORBacus
""*"" Java 2 ORB
~LAM/MPI

Average of Sort Operation One Client I Eight
Servers

10K 20K 40K

Array Size

- 37 -

SOK

~c~~ORBIX

~;ki-- VisiB roker
......-ORBacus
-*-Java 2 ORB
"'"'*"" LA M/M P I

VITA

Irina K. Grant has a Bachelor of Science degree in Computer Engineering from

the Institute of Atomic Power Engineering in Obninsk, Russia in 1991 and is

pursuing a Masters of Science degree in Computer and Information Science from

the University of North Florida. Dr. Roger Eggen is Irina's graduate project

advisor. While attending the University of North Florida, Irina has served

internships at IDS as a Programmer I, at ECI Telecom as an Associate Software

Engineer, and at CitiStreet as a Developer. Prior to immigrating to the United

States, Irina worked as a C Programmer at Nets Informer Company in Odessa,

Ukraine, and at the Institute of Physics and Seismology in Obninsk, Russia.

Irina has experience in the programming languages of C, C++, Java, Perl, SQL,

TCL, PHP, and embedded SQL, and Korn Shell script. Irina's interests include

her family, tennis, and the performing arts.

- 38 -

	Performance Evaluation and Comparison of CORBA Implementations for the Java Platform
	Suggested Citation

	Title Page
	Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1: Introduction
	Chapter 2: CORBA
	Chapter 3: LAMIMPI
	3.1 LAM History

	Chapter 4: Project Description
	4.1 Characteristics of the cluster
	4.2 The Nature of the Application
	4.3 Client Application
	4.4 Server Application
	4.5 CORBA Services

	Chapter 5: TESTING
	Chapter 6: RESULTS
	6.1 Orbix 2000
	6.1.1 Quantitative Comparison
	6.1.2 Qualitative Comparison

	6.2 VisiBroker
	6.2.1 Quantitative Comparison
	6.2.2 Qualitative Comparison

	6.3 0RBacus
	6.3.1 Quantitative Comparison
	6.3.2 Qualitative Comparison

	6.4 Java 2 ORB
	6.4.1 Quantitative Comparison
	6.4.2. Qualitative Comparison

	6.5 LAMIMPI
	6.5.1 Quantitative Comparison
	6.5.2 Qualitative Comparison

	Chapter 7: CONCLUSIONS
	REFERENCES
	APPENDlX A
	APPENDIX B

