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ABSTRACT 

The impmiance and the contribution of string matching algorithms to the modern society 

cannot be overstated. From basic search algorithms such as spell checking and data 

querying, to advanced algorithms such as DNA sequencing, trend analysis and signal 

processing, string matching algorithms form the foundation of many aspects in 

computing that have been pivotal in technological advancement. 

In general, string matching algorithms can be divided into the categories of exact string 

matching and approximate string matching. We study each area and examine some of the 

well known algorithms. We probe into one of the most intriguing data structure in string 

algorithms, the suffix tree. The lowest common ancestor extension of the suffix tree is 

the key to many advanced string matching algorithms. With these tools, we are able to 

solve string problems that were, until recently, thought intractable by many. Another 

interesting and relatively new data structure in string algorithms is the suffix anay, which 

has significant breakthroughs in its linear time construction in recent years. 

Primarily, this thesis focuses on approximate string matching using dynamic 

programming and hybrid dynamic programming with suffix tree. We study both 

approaches in detail and see how the merger of exact string matching and approximate 

string matching algorithms can yield synergistic results in our experiments. 
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1.1 Background and Motivation 

Chapter 1 

INTRODUCTION 

String comparison has an essential role in many areas of computing. Programs rarely 

complete tasks without performing some types of string manipulation or comparison. 

While simple programs can rely on basic if and switch statements to validate user input 

and incoming data for legitimacy, programs with higher complexity often need more 

advanced string matching techniques to get the jobs done. 

1.1.1 String Comparison 

Data are commonly presented in strings of alphanumeric characters in the form of 

human-readable characters, binary data, and encoded data. When character strings are 

mentioned, we often think of them as lines of English characters that we humans are most 

familiar with. However, these English characters we see on computer screens are merely 

a presentation of the underlying data. In fact, character data type is considered numeric 

in most programming languages such as C and JAVA. For example, in the ANSI 

character set, 'a', 'b', and 'c' are represented by the values 97, 98, and 99 respectively. 

While human languages can be presented with the ANSI character set and the 

international Unicode character set, binary data such as images and graphics use numbers 

to indicate the color or shade of a pixel. For instance, if an image format uses 8 bits to 

represent a pixel, each pixel can have up to 28 = 256 colors or shades. Often, data need to 

be encoded for transmission or display purposes. For example, a JPG image can be 
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encoded into a base-64 text and be viewed as a string of printable ASCII characters. 

Whether strings of data are in numeric format or are encoded into human-readable 

format, the underlying data can be treated the same way for the purpose of comparison. 

We are only interested in the syntactic ordering of the string, not its semantic significance 

[Stephen94]. In molecular biology, complex structural information about DNA and 

protein are encoded as strings that consist of character G's, A's, T's and C's. The 

decoupling of semantic information from data allows computer scientists to focus on 

improving string manipulating algorithms and not be concerned with their biological 

meaning. 

1.1.2 String Matching Categories 

We can broadly divide string matching algorithms into two categories, exact string 

matching and approximate string matching. The need for exact string matching is 

apparent in our daily lives. For example, a university registrar's officer needs to find a 

student's records based on his student ID; a store supply manager needs to locate 

equipment whose part number is XWJOOO 1. Exact string matching algorithms have been 

researched and studied extensively in the past decades. They provide the foundation for 

the study of more advanced approximate string matching algorithms, as we will see in 

this paper. 

The need for approximate string matching is not immediately obvious. In general, 

approximate string matching is about matching strings with an allotted margin of enor. It 

enables us to do things that exact string matching cannot accomplish alone. Often, data 

becomes erroneous or corrupted due to human error or poor quality in the network 
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transmission. Sometimes, data simply change over time. For instance, a merger between 

two companies can render an old company name invalid. A language can evolve so 

much over the centuries that some words become obsolete or inappropriate. As a result 

ofthese errors and changes over time, important data are lost simply because we are 

unable to retrieve them. 

In a world enriched by a wide variety of cultures, regional and local uniqueness can and 

often lead to undesired consequences. For instance, searching for the word "color" might 

not return any result in a piece of British literature, where the word is spelled "colour". 

Dates, currency symbols, and measurement units are also among examples of differences 

between countries and continents. Our lack of knowledge and understanding of other 

cultures could sometimes have serious repercussions. For example, misspelling or 

mispronouncing a foreign name could inadvertently allow a terrorist to elude a security 

check point. As the world becomes more connected, these differences have become more 

relevant than ever. Approximate string matching teclmiques can be used to resolve such 

problems by allowing for a margin of error in the matching process. 

1.2 Application Areas 

In recent decades, several phenomena have propelled the growth of data in all facets of 

our lives. They include the advent of the Internet, the ease and availability of personal 

computing, and the advancement of network communi cation. The use of string matching 

techniques is central in many areas of our daily lives and societies. We will examine a 

few of them. 
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1.2.1 Personal Computing 

The first IBM PC was introduced in 1981. The PC ran on an Intel 8088 CPU at 4. 77 

MHz and had 16KB of memory. Currently (year 2006), a mid-range PC can easily be 

accompanied by a 2.4GHz CPU and I GB of super fast memory, running on an advanced 

operating system. What really contributes to the popularity of personal computing is, 

however, its availability and accessibility. The first IBM PC was sold for $1 ,565, which 

is tantamount to roughly $4,000 today, whereas today's mid-range PCs are priced as low 

as $400-$800. In today's society, it is not unusual for a home user to have hundreds of 

gigabytes of storage space to store and to backup a myriad of media contents, such as 

MP3 songs, movie clips, and family photo collections. At the time of this writing, 

various software giants, such as Microsoft, Google, and Linux, are competing to come 

out with the best desktop search engine to help home users organize and locate their 

information amidst a multitude of personal data. More often than we realize, personal 

computing depends on advanced string algorithms to perform tasks as common as spell

checking and correction, grammar usage checking, file comparison, virus detection, voice 

recognition, and web searches. 

1.2.2 Corporate Electronic Records 

In recent years, companies have raced to digitize paper records in hope of reducing 

litigation costs and penalties that amount to billions of dollars. Digitizing paper records 

also help companies achieve better recovery time in the wake of unequivocal tenor 

threats and natural disasters. Everyday, millions of pages of documents are being 

converted into imaging data that measure in terabytes (one thousand gigabytes) and 
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petabytes (one million gigabytes). Consequently, we observe an unprecedented need for 

the capability to search for both the meta-data and the content in heterogeneous 

repositories spanning from email systems, imaging systems and file systems, to 

proprietary databases. 

1.2.3 Signal Processing 

Signal processing is also a broad topic that touches many aspects of our lives. For 

example, we have PDAs equipped with software that recognizes hand-writing, voice

recognition software providing much needed help to the physically challenged, and 

retinal scanning procedures capable of identifying a person accurately, to name a few. 

However, handwriting is inconsistent by nature, a voice might be altered by a cold, and 

the pupil in the eye could contract or dilate in response to surrounding lighting. In order 

for these recognition technologies to work, it is necessary that not only patterns are 

recognized but that there is an allowance for a certain degree of difference, as long as 

precision and security are not compromised. 

1.2.4 Network Communication 

In the past few years, spectacular leaps have also taken place in the areas of 

telecommunication, wireless technology, and computer networking. These advancements 

have promoted the growth of data transmission over a multitude of media at varying 

scale. With more and more data being transmitted across wires and air, the need for 

reliable communication is inevitably greater. Error correction algorithms, such as the 

Hamming distance, play an impotiant role in identifying possible errors and correcting 

them to avoid costly retransmission. In the wake of a series of mal ware attacks, string 
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matching techniques are also pivotal in recognizing patterns of potential security breach 

and virus spread. 

1.2.5 Computational Biology 

Computational biology is one of the oldest areas which gave rise to some advanced string 

algorithms. Biologists encode DNA with a chain of nucleotides that contains the genetic 

information of the living being [Gusfield97]. There are four nucleotides, represented by 

the character A (Adenine), T (Thymine), C (Cytosine) and G (Guanine). Known 

genomic sequences are stored in specialized databases, such as BLAST and F ASTA, so 

newly sequenced DNA can be compared or verified against these existing samples. Since 

the new sequence and the old sequence vary to a certain degree, approximate string 

matching is used to carry out such a comparison. While an English word is nmmally less 

than twenty characters long, the DNA sequence of a simple bacterium could easily 

contain millions of characters. Therefore, efficient search times and space utilization are 

keys to practicality in such applications. Recent breakthroughs in genome research and 

computational biology have rekindled the urge for faster and more efficient string 

algorithms. 

1.3 On-line Searching versus Indexed Searching 

Overall, string matching algorithms can be classified into on-line searching and index 

searching [Navarro98a]. On-line searching is useful for situations where neither time nor 

space is available. Moreover, the text and the pattern may not be known in advance. For 

instance, plagiarism detection could involve comparing large files at random. Similarly, 

identifYing homology in DNA sequences requires searching for the longest common 
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subsequences in two DNA strings. On the other hand, it makes sense to preprocess a 

body of text to facilitate subsequent searches. Index searching is ideal for this situation. 

It is comprised of three steps. The first step is to preprocess the pattern or the text body. 

This includes persisting index information of the text for later use. The second step 

involves executing the search. The last step is the verification process where we locate 

the occurrences from our search result. 

