\ University of North Florida

UNIVERSITY of ..
UNF NORTH FLORIDA. UNF Digital Commons
UNF Graduate Theses and Dissertations Student Scholarship
2006

Approximate String Matching With Dynamic Programming and
Suffix Trees

Leng Hui Keng
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

6‘ Part of the Computer Sciences Commons

Suggested Citation

Keng, Leng Hui, "Approximate String Matching With Dynamic Programming and Suffix Trees" (2006). UNF
Graduate Theses and Dissertations. 196.

https://digitalcommons.unf.edu/etd/196

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital

Commons. It has been accepted for inclusion in UNF

Graduate Theses and Dissertations by an authorized \

administrator of UNF Digital Commons. For more

information, please contact Digital Projects. UNIVERSITY of

© 2006 All Rights Reserved UNF NORTH FLORIDA.

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fetd%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/196?utm_source=digitalcommons.unf.edu%2Fetd%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

APPROXIMATE STRING MATCHING WITH
DYNAMIC PROGRAMMING
AND SUFFIX TREES

Leng Hui Keng

A thesis submitted to the
School of Computing
in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

December, 2000

Copyright (©) 2006 by Leng I1ui Keng

All rights reserved. Reproduction in whole or in part in any form requires the prior
written permission of Leng Hui Keng or designated representative.

-1l -

The thesis "Approximate String Matching with Dynamic Programming and Suffix Trees"
submitted by Leng Keng in partial fulfillment of the requirements tor the degree of
Master of Science in Computer and Information Sciences has been

Approved by the thesis committee: Date

Signaturedeleted
/ﬂfzf; (9 700 s

Yap S. Chua
Thesis Adviser and Committee Chairperson
Signaturedeleted

sl Y

D&a, /7 2004

%gel?ﬁ/. Eggen 7S
Signaturedeleted
L\-EC f_;)k'_)v_ XRe é;

William Klostcrmeyer

Accepted for the School of Computing:

Signaturedeleted

/2 /‘L/ / 2l
Judithh L. Soland.” / C
Diregtor of the School

Accepted for the College of Computing, Engineering, and Construction:

Signaturedeleted

L/) gl

Néal 8. Coultef
Dean of the College

Accepted for the University:
Signaturedeleted

;-ZJA:"\JLM:_A-] "Z,Dc,}f?-

David E. W. Fenner
Dean of the Graduate School

-1l -

ACKNOWLEDGMENT

After being in the workforce for over four years, it took me a great deal of courage to get
enrolled in the School of Computing at the University of North Florida. Coming in with
a Management Information Systems degree, I had to fulfill some undergraduate
prerequisites in order to qualify for the master program in Computcr Science. Along the
way, I had the privilege to gain broader and deeper knowledge about computing through
various learning channels. Like most sciences, computer science is not just about
creating somcthing new. Rather, it is about discovering new approaches and unlocking
what we cannot comprehend easily. Most ol the time, we have to act within the
boundaries of our knowledge. Sometimes, we have to depend on our imaginations to find

the answers.

After five years of humbling experiences, I continue to be amazed by the vast amount of
intellect out there. This work is undoubtedly one of the most challenging and fulfilling
endcavors I have cver waged academically. The subject of this thesis was not something
I had in mind when I set out to pursue the thesis option more than a year ago. It was
chosen mainly because we decided to explore an unfamiliar territory. For that, [am
indebted to my thesis adviser Professor Yap Siong Chua for belicving in me and for

encouraging me to set challenging goals.

Throughout the journcy, however, I discovered more than what I had anticipated. I

learned to appreciate the virtue of so many selfless computer scientists around the world

-1V =

who dedicate their lives to the field. The outcomes of their hard work ate ofien taken for
granted as a mere convenicncee in cvervday life. | am grateful to these remarkable
individuals who so generously share their knowledge over various publications and web

sites. They have made the completion of this work possible.

I appreciate my thesis committee members, Profcssor Yap Siong Chua, Professor Roger
Eggen and Professor William Klostermeyer, who reviewed my paper and provided
feedback throughout this period of time. [am cspecially tbankful for Professor Chua's
tireless pursuit for perfection, his construclive criticisin, and his unconditional guidance.
[am grateful to the Director of the School, Protessor Judith Solano, and the Advising

Sceretary, Pat Nelson, for editing this paper and ensurmg that it conforms to the standard.

Indisputably, the completion of my thesis would not be possible without the full support
from my managers at Merrill Lynch: Michelle Coftey and Ricky Bracken. They have my
gratitude for giving me the flexibility to act on my dream amidst our overwhclming

workload.

Most importantly, I can never repay my parents and my family for making this a
possibility. I am also grateful for my elder brother Leng Shyang, who selflessly bought
our very {irst computer with his hard-earned summer savings clcven years ago. Finally,
this achievement would not be meaningful without the support of my loving wife Mandy.
Her unwavering and unconditional support shows through in her caring, cooking,
housekeeping, and not having cable or satellite TV for the past five years. This thesis is

my dedication to hcer.

CONTENTS

LASE OF FUgUICS ottt e et e sae s e reeesee e X
ABDSIPACT. ..ottt et ettt b a1t ha et b £ s ean £ 2 eer b et e ena et tneenteeae s X1l
Chapter T: TFOAUCLION. .. oottt sre s eae s as s eae st b st aeetb e s eneetaeaseas 1
1.1 Background and MotIVAtIOn.ccocei ittt 1
L1.1.1 String ComPariSOr. oo viiirirerreesiries s eere st e e sieeessaree s e e etteesesressenneas 1

1.1.2 String Matehtng CalegOries.....covieiivreieeieeeiieere et eer e iee b e ins e as e 2

1.2 ApPlCation ATCaS.......ocviiiiieeet et be et 3
1.2.1 Personal COMPUUIE.ocovieiiviiieniie e e s 4

1.2.2 Corporate Electronic Records..........ccoeviiviiiiiiii s 4

1.2.3 SIgNAl PrOCESSINZ. .ooviiciieeeeiirieeveiieeeveniee s rare e et rts e estaaa s esaessrenssatseestaeans 5

1.2.4 Network CommuniCation....c...ocoiier oot eeie e eaie e eeseeen e 5

1.2.5 Computational Biology ... e 6

1.3 On-line Searching versus Tndexed Searching.........oooeeov e 6

1.4 Tow This Paper is OrganiZed........c.oocovvieviiiiiesirs et e 8
Chapler 2: Exact String MatChing........cocooiiiiiiie e 9
2.1 Problem Definmition.o e 9
2.2 Dxact String Matching Algorithms.......cocoiiiii e 9
2.2.1 The Naive APProach. ... 9

2.2.2 The Automaton Approach...........cocviii 10

2.2.3 The Knuth-Morris-Pratt Algorithm. ... 10

2.2.4 The Boyer-Moore Algorithm........ccoeiiiiiiiiicii e, 11

..V'i-

Chapter 3: Approximate String Matching............c..cocviiiiiin e 12

3.1 The Basic ComGepts. ..ottt et 12
3101 Edit DIiStAnCe. ..ot 12
3.1.2 Problem Definition........cooiiiiiiii e 14

3.2 Approximate String Matching Algorithms........coooiii 14
3.2.1 Dynamic Programming......ccooocviorivriicieieeiiecnesseeinees e ee e eneaaeeeaaiens 14
32,2 ATEOIMATA.eiii ittt ettt et ee e e ranee s eans 16
323 Bit-parallcliSmu i ittt 17
324 TIHEIIZ . c.ei ettt er bt b g b 18

3.2.4.1 Filtering HisStory...oooooiioio e 19
Chapter 41 Suffix TEeES.c i 22

4.1 BacKground. ... oo it e ee s e e 22

4.2 HISTOIY . oeiieie e e e s 23

4.3 A Suffix Trie and SUlTIX Trec.. ... 24

4.4 Suffix Tree Construction. ..ot e e 27
441 SECTUIES. . eeiieii et 28
4.4.2 Building a Sulfix TrCe......ocoo i 29

4.42.1 Appending a New Character to the Suflix Tree............cocccnn. 29
4.4.2.2 Once aLeaf Node Always a Leal Node...........ooo o 32
4.4.2.3 Tmproving Construction Time with Suffix Links........c.....o..o.ee. 33
4.4.2.4 The Main Suffix Trce Procedures..........ccoooiiiicecicininns 35
44241 The splitTransition() Procedure.............. 35
4.4.2.4.2 The testAndSplit() Procedire. . .ooovevivciieviieiiies e 36
44243 The canonize() Procedure.........ccc.cccoviiiieicininenne 37

- VIT -

4.4.2.4.4 The update() Procedure........ooooveeciiciiciiiein 39

4.42.4.5 The addStringTolree() Procedure.............cc..oc.. 49

4.4.2.5 Explicit versus Implicit Suffix Trees......cvvviiicviie v 40

4.4.2.6 An Example of Suftix Tree Construction.........coeoveeivreeiannenn. 41

4.5 Lowest COMMON ANCESTOL..o.uiiiiiieiiiiiti ettt ettt rta et e e e e s 43
451 BINATY TrEE...ce i ees e e e eaarae e 43
4.5.2 Mapping a Suffix Tree to a Binary Tree....c.ooceeiiiieiccicee e 46
4.5.3 Finding Jea in Constant TIMEC.........ov.eeeeeeeeseeeeeeeee e e eeeeereseseee e 50
4.54 A Note on Qur Jea Tmplementation.......o.eeveeieesiee s e s e 52

4.6 The Longest Common EXtension.. ..o, 53
4.6.1 Generalized SulBix Tree. ..o 53
Chapter 5: Hybrid Dynamic Programming with Suffix Trees......c.ccoovivvvveeievereescen e 55
5.1 The Concept of DIagomals. ... e 55
5.2 The Concept of depath.........o e 56
5.3 Implementing the Hybrid Approach........coooiiiice e 59
Chapter 6: SuffiX AFTaYS....cccooiiiii e 62
6.1 ThE COMCEPL...cetiiii ettt ettt ettt ettt e e et ennt e eeeae 63
6.2 The Efficiency of @ SUITIX ATTAY...ioiiiniiiiiriecreave et nriaes s ene e e seres 63
6.2.1 Space ReQUITEMENL.....oii ittt 63
6.2.2 Sedrch TImC o e e e 64

6.3 Suffix Array COnStIUCTION. .. ocvviioiireeceir e e 64
6.3.1 The Naive APProach. .ottt 64
6.3.2 The Suffix Tree Approach.......c..cciiciiiiiiniiii e, 65
6.3.3 The Lincar Time Approach... ... 66

- Vil -

6.4 The Longest Common Prefix... ..o 66

6.5 The Advantages of @ SUITIX ATTAY.iivieiieoiie e aaa e 67
Chapter 7: EXPeriments. ..o 69
Tl DVEIVEEW ottt ettt ettt et et n et e res 69

7.1 T].'IC L0 1o 5T W TS O TRV U RO OO UTOUPUPUUPRUUTUITUTO 70

7.2 Experiment DEtallS. ..o e e n s 71
7.2.1 Hardware Platform.........ccooiiiiiiiiii et 71

7.2.2 Software Platform. ... 71

7.2.3 EXperiment DALa . ..cococciiiiciii et eva s enr e er e en s 71

7.3 Experiment Restlts ... e 73
731 BExperiment L.t s 73

7.3.2 BXPETIMENT 2.iii e e reee e ee et e e re e e ere e e e r e e e 74

7.3.3 EXperiment 3. .. e e 77

7.4 Analysis of the EXPeriments. ...t 78
7.4.1 The Impact of the Alphabet Size.......cocooooiiiiiii 79

7.42 Memory Management [SSUC........coivvriiiiieciie e 79

7.4.3 Experiment ConcluSion........oooooiiiiiiiii oo 80

Chapter 8: COMNCIUSIONS.iiiiiiieiet ettt et a e eb e eas 81
8.1 ReSCArch RESUILS. . oiiiieeii ettt ne e aa e 81

8.2 Experiment RESUIS. ..coiiiii it et 81

8.3 FUIUIe WOTK. ..ooiiiiiie e e s 82

JE T 4= £ 1o SO T OSSO TP POV PO OUSPOTUSTUI 83
APPENAIX AL GIOSSATY ..viiie et e e 88
Y17 TR S TS U TP PO T PO PP PP PP U PP OT PP P PP PO PR PPN 89

- 1% -

FIGURES

Figure 10 The Dynamic Programming MatriX.......c..coeveiiiienn e e 16
Figure 2: The Suffix Tree for ahabb&......._ ... 22
Figure 3: The Trie fOr caccand.....cccoooviiiiiiiniii e 25
Figure 4: The Suffix Trec for caeeaoS. ..o 25
Figure 5: The Suffix Tree for caccao§ with Suffix Links........c.cccoovviiiiiiiiiiciiiccee 27
Figure 6a: Adding ¢ to the ROOTINOGC. ..cc.ieriiieiiiiiici e 30
Figure 6b: Adding b to a Sutfix Tree.....ocoiviiiiii e 30
Figure 7a: An Explicit State Already Exists for SUffix ac......cooooeivniiiiiiciiie e 31
Figure 7b: An Implicit Statc Already Exists for Suffix ¢c......ooocooovviiieiiiie 31

Figure 8: Adding cao to The Sub Tree by Splitting and Appending Transitions.............31

Figure 9: The Position of the Ending Character is Updated in Each Iteration................. 32
Figure 10: The Ending Index is Updated From « to m afterward...........occooevevivvnnnnnn, 33
Figure 11a: Traversing Up the Root and Down another Branch..........c.ocovviieeivenen, 33
Figure 11b: Traversing to the Next Updatc Point with a Suffix Link..........cc..c...co 34
Figure 12: Suffix Link Update........ccoooviiiiii e 34
Figure 13: Reference Pair (2, (1,3)) o et 38
Figure 14: Sliding Down by Transition Length........oooii e 38
Figure 15: Implicit Suffix Tree versus Explicit Suffix Tree..........n 41
Figure 16: Suffix Tree Construction for caccan$........ccovviviiiinccnice e 42
Figure 17: A Complcte Binary Tree with the Nodes' In-Order Numbers Shown............. 44
Figure 18: Suffix Tree for caccaod with Depth-first Numbering..........coooooiiivininnn 46

Figure 19:
Figure 20:
Figurc 21:
Fipure 22:
Figure 23:
Figure 24:
Figure 25:
Figurc 26:
Figure 27:
Figure 28a:
Figure 28b:
I'igure 29a:
Figure 29b:
Figure 29¢:
Figure 30a:
Figtire 30b:
Figure 30c¢:
Figure 31a:
Figure 31b:

Figure 31c:

The Partition of the Suffix Trec for caccao$ into Eight Runs........ccooooove.., 47

The Mapping of the /(v) Node of Each Run to a Complete Binary Tree........ 48
The lep of Substrings x and ¥ 15 5. 53
The Diagonal Concept of a Dynamic Programming Table........................... 56
RILR2, and R3 dFpaths......ccoriiriiiiieiee e, 58
The d-path Table and the Reconstructed Dynamic Programming Table........ 60
The Suffix Array for mussisSipRI....cocoooivc i, 63
The Suffix Tree for bananas§ with Leaf Nodes Lexicographically Marked.. 65

The Suffix Array for mississippi with lep Information........ccooeeiinininn, 67
A Snippet of the Text Strings Uscd in the Experiments,........cooocoovieeneienne, 72
A Snippet of the DNA Sequence Used in the Experiments.......................... 72
The Result of EXperiment L. e s er s 73
The Graphs for the Results of Experiment Ta.........oocooovooiiiiiiieniiiean. 73
The Graphs for the Results of Experiment ... 74
The Results of Experiment 2........coccocoiiiiiiiiiie e 75
The Graphs for the Results of Expetiment 2aoc.oocovviiievieir e 75
The Graphs for the Results of Lxperiment 2b..........ooooiii 76
The Results of EXPeriment 3. 77
The Graphs for the Results of Experiment 3a........ccccceicevveiicn e, 77
The Graphs for the Results of Experiment 3b.....ooooiiieee 78

- xi -

ABSTRACT

The importance and the contribution of string matching algorithms to the modern society
cannot be overstated. From basic scarch algorithms such as spell checking and data
querying, to advanced algorithms such as DNA sequencing, trend analysis and signal
processing, string matching algorithms form the foundation of many aspects in

computing that have been pivotal in technological advancement.

