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ABSTRACT 

Middleware is a software layer between the applications, services and the operating 

system that provides an abstraction to the application programmer. It masks the 

heterogeneous nature of the network and provides such services as remote calls, naming 

service, transaction process abilities, and security services. Common Object Request 

Broker Architecture (CORBA) is a middleware design that is implemented through the 

use of Object Request Broker (ORB), which is a software component that,allows 

communication between the remote objects and applications that use them in a distributed 

environment. CORBA applications can run on almost any platform, operating system, 

and support different languages. There are many types of distributed object middleware 

on the market such as Sun's Java 2 ORB, Inprises's VisiBroker for Java, IONA's 

ORBacus for Java, and IONA's Orbix 2000 for Java. Because of these various products, it 

is difficult to select the product that will provide the specific requirements for one's 

application. The goal of this project is to evaluate the above-mentioned implementations 

of the CORBA standards and, additionally, CORBA was compared to LAMIMPI for 

efficiency. The results of this project should provide developers and novices studying 

distributed systems the necessary data to evaluate and select the most efficient CORBA 

product to meet their specific design requirements, and provide a methodology for further 

evaluation. 
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Chapter 1 

INTRODUCTION 

Accomplishing complex computational tasks efficiently in today's computer environment 

requires using either distributed systems or parallel processing. Due to the increased 

number of different types of computer networks and the growth within these networks, 

one of which is the Internet, completing these tasks requires selecting the most 

expeditious implementation of the various CORBA products or LAMIMPI. With a great 

variety of the CORBA middleware products available, research should be done to choose 

a product that will complement the application. In this project, four middleware products 

will be evaluated quantitatively and qualitatively. To make a quantitative comparison, the 

performance obtained in each case will be measured by response time during client/server 

communication. To make a qualitative comparison, each distributed object middleware is 

compared from a programmer's criteria. Additionally, COREA is compared to LAMIMPI 

for efficiency purposes to provide a baseline. The results of this project will be helpful for 

developers by establishing a basis for testing other CORBA implementations. This 

project also will be helpful for students or those who would like to learn about different 

distributed object middleware such as Java 2 ORB, VisiBroker for Java, ORBacus for 

J ava, and Orbix 2000 for Java. 
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Chapter 2 

CORBA 

CORBA is a standard architecture for distributed object systems. It allows a 

heterogeneous collection of objects to interoperate [CoulourisOl]. The Object 

Management Group (OMG), established in 1989 with eight original members, is a 760-

plus-member organization whose charter is to provide a common architectural framework 

for object-oriented applications based on widely available interface specifications 

[Rosenberger98]. The OMG achieves its goals with the establishment of the Object 

Management Architecture (OMA), of which CORBA is a part [Rosenberger98]. This set 

of standards delivers the common architectural framework on which applications are built 

[Rosenberger98]. The OMA consists of the ORB function, object services, common 

facilities, domain interfaces, and application objects [Rosenberger98]. CORBA's role in 

OMA is to implement the ORB function [Rosenberger98]. 

The major components of the CORBA architecture are IDL, ORB, CORBA Services, and 

lIOP. Interface Definition Language (IDL) is an implementation-independent language 

that provides a way of describing interfaces of the remote objects in CORBA. ORB 

provides the interactions between remote objects and the applications that use them. 

CORBA has a wide array of services. Naming Service is one of the standard services in 

CORBA that allows remote clients to locate remote objects on the network. The Internet 
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Inter-ORB Protocol (lIOP) handles the lOW-level communication between processes in a 

CORBA context [Flanagan99]. 

Since this project evaluates the results of various CORBA middleware, it is important to 

understand how distributed systems operate. Distributed systems allow hardware or 

software components located at networked computers to communicate by passing 

messages. Some of these characteristics are as follows: 

• Allows multiple components in a system to run concurrently, such as multiple servers 

handling multiple client requests at the same time [CoulourisOl]. 

