
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2007

Reverse Engineering Software Code in Java to Show Method Reverse Engineering Software Code in Java to Show Method

Level Dependencies Level Dependencies

Lesley B. Hays
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Computer Sciences Commons

Suggested Citation Suggested Citation
Hays, Lesley B., "Reverse Engineering Software Code in Java to Show Method Level Dependencies"
(2007). UNF Graduate Theses and Dissertations. 193.
https://digitalcommons.unf.edu/etd/193

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2007 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fetd%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/193?utm_source=digitalcommons.unf.edu%2Fetd%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

REVERSE ENGINEERING SOFTWARE CODE IN JAVA TO SHOW METHOD
LEVEL DEPENDENCIES

by

Lesley B. Hays

A thesis submitted to the
School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

December 2007

The thesis "Reverse Engineering Software Code in Java to Show Method Level
Dependencies" submitted by Lesley Hays in partial fulfillment of the requirements for the
degree of Master of Science in Computer and Information Sciences has been

Approved by the thesis committee:

Dr. Robert Roggio
Thesis Advisor and Committee Chairperson

Ii
Dr. Neal Coulter

Accepted for the School of Computing:

Direc or of the School

Date

Accepted for the College of Computing, Engineering, and Construction:

Dr. Neal Coulter
Dean of the College

Accepted for the University:

Dr. DavidW. enner
Dean of the Graduate School

I'Ll rllt/v7
, • I

ii

Signature deleted

Signature deleted

Signature deleted

Signature deleted

Signature deleted

Signature deleted

ACKNOWLEDGEMENT

I wish to thank my family for their continuous support, encouragement, and

understanding during these past few years, thank you! I would like to express my

sincerest gratitude to all my friends who have offered their assistance to me. They

have been the greatest resource anyone could ask for. Thank you! I would also like to

thank the faculty and staff at UNF, including Dr. Coulter and Dr. Abbassi, for always

guiding me and for always expecting my best. Finally, I would like to thank Dr.

Roggio for his help and guidance throughout, not only my thesis work, but my many

years at UNF. I truly appreciate all your time and assistance and feel I have learned a

lot from this experience. Thank you!

111

TABLE OF CONTENTS

Figures .. vii

Abstract. .. .ix

Chapter 1: Introduction .. l

Chapter 2: Review of the Literature " "4

2.1 Reverse Engineering .. 4

2.1.1 Related Areas and Sub-Topics in Reverse Engineering 4

2.1.2 Reverse Engineering Defmed .. 5

2.1.3 History of Reverse Engineering .. 6

2.1.4 Problems with Reverse Engineering 7

2.1. 5 Importance of Reverse Engineering 8

2.1.6 Practicality of Reverse Engineering 8

2.2 Reverse Engineering Tools .. 9

2.2.1 Rational Rose '" 10

2.2.2 jGRASP .. 11

2.2.3 NetBeans ... 15

2.2.4 Eclipse .. 16

Chapter 3: Methodology ... 18

3.1 Method Level Dependency Framework .. 18

3.2 Reverse Engineering Framework. ... 19

3.2.1 Development Software .. 19

iv

3.2.2 Framework Development. .. 20

3.2.2.1 Framework Design .. 20

3.2.2.1.1 MainFrame.java 21

3.2.2.1.2 FileHandlerjava 22

3.2.2.1.3 DatabaseMethodsj ava 24

3.2.2.1.4 GenerateDiagrams 25

3.2.2.1.5 Constantsjava26

3.2.2.2 Database Design ... 27

3.2.3 Framework Functionality ... 27

3.3 Framework Output. ... 31

Chapter 4: Results .. 3 5

4.1 Test Case 1 ... 36

4.2 Test Case 2 ... 38

4.3 Test Case 3 '" '" " " .. 41

4.4 Test Case 4 ... 46

Chapter 5: Conclusion .. 57

5.1 Analysis ... 57

5.2 Future Work ... 59

References .. 61

Appendix A: Source Code: Constants.java ... 65

Appendix B: Source Code: DatabaseMethodsjava 66

Appendix C: Source Code: FileHandler.java ... 70

Appendix D: Source Code: GenerateDiagrams.java 81

v

Appendix E: Source Code: MainFrame.java ... 90

Vita .. 94

vi

FIGURES

Figure 1: Rational Rose UML Class Diagram .. 11

Figure 2: jGRASP CSD Diagram .. 12

Figure 3: jGRASP UML Class Diagram ... 13

Figure 4: jGRASP Viewer Diagram ... 14

Figure 5: NetBeans UML Class Diagram '" '" .16

Figure 6: Eclipse UML Class Diagram .. 17

Figure 7: Method Level Dependency Framework .. 19

Figure 8: Class Diagram ... 21

Figure 9: MainFrame.java Method List. " ,22

Figure 10: FileHandler.java Method List. ... 24

Figure 11: DatabaseMethods.java Method List. '" '" 25

Figure 12: GenerateDiagrams.java Method List. ... 25

Figure 13: Constants.java Constants List " ... "26

Figure 14: Database Design " " " '" .. 27

Figure 15: Method Level Dependency Generator .. 28

Figure 16: Method Level Dependency Generator File Selector.29

Figure 17: Method Level Dependency Generator. ... 30

Figure 18: Generate By Class Dependencies .. 31

Figure 19: Generate By Method Dependencies ... 32

Figure 20: Test 1- Class Diagram .. 36

Vll

Figure 21: Test 1- Diagram By Class ... 37

Figure 22: Test 1- Diagram By Method .. 38

Figure 23: Test 2- Class Diagram .. 39

Figure 24: Test 2- Diagram By Class .. .40

Figure 25: Test 2- Diagram By Method41

Figure 26: Test 3- Class Diagram "42

Figure 27: Test 3- Diagram By Class .. .43

Figure 28: Test 3- Diagram By Method45

Figure 29: Test 4- Class Diagram47

Figure 30: Test 4- Diagram By Class .. .49

Figure 31: Test 4- Diagram By Method , ... 53

viii

ABSTRACT

With the increased dependency on the Internet and computers, the software industry

continues to grow. However, just as new software is being developed, older software

is still in existence and must be maintained. This tends to be a difficult task, as the

developers charged with maintaining the software are not always the developers who

designed it. Reverse engineering is the study of an application's code and behavior, in

order to better understand the system and its design. There are many existing tools

that will assist the developer with this undertaking, such as Rational Rose®,

jGRASP®, and Eclipse®. However, all the tools generate high level abstractions of

the system in question, like the class diagram. It would be more beneficial to

developers to have illustrations with more detailed information, such as the method

level dependencies in the source code. In order to accomplish this task, a new

framework has been developed that will allow the user to view both high level and

lower level code detail. As users attempt to perform code maintenance, they will run

the code through an existing tool, such as Rational Rose®, and then through the

Method Level Dependency Generator component, to show the method level

dependencies. These tools used together provide the software maintainer with more

useful information, assisting with the software development process, including code

design, implementation, and testing.

IX

Chapter 1

INTRODUCTION

In the world of computing applications, approximately 30-35% of the overall total life-

cycle costs are devoted to helping the programmer understand the functionality of

existing code. This is a necessary task, in order to correctly make required changes in

response to new requirements, to resolve errors, or perform other changes [Tomic94].

A thorough understanding of the logic, design, and structure of existing code will help

developers, management, and analysts more accurately estimate the maintenance and

enhancement costs, analyze code complexity, undertake thorough testing, and estimate

software reliability more effectively and efficiently. However, with the "time is

money" mentality that dominates in most workplaces, a professional is rarely given a

sufficient amount of time to thoroughly and comprehensively complete a task in a

manner that does not introduce additional problems in the software.

Reverse engineering, " ... [analyzes a] system's code, documentation and behavior to

create system abstractions and design information" [AliOS]. Reverse Engineering is,

essentially, the practice of examining existing systems, at any stage, to identify

elements and dependencies. This information is then used to gain more knowledge

about the design, the structure, system code, and functionality.

- 1 -

There are many existing tools, such as Rational Rose®, jGRASP®, NetBeans®, and

Eclipse® (to name but a few), that provide a degree of reverse engineering. Several

tools and frameworks take Java code as input and generate the Unified Modeling

Language (UML) class diagrams. These diagrams are helpful to the users by

illustrating object dependencies; however, they tend to be high level and leave much

to be desired about "lower level" (i.e., code level) application specifics. While object

dependencies are indicated through UML associations, multiplicity, direction, and

other real-world objects can be complex. General dependencies at this architectural

level (class diagrams with dependencies) are helpful, but such renderings leave the

professional in dire need of much more detailed analysis of object dependencies

extending down to method-level dependencies, which is where actual code

maintenance will occur.

As a developer, it would be more beneficial to have a framework that drills down a

level further than providing high-level class dependencies. A comprehensive reverse

engineering framework that, when given an unknown Java program, will analyze the

existing structural characteristics and generate detailed low-level dependencies and

relationships among code segments would be helpful in a workplace environment.

Such a framework would be used in conjunction with a well documented tool, such as

Rational Rose®, that already generates the UML class diagram to form a more

comprehensive maintenance approach. These existing tools would be used to show

the basic architectural relationships followed by this new framework that focuses on

detailed relationships by providing two-fold forward and reverse analyses of method

- 2 -

level dependencies, offering a more practical tool for software maintenance. The

framework would, by class, show all methods declared in the class and what methods

they invoke. It would also, by each method, show the class and methods it is

referenced by. Equivalently, "who" invokes the services of this class and what

services of other classes does "this" class invoke would be shown.

While this is clearly an arduous undertaking, a framework that provides this level of

analysis up front to a software professional before starting a software maintenance

task has multiple benefits. It should assist the user in both understanding ofthe design

and complexity of an existing application as well as assuring the user a more reliable

maintenance undertaking.

To set the stage for this undertaking, this research first presents a number of popular

development frameworks containing reverse engineering tools, such as Rational

Rose®, jGRASP®, NetBeans®, Eclipse® and others, in order to comprehensively

identify both their strengths and shortcomings. The thesis will then present the details

of the new framework that provides detailed method dependencies and associations.

- 3 -

Chapter 2

REVIEW OF THE LITERATURE

2.1 Reverse Engineering

2.1.1 Related Areas and Sub-Topics in Reverse Engineering

Reverse engineering is a broad subject area, which includes a variety of sub-topics and

components. Many terms are used when discussing reverse engineering. Some of

these terms include [Tomic94]:

• Forward Engineering - the process of starting at the gathering of

requirements and then following through to design and finally to the

implementation of the application.

• Design Recovery - gathering additional information, like domain

knowledge, outside information, and deductive information for inclusion

with other observations, to assist the professional in better understanding

the system being studied.

• Restructuring - the movement from one form to another form at the same

level of abstraction without changing the system's output. Essentially, it is

changing code to put it in a more structured format.

- 4-

• Reengineering - the investigation and modification of a system to rebuild it

in a new form. It is usually accomplished by reverse engineering a system

and then forward engineering the system.

• Software Maintenance - includes changing source code to correct errors,

improve performance, fix problems, etc.

2.1.2 Reverse Engineering Defined

With society'S dependence on the Internet, many businesses need to modify their

current applications, to make them web-based and move towards an electronic way of

doing business. This trend has created more of an interest in code maintenance and

evolution than in the past [AliOS]. Thus, there is now a need for experts in older

systems, as software maintenance and evolution is becoming more necessary.

Roughly, one third of total life-cycle costs are used for the programmer to understand

the functionality of the existing code [Tomic94]. Even though it is a timely and costly

process, understanding the code is critical and significant, in order for a programmer

to correctly make the desired changes. Software maintenance and evolution continue

to become more important as time marches on.

Reverse engineering is the act of recognizing systems elements, along with their

corresponding dependencies, to generate a variety of application abstractions and

design data from these system elements [MullerOO]. To successfully do this with

software, the application's code, documentation, and behavior must be studied to

- 5 -

identify the system abstractions and various design patterns, as well as to fully

understand the functionality of the system.

Software reverse engineering may be viewed as a "solution looking for a problem."

[Buss91]. Many programmers attempt to understand "how the code gets where it's

going" and "why the code is doing something" in their everyday tasks. While there

are many different approaches and techniques to reverse engineer software, their

common goal is to gather as much information as possible from the current system, to

assist in the maintenance task(s) at hand. This information is critical to support

current maintenance and/or future development, as well as providing data to project

management for planning the use of software engineering resources.

2.1.3 History of Reverse Engineering

The need for reengineering legacy systems was apparent by the early 1990s.

However, with the recent pressure for businesses to go electronic, by way of the

Internet, to and convert many existing systems to web-based applications, this need

has intensified. There is now a demand for various methods, tools, and infrastructures

to assist in transforming existing applications rather quickly and relatively

inexpensively [MullerOO]. Over the past decade, researchers have made tremendous

advances in this area.

- 6 -

The 1980s were focused on various program comprehension theories, along with

identifying the concept of reverse engineering with the evolution of software. It was

noted that a majority ofthe software evolution process is used up by program

comprehension. The topic continued to be researched throughout the 1990s. It was

during this time that various infrastructures and tools were developed to assist with the

main parts of reverse engineering a system [MullerOO]. As long as an application is

used, it will continuously change. As it changes, it will become more and more

complex.

2.1.4 Problems with Reverse Engineering

Software reverse engineering is difficult for many reasons. One reason is there might

not be any documentation in the code to be modified. In some instances, the code may

be complex, making the original author's purpose difficult for the new engineer to

understand. Another issue occurs when the original code does not provide the correct

solution for the problem. The code may have also been altered from additional

problems found, creating a very cluttered and disorganized environment with which to

work. The programming language may have been updated, causing new problems in

the code. The software could have come from a different environment or the hardware

platform may have been modified. These are just a few of the problems software

engineers may face while trying to maintain code [Buss91]. If software engineers do

not fully understand the code they are modifying, this can create future problems.