In general, string matching algorithms can be divided into the categorics of exact string
matching and approximate string matching. We study each area and examine some of the
well known algorithms. We probe into one of the most intriguing data structurc in string
algorithms, the suffix tree. The lowest common ancestor extension of the suffix tree is
the key to many advanced string matching algorithms. With these tools, we are able to
solve string problems that were, until recently, thought intractable by many. Another
interesting and relalively new data structure in string algorithms is the suftfix array, which

has significant breakthroughs in its linear time construction in recent years.

Primarily, this thesis focuses on approximate string matching using dynamic
programming and hybrid dynamic programming with suffix tree. We study both
approaches in detail and see how the merger of exact string matching and approximate

string matching algorithms can yield synergistic results in our expcriments.

- Xil -

Chapter 1

INTRODUCTION

1.1 Background and Motivation

String comparison has an essential role in many areas of computing. Programs rarely
complete tasks without performing some (ypes of string manipulation or comparison.
While simiple programs can rely on basic if and switch stalements to validate user input
and incoming data tor legitiinacy, programs with higher complexily often need more

advanccd string matching techniques Lo get the jobs done.

1.1.1 String Comparison

Data are commonly presented in strings of alphanumeric characters in the form of
human-readable characters, binary data, and encoded data. When character strings are
mentioned, we often think of them as lines of English characters that we humans are most
familiar with. However, these English characters we see on computer screens are merely
a presentation of the underlying data. In fact, character data type is considered numeric
in most programming languages such as C and JAVA. For cxample, in the ANSI
character set, 'a’, 'b', and '¢' are represented by the values 97, 98, and 99 respectively.
While human languages can be presented with the ANSI character sct and the
international Unicode character set, binary data such as images and graphics use numbers
1o indicatc the color or shade ot a pixel. For instance, i’ an image format uses 8 bits to
represent a pixel, each pixel can have up to 2° = 256 colors or shades. Often, data need to

be encoded for transmission or display purposes. For example, a JPG image can be

-1-

encoded into a base-64 text and be viewed as a string of printable ASCII characters.
Whether sirings of data are in numeric format or are encoded into human-readable
format, the underlying data can be treated the same way for the purpose of comparison.
We are only interested in the syntactic ordering of the string, not ils semantic significance
[Stephen94]. In molecular biology, complex structural information about DNA and
protein are encoded as strings that consist of character G's, A's, T's and C's. 'The
decoupling of semantic information from data allows computer scientists to focus on
improving string manipulating algorithms and not be concerned with their biological

meaning.

1.1.2 String Matching Categories

W can broadly divide string matching algorithms into (wo categories, exact slring
matching and approximate string matching. The need for exact string matching 1s
apparcnt in our daily lives. For example, a university registrar's officer needs to find a
student's rccords based on his student [D; a store supply manager needs Lo locate
equipment whose part number is XWJ0001. Exacl string matching algorithms have been
researched and studied extensively in the past decades. They provide the foundation for
the study of more advanced approximate string matching algorithms, as we will see in

this paper.

The need for approximate string matching is not immediately obvious. In general,
approximate string matching is about matching strings with an allotted margin of error. It
enables us to do things that exact string matching cannot accomplish alone. Often, data

becomes erroneous or corrupted due to human error or poor quality in the network

-2

transmission. Sometimes, data simply change over time. For instance, a merger between
two companies can render an old company name invalid. A language can cvolve so
much over the centuries that some words become obsolete or inappropriate. As a result
of these errors and changes over time, important data are lost simply because we are

unable to retrieve them.

In a world enriched by a wide variety of cultures, regional and local uniqueness can and
often lead to undesired consequences. For instance, scarching for the word “color” might
not return any result in a piece of British literature, where the word is spelled “colour”.
Dates, currency symbols, and measurement units are also among examples of differences
hetween countries and continents. Our lack of ' knowledge and understanding of other
cultures could sometimes have serious repercussions. For example, misspelling or
mispronouncing a foreign name could inadvertently allow a terrorist to clude a security
cheek point. As the world becomes more connected, these differences have become more
relevant than ever. Approximate string matching technigues can be used (o resoive such

problems by allowing for a margin of error in the matching process.

1.2 Application Areas

In recent decades, several phenomena have propelled the growth of data in all facets of
our lives. They include the advent of the Internet, the ease and availability of personal
computing, and the advancement of network communication. The usc of string matching
techniques is central in many areas of our daily lives and societies. We will examine a

tfew of them.

1.2.1 Personal Computing

The first IBM PC was introduced in 1981, The PC ran on an Intel 8088 CPU at 4.77
MHv and had 16KB of memory. Currently (year 2006), a mid-range PC can casily be
accompanied by a 2.4GHz CPU and 1 GB of super fast memory, running on an advanced
operating system. What really contributes to the popularity of personal computing is,
however, its availability and accessibility. The first IBM PC was sold for $1,565, which
is tantamount to roughly $4.000 today, whereas today's mid-range PCs are priced as low
as $400-$800. In today's society, it is nol unusual for a home user to have hundreds of’
gigabytes of storage space to slore and to backup a myriad of media contents, such as
MP3 songs, movie ¢lips, and family photo collections. At the tinre of this writing,
various softwarc giants, such as Microsoft, Google, and ILinux, are competing o come
out with the best desktop search engine to help honic users organizc and locate their
information amidst a multitude of personal data. More often than we realize, personal
computing depends on advanced string algorithms to perform tasks as conmmon as spell-
checking and correction, grammar usage checking, file comparison, virus detection. voice

recognition, and web searches.

1.2.2 Corporate Electronic Records

In recent years, companies have raced to digitize paper records in hope of reducing
litigation costs and penalties that amount to billions of dollars. Digitizing paper records
also help companics achieve better recovery time in the wake of unequivocal terror
threats and natural disasters. Everyday, millions of pages of documents are being

converted into imaging data that mcasure in terabytes (one thousand gigabytes) and

petabytes (one million gigabytes). Consequently, we observe an unprecedented nced for
the capability to search for both the meta-data and the content in heterogeneous
repositories spanning from email systems, imaging systems and file systems, to

proprietary databases.

1.2.3 Signal Processing

Signal processing is also a broad topic that touches many aspects ol our lives. For
example, we have PDAs equipped with software that recognizes hand-writing, voice-
recognilion software providing much nceded help to the physically challenged, and
retingl scanning proccdures capable of identifying a person accurately, to name a {ew.
However, handwriting is inconsistent by nature, a voice might be altered by a cold, and
the pupil in the eye could contract or dilate in response (o surrounding lighting, In order
for these recognition technologies Lo work, it is necessary (hat not only patterns are
recognized but that there is an allowance for a certain degree ot differcnce, as long as

precigion and sceurity are not compromised.

1.2.4 Network Communication

In the past few years, spectacular leaps have also taken place in the areas of
telecommunication, wireless technoltogy, and computer networking. Thesc advancements
have promoted the growth of data transmission over a multitude of media at varying
scale. With more and more data being transmitted across wires and air, the need for
reliable communication is inevitably greater. Error correction algorithms, such as the
Hamming distance, play an important rolc in identifying possible errors and correcting

them to avoid costly retransmission. In the wake of a series of malware attacks, string

-5

matching technigues are also pivotal in recognizing patierns of potential securily breach

and virus spread.

1.2.5 Computational Biology

Computational biology is one of the oldest areas which gave rise (0 some advanced string
algorithms. Biologists encode DNA with a chain of nucleotides that contains the genetic
information of the living being [Gusfield97]. Therc are four nuclcotides, represented by
the character A (Adenine), T (Thymine), C (Cytosine) and G {Guanine). Known
genomic sequencces arc stored in specialized databases, such as BLAST and FASTA, so
newly sequenced DNA can be compared or verified against these existing samples. Since
the new sequence and the old sequence vary to a certain degree, approximate string
maiching is used to carry out such a comparison. While an English word is normally less
than twenty characters long, the DNA sequence of a simple bacterium could casily
contain millions of characters. Therefore, efficient search times and space utilization are
keys to practicality in such applications. Recent breakthroughs in genome research and
compulational biology have rekindled the urge for faster and more efficient string

algorithms.

1.3 On-line Searching versus Indexed Searching

Overall, string matching algorithms can be classified into on-line searching and index
searching [Navarro98a]. On-line searching is useful for situations wherc neither time nor
space is available. Moreover, the text and the pattern may not be known in advance. For
instance, plagiarism detcction could involve comparing large files at random. Similarly,

identifying homology in DNA sequences requires scarching for the longest common

-6 -

subsequences in two DNA strings. On the other hand, it makes sense to preprocess a
body of text to facilitate subsequent searches. Index searching is ideal for this situation.
It 1s comprised of three steps. The first step is to preprocess the pattein or the tex(body.
This includes persisting index information of the text for later use. The second step
involves executing the search. The last step is the verification process where we locate

the oceurrences from our search result.

Naturally, index searching is concerned with index construction and index storage. Index
construction is usually not an issue, if the index is built during off hours. Depending on
the data structures used, the space required for indexes could grow rather quickly,
ranging anywhere between 40% to many times the size of the text. However, the
preprocessing overhead is oflen offset by its superior search time, although not
necessarily. Both web page cataloging (e.g., search cngine) and DNA sequence mapping

arc good examples of index searching applications.

In addition, index searching can be divided into two classes: word-retrieving index and
sequence-retrieving index [Navarro00]. Word-retrieving index aims at applicalions that
involve natural languages such as linglish. It is well researched due to the need for
elfective word processing and document information retrieval. On the other hand,
sequence-refrieving index is the oplimal choice when Lhe body ol text does not lend itself
well to the concept of natural languages or words. Examples of such data include protein

sequences, binary or mcdia files, and encoded file content.

1.4 How This Paper is Organized

In chapter two and chapter three, we look at algorithms for exact string matching and
approximate string matching. In addition, we introduce the concept of edit distance and
dynamic programming in chapter three. We dedicate chapter four to the suffix tree data
structure. We take an in depth look at suflix tree construction and the longest common
ancestor extension, Chaptcer five focuscs primarily on solving the k-difference problem
with hyvbrid dynamic programming with suffix tree. In chapter six, we examine briefly
another advanced data structure called sulfix array. In chapter seven, we conduct somc
experiments to measure the performance of dynamic programming and hybrid dynamic
programming with a suffix trec. In particular, we pay closc attention to how the search
time of cach approach is influenced by changing text length, pattern length, and number

of errots allowed. Finally, in chapier eight, we will present our conclusion.

Chapter 2

EXACT STRING MATCHING

Many efficient exact string matching algorithms have been devised in the last few
decades. Tn this chapler, we examine four of them, from the intuilive naive approach to

the advanced Knuth-Morris-Pratt and Boyer-Moore algorithms.

2.1 Problem Decfinition

We formalize the exact string matching problem as follows.

Y = Alphabet of a finite set of symbols. 3| = &
T'= A slring ol text derived from Y. |7] =n
P = A string of pattern derived from », |P| =m

The goal of our string algorithms is to search for occurrences of P in 7. We
assume that i <= n.

2.2 Exact String Matching Algorithms

2.2.1 The Naive Approach

The simplest of all exact string approaches is the naive approach, which scans the text
711..n] from left to right, comparing cach character in the patiern P[1..m] to the text
during each iteration. If a mismatch is found, it moves to the next text position and starts
to compare the patlern with 712..m + 1]. This approach is intuitive but has the
disadvantage of an O((# - m + 1) m) run-time. As m approaches n/2, the worst case

scenario of the naive approach reaches O(»*) quadratic time.

-9.

2.2.2 The Automaton Approach

An automalton is an absiract machinc that maintains its state based on input derived from
Z. Giiven an input symbol, an automaton uscs a transition table to determine 1ts next
state. The transition table consists of rows of states and columns of symbols in . When
applied in exact string matching algorithms, characters in P represent the states in the
transition table while characters in X represent the input symbols. When the next input
character read from 7 matches the next character in P, the automaton advances to the next
state. Otherwise, it reverts to a previous state while preserving as many matching
characters as possible. This avoids having to match the next inpul character from the
beginning of P’ every time there is a mismatch, The automaton approach is easy to
understand and its search time has a tight bound of O(#n). Unfortunately, while the
transition table is the strength of an automaton, it has an Q(m @) limitation on its

construction time and space requiretnent.

2.2.3 The Knuth-Morris-Pralt Algorithm

In the ycar 1977, a clever observation was made by Knuth, Morris, and Pratt [Knuth77].
The Knuth-Morris-Pratt algorithm (KMP) is similar to the automaton approach, but it is
able to mitigatc the restriction imposed by the transition table. Tnstead ol a transition
table, it uses a prefix function, p¢), which is constructcd on-the-fly and is independent of
n. The prefix function p() contains knowledge about how well the pattern maltches itsell.
Therefore, when a misimatch occurs, it knows to slide down the text as far as possiblc

without missing any potential match. In short, pfg) is the length of the longest prefix of P

-10 -

that is a suffix of P|1..¢]. The construction of p() takcs O(m) time by malching the

pattern to itself. KMP scans from left to right with a search time of O(#»).

2.2.4 The Boyer-Moore Algorithm

In the same ycar, Boyer and Moore mtroduced an algorithm with sub-linear lime, o(#n)}
[Boyer77]. The Boyer-Moore (BM) approach utilizes a jump function that contains
information about the pattern and allows the algorithm to jump ahead if a mismatch
occurs. The strength of BM comes from the {ac(, contrary to common sense, it scans for
the pattern from right to left. As a consequence, it does not scan cvery character
unnecessarily, if the ends of the pattern P[1..m] and text 7]i..i + m] do not match. This
allows the algorithm to skip ahead faster and achieve greater cfficiency as patlern length,
m, grows. BM has a worst case scenarto of O(mn) when T consists of one repeating
character and P consists of the same character except for the beginning character. For
example, T=aqaaaaaaaaaaauaaaaaaaacaaaaaaa and P=haauaaaaaaaaaaaaaadaad.
The best case BM has a run-time of O(# / m), when the last character of the paltern, Plm],

does not match any character in 7Tm..n).

-11 -

Chapter 3

APPROXIMATE STRING MATCHING

3.1 The Basic Concepts

Sometimes we need to focate data without exact information about the subject. This
could be due to a variely of reasons such as changing personnel or corrupted data. These
are situations where approximate string matching technigues can become valuable.
Approximate string matching is also known as inexact string matching or string matching
allowing k errors. By allowing a predetermined margin of error in our search result, wc
are able to relrieve more records of relevance. For instance, a search for the word river in
a literature allowing for one error may return diver, liver, rive, river, rivet, or rover.
However, an error margin that is (oo large could lead to a search result containing an
overwhelming number of irrelevant data. The trade off between a relevant search result
and an erroneous scarch result is described by Hall and Dowling {Hall80]| as precision
and recall. Precision refers to the proportion of retrieved data that arc relevant; whereas
recall refers to the proportion of relevant data actually retrieved. Precision goes up as

recall comes down, and vice versa.

3.1.1 Hdit Distance

The coneept of distance is commonly used to measure the similarity (or differences)
between two strings x and y. The more similar the (wo strings are, the smaller the
distance is. Basically. the distance between x and y is a measure of the minimum number

of operations nceded to transform x into y [Navarro0O1]. Four types of string

_12-

manipulation arc used to measure the distance of two strings, including insertion,
deletion, substitution (replacement) and transposition. Depending on application
requirements, the cost of each operation could vary. For instance, the transposition
operation could carry a higher cost for a virus detection program than it would for a spell-

checker.

There are several kinds of distance functions. The most common ones include Hamming
distance, cdit distance, and longest common subsequence distance [Navarro01].
Hamming distance allows for only substitution at onc cost unit per operation. Edit
distance, also known as Levenshtein distance. allows for inscrtions, deletions, and
substitutions, at one cost unit each. The longest common subsequence (/¢s) ailows for
only insertions and deletions, with the distance being the number of unpaired characters.
Note that subsequence and substring are different. For example, xyz is considered to be a

subsequence but not a substring of xaaaaayaaaaaazaaaaa.