• Absence of a global clock meaning that programs cooperate not by any shared idea of 

time, but by passing messages. Because there are limits to the accuracy with which 

computers in a network can synchronize their clocks, thus, there is no single global 

notion of time [CoulourisOl]. 

• Ability to allow independent failure of components, meaning that one of the servers 

can be taken down while the other servers are still effectively functioning 

[CoulourisOl]. 

The main reason for constructing and using distributed systems is the ability to share 

various resources such as hardware and software components. The hardware components 

can be printers and disks, and the software components can be files, databases and 

different data objects. Since these components may have many differences, the 

distributed system must be capable accepting new components, handling an increasing 
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number of users, absorbing software and hardware failures, and making the number of 

servers in the system transparent to the end user. In order to accomplish these differences, 

middleware becomes an important component in a distributed system. 
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Chapter 3 

LAM/MPI 

LAM (Local Area Multicomputer) is an MPI programming environment and 

development system for heterogeneous computers on a network [Laml]. With LAM, a 

dedicated cluster or an existing network computing infrastructure can act as one parallel 

computer solving one problem [LamI]. 

MPI (Message Passing Interface) is a library, that specifies the names, calling sequences, 

and results of subroutines to be called from Fortran programs, the functions to be called 

from C programs, and the classes and methods that make up the MPI C++ library 

[Gropp99]. The programs that are written in Fortran, C, and C++ are compiled with 

ordinary compilers and linked with the MPI library. MPI is the message-passing model, 

where processes communicate via messages and have separate address spaces. 

Communication occurs when a portion of one process's address space is copied into 

another process's address space [Gropp99]. This operation is cooperative and occurs only 

when the first process executes a send operation and the second process executes a 

receive operation [Gropp99]. 
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3.1 LAM History 

LAM was originally developed at the Ohio Supercomputer Center [Lam2]. Since then, 

the original members of the LAM Team moved to other jobs, and LAM became an 

orphaned project [Lam2]. The Laboratory for Scientific Computing (LSC) at the 

University of Notre Dame, headed by Dr. Andrew Lumsdaine, adopted LAM and hosted 

it in its servers [Lam2]. Soon after LAM was adopted by Notre Dame, version 6.2b was 

released, which contained some unreleased work from the original LAM Team, and a few 

contributions from the new Notre Dame LAM Team. Version 6.2b proved to be stable 

and robust in a variety of Unix environments [Lam2]. Development on LAM has 

continued by the Notre Dame LAM Team; the release of 6.3.2 included several new 

debugging features for user MPI programs, new environmental controls, and a variety of 

bug fixes from the original6.2b release [Lam2]. Debugging parallel programs, which has 

been problematic in the past, is now much easier due to relaxations in LAM's process 

model [Lam2]. In the fall of 2001, Dr. Lumsdaine and the LSC moved to Indiana 

University. The LSC was renamed the Open System Laboratory (OSL) and all LSC 

projects, including LAM, moved from Notre Dame to Indiana with Dr. Lumsdaine 

[Lam2J. 

LAMIMPI is intended to be an open implementation of MPI. Since version 6.5.5, 

LAMIMPI has been licensed under the familiar revised BSD license. LAM 6.5.6 is now 
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the officially supported version of LAM. All prior versions are neither available nor 

supported [Lam2]. 

In this project, a LAM version 6.4-a3 was used that is identical to LAM 6.3.2 except that 

it includes support for Interoperable MPI (IMPI) [Lam3]. This is an alpha release 

[Lam3]. 
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Chapter 4 

Project Description 

The purpose of this project is to determine the most efficient CORBA implementation. 

Comparison of Orbix 2000, VisiBroker, ORBacus, and Java 2 ORB, is the focus of this 

project. For baseline purposes, the application is also implemented using LAMIMPI. 