- 7 -

2.1.5 Importance of Reverse Engineering

Approximately $30 billion is spent a year on software maintenance, including legacy

systems [Tomic94]. An important and poor trait oflegacy systems is many times

business rules are intertwined within the application logic. As software lives, it is

updated due to enhancements in the functionality, correction of errors, or

improvements in quality. However, as software changes, the documentation is not

always updated, as well. Therefore, the code becomes the only dependable source of

information when trying to understand the application's functionality. Previous

design, if available, does not always map to the current implementation. Yet, effective

maintenance requires a reasonably thorough understanding ofthe code and its

intended functionality. This has led to the need for reverse engineering or some

mechanism to recapture some of the original design intentions. By reverse

engineering an application's code a user can then recognize the artifacts, detect

various relationships, and produce abstractions that can be used to re-document and

depict the initial design.

2.1.6 Practicality of Reverse Engineering

When maintaining old code, the organization will eventually need to decide if it is

most cost effective to keep maintaining the existing code or if the organization should

reengineer the system. There are many factors used when determining if system

reengineering is appropriate. A system should be reengineered if there are regular

failures, code that is out of date (about seven-to-ten years old), using application logic

- 8 -

or structure that is excessively complicated, or code written for hardware that is

obsolete [Buss91]. Other factors to consider for reengineering are when there is code

with exceedingly large modules, unnecessary resource usage, aspects in the code that

are hard-coded, difficulty in keeping resources to maintain the code, documentation

that is lacking and leaves much to be desired, or unfinished design specifications

[Buss91]. By reengineering a system, the maintainability will be improved, migration

to a new environment is easier, the system tends to be more reliable, and the code is

more prepared for functional enhancements.

Another reason to want to have a thorough understanding of code is the size of many

applications. As they increase in size and become more complex, it becomes more

important to understand their structure and behavior. Reverse engineering the code

will help bring that knowledge to the user. Often, there is little information or

rationale documented behind the implementation decisions. Reverse engineering is,

therefore, sometimes vital to understand the reason and logic behind existing code.

2.2 Reverse Engineering Tools

Most reverse engineering tools available, including Rational Rose®, NetBeans®, and

Eclipse®, will generate a UML class diagram from Java source code. jGRASP® goes

somewhat deeper by generating the class diagram, a Control Structure Diagram (CSD)

which is an algorithmic level diagram, and a Viewer which will display dynamic

- 9-

visualizations of objects and primitives. Eclipse® provides for some additional

reverse engineering functionality within the environment itself.

The tools mentioned are the more popular reverse engineering tools in common use.

However, there are many others tools, including the Sun Java Studio Enterprise 7® or

JBuilder®, to name a few, that will perform various software reverse engineering

functions, as well. These tools will execute a variety of tasks, in addition to some of

the same operations as the other tools. However, all the tools excel in different ways

and possess different levels of capabilities, some are just more widely used then

others.

2.2.1 Rational Rose

Rational Rose® is a modeling tool, released by the Rational Software Corporation

(recently purchased by IBM), that supports, among a host of additional features, the

UML graphical notation [IBM07]. An example of a class diagram is shown in Figure

1. Rational Rose® will automatically generate a UML class diagram from object

oriented source code, such as Java and C++. This is a good tool for round trip

engineering, as it will allow you to create UML class diagrams from existing code,

modify them, and update the source code immediately inside the application.

However, there is still a good deal of human interaction required during this process.

While this approach is helpful, there is still a lot to be desired when trying to

- 10 -

understand method dependencies, necessary, for complete programmer comprehension

of the system workflow and logic essential in application maintenance.

2.2.2 jGRASP

BockLlst

~

-+,BockLlsti i
<> ' add, :
<>tcStnng', :

<>8COKI:
'>toStlll1;)' :

Book! lode

-I;c[) i

Book

Figure 1: Rational Rose UML Class Diagram

jGRASP® is developed from pcGRASP. jGRASP® is one of the most recent

applications from the GRASP (Graphical Representations of Algorithms, Structures,

and Processes) group at Auburn University [Auburn University07]. The application

jGRASP® is a "lightweight integrated development environment, created specifically

to provide visualizations for improving the comprehensibility of software" [Auburn

University07]. jGRASP® is written in Java and supports the Java programming

language, as well as C, C++, and Ada. jGRASP's current functionality includes the

automatic generation of CSDs, UML class diagrams, and Viewers. jGRASP® also

- 11 -

contains an Object Workbench and Debugger, which help a programmer to generate

and debug source code.

The CSD is an "algorithmic level diagram generated for Ada, C, C++, and VHDL"

[1]. An example is shown in Figure 2. This diagram assists the user in understanding

the source code more thoroughly and in an easier manner. It will do this by

representing control constructs, control paths, and the general structure of each

program segment. This diagram is illustrated in the margins and indentations of the

source code. This diagram is often used in the place of flow charts and other graphical

diagrams. The main purpose of the CSD diagram is to "create an intuitive and

compact graphical notation that is easy to use" [Auburn University07].

iii
I

~ £:..:.):1),: .. :1", n::t", = 8::;:1),: .. :1", ·n"",·E:.:,):.;
- :::.:·):11·: .. :1·" -:'U~ l':))~ ;

--i':~ 11St
11 st == :-:.: :!-=:

·:-tltt ·:ltC = llSC;
.-- -1 ". . ~;;r t ",nt - n",:-:t ,= .. . L ·:·uu:~:;t = ·:ut:t:",,,t. n~xt;
~ ,:,urr-::nt,:1-=xt = n·:·.:[-=::

I~ f-::sult +:::; ':-Ul:t:-::-nt.':::·i-:,t,:,~:trln';: +
i>-- .:ut:J:",nt = ·~ut:t:",nt. nc::·:t;

Figure 2: jGRASP CSD Diagram

- 12-

jGRASP® will also generate the UML class diagram, as shown in Figure 3, for the

Java source code from the Java class files and .jar files of a project. The diagram will

illustrate the dependencies among various classes by standard UML dependency

arrows. If the user selects a class, its members are displayed. If the user selects an

arrow, the dependencies between the two classes are illustrated. This diagram will

help the user comprehend the high-level elements and dependencies among the classes

for the specified program.

I
I

I

(

I
I

Library
{main}

I
J

I

,
\

I ,

\
\

\ ,
\

\

-)j

"--____ u - - - -~'-~ _=B_O_Ok_----I
. /J]

(

I ,
{ ,

.-,
;

BookLlst$BookNode

Figure 3: jGRASP UML Class Diagram

jGRASP® will also generate Viewers for Java source code, as illustrated in Figure 4.

The Viewers, "for objects and primitives provide dynamic visualizations as the user

steps through a program in debug mode or invokes a method for an object on the

workbench" [TilleyOl]. Presentation views are presented for instances of classes that

- 13 -

symbolize data structures, such as a link list, binary trees, and array wrappers. When

the user opens a viewer, a structure identifier recognizes the data structure during the

debugging process and displays the correct presentation view of the object for the

user.

1.fJ «(java.util.ArrayList)list) ~
VieW Ipre5ent~n -~!:I~~:J [[J

OJ@J D i/'WiCHhQ---,.,<t.oscalec=::C)=1.0

sizo 0 rnodCount 0 I

T~~ i I I I I· I . I· . I· . I . II
___ o~~ ~ ___ ~ __ ~ __ ~ _5 ____ 6 __ ~_ ~ __ ~J
........

~~~~.-----

«java.utiI.Arrayti!;t)/ist) (2) raJ 
Type j3va.lang.S1ring VieW Emanea==--=J,.=3 Itfl 
r~~~~_=-~·=~==~··~. _~ ... _ ....... ___ .. ~ __ .. ___ ._~_~.~ ___ ~ .. ___ .. ___ .. --.J 

Figure 4: jGRASP Viewer Diagram 
[Auburn University07] 

jGRASP® is a very useful tool in helping the user understand existing code by 

generating the CSD diagrams. However, it was noted that the UML documentation 

generation feature is not as complete, therefore, not as supportive as it could be to the 

developer. This tool is very useful when attempting to debug and understand code. 

However, there are still some important features that could be added to assist the user 

fully. 

- 14 -



2.2.3 NetBeans 

The NetBeans® Integrated Development Environment (IDE) is an open source 

application for the development and maintenance of Java application code [NetBeans 

07]. NetBeans® will create an UML class diagram from object-oriented source code, 

such as Java and c++ (Figure 5). This tool will allow a software engineer to create 

UML class diagrams from existing code. The class diagram will allow the user to see 

potential object dependencies, thus, helping the user understand the code. However, 

high level, graphical object dependencies only provide limited insight to the 

developer. More information is vital to foster a firm grasp of what exactly is going on 

throughout the application logic. 

Library 
AlttiJcifs 

OpflilOOM 
2ubic void m~ S1r!n!largsIO,,'ll 

BookList next 
<Jl' 

tVtriblhs BookNode 
Optt .. m('J$ {From BookList } 

p8C~oge Boo~LIst( ) 
pWic void add( Book newBook ) "'1 ~u/ .. 

pubic String tOString( ) OpffiHoos 
P\A>1ic BookNode( Book theBo"" ) 

book 

Book 
Attrib~f$ 

private String tile 

~noons 
pubic 6001« string newTile ) 
pubic S1ring toString( ) 

Figure 5: NetBeans UML Class Diagram 

- 15 -



2.2.4 Eclipse 

Eclipse®, another product of IBM, is an open source tool that provides an advanced 

development environment for various applications [Eclipse07]. Eclipse® will allow a 

software engineer various reverse engineering techniques while in the Eclipse® 

workspace. The Smart Development Environment (SDE) p1ugin for Eclipse® 

provides reverse engineering of Java code into UML class diagrams and output in a 

PDF or HTML format, entirely within the Eclipse® environment. Figure 6 displays 

an example UML class diagram generated in Eclipse®. In addition to these facilities, 

Eclipse® also provides for various functiona1ities within the workspace to assist in 

understanding program code. The Eclipse® Java IDE may assist the user by 

providing search capabilities for finding referenced code declarations and usages. It 

provides various tools for this purpose, including Open Declaration, References, 

Declarations, etc. The Open Declaration operation will open a class to the selected 

method. The References tool will show all the references in the project for that 

specific method. The Declarations utility will show the class in which that denoted 

method is declared. These features may be very helpful, but it is necessary for the 

user to be within the project; that is, looking at the source code. There is not a way to 

find method dependencies up front or without being "inside" the program code. 

- 16 -



I Library I 
[;.l1lain(args: String Ill: void I 

, 

BookUst 
Bookllode -list: BookNode 

list +book: Book 
+nexi: BookNode "" -BookListO 

1 '" +add(neW3ook: Book): void 
+BookNode(theBook: Book) +tostrlngO : string 

, 
Baal List 1 

bool \ 1 

Book 
BoolList$BoolNode 

Bool List$Bool Node I -tttle : string «ORM Persistable» 
+Book(newTitie : String) 1 B ookUst$B ookll ode Baal List$Bool Node 

+to stringO : string Baal· 
Bool List$BoolNode d 

Figure 6: Eclipse UML Class Diagram 

- 17 -



Chapter 3 

METHODOLOGY 

3.1 Method Level Dependency Framework 

Research for this thesis included examining various reverse engineering tools, such as 

those found in Rational Rose®, Eclipse®, NetBeans®, and jGRASP®, followed by 

comparing and analyzing the their outputs and methodologies. Once these tools were 

evaluated, a new framework was developed that, when used in combination with an 

existing tool, will generate the UML class diagram, which is more beneficial during 

reverse engineering due to its focus on method level detaiL This new reverse 

engineering framework included accepting Java programs as input and determining 

the structural characteristics of the program. It provides for both a forward and 

reverse analyses of method level dependencies. The framework provides two output 

diagrams: a complete listing by method of all classes and methods that reference the 

method in question, as well as an additional listing of all references made by each 

method in each class. While this is viewed by many as an arduous undertaking, the 

availability of such a framework, when used along with existing reverse engineering 

tools, should be helpful to the software maintenance worker. Figure 7 shows how the 

new method level dependency component fits into existing functionality, to assist the 

developer with software comprehension, thus, creating a new framework. 

- 18 -



Class Diagram Generator 

/ 
Method Dependency Generator 

Figure 7: Method Level Dependency Framework 

3.2 Reverse Engineering Framework 

3.2.1 Development Software 

Rational Rose®, jGRASP®, NetBeans®, and Eclipse® were used to generate the 

various models to support reverse engineering methodologies. The method level 

dependency framework was developed in Java 5.0 using the Eclipse® IDE. A 

MySQL® database was used for storage and retrieval of various information artifacts 

as needed. A machine containing the Java Run-Time Environment (JRE) was utilized 

to run the application. This is a stand alone application and runs locally on a machine. 

- 19 -



3.2.2 Framework Development 

3.2.2.1 Framework Design 

The Method Level Dependency Generator component was developed using the Java 

programming language and was organized in a modular format. It consisted of five 

classes: MainFrame.java, FileHandler.java, DatabaseMethods.java, 

GenerateDiagrams.java, and Constants.java. Each class, composed of various 

methods, was designed to handle a different part of the application functionality. 

Figure 8 illustrates the class diagram for the Method Level Dependency Generator. 

From here, the various class dependencies can be seen, along with the global variables 

and methods found in each class. 

- 20-



«lava ClasS'> 
G Constants 

V currentdass : Strh:! 
V currentMethod : Striru 
V Objects: String 
!,F Strroobiects : Strino 
V Methods: Strng 
V arrow2 : String 
V arrow3 : String 
V' title: String 
V' generator: String 
V dassTitIe : String 
V method Title: String 

«USB» 

«Java Class» 
G GenerateDiagrams 

"" generateDlagramByClass ( ) 
"," generateDlagramB\'Method ( ) 

«use» 

«US8» 

«use» 

3.2.2.1.1 MainFrame.java 

«Java Class» 
G DatabaseMethods 

o connectim: Comecttn ~ 
9 getComecticn () 
G ilsertcode ( ) 
G reset~plcation ( ) 
,~ getDlagramlnfuByClass ( ) 
~~ getDlagramlnfuByMethod () 

«use» 

«lava Class» 
GMalnFrame 

o !Tame: ]frame 
o pTitle : lPanel 
o pUploaded : JPanel 
o pBottom: lPanel 
o pBottom2: lPanel 
o pF~eChoosel : lPanel 
o buttonPanel: lPanel 
o pGenerator: lPanel 
II myconstants: Constants 

1" Intle : lLabel 
o trp/ooded : lLabel 
1~ /generator: lLabei 
o bReset: lButton 
o bOpenFUe: lButton 
o bGenerateByClass: lButton 
o bGenerateB\'Method: lButtm 
om: lMenuBar 
o mFlle : JMenu 
o miQuit: lMenultem 
o mHeip : lMenu 
o miAbout: lMenultem 
o tFUeLlst: lTextArea 
o fc: lRieChooser 
@"MainFrame l ) 
a actionPerfurrrred () 
II ShoWGUI () 
<frrra!n(j 

«use» 

«USB» 

«USe» 

«use» 

«use» 

Figure 8: Class Diagram 

«Java Class» 
G AleHandler 

II bracketcounter: int 
II CurrentClassName : string 
II CurrentNestedClass: String 
II CurrentMethodName: String 
II Extendedclass : strtng 
II NestedExtendedclass: String 
II ObjectUst : HashMap 
11 DeclaredMethods: Hamap 
II caledMethods : HashMap 

1'" readFle ( ) 
JJ evaluatelhe ( ) 
@ getCurrentClassName ( ) 

L'" getcurrentMethodNrre ( ) 
~'" getclassName ( ) 1" getMethodName () 

«lava claw> 
G listenCloseWdw 

a Windowclo~ng ( ) 

«lava dass» 
«3 listenMenuQult 

a actionPerfurmed ( ) 

MainFrame.java was designed to generate and handle the Graphical User Interface 

that runs as a stand alone application for this framework. The GUI was developed 

using the Swing toolkit in Java, which is part of the Java Foundation Classes. This 

toolkit allowed for easy use of standard components, such as textboxes, panels, 

buttons, frames, etc. This class contained the mainO method. It built the GUI and 

- 21 -



controlled any action taken within the GUI by calling the corresponding methods to 

accomplish that task. The methods found in Mainframe.java are listed in Figure 9. 

MainFrame.MainFrameO 

MainFrame.actionPerformedO 

Mainframe. ShowGUIO 

MainFrame. mainO 

ListenMenuQuit.actionPerformedO 

ListenClose W dw. windowClosingO 

Figure 9: MainFrame.java Method List 

3.2.2.1.2 FileHandler.java 

FileHandler.java managed and evaluated the data coming in through the input files. 

This class contained methods that read in the Java source code and, considering the 

order, examined it for the structural characteristics that would indicate a class or a 

method. First the entire input was read and any leading or trailing spaces and line 

feeds were removed, storing the input as a StringBuffer. Next, the input StringBuffer 

was parsed by open brackets, close brackets, or semi-colons, until the entire file was 

read. Each substring was evaluated to determine if it contained a class declaration, an 

object instantiation, a method declaration, or a method call. This was accomplished in 

Java through the use of regular expressions, also known as patterns. Regular 

- 22-



Expressions were created to recognize the class declarations, method declarations, all 

class instantiations, and any method calls in each given file. 

• Class declarations were recognized by the keyword "class" and a space. 

• Class instantiations were distinguished by the keyword "new" followed by a 

space, a word (characters a-z, A-Z, 0-9), and then a left parenthesis. The 

referenced name and the class name are both stored in a hash map for matching 

later. 

• Method declarations were identified by a word (characters a-z, A-Z, 0-9) 

followed by a space, a word (characters a-z, A-Z, 0-9), and ending with a left 

parenthesis. 

• The method calls were discovered by checking for a word (characters a-z, A-Z, 

0-9) followed by a left parenthesis and checking to see if they have not already 

been labeled a class instantiation. 

If part of the string matched a pattern, it was then checked for reserve words and 

parsed out by the characters, to get the actual class or method name. If a method 

call was found, it was stored in the database. The methods created to manipulate 

the input files are listed in Figure 10. 

- 23 -



F ileHandler .readF ileO 

FileHandler.evaluateLineO 

FileHandler.getCurrentClassN ameO 

F ileHandler. getCurrentMethodN ameO 

FileHandler. getClassN ameO 

FileHandler.getMethodN ameO 

Figure 10: FileHandler.java Method List 

3.2.2.1.3 DatabaseMethods.java 

DatabaseMethods.java manipulated the database. This class made the connection to 

the MySQL® database. It was also responsible for any calls to update or query the 

database throughout the framework. As method calls were identified by the 

FileHandler class, they were saved to the database. As the user selected to generate 

diagrams from the Mainframe class, this information was retrieved from the database. 

Figure 11 contains all the methods found in DatabaseMethods.java 

- 24-



DatabaseMethods.getConnectionO 

DatabaseMethods. insertCodeO 

DatabaseMethods.resetApplicationO 

DatabaseMethods.getDiagramlnfoByClassO 

DatabaseMethods.getDiagramlnfoByMethodO 

Figure 11: DatabaseMethods.java Method List 

3.2.2.1.4 GenerateDiagrams.java 

GenerateDiagramsjava was used to generate the output diagrams. The user has the 

ability to generate two different diagrams. The first diagram, "Generate by Class 

Dependencies," will query the database and display, by class, each method and what 

method calls it makes. The second diagram, "Generate by Method Dependencies," 

will query the database and illustrate by each method, what methods it is called by. 

The methods located in GenerateDiagrams.java are listed in Figure 12. 

GenerateDiagrams.generateDiagramByClassO 

GenerateDiagrams.generateDiagramByMethodO 

Figure 12: GenerateDiagrams.java Method List 

- 25 -



3.2.2.1.5 Constants.java 

Constants.java defined all constants used throughout the framework. The Method 

Level Dependency Generator used constants to define the various patterns it was 

searching for, in each class and image locations. The constants used in the framework 

are provided in Figure 13. 

Constants.currentClass 

Constants. currentMethod 

Constants. Objects 

Constants.StringObjects 

Constants.Methods 

Constants.arrow2 

Constants.arrow3 

Constants. title 

Constants. generator 

Constants.classTitle 

Constants.methodTitle 

Figure 13: Constants.java Constants List 

- 26-



3.2.2.2 Database Design 

The MySQL® database created to store the infonnation was named "thesis." The 

thesis database only contained one table, "code." This table consisted of four 

columns, CurrentClass, CurrentMethod, CalledClass, and CalledMethod. While 

scanning the input file, as a method call was found in a class, the current class, current 

method, called class, and called method were stored in the code table. This table was 

queried, in order to generate the diagrams. The database diagram is found in Figure 

14. 

thesis 

code 

CurrentClass 
Currentr'v'1ethod 
CaliedClass 
Calledrvlethod 

Figure 14: Database Diagram 

3.2.3 Framework Functionality 

The reverse engineering framework was relatively simple to operate and assumed the 

input java files would compile together. The user began by starting the application. 

- 27 -



They were given a graphical user interface that would allow them to manipulate the 

framework. This GUI is shown in Figure 15. 