Naturally, index searching is concerned with index construction and index storage. Index 

construction is usually not an issue, if the index is built during offhours. Depending on 

the data structures used, the space required for indexes could grow rather quickly, 

ranging anywhere between 40% to many times the size of the text. However, the 

preprocessing overhead is often offset by its superior search time, although not 

necessarily. Both web page cataloging (e.g., search engine) and DNA sequence mapping 

are good examples of index searching applications. 

In addition, index searching can be divided into two classes: word-retrieving index and 

sequence-retrieving index [NavarroOO]. Word-retrieving index aims at applications that 

involve natural languages such as English. It is well researched due to the need for 

effective word processing and document information retrieval. On the other hand, 

sequence-retrieving index is the optimal choice when the body of text does not lend itself 

well to the concept of natural languages or words. Examples of such data include protein 

sequences, binary or media files, and encoded file content. 
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1.4 How This Paper is Organized 

In chapter two and chapter three, we look at algorithms for exact string matching and 

approximate string matching. In addition, we introduce the concept of edit distance and 

dynamic programming in chapter three. We dedicate chapter four to the suffix tree data 

structure. We take an in depth look at suffix tree construction and the longest common 

ancestor extension. Chapter five focuses primarily on solving the k-difference problem 

with hybrid dynamic programming with suffix tree. In chapter six, we examine briefly 

another advanced data structure called suffix array. In chapter seven, we conduct some 

experiments to measure the performance of dynamic programming and hybrid dynamic 

programming with a suffix tree. In particular, we pay close attention to how the search 

time of each approach is influenced by changing text length, pattern length, and number 

of errors allowed. Finally, in chapter eight, we will present our conclusion. 
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Chapter 2 

EXACT STRING MATCHING 

Many efficient exact string matching algorithms have been devised in the last few 

decades. In this chapter, we examine four of them, from the intuitive naive approach to 

the advanced Knuth-Morris-Pratt and Boyer-Moore algorithms. 

2.1 Problem Definition 

We formalize the exact string matching problem as follows. 

I = Alphabet of a finite set of symbols. III = rJ 

T = A string of text derived from I. I Tl = n 

P =A string of pattern derived from I. !PI = m 

The goal of our string algorithms is to search for occurrences of P in T We 
assume that m <= n. 

2.2 Exact String Matching Algorithms 

2.2.1 The Naive Approach 

The simplest of all exact string approaches is the naive approach, which scans the text 

T[l..n] from left to right, comparing each character in the pattern P[l..m] to the text 

during each iteration. If a mismatch is found, it moves to the next text position and starts 

to compare the pattern with T[2 .. m + 1]. This approach is intuitive but has the 

disadvantage of an 0( (n - m + 1) m ) run-time. As m approaches n/2, the worst case 

scenario of the naive approach reaches O(n2
) quadratic time. 
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2.2.2 The Automaton Approach 

An automaton is an abstract machine that maintains its state based on input derived from 

L:. Given an input symbol, an automaton uses a transition table to determine its next 

state. The transition table consists of rows of states and columns of symbols in L:. When 

applied in exact string matching algorithms, characters in P represent the states in the 

transition table while characters in L: represent the input symbols. When the next input 

character read from T matches the next character in P, the automaton advances to the next 

state. Otherwise, it revelis to a previous state while preserving as many matching 

characters as possible. This avoids having to match the next input character from the 

beginning of P every time there is a mismatch. The automaton approach is easy to 

understand and its search time has a tight bound ofO(n). Unfortunately, while the 

transition table is the strength of an automaton, it has an O(ma) limitation on its 

construction time and space requirement. 

2.2.3 The Knuth-Morris-Pratt Algorithm 

In the year 1977, a clever observation was made by Knuth, Morris, and Pratt [Knuth77]. 

The Knuth-Morris-Pratt algorithm (KMP) is similar to the automaton approach, but it is 

able to mitigate the restriction imposed by the transition table. Instead of a transition 

table, it uses a prefix function, pQ, which is constructed on-the-fly and is independent of 

n. The prefix function pQ contains knowledge about how well the pattern matches itself. 

Therefore, when a mismatch occurs, it knows to slide down the text as far as possible 

without missing any potential match. In short,p(q) is the length of the longest prefix ofP 
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that is a suffix of P[l .. q]. The construction ofpO takes O(m) time by matching the 

pattern to itself. KMP scans from left to right with a search time ofO(n). 

2.2.4 The Boyer-Moore Algorithm 

In the same year, Boyer and Moore introduced an algorithm with sub-linear time, o(n) 

[Boyer77]. The Boyer-Moore (BM) approach utilizes a jump function that contains 

information about the pattern and allows the algorithm to jump ahead if a mismatch 

occurs. The strength ofBM comes from the fact, contrary to common sense, it scans for 

the pattern from right to left. As a consequence, it does not scan every character 

unnecessarily, if the ends of the pattern P[l..m] and text 11L i + m] do not match. This 

allows the algorithm to skip ahead faster and achieve greater efficiency as pattern length, 

m, grows. BM has a worst case scenario of O(mn) when T consists of one repeating 

character and P consists of the same character except for the beginning character. For 

example, T=aaaaaaaaaaaaaaaaaaaaaaaaaaaaa and P=baaaaaaaaaaaaaaaaaaaaa. 

The best case BM has a run-time ofO(n I m), when the last character of the pattern, P[m], 

does not match any character in T[m .. n]. 
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Chapter 3 

APPROXIMATE STRING MATCHING 

3 .1 The Basic Concepts 

Sometimes we need to locate data without exact information about the subject. This 

could be due to a variety of reasons such as changing personnel or corrupted data. These 

are situations where approximate string matching techniques can become valuable. 

Approximate string matching is also known as inexact string matching or string matching 

allowing k errors. By allowing a predetermined margin of error in our search result, we 

are able to retrieve more records of relevance. For instance, a search for the word river in 

a literature allowing for one error may return diver, liver, rive, river, rivet, or rover. 

However, an error margin that is too large could lead to a search result containing an 

overwhelming number of irrelevant data. The trade off between a relevant search result 

and an erroneous search result is described by Hall and Dowling [Hall80] as precision 

and recall. Precision refers to the proportion of retrieved data that are relevant; whereas 

recall refers to the proportion of relevant data actually retrieved. Precision goes up as 

recall comes down, and vice versa. 

3 .1.1 Edit Distance 

The concept of distance is commonly used to measure the similarity (or differences) 

between two strings x andy. The more similar the two strings are, the smaller the 

distance is. Basically, the distance between x andy is a measure of the minimum number 

of operations needed to transform x into y [N avarroO 1]. Four types of string 
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manipulation are used to measure the distance of two strings, including insertion, 

deletion, substitution (replacement) and transposition. Depending on application 

requirements, the cost of each operation could vary. For instance, the transposition 

operation could carry a higher cost for a virus detection program than it would for a spell

checker. 

There are several kinds of distance functions. The most common ones include Hamming 

distance, edit distance, and longest common subsequence distance [NavarroOI]. 

Hamming distance allows for only substitution at one cost unit per operation. Edit 

distance, also known as Levenshtein distance, allows for insertions, deletions, and 

substitutions, at one cost unit each. The longest common subsequence (lcs) allows for 

only inse1iions and deletions, with the distance being the number of unpaired characters. 

Note that subsequence and substring are different. For example, xyz is considered to be a 

subsequence but not a substring of xaaaaayaaaaaazaaaaa. 

Exact string matching techniques such as the naive matching algorithm can be easily 

adapted to perform simple approximate string matching with an average run-time of 

O(mn) and a worse case ofO(n2
) when m approaches n I 2. However, more efficient 

algorithms have been devised. In the next section, we look at various approximate string 

matching approaches. 
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3 .1.2 Problem Definition 

The approximate string matching problem can be defined as: 

Given T, P, k, and dO, find the set of all substrings in T such that d(P, JTi . .j]) :S k, 

where 

k = the maximum number of errors allowed 

a = the error level = kIm 

dO = the distance function 

The distance d(x, y) is the minimum cost of transforming string x into stringy. Given 0 

< k < m < n, we can conclude that 0 < a < 1. An interesting measurement is the 

maximum error level, denoted as a*. Without a*, an enor level that is too high would 

lead to almost all text positions matching the pattern. Therefore, we are interested in 

allowing errors only up to a*. Sankoff and Mainville conjectured that a* = 1 - 1 I -Ja for 

optimal approximate string matching, according to [N avanoO 1]. 

3 .2 Approximate String Matching Algorithms 

3 .2.1 Dynamic Programming 

In 1980, Seller incorporated edit distance in dynamic programming for the first time 

[SellerS OJ. Dynamic programming is the oldest non-brute force approach of approximate 

string matching. In its purest form, dynamic programming is less competitive than some 

of the other approaches, but it has demonstrated tremendous flexibility and adaptability. 

In fact, many algorithms take advantage of this fact and combine dynamic programming 

with other advanced techniques to achieve better results. Dynamic programming can 
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attain a worst-case ofO(kn) and an average case ofO(kn I >iCJ'). We examine a hybrid 

dynamic programming approach in chapter 5. 