4.1 Characteristics of the cluster 

This application was developed on a Beowulf cluster. Applications for four ORBs tested 

ran on Vega, and Node1 through Node 9 machines. Name service and Oribx services 

(some of them were accepted by default during Orbix configuration) ran on Vega 

machine. Server applications ran on Node 2 through Node 9. Client application ran on 

Node 1 machine. All the Node machines run Red Hat Linux 7.1 version, with 128 

megabytes of RAM, that have a single processor of 450 MHz. Vega runs also Red Hat 

Linux 7.1 version, and consists of four tightly-coupled CPUs each of which is 500 MHz, 

with 1.5 gigabytes of RAM. LAMIMPI application ran on Node1 through Node 9. It was 

booted from Nodel machine. The following versions of software used by this project are: 

• Orbix 2000 1.2 

• VisiBroker 4.5.1 

• ORBacus 4.0.4 
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• Java 2 ORB 1.3.1 

• LAMfMPI 6.4-a3 

For the location of the files on CD refer to Appendix A. 

4.2 The Nature of the Application 

The practical nature of this project can be demonstrated in the following example. You 

have already an existing network in your company, but a new project development 

requires additional use of a mainframe. One of the options is to buy it, investing much 

needed capital, or to use the existing network and develop a distributed application. What 

can be the possible solution? One of the advantages of distributed systems is that they can 

have more computing power than a mainframe in terms of speed. In terms of economics, 

computers linked together can give a better price/performance ratio than mainframes. 

Extensibility and incremental growth is another advantage of distributed systems, as it is 

possible to gradually scale up (in terms of processing power and functionality) by adding 

more sources (both hardware and software). This can be done without disruption of the 

system. So the solution can be to use the client/server model for computation that is 

depicted on Figure 1. This project measures the results of implementing one such 

solution. 
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Figure 1: One Client! Four Servers model used in this project 

The applications for COREA implementations were written in Java. The application for 

LAMIMPI implementation was written using C language. For this project, the number of 

servers specified was 1,2,4, or 8. Array size specified was 0, 10000,20000,40000, or 

80000. Operations implemented were reply, search, or sort. Reply operation was 

implemented to measure strictly communication time. The number of steps in this 

operation is a constant. By using this operation, there was "null" work done on the server 

side, and to ensure two-way communication, server sends a string back at the client's 

request. For the search operation, a sequential search was implemented. The execution 

time for this algorithm is O(n). The input for search operation was an array of sorted 
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numbers generated by the client application where search was done to find the last 

element of the array initially created by the client. This type of operation would be 

considered as a medium load on the server. For the sort operation, an insertion sort was 

implemented. The execution time for sorting is O(n) when initial array is sorted, that is, 

only one comparison is made on each pass. The execution time is 0(nI\2) when the array 

is sorted in reverse order. The input for sort operation was an array of random numbers 

that was also generated by the client application. This type of operation would be 

considered as a heavy load on the server. In this project, for all CORBA implementations 

and LAMlMPI, the efficiency was measured by timing the communication process and 

the work on the server side. Therefore, for the sort operation, the merge of the sorted 

arrays is irrelevant to our study. The timer used for CORBA implementations was 

provided by System class that is located in java.lang package. The timer used for 

LAMIMPI implementation is provided by MPI routine, MPC WtimeO. 

4.3 Client Application 

Client application obtains the following arguments from the command-line such as 

number of servers, array size, and operation. Also, depending on the CORBA 

implementations or LAMIMPI, other arguments were added to the command line. The 

following characters were supplied for the command-line to specify the particular 

operation: In' is for reply operation, IS' is for searching, and Itt is for sorting. For reply 
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operation the size of the array will be zero. For the search and sort operations, the size of 

the array will be 10000,20000,40000, or 80000. When all arguments are obtained from 

the command line then the array is generated by the client application. For the reply 

operation there is no array generated. For the search operation a sorted array in ascending 

order is created. For the sort operation an array of random numbers is generated. Then the 

data size was divided evenly by the number of servers. When all the necessary data is 

obtained by the client application, a request is sent to the server. The client application is 

multi-threaded, so the array was distributed concurrently among all the servers. If the 

number of servers is one, then the entire array will be passed to the server application. 