Exact string matching techniques such as the naive matching algorithm can be easily
adapted to perform simple approximate string matching with an average run-time of
O(mn) and a worse case of O(x") when m approaches » / 2. However, mote efficient
algorithms have been devised. In the next scction, we look at various approximate string

matching approaches.

3.1.2 Problem Definition

The approximate string matching problem can he defined as:
Given 7, P, k, and d(}, find the set of all substrings in 7" such that d(P, 1{i..j|) <k,

where

k& = the maximum number of crrors allowed
a = the error level = k/m

d() = the distance function

The distance d(x, y) is the mininum cost of transforming string x into string v. Given 0
<k <tm < pn, we can conclude that 0 << a < 1. An interesting measurement is the
maximum error level, denoted as ¢*. Without ¢*, an error level that is too high would
lead to almost all text positions matching the pattern. Therefore, we are interested in
allowing errors only up to a*. Sankoff and Mainville conjectured that a* = 1 - 1 / Vo for

optimal approximate string matching, according to [Navarro01].
3.2 Approximate String Matching Algorithms
3.2.1 Dynamic Programming

In 1980, Seller incorporated edit distance in dynamic programuning for the first time
[Seller80]). Dynamic programming is the oldest non-brute force approach ol approximate
string matching. In its purest form, dynamic programming is less competitive than some
of the other approaches, but it has demonstrated tremendous flexibility and adaptability.
In {act, many algorithms take advantage of this fact and combine dynamic programming

with other advanced techniques to achieve better results. Dynaimic programining can

-14 -

attain a worst-case of O(kn) and an average case of O(kn / Vo). We examine a hybrid

dynamic programming approach in chapter 5.

The principal idea of dynamic programming is to break the problem down into its basic
blocks, resolve the sub problems non-recursively, and record the results in a table
[Weiss02]. In this case, we usc a matrix Cy .0, to kecp track of results obtained by
solving sub problems, where C,, represents the minimum edit distance to convert P[i.m|
into suffix 77j..»]. Therefore, at text position ; where C,,; £ k, we can find the end of P in
7 with, at most, & errors [Navarro00]. We initialize C;s =/ and C,;= (0 wherc i represents
the current position in P, and ; represcnts the current position in 7. We then construct the

remainder of matrix (7 by filling the content with calculated values of & using

C,= ifP,=Tthen Cuy

else 1 + min(Cy, Coryor, Cipt)

After the matrix is constructed, we can scan Tor Cy, to see if its value is less than k for a
match. Figure 1 shows the dynamic programming matrix for patiern meeain in lext
mceayne using edit distance. Bold entries show matching text position j where £ <= 2 for

pattern length / = 6. Matches with 2 or fewer errors were found at position 4, 5, 6, and 7.

-15 -

weg 1 o2 Lo T o s e | o]
e m c C a 5 i} ¢

=l a6 00 00 1] 0o a0 0n 0o

{ mn 01 o a3l 3 0} a1 0l Qi

2 c G2 01] 01 03 0z 02 2

3 ¢ 03 0z Ul 00 a1 0z 03 03

S a 04 03 (s 01 0Q M 03 a3

5 i 0% 04 3 0z 0i 01 02 03

é n 08 05 04 03 02 02 01 02

Figure 1: The Dynamic Programming Matrix

Since the min() function requires just the last row to perform the comparisons, we only
need to kecp the previous row for all purposes. This drastically reduces the space
requitemcnt from O(mn) to O(r7). The matrix, or part of the matrix, can be reconsiructed

by using a technique called trace back. It proceeds backward from C,,. to Cyp.

In 1983, Ukkonen cleverly observed the diagonal-wise monotonicity attribute of the
dynamic programming algorithm, which is that adjacent cells on any downward lefi-to-
right diagonal of the matrix may increase by one, and the values never decrease in that
direction [Ukkonen83). He proposed a cut-off heuristic that stops the calculation as soon
as the value of £+ 1 is obtained. This significantly improved the run-time from O(mn) to
Q(kn). The diagonal-wise monotonicity implies that only the first £ + 1 transitions on
each diagonal of the matrix need to be found. This observation has provided an

important framework for a variely ol extensions.
3.2.2 Automata

Automata-based algorithms have also been studied at length throughout the years

[Ukkonen93b]. Although the automata approach has a remarkahle theorctical worst case

-16-

run-time of O(n), its practicality 1s largely limited by its immense space and time
requirements [Navarro0O1]. In practicc, automata are usually implemented with a
transition table, whose primary task is to keep track of state information. A transition
table is two dimensional, represented by & rows and m columns., The rows represent the
number of errors found and the columns represcnt malches of P found in 7. To ease a
transition table's space requirements, Ukkonen suggested adapting the coneept of cut-off
heuristic from dynamic programming. The heuristic essentially specifies that the states
of columns larger than £+ 1 can be replaced by a column of £+ 1. He conjectured that

only up to 3k / 2 columns need to be computed.

3.2.3 Bil-parallclism

Baeza-Yatcs and Gonnet introduced a new concept called bit-paralielism [Baeza92]. Tn a
new exact string matching algorithm, they took advantage of the intrinsic nature of bit-
parallelism in computers by using the shiff-or opcration and storing statc information in a
computer word, which is typically 32 or 64 bits. In their papcr, Baeza-Yatcs and Gonnet
demonstrated a fast approximate string malching method using their shifi-add algorithm.
By taking advantage of the parallelism of bitwise operations, they werc able to reducc the
number of operations of a chosen algorithm by a factor of the size of a word. The shifi-
add algorithm forms the basis for the {amous agrep program on various operaling

systems such as UNIX, Linux, OS/2 and Windows.

Bit-parallelism is not just an approach in itself. It can be implemented by extending
existing approaches such as dynamic programming and automata. Since it is largely

based on a computer word size, w. the approach works best when pattern length is less

-17-

than w. For pattcrns with length greater than w, m / w words can be combined to simulate

a large word at the cost of some overhead.

3.2.4 Filtering

Filtering is a relatively new approach that emcerged around early 1990s. The technique
allows for a large chunk of text to be abandoned quickly, using cxact string matching
techniques such as Boyer-Moore. The remaining (ext represents areas with potential hits
for the pattern, allowing up to & errors. The performance gain is possible because Boyer-
Moore-like algorithms have sub-linear expected time. Although the filtering technique
can quickly disqualify a large area of lext, it is unable to pinpoint the exact positions of
matching occurrences. Therefore, a verification process must be employed (o determine
the matching locations once the filtering phase is completed. This verification process
cun be coupled with other techniques we have seen thus far, such as dynamic
programming or automaton-based lechniques. Since the verification area is usually small

and negligible, the exact choice of verification techniques is rarely of concern.

In filtering, there are two critical measurements: filfering speed and filtration efficiency.
Filtering speed refers to the run-time of a filtering algorithm, while filtration efficicncy

refers to the accuracy of its filtration results.

a = the number of actual matches

p = the number of potential matches reported by the filtering algorithm

Filtration efficicncy =a/ b

- 18 -

Due to high overhead, the use of filtering techniques is justifiable only for a modcratcly
or extreinely long pattern. According to Navarro in [Navarro0l1 |, filtering technigues do
not outperform pure dynamic programming and automata for m < 100. In practice, given
its complexily and overhead, the valuc of m needs to be much higher in order to reap

bencfit from the filteting approach.

Another interesting aspect about filtering is it 1s highly sensitive to changes in error level,
. As o increases, filtration efficiency decrcases and filtering speed reduces sharply. As

previously mentioned. the rule of thumb for maximum filtering error level is:

a=1-1/vVo

In practice however, o must be much lower than that to have meaningful filtering result.

3.2.4.1 Filtering History

In 1991, Jokinen, Tarhio, and Ulkkonen observed a simple fact. In a block of text of
length m, allowing & errors, therc must be at least m - £ matches, regardless of the order
ol characters [Jokinen96]. They devised an algorithm that slides a window of length m
over the text and keeps count of characters that match the pattern. If the count is greater
than or equal to m - £, then the text arca is verified with a conventional procedure such as

dynamic programming. The algorithm only works well for a low error level [NavarroO1].

- 19-

In 1992, Wu and Manber presented a simple concept that states if a pattern is cut into &£ +
1 pieces, al least one of them must be an cxact match [Wu92|. The proofisifall £+ 1

pieccs had an error, it would require £+ 1 operations to transform string x into string .

In 1998, Navarro and Baecza-Yates devised a new technique called hierarchical
verification [Navarro98b]. The pattern continues to split in halves until it is small
cnough to be implemented with a non-deterministic finite automaton (NFA4). After the
splits, the smallest piecc is verified against . If a match is found, or if the error count is
less than £, the larger piece immediately above it is checked and the count of mismatches
is recorded. As soon as the count of mismatches is greater than £, the surrounding text
can be abandoned. This reduces unnecessary verification because smaller chunks of

strings are used to determine the validity of a larger text area.

In 1990, Chang and Lawler introduced two ncw filtering techniques: LET and SET
[Chang94|. LET stands for Linear Ixpected Time and SET stands for Sub-linear
FExpected Time. The LET technique traverses the tex(Hnearly and keeps track of all
matching substrings. Then, it concatenatces the & longest substrings to obtain the total
length, /. Tt/ is less than m7 - £, then the text area does not match the pattern and can be
abandoncd. Otherwise, the text area can be examined using dynamic programming. LET
runs in O(x) time, while the dynamic programming verification can take up to O(kn)

time.

SET is similar to LET except the text is split into fixed blocks of size (m - k) /2. The

check for & contiguous strokes starts only at block boundaries. Since the shortest inatch

- 2() -

in an area is of length #1 - k, at least one of these two blocks is always contained in a
match. Otherwise, a block is discarded hecause no matching occurrence can contain it.
The algorithm is sub-linear because a block is discarded after O(k log,) comparisons on

average [NavarroOl1].

In 1992, Ukkonen presented the g-gram approach, an idea similar to that of Chang and
Lawler's LET approach for on-line searching [Ukkonen92]. Ukkonen divided the pattern
P into hlocks of substring called g-grams of fixed-length ¢. Thus, a pattern of length m
hag m - ¢ + 1 overlapping g-grams. 'The technique kecps count on the matching g-grams.
m - g + 1 grams must appear in any occurrence to have a potential match. Similarly, a
verification procedure needs to be run once we filter oul (ext arcas in which it is
impossible to have matches allowing up to & crrors. It is often referred to as n-gram

filtering.

-21-

Chapter 4

SUFTIX TRELES

4.1 Background

The suffix tree of a string S is a tree-like data structure that represents all suffices of S.
The suffix tree for S[1..»] contains » leaves where the paths from the root to each leaf
represent all substrings ol S[1..»], S[2..n], S[3..n], S[4..7], ..., S[r]. This important data
structure plays a pivotal role in many advanced string algorithms and offers solutions to
many problems that were once thought intractable in linear time. As an example, a string
ababb has the suffices of ababb$, babb$, abbf, b8, £S, and §. The sullix tree for

ababb$ is shown in Figure 2.

Figure 2: The Suffix Tree for abubbd

The suffix tree of string S can be constructed in O(#) time, where # is the length of 5.
Thereafter, any pattern £ of length m can be located in O(m) time, at a space requiremcnt
of O(no) where o = |Z], by traversing the (ree from the root node. When we reach the end

of the pattern, a match is found. If we reach a leaf node before the end of the pattern,

_22.

then no match is found. The O(m) search time is a remarkable achievement not possible
with Knuth-Morris-Pratt or Boyer-Moore algorithms. The Knuth-Morris-Pratt and
Boyer-Moore algorithms preprocess the patierns in only O(m) time, bul subsequent
searches of (he patterns necessitate a scanning of the text requiring O(s) time. The suffix
tree provides a superior search time for large text. When equipped with the lowest
common ancestor (/ca), a suffix tree can be used to determine the longest common prefix

shared by two suffices in constant time.

4.2 Tlistory

In 1973, Weincer [Weiner73] introduced a linear time suffix tree construction algorithm
that was dubbed "algorithm of the year 1973' by D. Knuth. The algorithm adds
subsequently longer suffices to the tree. In 1976, E. McCreight devised a more efficient
linear time construction by adding subsequently shorter suffices to the tree
[McCreight76]. More importantly, McCreight introduced the concept of a suffix link that
has become rudimentary in suffix tree algorithm development. Although McCreight's
algorithm is efficient, it suffers from the same limitation faced by Weiner's algorithm,
which is the entire string needs to be read before the suffix teee construction can begin.
Thus, both algorithms are not suitable tor on-line applications. Tn 1992, E. Ukkonen
presented an algorithm that adds subsequently Tonger prelixes of the string
[Ukkonen93a]. The algorithm appends new characters to the suffix tree as they are being

rcad. ‘This makes it the first on-line linear time suffix trec construction algorithm.

-23 -

Perhaps the most exciting fact about suffix trees is they serve as the bridge between exact
string matching and approxtmate string matching [Gusfield97, page 89]. We will study

this in depth in section 5, when we probe into a hybrid dynamic programming algorithm.

4.3 A Suflix Trie and Suffix Tree

We now look at a more fundamental suructure called suffix (rie. Trie, from the word
refrieve, is a tree-like data structure that uses cdges (o represent characters ol string
suffices. Iivery path from the rool to a leal represents a suffix of the string. Every suffix
of the string must be present in the trie. A tric can be and is often used as an automaton
for string pattern matching [Stephen94]. The trie for a sample string caccao$ is shown in
Figure 3. The shortcoming of this simplistic data structure is it stores every character of
the string suffices. A string of length n has # suffices with a total length of 1 +2 4 3 + 4

.. +n=n{n+1)/2=0(n") characters.

Suffix trees are also known as compressed suffix tries or Patricia (Practical Algorithm to
Retrieve Information Coded in Alphanumeric) trees, because they are more space-
ellicient than suffix trics. The most noticeable diffcrence between suffix trie and suffix
(ree is the latter compresses all i(s unary paths (nodes with only one child) into
transitions, which are also known as edges. The suffix trec for string caccao$ is show in
Figure 4. In this case, we scc a reduction of more than fifty percent in the number of

nodes, from 25 to 11.

<24 -

Ie/ \‘K;N\\‘L e
//f/ a\ D\ \\ \s\n_\‘
p U /a/ \ \.\‘\ e \\‘
- #> N

/./a }{/&] x ‘e
AvE
; '
;o
b b

/
L

»

/

Figure 3: The Trie for caccao$

re \ ~ ~
& % o5 s
. ,/’ . .\ ; \\'\
/1 /f‘\\ . *
c?b$ t ccgo $ O@i
J \ J ‘e
Y
7 \\\
ccgﬁa&. ;
d .

Figure 4: The Suffix Tree for caccaod

In practice, the space requirement for a sullix tree would grow quadratically, il each
transition stores the substring it represents. A much more efficient approach is to have
the transition rcferencing the starting and ending positions of the substring in S. Since
cach transition only requires lwo integers (o store the starting and ending positions, this
technique reduces the space requirement from (#*) to O(#). When traversing down a
suffix tree fromm its root, the search for a substring could end up n the middle of a

transition. Take Figure 4, for instance. To search for the pattern ace, we slide down

_25 .-

{ransition ¢ from the root and end n the middle of transition ccaod. We are said 1o have
reached an implicit state. In other words, transitions that represent more than one
character inherently contain implicit states. On the other hand, if our search cnds at a
node, we are said to have reached an explicit state. For example, searching for a, ¢,

accae$, or aod in the above suffix tree would end at explicit states.

There are two types ol nodes in a suffix tree — internal nodes and leaf nodes. An internal
node represents an cxplicit state, where two or more transitions branch out. Therefore,
cach internal node must have at least two child nodes. Leaf nodes do not have children.
The path from the root to any leaf node represents a suffix of the string S of the suffix
{ree. Thereforc, the suffix tree for a string of length # has # leaf nodes, if it is an explicil

suffix trce. The tree also has a maximum of 2# - 1 nodes.

