\ University of North Florida

UNIVERSITY of ..
UNF NORTH FLORIDA. UNF Digital Commons
UNF Graduate Theses and Dissertations Student Scholarship
2007

Reverse Engineering Software Code in Java to Show Method
Level Dependencies

Lesley B. Hays
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

6‘ Part of the Computer Sciences Commons

Suggested Citation

Hays, Lesley B., "Reverse Engineering Software Code in Java to Show Method Level Dependencies”
(2007). UNF Graduate Theses and Dissertations. 193.
https://digitalcommons.unf.edu/etd/193

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital

Commons. It has been accepted for inclusion in UNF

Graduate Theses and Dissertations by an authorized \

administrator of UNF Digital Commons. For more

information, please contact Digital Projects. UNIVERSITY of

© 2007 All Rights Reserved UNF NORTH FLORIDA.

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fetd%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/193?utm_source=digitalcommons.unf.edu%2Fetd%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

REVERSE ENGINEERING SOFTWARE CODE IN JAVA TO SHOW METHOD
LEVEL DEPENDENCIES

by

Lesley B. Hays

A thesis subimitted to the
School of Computing
in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

December 2007

The thesis “Reverse Engineering Software Code in Java to Show Method Level
Dependencies” submitted by Lesley Hays in partial fulfillment of the requirements for the
degree of Master of Science in Computer and Information Sciences has been

Approved by the thesis committee: Date

Signature delete(

_ -)2/ 7]2007
Dr. Rabert Roggio
Thesis Advisor and Committee Chairperson

Signature delete(

) 9] 200
Dr. Neal Coulter 77

Signature deletet

[9-11 q}r i 7
Dr. Behrooz Séﬁ—ADDasa

Accepted for the School of Computing:

Signature deletec

[2,(/;{/5)7

Dr. Tudith Sokfho
Direclor of the Schoal

Accepted for the College of Computing, Engineering, and Construction:

Signature deletec

5/ 2007
Dr. Neal Coulter
Dean of the College

Accepted for the University:
Signature delete

/L bEtinpii Qoo 7

Dr. David-W. ‘F'e;mcr
Dean of the Graduate School

i

ACKNOWLEDGEMENT

[wish to thank my family for their continuous support, encouragement, and
understanding during these past few years, thank you! I would like to express my
sincerest gratitude to all my friends who have offered their assistance to me. They
have been the greatest resource anyone could ask for. Thank you! I would also like to
thank the faculty and staff at UNF, including Dr. Coulter and Dr. Abbassi, for always
guiding me and for always expecting my best. Finally, [would like to thank Dr.
Roggio for his help and guidance throughout, not only my thesis work, but my many
years at UNF. 1 truly appreciate all your time and assistance and feel 1 have learned a

lot from this experience. Thank you!

il

TABLE OF CONTENTS

B O PP vii
ADSITACE. Lt e 1x
Chapter 1: Introduction...... ... e e e 1
Chapter 2: Review of the Litefature .. 4
2.1 Reverse Engineering. ..ottt ee e 4

2.1.1 Related Areas and Sub-Topics in Reverse Engineering............4

2.1.2 Reverse Engineering Defined..............ooiiiiiiiiiiiiien, 5

2.1.3 History of Reverse Engineering........ocoovvvviiiiiiiiiiiinnniin 6

2.1.4 Problems with Reverse Engineering...............oooiiiiiiiennn.. 7

2.1.5 Importance of Reverse Enginecring.c..ooovvviiiiiiiiinn. 8

2.1.6 Practicality of Reverse Engineering..................ocoeiinen, 8

2.2 Reverse Engineering Tools. 9

2.2.1 Rational ROSE..... .ot e 10

2.2.2 JGRASP. ...t L 11

2.2.3 NCtBeaNS. ... it e e e 15

224 BClIPSC. ittt .16

Chapter 3: Methodology......oooi i 18
3.1 Method Level Dependency Framework. ..o, 18

3.2 Reverse Engineering Framework. ... 19

3.2.1 Development Software...................iiiii 19

iv

3.2.2 Framework Development...................oiiiiviinin, 20

3.2.2.1 Framework Design.........ocooooiiiiiiiiiiiiiiineiens 20

3.2.2.1.1 MainFramejava...........cocoivvieniiiian., 21

3.2.2.1.2 FileHandlerjava.............ccoovviiiiiiinn. 22

3.2.2.1.3 DatabaseMethodsjava......................... 24

3.2.2.1.4 GenerateDiagrams......ooevviiriiierainannnann, 25

3.2.2.1.5 Constantsjava.............oooviiiniiiiaina, 26

3.2.2.2 Database Design......oooviiiiiiiii i 27

3.2.3 Framework Functionality.............ooviiiiii v 27

3.3 Framework OQUiPut. ... e, 31
Chapter 4: RestlS. ..o e s e e 35
A1 Test Case Lo e 36

4.2 Test Case 2. i e 38

4.3 T8t CaSE 3u i e e 41

A4 Test Case 4. o e e e 46
Chapter 5: ConclusIon. ... 57
51 ALY SIS, e et e 57

5.2 Future Work.....ooovviiie 39

R erenCes. e 61
Appendix A: Source Code: Constants.java.............oooooviiiiiiiiieiiiiine i 65
Appendix B: Source Code: DatabaseMethods.java.................ooo. 66
Appendix C: Source Code: FileHandlerjava.....................ii 70
Appendix D: Source Code: GenerateDiagrams.java..........coooviveeivieiniarinieaninn 81

..

vi

Figure L:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure &:
Figure 9;
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:

Figure 20:

FIGURES

Rational Rose UML Class Diagram.............cooiiiiiiiiie 11
JGRASP CSD Diagram.oooiiiiii e 12
JGRASP UML Class Diagram........o.oviniiniiiiiiiiiiiii e 13
JGRASP Viewer Diagram. ..o e e 14
NetBeans UML Class Diagram........oooviriiniiiinnieciieiirniieenes 16
Eclipse UML Class DIagram.........cooviiiiiiiiiiiiiiiiiciniaees 17
Method Level Dependency Framework. ..o 19
Class DIagram.........oviii i 21
MainFrame java Method List. ..o 22
FileHandler.java Method List..........ocooiiii i 24
DatabaseMethods.java Method List. ... e 25
GenerateDiagrams.java Method List..........c.ooooiiii e 25
Constants.java Constants List........o.oo s 26
Database Design......ouiein i e 27
Method Level Dependency Generator.............ooooiiiii .. 28
Method Level Dependency Generator File Selector..............o.oi... .29
Method Level Dependency Generator........c.o.voiveiviiiiiiiniiiiieieinns 30
Generate By Class Dependencies............cooocoiiiiiiiii i e 31
Generate By Method Dependencies..............o.ooi i i, 32
Test 1- Class Diagram. e 36

vii

Figure 21:
Figure 22:
Figure 23:
Figure 24.
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:

Figure 31;

Test 1- Diagram By Class..........oooiiiiiiii e, 37
Test 1- Diagram By Method.............oo e 38
Test 2- Class DIagram.o e 39
Test 2- Diagram By Class. ... e 40
Test 2- Diagram By Method..............cc i 41
Test 3- Class Diagram... ..o i i e 42
Test 3- Diagram By Class..........oooo i 43
Test 3- Diagram By Method...........oooo i 45
Test 4- Class Diagram. ..o e, 47

Test 4- Diagram By Class. ..o e, 49

Test 4- Diagram By Method...............oooo i 53

Viii

ABSTRACT

With the increased dependency on the Internet and computers, the software industry
continues to grow. However, just as new software is being developed, older software
is still in existence and must be maintained. This tends to be a difficult task, as the
developers charged with maintaining the software are not always the developers who
designed it. Reverse enginecring is the study of an application’s code and behavior, in
order to better understand the system and its design. There are many existing tools
that will assist the developer with this undertaking, such as Rational Rose®,
JGRASP®, and Eclipse®. However, all the tools generate high level abstractions of
the system in question, like the class diagram. It would be more beneficial to
developers to have illustrations with more detailed information, such as the method
level dependencies 1n the source code. In order to accomplish this fask, a new
framework has been developed that will allow the user to view both high level and
lower level code detail. As users attempt to perform code maintenance, they will run
the code through an existing tool, such as Rational Rose®, and then through the
Method Level Dependency Generator component, to show the method level
dependencies. These tools used together provide the software maintainer with more
useful information, assisting with the software development process, including code

design, implementation, and testing.

X

Chapter [

INTRODUCTION

In the world of computing applications, approximately 30-35% of the overall total life-
cycle costs are devoted to helping the programmer understand the functionality of
existing code. This is a necessary task, in order to correctly make required changes in
respoinse to new requirements, to resolve errors, or perform other changes [Tomic94].
A thorough understanding of the logic, design, and structure of existing code will help
developers, management, and analysts more accurately estimate the maintenance and
enhancement costs, analyze code complexity, undertake thorough testing, and estimate
software reliability more effectively and efficiently. However, with the “time 1s
money” mentality that dominates in most workplaces, a professional is rarely given a
sufficient amount of time to thoroughly and comprehensively complete a task in a

manner that does not introduce additional problems in the software.

Reverse engineering, ... [analyzes a) system’s code, documentation and behavior to
create system abstractions and design information” [Ali05]. Reverse Engineering 1s,
essentially, the practice of examining existing systems, at any stage, to identify
elements and dependencies. This information is then used to gain more knowledge

about the design, the structure, system code, and functionality.

There are many existing tools, such as Rational Rose®, JGRASP®, NetBeans®, and
Eclipse® (to name but a few), that provide a degree of reverse engineering. Several
tools and frameworks take Java code as input and generate the Unified Modeling
Language (UML) class diagrams. These diagrams are helpful to the users by
illustrating object dependencies; however, they tend to be high level and leave much
to be desired about “lower level” (i.e., code level) application specifics. While object
dependencies are indicated through UML associations, multiplicity, direction, and
other real-world objects can be complex. General dependencies at this architectural
level (class diagrams with dependencies) are helpful, but such renderings leave the
professional in dire need of much more detailed analysis of object dependencies
extending down to method-level dependencies, which is where actual code

maintenance will occur.

As a developer, it would be more beneficial to have a framework that drills down a
level further than providing high-level class dependencies. A comprehensive reverse
engineering framework that, when given an unknown Java program, will analyze the
existing structural characteristics and generate detailed Jow-level dependencies and
relationships among code segments would be helpful in a workplace environment.
Such a framework would be used in conjunction with a well documented tool, such as
Rational Rose®, that already generates the UML class diagram to form a more
comprehensive maintenance approach. These existing tools would be used to show
the basic architectural relationships followed by this new framework that focuses on

detailed relationships by providing two-fold forward and reverse analyses of method

level dependencies, offering a more practical tool for software maintenance, The
framework would, by class, show all methods declared in the class and what methods
they invoke. It would also, by each method, show the class and methods it is
referenced by. Equivalently, “who” invokes the services of this class and what

services of other classes does “‘this™ class invoke would be shown.

While this is clearly an arduous undertaking, a framework that provides this level of
analysts up front to a software professional before starting a software maintenance
task has multiple benefits. It should assist the user in both understanding of the design
and complexity of an existing application as well as assuring the user a more reliable

maintenance undertaking.

To set the stage for this undertaking, this research first presents a number of popular
development frameworks containing reverse cngincering tools, such as Rational
Rose®, jGRASP®, NetBeans®, Eclipse® and others, in order to comprehensively
identify both their strengths and shortcomings. The thesis will then present the details

of the new framework that provides detailed method dependencies and associations.

Chapter 2

REVIEW OF THE LITERATURE

2.1 Reverse Engineering

2.1.1 Related Areas and Sub-Topics in Reverse Engineering

Reverse engineering is a broad subject area, which includes a variety of sub-topics and
components. Many terms are used when discussing reverse engineering. Some of

these terms include [Tomic94|:

e Forward Engineering — the process of starting at the gathering of
requircments and then following through to design and finally to the
implementation of the application.

* Design Recovery — gathering additional information, like domain
knowledge, outside information, and deductive information for inclusion
with other observations, to assist the professional in better understanding
the system being studied.

s Restructuring — the movement from one form to another form at the same
level of abstraction without changing the system’s output. Essentially, it is

changing code to put it in a more structured format.

¢ Reengineering — the investigation and modification of a system to rebuild it
in a new form. It is usually accomplished by reverse engineering a system
and then forward engineering the system,

¢ Software Maintenance - includes changing source code to correct errors,

improve performance, fix problems, etc.

2.1.2 Reverse Engineering Defined

With socicty’s dependence on the Internet, many businesses need to modify their
current applications, to make them web-based and move towards an clectronic way of
doing business. This trend has crea;ted more of an interest in code maintenance and
evolution than in the past [Ali05]. Thus, there is now a need for experts in older
systems, as software maintenance and evolution is becoming more necessary.
Roughly, one third of total life-cycle costs are used for the programmer to understand
the functionality of the existing code [Tomic94]. Even though it is a timely and costly
process, understanding the code is critical and significant, in order for a programmer
to correctly make the desired changes. Software maintenance and evolution continue

to become more important as time marches on.

Reverse engineering is the act of recognizing systems elements, along with their
corresponding dependencies, to generate a variety of application abstractions and
design data from these system elements [Muller00]. To successfully do this with

software, the application’s code, documentation, and behavior must be studied to

identify the system abstractions and various design patterns, as well as to fully

understand the functionality of the system.