The goal of the client application is to measure the communication process and the work 

that is done on the server side. As a result, the output of the client application is the time 

in seconds. Instructions for compiling and running client application are contained in 

Appendix A. 

4.4 Server Application 

The goal of the server application is to satisfy the client request. Depending on 

parameters supplied by the client, server application performs a particular task. For the 

reply operation, there is no data sent by the client application, and the server sends a reply 

string back to the client. For the search operation, the server application receives an array 

and a search key. The key is the' last element of the array that was generated initially by 
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the client that will be found in only one server. If the element was found, the server sends 

an index of the array that contains that element to the client. Otherwise, negative one is 

returned. For the sort operation, the server receives an array, sorts it implementing 

insertion sort, and sends a sorted array back to the client. Instructions for compiling and 

running server application are contained in Appendix A. 

4.5 CORBA Services 

CORBA Naming Service was used to allow the client to locate remote objects on the 

network. Every CORBA implementation tested establishes its environment allowing 

communication to occur. Prior to running the server application, the Naming Service has 

to be started, which is then followed by the running of the client application. Each of the 

CORBA implementations has its own way of invoking Naming Service. For the Orbix 

2000, additional services will be running with the Naming Service as the background 

processes due to the Orbix 2000 configuration. In this project for simplicity, a Korn Shell 

script was written to start Service(s) for each of the CORBA applications. To run this 

script, type at the prompt run.ksh. To stop Naming Service or Orbix 2000 services, use 

dd.ksh script. 

- 13 -



Chapter 5 

TESTING 

Performance for each distributed parallel application was measured by response time in 

seconds. The client application creates a thread for each server. Each thread is initialized 

sequentially. The timer starts immediately before thread initializations, and stops when 

the last thread completes the task. That means that the client receives a response from the 

server, which in turn completes either searching, sorting, or simply sends a reply string 

back to the client. The response time is the difference between stop and start time. 

The experiments performed were: one client/one server; one client/two servers; one 

client/four servers; and one client/eight servers. Then for each of these experiments, tasks 

evaluated were search, sort, and reply operations. The array size was 10K, 20K, 40K, and 

80K for searching and sorting. Tests were performed on the various combinations ten 

times each in order to obtain an average operation processing time. The total number of 

tests performed was 1800. For each of the 5 products (four CORBA implementations and 

LAMlMPI), there were 10 reply tests for each of the 4 server combinations, 40 search 

tests for each of the 4 server combinations, and 40 sort test for each of the 4 server 

combinations. 
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Chapter 6 

RESULTS 

In this section quantitative and qualitative comparison will be provided for all the 

implementations of CORBA and LAMIMPI. A quantitative comparison is based on the 

performance of each middleware product and MPI that was obtained by measuring 

response time during client/server communication. A qualitative comparison is made 

based upon ease of environment configuration, application time development, ease of 

use, and difference in architecture and services for CORBA implementations. 

General Observations: 

• There is a clear ranking of products from best to worst that does not change across 

the various applications for all operations. Java 2 ORB performs closer to 

LAMIMPI than the other products. Orbix 2000 performs significantly worse than 

LAMIMPI for reply and search operations. 

• For the sort operation, there is a marked improvement in performance as the 

number of servers is increased. 

• All the products are significantly worse than LAMIMPI for all operations other 

than sort for 4 and 8 servers. 

• The variance between VisiBroker and ORBacus is fairly insignificant across all 

operations. 
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• For the search operation, as servers are added the performance levels out for all 

products regardless of array size. 

• For graphs of results see Appendix B. 

• For comparison of services and features of the CORBA implementations, see 

Table 1 [McKeller01]. 