~~~mk~~~~~~~m' 
File Heir)

Files Uploaded:

Generate By Class Dependencies II Generate By Method Dependencies

Reset Application

Figure 15: Method Level Dependency Generator

The user selected one file at a time to examine, by selecting the "Open File to Read"

button and choosing the file. A file selector would appear and the user had to browse

to find the desired file, as shown in Figure 16.

- 28 -

File Help

Look til: i[j Test4

o Circle.java I
D Shapes.java

D Square.java

File !fame: ICirCle,java I
~====================~

Files of we: IL-A_II F_il_es ________________JIL-.....J ... 1

Figure 16: Method Level Dependency Generator File Selector

The file was uploaded and scanned for the various structural characteristics, indicating

a class declaration, method declaration, class instantiation, or a method call. As a

method call was found, the current class, current method, the class in which the called

method was contained, and the called method name were all saved to the database.

This was repeated for each file the user wished to read. The user was able to view a

list of all files read, thus far, in the file list in the GUI. In order to quit the application,

the user can select File on the menu bar and the Quit option. The Help option on the

- 29-

menu bar would be used to provide the user with help infonnation. The Method Level

Dependency Generator interface can be seen in Figure 17.

~~~~~~~~~tJtaJta 

File Help 

Circle.java 
Shapes.java 
Square.java 

Files Uploaded: 

Generate By Class Dependencies II Generate By Method Dependencies 

Reset Application 

Figure 17: Method Level Dependency Generator 

Once all files were evaluated, the user selected either the "Generate By Class 

.... 
-

= .... 

Dependencies" button or the "Generate by Method Dependencies" button, to generate 

the desired diagrams to show the detailed dependencies for all the uploaded classes. 

The infonnation can be cleared from the database by selecting the "Reset Application" 

button, in order to start clean again. 

- 30 -



3.3 Framework Output 

There are two diagrams that were generated by the Method Level Dependency 

Generator. These diagrams included a diagram by class showing the class and method 

calls from it, illustrated in Figure 18, and a diagram by method showing the methods 

that access it, illustrated in Figure 19. 

;~Dr«;;~"~"':'~B~'d~·J:",,,·:;~;,,\,,*!,;rrZ(~~~""~5':'f;;\t4!\,"~~"~"'~~LJtailta lagram y ass ._", , . 

IlDJIIh6UM BY ClLJlSSI 
Circle .... 

1-

~ 
Circle.getRadius 

getCirclelnfo Shapes.getColor 
Shapes.getShapeType 

Shapes 

~ 
Circle.getCirclelnfo 

main Square.getSquarelnfo 
System.out.println 

Square 

I c,;;~-> 
Shapes.getColor 

getSquarelnfo Shapes.getShapeType 
Square.getLength 
Square.getSides 1-..... 

Figure 18: Generate By Class Dependencies 

- 31 -



~~ffiiJ9imii!tJ-~~'~'~~~;~~,l\~'~~tJ' 

IIDllA~ B~ lEmOIDI 
Circle ... 

1-

_ [. 

getCirclelnfo Failed b~ !Shapes.main! 

getRadius IC'lIedb~ !Circle.getCirclelnfo! 

Shapes 

etColor Icall;d-bV Circle.getCirclelnfo 
9 Square.getSquarelnfo 

etSha eT e Icall~d-b~ Clrcle.getCirclelnfo 
9 p YP Square.getSquarelnfo 

Square 

getLength IC~II~d bV !square.getsquarelnfo! 

getSldes @;lIed-bV ~quare.getSquarelnf~ 

getSquarelnfo IC';;ledb~ IShapes.mainl 

System 

out.println [Called-b~ IShapes.mainl 
1-... 

, 

Figure 19: Generate By Method Dependencies 

- 32 -



The "Diagram by Class" diagram (Figure 18) shows a representation of all classes, the 

methods that are in them, and what methods they depend on. For instance, this 

example contained three different classes, Circle, Shapes, and Square. The Circle 

class contained one method, getCircleInfoO, that has method dependencies. These 

method dependencies included Circle.getRadiusO, Shapes.getColorO, and 

Shapes.getShapeTypeO. The Shape class contained one method, mainO, that calls 

other methods, Circle.getCircleInfoO, Square.getSquareInfoO, and 

System.out.printlnO. Finally, the Square class had the method getSquareInforO that 

called Shapes.getColorO, Shapes.getShapeTypeO, Square.getLengthO, and 

Square.getSidesO. From this diagram, the user was able to see by class what other 

classes and methods a change would potentially affect. 

The "Diagram by Method" diagram (Figure 19) shows a representation of all methods 

and what methods depend on them. In the above example, the application being tested 

contained seven methods spread over three classes. The class Circle contained the 

methods getCircleInfoO called by Shapes.mainO and getRadiusO called by 

Circle.getCircleInfoO. The Shapes class contained two methods, getColorO and 

getShapeTypeO. Both of these methods were called by Circle.getCircleInfoO and 

Square.getSquareInfoO. The Square class is made up of getLengthO called by 

Square.getSquareInfoO, getSidesO called by Square.getSquareInfoO, and 

getSquareInfoO called by Shapes.mainO. 

- 33 -



Upon completion of this new reverse engineering scheme, both method level 

dependency diagrams were compared with the existing diagrams generated by the 

other commonly-used approaches. This was accomplished by analyzing the results for 

each diagram. By examining output from the existing methods, along with output 

provided by this new reverse engineering framework, it was apparent that the new 

framework provided a greater level of detail. The provision of method level 

dependencies in combination with the output of existing tools should provide a more 

practical tool for software maintenance. 

- 34-



Chapter 4 

RESULTS 

The new reverse engineering framework provided for the display of method level 

dependencies, in addition to the diagrams of existing tools. The Method Level 

Dependency Generator was designed to read in Java source code input files as a 

source for the generation of the desired detailed diagrams. The test bed for this thesis 

contained many different test cases obtained from various sources, including some 

previous school projects. Each test case was made up of multiple class files, all 

varying in different characteristics, such as size and functionality. All test files 

contained, at the minimum, the essential information to retrieve the desired results, 

such as method calls and the respective method signatures. The important factor for 

this thesis was to present the method dependencies; thus, the test files focused on 

method calls. In order to test the new methodology, each test case was compiled and 

loaded into the reengineering framework. This generated the diagrams to display the 

lower level dependencies in the questionable application. The new method level 

dependency approach is beneficial when used in conjunction with existing so ftware 

that shows high level dependencies. Many test cases were run and the results attest to 

this finding. 

- 35 -



4.1 Test Case 1 

The first test case consisted of four different classes. This application created multiple 

book objects and added the books to a library. Figure 20 shows the UML diagram, 

generated by Rational Rose®, which displays the different classes and methods within 

them, with their relationships to the other classes within the application. However, 

with just this diagram, it is difficult to see the method level dependencies; essentially, 

which methods really affect other methods. By using the new methodology, one was 

able to view the method level dependencies. Allowing the user to see, in particular, 

which potential maintenance efforts on one method may produce effects another 

method. 

«Java Class» 
GBook 

c title : String . 
Eif Book () 
eo. toString ( ) 

«use» 

«Java Class» 
GBookNode 

o book: Boor< 
o next:BookNode 
eC Book Node 0 

«use» 

«use» 

«use» 

«Java Class» 
GUbrarv 

Elf main () 

«use» 

«Java Class» e BookList 
c list : BookNode . 
I.e BookUst () 
e add () 
eo. toString ( ) 

Figure 20: Test 1- Class Diagram 

- 36-



Figure 21, Diagram By Class showed the developer that the BookList class contained 

a toStringO method that called the Book.toStringO method and the Library class 

contained the mainO method, which called both BookList.addO and 

System.out.printlnO· 

'~f)r~gf~iifB;'cii[r~~'~~~~f'!~~l;:)bQJtJ 

I1D>IlA6MH fBi tCILASSl 
BookList ... 

1-

toString ~ IBook.toStringl 

Library 

main IC~";> BookList.add 
System.out.println -

T 

Figure 21: Test 1- Diagram By Class 

Figure 22 illustrates the Diagram By Method functionality. Here, the user was 

informed the Book.toStringO method was called by the BookList.toStringO method, 

the BookList.addO method was called by Library.mainO, and the System.out.printlnO 

method was also called by Library.mainO. 

- 37 -



.. 

~ [In(!! ;,In !ii ).If'tho {f ,." Di~ '- !: ~., ..... 
__ " ~./l;i;, 

IDIIA~ iBYM1mIOIIDI 
Book ..... 

1-

toString IC~lIed lot> IBookList.toStrin~ 
BookList 

add IC~II~d bt> ILibrary.mainl 

System 

out.println IC~lIed bt> ILibrary.mainl 
-... 

Figure 22: Test 1- Diagram By Method 

4.2 Test Case 2 

The second test case was taken from an accounting application. This system consisted 

of two classes that would create a bank account and then deposit funds, withdraw 

funds, and add interest to the accounts. Rational Rose® generated the UML class 

diagram depicting the two classes and their dependency on each other, as shown in 

Figure 23. Notice that the UML diagram does include the traditional UML 

dependency arrow. While this is helpful, it does not allow the user to really see any 

detailed level dependencies. However, when the UML dependency model was used 

with the reverse engineering framework, the user had a greater amount of information 

available to them, information ranging from architectural dependencies to detailed 

- 38 -



method-level dependencies, which could provide for a better understanding ofthe 

code. 

«Java Class» 
G Account 

J rate: double 
c acctNumber: long 
c balance : double 
c name: String 

@I: Account ( ) 
@ deposit ( ) 
@ withdraw () 
@ addInterest ( ) 
@ getBalance ( ) 
@ getAcCQuntNumber ( ) 
a toString ( ) 

«Java Class» 
G BankAccounts 

«use» 
<if' main ( ) 

Figure 23: Test 2- Class Diagram 

The Diagram By Class, in Figure 24 shows the Account class contained the methods 

depositO and withdrawO, both of which invoked System.out.printlnO. The 

BankAccounts class contained a mainO method, which called Account.addlnterestO, 

Account.depositO, Account.withdrawO, and System.out.printlnO. 

- 39 -



!'~mr~m~lC"'G-'-~i~'~~~~l!!~(~[aJif' 

IJD)IIA~!BY ~I 
Account .6. 

1-

deposit ~ ISystem.out.prlntlnl 

withdraw I C~ils > ISystem.out.printl~ 
BankAccounts 

~ 
Account.addlnteres1 

main ~ccount.deposit 
~ccount.withdraw 
System.out.println ,-... 

Figure 24: Test 2- Diagram By Class 

Figure 25 showed the Diagram By Method, which focused on the methods and what 

methods depended upon them. For this test case, Account.addlnterestO, 

Account.depositO, and Account.withdrawO were all called by BankAccounts.mainO. 

Any modifications to the System.out.printlnO could potentially have affected 

Account.depositO, Account.withdrawO, and BankAccounts.mainO. 

- 40-



~ fq'lf>,f ,HI! Fry I,[<"\i\nd i ! - --.:' .... I il-'~ i_:",_lg! I.e],,'" 

III»lIA6IB 181 METnIlOIIDI 
Account ... 

1-

addlnterest IC~"d b? IBankAccounts.mainl 

I' 
deposit railed bV IBankAccounts.mai~ 