Software reverse engineering may be viewed as a “solution looking for a problem.”
[Buss91]. Many programmers attempt to understand “how the code gets where it’s
going” and “why the code is doing something” in their everyday tasks, While there
are many different approaches and technigues to reverse engineer software, their
common goal is to gather as much information as possible from the current system, to
assist in the maintenance task(s} at hand, This information is critical to support
current maintenance and/or future development, as well as providing data to project

management for planning the use of software engineering resources.

2.1.3 History of Reverse Engineering

The nced for recengineering legacy systems was apparent by the early 1990s.

However, with the recent pressure for businesses to go electronic, by way of the
Internet, to and convert many existing systems to web-based applications, this need
has intensified. There is now a demand for various methods, tools, and infrastructures
to assist in transforming existing applications rather quickly and relatively
inexpensively [Muller00]. Over the past decade, researchers have made tremendous

advances in this area.

The 1980s were focused on various program comprehension theories, along with
identifying the concept of reverse engineering with the evolution of software, It was
noted that a majority of the software evolution process is used up by program
comprehension. The topic continued to be researched throughout the 1990s. It was
during this time that various infrastructures and tools were developed to assist with the
main parts of reverse engineering a system [Muller00]. As long as an application is
used, it will continuously change. As it changes, it will become more and more

complex.

2.1.4 Problems with Reversc Engineering

Software reverse engineering is difficult for many reasons. One reason is there might
not be any documentation in the code to be modified. In some instances, the code may
be complex, making the original author’s purpose difficult for the new engineer to
understand. Another issue occurs when the original code does not provide the correct
solution for the problem. The code may have also been altered from additional
problems found, creating a very cluttered and disorganized environment with which to
work. The programming language may have been updated, causing new problems in
the code. The software could have come from a different environment or the hardware
platform may have been modified. These are just a few of the problems software
engineers may face while trying to maintain code [Buss91]. If software engineers do

not fully understand the code they are modifying, this can create future problems,

2.1.5 Importance of Reverse Engineering

Approximately $30 billion is spent a year on software maintenance, including legacy
systems [Tomic94]. An important and poor {rait of legacy systems is many times
business rules are intertwined within the application logic. As software lives, it is
updated due to enhancements in the functionality, correction of errors, or
improvements in quality. However, as software changes, the documentation is not
always updated, as well. Therefore, the code becomes the only dependable source of
information when trying to understand the application’s functionality, Previous
design, if available, does not always map to the current implementation. Yet, effective
maintenance requires a reasonably thorough understanding of the code and its
intended functionality. This has led to the need for reverse engineering or some
mechanism to recapture some of the original design intentions. By reverse
engineering an application’s code a user can then recognize the artifacts, detect
various relationships, and produce abstractions that can be used to re-document and

depict the initial design.

2.1.6 Practicality of Reverse Engineering

When maintaining old code, the organization will eventually need to decide if it is
most cost effective to keep maintaining the existing code or if the organization should
reengineer the system, There are many factors used when determining if system
reengineering is appropriate. A system should be reengineered if there are regular

failures, code that is out of date (about seven-to-ten years old), using application logic

_R-

or structure that is excessively complicated, or code written for hardware that is
obsolete [Buss91]. Other factors to consider for reengineering are when there is code
with exceedingly large modules, unnecessary resource usage, aspects in the code that
are hard-coded, difficulty in keeping resources to maintain the code, documentation
that is lacking and leaves much to be desired, or unfinished design specifications
[Buss91]. By reengineering a systeni, the maintainability will be improved, migration
to a new environment is ¢asier, the system tends to be more reliable, and the code is

more prepared for functional enhancements.

Another rcason to want to have a thorough understanding of code is the size of many
applications. As they increase in size and become more complex, it becomes more
important to understand their structure and behavior. Reverse engineering the code
will help bring that knowledge to the user. Often, there is little information or
rationale documented behind the implementation decisions. Reverse engineering is,

therefore, sometimes vital to understand the reason and logic behind existing code.

2.2 Reverse Engineering Tools

Most reverse engineering tools available, including Rational Rose®, NetBeans®, and
Eclipse®, will generate a UML class diagram from Java source code. jGRASP® goes
somewhat deeper by generating the class diagram, a Control Structure Diagram (CSD)

which is an algorithmic level diagram, and a Viewer which will display dynamic

visualizations of objects and primitives. Eclipse® provides for some additional

reverse engineering functionality within the environment itself.

The tools mentioned are the more popular reverse engineering tools in common use.
However, there are many others tools, including the Sun Java Studio Enterprise 7® or
JBuilder®, to name a few, that will perform various software reverse engineering
functions, as well. These tools will exccute a varicty of tasks, in addition to some of
the same operations as the other tools. However, all the tools excel in different ways
and possess different levels of capabilities, some are just more widely used then

others.

2.2.1 Rational Rose

Rational Rose® is a modeling tool, released by the Rational Software Corporation
(recently purchased by IBM), that supports, among a host of additional features, the
UML graphical notation [IBM07]. An example of a class diagram is shown in Figure
i. Rational Rose® will automatically generate a UML class diagram from object
oriented source code, such as Java and C++. This is a good tool for round trip
engineering, as it will allow you to create UML class diagrams from existing code,
modify them, and update the source code immediately inside the application.
However, there is still a good deal of human interaction required during this process.

While this approach is helpful, there is still a lot to be desired when trying to

- 10 -

understand method dependencies, necessary, for complete programmer comprehension

of the system workflow and logic essential in application maintenance.

”L|b|a|':

{
&

1

mai |

N

| BockList J Beokllade
" e zre.

SGagde:

&Boc!-:Llsﬂjé - o onert Lomzal Vier Boakdlade
SteStongi; |

OEnaki Inder:
[

-hook
Book
@title Logical e, j3a lang Stong
Yook
StaZtimygr:

Figure 1; Rational Rosc UML Class Diagram

2.2.2 JGRASP

JGRASP® is developed from pcGRASP. jGRASP® is one of the most recent
applications from the GRASP (Graphical Representations of Algorithms, Structures,
and Processes) group at Auburn University [Auburn University07]. The application
JGRASP® is a “lightweight integrated development environment, created specifically
{o provide visualizations for improving the comprehensibility of software” [Auburn
University07]. JGRASP® is written in Java and supports the Java programming
language, as well as C, C++, and Ada. jGRASP’s current functionality includes the

automatic generation of CSDs, UML class diagrams, and Viewers. JGRASP® also

11 -

contains an Object Workbench and Debugger, which help a programmer to gencrate

and debug source code.

The CSD is an “algorithmic level diagram generated for Ada, C, C++, and VHDL”
[1]. Anexample is shown in Figure 2. This diagram assists the user in understanding
the source code more thoroughly and in an easier manner. It will do this by
representing control constructs, control paths, and the general structure of each
program segment. This diagram is illustrated in the margins and indentations of the
source code. This diagram is often used in the place of flow charts and other graphical
diagrams, The main purpose of the CSD diagram is to “create an intuitive and

compact graphical notation that is easy to use” [Auburn University(07].

- ‘ add EBuck newBook

Beoklledds nzwBoook g

TULL ANt T olagt;
peesdp Tuwrrent . nesEt o=
“— coTutrent = ooourrent.nest:
— CUTEENE, ReXt o= o fode

I
- Frriny toftring
I
b—= Jtring vesult =
sw BookNode current - lisv:
— TR Tent =

— resgult += currsnt.kcooiotodtriny +
fl— “UYr<Ent = SUYEENT L REWD;

.- 1- LE3Wat,

Figure 2: jGRASP CSD Diagram

-12 -

JGRASP® will also generate the UML class diagram, as shown in Figure 3, for the
Java source code from the Java class files and jar files of a project. The diagram will
illustrate the dependencies among various classes by standard UML dependency
arrows. If the user selects a class, its members are displayed. If the user selects an
arrow, the dependencies between the two classes are illustrated. This diagram will
help the user comprehend the high-level elements and dependencies among the classes

for the specified program.

Library
{main}
»]
BookList |----~ ¥ Book
77
BookList$BookNode

Figure 3: JGRASP UML Class Diagram

JGRASP® will also generate Viewers for Java source code, as illustrated in Figure 4.
The Viewers, “for objects and primitives provide dynamic visualizations as the user
steps through a program in debug mode or invokes a method for an object on the

workbench” [TilleyO1]. Presentation views are presented for instances of classes that

- 13 -

symbolize data structures, such as a link list, binary trees, and array wrappers. When
the user opens a viewer, a structure identifier recognizes the data structure during the
debugging process and displays the correct presentation view of the object for the

USCr.

[Viewer (by name); ((java.util.ArrayList)iist)

@ v ®
) ﬂ i{jave Llil AtrayListyiist) !E_]

S e
j Type java.uliiAlrasList View [Presentation - Struc,.. 'rj éJ
m@ (o é" Whdth ‘{:‘fﬁ-»—-— —— 4.0 Scale lT.—'—:i{—:}T‘i 1.0

sizo moanuntm
|cart Hdog Ilaml

(Gava.til Arrayt ist)list) [2) @

Type java.lang.Siring View [rormatted 1:J [_ﬂ‘l

o N]

Figure 4;: jGRASP Viewer Diagram
[Auburn University07]

JGRASP®: is a very usciul tool in helping the user understand cxisting code by
generating the CSD diagrams. However, it was noted that the UML documentation
generation feature is not as complete, therefore, not as supportive as it could be to the
developer. This tool is very useful when attempting to debug and understand code.

However, there are still some mmportant features that could be added to assist the user

fully.

- 14 -

2.2.3 NetBeans

The NetBeans® Integrated Development Environment (IDE) is an open source
application for the development and maintenance of Java application code [NetBeans
07]. NetBeans® will create an UML class diagram from object-oriented source code,
such as Java and C++ (Figure 5). This tool will allow a software engineer to create
UML class diagrams from existing code. The class diagram will allow the user to see
potential object dependencies, thus, helping the user understand the code. However,
high level, graphical object dependencies only provide limited insight to the
developer. More information is vital to foster a firm grasp of what exactly is going on

throughout the application logic.

Library

Altiutes

eratons
{

op
pubiic vold main(String srgsf0.'])

P nexl
BookList oy
Arhtes BookNode
package Bmﬁ"‘;l’;";"‘ {Fiom BookList }
pubic vold add(Book newBook) &H—rst Abrbutes
pubiic String taStingl) Optrations
pATRc BookNode(Book TheBook)

book

Book

Adprbuees
privale String lile

rations
pubic Book(String newTkle)
Pubic String toStrineg()

Figure 5: NetBeans UML Class Diagram

-15-

2.2.4 Echpse

Eclipse®, another product of IBM, is an open source tool that provides an advanced
development environment for various applications [Eclipse(7]. Eclipse® will allow a
softwarc engineer various reverse engineering techniques while in the Eclipse®
workspace. The Smart Development Environment (SDE) plugin for Eclipse®
provides reverse engineering of Java code mto UML class diagrams and output in a
PDF or HTML format, entirely within the Eclipse® cnvironment. Figure 6 displays
an example UML class diagram generated in Eclipse®. In addition to these facilities,
Eclipse® also provides for various functionalities within the workspace to assist in
understanding program code. The Eclipse® Java IDE may assist the user by
providing search capabilities for finding referenced code declarations and usages. It
provides various tools for this purpose, including Open Declaration, References,
Decclarations, ete. The Open Declaration operation will open a class to the selected
method. The References tool will show all the references in the project for that
specific method. The Declarations utility will show the class in which that denoted
method is declared. These features may be very helpful, but it is necessary for the
user to be within the project; that is, looking at the source code. There is not a way to

find method dependencies up front or without being “inside” the program code.

-16 -

Library

[tm @infargs : String []) : void
T
BookList
. kBEo:kNode - : BaokNode
list +book: Boo .
+nex ; BookNade 1 BuockList(
1 +addinewBook ; Book): weid
+BookNodetheBook : Book) [+toStringl1 - String
x
Buolbis 1
hook 1
Book . BoolLid$BoolHode
ifle : String EovolLigfEool Hode “<ORM Fersaablers
sBosk(nowT it : Sting) - Bookliet$Baoktiode | Bo0! Listshiaol Hode
o String() : String Boal:
BoolList$EoolMode

Figure 6: Eclipse UML Class Diagram

- 17 -

Chapter 3

METHODOLOGY

3.1 Method Level Dependency Framework

Research for this thesis included examining various reverse engineering tools, such as
those found in Rational Rose®, Eclipse®, NetBeans®, and jGRASP®, followed by
comparing and analyzing the their outputs and methodologics. Once these tools were
evaluated, a new framework was developed that, when used m combination with an
existing tool, will generate the UML class diagram, which is more beneficial during
reverse engineering due to 1ts focus on method level detail. This new reverse
engineering framework included accepting Java programs as input and determining
the structural characteristics of the program. [t provides for both a forward and
reverse analyses of method level dependencies. The framework provides two output
diagrams: a complete listing by method of all classes and methods that reference the
method in question, as well as an additional listing of all references made by each
method in each class. While this is viewed by many as an arduous undertaking, the
availability of such a framework, when used along with existing reverse engineering
tools, should be helpful to the software maintenance worker. Figure 7 shows how the
new method level dependency component fits into existing functionality, to assist the

developer with software comprehension, thus, creating a new framework.

-18-

Class Diagram Genetatot

D W
| Senrce Code L Piagrams

Method Depelncy Generator

Figure 7: Method Level Dependency Framework

3.2 Reverse Engineering Framework

3.2.1 Deveclopment Software

Rational Rose®, JGRASP®, NetBeans®, and Eclipse® were used to generate the
various models to support reverse engineering methodologies. The method level
dependency framework was developed in Java 5.0 using the Eclipse® IDE. A
MySQL® database was used for storage and retrieval of various information artifacts
as needed. A machine containing the Java Run-Time Environment (JRE) was utilized

to run the application. This is a stand alone application and runs locally on a machine.