The principal idea of dynamic programming is to break the problem down into its basic 

blocks, resolve the sub problems non-recursively, and record the results in a table 

[Weiss02]. In this case, we use a matrix Co m,o" to keep track of results obtained by 

solving sub problems, where C,,~ represents the minimum edit distance to convert P[i..m] 

into suffix TU .. n]. Therefore, at text position} where Cn,1 ::; k, we can find the end of Pin 

Twith, at most, k errors [NavarroOO]. We initialize C.o = i and Co,1= 0 where i represents 

the cunent position in P, and j represents the current position in T. We then construct the 

remainder of matrix C by filling the content with calculated values of k using 

C,j = if P, = T;· then C-1j-1 

else 1 + min(C,-1,~, C-1,J-1, C.1-1) 

After the matrix is constructed, we can scan for Cn,n to see if its value is less than k for a 

match. Figure 1 shows the dynamic programming matrix for pattern mccain in text 

mccayne using edit distance. Bold entries show matching text position j where k <= 2 for 

pattern length i = 6. Matches with 2 or fewer errors were found at position 4, 5, 6, and 7. 
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·····-·--··-····-······- -------· ·-~-

2 3 ./ 5 6 7 

c c a v 11 e 

m=O 00 00 00 00 00 

1 m 01 01 01 01 01 

2 c 00 01 02 02 02 

3 c 01 00 Ol 03 
--- -~---- -~ .. -......... ~·-·· ........ 

4 a 04 03 02 01 01 02 03 

s 05 04 03 02 01 02 03 

6 n 06 05 04 03 02 01 02 

Figure 1: The Dynamic Programming Matrix 

Since the minO function requires just the last row to perform the comparisons, we only 

need to keep the previous row for all purposes. This drastically reduces the space 

requirement from O(mn) to O(n). The matrix, or part of the matrix, can be reconstructed 

by using a technique called trace back. It proceeds backward from Cn.n to Cn,o. 

In 1983, Uldmnen cleverly observed the diagonal-wise monotonicity attribute ofthe 

dynamic programming algorithm, which is that adjacent cells on any downward left-to-

right diagonal of the matrix may increase by one, and the values never decrease in that 

direction [Uldconen83]. He proposed a cut-off heuristic that stops the calculation as soon 

as the value of k + 1 is obtained. This significantly improved the run-time from 0( mn) to 

O(kn). The diagonal-wise monotonicity implies that only the first k+ 1 transitions on 

each diagonal of the matrix need to be found. This observation has provided an 

impotiant framework for a variety of extensions. 

3 .2.2 Automata 

Automata-based algorithms have also been studied at length throughout the years 

[Uldconen93b]. Although the automata approach has a remarkable theoretical worst case 
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run-time of O(n), its practicality is largely limited by its immense space and time 

requirements [N avarroO 1]. In practice, automata are usually implemented with a 

transition table, whose primary task is to keep track of state information. A transition 

table is two dimensional, represented by k rows and m columns. The rows represent the 

number of errors found and the columns represent matches of P found in T. To ease a 

transition table's space requirements, Uldconen suggested adapting the concept of cut-off 

heuristic from dynamic programming. The heuristic essentially specifies that the states 

of columns larger thank+ 1 can be replaced by a column of k + 1. He conjectured that 

only up to 3k I 2 columns need to be computed. 

3 .2.3 Bit-parallelism 

Baeza-Yates and Gonnet introduced a new concept called bit-parallelism [Baeza92). In a 

new exact string matching algorithm, they took advantage of the intrinsic nature of bit

parallelism in computers by using the shift-or operation and storing state information in a 

computer word, which is typically 32 or 64 bits. In their paper, Baeza-Yates and Gonnet 

demonstrated a fast approximate string matching method using their shift-add algorithm. 

By taking advantage of the parallelism of bitwise operations, they were able to reduce the 

number of operations of a chosen algorithm by a factor of the size of a word. The shift

add algorithm forms the basis for the famous agrep program on various operating 

systems such as UNIX, Linux, OS/2 and Windows. 

Bit-parallelism is not just an approach in itself. It can be implemented by extending 

existing approaches such as dynamic programming and automata. Since it is largely 

based on a computer word size, w, the approach works best when pattern length is less 
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than w. For patterns with length greater than w, m I w words can be combined to simulate 

a large word at the cost of some overhead. 

3 .2.4 Filtering 

Filtering is a relatively new approach that emerged around early 1990s. The technique 

allows for a large chunk of text to be abandoned quickly, using exact string matching 

techniques such as Boyer-Moore. The remaining text represents areas with potential hits 

for the pattern, allowing up to k errors. The performance gain is possible because Boyer

Moore-like algorithms have sub-linear expected time. Although the filtering technique 

can quickly disqualify a large area of text, it is unable to pinpoint the exact positions of 

matching occurrences. Therefore, a verification process must be employed to determine 

the matching locations once the filtering phase is completed. This verification process 

can be coupled with other techniques we have seen thus far, such as dynamic 

programming or automaton-based techniques. Since the verification area is usually small 

and negligible, the exact choice of verification techniques is rarely of concern. 

In filtering, there are two critical measurements:.flltering speed and .filtration efficiency. 

Filtering speed refers to the run-time of a filtering algorithm, while filtration efficiency 

refers to the accuracy of its filtration results. 

a = the number of actual matches 

p = the number of potential matches reported by the filtering algorithm 

Filtration efficiency = a I b 
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Due to high overhead, the use of filtering techniques is justifiable only for a moderately 

or extremely long pattern. According to Navarro in [Navano01], filtering techniques do 

not outperform pure dynamic programming and automata form< 100. In practice, given 

its complexity and overhead, the value of m needs to be much higher in order to reap 

benefit from the filtering approach. 

Another interesting aspect about filtering is it is highly sensitive to changes in enor level, 

a. As a increases, filtration efficiency decreases and filtering speed reduces sharply. As 

previously mentioned, the rule of thumb for maximum filtering enor level is: 

a=l-l!v'O" 

In practice however, a must be much lower than that to have meaningful filtering result. 

3.2.4.1 Filtering History 

In 1991, Jokinen, Tarhio, and Uldmnen observed a simple fact. In a block oftext of 

length m, allowing k enors, there must be at least m - k matches, regardless of the order 

of characters [Jokinen96]. They devised an algorithm that slides a window of length m 

over the text and keeps count of characters that match the pattern. If the count is greater 

than or equal tom- k, then the text area is verified with a conventional procedure such as 

dynamic programming. The algorithm only works well for a low enor level [Navano01]. 
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In 1992, Wu and Manber presented a simple concept that states if a pattern is cut into k + 

1 pieces, at least one of them must be an exact match [Wu92]. The proof is if all k + 1 

pieces had an error, it would require k + 1 operations to transform string x into stringy. 

In 1998, Navarro and Baeza-Yates devised a new technique called hierarchical 

verification [Navarro98b]. The pattern continues to split in halves until it is small 

enough to be implemented with a non-deterministic finite automaton (NF A). After the 

splits, the smallest piece is verified against P. If a match is found, or if the error count is 

less than k, the larger piece immediately above it is checked and the count of mismatches 

is recorded. As soon as the count of mismatches is greater than k, the surrounding text 

can be abandoned. This reduces unnecessary verification because smaller chunks of 

strings are used to determine the validity of a larger text area. 

In 1990, Chang and Lawler introduced two new filtering techniques: LET and SET 

[Chang94]. LET stands for Linear Expected Time and SET stands for Sub-linear 

Expected Time. The LET technique traverses the text linearly and keeps track of all 

matching substrings. Then, it concatenates the k longest substrings to obtain the total 

length, l. If lis less than m- k, then the text area does not match the pattern and can be 

abandoned. Otherwise, the text area can be examined using dynamic programming. LET 

runs in O(n) time, while the dynamic programming verification can take up to O(kn) 

time. 

SET is similar to LET except the text is split into fixed blocks of size (m - k) I 2. The 

check for k contiguous strokes starts only at block boundaries. Since the shortest match 
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in an area is oflength m- k, at least one of these two blocks is always contained in a 

match. Otherwise, a block is discarded because no matching occurrence can contain it. 

The algorithm is sub-linear because a block is discarded after O(k logO" m) comparisons on 

average [N avarroO 1]. 

In 1992, Ukkonen presented the q-gram approach, an idea similar to that of Chang and 

Lawler's LET approach for on-line searching [Uldwnen92]. Uldwnen divided the pattern 

Pinto blocks of substring called q-grams of fixed-length q. Thus, a pattern of length m 

has m - q + 1 overlapping q-grams. The technique keeps count on the matching q-grams. 

m - q + 1 grams must appear in any occurrence to have a potential match. Similarly, a 

verification procedure needs to be run once we filter out text areas in which it is 

impossible to have matches allowing up to k errors. It is often referred to as n-gram 

filtering. 
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Chapter 4 

SUFFIX TREES 

4.1 Background 

The suffix tree of a string Sis a tree-like data structure that represents all suffices of S. 

The suffix tree for S[ 1 .. n] contains n leaves where the paths from the root to each leaf 

represent all substrings of S[l..n], S[2 .. n], S[3 .. n], S[4 .. n], ... , S[n]. This important data 

structure plays a pivotal role in many advanced string algorithms and offers solutions to 

many problems that were once thought intractable in linear time. As an example, a string 

ababb$ has the suffices of ababb$, babb$, abb$, bb$, b$, and$. The suffix tree for 

ababb$ is shown in Figure 2. 

Figure 2: The Suffix Tree for ababb$ 

The suffix tree of stringS can be constructed in O(n) time, where n is the length of S. 

Thereafter, any pattern P of length m can be located in O(m) time, at a space requirement 

of O(na) where (J = II:I, by traversing the tree from the root node. When we reach the end 

ofthe pattern, a match is found. Ifwe reach a leaf node before the end of the pattern, 
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then no match is found. The O(m) search time is a remarkable achievement not possible 

with Knuth-Morris-Pratt or Boyer-Moore algorithms. The Knuth-Morris-Pratt and 

Boyer-Moore algorithms preprocess the patterns in only O(m) time, but subsequent 

searches of the patterns necessitate a scanning of the text requiring O(n) time. The suffix 

tree provides a superior search time for large text. When equipped with the lowest 

common ancestor (lea), a suffix tree can be used to determine the longest common prefix 

shared by two suffices in constant time. 