withdraw raliedb~ IBankAccounts.mainl 

System 

out.println Icalled b~ ~ccount.deposit ~ccount.withdraw 
BankAccounts.main 1-

~ 

Figure 25: Test 2- Diagram By Method 

4.3 Test Case 3 

The third test case example was taken from a sports application. This system 

contained four different classes each having various methods, which provided helpful 

information about the application. The UML diagram, created by Rational Rose®, 

illustrated that the Basketball, Football, and Soccer classes were all related to the 

Sports class, shown in Figure 26. This was useful; however, when maintaining code, 

the developer will need more information about these dependencies. The new 

approach offers much more detailed information. 

- 41 -



«Java Class» 
GBasketbali 

.§) getlnfo ( ) 
Q getDivision ( ) 

«use» 

«use» 

«Java Class» 
GSports 

'" main ( ) 
g. getSportslnfo ( ) 
eJ getMascot ( ) 
~getTeam( ) 
~ getColors ( ) 

«use» 
«use» 

«Java Class» 
G Football 

J:.~ getln1D ( ) 
Q getPlayers ( ) 
Q getQuarterback ( ) 
Q getRunningback ( ) 

«use» 
«use» 

Figure 26: Test 3- Class Diagram 

«Java Class» 
G Soccer 

J:,1J getInro ( ) 

Figure 27 was the Diagram By Class. This diagram showed the different classes and 

what methods they call, or what methods they are dependent upon. The Basketball 

class' getInfoO method called Basketball.getDivisionO, Sports.getColorsO, 

Sports.getMascottO, and Sports.getTeamO. The Football class contained the method 

getInfoO, which depended on Football.getPlayersO, Sports.getColorsO, 

Sports.getMascottO, and Sports.getTeamO; and, the method getPlayersO, which called 

Football.getQuarterbackO and FootbalLgetRunningbackO. The third class, Soccer, 

had one method with dependencies, getInfoO, which called Sports.getColorsO, 

Sports.getMascottO, and Sports.getTeamO. Finally, the Sports class had two methods 

which utilize other methods. The getSportslnfoO, which used Basketball.getInfoO, 

Football,getInfoO, and Soccer.getInfoO; and, the mainO method, which used 

Sports.getSportslnfoO and System.out.printlnO. 

- 42-



I'_it .... U1 ~(rut:. .. 
. 

~ 
," .~;1Q_ 

I1D>IlA<6iRd iBfiC1I.JiSS1 
Basketball .... 

1-

getlnfo I call~1 
Basketball.getDivision 
sports.getColors 
Sports.getMascot 
sports.getTeam 

Football 

getlnfo [C~II~-) 
F 0 otb all. 9 etP I aye rs 
sports.getColors 
Sports.getMascot 
Sports.getTeam 

tPI ~ Football.getQuarterback ge ayers, . F ootb all.getRunmngback 

Soccer 

getlnfo I C~IIS-> sports.getColors 
Sports.getMascot 
Sports.getTeam 
Sports 

getSportslnfo ~ Basketball.getlnfo 
F ootball.getlnfo 
Soccer.getlnfo 

. ~ Sports.getSportslnfo 
m~n . System.out.pnntln 1-... 

Figure 27: Test 3- Diagram By Class 

Finally, Figure 28 shows the Diagram By Method, which presents all methods called 

by another method. By using this diagram, the user would know that any changes to 

Basketball.getDivisionO could affect Basketbal1.getInfoO and any modifications to 

- 43 -



Basketball.getInfoO could affect Sports.getSportslnfoO. The Football class contained 

three different method dependencies. The getPlayersO method was called by 

Football.getInfoO, the getQuarterbackO method and getRunningbackO method were 

both called by Football.getPlayersO. The Soccer.getInfoO method was called by only 

one other method, Sports.getSportslnfoO. The Sports class contained a few 

dependencies, including getColorsO, getMascotO, and getTeamO methods, which 

were all called by Basketball.getInfoO, Football.getInfoO, and Soccer.getInfoO. The 

getSportslnfoO method was called by Sports.mainO. Any changes to 

System.out.printlnO would only affect Sports.mainO. 

- 44-



~ P1011',I.;'" Ii./ ,:,,~; /0,', ,I '~'"g~ 

1lD>1IA~ e1f'METInolD>1 
Basketball ... 

~ 

geIDivision Ie,,,., bb IBasketbalLgetlnf~ 
getlnfo Ie,,,., b~ Isports.getSportslnf~ 

Football 

geIPlay.rs le''''d bb IFootbalLg.tlnfol 

getQuarterback le''''d b~ football.getPlayersl 

getRunningback Ie,,,,, b~ IFootbalLgetPlayer~ 
Soccer 

g.tlnfo le''''d bb !sports.getSportslnfol 

sports 

g.teolors le''''d b~ Basketball.getlnfo 
F ootball.getlnfo 
Soccer.getlnfo 

getMascot le''''d bb Basketball.getlnfo 
F ootball.getlnfo 
Soccer.getlnfo 

g.tsportslnfo le''''d b~ ISports.malni 

getT.am 1"'"'' bb Basketball,getlnfo 
F ootball.getlnfo 
Soccer.getlnfo 

System 

out.println le''''d b~ ISports.maini 
1-... 

Figure 28: Test 3- Diagram By Method 

- 45-



4.4 Test Case 4 

The final test case was a Tree application, which would allow the user to build a tree 

and then find nodes, insert nodes, delete nodes, get a node successor, traverse the node 

by pre-order, post-order, and in-order, and then display the tree. This program was 

made up of four different classes, each with a variety of methods to perform the 

desired functionality. All of these are illustrated in Figure 29, along with the class 

level dependencies, in the UML class diagram produced by Rational Rose®. When 

performing software maintenance, as usual, this would be beneficial, but not to the 

level a developer really needed. However, when the UML class diagram was used in 

conjunction with the method level dependency methodology, more information was 

available, which should make software maintenance more efficient. 

- 46-



«Java Class» 
GMyTree 

il inc: int 
il already : int 
€I depth () 
€I sumit ( ) 
€I total ( ) 

,J:,'iJ kth ( ) 
@ next () 

«use» 

«Java Class» 
GrreeApp 

~} main ( ) 
fi' big File ( ) 
(i} putText ( ) 
fi' getString () , 
(iii getChar ( ) 
(i} getlnt ( ) . 

«use» 

«use» 

«use» 

«use» 

Figure 29: Test 4- Class Diagram 

«Java Class» 
GNode 

o iData : int 
o leftChild: Node 
o rightChild: Node 
@ displayNode ( ) 

«use» 

«Java Class» 
GTree 

o root: Node 
@I; Tree () 
@ find ( ) 
@ insert ( ) 
€I delete () 
Ii1l getSuccessor ( ) 
@ traverse ( ) 
I!l preOrder ( ) 
iii inOrder ( ) 
Ii1l postOrder ( ) 
jf. displayTree (). 

Figures 30 shows the Diagram By Class, illustrating all the classes and their method 

dependencies. The MyTree class contained the kthO method that called 

MyTree.nextO and System.out.printlnO and the nextO method that called 

MyTree.nextO and Node.displayNodeO. The displayNodeO method found in the 

Node class had one dependency, System.out.printlnO. The Tree class had multiple 

method level dependencies. The deleteO method called Tree.getSuccessorO. The 

displayTreeO method requested the Stack.isEmptyO, Stack.popO, Stack.pushO, 

System.out.printO, and System.out.printlnO. The inOrderO method made a call to 

both Node.displayNodyO and itself, Tree.inOrderO. The same was true for the 

postOrderO method and preorderO method. The method postOrderO called 

- 47-



Node.displayNodeO and itself, Tree.postOrderO. The method preorderO also called 

Node.displayNodeO and itself, Tree.preOrderO. The final method dependency in the 

Tree class was travers eO which, called System.out.printlnO, Tree.inOrderO, 

Tree.postOrderO, and Tree.preOrderO. 

The TreeApp class contained quite a few method calls. The TreeApp.bigFileO 

method directed the applications functionality. This method called 

BufferedReader.closeO, BufferedReader.readLineO, Integer.parselntO, 

MyTree.depthO, MyTree.kthO, MyTree.sumitO, MyTree.totalO, Node.displayNodeO, 

S tringTokenizer .hasMoreTokensO, StringTokenizer .nextTokenO, 

System.out.printinO, Tree.deleteO, Tree.displayTreeO, Tree.findO, Tree.insertO, 

Tree.traverseO, TreeApp.getCharO, TreeApp.getIntO, and TreeApp.putTextO. The 

getCharO method in TreeApp called the String.charAtO method and 

TreeApp.getStringO. Similar to that, the TreeApp.getIntO method called 

Integer.parselntO and TreeApp.getStringO. The method getStringO found in TreeApp 

only made one call to BufferedReader.readLineO. The mainO method called both 

System.out.printlnO and TreeApp.bigFileO. The last method was putTextO, which 

called System.out.flushO and System.out.printlnO. 

- 48 -



~Tt~t1IMmttl~;J~~~·~'·~~~~!:r~~~~~'~~if' 

1lD>1lA<WRAM iBrh'lCU&SS1 
MyTree ... -

kth ["'";-> ~YTree.next. J 
System.out.pnntln 

t ~ ~YTree.next ,I 
nex Node.displayNode 

Node 

displayNode ~ Isystem.out.prln~ 
Tree 

delete ~ !!ree.getSuccesso~ -

Stack.isEmpty 

displayTree ~ Stack.pop 
Stack.push 
System.out.print 
System.out.println 

. 0 d ~ NOde.d,sP,aYNodel In r er . ree.JnOrder 

ostOrder ~ NOde.disP,aYNodel 
p ree.postOrder 

i--

o d ~ NOde.disPlaYNOdel pre r er ree.preOrder 

traverse~ 
System.out.println 
~ree.inOrder 
~ree.postOrder 
iTree.preOrder 
TreeApp 

Figure 30: Test 4- Diagram By Class 

- 49-



traverse I Calls )! I ree.lnuraer 11 trree.postOrder 
trree.preOrder 
TreeApp 

BufferedReader.close 
BufferedReader.readLine 
Integer.parselnt 
MyTree.depth 
MyTree.kth 
MyTree.sumit 
MyTree.total 
Node.displayNode 

~ 
StringTokenizer.hasMoreTokens 

bigFile Calls StringTokenizer.nextToken 
System.out.println 
!Tree.delete 
!Tree.displayTree 
!Tree.find 
Irree.insert 
!Tree.traverse 
!TreeApp.getChar 
!TreeApp.getlnt 
!TreeApp.putText 

tCh ~ String.charAt 
ge ar ~ TreeApp.getString 

tl t ~ Integer.parselnt 
ge n ~ !TreeApp.getString 

getStrlng ~ IBufferedReader.readLinel 

. ~ System.out.println 
main ~ !TreeApp.bigFile 

tT t ~ System.out.f1ush 
pu ex ~ System.out.print 

Figure 30 - continued 

- 50 -

.... 
1-

-... 



The Diagram By Method functionality is displayed in Figure 31. This diagram shows, 

by method, where those methods were utilized throughout the application. 

The BufferedReader class contained the methods closeO, which was called by 

TreeApp.bigFileO and the method readLineO, which was also called by 

TreeApp.bigFileO and TreeApp.getStringO. The parseIntO method in the Integer 

class was called by both methods bigFileO and getIntO in the TreeApp class. 

The MyTree class included the methods depthO, kthO, sumitO, and totalO, which were 

all called by TreeApp.bigFileO. TreeApp.nextO was called by MyTree.kthO and 

MyTree.nextO· 

The Node class only had one method dependency, found in the displayNodeO method, 

which was called by MyTree.nextO, Tree.inOrderO, Tree.postOrderO, 

Tree.preOrderO, and TreeApp.bigFileO. The methods isEmptyO, popO, and pushO, 

all from the Stack class, were called by Tree.displayTreeO. 

The String class contained the charAtO method, which was used by 

TreeApp.getCharO· 

The StringTokenizer class contained both the hasMoreTokensO and nextTokenO, both 

called by TreeApp.bigFileO. 

- 51 -



The System class contained multiple method dependencies. The out.flushO method 

was utilized by TreeApp.putTextO, the out.printO method from Node.displayNodeO, 

Tree.display.TreeO, and TreeApp.putTextO, and the method out.printlnO from 

MyTree.kthO, Tree.displayTreeO, Tree.traverseO, TreeApp.bigFileO, and 

TreeApp.mainO· 

The Tree class contained a few methods that were all called by TreeApp.bigFileO, 

including Tree.deleteO, Tree.displayTreeO, Tree.findO, Tree.insertO, and 

Tree.traverseO. The method getSuccessorO was called by Tree.deleteO. Finally, the 

methods inOrderO, postOrderO, and preorderO were all called by themselves and 

Tree. traverseO. 

The last class in this example was the TreeApp class. This class contained the method 

bigFileO, which was called by TreeApp.mainO. The methods getCharO, getIntO, and 

putTextO were all utilized by TreeApp.bigFileO and the method getStringO by 