“ 19«

3.2.2 Framework Development

3.2.2.1 Framework Design

The Method Level Dependency Generator component was developed using the Java
programming language and was organized in a modular format. It consisted of five
classes: Mainkrame.java, FileHandler.java, DatabaseMethods.java,
GenerateDiagrams.java, and Constants.java. Each class, composed of various
methods, was designed to handle a different part of the application functionality.
Figurc B illustrates the class diagram for the Method Level Dependency Generator.
From here, the various class dependencies can be scen, along with the global variables

and methods found in each class,

-20 -

«lava Class»

«Java Hass» (& DatabaseMethods
© Constants 0 ctrt}gection‘g CDT(‘II)’IE!Ctm ®
= . ¢ getCornaction
QUTentClgss ; Stg h
¥ cumrentiiass « St o serttods () «lava Class»
@ FileHandler

 cumentMethod : String

o resatAppication ()

ggtb;r_.c@'ect o g getblaoraniniotlas 2 aretchsaians s st
ot 5 gotDiapraminfoRyMethod () o CurrentClasshame : Slring
gMetmdls : String ! clsen A Currentestediass : Sting
varrowz_ 5tring a CurrentMethodiame ; String
y?ggxﬁt. String ausen 4 ExtendedClass ; Sting
titke : Sting auses a MestedExtandedClass | String

Y generator ; String

& Objectllst ; HashMap

Y dassTitle : Btring «lava Classs 4 DeclaredMethods ; Hashiviap
¥ methodTitk : Slring. wsen @ MainFrame 4 CaledMethods © HashiMap
o frame @ Frame p readFle ()
a pTitle ; Warel & evduatelhe ()
s a pUploaded ; Parel @ getCurrentClassiame ()
e a pBottom ; JPanel 1 getlurentMethadiime ()
n pHottom? . JPangl “USED @ getClasshame ()
o pFleChooser @ JPanel ® gethethodiame ()
«lava Class» o buttonPanel ; Panel
(3 Generateliagrams r pGenerator : Jrang]
a (myConstants : Constants
[GenerateDlagramByClass () o ITitle : JLabe! e

£ CenenateDagramByMethodt ()

o Mploaded ; JLabel

«java Cass»

o lgenerator : LLahel I " W
o BResat : JButton @ ListenCloseWd
v bOpenFie; Button «Lsen e windoveClosing {)
o biererateByClass | IButtan
o bGererateByMethod : JBution
o m JMenuBar

«lava Cass»
o il ¢ IMenu ;

ListenM it
e miQuit : Menuitemn O ListenMenugu
o mHel : Menu @, actionPerfarmed {)

& miabout : Menuhen
o tFilelist : JTextirea
= fo 1 JFeChoaser

& ManFrame 7)

@ actionPerformed ()
& ShowGyl ()

esrpax'ng;

Figure 8: Class Diagram

3.2.2.1.1 MainFrame.java

MainFrame. java was designed to generate and handle the Graphical User Interface
that runs as a stand alone application for this framework. The GUI was developed
using the Swing toolkit in Java, which is part of the Java Foundation Classes. This
toolkit allowed for easy use of standard components, such as textboxes, panels,

buttons, frames, etc. This class contained the main() method . It built the GUI and

_91 -

controlled any action taken within the GUI by calling the corresponding methods to

accomplish that task. The methods found in Mainframe.java are listed in Figure 9.

MainFrame.MainFrame()

MainFrame.actionPerformed()

MainFrarme, ShowGUI()

MainFrame.main()

ListenMenuQuit.actionPcrformed()

ListenCloseWdw.windowClosing()

Figure 9: MainFrame.java Method List

3.2.2.1.2 FileHandler java

FileHandler.java managed and evaluated the data coming in through the input files.
This class contained methods that read n the Java source code and, considering the
order, examined it for the structural characteristics that would indicate a class or a
method. First the entire input was read and any leading or trailing spaces and line
feeds were removed, storing the input as a StringBuffer. Next, the input StringBuffer
was parsed by open brackets, close brackets, or semi-colons, until the entire file was
read, Each substring was evaluated to determine if it contained a class declaration, an
object instantiation, a method declaration, or a method call. This was accomplished in

Java through the use of regular expressions, also known as patterns. Regular

S22

Expressions were created to recognize the class declarations, method declarations, alt

class instantiations, and any method calls in each given file,

e Class declarations were recognized by the keyword “class” and a space.

o (lass instantiations were distinguished by the keyword “new” followed by a
space, a word (characters a-z, A-Z, 0-9), and then a left parenthesis. The
referenced name and the class name are both stored in a hash map for matching
later.

¢ Method declarations were identified by a word (characters a-z, A-Z, 0-9)
followed by a space, a word (characters a-z, A-Z, 0-9), and cnding with a left
parenthesis.

o The method calls were discovered by checking for a word (characters a-z, A-Z,
0-9) followed by a left parenthesis and checking to see if they have not already

becn labeled a class instantiation.

If part of the string matched a pattern, it was then checked for reserve words and
parsed out by the characters, to get the actual class or method name. If a method
call was found, it was stored in the database. The methods created to manipulate

the input files are listed in Figure 10.

-23-

FileHandler.readFile()

FileHandler.evaluateLine()

FileHandler.getCurrentClassName()

FileHandler.getCurrentMethodName()

FileHandler.getClassName()

FileHandler.getMethodName(}

Figure 10: FileHandler.Java Method Last

3.2.2.1.3 DatabaseMcthods.java

DatabaseMethods,java manipulated the database. This class made the connection to
the MySQL® database. It was also responsible for any calls to update or query the
database throughout the framework. As method calls were identified by the
FileHandler class, they were saved to the database. As the user selected to generate
diagrams from the MainFrame class, this information was retrieved from the database.

Figure 11 contains all the methods found in DatabaseMethods.java

-24 -

DatabaseMethods.getConnection()

DatabaseMethods.insertCode()

DatabaseMethods.resetApplication()

DatabaseMcthods.getDiagramInfoByClass()

DatabaseMethods.getDiagramInfoByMethod()

Figure 11: DatabaseMethods.java Method List

3.2.2.1.4 GenerateDiagrams.java

GenerateDiagrams.java was used to generate the output diagrams, The user has the
ability to generatce two different diagrams. The first diagram, “Generate by Class
Dependencies,” will query the database and display, by class, each method and what
method calls it makes. The second diagram, “Generate by Method Dependencies,”
will query the database and illustrate by each method, what methods it is called by.

The methods located in GenerateDiagrams.java are listed in Figure 12.

GenerateDiagrams.generateDiagramByClass()

GenerateDiagrams. generateDiagramByMethod()

Figure 12: GenerateDiagrams,java Method List

-25-

3.2.2.1.5 Constants.java

Constants. java defined all constants used throughout the framework. The Mecthod
Level Dependency Generator used constants to define the various patterns it was
searching for, in each class and image locations. The constants used in the framework

are provided in Figure 13.

Constants.currentClass

Constants.currentMethod

Constants.Objects

Constants.StringObjects

Constants. Methods

Constants.arrow?

Constants.arrow3

Constants.title

Constants.generator

Constants.classTitle

Constants.methodTitle

Figure 13: Constants java Constants List

_926 -

3.2.2.2 Database Design

The MySQL® database created to store the information was named “thesis.” The
thesis database only contained one table, “code.” This table consisted of four
columns, CurrentClass, CurrentMethod, CalledClass, and CalledMethod. While
scanning the input file, as a method call was found in a class, the current class, current
method, called class, and called method were stored in the code table, This table was
queried, in order to gencrate the diagrams. The database diagram is found i Figure

14.

thesis

code

CurrentClass
Curremtifetha
CalladClass
Callediethnd

Figure 14: Database Diagram

3.2.3 Framework Functionality

The reverse engineering framework was relatively simple to operate and assumed the

input java files would compile together. The user began by starting the application.

=27 -

They were given a graphical user interface that would allow them to manipulate the

framework. This GUI is shown in Figure 15.

e e e e s R e e S TG Lt e D e S D S s e D | T s 3
"% Method Level Dependency Generator ' o La.]ﬁ
File Help

METHOD LEVEL DEPENDENCY GENERATOR

Open File To Read

Files Uploaded:

Generate By Class Depetidencies ;| Generate By Method Dependencies

Reset Application

Figure 15: Method Level Dependency Generator

The user selected one file at a time to examine, by selecting the “Open File to Read”
button and choosing the file. A file selector would appear and the user had to browse

to find the desired file, as shown in Figure 16.

- 28 -

& el d Lovet Dapevdeny Lenepatog RSN R L

File Help

METHOD LEVEL DEPENDENCY GENERATOR

Look Im: |[" Test4 v oo
I R\cidlejava

B Shapes.java
[Square.java

e TR R s T
. e T LA R R R

Generg

File Name: ["Circle.iavam

Files of Type: |All Files A

Open Cancel
-h] Ojien gelacted file |

Figure 16: Method Level Dependency Generator File Selector

The file was uploaded and scanned for the various structural characteristics, mdicating
a class declaration, method declaration, class instantiation, or a method call. As a
method call was found, the current class, current method, the class in which the called
method was contained, and the called mcthod name were all saved to the database.
This was repeated for each file the user wished to read. The user was able to view a
list of all files read, thus far, in the file list in the GUI. In order to quit the application,

the user can select File on the menu bar and the Quit option. The Help option on the

-79 -

menu bar would be used to provide the user with help information. The Method Level

Dependency Generator interface can be seen in Figure 17.

& &gg@lm

Method Level
File Help

METHOD LEVEL DEPENDENCY GENERATOR

Open File To Read,

R
‘Dépendency Generator

Files Uploaded:
rCircIe.}‘ava il
Shapes.java _
Souare.java o
Generate By Class Dependencies Generate By Method Dependencies \P

Reset dpplication

- &

Figure 17: Method Level Dependency Generator

Once all files were evaluated, the user selected either the “Generate By Class
Dependencies” button or the “Generate by Method Dependencies” button, to generate
the desired diagrams to show the detailed dependencies for all the uploaded classes.
The information can be cleared from the database by selecting the “Reset Application”

button, in order to start clean again.

-130 -

3.3 Framework Output

There are two diagrams that were generated by the Method Level Dependency
Generator. These diagrams included a diagram by class showing the class and method

calls from it, illustrated in Figure 18, and a diagram by method showing the methods

that access it, illustrated in Figure 19.

(% Blagram By Class — R M@ﬁ]
Circle i
___IN\ [Circle.getRadius
getCirclelnfo | a5) |Shapes.getColor
Shapes.getShapeType
Shapes
I e Circle.getCirclelnfo
main | ®ls } Isquare.getSquareinfo
System.out.printin
Square
Shapes.getColor
"Calls \ [Shapes.getShapeType
getSquarelnfo :‘|> Square.getLength
Sguare.getSides -

Figure 18: Generate By Class Dependencies

=31 -

y Diastam By Method

,(J&WWEW*; M%W@W;ﬂﬁ_. T

DIAGRAM BY Mmml

)
getCircleinfo [Ca"Ed by) iShapes.main|

f

getRadius [Called by > iCircle.getCirclelnfol

Circle

I

Shapes

g
getColor |Called bl>

Circle.getCirclelnfo
Square.getSquarelnfo

getShapeType |“alled by

]

' > Circle.getCirclelnfo

Square.getSquarelnfo

Gty)
getLength Calfed by

Square

ISquare.getSquarelnfol

.
getSides |Called by) Isquare.getS quareinfol

getSquarelnfo [Called by > IShapes.main|

out.printin

System

|
il

Figure 19: Generate

By Method Dependencies

-32-

The “Diagram by Class” diagram (Figure 18) shows a representation of all classes, the
metheds that are in them, and what methods they depend on. For instance, this
example contained three different classes, Circle, Shapes, and Square. The Circle
class contained one method, getCircleInfo(), that has method dependencies. These
method dependencies included Circle.getRadius(), Shapes.getColor(), and
Shapes.getShapeType(). The Shape class contained one method, main(), that calls
other methods, Circle.getCirclelnfo(), Square.getSquarelnfo(), and
System.out.println{). Finally, the Square class had the method getSquarelnfor() that
called Shapes.getColor(), Shapes.getShapeType(), Square.getLength(), and
Square.getSides(). From this diagram, the user was ablc to see by class what other

classes and methods a change would potentialty affect.

The “Diagram by Method” diagram (Figure 19) shows a representation of all methods
and what methods depend on them. In the above example, the application being tested
contained seven methods spread over three classes. The class Circle contained the
methods getCirclelnfo() called by Shapes.main() and getRadius() called by
Circle.getCircleInfo(). The Shapes class contained two methods, getColor() and
getShapeType(). Both of these methods were called by Circle.getCircleInfo() and
Square.getSquarelnfo(). The Square class 1s made up of getLength() called by
Square.getSquareInfo(), getSides() called by Square.getSquarelnfo(), and

getSquarelnfo{) called by Shapes.main().

-33 -

Upon completion of this new reverse enginecering scheme, both method level
dependency diagrams were compared with th?: existing diagrams generated by the
other commonly-used approaches. This was accomplished by analyzing the results for
cach diagram. By examining output from the existing methods, along with output
provided by this new reverse engineering framework, it was apparent that the new
framework provided a greater level of detail. The provision of method level
dependencies in combination with the output of existing tools should provide a more

practical tool for software maintenance.