4.2 History 

In1973, Weiner [Weiner73] introduced a linear time suffix tree constmction algorithm 

that was dubbed 'algorithm of the year 1973' by D. Knuth. The algorithm adds 

subsequently longer suffices to the tree. In 1976, E. McCreight devised a more efficient 

linear time constmction by adding subsequently shorter suffices to the tree 

[McCreight76]. More importantly, McCreight introduced the concept of a suffix linlc that 

has become mdimentary in suffix tree algorithm development. Although McCreight's 

algorithm is efficient, it suffers from the same limitation faced by Weiner's algorithm, 

which is the entire string needs to be read before the suffix tree constmction can begin. 

Thus, both algorithms are not suitable for on-line applications. In 1992, E. Ukkonen 

presented an algorithm that adds subsequently longer prefixes of the string 

[Ukkonen93a]. The algorithm appends new characters to the suffix tree as they are being 

read. This makes it the first on-line linear time suffix tree constmction algorithm. 
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Perhaps the most exciting fact about suffix trees is they serve as the bridge between exact 

string matching and approximate string matching [Gusfield97, page 89]. We will study 

this in depth in section 5, when we probe into a hybrid dynamic programming algorithm. 

4.3 A Suffix Trie and Suffix Tree 

We now look at a more fundamental structure called suffix trie. Trie, from the word 

retrieve, is a tree-like data structure that uses edges to represent characters of string 

suffices. Every path from the root to a leaf represents a suffix of the string. Every suffix 

of the string must be present in the trie. A trie can be and is often used as an automaton 

for string pattern matching [Stephen94]. The trie for a sample string caccao$ is shown in 

Figure 3. The shortcoming of this simplistic data structure is it stores every character of 

the string suffices. A string of length n has n suffices with a total length of 1 + 2 + 3 + 4 

+ ... + n = n (n + 1) I 2 = O(n2
) characters. 

Suffix trees are also known as compressed suffix tries or Patricia (Practical Algorithm to 

Retrieve Inforn1ation Coded in Alphanumeric) trees, because they are more space

efficient than suffix tries. The most noticeable difference between suffix trie and suffix 

tree is the latter compresses all its unary paths (nodes with only one child) into 

transitions, which are also known as edges. The suffix tree for string caccao$ is show in 

Figure 4. In this case, we see a reduction of more than fifty percent in the number of 

nodes, from 25 to 11. 
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Figure 3: The Trie for caccao$ 

Figure 4: The Suffix Tree for caccao$ 

In practice, the space requirement for a suffix tree would grow quadratically, if each 

transition stores the substring it represents. A much more efficient approach is to have 

the transition referencing the starting and ending positions of the substring inS. Since 

each transition only requires two integers to store the starting and ending positions, this 

technique reduces the space requirement from Q(n2
) to O(n). When traversing down a 

suffix tree from its root, the search for a substring could end up in the middle of a 

transition. Take Figure 4, for instance. To search for the pattern ace, we slide down 
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transition a from the root and end in the middle of transition ccao$. We are said to have 

reached an implicit state. In other words, transitions that represent more than one 

character inherently contain implicit states. On the other hand, if our search ends at a 

node, we are said to have reached an explicit state. For example, searching for a, c, 

accao$, or ao$ in the above suffix tree would end at explicit states. 

There are two types of nodes in a suffix tree - internal nodes and leaf nodes. An internal 

node represents an explicit state, where two or more transitions branch out. Therefore, 

each internal node must have at least two child nodes. Leaf nodes do not have children. 

The path from the root to any leaf node represents a suffix of the string S of the suffix 

tree. Therefore, the suffix tree for a string of length n has n leaf nodes, if it is an explicit 

suffix tree. The tree also has a maximum of 2n - 1 nodes. 

In 1976, McCreight [McCreight76] introduced the use of suffix links. Every internal 

node, with the exception of the root node, must have a suffix lin1c The suffix lin1c serves 

as a shortcut to jump from one branch of the tree to another, during tree traversal. The 

concept is best illustrated with an example. In Figure 5, prefix ca points to its next 

longest prefix a. Prefixes a and c point to their next longest prefix, an empty string 

represented by the root node. The significance of the suffix lin1cs is they speed up the 

traversal of the suffix tree and make the linear time construction possible. We discuss 

suffix lin1c implementation and its role in suffix tree construction in section 4.4.2. 
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Figure 5: The Suffix Tree for caccao$ with Suffix Links 

In his paper [Uldmnen93a], Ukkonen presents the implicit or explicit states with 

reference pairs {s, (k,p) }. States is some explicit state prior to stater, (k,p) represents 

the substring that spells out the transition from s tor, k is the index to the first character, 

and p is the index to the last character of the transitional substring. In other words, state s 

and substring (k, p) transition to stater. For example, if states is ca and stater is caccao, 

the transitional substring ccao is presented as (2, 5). 

4.4 Suffix Tree Construction 

Here we present a suffix tree construction algorithm based on Ukk:onen's algorithm 

[Uldmnen93a]. Our initial implementation in JAVA is based on the code sample by 

[Nelson96]. We chose to focus on Uldmnen's approach for its on-line attribute as well as 

its linear time construction efficiency. According to Gusfield [Gusfield97], Uk:konen's 

approach is also more concise and easier to understand than the other approaches. 
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4.4.1 Structures 

Since JAVA is an object-oriented language, the main components of our suffix tree are 

defined in classes. The four primary classes are Nodes, Transition, ReferencePair, and 

SuffixTree2. 

The Node class defines the nodes in the tree. Each node has a unique identifier and a 

reference to its parent node. Every internal node of a suffix tree has at least two 

transitions and the first character of each outgoing transition is guaranteed to be unique 

for the node. Therefore, each node could have up to cr branches, where cr is the size of 

the alphabet. It maintains a list of child nodes to which it is a parent. Every internal node 

has a suffix linlc that references to the next longest suffix of the string the node 

represents. 

The Transition class defines the transitions in the tree. Each transition has a start node 

and an end node. It has the starting and ending positions for the substring it represents. 

Transitions are kept in a hash table at the suffix tree level for efficiency. Each transition 

in the hash table is uniquely identified by its hash key, which consists of its starting node 

identifier and its beginning character. 

The ReferencePair class, as explained in section 4.3, defines the current state of the suffix 

tree. It has a state and a (k, p) pair that gives the beginning and ending indices of the 

substring after the explicit state. When the state is explicit, meaning we are in a transition 
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that represents only one character, k is set to be greater than p. When the state is implicit, 

meaning we are in a transition that represents two or more characters, p is greater than k. 

The SuffixTree2 class defines the suffix tree data structure. It contains the main string S 

referenced by the Transition objects, a hash table to keep track of the Transition objects, 

and an array to keep track of the Node objects. Most importantly, The SuffixTree2 class 

implements Ukkonen's algorithm to construct a suffix tree on-line in O(n) linear time. 

4.4.2 Building a Suffix Tree 

Because of its on-line applicability, Uldconen's suffix tree construction algorithm was a 

monumental achievement. A suffix tree of a string Sis built incrementally as each 

character of Sis read. For example, the suffix tree ST for string abc is built by adding 

newly read characters to STone at a time, in the order of a, b, and c. Another way to 

look at it is that SJ11..i] is built on top of ST[l..i-1 ], which in turn is built on top of 

SJ1l .. i-2], and so on. 

4.4.2.1 Appending a New Character to the Suffix Tree 

When appending the next character to a suffix tree, there are three possible scenarios. In 

the first scenario, we read in a character c and walk down the tree from the root, trying to 

update all suffices with character c. We end up at an internal node (explicit state) and 

find no transition that starts with c. As a result, we create a new transition to branch out 

of the node. Figure 6a shows the initial case of adding a character c to the root node. 
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• 

Figure 6a: Adding c to the Root Node 

Whenever a new transition is added, a new node is created for that transition. Figure 6b 

shows another example of the first scenario. A new character b is read into a tree that 

ends with c, which causes the tree to grow from ... c to ... cb. We walk down the tree and 

update the suffices to ... cb. In order to present the suffix cb of ... cb string, we add a new 

transition forb out of the ending node oftransition c. Similarly, to present the suffix b of 

... cb string, we add another transition forb out of the root node. 

/ 

Figure 6b: Adding b to a Suffix Tree 

In the second scenario, we read in a character c for the suffix tree of some stringS. We 

traverse down the tree to append the new character to the suffices. At some stateR, we 

find the new character cis already defined by an existing state (implicit or explicit). In 

this case, we do not do anything since a transition already exists for that state. For 

instance, Figure 7a shows a new character cis read into the suffix tree for string ... ac ... a. 

The resulting string is ... ac ... ac. There is no need for any action since the suffix 
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ac is already defined by an explicit state. Figure 7b shows the same scenario, except the 

suffix ac is represented by an existing implicit state. 

/'', . \ 

/ \ 
I \ 

/ \ 

Figure 7a: An Explicit State Already Exists for Suffix ac 

/ 

Figure 7b: An Implicit State Already Exists for Suffix ac 

In the third and last scenario, the traversal reaches an implicit state (in the middle of a 

transition) and the next character is not found. In this case, we need to first split the 

transition by creating a new internal node (explicit state), then append a new transition to 

represent the new character. Figure 8 shows the scenario of adding cao to the sub tree. 