6.1 Orbix 2000 

6.1.1 Quantitative Comparison 

For reply and search operations, Orbix 2000 performs significantly worse than the other 

CORBA implementations for medium or light workloads. However, as the workload is 

increased, as for example, in the sort operation where the array size is increased, the 

percentage of variance versus the other CORBA implementations is reduced. Therefore, 

Orbix 2000 is more efficient as workload and servers are added. Across all operations, 

Orbix 2000 is the weakest performer versus the other CORBA implementations and 

LAMIMPI. 
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6.1.2 Qualitative Comparison 

Orbix 2000 is a commercially available CORBA implementation from Iona 

Technologies. It complies with CORBA 2.3 specifications. The Orbix 2000 allows 

development and deployment of large-scale enterprise applications in C++ and Java. 

Orbix 2000 provides a unique code generation toolkit named "genie" that generates a 

complete client-server application automatically by using an IDL file. Developing an 

application by using "genie" allows the programmer to concentrate on the business 

application logic, thereby saving time in the overall development process. "Genie" can 

also be used for debugging purposes. For example, it can be used for an auto-generated 

server to debug a client application. Orbix 2000 provides support for single and multi-

threaded applications. It also allows spanning a large number of hosts across a network 

and can be extended with new hosts, therefore, is highly scalable. Orbix 2000 provides 

several useful services, such as naming service, object transaction service, and event 

service. Orbix 2000 supports POA (Portable Object Adapter) as do VisiBroker and 

ORBacus. POA provides portability on the server side that acts as an intermediary 

between the object implementation and ORB. It provides such fundamental services as 

object creation, servant registration, and request dispatching. While developing an 

application with Orbix 2000 was fairly easy, its configuration was extremely 

cumbersome. For this application, file-based domain configuration was used [Orbix2]. 
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6.2 VisiBroker 

6.2.1 Quantitative Comparison 

For reply operation, Visibroker performs better than Orbix, but Java 2 ORB outperforms 

it significantly. Adding additional processors does not improve response time. As more 

servers are added, the response time increases due to the communication overhead. For 

the search operation, there are no significant results obtained when the number of servers 

and array sizes are increased. For the sort operation, one client/one server, and one 

client/two servers, VisiBroker performance is tied with all other CORBA 

implementations. Overall, for sort operation, response time is significantly improved as 

the number of servers is increased. This means if sufficient work has to be done on the 

server side, it is worthwhile to add additional processors. 

6.2.2 Qualitative Comparison 

VisiBroker is another commercially available CORBA implementation Inprise product 

from Borland Software Corp., and is CORBA 2.3 compliant. Its features include location 

service, naming service, and event service. Additional tools are "Smart Agent" and the 

"Object Activation Daemon". Smart Agent (osagent) is a dynamic, distributed directory 

service that locates the implementation requested by the client. Multiple Smart Agents on 
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the network can cooperate in order to provide load balancing at a high availability for the 

client to access object implementations. The Object Activation Daemon can be used to 

automatically start the implementation upon client request. VisiBroker provides native 

support for single and multi -threading management. It also provides the interceptor 

feature, as do Orbix 2000 and ORBacus, which provides a framework to add ORB 

behavior such as security, transactions, or logging. Although, BOA (Basic Object 

Adapter) is being depreciated, VisiBroker 4.0 will still support BOA functionality [Visi]. 

VisiBroker provides a feature known as Quality of Services that "allows to define 

properties that influence how the connection is made" [Visi]. Another feature of 

VisiBroker, and also Orbix 2000 and ORBacus, is a Dyn-Any interface that allows the 

dynamic creation of basic and constructed data types at run time. VisiBroker also offers 

IR (Interface Repository) that contains information about CORBA objects and enables 

clients to learn about or update interface descriptions at runtime [Visi]. Excellent 

documentation, including clear and understandable examples, greatly assisted the 

development of applications using VisiBroker. 
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6.30RBacus 

6.3.1 Quantitative Comparison 

For all servers combinations, all operations, and array sizes, ORBacus performance is 

slightly better than VisiBroker, but follows the same pattern of performance when 

additional servers are added. 