-34 -

Chapter 4

RESULTS

The new reverse engineering framework provided for the display of method level
dependencies, in addition to the diagrams of existing tools. The Method Level
Dependency Generator was designed to read in Java source code input files as a
source for the generation of the desired detailed diagrams. The test bed for this thesis
contained many different test cases obtained from various sources, including some
previous school projects. Each test case was made up of multiple class files, all
varying in different characteristics, such as size and functionality. All test files
contained, at the minimum, the essential information to retrieve the desired results,
such as method calls and the respective method signatures. The important factor for
this thesis was to present the method dependencies; thus, the test files focused on
method calls. In order to test the new methodology, cach test case was compiled and
loaded into the reengineering framework. This generated the diagrams to display the
lower level dependencies in the questionable application, The new method level
dependency approach is beneficial when used in conjunction with existing software
that shows high level dependencies. Many test cases were run and the results attest to

this finding.

- 35 -

4.1 Test Case 1

The first test case consisted of four different classes. This application created multiple
book objects and added the books to a library. Figure 20 shows the UML diagram,
generated by Rational Rose®, which displays the different classes and methods within
them, with their relationships to the other classes within the application. However,
with just this diagram, it is difficult to see the method level dependencies; essentially,
which methods really affect other methods. By using the new methodology, one was
able to view the method level dependencies. Allowing the user to see, in particular,
which potential maintenance efforts on one method may produce cffects another

method.

«Java Classs

) Book : ' «Java Class» |
@ title : String . «USES @ Library
&Book () L
@ tostring () - Sman()
«LISE»
“LISE W lzen :

«Java Class»

«Java Class» (3 BookList

@ Bookhode «usen o list : BookNods -
o book ! Book v ' " & BookList ()
o next!BookNode e add ()
¢ BookNode () @ toString ()

Figure 20: Test 1~ Class Diagram

-36 -

Figure 21, Diagram By Class showed the developer that the BookList class contained
a toString() method that called the Book.toString() method and the Library class
contained the main() method, which called both BookList.add() and

System.out.printlng).

| DLAGRAMN BY CLASS

BookList 2

toString Book.toString

Library

main | Calts) [BookListadd
System.out.println

—— —

Figure 21: Test 1- Diagram By Class

Figure 22 illustrates the Diagram By Method functionality. Here, the user was
informed the Book.toString() method was called by the BookList.toString() method,
the BookList.add(} method was called by Library.main(), and the System.out.println()

method was also called by Library.main().

-37-

_'é’l,) Caagtan By Methad ' - H e

DIAGRAM BY METHOD

Book

L

R
toString [Called by) IBookList.toString]

BookList

add [Called by 3 | ibrary. main|

System

o
out.printin [Called by > || ibrary.main|

Figure 22: Test 1- Diagram By Method

Ml

4.2 Test Case 2

The second test case was taken from an accounting application. This system consisted
of two classes that would create a bank account and then deposit funds, withdraw
funds, and add interest to the accounts. Rational Rose® generated the UML class
diagram depicting the two classes and their dependency on each other, as shown in
Figure 23. Notice that the UML diagram does include the traditional UML
dependency arrow. While this is helpful, it does not allow the user to really see any
detailed level dependencies. However, when the UML dependency model was used
with the reverse engineering framework, the user had a greater amount of information

available to them, information ranging from architectural dependencies to detailed

-38-

method-level dependencies, which could provide for a better understanding of the

code.

«Java Class»
(2 Account

o rate ! double
o acctNumber | Jong

a balance ; double «Java Class»

& deposit {)

@ withdraw ()

@ addInterest ()

& getBalance () ;
& getAccountiumber ()
@ taString ()

o name : Sting (d BankAccounts
N : «Lisaw
& Account .
O & main (]

Figure 23: Test 2- Class Diagram

The Diagram By Class, in Figure 24 shows the Account class contained the methods
deposit() and withdraw(), both of which invoked System.out.println(). The
BankAccounts class contained & main{) method, which called Account.addInterest(),

Account.deposit(), Account. withdraw(), and System.out.printin(}.

-39.

g Dmgram?By Class ~ =1

DI &R £M {BY CLASS

Account il

deposit| “3ls) lsystem.out.printin|

withdraw [System.out.printin|

BankAccounts |

Account.addinterest
Calls Account.deposit
Account.withdraw
System.out.println

e — —

main

Figure 24: Test 2- Diagram By Class

Figure 25 showed the Diagram By Method, which focused on the methods and what
methods depended upon them. For this test case, Account.addinterest(),
Account.deposit(), and Account.withdraw() were all called by BankAccounts.main().
Any modifications to the System.out.printin() could potentially have affected

Account.deposit(), Account.withdraw(), and BankAccounts.main().

_40 -

é] Praeran Hy Bathnal

DI&GRAM BY METHOD

Account

[>

S

addinterest [Called by) BankAccounts.main|

|

deposit [Called by } BankAccounts.main]
I

withdraw |Called by BankAccounts.main|

System
..\ |Account.deposit
out.printin [Called by) lAccount.withdraw

BankAccounts.main| |-

Figure 25: Test 2- Diagram By Method

4.3 Test Case 3

The third test case example was taken from a sports application. This system
contained four different classes each having various methods, which provided helpful
information about the application. The UML diagram, created by Rational Rose®,
illustrated that the Basketball, Football, and Soccer classes were all related to the
Sports class, shown in Figure 26. This was useful; however, when maintaining code,
the developer will need more information about these dependencies. The new

approach offers much more detailed information.

- 41 -

«Java Class»
) Sports

& main ()

& getSpartsinfo ()

& getMascot () '

& getTeam () :

«uses & getColors (), “usEs

ELsE» QUSER wLIsedr

«Java Class» e
(Basketball ¢«Java Class»

{ Soccer
getinfo () «Javé Class»

¢ getDivisian () © Footbal i getinfo ()
@ getinfo ()

o getPlayets ()

& oetQuarterbad: ()

@ getRunningback () .

Figure 26: Test 3- Class Diagram

Figure 27 was the Diagram By Class. This diagram showed the different classes and
what methods they call, or what methods they are dependent upon. The Basketball
class’ getinfo() method called Basketball.gétDivision(), Sports.getColors(),
Sports.getMascott(), and Sports.getTeam(). The Football class contained the method
getInfo(), which depended on Football.getPlayers(), Sports.getColors(),
Sports.getMascott(), and Sports.getTeam(); and, the method getPlayers(), which called
Football.getQuarterback() and Football.getRunningback(}. The third class, Soccer,
had one method with dependencies, getinfo(), which called Sports. getColors(),
Sports.getMascott(), and Sports.getTeam(). Finally, the Sports class had two methods
which utilize other methods. The getSportsinfo(), which used Basketball.getInfo(),
Football,getInfo(), and Soccer.getinfo(); and, the main{) method, which used

Sports.getSportsInfo() and System.out.printing).

-42 -

@magram B}w&ﬂss T T R
| DIAGRAM BY CLASS

Basketball
Basketball.getDivision

[Calis Sports.getColors
getinfo :IJ> Sports.getMascot

Sports.getTeam

Foothall
I Footbhall.getPlayers
- Sports.getColors
Calls
1 getinfo ::> Spots.getMascot
Sports.getTeam
I Football.getQuarterback
Calls
getPlayers :> Football.getRunningback
Soccer
N {Spors.getColors
getinfo | Calls) Isports.getMascot
' Sports.getTeam
Sports

I N Basketball.getinfo
getSportsinfo Football.getinfo
l Soccer.getinfo
l mai "y Sports.getSportsinfo
n System.out.printin

e — e e
e —— — —— ——

Figure 27;: Test 3- Diagram By Class

Finally, Figure 28 shows the Diagram By Method, which presents all methods called
by another method. By using this diagram, the user would know that any changes to

Basketball.getDivision() could affect Basketball.getInfo() and any modifications to

-43 .

Basketball.getInfo() could affect Sports.getSportsinfo(). The Football class contained
three different method dependencies. The getPlayers() method was called by
Football.getInfo(), the getQuarterback() method and getRunningback() method were
both called by Football.getPlayers(). The Soccer.getInfo() method was called by only
one other method, Sports.getSportsInfo(). The Sports class contained a few
dependencies, including getColors(), getMascot(), and getTeam() methods, which
were all called by Basketball getlnfo(), Football.getlnfo(), and Soccer.getnfo(). The
getSportsinfo() method was called by Sports.main(). Any changes to

System,cut.println() would only affect Sports.main().

- 44 -

@ Priaveam Iy e e d L f;j [;::1]

DIAGRAM BY METHOD

Baskethall

| ']

o
getDivision |Called by) [Basketball.getinfol

getinfo [Called by) [Sports.getSportsinfol

Football

.
getPlayers [Called by) Foothall.getinfo

I.
getGuarterback [Called by) Football.getPlayers

getRunningback [Called by 5 [Football.getPlayers|

Soccer
b
getinfo {Calld by > [Sports.getSportsinfol
Sports

_ I\ |Basketball.getinfo
getColors [Called by) IFootball.getinfo
Soccer.getinfo

Basketball.getinfo

getMascot ib_a”ed h\&> Football.getinfo

Soccer.gefinfo

S|
getSportsinfo |Called by

. Basketball getinfo
getTeam [Called by) IFgotball.getinfo
Soccer.getinfo

System

out.printin |Ca“B'f* by

Figure 28: Test 3- Diagram By Method

- 45 -

4.4 Test Case 4

The final test case was a Tree application, which would allow the user to build a tree
and then find nodes, insert nodes, delete nodes, get a node successor, traverse the node
by pre-order, post-order, and in-order, and then display the tree. This program was
made up of four different classes, each with a variety of methods to perform the
desired functionality. All of these are illustrated in Figure 29, along with the class
level dependencies, in the UML class diagram produced by Rational Rose®. When
performing software maintenance, as usual, this would be beneficial, but not to the
level a developer really needed. However, when the UML class diagram was used in
conjunction with the method level dependency methodology, more information was

available, which should make software maintenance more efficient,

- 46 -

«Java Class»
) MyTree

& inc yint

a already : int
@ depth ()

© sumit ()

& total{)

kth ()

o next()

L se

«Java Class»
{3 TreeApp

¢ main ()

& higFile ()

& putText ()
&’ getString ()
&° getChar ()
Sgetnt ().

“Llses

CLISE»

“lsen

CLIsED:

«Java Class»
O Node

o iData :int

o leftChid : Node

o rightChild : Node
¢ displayNode ()

«used

«Java Class»
® Tree

o root ¢ Node
& Trea ()

e find ()

& insert ()
o delete () ,
getSuccessor ()
@ traverse () ‘
g preCrder ()
nCrder ()

@ postOrder ()
i@ displayTree ()

- 47 -

Figure 29: Test 4- Class Diagram

Figures 30 shows the Diagram By Class, 1llustrating all the classes and their method
dependencies. The MyTree class contained the kth() method that called
MyTree.next() and System.out.printin() and the next() method that called
MyTree.next() and Node.displayNode(). The displayNode() method found in the
Node class had one dependency, System.out.printin(). The Tree class had multiple
method level dependencies. The delete() method called Tree.getSuccessor(). The
displayTree() method requested the Stack.isEmpty(), Stack.pop(), Stack.push(),
System.out.print(), and System.out.println(). The inOrder() method made a call to
both Node.displayNody() and itself, Tree.inOrder(). The same was true for the

postOrder() method and preorder() method. The method postOrder() called

Node.displayNode() and itself, Tree.postOrder(). The method preorder() also called
Node.displayNode(} and itself, Tree.preOrder(). The final method dependency in the
Tree class was traverse() which, called System.out.println(), Tree.inOrder(),

Tree.postOrder(), and Tree.preOrder().

The TrecApp class contained quite a few method calls. The TreeApp.bigFile()
method directed the applications functionality. This method called
BufferedReader.close(), BufferedReader.readLine(), Integer parselnt(),
MyTree.depth(), MyTree kth(), MyTree.sumit(), MyTree.total(), Node.displayNode(),
StringTokenizer hasMoreTokens(), StringTokenizer.nextToken(),
System.out.printIn(}, Tree.delete(), Tree.displayTree(), Tree.find(), Tree.insert(),
Tree.traverse(), TreeApp.getChar(), TreeApp.getint(), and TreeApp.putText(). The
getChar() method in TrecApp called the String.charAt() method and
TreeApp.getString(). Similar to that, the TreeApp.getInt() method called
Integer.parselnt() and TreeApp.getString(). The method getString() found in TreeApp
only made one call to BufferedReader.readline(). The main() method called both
System.out.printin() and TreeApp.bigFile(). The last method was putText(), which

called System.out.flush() and System.out.printin().