TreeApp.getCharO and TreeApp.getIntO. 

- 52 -



'" [11<11" ;-tllt fl /1,1<" IIHHI r:-II-EJ !~ 
___ ._-,~r.' =._=-.:~ -

11l»1lA~ Bl'MEmOID>1 
BufferedReader .... 

I-

close Icalled b~ trreeApp.bI9FII~ 

dL· @alled b~ iTreeApp.bigFlle rea Ine in . reeApp.getstnng 
-

Integer 

arselnt Icalled b~ iTreeApp.blgFile 
p rrreeApp.getlnt 

MyTree 

depth @alled b~ t!"reeApp.bI9FII~ 
I-

kth Icalled bV [reeAPp.blgFliel 

next @~lIed bV MyTree.kth 
MyTree.next 

- - I' 
sumlt @alled bV t!"reeAPp.blgFilel 

total @'II~d 4> trreeAPp.blgFliel 

Node 
MyTree.next 

dlsplayNode Icalled ~ rrree.inOrder 
!free.postOrder 
!free.preOrder 
rrreeApp.bigFile 

Figure 31: Test 4- Diagram By Method 

- 53 -



.... 
Stack 

.1" 
isEmpty failed b~ [ree.displaYTreel 

pop Icall~db~ tTree.displayTreel 

push lea lied b~ iTree.disPlayTreel 

String i--

J 
charAt failed bV iTreeApp.getCha~ 

StringTokenizer 

hasMoreTokens Ica'i~d b~ tTreeAPp.bigFliel -

nextToken Icalled b~ iTreeAPp.bigFliel 

System 
J 

out.flush Failed b~ tTreeApp.pufTex~ 
-

out.prlnt Failed b~ Node.displayNode 
Irree.displayTree 
iTreeApp.putText 

MyTree.kth 
..... J iTree.displayTree 

out.prlntln Failed bV !Tree.traverse 
IrreeApp.bigFile 
iTreeApp.main 

Tree 

delete Icalled~) iTreeApp.blgFliel 1-.... 

Figure 31 - continued 

- 54-



II reeApp.maln I I'" 
1-

Tree 
J 

delete r~lIed b~ f1"reeApP.blgFilel 

displayTree r;lled b~ fTreeAPp.bigFliel 

find IC~lIed b~ IfreeApp.bigFII~ 

getSuccessor Icalled b~ Ifree.deletej 

. 0 d IC~lled b~ trree.inOrder 
In r er in ree.traverse 

insert f;;!ied b~ IfreeAPp.bigFII~ 

ostOrder Ica~lIed b~ Tree.postOrdel 
p Tree.traverse -

o d IcaU;d~b~ Tree.preOrder 
pre r er J"ree.traverse 

traverse falledb~ trreeAPp.blgFllej -

TreeApp 

~\ biaFile [Called by I'rreeAoom:::tJ;;] 

Figure 31 - continued 

- 55 -



reOrder [Called V ~~ee.preord~1 p ree.traverse 

traverse Icalled b> IrreeApp.blgFilel 

TreeApp 
1" 

big File Failed b~ tT"reeAPp.mainl 
l-

I" 
getChar Icalled b~ tT"reeAPp.blgFilel 

I" 
getlnt Failed b~ tT"reeAPP.bigFliel 

-

f 
etStrin [c,lIed b~ IrreeApp.getChar 

9 9 ~reeApp.getlnt 

putText Icalled b> IrreeApp.bigFII~ 
>--
'Y 

Figure 31 - continued 

- 56 -



5.1 Analysis 

Chapter 5 

CONCLUSION 

The test cases provided for some of the more interesting examples of all the scenarios 

analyzed. The test suite showed the variety of test files that were studied. The test 

cases varied in complexity ranging from a simple test, such as test case one, to more 

difficult test cases, as in test case four. Results clearly indicate the comprehensive 

nature of the framework that includes, not only useful UML class diagrams, but the 

essential addition of method level dependencies. 

By viewing these results it is clear the new framework, consisting of detailed method 

level dependencies in conjunction with higher level class diagrams, is a useful 

methodology for undertaking real world software maintenance. As each test case was 

evaluated, the framework was found to reliably produce lower level dependencies 

among complex Java methods. Diagrams produced within the framework provide a 

quick visual artifact of method level detail within specific applications. The reliability 

of maintenance activities should be much improved by the use of this framework in 

the workplace. 

- 57 -



Each of the test cases demonstrated the use of the new framework that provides the 

software practitioner with a view of the source code characterized by a lower level of 

granularity. By examining the results for each scenario, the developer may readily 

observe the results of using this new framework. The results demonstrate how the 

UML class diagram provided for high level, architectural information of the 

application. However, this information alone leaves much to be desired regarding 

application specific logic and detail, which is where most code changes (and errors) 

occur. Both of the method level dependency diagrams assist the developer with a 

more detailed view of dependencies in code. In particular, the Diagram By Class 

facility indicates all methods each of the instance methods call, thus providing a map 

to other services provided by other methods in other classes. To complement the 

Diagram By Class facility, the Diagram By Method presented for each method in a 

class those methods in other classes that have dependencies upon the particular 

method. In summary, UML class diagrams, supplemented with diagrams by class and 

by method, provide a comprehensive framework to assist the software maintenance 

practitioner. 

As a software engineer, it often feels as if there is simply not enough time in a day to 

get the job done. The reverse engineering framework has the potential to expedite 

many of the activities of those engaged in software development. This new method 

dependency approach provides a very practical, lower level of granularity that should 

be useful to professionals in the workplace. By coupling this new approach with 

existing software that generates UML diagrams with their higher level architectural 

- 58-



descriptions of collaborating classes, the practitioner now posses a comprehensive 

methodology that addresses both the architectural class dependencies and other class 

relationships, along with a more detailed analysis of application design and code 

central to modem day development and maintenance needs. 

Method level detail provides a higher degree of assurance in reconciling a myriad of 

maintenance duties in the workplace. While UML class diagrams are very helpful in 

displaying class relationships, the additional detailed information provided by this 

method level generator completes a comprehensive strategy, which should provide for 

significantly improved software maintenance efforts. 

5.2 Future Work 

There are several opportunities for future work, which may extend the utility of this 

framework and provide additional workplace value to software engineering 

practitioners. 

The Method Level Dependency Generator was developed using Java. This framework 

recognized various ways to declare new classes, new methods, and method calls 

throughout various files loaded into the system. However, the Java programming 

language is quite complex, therefore, some potential enhancements exist. 

- 59 -



The framework could be modified to be more robust and handle the entire range of 

Java syntax, such as recognizing every wayan object can be instantiated. Some 

known issues, not yet accounted for in the Method Level Dependency Generator, 

include the capability to recognize creating an object and instantiating it separately 

and to recognize multiple functions within a line, such as declaring an object within a 

method call. 

Similarly, the framework is not set up to account for implementing interfaces in Java. 

This is because a class can implement multiple interfaces. With the current design of 

the generator, when the application encounters a method call, it will not know for 

certain if the method is found in the current file or in one ofthe interfaces. 

The new approach could also be improved by integrating this generator in with the 

existing technology for developing a class diagrams, such as Rational Rose®, 

Eclipse®, or jGRASP®. This could be accomplished various ways, such as, when the 

user views the class diagram, a provision could be made to click on a class to view the 

method dependencies. 

- 60-



REFERENCES 

Print Publications: 

[AliOS] 
Ali, Muhammad Raza, "Why Teach Reverse Engineering," ACM SIGSOFT Software 

Engineering Notes, Volume 30, Issue 4; pp. 1-4, July 200S. 

[Buss91] 
Buss, Erich and John Henshaw, "A Software Reverse Engineering Experience," 

Proceedings of the 1991 conference of the Centre for Advanced Studies on 
Collaborative Research CASCON '91, pp. SS-72, October 1991. 

[ChenOS] 
Chen, Zhixiong and Delia Mars, "Experiences with Eclipse IDE in Programming," 

Consortium for Computing Sciences in Colleges, pp. 104-112, 200S. 

[DemeyerOO] 
Demeyer, Serge, Stephane Ducasse, and Oscar Nierstrasz, "Finding Refactorings via 

Change Metrics," ACM SIGPLAN Notices, Proceedings of the 1Sth ACM 
SIGPLAN conference on Object-Oriented Programming, Systems, Languages, 
and Applications OOPSLA '00, Volume 3S, Issue 10, pp. 166-177, October 
2000. 

[Ebner02] 
Ebner, Gerald and Hennann Kaindl, "Tracing All Around in Reengineering," IEEE 

Software, pp. 70-77, May/June 2002. 

[El-Ramly06] 
El-Ramly, Mohammad, "Experience in Teaching a Software Reengineering Course," 

Proceeding of the 28th international conference of Software Engineering ICSE 
'06, pp. 699-702, May 2006. 

[Halsted02] 
Halsted, Kari L. and James H. Roberts., "Eclipse Help System: An Open Source User 

Assistance Offering," Proceedings of the 20th annual international conference 
of Computer Documentation SIGDOC '02, pp. 49-S9, October 2002. 

[Merdes06] 
Merdes, Matthias and Dirk Dorsch, "Experiences with the Development of a Reverse 

Engineering Tool for UML Sequence Diagrams: A Case Study in Modem Java 
Development," Proceedings of the 4th International Symposium on Principles 
and Practice of Programming in Java PPPJ '06, pp. 12S-134, August 2006. 

- 61 -



[Muller93] 
Muller, Hausi A, Scott R. Tilley, and Kenny Wong, "Understanding Software Systems 

Using Reverse Engineering Technology Perspectives from the Rigi Project." 
Proceedings of the 1993 conference of the Centre for Advanced Studies on 
Collaborative Research: Software Engineering Volume 1 CAS CON '93, pp. 
217-226, October 1993. 

[MullerOO] 
Muller, Hausi, Jens Jahnke, Dennis Smith, Margaret-Anne Storey, Scott Tilley, and 

Kenny Wong, "Reverse Engineering: A Roadmap," Proceedings ofthe 
Conference on the Future of Software Engineering ICSE '00, pp. 47-60, May 
2000. 

[Muller97] 
Muller, Hausi, "Reverse Engineering Strategies for Software Migration." 

Proceedings of the 19th international conference on Software Engineering 
ICSE '97, pp. 659-660, May 1997. 

[Newcomb95] 
Newcomb, Philip, "Web-Based Business Process Reengineering," IEEE Software, pp. 

116-118, November 1995. 

[N iestrasz04] 
Nierstrasz, Oscar and Serge Demeyer, "Object-Oriented Reengineering Patterns," 

Proceedings of the 26th International Conference on Software Engineering 
(lCSE '04), pp. 1-8, 2004. 

[Nierstrasz05] 
Nierstrasz, Oscar, Stephane Ducasse, and Tudor Girba, "The StOlY of Moose: an Agile 

Reengineering Environment," ACM SIGSOFT Software Engineering Notes, 
Proceedings of the 10th European Software Engineering Conference held 
jointly with 13th ACM SIGSOFT international symposium on Foundations of 
Software Engineering ESECIFSE-13, Volume 30, Issue 5, pp. 1-10, September 
2005. 

[Rountev05] 
Rountev, Atanas and Beth Harkness Connell, "Object Naming Analysis for Reverse-

Engineered Sequence Diagrams," Proceedings of the 2ih international 
conference on Software Engineering ICSE '05, pp. 254-263, May 2005. 

[Sneed95] 
Sneed, Harry, "Planning the Reengineering of Legacy System," IEEE Software, pp. 

24-34, January 1995. 

- 62-



[Tille yO 1] 
Tilley, Scott, and Shihong Huang, "Evaluating the Reverse Engineering Capabilities 

of Web Tools for Understanding Site Content and Structure: A Case Study," 
Proceedings of the 23 rd International Conference on Software Engineering 