/-·/-.. 

0 

2 

1 3 

Figure 8: Adding cao to The Sub Tree by Splitting and Appending Transitions 
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4.4.2.2 Once a Leaf Node Always a Leaf Node 

If we built the suffix tree for string aaa by adding the next character one at a time, it takes 

three iterations to complete the construction. Figure 9 demonstrates the point. Note that 

the ending index of the transition is updated each iteration. 

/ 

0 • 
/ 

/ 

(1 fit 
/ -- aa,(/1)

/ 

fl/ 
I • 1 

Figure 9: The Position ofthe Ending Character 
is Updated in Each Iteration 

Such inefficient updates would be impractical for large suffix trees. In fact, in every 

iteration, we could potentially update up to i transitions, where i is the position of the next 

character read. Hence, our construction algorithm would be limited to O(n2
). We can do 

better by avoiding unnecessary updates to the open transitions (last transition prior to the 

leaf nodes). We mark the ending character of leaf nodes with oo to signify the transition 

may grow to cover the entire length of the suffix. At the end of the construction, we can 

easily update the transitions' ending positions ton in O(n) time. Since a leaf node marks 

the end of the transition, once a node is created as a leaf node, it remains a leaf node. 

This supports the third scenario of appending new characters to the suffix tree discussed 

in section 4.4.2.1. Figure 10 illustrates this point. 
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0 0 

aaaa (0,""')+---1..-~ aaaa (0,4) 

Figure 10: The Ending Index is Updated From oo to n afterward 

4.4.2.3 Improving Constmction Time with Suffix Links 

Even with the improvement discussed in section 4.4.2.2, the constmction time is still 

O(n2
). This is because we have to traverse up to the root and down another branch in 

order to update the next suffix. Along the way, we examine all branching transitions. 

We could potentially search for up to i ending transitions, where i is the current position 

read. Dotted lines in Figure 11 a illustrate this inefficient traversal. From point 1, we 

traverse up to the root and then down to point 2. 

Figure 11 a: Traversing Up the Root and Down another Branch 
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A suffix linlc allows for a shortcut from point 1 to point 2, as illustrated in Figure 11 b. 

Figure 11 b: Traversing to the Next Update Point with a Suffix Linlc 

Each internal node of a suffix tree has a suffix link that references the next update point. 

Basically, a suffix linlc points to the next longest suffix ofthe string represented by the 

node. For example, if an internal node represents ba, its suffix linlc points to a. As 

internal nodes are created, we set the suffix linlc of the last update point to reference the 

current update point. This ensures the suffix links are kept up-to-date in scenario 3 

described in section 4.4.2.1. Figure 12 demonstrates this process. 

/ 
\ 

Figure 12: Suffix Linlc Update 
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4.4.2.4 The Main Suffix Tree Procedures 

Uldmnen's algorithm consists of :five main procedures: updateQ, canonizeO, 

testAndSplitiO, splitTransitionO, and addStringToTreeQ. We discuss each ofthem in 

detail. 

4.4.2.4.1 The splitTransition() Procedure 

The splitTransition() procedure splits a transition into two by inserting a new internal 

node at the position where a new transition will be attached. This handles the third 

scenario described in section 4.4.2.1. The concept of splitting a transition is simple, but 

the implementation could be a tricky one, since the old node must be updated and the old 

transition must be removed from the hash table and then added back to the hash table 

with a new hash key. The pseudo code for the splitTransition() procedure is shown 

below. From this pseudo code, it is clear that once a leaf node is created, it remains a leaf 

node. 

procedure splitTransition(Transaction A, ReferencePair rp) 

Node 0 (active node) = Internal node that represents rp.state 

Remove node 1 as the child node of node 0 

Remove the old transition A because it will have a new hash key 

Create a new transition B to branch out of node 0 

Add transition B to the hash table 

Create a new node 2 at the end of transition B 

Assign new node 2 as a child of node 0 

Update transition A's first char position 

Update transition A's start node id 

Update transition A's hash key 
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Add transition A back to the hash table 

Update node l's parent to be the new node 2 

Add node 1 as the new node 2's child 

Return newly created state (node 2) 

4.4.2.4.2 The testAndSplit() Procedure 

When adding a new character to a suffix, we use the testAndSplit() procedure to 

determine if scenario 1 or scenario 3 applies. The procedure splits a transition, if the 

conditions of scenario 3 are met. 

procedure testAndSplit(ReferencePair rp, chart) 

II rp represent the substring in the suffix tree we are examining 

endpoint = null II indicate whether we have reached an end point 

activenode =null II the current active node in 

II the suffix tree to work on 

if rp lS an implicit state (we are in the middle of transition T) 

if t rp's character 

endpoint= true II scenario 1 in section 4.4.2.1 

activenode = rp's state 

else 

endpoint= false II scenario 3 in section 4.4.2.1 

activenode = splitTransition(transition T, rp) 

else if rp is an explicit state (we are at an internal node) 

if transition T is not found 

endpoint =false II scenario 2 ln section 4.4.2.1 

activenode = rp's state 
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else 

endpoint =true // scenario 1 in section 4.4.2.1 

activenode = rp's state 

return (endpoint, activenode) 

4.4.2.4.3 The canonize() Procedure 

In Figure 13, the string cacc is presented by reference pair (2, (1,3)), where 2 is the state 

and (1 ,3) is the index pair for the substring ace with a zero-based positioning. Given the 

string cacc, the procedure to derive (2, (1,3)) is called canonization. Basically, we try to 

find the deepest internal node (closest to the leaf node) that represents the substring in the 

suffix tree. This can easily be done by traversing down from the root, character by 

character, through all the transitions in the path. However, such traversal would greatly 

impair our performance, because we would examine up to 1 + 2 + 3 + 4 + ... + n = n (n-

1) I 2 = O(n2
) characters inn iterations. Instead of examining one character at a time, we 

slide down the transition by the length of the substring (transition length = ending index -

starting index+ 1). For example, in Figure 14, to canonize substring ababbaabc, instead 

of examining all nine characters, we slide down the path by subtracting the transition 

length along the way. As a result, we perform only three comparisons to derive the 

canonical form of the same substring. 
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Figure 13: Reference Pair (2, (1,3)) 
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Figure 14: Sliding Down by Transition Length 

The canonizeO procedure follows: 

procedure canonize(ReferencePair rp) 

if (rp.k < rp.p) II if we are not at an explicit state 

look for the transition T that represents our state 

while (T's length> rp's span) 

slide down the length of the transition by updating rp 

=> update rp's k with next transition's first index 

=> update rp's state to T's end node 

T = the next transition (start from T's end node) 
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4.4.2.4.4 The update() Procedure 

The update() procedure essentially wraps up the previous three procedures. The 

procedure represents what is done when a new character is read and appended to the 

suffix tree. It outlines what is done when ST(l .. n- 1) is transformed into ST(l..n). 

update (rp, last char) { 

old active node = -1 

(endPoint, activeNode) testAndSplit(rp, last char) 

while (not endPoint) 

add a new transition T to activeNode 

add T to the hash table 

add a new end node 3 to T 

add node 3 as a child of activeNode 

if old active node > -1 

set old active node's suffix link to point to 
activeNode 

old active node = activeNode 

if rp.state is already at root 

we are done processing this iteration 

advance rp's k by 1 

else 

follow the suffix link of activeNode 

continue processing 

=> rp.state = rp.state's suffix link 

canonize(rp) II canonize the new active point 

(endPoint, activeNode) = testAndSplit(rp, last char) 
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4.4.2.4.5 The addStringToTree() Procedure 

The addStringToTree() procedure shows the on-line property ofUldwnen's algorithm. 

Note that in this procedure, we invoke the update() procedure once for each character as 

we scan the text string left to right. At the end of an iteration, the end point becomes the 

next active point. 

Procedure addStringToTree(String S) { 

root = new Node 

activePoint = new ReferencePair 

activePoint's state= root 

activePoint's first char= 0 

activePoint's last char= -1 

II build STree(Ti-1) .. STree(Ti) by adding the new char to STree 

i = 0 

while ( i < IS I ) 

endPoint= update(activePoint, i) 

activePoint = endPoint 

activePoint's p =iII advance the reference pair's p 

canonize(activePoint) 

4.4.2.5 Explicit versus Implicit Suffix Trees 

Most ofthe suffix trees presented thus far have a unique ending marker $. The unique 

ending marker results in an explicit suffix tree, where the paths from the root to all leaf 

nodes represent all the suffices of the string. Without the unique ending marker, a suffix 

which is also a prefix to other suffices does not terminate at a leaf node. Instead, it ends 
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in the middle of a transition. The resulting tree is called an implicit suffix tree. For 

instance, the suffix tree for aba and aba$ are show below. In the suffix tree for aba, 

suffix a is implicitly represented in the tree. It does not terminate at a leaf node. In the 

suffix tree for aba$, suffix a$ is explicitly shown (Figure 15). 

ST("aba$") 

Figure 15: Implicit Suffix Tree versus Explicit Suffix Tree 

Leaf nodes contain pertinent information about suffices such as their starting positions, 

node depths, and node identifiers. Since not all suffices of an implicit suffix tree 

terminate at leaf nodes, implicit suffix trees do not contain some of this information. 