_48 -

g Diapram By Class

DI&GRAM BY CL&SS

“th :éa'ﬁs')
]
next Calls

MyTree

MyTree.next
[System.out.printin

MyTree.next
Nade.displayMNode

MNode
displayNode | Calls [System.out.pring
| Tree
delete | Céls) [Tree.getSuccessor|

inOrder Lﬁ”_s_

postOrder | Calls
preOrder

traverse' Calls &

1 Stack.pop
il displayTree | C3ls) iStack push
System.out.print

Stack.IsEmpty

System.out.printin

Node.displayMNode
Tree.inOrder

Node. displayNode
Tree. postOrder

Mode.displayNode
Tree.preDrder

System.out printin
Tree.inOrder
Tree.postOrder

Tree.preQrder

il

TreeApp

Figure 30: Test 4- Diagram By Class

-49 -

traverse

o Calls ree.nOrder
Tree.postOrder

Tree.preQrder

bigFile

“am;>

getChar

TreeApp

Calls String.charAt
_ / TreeApp.getString
— N\ Integer.parselnt '
Calls

getint ::> TreeApp.getString]
getString BufferedReader.readLine|
ain System.out.printin

mal TreeApp.bigFile
System.out.flush
putText System.out.print

BufferecdReader.close
BufferedReader.reaclLine
Infteger.parseint
MyTree.depth

My Tree. kth

My Tree.sumit

MyTree.total
Node.displayNode
StringTokenizer.hasMoreTokens
StringTokehizer.nextToken
System.out.printin
Tree.delete
Tree.displayTres

Tree.find

Tree.insert

Tree.traverse
TreeApp.getChar
TreeApp.getint
TreeApp.putText

Figure 30 - continued

-50-

L

The Diagram By Method functionality 1s displayed in Figure 31. This diagram shows,

by method, where those methods were utilized throughout the application.

The BufferedReader class contained the methods closc(), which was called by
TreeApp.bigFile() and the method readLine(), which was also called by
TreeApp.bigFile() and TreeApp.getString(). The parselnt() method in the Intcger

class was called by both methods bigFile() and getInt() in the TreeApp class.

The MyTree class included the methods depth(), kth(), sumit(), and total(), which were
all called by TreeApp.bigFile(). TreeApp.next() was called by MyTree kth() and

MyTree.next().

The Node class only had one method dependency, found in the displayNode() method,
which was called by MyTree.next(), Tree.inOrder(), Tree.postOrder(),
Tree.preOrder(), and TreeApp.bigFile(). The methods isEmpty(), pop(), and push(),

all from the Stack class, were called by Tree.displayTree().

The String class contained the charAt() method, which was used by

TreeApp.getChar().

The StringTokenizer class contained both the hasMoreTokens() and nextToken(), both

called by TreeApp.bigFile().

-51-

The System class contained multiple method dependencies. The out.flush() method
was ufilized by TreeApp.putText(), the out.print() method from Node.displayNode(),
Tree.display. Tree(), and TreeApp.putText(), and the method ocut.println() from
MyTree kth(), Tree.displayTree(), Tree.traverse(), TreeApp.bigFile(), and

TreeApp.main().

The Tree class contained a few methods that were all called by TreeApp.bigFile(),
including Tree.delete(), Tree.displayTree(), Tree.find(), Tree.insert(), and
Tree.traverse(). The method getSuccessor() was called by Tree.delete(). Finally, the
methods inOrder(), postOrder(), and preorder() were all called by themselves and

Tree.traverse().

The last class in this example was the TreeApp class. This class contained the method
bigFile(), which was called by TreeApp.main(). The methods getChar(), getlnt(), and
putText() were all utilized by TreeApp.bigFile() and the method getString() by

TreeApp.getChar() and Tree App.getInt().

- 52 -

@ Bryae: e By Hlathnd E':'_‘,‘ j‘@,l E\,‘

DLAGRAN BY METHOD

BufferedReader =

B
close |Called by) TreeApp.bigFile|

™) N
Calied by [T FeeApp.bigFile
TreeApp.getString

1

readline

integer

Called hy\ TreeApp.higFile
TreeApp.getint

parselnt

MyTree

I
depth [Called by % TreeApp.bigFile]

kth [Called by % TreeApp.bigFile]

‘MyTree kth |
Called b
next _—i> My Tree.nexy

sumit Ca"ed by > TreeApp.bigFile]
—

]
total |Called by 5 [TreeApp.bigFile]

Node
MyTree.next
I\ [Tree.inOrder
displayNode [Called by 5 Tree postOrder
ree.preOrder
reeApp.bigFile

Figure 31: Test 4- Diagram By Method

-53.

3 it | =2 el |

Stack

T
isEmpty {?a”'ﬂd by % Tree.displayTree|

- = ..Jl
pop [Called by) ree.displayTree]

PR

push (Called by) [Tree displayTree|

String

1

charAt [Called by » [TreeApp.getChar]
B

StringTokenizer

_F
hasMoreTokens Ca”EdE\5> [TreeApp.bigFile

) [
nextToken |Called by) TreeApp.bigFile|

System
I
outflush [Called by 5 TreeApp.putText]

N |Node.displayNode
out.print [Called by) Tree.displayTree
TreeApp.putText

MyTree.kth

N [Tree.displayTree
out.println |Called by > Tree traverse
reeApp.bigFile

reeApp.main

Ii

Tree

I
delete [Called by 5 TreeApp.bigFile]

Figure 31 - continued

_54 -

[TreeApp.main |

Tree

|
delete [Called by) reeApp.bigFile

displayTree [Ca”ed by) TreeApp.bigFile|

S|

]
getSuccessor 'Cal

inOrder

R

Called by

4

b
insert {Called by % FreeApp.bigFile|

postOrder

preQOrder

fing |Called '3]3> TreeApp.bigFile]

lod b}>

Tree.inOrder
Tree.traverse

Called by

Called by

A

Tree.postOrde
Tree.traverse

Tree.preQrden
Tree.traverse

S
traverse [Called bY) TreeApp.bigFile|

TreeApp

. .
bnit::FileiCE“”e':j hB’\JTreg&p_n.ma[n]_

Figure 31 - continued

Called by [Tee-preqrder
preQrder -——l) Tree.traverse

traverse [Called by 3 Tree App.bigFile]

TreeApp
)

bigFile [Called by 3 TreeApp.main|

b
getChar [Called by > TreeApp.bigFile|

[.
getint |Called by) TreeApp.bigFile|

tStri Called by TreeApp.getChar
getsiring LI'rex=,-.*5t|:>p:v.getfnt

I
putText [Caled by) TreeApp.bigFile]

Figure 31 - continued

- 56 -

Chapter 5

CONCLUSION

5.1 Analysis

The test cases provided for some of the more interesting examples of all the scenarios
analyzed. The test suite showed the variety of test files that were studied. The test
cases varied in complexity ranging from a simple test, such as test case one, to more
difficult test cases, as in test case four. Results clearly indicate the comprehensive
nature of the framework that includes, not only useful UML class diagrams, but the

essential addition of method level dependencies.

By viewing these results it is clear the new framework, consisting of detailed method
level dependencies in conjunction with higher level class diagrams, is a useful
methodology for undertaking real world software maintenance. As each test case was
evaluated, the framework was found to rcliably produce lower level dependencies
among complex Java methods. Diagrams produced within the framework provide a
quick visual artifact of method level detail within specific applications. The reliability
of maintenance activities should be much improved by the use of this framework in

the workplace.

- 57 -

Each of the test cases demonstrated the use of the new framework that provides the
software practitioner with a view of the source code characterized by a lower level of
granularity. By examining the results for each scenario, the developer may readily
observe the results of using this new framework. The results demonstrate how the
UML class diagram provided for high level, architectural information of the
application. However, this information alone leaves much to be desired regarding
application specific logic and detail, which is where most code changes (and errors)
occur. Both of the method level dependency diagrams assist the developer with a
more detailed view of dependencies in code. In particular, the Diagram By Class
facility indicates all methods each of the instance methods call, thus providing a map
to other services provided by other methods in other classes. To complement the
Diagram By Class facility, the Diagram By Method presented for each method in a
class those methods in other classes that have dependencies upon the particular
method. In summary, UML class diagrams, supplemented with diagrams by class and
by method, provide a comprehensive framework to assist the softwarc maintenance

practitioner.

As a software engineer, it often feels as if there is stmply not enough time in a day to
get the job done. The reverse engineering framewaork has the potential to expedite
many of the activities of those engaged in software development. This new method
dependency approach provides a very practical, lower level of granularity that should
be useful to professionals in the workplace. By coupling this new approach with

existing software that generates UML diagrams with their higher level architectural

- 58 -

descriptions of collaborating classes, the practitioner now posses a comprehensive
methodology that addresses both the architectural class dependencies and other class
relationships, along with a more detailed analysis of application design and code

central to modern day development and maintenance needs.

Method level detail provides a higher degree of assurance in reconciling a myriad of
maintenance duties in the workplace. While UML class diagrams are very helpful in
displaying class relationships, the additional detailed information provided by this
method level generator completes a comprehensive sirategy, which should provide for

significantly improved software maintenance efforts.

5.2 Future Work

There are several opportunitics for future work, which may extend the utility of this
framework and provide additional workplace value to software engineering

practitioners.

The Method Level Dependency Generator was developed using Java. This framework
recognized various ways to declare new classes, new methods, and method calls
throughout various files loaded into the system. However, the Java programming

fanguage is quite complex, therefore, some potential enhancements exist.

-59.

The framework could be modified to be more robust and handle the entire range of
Java syntax, such as recognizing every way an object can be instantiated. Some
known issues, not yet accounted for in the Method Level Dependency Generator,
include the capability to recognize creating an object and mstantiating it separately
and to recognize multiple functions within a line, such as declaring an object within a

method call.

Similarly, the framework is not set up to account for implementing interfaces in Java.
This 1s because a class can implement multiple interfaces. With the curtent design of
the generator, when the application encounters a method call, it will not know for

certain if the method is found in the current file or in one of the interfaces,

The new approach could also be improved by integrating this generator in with the
existing technology for developing a class diagrams, such as Rational Rosc®,
Eclipse®, or JGRASP®. This could be accomplished various ways, such as, when the
user views the class diagram, a provision could be made to click on a class to view the

method dependencies,

- 60 -

REFERENCES

Print Publications:

[ALiI05]
Ali, Muhammad Raza, “Why Teach Reverse Engineering,” ACM SIGSOFT Software
Engineering Notes, Volume 30, Issue 4; pp. 1-4, July 2005,

[Buss91]
Buss, Frich and John Henshaw, “A Software Reverse Engineering Experience,”

Proceedings of the 1991 conference of the Centre for Advanced Studies on
Collaborative Research CASCON 91, pp. 55-72, October 1991,

[Chen05]
Chen, Zhixiong and Delia Mars, “Experiences with Eclipse IDE in Programming,”
Consortium for Computing Seciences in Colleges, pp. 104-112, 2005.

[Demeyer(0}]

Demeyer, Serge, Stephane Ducasse, and Oscar Nierstrasz, “Finding Refactorings via
Change Metrics,” ACM SIGPLAN Notices, Proceedings of the 15" ACM
SIGPLAN conference on Object-Oriented Programming. Systems, Languages,
and Applications OOPSLA 00, Volume 35, Issue 10, pp. 166-177, October
2000.

[Ebner02]
Ebner, Gerald and Hermann Kaindl, “Tracing All Around in Reengineering,” IEEE
Software, pp. 70-77, May/June 2002.

[El-Ramly06]

El-Ramly, Mohammad, “Expericnce in Teaching a Software Reengineering Course,”
Proceeding of the 28" international conference of Software Engineering ICSE
106, pp. 699-702, May 2006,

[Halsted02]

Halsted, Kari L. and James H. Roberts., “Eclipse Help System: An Open Source User
Assistance Offering,” Proceedings of the 20™ annua) international conference
of Computer Documentation SIGDOC 02, pp. 49-59, October 2002.

[Merdes06}

Merdes, Matthias and Dirk Dorsch, “Experiences with the Development of a Reverse
Engineering Tool for UML Sequence Diagrams: A Case Study in Modem Java
Development,” Proceedings of the 4™ International Symposium on Principles

and Practice of Programming in Java PPPJ '06, pp. 125-134, August 2006.

- 61 -

[Muller93]

Muller, Haust A, Scott R. Tilley, and Kenny Wong, “Understanding Software Systems
Using Reverse Enginecring Technology Perspectives from the Rigi Project.”
Proceedings of the 1993 conference of the Centre for Advanced Studics on
Collaborative Research: Software Engineering Volume 1 CASCON 93, pp.
217-226, October 1993,

[Muller0Q]

Muller, Hausi, Jens fahnke, Denmis Smith, Margaret-Annc Storey, Scott Tilley, and
Kenny Wong, “Reverse Enginecring: A Roadmap,” Proceedings of the
Conference on the Future of Software Engineering ICSE 00, pp. 47-60, May
2000.

[Muller97]

Muller, Hausi, “Reverse Engineering Strategies for Software Migration.”
Proceedings of the 19" international conference on Software Engineering
1ICSE 97, pp. 659-660, May 1997,

[Newcomb95]
Newcomb, Philip, “Web-Based Business Process Recngineering,” IEEE Software, pp.

116-118, November 1995.

[Nicstrasz(4]
Nierstrasz, Oscar and Serge Demeyer, “Object-Oriented Reengineering Patlerns,”

Proceedings of the 26" International Conference on Software Engineering
{ICSE ‘04), pp. 1-8, 2004,

[Nierstrasz05]

Nierstrasz, Oscar, Stephane Ducasse, and Tudor Girba, “The Story of Moose: an Agile
Reengineering Environment,” ACM SIGSOFT Software Engineering Notes,
Proceedings of the 10™ European Software Engineering Conference held
jointly with 13" ACM SIGSOFT international symposium on Foundations of
Software Engineering ESEC/FSE-13, Volume 30, Issue 5, pp. 1-10, September
2005.

[Rountev05]
Rountev, Atanas and Beth Harkness Connell, “Object Naming Analysis for Reverse-

Engineered Sequence Diagrams,” Proceedings of the 27" international
conference on Software Engineering [CSE *05, pp. 254-263, May 2005.

[Sneed95]
Sneed, Harry, “Planning the Reengineering of Legacy System,” IEEE Software, pp.
24-34, January 1995.