In 1976, McCreight [McCreight76] introduccd the use of suffix links. Every internal
node, with the exception of the root node, must have a suffix link. The suffix link serves
as a shortcut to jump from one branch of the tree to anothcer, during trec traversal. The
concepl is best illustrated with an example. In Figure 5, prefix ca points to its next
longest prefix a. Prefixes @ and ¢ point to their next longest prefix, an empty string
represented by the root node. The significance of the suftix links is they speed up the
traversal of the suffix tree and malke the linear time construction possible. We discuss

suffix link implementation and its role in suflix tree construction m section 4.4.2.

-26 -

R A R
z,"/ L ™, S
, 3 N e
808 & coabs O
v
i y .

Figure 5: The Suffix Tree for caccaod with Suffix Links

In his paper [Ukkonen93a], Ulkkonen presents the implicit or explicit states with
reference pairs {s, (k, p) }. State s is some explicit state prior to state r, (, p) represents
the substring that spells out the transition from s to 7, & is the index to the first character,
and p is the index to the last character of the transitional substring. In other words, state s
and substring (p) transition to state ». or example, if state s is ca and state » is caccao,

the transitional subslring ccao is presented as (2, 5).

4.4 Suffix Tree Construction

Here we present a suffix tree construction algorithm based on Ukkonen's algorithm
[Ukkonen93a]. Our initial implementation in JAVA is based on the code sample by
[Nelson96]. We chose to focus on Ukkonen's approach for its on-line attribute as well as
its linear time construction efficiency. According lo Gusfield [Gusfield97], Ukkonen's

approach is also more concise and easicr to understand than the other approaches.

-27 -

4.4.1 Structures

Since JAVA is an object-oriented language, the main components of our suffix trce are
defined in classes. The four primary classes are Nodes, {ransition, ReferencePair, and

SuffixTreel.

The Node class defines the nodes in the tree. Each node has a unique identifier and a
reference to its parent node. Every internal node of a suffix tree has al least two
transitions and the first character of each outgoing transition is guarantecd to be uniquc
for the node. Thercfore, each node could have up to o branches, where o is the size of
the alphabet. It maintains a list of child nodes to which it is a parent. Every internal node
has a sufTix link that references to the next longest suffix of the string the node

represcnts.

The Transition class defines the transitions in the trec. Each transition has a start node
and an end nodc. It has the starting and ending positions for the substring it represents.
Transitions are kept in a hash table at the sutfix tree level for efficiency. Each transition
in the hash table is uniquely identified by its hash key, which consists of its starting node

identifier and its begtnning character.

The ReferenccPair class, as explained in section 4.3, delinces the current state of the suffix
tree. Ti has a state and a (%, p) pair that gives the beginning and ending indices of the

substring after the explicit state. When the state is explicit, meaning we are in a transition

-28 -

that represents only one character, £ is set to be greater than . When the state is implicit,

meaning we are in a transition that represents two or more characters, p is greater than £.

The SulfixTree2 class defines the suflix tree data structure. It contains the main string S
referenced by the Transition objects, a hash table to keep track of the Transition objects,
and an array to kecp track of the Node objects. Most importantly, The SuffixTrec?2 class

implements Ukkonen's algorithm to construct a suffix tree on-line in O(#} linear time,

442 Building a Suffix Tree

Because of its on-line applicability, Ukkonen's suffix tree construction algorithm was a
monumental achievement. A suffix tree of a string S is built incrementally as cach
character of §'is read. For example, the suffix tree ST for string abc is built by adding
newly read characters to S7 one at a time, in the order of ¢, b, and ¢. Another way (o
took at it is that §771..7] is built on top of $7{1../-1|, which in turn is built on top of

ST11..i-2], and so on.
4.4.2.1 Appending a New Character to the Suffix Tree

When appending the next character to a suffix tree, there arc three possible scenarios. In
the first scenario, we read in a character ¢ and walk down the tree from the root, trying to
update all suffices with character c. We end up at an inlernal node (explicit state) and
find no transition that starts with ¢. As a result, we create a new transition to branch out

of the node. Figure 6a shows the initial case of adding a character ¢ to the root node.

-29.

I

Figure 6a: Adding c to the Root Node

Whencver a new (ransition is added, a new nodc is crealed for that transition. Figure 6b
shows another example of the first scenario. A new character b is read into 4 (ree that
ends with ¢, which causes the tree to grow from ...c to ...ch. We walk down the trce and
update the suffices to ...ch. In order to present the suftix ch of ...c¢h string, we add a new
transition for » out of the ending node of transition ¢. Similarly, to present the suffix b of

...ch string, we add another transition for » oul of the root node.

Figure 6b: Adding b to a Suffix Trec

In the sccond scenario, we read in a character ¢ for the suffix tree of some string 5. We
traverse down the tree to append the new character to the suffices. At some state R, we
find the new character ¢ is already defined by an existing state (implicit or explicit). In
this case, we do not do anything since a transition alrcady exists for that state. TFor
instance, Figure 7a shows a new character ¢ is read into the suffix tree [or string ...ac...a.

The resulting string is ...ac...ac. There is no need for any aclion since the suffix

ac is already defined by an explicil state. Figure 7b shows the same scenario, except the

suffix ac is represented by an existing implicit state.

Figurc 7a: An Explicit State Already Exists for Suffix ac

Figurc 7b: An Implicit State Already Exists for Suffix ac

In1 the third and last scenario, the traversal reaches an implicit state (in the middle of a
transifion) and the next character is not found. In this case, we need to first split the
transition by creating a new intcrnal node (explicit state), then append a new transition to

represent the new character. Figure 8 shows the scenario of adding caoe to the sub tree,

0/.] 0
S AN

Figure 8: Adding cao to The Sub Tree by Splitting and Appending Transitions

1

-3 -

4,422 Once aLeaf Node Always a Leat Node

If we built the suffix tree for string aga by adding the next character one at a time, it takes
three iterations to complete the construction. Figurc 9 demonstrates the point. Note that

the ending index of the transition is updated each iteration.

o /ﬁ [0 “I L':)’
I e e
V4 / e
aj@’.‘o) — aa/ﬂ{.?; — aaa@a/(OA}

< v ~
1 - i o W

Figure 9: The Position of the Ending Character
is Updated in Each Iteration

Such inefficient updates would be impractical for large suffix trces. In fact, in every
iteration, we could potentially update up to 7 transitions, where / is the position of the next
character read. Ience, our construction algorithm would be limited to O(r*). We can do
better by avoiding unnecessary updates to the open transitions (last transition prior to the
leaf nodes). We mark the cnding character of [caf nodes with «o to signify the transition
may grow to cover the entire length of the suffix. At the end of the construction, we can
easily update the transitions' ending positions to 7z in O(#) time. Since a leaf node marks
the end ol the fransition, oncc a node is created as a leaf node, it remains a leaf node.
This supports the third scenario of appending new characters to the suftix (ree discussed

in scction 4.4.2.1. Figure 10 illustrates this point.

-32-

0/. 0
aaaag (0,°)——w aaaaz (0.4)

/

1 1

Figure 10: The Ending Index is Updated I'rom o to # afterward

4.42.3 Improving Construction Time with Suffix Links

Even with the improvement discussed in section 4.4.2.2, the construction time is still
O(»?). This is becausc we havc to traversc up to the root and down another branch in
order to update the next suffix. Along the way, we examine all branching transitions.
We could potentially search for up to i ending transitions, where / is the current position
read. Dotted lines in Figure 11a illustrate this inefficient traversal. From point 1, we

traverse up to the root and then down to point 2.

¢ ; / ;
Point 1 . \.
/ 5,
,
cedod 0‘?
a/ »

Figurce 11a: Traversing Up the Root and Down another Branch

-33-

A suffix link allows for a shartcut from point 1 to point 2, as illustrated in Figure 11b.

/"f Oi!‘L g “\. k\“_

W5y ks

a L *,
[y “ /
Paint 1 ; » w »

i

z[j N
ccglos 5%
\

[\

Figure 11b: Traversing to the Next Update Point with a Suffix Link

Each internal node of a suffix tree has a suffix link that references the next update point.
Basically, a suffix link points to the next longest suffix of'the string represented by the
node. For cxample, if an internal node represents ba, its suffix link points to a. As
internal nodes are created, we set the suffix link ol the last update point to reference the
current update point. This ensures the suffix links arc kept up-to-date in scenario 3

described in section 4.4.2.1. Figure 12 demonstratcs this process.

.
¥ a
N,
+ .-
o T,
l‘ \'
> M| Hew Moda =
- Cuirent
I Y
FAR
:,“,,\ ; 5

' '/’\\ ’4&
/}3 a ﬁkb e {}3/ a};ﬁ e
e .

e s 4
a}i‘{) g e x / g
7 ™ S : ,
s),wh .

/:‘
L]
7 - ‘ %, . ’ g
A ?5 . = Ny 5
, N N tlew Mode = 3 N
] © o Currant) A

A Lpdate Paist RN Last Update

7) ¢ N Fouy
; k3 i A

A

\o

Update Point

Figure 12: Suffix Liuk Update

-34 -

4.42 4 The Main Suffix Tree Procedures

Ukkonen's algorithm consists of five main procedures: updaie(), canonize(),
testAndSplitl(}, splitTransition(), and addStringToTree(). We discuss cach of them in

detail.

4.4.2.4.1 The splitTransition() Procedure

The splitTransition() procedure splits a (ransition into (wo by inserting a new internal
node at the position where a new transition will be attached. This handles the third
scenario described in scction 4.4.2.1. The concept of splitting a transition is simple, but
the implementation could be a tricky one, since the old node must be updated and the old
transition must be removed from the hash table and then added back to the hash table

with a new hash key. Thc pseudo code for the splitTransition() procedure is shown
below. Trom this pseudo code, it is clear that once a leaf node is created, it remains a Icaf

node.

procedure splitTransition{fransacticon A, ReferencePair rp) |
Node 0 (active node) = Internal node that represents rp.state
Remove node 1 as the child node of node 0
Remove the old transition A because it will have a new hash key
Croate a new transition B Lo branch oul of node 0
Add transition B Lo the hash table
Create a new node 2 al the end cf tTransition B
Assign new nedo 2 as a child of nede 0O
Uipdate transition A's first char position
Update transition A's start noce 1d

Update transition A's hash key

-35.

Add transition A back to the hash zablic
Lpdate node 1's parent to be the new node 2
Add node 1 as the new node 2's child

Return newly created state {(node 2,

4.4.2.42 The fesiAndSplit() Procedure

When adding a new character to a suffix, we use the testAndSplil) procedure Lo
determine if scenario 1 or scenario 3 applies. The procedure splits a transition, if’ the

conditions of scenario 3 are met.

procedure testAndSplit (ReferencePair rp, char t) |
// rp represent the substring in the suflfix tree we are examining
endpoint = null // indicate whether we have reached an end point
activencde = null // the current aclive node in
// the sulfix tree to work on

it rp is an implicil state (we are in the middle of transition 7)

if £ = rp's character
endpoint - true // scenaric 1 in section 4.4.2.1
activenodo = rp's state

else
endpolnrt = faisc // scenario 3 in secction 4.4.2.1
activenode = splitTransiticon(transition T, rp)

else 1f rp 1s an explicit state {(we are at an irternal node)
if Lransitbicn T is noTt found
endpoint = failse // scenario 2 in section 4.4.2.1

activenode = rp's state

.36 -

else
endpoint = true // scenarioc 1 in scction 4.4.2.1
activenode = rp's slate

relurn {endpoint, activenocode)

4.4.2.4.3 The canonize() Procedure

In Figure 13, the string cace is presented by reference pair (2, (1,3)), where 2 is the state
and (1,3) is the index pair for the substring acc with a zero-based positioning. Given the
string cace, the procedure to derive (2, (1,3)) is called canonization. Basically, we try to
find the deepest internal node (closest to the leaf node) that represcnts the substring in the
suffix tree. This can easily be done by traversing down from the root, character by
character, through all the transitions in the path. However, such traversal would greatly
impair our performance, because we would examineupto 1+2+3+4+ ... +n=nn-
1)/ 2= 0(n*) characters in n iterations. Instead of examining one character at a time, we
slide down the transition by the length of the substring (transition length = ending index -
starting index + 1). For example, in Figure 14, to canonize substring ababbaabc, instcad
of examining all nine characters, we slide down the path by subtracting the transition
length along the way. As a result, we perform only three comparisons to derive the

canonical form of the same substring.

-37-

Figure 13: Reference Pair (2, (1,3))

"

lemfth=3]

2 o
P

aabé
{Enﬁhﬂu

Figure 14:

The canonize() procedure follows:

procedure cancnize (ReferencePair rp)

if

(tp.k <

rE.p)

Sliding Down by Transition Length

// 1f we are not at an explicit state

look for the transition T that represents our slale

whi.e

{(T's length >

slide down

=> update rp's k with nexl transitlon's [irsl

=> updale rp’'s slate Lo T's end node

T = the naxt

rp's span)

Lhe length of

Transillon

-38 -

the lransition by updating rp

(starl from

i

index

s end node)

4.4.2.4.4 The update() Procedure

The update() procedure essentially wraps up the previous three procedures. The
procedure represcnts what is done when a new character is read and appended to the

suffix tree. It outlines what is done when ST(1..» - 1) is transformed into ST(1..7).

update (rp, last char}{
old active node = -1
{endPoint, activelNode) = testAndSplit{rp, last chax)
while {(not endPcint)
add a new transilicn ' Lo activeNode
add T to the hash Labkle
add a new end node 3 to T
add node 2 as a child of activeNode
if old active node » -1

set oid_active node's suffix link Lo polint to
acl iveNaode

oid active node = activeNcde
1f rp.slalte is already al root
we are done processing this iteration
advance rp's k by 1
else
follow the suffix iink of activeNode
continue processing
=»> rp.state = rp.state's suffix link
cancnize(rp} // canonize Lhe new aclive point

(endloint, activeNode) = testAndSplit{rp, lasl_char)

4.4.24.5 The addStringToTree() Procedure

The addStringToTree() procedure shows the on-line property of Ukkonen's algorithm.
Note that in this procedure, we invoke the update() procedure once for each character as
we scan the text string left (o right. At the end of an iteration, the end point becomes the

next active point.

Procedure addStringloTree{String S){

root = now Node

activePcint = new ReferencePair

activePoint's state - root

actlvePoint's first char = 0

activeloulnt's last char = -1

// bulld STree(Ti->)..5Tree(Ti) by adding the new char to STree
i=20

while (i < [S])

endPoint = update{activePoint, 1)
activePoint = endPoint
activePoint's p = 1 // advance the reference pair's p

canonize (activePoint!

4.4.2.5 Explicil versus Implicit Suffix Trees

Most of the suffix trees presented thus far have a unique ending marker 3. The unique
ending marker resulls in an explicit suffix tree, where the paths from the root (o all leal
nodes represent all the suffices of the string. Without the unique ending marker, a suffix

which is also a prefix to other suffices does not terminale at a leaf node. TInslead, it ends

- 40 -

in the middle of a transition. The resulting tree is called an implicil suffix tree. For
instance, the suffix tree for aba and gha$ are show below. In the suffix tree for aba,
suffix ¢ is implicitly represented in the tree. It does not terminate at a leaf node. In the

suftix tree for abad, suffix af is explicitly shown (I'igure 15).

ST("aba") ST{*ahas")

k.4 ,QNMM
$
o5 *B? /(ﬁf b\a\$ -
J » ba S

' »

Figure 15: Implicit Suffix Trce versus Explicit Suffix Tree

Leaf nodes contain pertinent information about suffices such as their starting positions,
node depths, and node identifiers. Since not all suffices of an implicit suffix tree

terminate at leaf nodes, implicit suffix trees do not contain some of this information.

4.4.2.6 AnExample of Suffix Tree Construetion

Figure 16 shows the construction of a suffix tree for caccao$. We chose the string
caccao$, because it covers all the scenarios we have mentioned. Dotted lines indicate

suffix links.

=41 -

45 3T paccach’y 1) 8T{ cagcand’!

t ‘ P
,,/" ¢ ”
casphng eagEans GN

1‘ 1 2.