4.4.2.6 An Example of Suffix Tree Construction 

Figure 16 shows the construction of a suffix tree for caccao$. We chose the string 

caccao$, because it covers all the scenarios we have mentioned. Dotted lines indicate 

suffix links. 
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Figure 16: Suffix Tree Construction for caccao$ 
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4.5 Lowest Common Ancestor 

In this section, we are interested in finding the longest common prefix of two suffices in a 

suffix tree. This can be achieved using a very powerful tool called lowest common 

ancestor (lea), which was introduced by D. Harel and R. E. Targan in 1984 and improved 

by B. Schieber and U. Vishkin in 1988, according to Gusfield [Gusfield97, page 181]. In 

Figure 16 step 6, we have a suffix tree for string eaeeao$. With the root of a suffix tree 

being the highest node in the tree, the lea for node 2 and node 8 is node 7; the lea for 

node 1 and node 4 is node 3. A naive algorithm can be used to traverse up the tree from 

each of the two nodes in question until they both meet in O(n) time. In this section, we 

will learn how to locate the lea of two nodes in the suffix tree in constant time, 0(1), 

independent of n. 

The lea greatly extends the strength of many string algorithms. It is employed in 

conjunction with other techniques to resolve many advanced problems in linear time, 

some of which were, until recently, thought unattainable in linear time, including the 

search for the longest common substrings and the maximal palindrome problem. 

Our lea algorithm presented here is based on the explanation in [Gusfield97]. Section 4.5 

and 4.6 are in essence an excerpt of chapter eight of [Gusfield97], with our own san1ples 

and some additional notations to complement Gusfield's. 

4.5.1 Binary Tree 

To understand the suffix tree lea algorithm, we must first take a look at an interesting 

property of a complete binary tree. In a complete binary tree, each non-leaf node has two 
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children, and the total number of nodes, n = 2p - 1 where p is the number of leaf nodes in 

the tree. The path from the root to any leaf node is d = log2 p deep. Figure 17 shows a 

complete binary tree where each node is labeled with its in-order number. The binmy 

representation of each node's in-order number is shown in parentheses. What is unique 

about a complete binmy tree is each node's in-order number in binary format actually 

describes the path from the root to the node. In fact, we will regard this in-order number 

as the node's path number and its binmy representation as the node's bit path. We need d 

+ 1 bits for each node to store its bit path. The root always has the left-most 1-bit set and 

padded with d zeros on the right. For example, a complete binmy tree with d = 5 has a 

root node with 1 00000 as its bit path. 

1(0001! 3!0011: 5(0101! 7(0111.: £q1001) 11(101L 13\1101: 15t1111i 

Figure 17: A Complete Binmy Tree with the Nodes' In-Order Numbers Shown 

The ith bit (from the left) of the bit path of some node v represents the ith edge from the 

root to v. If the bit is off (0), it means the edge branches left from its parent node; if the 

bit is on ( 1 ), the edge branches to the right. For example, node 1 0 in Figure 1 7 has a bit 

path of 1010. Reading the bit path from left to right, it translates to a right edge followed 

by a left edge. The position of the last 1-bit signifies the node's height in the binmy tree. 

For node 10, the last 1-bit is in the second position from the right, which indicates that 
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node 10 has a height of two. Note in Figure 17 leaf nodes always have a height of one 

and their right-most bit is always 1. This inherent property of the bit path facilitates the 

search for the lowest common ancestor of two nodes in a complete binary tree. Given 

two nodes, we find the difference between their bit paths by performing a bitwise XOR. 

For example, the XOR for 0101 (node 5) and 0111 (node 7) is 0010. The left-most 1-bit 

position, k, is three, counting from the left. That indicates the two nodes start to diverge 

at depth three. Prior to the divergence (the first and second bit), they share the same path 

from the root to node 6, which has a bit path of0110. The algorithm to locate the lea is 

as follows: 

1. XOR the bit paths. 

2. Shift the bit path of either one of the nodes to the right by d- k position. 

3. Set the right most bit to 1. 

4. Shift the result to the left by d-k position. 

In our example with node 5 and node 7, and with d=4, the steps are: 

1. 0101 XOR 0111 = 0010, k=3 

2. 0101>>d-k=0010 

3. 0010 => 0011 

4. 000 1 < < d - k = 0 11 0 = node 6 

Here is another example with node 9 and node 13, and d=4. 

1. 1001 XOR 1101 = 0100, k=2 

2. 1001 >> d- k= 0010 

3. 00 1 0 => 0011 

4. 0011 <<d-k= 1100=node 12 
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4.5.2 Mapping a Suffix Tree to a Binary Tree 

Before we can apply the binary tree lea technique, we have to map our suffix tree nodes 

to a binary tree, while retaining some of the nodes' ancestry information. We stati by 

traversing through the suffix tree depth-first (pre-order) and assign a number to each node 

in O(n) time. Figure 18 shows the suffix tree for caccao$ with depth-first numbering, as 

well as the binary representation of the numbers. 

Figure 18: Suffix Tree for caccao$ with Depth-first Numbering 

Let k be the depth-first number of some node and let h(k) denote the position of the right-

most 1-bit ofk, counting from the right. For example, h(4)=3, h(8)=4, and h(3)=1. We 

can calculate the h value of each node during the assignment of the depth-first id. 

Therefore, this can be accomplished in O(n) time, as well. 

Next we define that for some node v, let l(v) be a node w with the maximum h(k) value of 

all nodes in the sub tree of v, inclusive of v. In other words, the k value of node v has the 

most zeros on its right end amongst its offspring and itself. Since J(v) includes the entire 
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sub tree ofv, we can deduce ifv is an ancestor of node w, then h(J(v)) >= h(I(w)). Note 

there is always a w whose height, h, is uniquely the maximum in the sub tree ofv. 

Next, we group the suffix tree nodes into runs so each node in a run has the same I(v). 

For example, Figure 19 shows how the suffix tree for caccao$ can be organized into 

various runs of the same I(v). Such organization ensures that I(v) is always the deepest 

node in that run. This fact is crucial to the J(v) computation using a bottom-up traversal 

on the suffix tree in linear time. We start by setting the leaf node's I(v) value to the leaf 

node itself. As we move upward, if the node ID of the child's I(v) is greater than the node 

ID of the parent's I(v), we set the parent's I(v) to the child's I(v). 

The Partition of ST!'caccaoi") into Eight Runs 

Figure 19: The Partition of the Suffix Tree for caccao$ into Eight Runs 

The fact that J(v) has a unique maximal h value is important, because we need to map the 

I(v) node of each run to a binary tree node, as illustrated in Figure 20. 
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The Mapping of Each Run to a Complete Binary Tree 

Figure 20: The Mapping of the I(v) Node of Each Run to a Complete Binary Tree 

Next, we want to find the leader of each run. This is the node in a run closest to the root. 

In our example, the leader of the run containing node 1, 7, and 8 (depth-first id's) is node 

1; the leader of the run containing node 2 and 4 is node 2; the leader of the run for the 

remaining singular runs are the individual nodes themselves. Being able to locate the 

leader enables us to find the next run above the current one. The parent of the leader of 

each run belongs to a separate run, or else the parent would have been the leader of the 

current run. Without the knowledge of the leader of each run, we would have to traverse 

up the tree and examine the I value of each parent node in order to locate the leader. 

Fortunately, we can find the leader and store them in a hash table during our bottom-up I 

value computation. We identifY node v as the leader when node v and the parent of node 

v do not have the same I value. In our implementation, we store the leader of each run in 

a hash table, allowing us to retrieve the leader in 0( 1) average time. 

For each node v in the suffix tree, we need to record the node in the binary tree to which 

the ancestors of v are mapped. This is a significant piece of information in facilitating the 
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search for the lea of two given nodes. To achieve this, each node is assigned an O(log n)

bit numeric variable denoted as A v. The ith bit in Av of v is set to 1 only if v has one or 

more ancestors mapped to height i in the binary tree. Recall we map v in the suffix tree 

to a binary tree node based on the bit path of I(v). The ancestry information, Av, can 

easily be set after J( v) of the nodes have been computed. We traverse down the suffix 

tree and copy the parent's Av information to the current node v, then set the ith bit of Av 

to 1, where i = h(I(v)). Note the same ith bit may be set more than once when v and its 

parent are on the same run, but this is not a problem. We can accomplish the ancestry 

information mapping in 0( n) time, as well. 

To summarize, here are the steps to map a suffix tree to a complete binary tree. 

1. Traverse down the suffix tree depth-first. Assign depth-first numbers to the nodes 

and compute their h values. 

2. Determine the J(v) of each node and locate the leader of each run during the 

bottom-up traversal. 

3. Map the suffix tree nodes to the binary tree nodes by associating each node with 

their respective positions in the binary tree. Implement the binary tree in the form 

of a binary heap. Store the nodes' depth-first numbers and in-order numbers in 

integer arrays [Weiss02, pages 715-717]. These arrays can be discarded to free 

up resources once the mapping has been completed. 

4. Traverse down the suffix tree and preserve each node's ancestry information, Av. 
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Now that we have enhanced the suffix tree nodes with their respective information of h, I, 

Av, binary tree position, and depth-first number, we are ready to examine the retrieval of 

the lea of two suffix tree nodes in constant time. 

4.5.3 Finding lea in Constant Time 

Given two nodes x andy in the suffix tree, we want to find the lowest common ancestor 

(lea). The steps to locate the lea are as follows [Gusfield97, page 190]. 