6.3.2 Qualitative Comparison 

ORBacus is a CORBA compliant product for C++ and Java, and is free for non-

commercial use. There was no complicated configuration. One of the ORBacus features 

is Implementation Repository (IMR) that "provides support for indirect binding for 

persistent object references" [ORBacus]. The advantage of this indirect binding is that it 

loosens the coupling between client and server. Therefore, changing location of the server 

will not affect the client. IMR also can activate server using Object Activator Daemon 

(OAD). CORBA Properties Service permits you to annotate an object with extra 

attributes (called properties) that were not defined by the object's IDL Interface 

[ORBacus]. Properties can represent any values because they can make use of CORBA 

Any Data type [ORBacus]. ORBacus has Time Service that provides operations related to 

time and intervals. ORBacus has Event Service, which allows some applications to 

exchange information without explicitly knowing about one another. Since a server is 
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sometimes not aware of the nature and number of clients that are interested in the data the 

server has to offer, a special mechanism is required that provides decoupled data transfer 

between servers and clients. ORBacus provides Trading Service that is similar to 

Naming. Both of them are needed to locate objects. In Trading Service, an object is not 

published by name, so a server advertises an object based on the kind of services 

provided by the object. A client locates of object of interest by asking the Trading Service 

to find all objects that provide a particular service. A CORBA Interface Repository (IFR) 

is essential for applications using dynamic futures of CORBA, such as Dynamic 

Invocation Interface and DynAny. The IRF holds IDL type definitions and can be queried 

and traversed by applications. 

6.4 Java 2 ORB 

6.4.1 Quantitative Comparison 

For Java 2 ORB, when there is no work to be done on the server side, for instance, reply 

operation, adding servers does not improve the results. For the sort operation, adding 

another processor improves the results significantly. In the case where the experiment 

was performed on sort operation with eight servers and array size of 80K, Java 2 ORB 

outperformed LAMIMPI. This result can be explained because Java applications for all 
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CORBA implementations are multithreaded. Therefore, data is sent to each of the server 

concurrently. LAMIMPI is not multithreaded. According to MPI documentation, MPI 

library can be called only in single thread. Thus, in LAMIMPI application data is sent to 

all the servers sequentially. Also, MPI uses send and receive functions to pass messages. 

Function send_MPIO is blocking. For example, in the case with eight servers, the last 

server cannot sort data until all the other servers receive it. This is what creates additional 

time. Compared to all other CORBA implementations, such as Orbix 2000, VisiBroker, 

and ORBacus, across all operations, servers combinations and array size, this is the most 

efficient product that exhibits the best performance. 

6.4.2. Qualitative Comparison 

Java 2 ORB is free software that is CORBA 2.3 compliant and was very easy to use to 

develop applications. There is sufficient documentation available through web sites and 

books. Java 2 ORB is language independent, that is, any exported CORBA objects can be 

implemented in different languages, such as C, C++, or Ada. One of the disadvantages is 

that compared to other CORBA implementations, applications that are developed with 

Java 2 ORB can be written only in Java. The other of the disadvantages is that it lacks 

many services available in other CORBA products, namely, event service, trading 

service, object transaction service, and location service. The only service that is provided 

by Java 2 ORB is Naming Service. Another disadvantage is that the current version of 
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Java 2 ORB does not support POA as do other CORBA implementations. Another 

disadvantage is that Java 2 ORB is the only ORB that does not support single thread 

option. Despite all these disadvantages, this is a great tool with which to learn and 

develop simple distributed applications. 

6.5 LAMIMPI 

6.5.1 Quantitative Comparison 

LAMIMPI application was used as an indicator by looking at which CORBA 

implementations can be analyzed, and their performance will be evaluated based on 

LAMIMPI results. For all combinations of the servers, across all the operations, and 

regardless size of the array, results obtained for LAMIMPI demonstrate the best 

performance. With the exception of Java 2 ORB the variance was fairly significant versus 

the CORBA implementations. 