ICSE '01, pp. 514-523, July 2001. 

[Tomic94] 
Tomic, Marijana, "A Possible Approach to Object-Oriented Reengineering of Cobol 

Programs," ACM SIGSOFT Software Engineering Notes, Volume 19, Issue 2, 
pp. 1-6, April 1994. 

[Tonella05] 
Tonella, Paolo, "Reverse Engineering of Object Oriented Code," Proceedings of the 

2ih International Conference on Software Engineering ICSE '05, pp. 724-725, 
May 2005. 

Electronic Sources: 

[Auburn University07] 
Auburn University, "jGRASP: An Integrated Development Environment with 

Visualizations for Improving Software Comprehensibility," Auburn 
University, http://www . eng. auburn. edul departmentl cse/research! grasp/, last 
accessed 2007. 

[Bongfiglio02 ] 
Bonfiglio, Fransesco, "Reverse Engineering Legacy Code with Rational Rose," 

Rational Software, http://www-
128.ibm.comideveloperworks/rationalilibrary/content/RationalEdge/apr02/Rev 
erseEngineeringApr02.pdf, last accessed 2002. 

[Cross06] 
Cross, James II and Dean Hendrix, "Workshop jGRASP: An Integrated Development 

Environment with Visualizations for Teaching Java in CSl, CS2, and 
Beyond," IEEE, http://fie.engrng.pitt.edulfie2006/papers/l837.pdf, last 
accessed 2006. 

[Eclipse07] 
Eclipse, "Eclipse - an open development platform," Eclipse, http://www.eclipse.org/, 

last accessed 2007. 

[IBM07] 
IBM, "Rational Rose," IBM, 

http://www-306.ibm.comlsoftware/awdtools/developer/roselindex.html, last 
accessed 2007. 

- 63 -



[NetBeans07] 
NetBeans, "NetBeans IDE 5.5.1," NetBeans, http://www.netbeans.org/, last 

accessed 2007. 

[Thao06] 
Thao, Tom, Chaymous Klang, and Ben Talberg, "JGRASP: a code analyzing tool," 

http://www-users.cs.umn.edul~dliang/5802reports/06/Thao/jgrasp.pdf, last 
accessed 2006. 

- 64-



public class Constants 
{ 

APPENDIX A 

Source Code: Constants.java 

public static final String currentClass = "(class) (\ \s) "; 
public static final String currentMethod = 

"(\\w+) (\\[\\])*(\\s) (\\w+) (\\s)*(\\()"; 
public static final String Objects = 

"(new) (\ \s) (\ \w+) (\ \s) * (\ \ ()"; 
public static final String StringObjects = 

" (String) (\ \s) (\ \w+) (\ \s) * (=)"; 
public static final String Methods = "(\\.)*(\\w+) (\\s)*(\\()"; 
public static final String arrow2 = "C:/Documents and 

Settings/lehays/workspace/Thesis/images/arrow2.jpg"; 
public static final String arrow3 = "C:/Documents and 

Settings/lehays/workspace/Thesis/images/arrow3.jpg"; 
public static final String title = "C:/Documents and 

Settings/lehays/workspace/Thesis/images/Title.jpg"; 
public static final String generator = "C:/Documents and 

Settings/lehays/workspace/Thesis/images/generator.jpg"; 
public static final String class Title = "C:/Documents and 

Settings/lehays/workspace/Thesis/images/ClassTitle.jpg"; 
public static final String methodTitle = "C:/Documents and 

Settings/lehays/workspace/Thesis/images/MethodTitle.jpg"; 

- 65 -



APPENDIXB 

Source Code: DatabaseMethods.java 
,1 

import java.sql.*; 
import java.util.*; 

public class DatabaseMethods 
( 

public Connection connection = null; 
public void getConnection() throws SQLException 
{ 

try 
( 

II Load the JDBC driver 
II MySQL MM JDBC driver 
String driverName = "org.gjt.mm.mysql.Driver"; 

Class.forName(driverName) ; 
II Create a connection to the database 
String serverName = "localhost"; 
String mydatabase = "thesis"; 

String urI = "jdbc:mysql:II" + serverName + 
"I" + 
mydatabase; II a JDBC urI 

String username = "root"; 
String password = "rigsby"; 
connection = DriverManager.getConnection(url, 

username, 
password) ; 

catch (ClassNotFoundException e) 
( 

System.out.println("could not find the database 
driver") ; 

catch (SQLException e) 
( 

System.out.println("could not connect to the 
database") ; 

finally 
{ 
} 

public void insertCode(String CurrentClass, String 
CurrentMethod, 

String CalledClass, String CalledMethod) throws 
SQLException 

- 66-



PreparedStatement Stat 
try 

null; 

{ 

if (connection == null) 
{ 

getConnection(); 

String sSQLString = 
" INSERT INTO code (CurrentClass, 
CurrentMethod, CalledClass, CalledMethod) 
values(?,?,?,?)"; 

Stat = connection.prepareStatement(sSQLString)i 

Stat.setString(l, CurrentClass)i 
Stat.setString(2, CurrentMethod); 
Stat.setString(3, CalledClass); 
Stat.setString(4, CalledMethod); 

if (Stat.executeUpdate() == 0) 

System.out.println("did not insert"); 

catch (SQLException e) 
{ 

System.out.println("SQL Exception" + e)i 

finally 
{ 

Stat.close()i 
connection.close()i 

public void resetApplication() throws SQLException 
{ 

PreparedStatement Stat = nUlli 
try 
{ 

if (connection == null) 
{ 

getConnection()i 

String sSQLString = "delete from code"i 

Stat = connection.prepareStatement(sSQLString)i 

if (Stat.executeUpdate() == 0) 
{ 

System.out.println("did not clear out the 
database") i 

- 67-



catch (SQLException e) 
{ 

System.out.println("SQL Exception: " + e); 

finally 
{ 

Stat.close(); 
connection.close(); 

public HashMap getDiagramlnfoByClass() throws SQLException 
{ 

PreparedStatement Stat = null; 
ResultSet ResultSet = null; 
HashMap Results = new HashMap(); 
try 
{ 

if (connection == null) 
{ 

getConnection(); 

String sSQLString = 

"SELECT distinct * FROM code order by 
CurrentClass, CurrentMethod;"; 

Stat = connection.prepareStatement(sSQLString); 
ResultSet = Stat.executeQuery(); 

int counter = 1; 
while (ResultSet.next()) 

Results.put("CurrentClass" + 
counter, ResultSet.getString ("CurrentCla 

ss 
" ) ) ; 

Results.put("CurrentMethod" + 
counter,ResultSet.getString("CurrentMet 
hod")) ; 

Results.put("CalledClass" + 
counter, ResultSet.getString ("CalledClas 
s") ) ; 

Results.put("CalledMethod" + 
counter,ResultSet.getString("CalledMeth 

od 
") ) ; 

counter++; 

catch (SQLException e) 
{ 

System.out.println("SQL Exception" + e); 

- 68 -



finally 
( 

Stat.close(); 
ResultSet.close(); 
connection.close(); 

return Results; 

public HashMap getDiagramInfoByMethod() throws SQLException 
( 

PreparedStatement Stat = null; 
ResultSet ResultSet = null; 
HashMap Results = new HashMap(); 
try 
{ 

if (connection == null) 
( 

getConnection(); 

String sSQLString = 
"SELECT distinct * FROM code order by 
CalledClass, CalledMethod "; 
Stat = 

connection.prepareStatement(sSQLString); 
ResultSet = Stat.executeQuery(); 
int counter = 1; 
while (ResultSet.next()) 
( 

Results.put("CurrentClass" + 
counter,ResultSet.getString("CurrentCla 
ss") ) ; 

Results.put("CurrentMethod" + 
counter,ResultSet.getString("CurrentMet 
hod")); 

Results.put("CalledClass" + 
counter,ResultSet.getString("CalledClas 
s") ) ; 

Results.put("CalledMethod" + 
counter,ResultSet.getString("CalledMeth 
od") ) ; 

counter++; 

catch (SQLException e) 
( 

System.out.println("SQL Exception" + e); 

finally 
( 

Stat.close(); 
ResultSet.close(); 
connection.close(); 

return Results; 

- 69-



import 
import 
import 
import 

APPENDIX C 

Source Code: FileHandler.java 

, '* Java. lO. ; 

java. sql. *; 
java.util.regex.*; 
java.util.*; 

public class FileHandler 
{ 

int bracketCounter = 0; 
String CurrentClassName "". , 
String CurrentNestedClass = ""; 
String CurrentMethodName = ""; 
String ExtendedClass = ""; 
String NestedExtendedClass =""; 
HashMap ObjectList = new HashMap(); 
HashMap DeclaredMethods = new HashMap(); 
HashMap CalledMethods = new HashMap(); 

public void readFile(File file) throws IOException, 
SQLException 

{ 
try 
{ 

FilelnputStream fis = new FilelnputStream(file); 
BufferedlnputStream bis = new 

BufferedlnputStream(fis); 
DatalnputStream dis = new DatalnputStream(bis) ; 
String sText = ""; 
StringBuffer sResult = new StringBuffer(""); 

while ((sText= dis. readLine ()) ! = null) 
{ 

sText 
sText 
sText 

sText.replaceAll("A\\s+", ""); 
sText.replaceAll("\\s+$",""); 
" " + sText; 

sResult. append (sText) ; 

int indexl 0; 
int index2 0; 
int index3 0; 

StringBuffer sTemp = new StringBuffer(""); 
while (sResult.length() != 0) 

index 1 
index2 

sResult.indexOf("{"); 
sResult.indexOf(";"); 

- 70-



index3 = sResult.indexOf("}"); 

if (index3 == 0) 
{ 

sTemp.replace(O, sTemp.length(), 
sResult.substring(O,index3+l)); 

if (sResult.length() > 2) 

else 

sResult.replace(O, 
sResult.length(), 
sResult.substring(ind 
ex3+2, 
sResult.length())); 

sResult.replace(O,sResult.1 
en 

gth (), ""); 

else if ((indexl < index2) && (indexl != -1)) 

sTemp.replace(O, sTemp.length(), 
sResult.substring(O, indexl+l)); 

sResult.replace(O, sResult.length(), 
sResult. substring (indexl+2, 
sResult.length())); 

else if ((index2 < index3) && (index2 != -1)) 

else 

sTemp.replace (0, 
sTemp.length(),sResult.substring( 
0, index2+l)); 

sResult.replace(O, sResult.length(), 
sResult.substring(index2+2, 
sResult.length())); 

sTemp.replace(O, sTemp.length(), 
sResult.substring(O, index3+1)); 

if (sResult.length() > 2) 

else 

sResult.replace(O, 
sResult.length() , 
sResult. substring (index3+2, 
sResult.length())); 

sResult.replace(O,sResult.length(), 
" ") ; 

evaluateLine(sTemp); 
} 
//go through the CalledMethods and see if they are 

declared in the Classes read ... 
int Dcounter DeclaredMethods.size()/2; 
int Ccounter = CalledMethods.size()/4; 

- 71 -



String CalledClass = ""; 
String CalledMethod = ""; 
String DeclaredClass = ""; 
String DeclaredMethod = ""; 
boolean bFound = false; 

for (int i = 1; i<=Ccounter; i++) 

bFound = false; 
CalledClass = (String) 

CalledMethods.get("Class" + i); 
CalledMethod = (String) 

CalledMethods.get("Method" + i); 
String CuMethod = (String) 

CalledMethods.get("CurrentMethod" + i); 

for (int j = 1; j<=Dcounter; j++) 

DeclaredClass = (String) 
DeclaredMethods.get("Class" + j); 

DeclaredMethod = (String) 
DeclaredMethods.get("Method" + 

j) ; 

if 
(CalledClass.equalslgnoreCase(Dec 
laredClass) && 
CalledMethod.equalsIgnoreCase(Dec 
laredMethod) ) 

//save to the database- as in 
that class 
DatabaseMethods 

dataMethods = new 
DatabaseMethods(); 

if (CalledClass . length () ! = 0 && 
CuMethod.length() !=O && 
CalledClass.length() !=O && 
CalledMethod.length() !=O) 

bFound 

dataMethods.insertCode(Call 
ed 

Class.trim(), 
CuMethod.trim(), 
CalledClass.trim(), 
CalledMethod.trim()); 

true; 

if (bFound) 
break; 

if (!bFound) 
{ 

//save to the database as inherrited 
String XClass = (String) 

- 72-



fis . close () ; 
bis.close(); 
dis.close(); 

CalleciMethods.get("ExtendedClass" 
+ i); 

DatabaseMethods dataMethods new 
DatabaseMethods(); 

if (CalledClass . length () ! = 0 && 
CuMethod. length () !=o && 
XClass.length() !=O && 
CalleciMethod.length() !=O) 

dataMethods.insertCode(CalledClas 
s.trim(), CuMethod.trim(), 
XClass. trim () , 
CalleciMethod.trim()); 

catch (IOException e) 

public void evaluateLine(StringBuffer sInput) throws 
SQLException 
{ 

Pattern pattern = null; 
Matcher matcher = null; 
Constants myConstants = new Constants(); 
int inputLength = sInput.length(); 

for (int i = 0; i<inputLength; i++) 
{ 

if (sInput.charAt(i) == I {') 

{ 
bracketCounter++; 

if (sInput.charAt(i) == '}') 
{ 

bracketCounter--; 

if (bracketCounter == 1) 
{ 

CurrentNestedClass =""; 
NestedExtendedClass = ""; 

Iiset up the current class pattern 
String currentClass = myConstants.currentClass; 
pattern = Pattern.compile(currentClass); 
matcher = pattern.matcher(sInput); 
if (matcher.find()) Ilif i find a new class 

- 73 -



getCurrentClassName(sInput); 