28} BT{ cageans {el: ST{ cageans™;
.)

L
s m/’ \\ /*\
: }/ adéﬂ\qﬂ P
.) .

I

;o o ?ﬁ” 2
accr ol C/:f.d@ acteo

1

{3a; ST cacgaAnd ') o
” 5

.f;/’\\\\ :1 \\A

. acc,\xtc\sr; I / actaas

- RN

cd;; \ﬂ eadh y
k) \ ? kil t
4‘} } Y >\

cc;-'ﬁ/ 3 5,
/ m/yﬁS BR
. 1 v g‘

da: §Ticaceqns’ s 6
. N, ~
S v N0
¥l v [:
fad ; ﬂ/ p?\%

A e 9{ g
5 A

Figure 16: Suffix Tree Construction for caccaod

-42 -

4.5 Lowest Common Ancestor

[n this section, we are intercsted in finding the Tongest common prefix of two suffices in a
suffix tree. This can be achieved using a very powerful tool called lowest common
ancestor {{ca), which was introduced by D. Harel and R. E. Targan in 1984 and improved
by B. Schicber and U. Vishkin in 1988, according to Gusfield |Gusfield97, page 181]. In
Figure 16 step 6, we have a suffix tree for string caccaed. With the root of a suffix tree
being the highest node in the tree, the /ca for node 2 and node 8 is node 7; the /eq for
node 1 and node 4 is node 3. A naive algorithm can be used to (raverse up the trec from
each of the two nodes in question until they both meet in O(») time. In this section, we
will learn how to locate the /ca of two nodes in the suffix wee in constant time, O(1),

independent of ».

The lca preatly extends the strength of many string algorithms. Tt is employed in
conjunclion with other techiniques to resolve many advanced problems in linear time,
some of which were, until recently, thought unattainable in linear time, including the

scarch for the longest common substrings and the maximal palindrome problem.

Qur lca algorithm presented here is based on the explanation in [Gusfield97]. Section 4.5
and 4.6 are in essence an excerpt of chapter eight of [Gustield97], with our own samples

and some additional notations to complement Gusfield's.

4.5.1 Binary Tree

To understand the suffix tree /ca algorithm, we must first take a look at an interesting
property of a complete binary tree. In a complete binary tree, each non-leaf node has two

43 -

children, and the total number of nodes, 77 = 2p - 1| where p is the number of leaf nodes in
the tree. The path from the root to any leaf node is d = log, p decp. Figure 17 shows a
complcte binary trec where each node is labeled with its in-order number. The binary
representation of each node's in-order number is shown in parentheses. What is unigue
about a complete binary tree is each node's in-order number in binary format actually
describes the path from the root to the node. In fact, we will regard this in-order number
as the node's path number and its binary represcntation as the node's bit path. We need &
+ 1 bits for each node to store its bit path. The root always has the left-most 1-bit set and
padded with d zeros on the right. For example, a complete binary tree with =5 has a

root node with 100000 as its bit path.

Bi000; gy,
7 \\\‘*\.
s s
- T
o .\\““"\
4 {0 2 e,

S S
/ - /“/ \‘w.‘

-~ e
~

- \‘ 4 L1190 ™
i & £ (0116 R o \
A /N

/ AR
.r/ Vo \ VAR .f/ .

TEOGTY 3IBM B (80T T{HUIY S(I00n 11{019 13 {110 LERRERTH:

Figurc [7: A Complete Binary Tree with the Nodcs' In-Order Numbers Shown

The ith bit (from the lctt) of the bit path of some node v represents the ith edge from the
root to v, Ifthe bit is off (0), it means the edge branches left from its parent node; if the
bit 1s on (1), the edge branches to the right. For example, node 10 in Figure 17 has a bit
path ot 1010. Reading the bit path from left to right, it translates to a right edge followed
by a lelt edge. The position of the [ast 1-bit signifies the node’s height in the binary tree.

For nade 10, the last 1-bit is in the second position from the right, which indicates that

- 44 -

node 10 has a height of two. Note in Figure 17 leaf nodcs always have a height ot one

and their right-most bit is always 1. This inherent property of the bit path facilitates the

search for the lowest common ancestor of two nodes in a complete binary tree. Given

two nodes, we find the difference between their bit paths by performing a bitwise XOR.

For example, the XOR for 0101 (node 5) and 0111 (node 7) is 0010. The left-moslL [-hit

position, &, is three, counting from the left. That indicates the two nodes start to diverge

at depth three. Prior to the divergence (the first and second bit), they share the same path

from the root to node 6, which has a bit path of 0110. The algorithm to locate the lca 1s

as {ollows:
1. XOR the bit paths.
2. Shift the bit path of either one of the nodes to the right by « - & position.

3.

4.

Set the right most bit to 1.

Shift the result to the left by d-k position.

In our example with node 5 and node 7, and with =4, the stcps arc:

0101 XOR 0111 =0010, k=3
0101 >>d - £= 0010
0010 => 0011

0001 << d-k=0110=nodc 6

Here is another exaniple with node 9 and node 13, and d=4.

1001 XOR 1101 = 0100, k=2

1001 >> d - £= 0010
0010 => 0011
0011 <<d-k=1100=node 12

- 45 -

4,52 Mapping a Suffix Trce to a Binary Tree

Before we can apply the binary tree /ca technique, we have to map our suffix tree nodes
to a binary tree, while retaining some of the nodes’ ancestry information. We start by
traversing through the suffix tree depth-first (pre-order) and assigh a number to ¢ach node
in O(rn) time. Figure 18 shows the suffix tree for caccaod with depth-first numbering, as

well as the binary representation of the numbers.

ST{*caccaod” with depth-first numbering
1 DDU?

& W

2,0&10 f 7 Gﬁf

‘ 101(‘ 11, 1311
c_§0$ cc/:(o$
3.0011 d% OWO

\ 8 1000 49,1001

M,

ccﬂo$ GQ
L_ £ 0104 df &OM@‘\l

“‘\-\

Figure 18: Suffix Tree for caccao$ with Depth-first Numbering

Let £ be (he depth-first number of some node and let A(k) denote the position of the right-
most 1-bit of k, counting from the right. For example, #(4)=3, h(8)=4, and A(3)=1. We
can calculate the /2 vahie of each node during the assignment of the depth-first id.

Thercfore, this can be accomplished in O(r) time, as well.

Next we define that for some node v, let /(v) be a node w with the maximum A(k) value of
all nodes in the sub tree of v, inclusive of v. In other words, the & valuc ol node v has the

most zeros on its right end amongst its offspring and itself. Since I(v) includes the entire

- 46 -

sub tree of v, we can deduce if v is an ancestor of node w, then 2(/(v)) >= h{I(w)). Nole

there is always a w whose height, A4, 18 uniguely the maximum in the sub tree of v.

Next, we group the suflix tree nodes into runs so each node in a run has the same /(v).
For cxample, Figure 19 shows how the suffix tree for caccaod can be organized into
various runs of the same /(v). Such organization ensures that /(v) is always the deepest
node in that ran. This (act is crucial to the f(v) computation using a bottom-up traversal
on the suffix tree in linear time. We start by setting the leal node's X(v) value to the leaf
node itsclf, As we move upward, if the node ID of the child's J(v) is grcater than the node

ID of the parent's I(v), we set the parent's (v) to the child's I(v).

006? i
1 x‘\. |
o .
H—W;"E/I $\\ Mv$\
001" | Vo e
IR "R e T = !
0111 ® : f\. "y

B mee e s e e e Ao e 4 e o

The Fartition of ST caccang™) into Eight Runs

Figure 19: The Partition of the Suffix Trece for caccaod into Fight Runs

The fact that f{v) has a unique maximal % value is important, because we need to map the

I(v) node of each run to a binary tree node, as illustrated in Figure 20,

-47 -

=
VA

A
I IR AR A

M gape 160+ 1

The dapping of Each Run t0 a Complete Binary Tree

Figure 20: The Mapping of the I(v) Node of Each Run to a Complete Binary Tree

Next, we want to find the leader of each run. This is the node in a run closest to the root.
In our example, the leader of the run containing node 1, 7, and 8 (depth-first id's) is node
1; the leader of the run containing node 2 and 4 is node 2; the leader of the run for the
remaining singular runs are the individual nodes themselves. Being able to locate the
leader enables us to find the next run above the current one. The parent of the leader of
each run belongs o a separate run, or elsc the parent would have been the leader of the
current run. Without the knowledge of the lcader of cach run, we would have to traversc
up the tree and examine the 7 value of each parent node in order to locate the leader.
Fortunately, we can find the leader and store them in a hash table during our bottom-up 7
value computalion. We identity node v as the leader when node v and the parent of node
v do not have the same [value. In our implementation, we store the leader of each run in

a hash table, allowing us to retrieve the leader in O(1) average time.

For each node v in the suffix tree, we need to record the node in the binary tree to which

the ancestors of v are mapped. This is a significant piece of information in facilitaling the

~48 -

search for the lca of two given nodes. To achieve this, each node is assigned an O(log #)-
bit numeric variable denoted as Av. The ith bit in Av of v 1s set to 1 only if v has one or
more anccstors mapped to height 7 in the binary tree. Recall we map v in the suffix tree
to a binary trec node based on the bit path of (v). The ancestry information, Av, can
easily be set after /(v) of the nodes have been computed. We (raverse down the suffix
tree and copy the parcnt's Av information to the current node v, then set the ith bit of Av
to 1, where i = A(7(v)). Note the same jth bil may be set more than once when v and its
parent arc on the samc run, but this is not a problem. We can accomplish thc ancestry

information mapping in O(») time, as well.

To summarize, here are the steps to map a suflix tree (o a complete binary (ree.

1. Traverse down the suffix trce depth-first. Assign depth-first numbers to the nodes

and compute their # values.

2. Determine the /(v) of each node and locate the Icader of cach run during the

bottom-up traversal.

3. Map the suffix tree nodes to the binary tree nodes by associating each node with
their respective positions in the binary tree. Implement the binary (ree in the form
of a binary hcap. Store the nodes' depth-first numbers and in-order numbers in
integer arrays [Weiss02, pages 715-717]. These arrays can be discarded (o free

up resources once the mapping has been completed.

4. Traverse down the suflix tree and preserve cach nodc's ancestry information, Av.

-49 .

Now that we have enhanced the suffix trec nodes with their respective information of &, I,
Av, binary tree position, and depth-first number, we are ready to examine the retricval of

the lca of two suftix trec nodes in constant time.

4.5.3 Finding /ca in Constant Time

Given two nodes x and y in the suffix trec, we want to find the lowest common ancestor

(lea). The steps to locate the lca are as tollows [Gusfield97, page 190].

Step 1. In the binary tree B, the node lo which the lca of x and y is mapped tells us which

run z falls under. Here are the details.

a) Find the lca, denoted as A, of /{(x) and /() in the binary tree B as deseribed
in scction 4.5.1. However, thus far we have only looked at how to locate
b if b is neither x nor y. In the case where eitherx or y is b, x is the

ancestor of y, if and only if, the following two conditions are present:

i. The depth-first id of x <= the depth-first id of y

ii. The depth-first id of y < the depth-first id of x + node count of sub

tree x

Gusfield [Gusfield97, page193] describes a way to count the number of
child nodes for each binary tree node by traversal. We have instead
devised a formula that computes the number of child nodes based on the
binary tree height and the position of the node in the binary heap. The

formula is as [ollows:

- 50 -

¢ = the number of nodes in the binary sub tree of v (including v)
¢=(2"—1,where x = the height of B — floor(log.(n)), and

» = the in-order number of v

b) Leti= A(b) = the height of the /ca A in the binary tree,

¢) Useito {ind j, where j represents A(/(z)) and j >= i and Av[j]=1 for both x

and y. Note / and J are counted from the right (the least significant bit).

Step 2. Locate node x', which denotes the closest node to x on thc same run as z. In other
words, x'1s thc node where we start entering the run that contains z. Note x' could
potentially be x. For example, in Figure 19, if x=6 (0110) and y=3 (0011), the /ca
z would be node 2 (0010). In this casc, x"would be node 4 (0100), and ' would

he node 2 (0010) itself. To do so, the procedure is as follows:

a) IfA(J(x))=j, sctx'= x and go to step 3. This is because x and z arc on the
same run. This approach is simpier than the steps described in

[Gusfield97, page 191}.

b) Find & where £ represcnts #(f(w)) and w is the node closest to the run of z
(but not on the run). % = the left-most 1-bit to the right of in the Av bits
of x. Using &, we can derive the binary trec path number of node w using
bitwise operations on . Shift & to the right by & - 1 bits, set the right-most
bit to 1, then shift & to the left by £ - 1 bits. This identifics the run to

which w belongs.

-51-

¢} Obtain w by looking up the hash table for the leadcr of the run identified

ahove,

d) Return x', the parcnt node of w. This is the entry point into the run of z.

Step 3. Repeat step 2 for node y to find y'.

Step 4. Compare x'and y'. The one with the higher depth-first id is the lowest common

ancestor of both x and y. Tn our example in Figure 18, node 2 is the /ca.

Each step above takes constant time to perform aflter preprocessing. Therefore, the

algorithm to locate the /ca of two nodes in a suftix tree can be done in constant time.

4.5.4 A Note on Our lea Inplementation

To support the /ca algorithm and computation, we have to enhance our Node class with
variables o hold the depth-first id, 4 value, / node reference, binary tree position, and Av
hits. Wc also enhanced our SuffixTree2 class with an auxiliary class Lea. The class Lca
encapsulates all codes pertaining to the lowest common anceslor algorithm. It is
designed to isolate the Suffix’Trec2 class from the /ca piece for clarity and ease of
maintenance. The full implementation of all our suffix trce and rclated classes can be
found in the companion CD. Some variables and arrays may be discarded once the sulTix
tree is constructed or when the /ca is computed. We have chosen to keep certain

temporary processing storage for debugging and educational purposes.

-52 -

4.6 The Longest Common Exlension

The longest common extension (/ce) problem is central in many string ulgorithms, The
goal is to compute the lcngth of the longest common prefixcs between a suflix x ol string
S/ and a suffix y of string 52 in constant time. In Figure 21, substrings x and y of S/ and

S2 have an lce of 5, where § and j are the starling positions of x and y respectively.

= e wvnayede fahinonenon.
i
H
a7 ConsrrrRdefoahtebttit, L.

b

Figure 21: The /cp of Substrings x and y is 5

The concept is similar to the /ea algorithm. While the /ca deals with two suffices within
the same string, the /ce dcals with two suffices of two distinct strings. In fact, our /ce

implementation is built on top of the lea algorithm.

4.6.1 Generalized Suffix Trec

It is possible to add the entire set of suffices of string S2 to the suffix tree of string .S/ to
take advantage of common prefixes. The resulting tree is called a generalized suffix tree.
Lach node in this generalized suffix trec will have bits identifying the string(s) to which it
belongs. The node and the transition could be shared by multiple strings, and each string
must have its own unique ending marker that does not appear anywhere else in the siring
content. For example, we use § and # for 7 and 52 respectively. This approach may be

generalized further to accommodate more strings.

-53.

For implementation, the identifving bits of the nodes and the transitions need to be set:

1. When the node and transition objects are instantiated.

2. When the reference pair (aclive point) is being canonized. This is because we
traverse down the tree on behalf of the string being added. Therefore, we need to

mark the bit set to indicate they are a valid path for the string.

There is onc more implementation detail we must look al to ensure /ce retrieval takes
constant time. At each leaf node representing suffix 5[/ #7]. we need to record the index J,
which is the starting position of the sufTix. Afier all suffices have been added to the suffix
trec, we traverse down the tree and calculate the distance from the root for each node
along the way. When we reach 4 leaf node, we record its suffix starting position. We
also keep two arrays of Node references, NI and N2, which point to leaf nodes of the
suffices for §7 and S2. N7 and N2 allow us to locate a leal node of a suffix based on its
beginning position. For example, N[5] is a reference to the leat node for sulfix S/|5..x7].