Step 1. In the binary tree B, the node to which the lea of x andy is mapped tells us which 

run z falls under. Here are the details. 

a) Find the lea, denoted as b, of I(x) and I(y) in the binary tree Bas described 

in section4.5.1. However, thus far we have only looked at how to locate 

b if b is neither x nor y. In the case where either x or y is b, xis the 

ancestor of y, if and only if, the following two conditions are present: 

1. The depth-first id of x <= the depth-first id of y 

11. The depth-first id of y <the depth-first id of x +node count of sub 

tree x 

Gusfield [Gusfield97, page193] describes a way to count the number of 

child nodes for each binary tree node by traversal. We have instead 

devised a formula that computes the number of child nodes based on the 

binary tree height and the position of the node in the binary heap. The 

formula is as follows: 
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e = the number of nodes in the binary sub tree of v (including v) 

e = (2·')- 1, where x =the height of B- floor(log2(n)), and 

n = the in-order number of v 

b) Let i = h(b) = the height of the lea b in the binary tree. 

c) Use ito findj, where j represents h(I(z)) andj >= i and Av[j]=I for both x 

andy. Note i andj are counted from the right (the least significant bit). 

Step 2. Locate node x ', which denotes the closest node to x on the same run as z. In other 

words, x' is the node where we start entering the run that contains z. Note x' could 

potentially be x. For example, in Figure 19, ifx=6 (0110) andy=3 (0011), the lea 

z would be node 2 (0010). In this case, x'would be node 4 (0100), andy' would 

be node 2 (001 0) itself. To do so, the procedure is as follows: 

a) If h(I(x)) =j, set x' = x and go to step 3. This is because x and z are on the 

same run. This approach is simpler than the steps described in 

[Gusfield97, page 191 ]. 

b) Find k where k represents h(I(w)) and w is the node closest to the run of z 

(but not on the run). k= the left-most 1-bit to the right ofj in the Av bits 

ofx. Using k, we can derive the binary tree path number of node w using 

bitwise operations on k. Shift k to the right by k- 1 bits, set the right-most 

bit to 1, then shift k to the left by k- 1 bits. This identifies the run to 

which w belongs. 
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c) Obtain w by looking up the hash table for the leader of the run identified 

above. 

d) Return x', the parent node ofw. This is the entry point into the run of z. 

Step 3. Repeat step 2 for node y to find y '. 

Step 4. Compare x' andy'. The one with the higher depth-first id is the lowest common 

ancestor of both x andy. In our example in Figure 18, node 2 is the lea. 

Each step above takes constant time to perform after preprocessing. Therefore, the 

algorithm to locate the lea of two nodes in a suffix tree can be done in constant time. 

4.5.4 A Note on Our lea Implementation 

To support the lea algorithm and computation, we have to enhance our Node class with 

variables to hold the depth-first id, h value, I node reference, binary tree position, and Av 

bits. We also enhanced our SuffixTree2 class with an auxiliary class Lea. The class Lea 

encapsulates all codes pertaining to the lowest common ancestor algorithm. It is 

designed to isolate the SuffixTree2 class from the lea piece for clarity and ease of 

maintenance. The full implementation of all our suffix tree and related classes can be 

found in the companion CD. Some variables and arrays may be discarded once the suffix 

tree is constructed or when the lea is computed. We have chosen to keep certain 

temporary processing storage for debugging and educational purposes. 
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4.6 The Longest Common Extension 

The longest common extension (lee) problem is central in many string algorithms. The 

goal is to compute the length of the longest common prefixes between a suffix x of string 

Sl and a suffix y of string S2 in constant time. In Figure 21, substrings x andy of Sl and 

S2 have an lee of5, where i andj are the starting positions ofx andy respectively . 

. . . l-rx;-rxxxdefghttttttt ... 

Figure 21: The lep of Substrings x andy is 5 

The concept is similar to the lea algorithm. While the lea deals with two suffices within 

the same string, the lee deals with two suffices of two distinct strings. In fact, our lee 

implementation is built on top of the lea algorithm. 

4.6.1 Generalized Suffix Tree 

It is possible to add the entire set of suffices of string S2 to the suffix tree of string Sl to 

take advantage of common prefixes. The resulting tree is called a generalized suffix tree. 

Each node in this generalized suffix tree will have bits identifying the string(s) to which it 

belongs. The node and the transition could be shared by multiple strings, and each string 

must have its own unique ending marker that does not appear anywhere else in the string 

content. For example, we use$ and# for SJ and S2 respectively. This approach may be 

generalized further to accommodate more strings. 
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For implementation, the identifying bits ofthe nodes and the transitions need to be set: 

1. When the node and transition objects are instantiated. 

2. When the reference pair (active point) is being canonized. This is because we 

traverse down the tree on behalf of the string being added. Therefore, we need to 

mark the bit set to indicate they are a valid path for the string. 

There is one more implementation detail we must look at to ensure lee retrieval takes 

constant time. At each leaf node representing suffix S[i..n], we need to record the index i, 

which is the starting position of the suffix. After all suffices have been added to the suffix 

tree, we traverse down the tree and calculate the distance from the root for each node 

along the way. When we reach a leaf node, we record its suffix starting position. We 

also keep two arrays of Node references, N 1 and N2, which point to leaf nodes of the 

suffices for Sl and S2. Nl and N2 allow us to locate a leaf node of a suffix based on its 

beginning position. For example, Nl[5] is a reference to the leaf node for suffix Sl[5 .. n]. 

The pseudo code for computing the lee of two suffices x andy of Sl and S2 respectively 

is as follows: 

procedure getLce(suffixPosl, suffixPos2) { II returning the lee value 

nodel 

node2 

Nl (suffixPosl) 

N2(suffixPos2) 

lea= the lea of node 1 and node 2 (section 4.5.3) 

return lea's node depth 

-54-



Chapter 5 

HYBRID DYNAMIC PROGRAMMING WITH SUFFIX TREES 

When performing exact string matching on very long strings, using the suffix tree gives 

us an advantage over the Boyer-Moore and Knuth-Morris-Pratt algorithms. Boyer

Moore and Knuth-Morris-Pratt algorithms preprocess the pattern in O(m) time. They 

then scan the text in O(n) time to search for the pattern. A suffix tree, on the other hand, 

preprocesses the text in O(n) time. Subsequent searches for any pattern thereafter require 

only O(m) time. In this chapter, we introduce the concept of hybrid dynamic 

programming with a suffix tree that can solve a k-difference problem in O(kn) time and 

space. 

5.1 The Concept of Diagonals 

In 1983, Uld<.onen introduced a diagonal transition algorithm that has an 0(~) run-time 

[N avarroO 1, page 48]. The concept is based on the observation values running on the 

downward, left-to-right diagonals of the dynamic programming table increase 

monotonically. Figure 22 illustrates the diagonal concept of a dynamic programming 

table. The main diagonal (diagonal 0) is the bold line. Diagonals below the main 

diagonal are marked with numbers from -m to -1 and diagonals above the main diagonal 

are from 1 through n. 
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0 2 3 4 5 6 7 8 

-1 

-2 

-3 

-4 

Figure 22: The Diagonal Concept of 
a Dynamic Programming Table 

Landau and Vishkin adopted this idea and introduced the first hybrid dynamic 

programming with a suffix tree approach that improves the run-time to O(kn). The basic 

idea is we calculate the dynamic programming table diagonally and use the lee extension 

to solve the sub problem of the longest common prefix between the two strings, in 

constant time as we slide down the diagonals. We increment our error count by one and 

skip the mismatching character. We repeat the process until the error count exceeds k. If 

we reach k before we get to the end of the diagonal, we abandon the diagonal and move 

to the next one. Ifwe reach the end of the diagonal, we have an occurrence of PinT 

with at most k differences. 

5.2 The Concept of d-path 

Gusfield defines ad-path as follows: 

A d-path in the dynamic programming table is a path that starts in row zero and 
specifies a total of exactly d mismatches and spaces. 

A d-path is the farthest reaching in diagonal i if it is ad-path that ends in diagonal 
i, and the index of its ending column c (along diagonal i) is greater than or equal 
to the ending column of any other d-path ending in diagonal i [Gusfield97, page 
265]. 
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In other words, the d-path of diagonal i is a path from row zero that ends in diagonal i 

with d differences. What we are interested in is the farthest-reaching d-path in diagonal i, 

which is a path with d differences that starts in row zero and ends in the deepest cell in 

\ 

diagonal i in the dynamic programming table. For the k-difference problem, we want to 

find the k-path for each diagonal in the dynamic programming table. 

The d-path for diagonal i can be computed using the ( d-1)-path for diagonal i+ 1, i-1, and 

i. We call these three paths Rl, R2, and R3 respectively and define them as follows: 

1. R1 represents the farthest-reaching (d- 1 )-path on diagonal i + 1, accompanied by 

a vertical jump (equivalent to insertion of a space in the text) onto diagonal i. The 

jump essentially brings us from the d- 1 path to d path. Then we slide down on 

diagonal i until we find the next mismatch, using the suffix tree lee extension. At 

the end, R1 is ad-path. 

2. R2 represents the farthest-reaching ( d- 1 )-path on diagonal i - 1, accompanied by 

a horizontal jump (equivalent to insertion of a space in the pattern) onto diagonal 

i. The jump essentially brings us from the d- 1 path to d path. Similarly, we slide 

down on diagonal i until we find the next mismatch, using the suffix tree lee 

extension. At the end, R2 is ad-path. 