- 62 -

[Tilley01]
Tilley, Scott, and Shihong Huang, “Evaluating the Reverse Engineering Capabilities
of Web Tools for Understanding Site Content and Structure: A Case Study,”

Proceedings of the 23" International Conference on Software Engineering
ICSE *01, pp. 514-523, July 2001.

[Tomic94]
Tomic, Marijana, “A Possible Approach to Object-Oriented Reengineering of Cobol

Programs,” ACM SIGSQFT Software Enginecring Notes, Volume 19, Issue 2,
pp. 1-6, April 1994,

[Tonella05]
Tonella, Paolo, “Reverse Engineering of Object Oriented Code,” Proceedings of the

27" International Conference on Software Engineering ICSE 05, pp. 724-725,
May 2005,

Electronic Sources:

[Auburn University07]

Auburn University, “jGRASP: An Integrated Development Environment with
Visualizations for Improving Software Comprehensibility,” Auburn
University, http://www.eng.auburn.edu/department/cse/research/grasp/, last
accessed 2007.

[Bongfiglio02]

Bonfiglio, Fransesco, “Reverse Enginecring Legacy Code with Rational Rose,”
Rational Software, hitp.//www-
128.ibm.com/developerworks/rational/library/content/Rational Edge/apr02/Rev

erscEngineering Apr02.pdf, last accessed 2002.

[Cross(6]

Cross, James 1I and Dean Hendrix, “Workshop JGRASP: An Integrated Development
Environment with Visualizations for Teaching Java in CS1, C82, and
Beyond,” 1EEE, http://fie.engrmg.pitt.cdu/fie2006/papers/ [837.pdf, last
accessed 2000.

[Eclipse07]
Eclipse, “Eclipse - an open development platform,” Eclipse, http:/www.eclipse.org/,
last accessed 2007.

[IBMO7]
IBM, “Raticnal Rose,” IBM,
http://www-306.1bm.com/software/awdtools/developer/rose/index.html, last

accessed 2007.

- 63 -

[NetBeans07]
NetBeans, “NetBeans IDE 5.5.1,” NetBeans, http:/www.netbeans.org/, last

accessed 2007.

[Thao06]
Thao, Tom, Chaymous Klang, and Ben Talberg, “JGRASP: a code analyzing tool,”

http://www-users.cs.umn.edu/~dliang/5802reports/06/Thao/jgrasp.pdf, last
accessed 2006.

-64 -

APPENDIX A

Source Code: Constants,java

public class Constants

{

public static final String currentClass = " (class) (\Ms)";
public static final String currentMethod =
OWNwWE) OWWIANT) = (N e) Wwd) (NAs)YF (N (3
public static final 3tring Objects =
"(new) (\e) (Vwt) (WNs)* (AN (7
public static final String StringCbjects =
"(String) (\\s) (\\wt) (M\s) * (=) ";
public static final String Methods = "{\\.)* (\\w+) (\Nsh* (AN O
public static final String arrow? = "C:/Documents and
Settings/lehays/workspace/Thesis/images/arrow? . ipg”;
pukliic static final String arrow3 = "C:/Documents and
Settings/lchays/workspace/Thesis/images/arrow3.ipg”;
public static final String title = "C:/Documents and
Settings/lehays/workspace/Thesis/images/Title. jpg";
public static final String generator = "C:/Documents and
Settings/lehays/workspace/Thesis/images/generator.jpa";
public static final String classTitle = "C;/Documents and
Settings/lehays/workspace/Thesis/images/ClassTitle. jpg";
public static final String methodTitle = "C:/Documents and
Settings/lehays/workspace/Thesis/images/MethodTitle.jpg";

-65-

APPENDIX B

Source Code: DatabaseMethods.java

import java.sql.*;
import java.util.*;

public class DatabaseMethods
{
public Connection connection = null;
public void getConnection() throws SQLException
{
try
{
// Load the JDBC driver
// MySQL MM JDBC driver
String driverName = "org.gjt.mm.mysqgl.Driver™;
Class, forName (driverName) ;
// Create a connection to the database

String serverName = "localhost";

String mydatabase = "thesis";
String url = "jdbcimysgl://™ + serverName +
1|/n +
mydatabase; // a JDRC url

String username = “rooct";

String password = "rigsby";

connection = DriverManager.getConnection (url,
usernames,

password) ;
catch (ClassNotFoundException e}

System.out.printin("could not find the datakase
driver");

catch (SQLException e)

System.out.println("could not connect to the
database");

finally
{
}

)

public vold insertCode {(String CurrentClass, String
CurrentMethod,
String CalledClass, String CaliledMethod) throws
SQLException

- 66 -

PreparedStatement Stat = null;

try
{

]

catch

{

}

if {connection == null)

{

getConnection(};

t

String sSQLString =
" INSERT INTC code (CurrentClass,
CurrentMethod, CalledClass, CalledMethod)
values(?,7,7,2}";

Stat = connection.prepareStatemsnt (830LString);

Stat.setString(l, CurrentCiass);
Stat.setString{2, CurrentMethod);
Stat.setString (3, CalledClass};

Stat.setString (4, CalledMethod);

if (Stat.sexecutelpdate() == 0)
{
System.out.printin{"did not insert");
}
(SQLException e}

System,out.println ("3QL Exception® + a);

finally

f

!

public wvoild

{

Stat.closo ()
connection.close () ;

resetipplication() throws SQLException

PreparedStatement Stat = null;

try
{

if {(connegction == null}

{

getConnection();
}
String sSQLString = "delete from code™;
Stat = connection.prepareStatement (sS5QLString);
if (Stat.executelUpdate(} == 0)
{

System.out.println("did not clear out the
database");

-67-

iatch (SQTL.Exception e}
{ System.out.println("30L Exception: " + e);
éinally
{ Stat.close();
connection. close();

}

public HashMap getDiagramInfoByClass () throws SQLException
{

PreparedStatement Stat = null;
ResultSet ResultSet = null;
HashMap Results = new HashMap();
try
{

1f {connection == nuil}

{

getConnection () ;

1

String sS5QLString =
"SELECT distinct * FROM code order by
CurrentClass, CurrentMethod;";

Stat = connection.prepareStatement (sS0LString);
ResultSet = Stat.executeDuery();

int counter = 1;
while (ResultSet.next())
{

Results.put ("CurrentClass" +
counter,ResultSet.getString("CurrentCla
55
"))
Eesults.put ("CurrentMethod" +
counter, ResultSet.,getString ("CurrentMet
hod")) ;
Results.put ("CalledClass™" +
counter, ResultSet.getString("CalledClas
S"));
Results.put ("CalledMethod" +
counter,ResultSet.getString ("CalledMeth
od
"))
counter++;
)
}
catch (3QLException e)
{
System.cut.println("SQL Exception" + e);

i

- 68 -

}

finally
{

Stat.close();
ResultSet.clase({);
connection.claose () ;

}

return Results;

public HashMap getbDiagramInfcByMethod() throws SQLException

{

PreparedStatement Stat = null;
ResultSet ResultSet = null;
HashMap Results = new HashMap():

try
{

if (connection == null)

{

)

getConnection();

String sSQLString =

"SELECT distinct * FROM code order by
CalledClass, CalledMethod ":
sStat =

connection.prepareStatement (sSQLString) ;
ResultSet = Stat.executeQuery(};
int counter = 1;

while

{

}
}

(Result3et.next {))

Results.put ("CurrentClass" +
counter, ResultSet.getString ("CurrentCla
s8M));

Results.put ("CurrentMethod" +
counter, ResultSet.getString ("CurrentMet
hod") };

Results.put ("CalledClass™ +
counter,ResultSet.getString ("CalledClas
s"));

Results.put ("CalledMethod" +
counter,ResultSet.gaetString ("CalledMeth
od"))

counter++;

catch (SQLException e}

f

System.out.println ("SQL Exception" + e);

}
finally

{

Stat.close{);
ResultSet.close();
connection.close () ;

1

return Results;

- 69 -

import
import
import
import

public
{

SQLExC

APPENDIX C

Source Code: FileHandler java

java.io.*;
jJava.sgl.*;
Java.util.regex.*;
Java.util.*;

class FileHandler

int bracketCounter = 0;

String CurrentClassName = "";

String CurrentNestedClass = "";

String CurrentMethodName = "";

String KxztendedClass = "";

String NestedExtendedClass ="";

HazhMap ObjectList = new HashMap();
HashMap DeclaredMethods = new HashMap():;
HashMap CalledMethods = new HashMap();

public voild readFile{File file) throws I0Exception,
epticn
{
try
{
FileInputStream fis = new FileInputStream{file);
BufferedInputStream bis = new
BufferedInputStream(fis);
DatalnputStream dis = new DatalnputStream(bis);
String sText = "";
StringBuffer sResult = new StringBuffer("");

while ((sText= dis.readLine(})) != null)

{
sText = sText.replaceAll {" \\z+", "");
sText sText.replaceAll {"\\s+5","");
sText = " "7 + sText;

sResult.append (sText) ;
'
int indexl = 0;
int index2 G;
int index3 G,

i

StringBuffer sTenmp = new StringBuffer(""};

while (sResult.length() != ()
{

indexl = sResult.indexOf("{");

index? = sResult.indexOf(";");

.70 -

index3 = sResult.indexGf("}");

if {index3 == ()
{
sTemp, replace (0, sTemp.length(),
sResult.substring (0, index3+1});

if (sResult.length{() > 2}
sResult.replace (0,
sResult.length(),
sResult.substring{ind
ex3+2,
sResult.length(}));

else
sResult.replace {0, sResult.l
en
gth(), ""):
}
else if ((indexl < index?) && (indexl != -1))

{
sTemp.replace (0, sTemp.length{),

sResult.substring (0, indexl+1)};
skResult.replace (0, sResult.length(},

sResult.substring(indexl+2,

sResult.length()});

else 1if {{index2 < index3) && {index2 != -1)})

sTemp.replace (0,
sTemp. length (), sResult.substring(
0, indexz+l));

sResult.replace (0, sResult.iengthl(),
sResult.substring (index2+2,
sRosult.length{)));

else

sTemp.replace (0, sTemp.length(),
sResult.substring (0, index3+1));
if (sResult.length(} > 2)
gResult.replace (0,
sResult.lengthi{),
sResult.substring (index3+2,
sRegult.length{)));
else

sResult.replace (0, sResult.length (),

III'I};

}

evaluatelLine (sTemp) ;

}

//go through the CalledMethods and see if they are
declared in the Classes read...

int Dcounter = DeclaredMethods.size{)/2;

int Ccounter CalledMethods.size()/4;

-71 -

String CalledClass = "";
String CalledMetheod = "";
String DeclaredClass = "*;
String DeclaredMethod = "";
boolean bFound = false;

for {(int 1 = 1; i<=Ccounter; i++)
{
bFound = false;
CalledClass = (5tring)
CalledMethods.get ("Class" + 1i);
CalledMethod = (String}
CalledMethods.get {"Method" + i)
String CuMethod = (String)
CalledMethods.get {"CurrentMethod" + 1);

for {int J = 1; j<=Dccounter; j++)
{
DeclaredClass = (String)
DeclaredMethods.get ("Class® + j);
DeclaredMethod = (String)
DeclaredMethods.get ("Method" +

)i

if
(CalledClass.equalsIgnoreCase (Dec
laredClass) &&
CalledMethod.equalsIgnoreCase (Dec
laredMethod))

//save to the database- as in
that class
DatabaseMethods
dataMethods = new
DatabaseMethods (};

if (CalledClass.length() !'= 0 &&
CuMethod. length() !'=0 &&
CalledClass. length () '=C &&

CalledMsthed, length (} !=0)

dataMethods . insertCode (Call
ed
Class.trim(),
CuMethod.trim(},
CalledClass.trim{),
CalledMethod.trim(})) ;

bFound = true;
}
if (bFound)
break;
}
if (!'bFound)
{
//save to the database as inherrited
String XClass = {(String)

-77 -

]

CalledMethods.get ("ExtendedClass"
i)

DatabaseMethods dataMethods = new
DatabaseMethods (};

if (CalledClass.length() !'= 0 &&
CuMcthod.length () 1=0 &&
XClass.length{} !'=0 &&

CalledMethod. length () !=0)

dataMethods. IinsertCede {CalledClas
g.trim{), CuMethod.trim(},
XClass.trim (),
CalledMethoed.trim{));

}

fis.clese();
his.cleose ()
dis.close (};

}

catch (TOException e)

{

}

public void evaluateline (StringBuffer slInput) throws
SQLException

{

Pattern pattern = null;

Matcher matcher = null;

Constants myConstants = new Constants ()
int inputlength = sInput.length();

fer (int i = 0; i<inputLength; i+4-)
{

if (slnput.charat (i) == '{")
{
bracketCounter++;
1
if (slnput.charAt{(i) == '}")
{
bracketCounter——;
}
1
if (bracketCounter == 1}
{
CurrentNestedCiass ="";
NestedExtendedClass = "";

}

//set up the current class pattern
String currentClass = myConstants.currentClass;

pattern = Pattern.compile (currentClass);
matcher = pattern.matcher (sinput);
if (matcher.find()} //1f 1 find a new class

-73 -

getCurrentClassName {sInput) ;
return;

}

//get any new class instantiaticn {object)
String Objects = myConstants.Objects;
pattern = Pattern.compile (Objects);
matcher = pattern.matcher (sInput};
if (matcher, find({)) //if the line contains an object
{
getClassName (sTnput) ;
return;

else //look for the other String declaration

String StringObijects = myConstants.StringObjects;
pattern = Pattern.compile (StringGkhijects);
matcher = pattern.matcher {(sInput);
if (matcher.find()) //1if the line contains
an object
{
getClassName (sInput};
raeturn;

}

//if the bracketCounter is greater than 0- then i need to
loock for methods
if (bracketCounter > 0}
{
//set up the current method declaration pattern
String currentMethod = myConstants.currentMethod;
pattern = Pattern.compile (currentMethod);
matcher = pattern.matcher (sinput);
if (matcher.find(}) //if 1 find & new method
{
getCurrentMethodName (sInput}) ;
return;
}
//this needs to be done last and if it passes the
other test before it
//get any method calls
String Methods = myConstants.Methods;
pattern = Pattern.compile (Methceds);
matcher = pattern.matcher (sinput);
if {matcher.find{))
{
getMethodName (sInput) ;
return;

}

public void getCurrentClassName (StringBuffer Line}
{

- 74 .