The pscudo code for computing the /ce of two suffices x and y of 7 and S2 respectively

is as follows:

procedure getLee (suffixPosi, suffixPos?) { // returning the lce value
nodel = N1{suffixPosl}
nodez = N2 ({suffixPosi)
lca = the lcaz of nede 1 and node 2 (section 4.5.3)

return lca's node depth

- 54 .

Chapter §

HYBRID DYNAMIC PROGRAMMING WITH SUFFIX TREES

When performing exact string matching on very long strings, using the suffix tree gives
us an advantage over the Boyer-Moore and Knuth-Morris-Pratt algorithms. Boyer-
Moore and Knuth-Morris-Pratt algorithms preprocess the pattern in O(mr) time. They
then scan the text in O(#) timce to search for the pattern. A suffix trec, on the other hand,
preprocesses the text in O(n) ime. Subsequent searches for any patlern thereafter require
only O(m) time. I[n this chapter, we introduce the concept of hybrid dynamic
programming with a suffix tree that can solve a k-difference problem in O(kn) time and

space.

5.1 The Concept of Diagonals

In 1983, Ulkkonen introduced a diagonal transition algorithm that has an O(k%) run-time
[Navarro01, page 48]. The concept is based on the observation values running on the
downward, left-to-right diagonals of the dynamic programming table increase
monotonically. Figure 22 illustrates the diagonal concept of a dynamic programming
table. The main diagonat (diagonal 0) is the bold line. Diagonals below the main
diagonal are marked with numbers from -m to -1 and diagonals above the main diagonal

are from 1 through n.

-85 -

i} i 2 4 3 5 G 7 2
% TR S
i ™ i
™, N
Ak X
AN
-2) o o
T Y oy
S N BN I
o . " ‘ . 8
: \\\ TR TR
AN e ., A
4 b W W \ ﬁ, \\\
o . AN . X
~ N b AN

Figure 22: The Diagonal Concept of
a Dynamic Programming Table

Landau and Vishkin adopted this idea and introduced the first hybrid dynamic
programming with a suffix trec approach that improves the run-time to Q(kn). The basic
idea is we calculate the dynamic programming table diagonally and use the Ice cxtension
ta solve the sub problem of the longest common prefix between the two strings, in
constant time as we slide down the diagonals. We increment our error count by one and
skip the mismaltching character. We rcpeat the process until the ertor count exceeds &, II
we rcach & before we get to the end of the diagonal, we abandon the diagonal and move
to the next one. If we reach the end of the diagonal, we have an occurrence of P in T

with at most & differences.

5.2 The Concept of d-path

Gusfield defines a d-path as follows:

A d-path in the dynamic programming table is a path that starts in row zero and
specifies a total of exactly d mismatches and spaces.

A d-path is the farthest reaching in diagonal 1 1f'it is a g-path that ends in diagonal
i, and the index of its ending column ¢ (along diagonal i) is greater than or equal
lo the ending column of any other d-path ending in diagonal i [Gusfield97, page
265].

- 56 -

In other words, the d-path of diagonal i is a path from row zero that ends in diagonal /
with d differences. Whatl we are interested in 1s the farthest-reaching ¢-path in diagonal /,
which is a path with d differences that starts in row zero and ends in the deepest cell in
diagonal 7 in the dynamic programming table. For the k-difference problem, we want to

find the %-path for each diagonal in the dynamic programming table.

The d-path for diagonal i can be computed using the (d-1)-path for diagonal i+1, /-1, and

i. We call these three paths R1, R2, and R3 respectively and define them as follows:

1. RI represents the farthest-reaching (¢ - 1)-path on diagonal 7 + I, accompanied by
a vertical jump (equivalent to insertion of a space in the text) onto diagonal 7. The
Jjump essentially brings us from the « - | path to o path. Then we slide down on
diagonal / until we find the next mismatch, using the suffix tree /ce extension. At

the end, R1 is a d-path.

2. R2 represcnts the farthest-reaching (¢ - 1)-path on diagonal / - 1, accompanied by
a horizontal jump (equivalent to insertion of a space in the pattern) onto diagonal
i. The jump essenlially brings us from the « - 1 path to 4 path. Similarly, we slide
down on diagonal i until we find the next mismatch, using the suffix tree lce

cxtension. At the end, R2 18 a ¢~path.

3. R3 represents the farthest-reaching (¢ - |)-path on diagonal / itself. Since we
knew this was where the last mismatch occurred, we skip one character. That

essentially brings us from the 4 - 1 path (o ¢ path. Then we slidc down on

-57-

diagonal i until the next mismalch, using the sullix tree lce extension. At the end,

R3 is a d-path.

Since R1, R2, and R3 are all d-paths, the farthest-reaching d-path is the farthest among

the three. Tigure 23 demonstrates the concept of R1, R2, and R3.

{ail R1 path

k' .
' “
¥ L. Vestical ump
wnuhﬂ-‘b\n -‘ugn-—".\ P_M_P___FH—"”"" fumy
Y g Entry point sfier e
e - et v ical g

I

Lagt migimatch
{ it

b} RZ path

Erttry poast aher the
A horeontal ump

Last misnateh

[

{h} R3 path

tast mismaleh
of jd-1; path on i

Ship one
T oharscter

Last mismateh
[

Figure 23: R1, R2, and R3 d-paths

- 58 -

5.3 Implementing the Hybrid Approach

Basically, the hybrid approach takes a pattern £ and a body of text 7, and build a ¢-path
table of £ rows and m + » columns, For each error d, we iterate diagonals -m through s.
For each diagonal, we compute how far we can rcach wilh o differences allowed. At the
end of the algorithm, we examine the & row in the d-path table. Columns that reach
farther than m indicate an approximate match of P in 7 with al most & differences.

Pseudo code for this process follows:

procedure kdifferenceWlithSuffixTrec (String P, String T} |
Obtain Lhe Lext and the pattern
Initialize Lhe suffix tree and its lca extension
Initialize the d-path tabkle

For d + 0 {the first row), for i=0 Lo n, Tind the l2e belbtween
Pil..m?) and T[i..n]. This is essentially exact string matching

For d = 1 to k
For each diagonal i (from -m to n)

use (d - l)-path on the d-path table Lo find R1, RZ,
and R3

update the d-path table (d row, i column) with the max
value among R1, RZ, and R3

On row k, any values that reach m Indlicate arn approximale match of
I in 1 with at most k differences.

-59.

Figure 24 shows a samplc d-path table as wcll as a rcconstructed dynamic programming
table,

Tng ferunest-yeaching d-path vable for disgonali-i;

PRt W e

[E R N
O P

e reconanrucoved K-~duifsrencs dynatis progracming tablie For k=4

AR e :
S 0 .
o PR3
3 R 12i2:702
4y & PRI202 3y
By & R T
8F & ‘ Bi41g 44
75 Al S EE N

Figure 24: The d-path Table and the Reconstructed
Dynamic Programming Table

In our d-path table above. we just need to examine the cells in the last row that fall
between columns -m + (-£) and » - m. Cells with values equal to the pattern length (less 1
for the ending marker) indicate an approximate match of the pattcrn P in text 7. The sive
of the d-path table may be reduced from O(/#2) to O(m + »), if we do not need to locate
the starting position of the approximate match. Since we calculate m 1 » diagonals in &
iterations and thc /ce computation takes (1) constant time, our implementation for the -
differcnce problem runs in O(4») time. The implemcntation of the hybrid algorithm does
not require the dynamic programming table, which takes up O(m#) space but is helpful
during the debugging process. The primary d-path table requires & x (m + 1) space to
record the ¢-path result. Since the size of the pattern is relatively insignificant in

comparison to the text size, we can generalize the space requirement into O(kn).

- 60 -

The i-difference solution using hybrid dynamic programming is not difficult to
understand, but implementing it and verifying its correctness 1s time-consuming. First
and foremost, a dynamic programming algorithm should already be implemented so we
can verify the results of the hybrid approach. Before we can verify the result, the d-path
table might need to be translated into a dynamic programming table so we can compare
the results. The reconstructed dynamic programming table is also read slightly different
than a dynamic programming table gencrated with a pure dynamic programming
algorithm. This is because the dynamic programming table is concerned with the
minmmum edit distance, while the reconstructed dynamic programming table of the hybrid

approach is concerned with the maximum matches of P and 7, as shown in Figure 24.

-61 -

Chapter 6

SUFFIX ARRAYS

As well studied as the suffix tree is, there are some intrinsic drawbacks in the data
structure, The O(n) space requirement ol the suffix tree can measurc twenty to [ifty times
the text size, which is detrimental in some application areas. Complex suffix tree
construction algorithm is another reason the data structure is not commonly known
among computer programmers, In order to achieve the O(m) scarch time, a suflix tree
requires O(no) space. Alternatively, a search time of O(n log &) time can be achieved

with O(#) space, assuming the alphabct size is fixed |Gusfield97, page 149].

The impact of the alphabet size o is less of a concern for a language such as English
where the entire alphabet can be represented with 128 symbols (ASCII characters). For
other languages such as Chinese where each of the more than 30,000 characters must be
assigned a unique code, this presents a space issue. Most non-English languages use a
Unicode (16-bil) character set instead of the 7-bit (27 = 128) ANSI character set.
Applications requiring an extremely high number of symbols are not related to human
languages. In imaging, pictures are composed of long strings of characters, each of
which represents a color component ol a pixel, Tn molecular biology, long strings ol
integers represent locations in a DNA sequence where certain substrings are found
|Guslield97, page 155]. Each integer in this case rcpresents a uniquc symbol in an

alphabet. Therefore, the alphabet sizes could be in the range of miltions or more,

- 62 -

6.1 The Concept

In 1989. Manber and Myers introduced the concept of a suffix array, which can be used
to solve some of the most comimon suflix tree applications with three to five times less
space [Manber93, page 1]. A suffix array of string § is the iexicographically sortcd
suffices of §. A suffix array is normally in the form of an integer array that rcpresents (he
positions of the suffices in the string. For example, the suffix array for string mississippi

1s:

]
4
o,
€
Fd
i
i
U]
4
bl
£
5l

o
P Y
w2
3

mLsglasinns
Pi

ppt

sippi
alesinoi
ISLpps
asigaippli

A0 L0 3 0y O ke Lo RS B]
RN G o LN ER e s

Figure 25: The Suftix Array lor mississippi

6.2 The Efficiency of a Suffix Array

6.2.1 Space Requirement

Unlike the suffix tree, since a suffix array is an integer array that stores the positions of
suffices, il is not subject to the size of the alphabet and is optimal for large alphabets.
Even with it auxiliary longest common prefix ({ep) extension (section 6.4), a suffix array
requires only 2n space. Although in practice a suffix array could take up to 5n space,
which is an order of magnitude less than the space requirement of a suffix tree (20# to

50m). This makes the suftix array an ideal candidate for many applications.

-63 -

6.2.2 Search Time

In its simplest form, a suflix array s can be used to locate a suffix P in a string S of
length n in O(m log #n) time using a basic binary search. However, complemented with
lep extension and advanced binary search techniques. we can improve our search for ” in
T to O(m + log n) time. More importantly, the efficiency is independent of the alphabet

size, which is a major concern in many application arcas.

6.3 Suffix Array Construction

Since its introduction, researchers have found several approaches to construct suftix

arrays. We discuss three of them below.

6.3.1 The Naive Approach

The naive approach to build a suffix array involves looping through the string » times.
During the itcration, the algorithm compares the current suffix to each suffix, which takes
O(#?) time. That brings the total time of the naive approach to O(#'). Although this
approach is not practical for real world applications, it is easy to understand and can bc

used to validate more advanced approaches on shorter strings. The pseudo code follows.

procedurce suffixiArrayNaive (char{] s}
{
bitset = bit(n] // to ftrack if a suffix has been
i assigned a positiocon
for {i=1 to n)
minPos = =1 // to track the nexl min suffix position

for (=1 Lc n)

- 64 -

if (bitsel[3]) continue // this suffix has

// been assigned. Skip

if (minPos = —-1) minPos = 7

else minPos - min(minPos, Jj) // get the min of the two
sali] = minPos
bitSet [minPos] = trun /4 indicate sufllix has

// been assigned a position

6.3.2 The Suffix Tree Approach

Deriving a suffix array from a suflix tree is quite straightforward. We traverse down the
suffix ree from the root in depth-firs(manner and visit the child nodes in the
lexicographical order. Such traversal ensurcs that leaf nodes visited are always in
lexicographical order. Figurc 26 shows a suffix tree for the string bananus$. Each node

is shown with its lexicographical order number.

Figure 26: The Suffix Tree for bananas$ with
Leaf Nodes Lexicographically Marked

-65-

6.3.3 The Linear I'ime Approach

Manber and Myers introduced a suffix array construction algorithm without constructing
a suffix tree in advance |Manber93]. This algorithm takes O(») expected time and O(n
log n) worst-case time. Constructing suffix arrays using this approach can take three to

ten times longer than deriving them from suffix trecs.

Finally in 2003, three different linear time approaches to construct suffix arrays without
involving suffix trees were developed. We briefly describe the skew algorithm developed
by Karkkamen and Sanders [Karkkainen03]. The approach is indeed very fast and

consists of the following four main steps:

1. Given a string S with suffices 0..n, 1..n, 2..n, 3..n, ..., i..n, divide the suffices into

three buckets of A= imod 3. So k=40, 1. and 2.

2. Recursively radix-sort the suffices for bucket £ =1 and 2 together. Then assign

each suflix their ranking in the bucket.

3. Repeat step 2 for bucket £ = 0 and rank each element as well.

4, Merge the resulting arrays from step 2 and step 3 using a regular sorted array

merging technique. The result is a suffix array for string S.

6.4 The Longest Common Prefix

The longest common prefix (/cp) is an auxiliary integer array (hat can improve the search

time of a suffix array to O(m + log n) time. The lep array keeps track of the length of the

- 66 -

longest common prefix, /cp(i, j) of two adjacent suffices in the suffix array. The icp

information for the string mississippi is shown in Figure 27.

The Icp extension allows for the retrigval of the longest common prefix between two
suffices in constant time. In 2001, Kasai, Lee, Arimura, Arikawa, and Park introduced a
new {cp construction algorithm in O(#) time [Kasai®l]. Through clever observation of
the relattons between each suftix and previously acquired /cp result, the algorithm
ensures that each character is examined only once during the iteration, hence achicving a
linear time /cp construction. In [Manber93], Manber and Myers offered an ingenious
augmentation to the regular binary search algorithm with the /ep array. They achieved
the O(m + log ») scarch time by making surc each characler in P is compared only once

inn each search.

Srder Bos Text LCh
oy L0 4 o
i i ippi i
2 4 Lasipyl I
] 2 Lasliazippd 4
4 Lol mississsippl ¢
z E <38 a
g £ paadel S
= a sSipemi &
2 3 sisgipel 2
E LA azaipbl k)
L0 2 2BLBIIDDL 3

Iigure 27: The Sullix Array for mississippi
with /ep Information

6.5 The Advantages of'a Suffix Array

Unlike the suffix tree, a suffix array can be used to solve a range of practical problems
with a modest memory requirement. [ts compelilive worse case search time of O(m + log
n), which is independent of alphabet size, is another major advantage. 1n addition, a

-67-

suffix array is less complicated than a sulfix tree, which contributes to its popularity
among practitioncrs. As a suffix array and the lep extension are both integer arrays,

persisting them are considerably easier and a myriad of tools are readily available.

- 68 -

Chapter 7

EXPERIMENTS

In this chapter, we discuss a series of experiments conducted using iwo approximate
string matching algorithms, (o solve the A-difference problem on a very large text string

and long paltern.

7.1 QOverview

We conducted three sets of experiments using dynamic programming to solfve the classic
k-dilference problem. We repcated the same experiments using hybrid dynamic
programming with a suffix tree. We measured and compared the time required to locate
the ending indices of the occurrences of pattern P in text 7. Each algorithm was run
against (wo types of data: text strings from English literaturc (200KB — IMB) and a
section of a DNA sequence (200KB — 1MDB). The first sct of expcriments measured the
impact of text size on search time. We varied the text length », while keeping the pattern
length m and the number of errors allowed & constant. The second set of experiments
evaluated the impact of pattcrn length m on search time, with » and £ unchanged. The
last set of experiments examined how changes in the number of errors allowed £ affect

search time, keeping the values of » and m constant.