return; 

Ilget any new class instantiation (object) 
String Objects = myConstants.Objects; 
pattern = Pattern.compile(Objects); 
matcher = pattern.matcher(sInput); 
if (matcher.find()) Ilif the line contains an object 
{ 

getClassName(sInput); 
return; 

else Illook for the other String declaration 

String StringObjects = myConstants.StringObjects; 
pattern = Pattern.compile(StringObjects); 
matcher = pattern.matcher(sInput); 
if (matcher.find()) Ilif the line contains 

an object 

getClassName(sInput); 
return; 

Ilif the bracketCounter is greater than 0- then i need to 
look for methods 

if (bracketCounter > 0) 
{ 

Iiset up the current method declaration pattern 
String currentMethod = myConstants.currentMethod; 
pattern = Pattern.compile(currentMethod); 
matcher = pattern.matcher(sInput); 
if (matcher.find()) Ilif i find a new method 
{ 

getCurrentMethodName(sInput); 
return; 

Iithis needs to be done last and if it passes the 
other test before it 

Ilget any method calls 
String Methods = myConstants.Methods; 
pattern = Pattern.compile(Methods); 
matcher = pattern.matcher(sInput); 
if (matcher.find()) 
{ 

getMethodName(sInput); 
return; 

public void getCurrentClassName(StringBuffer Line) 
{ 

-74-



StringTokenizer st = new 
StringTokenizer(Line.toString()); 

String Next = ""; 

while (st.hasMoreTokens()) 
{ 

Next = st.nextToken(); 
if (Next.equalsIgnoreCase("class")) 
{ 

if (bracketCounter < 2) 
CurrentClassName = st.nextToken(); 

else 
CurrentNestedClass = st.nextToken(); 

if (Next.equalsIgnoreCase("extends")) 
{ 

if (bracketCounter < 2) 
ExtendedClass = st.nextToken(); 

else 
NestedExtendedClass = st.nextToken(); 

public void getCurrentMethodName(StringBuffer Line) 
{ 

StringTokenizer st = new 
StringTokenizer(Line.toString()); 

String Next = ""; 

String Temp = ""; 
String Class = ""; 

Ilhandle else if 
if (Line.toString() .contains("else if")) 
{ 

return; 

while (st.hasMoreTokens()) 
{ 

Next = st.nextToken(); 
if (Next.contains(" (")) 
{ 

int index = Next.indexOf("("); 
if (index ! = 0) 

else 

Temp Next; 

CurrentMethodName = Next. substring (0, 
index) ; 

CurrentMethodName Temp; 

Iii want to store all declared methods to a hashmap 
int counter = DeclaredMethods.size() 12; 
counter++; 
if (CurrentNestedClass.length() >0) 

Class = CurrentNestedClass; 

- 75 -



else 
Class = CurrentClassName; 

DeclaredMethods.put("Class" + counter, Class); 
DeclaredMethods.put("Method" + counter, 

CurrentMethodName) ; 

public void getClassName(StringBuffer Line) 
{ 

StringTokenizer st = new 
StringTokenizer(Line.toString()); 

String Class = st.nextToken(); 
Class. trim () ; 
String Reference = st.nextToken(); 
Reference.trim(); 
int counter = ObjectList.size()/2; 
counter++; 

ObjectList.put("Class" + counter, Class); 
ObjectList.put("Reference" + counter, Reference); 

public void getMethodName(StringBuffer Line) throws 
SQLException 
{ 

String Next = ""; 
String Class = ""; 
String Reference = 
String Method = ""; 
int index = 0; 
int index2 = 0; 

"". , 

Next = Line.toString(); 
if (Next.contains(".")) 
{ 

index = Next.indexOf("."); 
index2 = Next.indexOf("("); 
int index3 Next.indexOf("="); 
int index4 
int index5 

Next.indexOf(":"); 
Next.indexOf(")"); 

II/check for reserve words 
if (index2 == -1) 
{ 

return; 

else if ((index2< index)) 
{ 

String subNext = Next. substring (0, index2); 
if 

.t 

tr 

(subNext. trim () . contains (" if") I I subNext 

rim() .contains ("catch") II 
subNext.trim() .contains("do") I IsubNext. 

- 76-



nt 

ex 

else 

im () . contains (" for") I I subNext. trim () . co 

ains ("return") II 
subNext.trim() . contains ("switch") I IsubN 

t.trim() .contains("while")) 

string inside = 
Next. substring (index2+1, 
Next.length()); 

if (inside.indexOf(".") == -1) 
{ 

else 

return; 

StringBuffer sbinside = new 
StringBuffer() ; 

sbinside.append(inside); 
getMethodName(sbinside); 
return; 

if (subNext.length() 0) 
{ 

else 

return; 

if (index2 < index && index5 < 
index) //this is for 
casting 

String inside 
Next.substring(index5 

+1 
, Next.length()); 

StringBuffer sbinside = new 
StringBuffer(); 

sbinside. append (inside) ; 
getMethodName(sbinside); 
return; 

if (index3 != -11 I index4 != -1) 
{ 

if (index3 != -1) 

else 

Reference Next. substring (index3+1, 
index) ; 

Reference = Next.substring(index4+1, 
index) ; 

- 77 -



else 
Reference = Next.substring(O, index); 

if (index2 != -1) //there is a paranthesis 
Method = Next.substring(index+1, index2); 

else //there is not a paranthesis 
Method = Next.substring(index+1); 

//get the class name 
int counter = ObjectList.size()/2; 
String Temp = ""; 
for (int i 1; i<=counter; i++) 

Temp (String) ObjectList.get("Reference" + 
i) ; 

if (Temp.equalsIgnoreCase(Reference.trim())) 
{ 

Class (String) ObjectList.get("Class" 
+ i); 

if (Class.length()==O) lithe reference was not 
found- it must be static 

if 
(Reference.trim() .equalsIgnoreCase("sup 
er") ) 

if (CurrentNestedClass.length(»O) 
{ 

Class = NestedExtendedClass; 

else 

Class ExtendedClass; 

else if 

else 

(Reference.trim() .equalsIgnoreCase("thi 
s") ) 

if (CurrentNestedClass.length(»O) 
{ 

Class = CurrentNestedClass; 

else 

Class CurrentClassName; 

Class Reference; 

//insert into database 

- 78 -



if ((CurrentNestedClass . length () ! = 0 I I 
CurrentClassName . length () ! =0) && 
CurrentMethodName.length() !=O && 
Class.length() !=O && Method.length() !=O) 

DatabaseMethods dataMethods = new 
DatabaseMethods(); 

if (CurrentNestedClass.length(»O) 
{ 

ss 

else 

.t 

dataMethods.insertCode(CurrentNestedCla 

.trim(), 
CurrentMethodName.trim(), 
Class.trim(), Method.trim()); 

dataMethods.insertCode(CurrentClassName 

rim(), CurrentMethodName.trim (), 
Class.trim(), Method.trim()); 

else if (Next. contains (" (")) //there is no dot operator 

String ExtendedClass2 = 1111; 

index = Next.indexOf("("); 
int index1 = -1; 
index1 = Next.indexOf("="); 
if (index != 0) //has a paranthesis 
{ 

if ((index< index1) && index1 != -1) 
Method = Next.substring(O, index); 

else if (index1 != -1) 

else 

Method = Next.substring(index1+1, 
index) ; 

Method = Next.substring(O, index); 
//check for reserve words 
if 

(Method.trim() .equa1sIgnoreCase(IIif") II 
Method.trim() .equalsIgnoreCase("catch") 
II 
Method. tr im () . equals IgnoreCase (" do ") I 1M 

ethod.trim() .equalsIgnoreCase("fo 
r") IIMethod.trim() .equa1sIgnoreCa 
se (" return ") I I Method. trim () . equal 
sIgnoreCase("switch") IIMethod.tri 
m () . equals IgnoreCase ("while ") ) 

return; 

if (CurrentNestedC1ass.length(»0) 
{ 

Class = CurrentNestedClass; 

- 79-



else 

} 

ExtendedClass2 NestedExtendedClass; 

Class = CurrentClassName; 
ExtendedClass2 = ExtendedClass; 

Iii want to store all called methods to a 
hashmap 

int counter = CalledMethods.size() 14; 
counter++; 

CalledMethods.put("Class" + counter, 
Class.trim()); 

CalledMethods.put("Method" + counter, 
Method.trim()); 

CalledMethods.put("CurrentMethod" + counter, 
CurrentMethodName.trim()); 

CalledMethods.put("ExtendedClass" + counter, 
ExtendedClass2.trim()); 

- 80-



import 
import 
import 
import 
import 

APPENDIXD 

Source Code: GenerateDiagrams.java 

. . * Java .lO. ; 
java.awt.*; 
java.awt.event.*; 
. '* J avax. sWlng. ; 
java.util.*; 

public class GenerateDiagrams extends JPanel 
{ 

public void generateDiagramByClass() 
{ 

DatabaseMethods databaseMethods 
try 

new DatabaseMethods(); 

{ 
//call the database to get the classes and methods 
HashMap Results = 

databaseMethods.getDiagramlnfoByClass(); 
int size = Results.size()/4; 
String CurrentClass = ""; 
String CurrentMethod = ""; 
String CalledClass = ""; 
String CalledMethod = ""; 
String PreviousClass = ""; 

String PreviousMethod = ""; 
String NextCurrentClass = ""; 
String NextCurrentMethod = ""; 

String NextCalledClass = ""; 
String NextCalledMethod = ""; 
Constants myConstants = new Constants(); 

JFrame frame2 = new JFrame("Diagram By Class"); 
JPanel pClass = new JPanel(); 
pClass.setLayout(new BoxLayout(pClass, 

BoxLayout.Y_AXIS)); 
JPanel pTitle = new JPanel(); 
JLabel lTitle = new JLabel(new 

Imagelcon(myConstants.classTitle)); 
lTitle.setBorder(BorderFactory.createLineBorder(Col 

or.black)); 
pTitle.add(lTitle); 
pTitle.setBorder(BorderFactory.createEmptyBorder(8, 

8, 8, 8)); 

//set up the frame 
frame2.setSize(800, 400); 
frame2.getContentPane() .setLayout(new 

BoxLayout (frame2.getContentPane () , 

- 81 -



BoxLayout.Y_AXIS)); 
frame2.getContentPane() .add(pTitle); 

for (int i = 1; i<=size; i++) 

CurrentClass = (String) 
Results.get("CurrentClass" + i); 

JPanel pCurrentClass = new JPanel(); 
if (!PreviousClass.equals(CurrentClass)) 
{ 

pCurrentClass.setLayout(new 
BoxLayout(pCurrentClass, 
BoxLayout.Y_AXIS)); 

pCurrentClass.setBorder(BorderFactory.c 
re 

ateLineBorder(Color.BLACK)); 
JLabel lCurrentClass = new 

JLabel(CurrentClass, 
SwingConstants.LEFT); 

Font labelFont1 = 
lCurrentClass.getFont(); 

Font labelFont2 = 
labelFont1.deriveFont(16.0f); 

lCurrentClass.setFont(labelFont2); 
pCurrentClass.add(lCurrentClass); 

PreviousMethod = ""; 

for (int j=i; j<=size; j++) 

CurrentMethod = (String) 
Results.get("CurrentMethod" 

+ 

if 

re 

Me 

- 82 -

j ) ; 

(!PreviousMethod.equals(Cur 

ntMethod) ) 

JPanel pCurrentMethod new 
JPanel () ; 

JLabel lCurrentMethod new 
JLabel(CurrentMethod) 

Font labelFont3 = 
lCurrentMethod.getFon 
t(); 

Font labelFont4 = 
labelFont3.deriveFont 
(16. Of) ; 

lCurrentMethod.setFont(labe 
IF 

ont4); 
pCurrentMethod. add (lCurrent 



- 83 -

thod) ; 
JLabe1 arrow1 = new 

JLabe1(new 
Imagelcon(myConstants 
.arrow2)); 

pCurrentMethod.add(arrowl); 
Ca11edC1ass = (String) 

Resu1ts.get("Ca11edC1 
ass" + j); 

Ca11edMethod = (String) 
Resu1ts.get("Ca11edMe 
thod" + j); 

JPane1 pCa11ed = new 
JPane1 () ; 

pCa11ed.setLayout(new 
BoxLayout(pCa11ed, 

BoxLayout.Y_AXIS)); 
pCa11ed.setBorder(BorderFac 
to 

ry.createLineBorder(C 
01 

or. BLACK) ) ; 
JLabe1 1Ca11ed = new 

JLabe1(Ca11edC1ass + 
" ." + Ca11edMethod); 

Font 1abe1Font5 = 
1Called.getFont(); 

Font 1abelFont6 = 
labelFont5.deriveFont 
(16.0f); 

1Cal1ed.setFont(labelFont6); 
pCalled.add(lCa11ed); 

for (int k = j+l; 
k<=size; k++) 

NextCurrentClass 
(String) 
Resu1ts.get("Cu 

rr 
entC1ass" + k); 

NextCurrentMethod 
(String) 
Resu1ts.get("Cu 
rrentMethod" + 
k) ; 

NextCa11edC1ass = 
(String) 
Resu1ts.get("Ca 
11edC1ass" + 
k) ; 

NextCa11edMethod 
(String) 
Resu1ts.get(tlCa 



if 

ss 

se 

&& 

od 

se 

) 
{ 

else 
{ 

lledMethod" + 
k) ; 

(NextCurrentCla 

.equalsIgnoreCa 

(CurrentClass) 

NextCurrentMeth 

.equalsIgnoreCa 

(Curren tMethod) 

JLabel lCurrent 

new 
JLabel(Ne 
xtCalledC 
lass + 
" " + 
NextCalle 
dMethod) ; 

Font labelFont7 

lCalled.g 
et 
Font () ; 

Font labelFont8 

label Font 
7.deriveF 
ont(16.0f 
) ; 

lCurrent.setFon 
t(labelFont8) ; 
pCalled.add(lCu 
rrent) ; 
pCurrentMethod. 
add (pCalled) ; 
j++ ; 

break; 

pCurrentMethod.add(pCalled); 
pCurrentClass.add(pCurrentM 
ethod) ; 
PreviousMethod = 

- 84-



else 

CurrentMethod; 
PreviousClass = 

CurrentClass; 
if 

break; 

(!NextCurrentClass.eq 
uals(CurrentClass)) 
break; 

pClass.add(pCurrentClass); 

JScrollPane scroll = new JScrollPane(pClass); 
scroll.setVerticalScrollBarPolicy(ScrollPaneConstan 
ts.VERTICAL_SCROLLBAR_ALWAYS); 
frame2.getContentPane() .add(scroll); 