}

StringTokenizer st = new
StringTokenizer (Line.to3tring()};
String Next = "";

while {st.hasMcreTckens{))
{
WNext = st.nextToken();
if (Next.equalslIgnoreCase{"class"}}
{
if {bracketCounter < 2)
CurrentClassName = st.nextToken();
else
CurrentNestedClass = st.nextToken (};
}
if (Next.equalsIgnoreCase ("extends"))
{
if (bracketCounter < 2)
ExtendedClass = st.nextToken();
alse
NestedExtendedClass = st.hextToken () ;

public void getCurrentMethodName (StringBuffer Line)

{

StringTokenlizer st = new
StringTokenizer (Line.toString(}):
String Next = "";
String Temp = "";
String Class = "";
//handlie else if
if (Line.toString().contains (Melse if"})
{
raturn;
}
while (st.hasMoreTokens{))
{
Next = st.nextToken();
if (Next.contains{" ("))
{
int index = Next.indexOf{" (");
if (index != 0)
CurrentMethodName = Next.substring{O0,
index) ;
else

H

CurrentMethodName Temp;

}
Temp = Next;
h

//i want to store all declared methods to a hashmap
int counter = DeclaredMethods.size()/2;
countert++;
if (CurrentNestedClass.length()>0)
Class = CurrentNestedClass;

~75 -

else
Class = CurrentClassName;
DeclaredMethods.put ("Class" + counter, Class};
DeclaredMethods, put ("Method"™ + counter,
CurrentMethodName) ;
}

public void getClassName (StringBuffer Line}

{
StringTokenizer st = new

StringTokenizer(Line.toString());

String Class = st.nextToken();
Class.trim();
String Reference = st.nextToken (};
Reference.trim(};
int ceunter = Objectlist.size()/2;
counter++;

ObjectList.put ("Class" + counter, Class);

ObjectList.put ("Reference" + counter, Reference);

!

public void getMethodName (StringbBuffer Line) throws
SQLException
{

String Next = "";

String Class = "";

String Reference = "";

String Method = "";

int index = 0Q;

int indexZ = 0;

Next = Line.toString{);

if {Next.contains ("."))

{
index = Next.indexOf(".");
index2 = Next.indexOf ("{");

int index3 = Next.indexOf ("="};
int index4 = Next.indexOf (":");
int index5 = Next.indexOf (")");

///check for reserve words
if (index2 == -1)
{
return;
}
else 1If ({index2< index))
{

String subNext = Next.substring((, index2);
if

(subNext.trim(}.contains ("if') | | subNext
.t

rim{).contains ("catch") ||

subNext,trim () .contains ("do™) | | subNext.
tr

- 76 -

im() .contains ("for") | |subNext.trim() .co

nt

ains ("return™) ||

subNext.trim({) .contains ("switch") | |subN

ex

t.trim() .contains ("while"))

{

String inside =
Next.substring{index2+l,
Next.length{)):

if {inside.indexOf(".") == -1}

{
return;

}

else

{

StringBuffer sbhinside = new

StringBuffer():;
sbinside.append(inside) ;
getMethodName {sbinside) ;
return;

)

}
else
{

if (subNext.length({} == 0)

{
return;

}

else

{
if (index2? < index && index5 <

index) //this is for
casting
{
String inside =
Next.substring(index5
+1
, Next.length());
StringBuffer sbinside = new
StringBuffer();
sbinside.append(inside) ;
getMethodName (sbinside) ;
return;
}
}
'
;
if (index3 = -1|| indexd4 != -1}
{
if (index3 !'= -1}

Reference = Next.substring (index3+1,
index) ;

else

Reference = Next.substring(indexd+l,
index) ;

-77-

H
alse
Reference = Next.substring(0, index);

if {indaz? != -1) //there is a paranthesis
Method = Wext.substring(index+1, index?2);
else //thaere is not a paranthesis

Method = Next.substring(index+1};

//get the class name
int counter = ObjectlList.size()/2;

String Tomp = "";
for (int i = 1; i<=counter; i+t+)
{
Temp = (String) Objectlist.get ("Reference" +
i}s
if (Temp.egualsIgnoreCase (Reference.trim()))
i
Class = {String) ObjectList.get("Class"
+ i)
)
}
if (Class.length()==0) //the reference was not

found- it must be static
{
if
(Reference.trim() .equalsIgnorcCase ("sup
er") J

i1f (CurrentNestedClass.length()>0)
{

Class NestaedExtendedClass;

|

Class

ExtendedClass;
1
}

else if

(Reference.trim() .equalsIgnoreCase ("thi
S"))

if (CurrentNestedClass.length()>0}
{

It

Class CurrentNestedClass;

I

Class CurrentClassName;

Class = Reference;

//insert inte database

- 78 -

}

aelse

{

if ((CurrentNestedClass.length{) != 0 |
CurrentClassName.length () !=0) &&
CurrentMethodName. length (} ! =0 &&
Class,length{) !=0 && Method,length{) !=0)

DatabaseMethods dataMethods = new
DatabaseMethods {) ;

if {CurrentNestedClass.length{)>0)

{
dataMethods.insertCode (CurrentNestedCla

F]
Ltrim (),
CurrentMethodName.trim(},
Class.trim(), Method.trim(});
!
else
{
dataMethods.insertCode {(CurrentClassName
.t
rim{), CurrentMethodName.triml(),
Class.trim{}, Method.trim{});
!
h
if (Next.contains (" (")) //there is no dot operator
String ExtendedClassZ = "";
index = Next.indexOf ("({");
int indexl = -1;
indexl = Next.indexOf ("="};
if (index != 0) //has & paranthesis
{
if ((index< indexl) && indexl != -1)
Method = Next.substring{0, index};
else 1if (indexl '= -1}
Method = Next.substring(indexl+1,
index);
else

Method = Next.substring{0, index);
//check for reserve words
if
(Method.trim() .equalsIgnoreCase ("if") ||
Method.trim() .equalsIignoreCase ("catch™)
n
Method,trim() .equalsTgnoreCasea ("do") | [M
ethod.trim(} .equalsIgnoreCase ("fo
r") | |[Method. trim() .equalaignoreCa
se ("return") | {Methed. trim() .equal
sIgnoreCase ("switch") | |Method.tri
mi}.equalsIgnoreCase {("while"™))
{
return;
h
if (CurrentNestedClass.length() >0}
{

Class = CurrentNestedClass;

- 79 .

ExtendedClass? = NestedExtendedClass;

else

Class = CurrentClassName;
ExtendedClass? = ExtendedClass;

}

//1i want to store all called methods to a
hashmap

int counter = CalledMethods.size()/4;

counter++;

CalledMethods.put ("Class" + counter,
Class.trim{}));

CalledMethods.put {"Method™ + counter,
Method.trim{));

CalledMethods.put ("CurrcntMethod" + counter,
CurrentMethodName.trim{}) ;

CalledMethods.put ("ExtendedClass" + counter,
ExtendedClass? . trim()) ;

- 80 -

import Java.io.*;
Jjava.awt,*;

import
import
import
import

APPENDIX D

Source Code: GenerateDiagrams.java

java.awt.event.*;
javax.swing.*;
Java.util.*;

public class GeneralteDiagrams extends Jlanel

{

public void generatebDiagramByClass ()

{

DatabaseMethods databascMethods = new DatabaseMethods () ;

try

{

//call the database to get the classes and methods

HashMap Results =
databaseMethods.getDiagramInfoByClass ()

int size = Results.size()/4;

String CurrentClass = "";

String CurrentMethod = "";

String CalledClags = "";

String CalledMethod = "";

String PreviousClass = "";

String PreviousMethod = "";

String NextCurrentClass = "";

String NextCurrentMethod = "™,

String NextCalledClass = "";

String NextCalledMethod = "";

Censtants myConstants = new Constants ()

JFPrame frame2 new JFrame ("Diagram By Class™);
JPanel pClass = new JPanel ();
pClass.setlayout (new BoxLayout (pClass,
BoxLayout.¥Y AXIS));
JPanel pTitle = new JPanel(};
JLabel 1Title = new JLabel (new
Imagelcon (myConstants.classTitle))
1Title.setBorder (BorderFactory.createlineBorder (Col
or.black));
pTitle.add (1Title);
pTitlie.setBorder{BorderFactory.createEmptyBorder (8,
g8, 8, 8));

//set up the Frame

frameZ.setSize (800, 400);

frameZ.getContentPane () .setLayout (new
BoxLayocut (frame?.getContentPane (),

_81 -

BorLayout.Y AXIS));
frameZ.getContentPane () .add (pTitle);

for (int 1 = 1; i<=size; i++)
{
CurrentClass = {String}
Results.get ("CurrentClass"™ + 1);
JPanel pCurrentClass = new JPanel ():
if {(!PreviousClass.aquals {(CurrentClass))
{
pCurrentClass.setLayout (new
BoxLayout (pCurrentClass,
BoxLayout.Y AXIS)});
pCurrentClass.setBorder (BorderFactory. o
re
atelLineBorder (Color,BLACK)) ;
JLabel 1CurrentClass = new
JLabel (CurrentClass,
SwingConstants,LEFT) ;
Font labelFontl =
1CurrentClass.getFont () ;
Font labelbFont? =
labelFontl.deriveront (16.0f);
1CurrentClass,setFont (labelFont2);
pCurrentClass.add (1CurrentClass);

PreviousMethod = "";

for (int J=1i; j<=size; J++)
{
CurrentMethod = (String)
Results.get ("CurrentMethod"

+
3k
if
(!PrevicusMethod.equals (Cur
re
ntMethod))
{
JPanel pCurrentMethod = new
JPanel{)
JLakel 1CurrentMethod = new
Jlabel (CurrentMethod)
Font labelFont3 =
1CurrentMethod.getFon
t{);
Font labelFont4 =
labelFont3.deriveFont
(16.0L);
lCurrentMethod. setFont {labe
1F
ontd) ;
pCurrentMethod.add (1Current
Me

- 82 -

thod) ;
JLabel arrowl = new
JLabel (new
ImageIcon (myConstants
Larrow?)) ;
pCurrentMethod.add (arrowl) ;
CalledClass = (String)
Results.get ("CalledCl
ass" + J);

CalledMethod = (String)
Results.get ("CalledMe
thod” + 3J);

JPanel pCalled = new
Jkanel () ;
pCalled.setlLayout (new
BoxLayout {(pCalled,
Boxlayout.Y_ AXIS));
pCalled.setBorder (BorderFac
to
ry.createlineBorder (C
ol
or .BLACK)) ;
JLabel 1Called = new
JLabel {CalledClass +
" + CalledMethed) ;
Font labelFonts =
1Calied.getFont () ;
Font labelFonté =
labelFonth.deriveFont
(16.0f):

iCalled.setFont {labelFonte);
pCalled.add (iCalled);

for (int k = J+1;
k<=gize; kit++)

NextCurrentClass =
(String)
Results.get ("Cu

rr
entClass" + k)

NextCurrentMethod =
{String)
Results.get ("Cu
rrentMethod" +
k);

NextCalledClass =
{(3tring}
Results.get ("Ca
lledClass"™ +
k}:

NextCalledMethod =
(String)
Results.get ("Ca

- 83 -

if

55

se

&6

od

se

lledMethod" +
k)

(NextCurrentCla
.equalsIgnoreCa
{CurrentClass)

NextCurrentMeth
.equalslgnoreCa

{CurrentMethod)

JLabel 1Current

new
JLabel (Ne
xtCalledC
lass +
|l.|'| +
NextCalle
dMethod) ;
Font labelFont?