6.5.2 Qualitative Comparison 

LAM is a freeware implementation of the Message Passing Interface standard [Lam4]. 

The MPI standard is the de facto industry standard for parallel applications [Lam4]. LAM 

- 23-



tends to be "cluster friendly" by using small daemons to effect fast process control, 

application startup/shutdown, etc [Lam4]. LAMIMPI was easy to learn and also to 

develop the application, which is a monolithic, where client and server are implemented 

in one program. The problem with such an application is that it is difficult to debug, and 

as the complexity of the program increases, it becomes cumbersome and difficult to 

maintain. Another issue is that LAM is not thread - safe, but it can be used in multi-

threaded applications. Languages used with MPIILAM are Fortran, C, and C++. 

It was easy to set environment for this application. To obtain all the results for 

LAMlMPI, this application can be invoked from one machine therefore it was easy to 

run. There are also many web sites and books published that provide sufficient 

information about implementations of LAMIMPI. 
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Feature Orbix 2000 VisiBroker ORBacus Java20RB LAMIMPI 
ID L supports code Yes Yes Yes No N/A 
generation for 
multiple languages 
Single & Multi Yes Yes Yes Multi-thread Single 
threading support only thread only 
POA support Yes Yes Yes Not in N/A 

current 
version 

Policy support Yes Yes Yes No N/A 
Dyn-Any Yes Yes Yes No N/A 
Interface Repository Yes Yes Yes No N/A 
Implementation Yes Yes Yes No N/A 
Repository with 
Object Activation 
Daemon 
Naming Service Yes Yes Yes Yes N/A 
Event Services Yes Yes Yes No N/A 
Location Service Yes Yes No No N/A 
Transaction Service Yes No No No N/A 
Code Generator Yes No No No N/A 
Time to develop 20 9 10 25hrs 15hrs 
Time to configure 35hrs 0 4hrs 0 2hrs 
Ease of Not as easy Easy Easy Easy Easy 
implementation 

Table 1: Comparison of Features and Services of CORBA Implementations 
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Chapter 7 

CONCLUSIONS 

In conclusion, selection of an appropriate middleware product is largely a function of the 

work to be performed. For a light workload, a product that is easy to use might be 

preferable to one that might be slightly faster. For a heavy workload, faster is definitely 

better, even if it requires more time during the development process. This project 

produced test results which were very consistent across varying ranges of operations and 

workload in that the four products tested maintained their relative ranking throughout all 

operations, and indicated that Java 2 Orb was the best implementation available to satisfy 

a variety of requirements. 
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APPENDlXA 

Directory Structure for Project CD, Compiling and Running Applications 

Project CD contains the following five folders: Documentation, Executables, 
Full_Package, Results_xIs, and Source_code. 

1. Documentation 
This folder contains two files: presentation Power Point slides and write-up in pdf format. 

2. Executables 
This folder contains scripts to run all the applications and executables. Applications used 
in this folder can be run by using run.ksh and run_all.ksh scripts. Note the permission for 
these scripts has to be set to 755 to execute them. Scripts that were used to compile 
applications were removed from this folder. 

3. Full_Package 
This folder contains the complete project that includes all source codes and executables 
with all the scripts necessary to compile and run these applications. Also, additional text 
files with instructions are provided for each application. Zip file for this package is 
included. 

To zip files or folders: 
$> tar -cvf newfile.tar myfile 
$> gzip newfile. tar 

To unzip files or folders: 
$> gzip -vd newfile.tar.gz 
$> tar -xvf mewfile.tar 

4. Results_xis 
This folder contains two files in xIs format that detail results for this project. 

5. Source_code folder 
This folder contains the source code for the five applications: Orbix 2000 (Orbix2000 
folder), VisiBroker (Vbroker folder), ORBacus (ORBacus folder), Java 2 ORB 
(Java_IDL folder), and LAMIMPI (Lam folder). 