//Create and set up the window. 
frame2.setDefaultCloseOperation(frame2.DISPOSE ON C 

LOSE) ; 
//Display the window. 
frame2.pack(); 
frame2.setVisible(true); 

catch (Exception e) 
( 

public void generateDiagramByMethod() 
( 

DatabaseMethods databaseMethods new DatabaseMethods(); 

try 
( 

//call the database to get the classes and methods 
HashMap Results = 

databaseMethods.getDiagramlnfoByMethod(); 
int size = Results.size()/4; 
String CurrentClass = ""; 
String CurrentMethod = ""; 
String CalledClass = ""; 
String CalledMethod = ""; 
String PreviousClass = ""; 
String PreviousMethod = ""; 
String NextCurrentClass = ""; 
String NextCurrentMethod =""; 
String NextCalledClass = ""; 

- 85 -



String NextCalledMethod = ""; 
Constants myConstants = new Constants(); 

JFrame frame2 = new JFrame("Diagram By Method"); 
JPanel pMethod = new JPanel(); 
pMethod.setLayout(new BoxLayout(pMethod, 

BoxLayout.Y_AXIS)); 
JPanel pTitle = new JPanel(); 
JLabel ITitle = new JLabel(new 

Imagelcon(myConstants.methodTitle)); 
ITitle.setBorder (BorderFactory.createLineBorder (Col 
or 

. black) ) ; 
pTitle.add(lTitle); 
pTitle.setBorder(BorderFactory.createEmptyBorder(8, 

8, 8, 8)); 

//set up the frame 
frame2.setSize(800, 400); 
frame2.getContentPane() .setLayout(new 

BoxLayout(frame2.getContentPane(), 
BoxLayout.Y_AXIS)); 

frame2.getContentPane() .add(pTitle); 

for (int i = 1; i<=size; i++) 

CalledClass = (String) 
Results.get("CalledClass" + i); 

JPanel pCalledClass = new JPanel(); 
if (!PreviousClass.equals(CalledClass)) 
( 

ea 

pCalledClass.setLayout(new 
BoxLayout(pCalledClass, 
BoxLayout.Y_AXIS)); 

pCalledClass.setBorder(BorderFactory.cr 

teLineBorder(Color.BLACK)); 
JLabel lCalledClass = new 

JLabel(CalledClass, 
SwingConstants.LEFT); 

Font labelFontl = 
lCalledClass.getFont(); 

Font labelFont2 = 
labelFontl.deriveFont(16.0f); 

lCalledClass.setFont(labelFont2); 
pCalledClass.add(lCalledClass); 

for (int j=i; j<=size; j++) 
{ 

CalledMethod = (String) 
Results.get("CalledMethod" 

+ 
j) ; 

if 

- 86 -



Ie 

- 87 -

(!PreviousMethod.equals(Cal 

dMethod) ) 

JPanel pCalledMethod new 
JPanel(); 

JLabel lCalledMethod new 
JLabel(CalledMethod); 

Font labelFont3 = 
lCalledMethod.getFont 

() 

Font labelFont4 
labelFont3.deriveFont 

(1 
6. Of) ; 

lCalledMethod. setFont (label 
Font4); 
pCalledMethod. add (lCaledMet 
hod) ; 
JLabel arrow 1 = new 

JLabel(new 
ImageIcon(myConstants 

.arrow3)); 
pCalledMethod.add(arrow1); 
CurrentClass = (String) 

Results.get("CurrentC 
lass" + j); 
CurrentMethod = (String) 

Results.get("CurrentM 
ethod" + j); 
JPanel pCurrent = new 
JPanel(); 
pCurrent.setLayout(new 

BoxLayout(pCurrent, 
BoxLayout.Y_AXIS)); 

pCurrent. setBorder (BorderFa 
ctory.createLineBorder(Co 

lor. BLACK) ) ; 
JLabel lCurrent = new 

JLabel(CurrentClass + 
"." + CurrentMethod); 

Font labelFont5 = 
lCurrent.getFont(); 

Font labelFont6 = 
labelFont5.deriveFont 

(16.0f) ; 

lCurrent.setFont(labelFont6 
) ; 
pCurrent.add(lCurrent); 
for (int k = j+1; k<=size; 

k++) 

NextCurrentClass 
(String) 



- 88 -

Results.get("Cu 
rrentClass" + k); 
NextCurrentMethod = 

(String) 
Results.get("Cu 

rrentMethod" + k); 
NextCalledClass = 

(String) 
Results.get("Ca 

lledClass" + k); 
NextCalledMethod = 

(String) 
Results.get("Ca 
lledMethod" + 
k) ; 

NextCalledClass + 
NextCalledMetho 
d) ; 

If 
(NextCalledClas 
s.equalsIgnoreC 
ase(CalledClass 
) && 
NextCalledMetho 
d.equalsIgnoreC 
ase(CalledMetho 
d) ) 

JLabel lNext = 

new 
JLabel(Ne 
xtCurrent 
Class + 
"." + 
NextCurre 
ntMethod) 

Font labelFont7 

INext.get 
Font () ; 
Font labelFont8 

labelFont 
7. 

deriveFon 
t ( 

16.0£) ; 
INext.setFont(l 
abelFont8); 
pCurrent.add(lN 
ext) ; 

pCalledMethod.a 
dd(pCurrent); 
j++; 



pCalledMethod. add (pCurrent) ; 

else 
break; 

pCalledClass.add(pCalledMet 
hod) ; 
PreviousMethod = 

CalledMethod; 
if 

(!NextCalledClass.equ 
als(CalledClass)) 

break; 

pMethod.add(pCalledClass) ; 

PreviousClass = CalledClass; 

JScrollPane scroll = new JScrollPane(pMethod); 
scroll.setVerticalScrollBarPolicy(ScrollPaneConstan 
ts.VERTICAL_SCROLLBAR_ALWAYS); 
frame2.getContentPane() .add(scroll); 

//Create and set up the window. 
frame2.setDefaultCloseOperation(frame2.DISPOSE ON C 
LOSE) ; 
//Display the window. 
frame2.pack(); 
frame2.setVisible(true); 

catch (Exception e) 

- 89-



import 
import 
import 
import 
import 

APPENDIXE 

Source Code: MainFrame.java 

. . * Java .10. ; 
java.awt.*; 
java.awt.event.*; 
. . * J avax. sW1ng. ; 
javax.swing.filechooser.*; 

public class MainFrame extends JPanel implements ActionListener 
{ 

Ilframe 
private JFrame frame 

Generator") ; 
IIPanels 

new JFrame("Method Level Dependency 

private JPanel pTitle = new JPanel(); 
private JPanel pUploaded = new JPanel(); 
private JPanel pBottom = new JPanel(); 
private JPanel pBottom2 = new JPanel(); 
private JPanel pFileChooser = new JPanel(); 
private JPanel buttonPanel = new JPanel(); 
private JPanel pGenerator = new JPanel(); 

IILabels 
Constants myConstants = new Constants(); 
private JLabel lTitle = new JLabel(new 

Imagelcon(myConstants.title)); 
private JLabel lUploaded = new JLabel("Files Uploaded:", 

SwingConstants.LEFT); 
private JLabel 1generator = new JLabel(new 

Imagelcon(myConstants.generator)); 

II Buttons 
private JButton bReset = new JButton("Reset Application"); 
private JButton bOpenFile = new JButton("Open File To Read"); 
private JButton bGenerateByClass = new JButton ("Generate By 

Class Dependencies"); 
private JButton bGenerateByMethod = new JButton ("Generate By 

Method Dependencies"); 

I I Menu 
private JMenuBar m = new JMenuBar(); II Menubar 
private JMenu mFile = new JMenu("File"); 
private JMenultem miQuit = new JMenultem("Quit"); 
private JMenu mHelp = new JMenu("Help"); II Help Menu entry 
private JMenultem miAbout = new JMenultem("About"); 

Iitext areas 
private JTextArea tFileList new JTextArea(); 

- 90-



//file chooser 
private JFileChooser fc 

public MainFrame() 
{ 

new JFileChooser(Y; 

//set up the text area 
tFileList = new JTextArea(5,20); 
tFileList.setMargin(new Insets(5,5,5,5)); 
tFileList.setEditable(false) ; 
JScrollPane logScrollPane = new JScrollPane(tFileList); 

//Set menubar 
frame.setJMenuBar(m)i 

//Build Menus 
mFile.add(miQuit); 
mHelp.add(miAbout); 
m.add(mFile); 
m.add(mHelp) ; 

lTitle.setVerticalAlignment(SwingConstants.TOP); 
lTitle.setBorder (BorderFactory.createLineBorder (Color. bla 

ck 
) ) ; 

lTitle.setForeground(Color.black); 
pTitle.add(lTitle); 
pTitle.setBorder (BorderFactory.createEmptyBorder (8, 8, 8, 

8) ) ; 
lUploaded.setVerticalAlignment(SwingConstants.CENTER)i 
lUploaded.setForeground(Color.black); 
Font labelFontl = lUploaded.getFont(); 
Font labelFont2 = labelFontl.deriveFont(16.0f); 
lUploaded.setFont(labelFont2); 
pUploaded.add(lUploaded); 
pUploaded.setBorder (BorderFactory.createEmptyBorder (8, 8, 

8, 8)); 

//set up the the actions 
bOpenFile.addActionListener(this); 
bGenerateByClass.addActionListener(this); 
bGenerateByMethod.addActionListener(this); 
bReset.addActionListener(this); 
miQuit.addActionListener(new ListenMenuQuit()); 

//Add Buttons 
buttonPanel.add(bOpenFile) ; 
pBottom.add(bGenerateByClass); 
pBottom.add(bGenerateByMethod); 
pBottom2.add(bReset); 

pGenerator.add(lgenerator) ; 

//set up the frame 
frame.setSize(800, 400); 

- 91 -



frame.getContentPane() .setLayout(new 
BoxLayout(frame.getContentPane(), 

BoxLayout.Y_AXIS)); 
frame.getContentPane() .add(pTitle); 
frame.getContentPane() .add(buttonPanel); 
frame.getContentPane() . add (pFileChooser) ; 
frame.getContentPane() .add(pUploaded); 
frame.getContentPane() .add(logScrollPane); 
frame.getContentPane() . add (pBottom) ; 
frame.getContentPane() .add(pBottom2); 
frame.getContentPane() .add(pGenerator); 
II Allows the Swing App to be closed 
frame.addWindowListener(new ListenCloseWdw()); 

public class ListenMenuQuit implements ActionListener 
( 

public void actionPerformed(ActionEvent e) 
( 

System.exit(O); 

public class ListenCloseWdw extends WindowAdapter 
( 

public void windowClosing(WindowEvent e) 
( 

System.exit(O); 

public void actionPerformed(ActionEvent e) 
( 

GenerateDiagrams generate Diagrams = new 
GenerateDiagrams(); 

IIHandle button action. 
if (e.getSource() == bOpenFile) 
( 

int returnVal = fc.showOpenDialog(MainFrame.this); 
if (returnVal == JFileChooser.APPROVE OPTION) 
( 

File file = fc.getSelectedFile(); 
tFileList.append(file.getName() + "\n"); 
FileHandler fileHandler = new FileHandler(); 
try 
( 

fileHandler.readFile(file) ; 

catch (Exception e2) 
{ 
} 

else if (e.getSource() == bGenerateByClass) 

generateDiagrams.generateDiagramByClass(); 

- 92-



else if (e.getSource() == bGenerateByMethod) 

generateDiagrams.generateDiagramByMethod(); 

else if (e.getSource() == bReset) 
{ 

DatabaseMethods dataMethods new 
DatabaseMethods(); 

try 
{ 

dataMethods.resetApplication(); 

catch (Exception e3) 

private void ShowGUI() 
{ 

//Create and set up the window. 
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE); 

//Display the window. 
frame.pack(); 
frame.setVisible(true); 

public static void main(String[] args) 
{ 

MainFrame mf new MainFrame(); 
mf.ShowGUI(); 

- 93 -



VITA 

Lesley Hays has a Bachelor of Science degree from the University of North Florida in 

Computer and Information Sciences, 2003 and expects to receiver a Master of Science 

in Computer and Information Sciences from the University of North Florida, 

December 2007. Dr. Robert Roggio of the University of North Florida is serving as 

Lesley's thesis advisor. Lesley is currently employed as a Software Engineer II at 

CACI, Inc. She has been with the company for over four years. 

Lesley has on-going interests in reverse engineering software code. Lesley has 

programming experience in Java, Java Servlets, XML, XSL, JavaScript and has 

utilized Jakarta Struts. Lesley's academic work has included COBOL, C, and Visual 

Basic. 

- 94-


	Reverse Engineering Software Code in Java to Show Method Level Dependencies
	Suggested Citation

	Title Page

	Table of Contents 
	Figures
	Abstract

	Chapter 1: Introduction
	Chapter 2: Review of the Literature
	2.1 Reverse Engineering
	2.1.1 Related Areas and Sub-Topics in Reverse Engineering
	2.1.2 Reverse Engineering Defined
	2.1.3 History of Reverse Engineering
	2.1.4 Problems with Reverse Engineering
	2.1.5 Importance of Reverse Engineering
	2.1.6 Practicality of Reverse Engineering

	2.2 Reverse Engineering Tools
	2.2.1 Rational Rose
	2.2.2 jGRASP
	2.2.3 NetBeans
	2.2.4 Eclipse


	Chapter 3: Methodology

	3.1 Method Level Dependency Framework
	3.2 Reverse Engineering Framework
	3.2.1 Development Software
	3.2.2 Framework Development
	3.2.2.1 Framework Design
	3.2.2.1.1 MainFrame.java
	3.2.2.1.2 FileHandler.java
	3.2.2.1.3 DatabaseMethods.java
	3.2.2.1.4 GenerateDiagrams.java
	3.2.2.1.5 Constants.java

	3.2.2.2 Database Design

	3.2.3 Framework Functionality

	3.3 Framework Output

	Chapter 4: Results

	4.1 Test Case 1
	4.2 Test Case 2
	4.3 Test Case 3
	4.4 Test Case 4

	Chapter 5: Conclusion

	5.1 Analysis
	5.2 Future Work
	References

	APPENDIX A: Source Code: Constants.java

	APPENDIX B: Source Code: DatabaseMethods.java

	APPENDIX C: Source Code: FileHandler.java

	APPENDIX D: Source Code: GenerateDiagrams.java

	APPENDIX E: Source Code: MainFrame.java