Several inirinsic diffcrences between the dynamic programming and the hybrid dynamic
programming algorithms are noteworthy. The dynamic programming algorithm is an on-

line algorithm that requires no preprocessing of the text or the pattern. On the other hand,

- 69 -

the hybrid dynamic programming algorithm preprocesses the text and constructs a suffix
tree in advance to gain performancc in subsequent searches. Although the suffix tree
construction takes O(n) time, we were only concerned with the search time. In many
applications, the text is known in advance. The results of our experiments are prescnted

in tabular and graphical formats.

7.1 The Objcctives

The dynamic programming algorithm can be broken down into three parts: initialization
of the dynamic programming table, construction of the table, and locating the
occurrences. The hybrid dynamic programming algorithm consists of three major parts
as well: initialization of the suffix tree and /ca data structures, construction of the d-path
table, and locating the occurrences. The suffix tree construction time and the /ca
preprocessing time were excluded [roin our measurement for reasons previously stated.
We measured the time to initialize and fill in the d-path tablc and the tinmc to retrieve the

ending indices of matches.

The experiments had two main objectives:

1. To measure the impact of text size #, pattern length m, and number of errors
allowed £, on both the dynamic programming and the hybrid algorithms by

varying one variable at a time.

2. To measure the impact of alphabct size ¢ on both the algorithms using two sets of

data: ASCII-based literature and a DNA sequence.

-70 -

7.2 Experiment Details

7.2.1 Tlardware Platform

The experiments were run on a computer with a 32-bit x86 AMD Athlon-XP 1.7 GHz
processor with 256KB L2 cache. The system runs at 266MHz front system bus spced

with 768 MB of PC2100 (266 MHz) DDR RAM.

722 Software Platform

The experiments were conducted on a platform running SUN Java SDK version 1.4.2_10.

The operating system was SuSE Linux 9.0 Professional with kernel version 2.4.2.

7.2.3 Experiment Dala

The experiment input consisted of very large text strings in English and a sample DNA
sequence. The text strings werce collected from the Project Gutenberg archive, including
Confucian Analects, Tac Te Ching, Moby Dick, The Notebooks of Leonardo Da Vingi,
and The Art of War [GreatBooks06|. Figure 28a shows a snippet of the data. The DNA
sample is part of the DNA sequence of a house mouse acquired from NCBI-GenBank
[GenBank06]. A snippet is shown in Figure 28b, The text strings use the ASCII
character set, which has an alphabct size of 128, The DNA sequence consists of

nucleotides encoded with characters A, 'I', C, and G. It has an alphabet size of four.

Each experiment was carried out in five runs and the average scarch time was recorded.
To gencrate a pattern for the experiment, we randomly selected a string of length m from

the body of text. We randomized the sampled string with up to & actions of insertions,

-71 -

deletions, replacements, ot doing nothing. Therefore, when we specified a pattern of
length m, our randomized pattern generator returned a pattern with a length between m -

k, when k deletions were performed, and m + &, when £ insertions were pertormed.

Teerp~ia eskad whether nhe shouwid anmwmediavely

Eed

= practices what e Vca*d. The Naate“ agid, 'Tpexe ars your

E slder hrebiers $o be oonsuitest;—~ why shouid yao aot on
Tl noipie of ipmadiately YUYIngG inTo praotics what yep resst’
Zan ¥ sked ché same, whdther he gaould imnmedizsely saryy inne
pracnice What ne nserd, and the Master answearsd, 'Iomedsateliy

CeEry LMTLG Practice WRAC yoOL Near.’ Tung-nsi Hwa gasd, ‘Yo eaked
whether nr shonlid cerry inmesdiscely Into gracuice whasn he hesyd,

=]
and you Said, "Thave are vyouy fether and mider brochers to be
sopaalted, ? Chtiy asked wheonsr e should lwpediagely dazey LRt
practios what b Aeard, and you gaxd, YCavry ifuv lmwedierely inpo
vaovice. ™ I, Ok'ah, am peva axed, &nd ventire e amk you for an
EALLIERETIO Toe Masgsar geid, *Ch i La reviring anc zlom’
chersfore,

Figure 28a: A Snippet of the Text Strings Used in the Experiments

ArcescdaugnbogaaEatobgsTeanigraat ot GhpagAbICA gt LhTEbaganpoLy
XA EE-F Ftel-Sat= ol Sl R el Wote f k- Redut e R Ff afs S Sl v R okl el wl of et Vst oRis Lo ek ob-W-X d e wbed ofe d o3
FoTgACLScalca bRy LdoifAgCRCECgETFAAR ALY GRSt EggFacEagatgioty
ttgch&:gct.tubcaggmtca:u?&agutgzggatqa5aagaqtuawgattq:aqratca:
LoYetuoWad oot Rl s wtad A atulclel el s ok vinl-Rul stuf ol a2 Yl B ARV =R P2 - Rl R n R o el A PR Rl ot {0 Xula
EHGOOCRERSOQASILINT quctL“CQCCYCEQQCtheﬁsarPEFRGPCMEGEagga Aelol-1s4
CRAYCAYIRUIETALLAGACACAGTIYCeataATTACTLTLHETUAYALL LI saRa b toonny

coybotttggrnagagaacitiengiaactatoaagaracsocbggoheotgoasaghotgty
ALY OCACOoT ARy ACAL CALATA NI CA T EacAN YU GOANE N RgTOOINA0GEEA
ARGAERATALE OO AR aYECAO LA ERCCAlCAGUTALIL AL UL CALOASALY
i Tekot ot A0 ot) Ao lef el tet-Tud ol A iledadRo g ol T el Yol atu g Sl oAk A o sTa Tad-R ol o F-Yoduful ed ol F- Koo T Yudv]nl-y
Ao RN b Vo f oo kel vh b At oluRute] vk ¥ ol mynk ufwic Yk obud o vk win - -0 s ol o -Rafad-SofP- N i oF VP Ray ol shuk i}
CLLLpARRSGRALCEACETAEAART CACATCALRYCEOR oAt TYgigoatpooLEEEEtaD

AN ATQOSAUTANEL LT T AR LOYLYSCrAT o gLt At ALBgEgACEEacagTatal

H

Ly

i

¥
]

l

Figure 28b: A Snippet of the DNA Sequence Used in the Experiments

-T2 -

7.3 Experiment Results

7.3.1 Experiment 1

Figure 29a shows the results for Experiment 1, which measured the impact of text size
while keeping pattern length and number of errors allowed constant. I'igure 29b and 29¢

show the graphs for the DNA and the literature results.

Experiment 1a & 1b — The Impact of Text Length, n (with m=1000, k=20)
S S Time (sec) o -
T ; _ DNA __ Literature '
File Size (KB) ~ DP . Hybid , DP Hybrid
: 200: 877 1272 - 8.59 13.82
_____ 400, 17.98] 27.28 17.12 28.21.
. 600, _26.42 4038 2835 5052
800 55.03 54.96 34.64: 68.97
o _foooi 7491 89.92 4445 7.1
Figure 29a: The Result of Experiment 1
Experiment 1a - The Impact of Text Length n
(m=1000, k=20) Data Type = DNA
90 . - *
/
B0 | £
// il
70 i— — = — sy
ya
S 60 +— o
a P)
o %0 P 4 .0 DP
;% 40 +— T j# Hybrid)
=
r 30 — 7 .
20 T
10 4] -
0o+ — ! !
200 400 600 800 1000
Text Length (KB)

Figure 29b: The Graphs for the Resuits of Experiment la

-73 -

Experiment 1b - The Impact of Text Length n
(m=1000, k=20) Data Type = Literature

80 :
75 (— - .. P

45— ' n o :
40 — - - e o bP
o ¢ Hybrid

Run-time (sec)

200 400 660 8ﬁ0 1000
Text Length (KB)

Figure 29c: The Graphs for the Results of Experiment 1b

In Expertment 1, the search times for both the dynamic programming approach and the
hybrid approach increased lincarly with text size. Note that dynamic programming
outperformed hybrid dynamic programming in this experiment, but we were mainly
interested in the effect of the text size on search times. This set of experiments clearly

supports the QO(mn) and O(kn) analysis on the search time, since m and & are constant.

7.3.2 Experiment 2

Keeping text sizc and number of errors allowed constant, Experiment 2 examined the

impact of pattern length on search time. The resulls are shown in Figure 30a and graphed

in Figure 30b and 30c¢.

-74 .

Experiment 2a & 2b — The Impact of Pattern Length, m (with n=4DDKB,=k=20)

~ Time {sec) :
DNA , __ Literature
. m (thousand) * DP - Hybid ' DP o Hybid
| 05 927 27.98 138 28,51
1.0 18.56 31.56 17.22 28.71
1.5 30.64 26.58 25.63; 28.82
2.0 40.86) 26.7 35.08| 28.48
2.5 51.08 26.87 44.94 31.141
3.0 61.69) 31.98 53.54 33.71
3.5 71.86) 32.16 59.89| 33.18
4.0 82,36 31,61 68.82: - 32.81
4.5 92.67 30.99' 86.4 34.81
50 10302 3251 100.89 33.55,
Figure 30a: The Resulls of Experiment 2
Experiment 2a - The Impact of Pattern Length, m
{with n=400KB, k=20) Data Type = DNA
10 - s E—
100 =
90 — .
80 —— =
S 700 -
g 60 - L i (1 DP
= 50—~ P o s Hybrid
1
g 40 — ’ a e e
x s B e
30 Lot :
20 ,,,,,,‘:,ﬁ,,,;‘,, S e .
10 b -
|
05 1.0 15 20 25 30 35 40 45 50
Pattern Length (thousand)

Figure 30b: The Graphs {or the Results of Experiment 2a

- 75 -

Experiment 2b - The Impact of Pattern Length, m
(with n=400KB, k=20) Data Type = Literature

110) _
100 1 — : ra
90
80
70 L I . C— _E{_ -

° o © oDP
50 — . - ybrid

40

Run-time (sec)
L7

30 & —e .'._.@'._';@;-"" E —
o
20
G
10

|
0 - S -

05 1.0 1.5 20 2.5 3.0 35 40 45 5.0
Pattern Length (thousand)

Figure 30c: The Graphs for the Results of Experiment 2b

In Experiment 2, we observed the advantages offered by a suffix tree, especially for a
very long pattern. The hybrid approach easily outperformed the dynamic programming
approach becausc it solves the k-difference using the suffix tree's /ce, ﬁhich can be
performed in constant time. Although the increase in the pattern length s led to an
increase in the d-path tablc processing time, which is O(k(n + m)), the increasc is quite

trivial. We simplified the processing time to O(in) (section 5.3).

Even at a modest text size of 200KB, we observed a markedly superior performance by
the hybrid approach using a suffix tree. For text larger than 600K B and patterns longer
than 2KB, the performance of the dynamic programming algorithm deteriorated so much
that the hybrid programming approach is advantageous cven if wc include the time for

sulfix tree construction in the comparison. It is evident the hybrid dynamic programming

-76 -

algorithm with a suffix tree has a significant edge over the pure dynamic programming

algorithm, when the textis very large and the pattern is long.

7.3.3 Experiment 3

Experiment 3 examined how the number of errors allowed affects search time. Figure

31a shows the results. Figure 31b and 31¢ show the graphs for the resulis.

Experiment 3a & 3b - The Impact of errors allowed, k as a
Percentage of Pattern Length, m {with n=400KB, m=2000)

:) Time (sec)

L o DNA . Literature
k(hofm) ; DP Hybid . DP _ Hybrid |
40 (2%) ; 39.37 5942 3952 6049
80(4%) 3865 120.88 355 116.79
120 (6%) 3802 17678 3553 188.82
160 (8%) 3877 225,04 37.28 268.08
200 (10%) 39.06 290.59 36.83. 346.87

Figure 31a: The Results of Experiment 3

Experiment 3a — The Impact of errors allowed, k
as a Percentage of Paitern Length, m
{with n=400KB, m=2000) Data Type=DNA
300 | - ~
275 e
250 - - - .
. 225-
$ 200
% 75— T —
g 180 = o Hybrld
o125 | L
S 100 e
75 s —
50 j} - o L o
O h N : T |
40(2%) 80 (4%) 120(6%) 160 (8%) 20C
(10%)
Errors Allowed k (% of m}

I'igure 31b: The Graphs for the Results of Experiment 3a

- 77 -

Experiment 3b — The Impact of errors affowed, k
as a Percentage of Pattern Length,

{with n=400KB, m=2000) Data Type=Literature
350 — : -
325 -
300 4— . - - ____
275 .

250 - : o
225 L. . . 7 —
200 -, - . . — . ; } _

175 il G DP
150 e . |& Hybrid

125 -
100 . . .
75 | : —
50
25
0 - - R : [-
40 (2%) 80 (4%) 120 (6%) 160 (8%) 200
(10%)

Run-time {(sec)

—n - U R

Errors Allowed k (% of m)

Figure 31c: The Graphs for the Results of Experiment 3b

In Experiment 3, we examined how £, the number of errors allowed, atfects the search
time. It showed a change in £ has a significant impact on the hybrid approach, but not on
the dynamic programming approach. The latter remains unaffected by changes in £,
because we simply scan through the last row of the dynamic programming table and find

entrics smaller than &, which requires O(») time regardless of the value of £&. This

underscores our O{kr) and O(mn) analysis for cach approach respectively.

7.4 Analysis of the Experiments

Overall, our experiments yielded outcome consistent with the theory. The results give us

great insight into the role of the variables we measured and confirmed our understanding

of the data structures.

-78 -

7.4.1 The Impact of the Alphabet Size

The outcome of all three experiments were not affected by the alphabet size, 5. This can
be explained by our implementation. For the hybrid approach with a suffix tree, we used
the hash table class from the JAVA collection API, to kecp track of transitions coming
out of each node. The hash table has an O(1) average retrieval time and has a
significantly smallcr memory footprint compared to reterence arrays. Although we could
achieve O(1) worst case retrieval time using a reference array, the higher memory
requirement ol each node would eventually offset the benefit, especially if o is large. On
the other hand, the dynamic programming approach does not have dependency on the

alphabet sizc, becausc an integer array is used to store the edit distances.

However, this does not imply that alphabet size did not play a role in our suffix tree
implementation. When the input text is very long and the alphabet size is small, such as
in the case of the DNA sequence, the resulting suffix tree is deeper. That (ranslates to
more tree nodes, longer construction time, as well as greater memory consumption. The
negative impact of a smaller alphabet did not manifest ttself in our results becausc our

hatdware platform was not pushed to the limit in these experiments.

7.4.2 Meinory Management Issue

The O(mm) space limitation of the dynaniic programming approach presents a memory
management problem. For short strings, the O(mn) space requirement is negligible.
However, the memory requirement increases rapidly as m and » increase. For example,

for a small text of IMB in size, il the pattern we are trying to match is 50K in length, the

-79.

dynamic programming table size equates to 1MB * 5K = 5GB. Since most computers
today are equipped with one to two GB of memory, this leads to virtual memory

management issues such as thrashing.

To avoid this problem, we enhanced our dynamic programming algorithm to use an
integer array of only 2#, and we improved the d-path table for the hybrid algorithm to use
a character array ol only 2(m +). In either approach, we search the last row of the
tables to locate the ending positions of the approximate matches. As a result, we are able
to process longer strings while avoiding (delaying) the on set of thrashing. This allowed

us to conduct experiments with a longer pattern length m and larger £.

7.4.3 Experiment Conclusion

The hybrid approach performs well when £ is small. Fortunately, in practice, applications
such as DNA sequence matching, voice recognition, and error corrections are limited to a
low level of crror. Nonetheless, 1t is important to recognize that given its strengths, the
use of a suffix tree is only appropriale when the right conditions are present. These

conditions include:

[. When £is small,
2. When m is large, and/or

3. When the combination of m# is not conducive for the purc dynamic programming

approach.