1Called.g
et
Font () ;

Font labelFont8

labelFont

7.derivaF

ont {16.0f

Vi
iCurrent.setFon
t{labelFontd) ;
pCalled.add (1Cu
rrent) ;
pCurrentMethod.
add (pCalled) ;
ER

break;

pCurrentMethod. add (pCalled) ;
pCurrentClass.add{pCurrentM

ethod) ;

PreviousMethed =

-84 -

catch

}

CurrentMethod;
PreviocusClass =
CurrentClass;
if
{!NextCurrentClass.eq
nals (CurrentClass))
break;

hreak;

pClass.add {(pCurrentClass) ;

}

J3crellPane scroll = new JScrcllPane (pClass):
scroll.setVerticalScrollRBarPolicy (ScrollPaneConstan
ts.VERTICAL SCROTLBAR ALWAYS) ;
frameZz.getContent.Pane () .add(scroll);

//Create and set up the window.

framel.setDefaultCloseOperation (frame2 DISPOSE ON C
LOSE) ;

//Display the window.

frame2.pack();

frame?.setvVisible (true};

(Exception e)

public void generateDiagramByMethod()

{

DatabaseMethods databaseMethods = new DatabaseMethods () ;

try

{

//call the database to get the classes and methods
HashMap Results =

databaseMethods.getDiagramInfoByMethod () ;
int size = Results.size()/4;

String CurrentClass = "";
String CurrentMethed = "";
String CalledClass = "";

String CalledMethod = "";

String PreviousClass = "";
String PrevicusMethod = "";
String NextCurrentllass = "";
String NextCurrentMethocd ="";
String NextCalledClass = "";

-85-

String NextCalledMethod = "";
Constants myConstants = new Constants():

JFrame frameZ = new J¥rane("Diagram By Method"):;
JPanel pMethod = new JPanel ();
pMethod. setLayout {new BoxLayout (pMethod,
BoxTayout.Y AXIS));
JPanel pTitle = new JPanel ();
JLakel 1Title = new JLabel (new
ImageIcon (myConstants.methodTitle});
1Title.setRorder (RorderFactory.createlineBorder (Col
or
bilack));
pTitle.add (1Title};
pTitle.setBeorder (BorderFactory.createEmptyBorder(§,
8, 8, BY);

//set up the frame

frame?.setSize (800, 400);

frame?.getContentFane () . setlLayout (new
BoxLayout {frame?.getContentPane (),
BoxlLayout .Y AXIS));

framed.getContentPane () .add{pTitle);

for (int i = 1; i<=size; i++)
{
CalledClass = (String)
Results.get ("CalledClass" + 1);

JPanel pCalledClass = new JPanel ();
if (!PrevicusClass.egquals{(CalledClass))
{
pCalledClass.setlayout (new
BoxLayout (pCalledClass,
BoxLayout .Y AXIS));
pCalledClass.setBorder (BorderFactory.cr
ea
telineBorder (Color.BLACK)) ;
JLabel 1CalledClass = new
JLalel (CalledClass,
SwingConstants.LEFT) ;
Font labelFontl =
1CalledClass.getFont () ;
Font labelFont2 =
labelFontl.deriveFont (16.0£) ;
1CalledClass.setFont (labelFont?2) ;
pCalledClass.add{1CalledClass);

for (int 1=i; j<=size; j++)
{
CalledMethod = (String)}
Results.get ("CalledMethod"
*
i
if

- 86 -

le

_R7-

{!PreviousMethod.equals(Cal

dMethod))

JPanel pCalledMethod
JPanel ()
JLabel l1lCalledMethcod = new

Jhabel (CalledMethod) ;
Font labelFont3 =
1CalledMethod.getFont

new

{0

Font labelFontd =
labelFont3.deriveFont
(1
6.0£);
1CalledMethod.setFont {label
Fontd);
pCalledMethod.add (lLCaledMet
hod) ;
JLabkel arrowl = new
JLabel {(new
Imagelcon{myConstants
arrow3)) ;
pCalledMethod.add{arrowl) ;

CurrentClass = (String)
Results.get ("CurrentC
lass"™ + 3);

CurrentMethod = (String)
Results.get ("CurrentM

ethod" + J):

JPanel pCurrent = new

JPanel () ;

pCurrent. setLaycut (new
BoxLayout (pCurrent,
BoxLayout.¥Y AXIS));

pCurrent.setBorder (BorderFa

ctory.createlbineBorder (Co
lor .BLACK)) ;

JLabel lCurrent = new
JLabel {Current{iass +
n " + CurrentMethod);

Font labelFents =
1Current.getFont () ;

Fent labelFontét =
labelFont3.deriveFont

(16.01L);

lCurrent.setFont (1gbelFonto

¥

pCurrent.add(1Current) ;

for {int k = j+1; k<=size:
k++)

NextCurrentClass =
(String)

- B -

Resulits.get ("Cu
rrentClass" + k};
NextCurrentMethod =

{String)

Results,get ("Cu
rrentMethod" + k);
NextCalledClass =

(String)

Results.get ("Ca
lledClass"™ + k);
NextCalledMethod =

(String)

Results.get ("Ca

lledMethod™ +

k)
NextCalledClass +

NextCalledMetho

dj;
If

{NextCalledClas

s.equalslgnoreC

ase{CalledClass

Y O&&

NextCalledMetho

d.equalsIgnoreC

ase{CalledMetho
dj}

JLabel INext =
new
JLakel (Ne
»tCurrent
Class +
"." +
NextCurre
ntMethod)
H

Font labelFont?

INext.get
Font {) ;
Font labelFont8

lakbelFont
7.,

deriveFon
to(

16.0f);

INext.setFont (1l
abelFont8) ;
pCurrent.add (1N
ext);

pCalledMethod.a
dd{pCurrent);
J4+;

alse
break;

pCalledMethod.add (pCurrent) ;
pCalledClass.add (pCalledMet
hod};
PreviousMethod =
CalledMethod;
if
(!NextCalledClass.equ
als (CalledClass))
break;
}
}
pMethod. add (pCalledClass) ;

]

FPreviousClass = CalledClass;
}
J3crollPane scroll = new JScrollPane (pMethod);
gcroll.setVerticalScrollBarPolicy (ScrollPaneCeonstan
ts . VERTICAL SCROLLBAR ATWAYS) ;
frame?.getContentPane () .add (scroll);

//Create and set up the window.
frame?Z.setDefaultCioseOperation (frame2.DISPOSE ON C
LOSE) ;

//Display the window.

frameZ.pack();

frameZ.setVisible (true);

catch (Exception e)

-89 -

APPENDIX E

Source Code: MainFrame.java

import java.io.*;

import java,awt.*;

import java.awt.event.*®;

import Jjavax.swing.*;

import javax.swing.filechooser.*;

public class MainFrame extends JPanel implements ActicnListener

{
//frame
private JFrame frame = new JFrame ("Method Level Dependency

GCenerator"j;

//Panels
private JPanel pTitle = new JPanel{)
private JPanel pUploaded = new JPanel ();
private JPanel pRBottom = new JPanel (};
private JPanel pBottom? = new JPanel ();
private JPanel pFileChooser = new JPanel ();
private JPanel buttenPanel = new JPanel{);
private JPanel pGenerator = new JPanel({};

//Labels

Censtants myConstants = new Constants(};

private JLabel 1Title = new JLabel (new
Imagelcon (myConstants.title)};

private Jhabel 1Uploaded = new JLabel ("Files Uplcaded:"™,
SwingConstants.LEFT) ;

private JLabel lgenerator = new JLabel (new
Imagelcon (myConstants.generator));

// Buttons

private JButton bReset = new JButton("Reset Application™);

private JButton bCpenFile = new JButton{"Open File To Read™}:

private JButton bGenerateByClass = new JButton {(“"Generate By
Class Dependencies");

private JButton bGenerateByMethod = new JButton ("Generate By
Method Dependencies™);

// Menu

private JMenuBar m = new JMenuBar(); // Menubar

private JMenu mFile = new JMenu("File");

private JMenuTltem miQuit = new JMenultem("Quit™);

private JMenu mHelp = new JMenu ("Help"}; // Help Menu entry
private JMenultem miAbout = new JMenultem("Abcout"};

//text areas
private JTextArea tFilelist = new JTextAreal);

-90 -

//file chooser
private JFileChocser fo = new JFileChooser{};

public MainFrame ()}

{

//set up the text area

tFileList = new JTextArea(5,20};
tFilelist,setMargininew Insets(5,5,5,5));
tFilelList.setEditable{faise)

JScrollPane logScrollPane = new JScrollPane (tFilelist);

//8ct menubar
frame.setdMenuBar (m) ;

//Build Menus
mEile.,add (miQuit);
mHelp.add (miAbout};
m.add {mFile);
m. add {mHelp} ;

1Title.setVerticalAlignment (SwingConstants.TOP) ;
lTitle.setBorder (BorderFactory.createlineBorder (Color.bla
ck
1)
ITitle.setloreground(Celor.black);
plitle.add(1Title);
pTitle.setBorder (BorderFactory.createEmptyBorder (8, 8, 8§,
8y):
1Uploaded.setVerticalAlignment (SwingConstants.CENTER) ;
lUploaded. setForeground{Color.bklack);
Font labelFontl = 1Uploaded.getFont();
Font labelFont2 = labelFontl.deriveFont (16.0f);
lUploaded.setFont {labelFontl);
pUploaded.add (1Uploaded};
pUploaded. setBorder (BorderFactory.createEmptyBorder {8, 8,
8, 8));
//set up the the actions
bOpenFile.,addActicnListener {this);
bGenerateByClass.addActionListener (this);
bGenerateByMethod. addActionlistener (this) ;
bReset.addActionlistener (this);
miQuit.,addActionListener (new ListenMenuQuit{));

//Add Buttons

buttonPanel.add {bOpenFile);
pBottom.add (bGenerateByClass) ;
pBottom.add (bGenerateByMethod) ;
pBottom? . add (bReset) ;

pGenerator.add(lgenerator) ;

//set up the frame
frame.setSize (800, 400);

.91 -

frame.getContentPane {) .setLavout (new
Boxbayout (frame.getContentPane (),
BoxLayout.Y AXIS));
frame.getContentPane {) .add(pTitle);
frame.getContentPane () .add(buttonPanel) ;
frame.getContentPane (} .add (pFileChooser)
frame.getContentPane () .add (pUploaded) ;
frame.getContentPane () .add{logScrollPane} ;
frame.getContentPane (} .add (pRottom) ;
frame.getContentPane () .add (pBottom?) ;
frame.getContentPane () .add {pGenerator} ;
// RAllows the Swing App to be closed
frame.addWindowListener (new ListenCloseWdw());
)
public class ListenMenuQuit implements ActionlListener
{
public veid actionPerformed({ActionEvent e)
{
System.exit (0);
}
}

public class ListenCleoseWdw extends WindowAdapter

{

public void windowClosing {WindowEvent e)

{

System.exit {0);

}

public veid actionPerformed (ActionFvent e)

{

GenerateDlagrams generateDiagrams = new
GenerateDiagrams () ;

//Handle butten action,

if {e.getScurce{) == bOpenFile)

{
int returnval = fc.shewOpenDialeg(MainFrame.this);
1f (returnvVal == JFileChooaer.APPROVE“OPTION)

{
File file = fc,getSelectedFile()};
tFileList.append (file.getName () + "\n");
FileHandler fileHandler = new FileHandler():
try
{
fileHandler.readFile(file);
}
catch (Exception e2)
{
1
1
}
elsa if {e.getSource () == bGenerateByClass)

{

generatebiagrams.generateDiagramByClass ()

-92-

}

else if (e.getSource() == bGenerataeByMethod)

{

generateDiagrams.generateDiagramByMethod (};
}
else 1f (e.getSource(} == DReset}
{
DatabaseMethods dataMethods = new
DatabaseMethods () ;
try
{
dataMethods,resetApplication();
}
catch (Exception e3)
{
}

}

private void ShowGUI {}
{

//Create and set up the window.
frame.setDefaultCloselperation (JFrame .EXIT ON CLOSE);

//Display the window.
frame.pack();
frame.setVisible (true};

)

public static void main(Stringl] args)
{

MainFrame mf = new MainFrame();
mif.ShowGUI(};

-93 -

VITA

Lesley Hays has a Bachelor of Science degree from the University of North Florida in
Computer and Information Sciences, 2003 and expects to receiver a Master of Science
in Computer and Information Sciences from the University of North Florida,
December 2007. Dr. Robert Roggio of the University of North Florida is serving as
Lesley’s thesis advisor. Lesley 1s currently employed as a Software Engineer II at

CACI Inc. She has been with the company for over four years.

Lesley has on-going interests in reverse engineering software code. Lesley has
programming expericnce in Java, Java Servlets, XML, XSL, JavaScript and has

utilized Jakarta Struts. Lesley’s academic work has included COBOL, C, and Visual

Basic.

-94 .-

	Reverse Engineering Software Code in Java to Show Method Level Dependencies
	Suggested Citation

	Title Page

	Table of Contents
	Figures
	Abstract

	Chapter 1: Introduction
	Chapter 2: Review of the Literature
	2.1 Reverse Engineering
	2.1.1 Related Areas and Sub-Topics in Reverse Engineering
	2.1.2 Reverse Engineering Defined
	2.1.3 History of Reverse Engineering
	2.1.4 Problems with Reverse Engineering
	2.1.5 Importance of Reverse Engineering
	2.1.6 Practicality of Reverse Engineering

	2.2 Reverse Engineering Tools
	2.2.1 Rational Rose
	2.2.2 jGRASP
	2.2.3 NetBeans
	2.2.4 Eclipse

	Chapter 3: Methodology

	3.1 Method Level Dependency Framework
	3.2 Reverse Engineering Framework
	3.2.1 Development Software
	3.2.2 Framework Development
	3.2.2.1 Framework Design
	3.2.2.1.1 MainFrame.java
	3.2.2.1.2 FileHandler.java
	3.2.2.1.3 DatabaseMethods.java
	3.2.2.1.4 GenerateDiagrams.java
	3.2.2.1.5 Constants.java

	3.2.2.2 Database Design

	3.2.3 Framework Functionality

	3.3 Framework Output

	Chapter 4: Results

	4.1 Test Case 1
	4.2 Test Case 2
	4.3 Test Case 3
	4.4 Test Case 4

	Chapter 5: Conclusion

	5.1 Analysis
	5.2 Future Work
	References

	APPENDIX A: Source Code: Constants.java

	APPENDIX B: Source Code: DatabaseMethods.java

	APPENDIX C: Source Code: FileHandler.java

	APPENDIX D: Source Code: GenerateDiagrams.java

	APPENDIX E: Source Code: MainFrame.java