Each of these folders contains the following directories: 
home_dicenv that contains the .bash file from the home directory where all the 
environment should be set for all the ORBs and LAM. 
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node I_client directory contains java files for the multithreaded client application, idl and 
results files. 

node2_server ( all these server nodes contain files for the server application and idl file) 
node3_server 
node4 _server 
nodeS_server 
node6_server 
node7 _server 
node8_server 
node9 _server 

vega_name_serv (this is the directory from which naming service runs and stops) 

read file (gives you the instruction on how to compile and run a particular application) 

For VisiBroker, ORBacus, and Java 2 ORB: 
First, to compile your application you need to set environment, then go to the name 
service directory, start the name service by running run.ksh script. Next go to the servers 
directories and run run.ksh script that compiles and starts the servers. Finally go to the 
client directory and use run_all.ksh script to compile and run the client application. 

For Orbix 2000: 
To configure Orbix, file-based configuration was used, see [Orbix2] reference. The 
domain name was igrant3000. It was created on Vega machine. Also, .bashrc file 
contains some settings for the application. File in home_dicenv shows how the 
additional settings are done. Orbix application has different structure compared to the rest 
of the ORBs. Prior to running server and client applications, Orbix services should be 
started on Vega machine from the 
D:\Burn_this_CD\Source_code\GRAD_PROJ_scode\Orbix2000\vega_name_serv 
directory. To run Orbix services, type run.ksh from the command-line. Client and server 
applications were generated by using Orbix code generator. Folder node I_client contains 
several xml files. The xml file name uses the following format: 
build_NumberOfServers_ArraySize_Operation.xml. These xml files are very important. 
The initial file generated was build.xml. This file contains the structure where domain 
name for the Orbix was specified, name for the executable G ava file name that contains 
main function for client and server), and command-line arguments. This file is used by 
ant utility that comes with Orbix2000. Scripts such as run1.ksh, run2.ksh, run4.ksh and 
run8.ksh set environment for that utility to run, see file anCenv.sh. Orbix client 
application can be built only on Vega machine. To build client application, type at the 
prompt vega_build.ksh from the nodel_client directory on Vega machine. To run client 
application run run_all.ksh script from Node 1 machine. Directory NoPackage in the 
node I_client contains source code for client application. The following directories 
contain server applications: node2_server, node3_server, node4_server, nodeS_server, 
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node6_server, node7 _server, node8_server, and node9 _server. Servers directories have 
the same structure as client except that they contain only one build.xml file and directory 
NoPackage contains source code for the server application. All the servers applications 
have to be built also on Vega machine using vega_build.ksh script from the mentioned 
above servers directories. Then go to the specified Node machine and run run.ksh script. 
For example, if directory name is node2_server. You should login on Node 2 machine, go 
to the appropriate directory, in this case it will be 
D:\Bufll_this_CD\Source_code\GRAD_PROJ_scode\Orbix2000\node2_server, and run 
run.ksh script. File Readme_Orbix.txt provides additional information on how to run 
Orbix application. 

For LAMlMPI: 
home_dir_env is a directory that contains two files. One of them is a copy of .bashrc file 
from your home directory where Lam environment is set. The other file is home_.hosts 
which is the contents of the .rhost file that should be also in your home directory. The 
following files such as, lamhosts 1, lamhosts2, lamhosts4, and lamhosts8 contain the 
address of the node(s) that will be booted. File services.c is a source code for Lam 
program. To compile this source code, type 'make' at the prompt. Makefile was created to 
make this application. To obtain all the results run this application using run_all.ksh 
script. Files Readme.txt and notes_scipttxt provide documentation and examples on how 
to compile and run this application. 
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APPENDIXB 

GRAPHS 
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