- 80 -

Chapter 8

CONCLUSIONS

8.1 Research Results

The applications of approximale string matching algorithms are ubiquitous in our daily
lives cven though their presence is not always immediately obvious. Rapid growth of
data volume in our lives and advancement in the sciences only exemplify the importance
of string algorithms in the foreseeable future. Although string matching algorithms have
been well studied and rescarched in the past few decades, there continues to be
breakthroughs and improvements to achieve faster and better results. This thesis aimed
to introduce the concept of an approximate string matching algorithm and explore some
of the advanced algorithms. We covered a wide range of topics from exact string
matching to approximate string matching. We examined Ukkonen's lincar time sulTix
tree construction and implemented a hybrid dynamic programming algorithm using a
suffix tree. We conducted a series of experiments using two of the algorithms discussed

and analyzed the results.

8.2 Experiment Results

Our empirical data demonstrated the effectiveness of the /ca extension of a suffix tree and
how it can be used to augment regular dynamic programming in the k-difference
problem. It also showed how hybrid dynamic programming is very much susceptible to
changes in & While dynamic programming works well for small to medium text size and

pattern length, itis also ideal as & increases. On the other hand, the hybrid dynamic

-8] -

programming approach has an advantage when the string and pattern are long. It is
gcncrally ideal for very large text strings that can be preprocessced for subsequent

searches.

8.3 Future Work

Until recently, the construction of a suffix array was derived from its corresponding
sutfix tree in order to achieve O(») worst-case time. This requires a suffix tree be
constructed before the suffix array and is 4 major restriction. With the newly developed
O(#) time suffix array construction and O(») time /ep computation, the use of sutfix
arrays is expected to become commonplace in many areas. Although we have
successfully tackled the construction of a suffix array and the Jcp extension in linear time,
our focus was on suffix trees, the lea extension and the [ce extension. We fell short of
exploring suffix arrays in depth. Our future plans include implementing search
algorithms using suffix arrays as described in [Gusfield97], investigating generalized
suffix arrays for multiple strings, and computing the /ca of two suffices. Other
interesting topics include the persisting and compression of suffix trecs and suffix arrays.
Cache obliviousness has also been mentioned in several research papers. Finally, we
would like to solve the A-difference problem with a suffix array and compare the results

with experiment results in this work.

-8 .

REFERENCES

Print Publications:

[Amir00]
Amir, A., M. Lewenstein, and E. Porat, "Faster Algorithms for String Matching with k

Mismatches," Proceedings of the 11" ACM-SIAM Symposium on Discrete
Algorithms (2000), pp. 794-803.

[Baeza92]
Baeza-Yales, R. A. and G. H. Gonnet., "A New Approach to Text Searching,"

Communications of the Association for Computing Machinery, Vol. 35, No. 10
(October 1992), pp. 74-82.

[Boyer77]
Boyer, R., and J. Moore, "A Fast String Searching Algorithm." Communications of the
Association for Computing Machinery, Vol. 20, No. 10 (1977), pp. 762-772.

[Chuang%4]
Chang. W. and E. Lawler, "Sublinear Approximate String Matching and Biological
Applications,” Algorithmica, Vol. 12, No. 4-5 (October 1994), pp. 327-344.

[Chaudhuri(3]
Chaudhuri, S., K. Ganjam, V. Ganti, and R. Motwani, "Robust and Efficicnt [Fuzzy
Match for Online Data Cleaning," Microsoft Research and Stanford University, 2003.

[Cole98]
Cole, R. and R. Hariharan, "Approximatc string matching: A simpler faster algorithm,"

SODA; ACM-SIAM Symposium on Discrete Algorithms (1998), pp. 463-472.

[Cormen9g|

Cormen, T. H., C. E. Leiscrson, R. L. Rivest, C. Stein, Introduction to Algorithms,
Sccond Edition, The MIT Press, Cambridge, and McGraw-1Till Book Company,
London, 2002.

[Gustield97]

Gusfield, D., Algorithms on Strings Trees, and Sequences - Computer Scienge and
Computational Biology, Cambridge, New York, 1997.

[Tall80]

Hall, P. A. V. and G. Dowling, "Approximate String Matching," Computing Surveys,
Vol. 12, No. 4 (December 1980), pp. 381-402.

-83 -

[Jokinen96|
Jokinen, P., J. Tarhio, and E. Ukkonen, "A Comparison of Approximate String

Algorithms," Software - Practice and Experience, Vol. 26, Issue 12 (December 1996),
pp. 1439-1458.

[Karkkainen02]
Karkkainen, J. and S. Burkhardt, "One-Gapped g-Gram Filters for Levenshtein
Distance,” Center for Bioinformatics — Saarland University, Saarbrucken, 2002.

[Karkkainen(3]
Karkkainen, J. and P. Sanders, "Simple Tincar Work Suffix Array Construction,”

Proceedings of the 13" Interpational Conference on Automata, Languages and
Programming, Vol. 2719 of LNCS (2003), Springer-Verlag, pp. 943-955.

[KasaiOl]

Kasai T., G. Lee, H. Ariimura, S. Arikawa, and K. Park, "Linecar-Time Longesi-Common-
Prefix Computation in Sulfix Arrays and Tts Applications," Proceedings of the 12"
Annual Symposium on Combinatorial Pattern Matching, Vol. 2089 (2001), A. Amir and

G. M. Landau, Springer-Verlag, Berlin Hcidelberg, pp. 181-192.

[Keng03]

Kceng, L., "A Survey of String Matching Algorithms," Graduate Research Paper,
Department of Computer and Information Sciences, University of North Florida,
Ilorida, 2005.

[Knuth77]
Knuth, D. and J. Morris, and V. Pratt, "Fast pattern matching in strings," SIAM Journal
on Computing, Vol. 6, No. 1 (1977), pp. 323-350.

Manber93]
Manber, U. and G. Myers, "Suffix arrays: A new method for on-line string searches,"

SIAM Journal on Computing, Vol. 22, No. 5 (1993), pp. 935-948.

[McCreight76]
McCreight E., "A Space-Economical Suffix Tree Construction Algorithm,” Journal of

the Association for Computing Machinery, Vol. 23, No. 2 (April 1976), pp. 262-272.

INavarro98a]
Navarro, G., "Approximate Text Search," PhD. dissertation, Department of Computer
Science — University of Chile, Santiago, 1998.

|Navarro98b]
Navarro, G, and R. Bacza-Yates, "Improving an Algorithm lor Approximate Pattern

Matching," Algorithmica, Vol. 30, No. 4 (1998), pp. 473-502.

-84 -

[Navarro00]
Navarro, G. E. Sutinen, and J. Tarhio, "Indexing Text with Approximate g-grams,”

Proceedings of the 11" Annual Symposium on Combinatorial Pattern Matching,
(2000).

[NavarroU1]
Navarro, G., "A Guided Tour to Approximate String Matching," Association for

Computing Machinery Computing Surveys, Vol. 33, No. 1 (March 2001).

[Nelson96]
Nelson, M., "Fast String Searching With Suffix Trees," Dr. Dobl's Journal, August 1996,

[Seller80] .
Scller P., "On The Theory and Computation of Evolutionary Distances: Pattern
Recognition," Journal of Algorithms, Vol. 1 (1980), pp. 359-373.

[Stephen94]
Stephen, G, String Scarching Algorithms, World Scientific, Gwynedd, 1994,

[Ukkonen83]
Ukkonen, E., "Algorithms for Approximatc String Malching," Proceedings of the

International Conference Foundations of Computation Theory, Vol. 158 (1983).

[Ukkonen92]
Ukkonen, E., "Approximate String Matching with g-grams and Maximal Matches,”

Theoretical Computer Science, Vol. 92, Issue 1 (1992), pp. 191-211 ,

[Ukkonen93a]
Ukkenen, [i., "Approximate String Matching over Suffix Trees," Proccedings of the 4™

Annual Symposium on Combinatorial Pattern Matching, 1993.

[Ukkonen93b]
Ukkonen, E., "Approximate String Matching with Suffix Automata," Algorithmica, Vol.
10, No. 5 (1993), pp. 353-364.

| Weiner73]
Weiner P., "Linear pattern malching algorithms," IEEE 14th Annual Symposium on
Switching and Automata Theory, Conference Record (1973), pp. 1-11.

[Weiss02]
Weiss, M. A., Dala Structures & Problem Solving using JAVA, Second Edition, Addison

Wesley, Boston, 2002 .

[Wu92]

Wu, S., U. Manber., "Fast Tex! Searching Allowing Frrors,” Communications of the

Association for Computing Machinery, Vol. 35, No. 10 (1992), pp. 83-91.

-85 -

Flectronic Sources:

[Allison06]

Allison, L., "Suffix Trees,"
hitp://www,csse.monash.edu.au/~loyd/tilde AlgDS/Tree/Suffix/, last accessed
October 23, 2000.

[GenBank06]
GenBank FTP Site, fip:/fip.ncbi.nih.gov/genbank/, last accessed November 14, 2006.

[GreatBooks06]
Gireat Books and Classics, http://www.grtbooks.com/, last accessed November 14, 2006.

| Gilleland06 |
Gilleland, M., Merriam Park Sofiware, "Levenshtein Distance, in Threc Flavors,"
http://www.merriampark.com/ld.htm, last accessed Octlober 23, 2006,

[Lewis00]

Lewis, C., "Approximate Matching with Suffix Trees,"
htip://homepage.usask.ca/~cti271/810/approximate _matching.shtml, last accessed
Novcember 12, 2006.

[Moore77|

Moore, J. S., "The Boyer-Moore Fast String Searching Algorithm,"
http://www.cs.utexas.cdu/uscrs/moorc/best-idcas/string-searching/index himl, last
accessed October 24, 2006.

[MuhammadO06]

Muhammad, R. B., "Boyer-Moore Algorithm,”
http://www . personal kent.edu/~rmuhamma/Algorithms/My A lgorithms/StringMatch/b
oycrMoore.htm, last accessed October 24, 2006.

[NCBIO6|
National Center for Biotechnology information FTP Site,
http://www.nebinlm.nih.gov/Fip/, last accessed November 14, 2006,

[Rouchka(o]

Rouchka, L., "Dynamic Programming,"
hitp://www.sbe.su.se/~pjk/molbioinfo2001/dynprog/dynamic.html, last accessed
November 12, 2006.

I Tsadok06]
Tsadok, D. and S. Yono, "ANSI C implementation of a Suffix Tree,”
http://mila.cs.technion.ac.il/~yona/suffix_tree/, last accessed October 23, 2006.

- 86 -

[Ukkonen05]

Ukkonen, IE., "Suffix tree and suffix array techniques for paitern analysis in strings,"
hitp://wrww.cs.helsinki . fifu/ukkonen/Erice2005.ppt, October 2005, last accessed October
24, 2006,

-87-

APPENDIX A

Glossary

Y. = alphabet of a finite set of symbols. 3] = &

7"= a string of text derived from Y. |7] =»

P = a string of pallern derived from). |P| = m where m <= n.
k = the maximum number of crrors allowed

¢ = the crror level = £/ m

dfj = the distance function

- 88 -

VITA

Leng Hui Keng graduated from I'lorida Statc University with a Bachelor of Science
degree in Management Information Systems in 1997, Since 2001, Leng has been
cnrolled in the School of Computing at the University of North Florida. With Professor
Yap Siong Chua as his graduate thesis adviser, Leng cxpects to reeeive a Master of
Science in Compuler and Information Sciences from the University of North IFlorida in
December of 2006. Leng is currently ecmployed at Merrill Lynch as an assistant vice
president responsible for project management and application devclopment. Leng has
more than ten years of experience in Web and enterprise application development, and is
a Microsoft Certified System Developer. Leng expects (o earn his Project Management

Professional certification in early 2007.

Leng continues his quest for knowledge outside of school and work. Leng is proficient in
databasc design, JAVA, and various Microsoft programming languages. He is a fan of
SuSE Linux and Fedora Linux operating systems. e holds a Stellent IBPM technical

certification in imaging solutions.

Leng caine to the United States at the age of 18. An ethnic Chinese Malaysian, Leng
speaks Lhree languages and two dialects. Leng enjoys an occasional hike in the wild with
his wife and their dog. Afler taking a break to complete his master's thesis, he intends to

return to teaching at a local martial arts school as a voluntary instructor.

-89 -

	Approximate String Matching With Dynamic Programming and Suffix Trees
	Suggested Citation

	Title Page

	Contents

	List of Figures

	Abstract

	Chapter 1:
INTRODUCTION
	1.1 Background and Motivation
	1.1.1 String Comparison
	1.1.2 String Matching Categories

	1.2 Application Areas
	1.2.1 Personal Computing
	1.2.2 Corporate Electronic Records
	1.2.3 Signal Processing
	1.2.4 Network Communication
	1.2.5 Computational Biology

	1.3 On-line Searching versus Indexed Searching
	1.4 How This Paper is Organized

	Chapter 2:
EXACT STRING MATCHING
	2.1 Problem Definition
	2.2 Exact String Matching Algorithms
	2.2.1 The Naive Approach
	2.2.2 The Automaton Approach
	2.2.3 The Knuth-Morris-Pratt Algorithm
	2.2.4 The Boyer-Moore Algorithm

	Chapter 3:
APPROXIMATE STRING MATCHING
	3 .1 The Basic Concepts
	3 .1.1 Edit Distance
	3 .1.2 Problem Definition

	3 .2 Approximate String Matching Algorithms
	3 .2.1 Dynamic Programming
	3 .2.2 Automata
	3 .2.3 Bit-parallelism
	3 .2.4 Filtering
	3.2.4.1 Filtering History

	Chapter 4: SUFFIX TREES
	4.1 Background
	4.2 History
	4.3 A Suffix Trie and Suffix Tree
	4.4 Suffix Tree Construction
	4.4.1 Structures
	4.4.2 Building a Suffix Tree
	4.4.2.1 Appending a New Character to the Suffix Tree
	4.4.2.2 Once a Leaf Node Always a Leaf Node
	4.4.2.3 Improving Constmction Time with Suffix Links
	4.4.2.4 The Main Suffix Tree Procedures
	4.4.2.4.1 The splitTransition() Procedure
	4.4.2.4.2 The testAndSplit() Procedure
	4.4.2.4.3 The canonize() Procedure
	4.4.2.4.4 The update() Procedure
	4.4.2.4.5 The addStringToTree() Procedure

	4.4.2.5 Explicit versus Implicit Suffix Trees
	4.4.2.6 An Example of Suffix Tree Construction

	4.5 Lowest Common Ancestor
	4.5.1 Binary Tree
	4.5.2 Mapping a Suffix Tree to a Binary Tree
	4.5.3 Finding lea in Constant Time
	4.5.4 A Note on Our lea Implementation

	4.6 The Longest Common Extension
	4.6.1 Generalized Suffix Tree

	Chapter 5: HYBRID DYNAMIC PROGRAMMING WITH SUFFIX TREES

	5.1 The Concept of Diagonals
	5.2 The Concept of d-path
	5.3 Implementing the Hybrid Approach

	Chapter 6: SUFFIX ARRAYS
	6.1 The Concept
	6.2 The Efficiency of a Suffix Array
	6.2.1 Space Requirement
	6.2.2 Search Time

	6.3 Suffix Array Construction
	6.3.1 The Naive Approach
	6.3.2 The Suffix Tree Approach
	6.3 .3 The Linear Time Approach

	6.4 The Longest Common Prefix
	6.5 The Advantages of a Suffix Array

	Chapter 7: EXPERIMENTS

	7.1 Overview
	7.1 The Objectives
	7.2 Experiment Details
	7.2.1 Hardware Platform
	7.2.2 Software Platform
	7.2.3 Experiment Data

	7.3 Experiment Results
	7.3.1 Experiment 1
	7.3.2 Experiment 2
	7.3.3 Experiment 3

	7.4 Analysis of the Experiments
	7.4 .1 The Impact of the Alphabet Size
	7.4.2 Memory Management Issue
	7.4.3 Experiment Conclusion

	Chapter 8: CONCLUSIONS

	8.1 Research Results
	8.2 Experiment Results
	8.3 Future Work

	Reference

	APPENDIX A: Glossary