3. R3 represents the fatihest-reaching (d- I)-path on diagonal i itself. Since we 

knew this was where the last mismatch occurred, we skip one character. That 

essentially brings us from the d- 1 path to d path. Then we slide down on 
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diagonal i until the next mismatch, using the suffix tree lee extension. At the end, 

R3 is a d-path. 

Since Rl, R2, and R3 are all d-paths, the farthest-reaching d-path is the farthest among 

the three. Figure 23 demonstrates the concept of R 1, R2, and R3. 

p 

p 

p 

(a) R1 path 
i+f 

(bl R2 patt1 
i-f i+1 

Horizontal jump 

{b) R3 path 
i-1 /+1 

...... ~-«;-~·-- ••• 

... ....... 

T 

T 

T 

Entry po§rt after the 
~ horizontal jump 

~~.st mismatch 

Last rnlsmatch 
of (d-t; path on i 

Figure 23: Rl, R2, and R3 d-paths 
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5.3 Implementing the Hybrid Approach 

Basically, the hybrid approach takes a pattern Panda body of text T, and build ad-path 

table of k rows and m + n columns. For each error d, we iterate diagonals -m through n. 

For each diagonal, we compute how far we can reach with d differences allowed. At the 

end of the algorithm, we examine the k row in the d-path table. Columns that reach 

farther than m indicate an approximate match of P in T with at most k differences. 

Pseudo code for this process follows: 

procedure kdifferenceWithSuffixTree(String P, String T) { 

Obtain the text and the pattern 

Initialize the suffix tree and its lea extension 

Initialize the d-path table 

For d = 0 (the first row), for i=O to n, find the lee between 
P[l .. m] and T[i .. n]. This is essentially exact string matching 

For d 1 to k 

For each diagonal i (from -m to n) 

use (d- 1)-path on the d-path table to find R1, R2, 
and R3 

update the d-path table (d row, i column) with the max 
value among Rl, R2, and R3 

On row k, any values that reach m indicate an approximate match of 
P in T with at most k differences. 
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Figure 24 shows a sampled-path table as well as a reconstructed dynamic programming 
table. 

Pattern: GGA7CGA# 
!ext: GAA!TCAGT!A:; 
k: 4 

':)) 0 '"' () j 0 0 > 0 <~) : - 0 >) 0'0 
i) - .;..,.J.. " ~ : - 2 1 - '- : 
2} ::.2 2 3 3 2 2 4 5 5 2 2 
3j - 2 3 'l q 4 ~ s ') 6 6 4 
41 .). l2 3 4 5 5 s ., e .., ., 6 

- G A A ! ! C A G ! r A 
Oj - 0,0 0 0 0 0 0 0 0.0 0 0 
:} G: O:: l l : : ~ 0 :•i : 
21 G 0 ~.l 2 2 2 2 2 l l 2 2 
Si A o·::: 1.2 3 s 2 2'2 1.2 
4) G 0 1!2 2 l 2 3 S 3.2 2 3 
51 G ~ 1'2 3,2 2 2 3 4 3 S 3 
6) G 0 1 2 8 3 3 3 3 3 4 4 4 
7) A O'l ~:2 3 4'4 3 4·4 4 

-
s 
5 
') 

D 0 .!.o 0 0 0 (} I 

- 2 2 - .!. : - 0 
4 1 3· 3 2 2 2 (l 

5 6 4 ~ 3 $ 2 0 
6 6 s.s ~ 3<! 0 

Figure 24: The d-path Table and the Reconstructed 
Dynamic Programming Table 

In our d-path table above, we just need to examine the cells in the last row that fall 

between columns -m + (-k) and n- m. Cells with values equal to the pattern length (less 1 

for the ending marker) indicate an approximate match of the pattern Pin text T. The size 

ofthe d-path table may be reduced from O(kn) to O(m + n), ifwe do not need to locate 

the starting position of the approximate match. Since we calculate m + n diagonals ink 

iterations and the lee computation takes 0(1) constant time, our implementation for the k-

difference problem runs in O(kn) time. The implementation of the hybrid algorithm does 

not require the dynamic programming table, which takes up O(mn) space but is helpful 

during the debugging process. The primary d-path table requires kx (m + n) space to 

record the d-path result. Since the size of the pattern is relatively insignificant in 

comparison to the text size, we can generalize the space requirement into O(kn). 
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The k-difference solution using hybrid dynamic programming is not difficult to 

understand, but implementing it and verifying its correctness is time-consuming. First 

and foremost, a dynamic programming algorithm should already be implemented so we 

can verify the results of the hybrid approach. Before we can verify the result, the d-path 

table might need to be translated into a dynamic programming table so we can compare 

the results. The reconstructed dynamic programming table is also read slightly different 

than a dynamic programming table generated with a pure dynamic programming 

algorithm. This is because the dynamic programming table is concerned with the 

minimum edit distance, while the reconstructed dynamic programming table of the hybrid 

approach is concerned with the maximum matches of P and T, as shown in Figure 24. 
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Chapter 6 

SUFFIX ARRAYS 

As well studied as the suffix tree is, there are some intrinsic drawbacks in the data 

structure. The O(n) space requirement of the suffix tree can measure twenty to fifty times 

the text size, which is detrimental in some application areas. Complex suffix tree 

construction algorithm is another reason the data structure is not commonly known 

among computer programmers. In order to achieve the O(m) search time, a suffix tree 

requires O(na) space. Alternatively, a search time of O(n log a") time can be achieved 

with O(n) space, assuming the alphabet size is fixed [Gusfield97, page 149]. 

The impact of the alphabet size (J is less of a concern for a language such as English 

where the entire alphabet can be represented with 128 symbols (ASCII characters). For 

other languages such as Chinese where each of the more than 30,000 characters must be 

assigned a unique code, this presents a space issue. Most non-English languages use a 

Unicode (16-bit) character set instead ofthe 7-bit (27 = 128) ANSI character set. 

Applications requiring an extremely high number of symbols are not related to human 

languages. In imaging, pictures are composed of long strings of characters, each of 

which represents a color component of a pixel. In molecular biology, long strings of 

integers represent locations in a DNA sequence where certain substrings are found 

[Gusfield97, page 155]. Each integer in this case represents a unique symbol in an 

alphabet. Therefore, the alphabet sizes could be in the range of millions or more. 
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6.1 The Concept 

In 1989, Manber and Myers introduced the concept of a suffix array, which can be used 

to solve some of the most common suffix tree applications with three to five times less 

space [Manber93, page 1]. A suffix array of stringS is the lexicographically sorted 

suffices of S. A suffix array is normally in the form of an integer array that represents the 

positions ofthe suffices in the string. For example, the suffix array for string mississippi 

IS: 

-s 
-5 
6 
":' 

s 
9 
10 

0 
9 
-5 
6 
3 
s 
2 

:tJi,l,SS:.S.sipp;,. 
pi 

Figure 25: The Suffix Array for mississippi 

6.2 The Efficiency of a Suffix Array 

6.2.1 Space Requirement 

Unlike the suffix tree, since a suffix array is an integer array that stores the positions of 

suffices, it is not subject to the size of the alphabet and is optimal for large alphabets. 

Even with it auxiliary longest common prefix (lcp) extension (section 6.4), a suffix array 

requires only 2n space. Although in practice a suffix array could take up to 5n space, 

which is an order of magnitude less than the space requirement of a suffix tree (20n to 

50n). This makes the suffix array an ideal candidate for many applications. 
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6.2.2 Search Time 

In its simplest form, a suffix array sa can be used to locate a suffix P in a string S of 

length n in O(m log n) time using a basic binary search. However, complemented with 

lcp extension and advanced binary search techniques, we can improve our search for P in 

Tto O(m +log n) time. More impmiantly, the efficiency is independent ofthe alphabet 

size, which is a major concern in many application areas. 

6.3 Suffix Array Construction 

Since its introduction, researchers have found several approaches to construct suffix 

arrays. We discuss three ofthem below. 

6.3.1 The Naive Approach 

The naive approach to build a suffix array involves looping through the string n times. 

During the iteration, the algorithm compares the current suffix to each suffix, which takes 

O(n2
) time. That brings the total time of the naive approach to O(n3

). Although this 

approach is not practical for real world applications, it is easy to understand and can be 

used to validate more advanced approaches on shorter strings. The pseudo code follows. 

procedure suffixArrayNaive(char[] s) 

bitset bit [n] 

for (i=l to n) 

minPos = -1 

II to track if a suffix has been 

II assigned a position 

II to track the next min suffix position 

for (j=l to n) 
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if (bitset[j]) continue II this suffix has 

II been assigned. Skip 

if (rninPos = -1) rninPos j 

else rninPos = rnin(rninPos, j) II get the min of the two 

sa[i] = rninPos 

bitSet[rninPos] true II indicate suffix has 

II been assigned a position 

6.3.2 The Suffix Tree Approach 

Deriving a suffix array from a suffix tree is quite straightforward. We traverse down the 

suffix tree from the root in depth-first manner and visit the child nodes in the 

lexicographical order. Such traversal ensures that leaf nodes visited are always in 

lexicographical order. Figure 26 shows a suffix tree for the string bananas$. Each node 

is shown with its lexicographical order number. 

Figure 26: The Suffix Tree for bananas$ with 
LeafNodes Lexicographically Marked 
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6.3 .3 The Linear Time Approach 

Manber and Myers introduced a suffix array construction algorithm without constructing 

a suffix tree in advance [Manber93]. This algorithm takes O(n) expected time and O(n 

log n) worst-case time. Constructing suffix arrays using this approach can take three to 

ten times longer than deriving them from suffix trees. 

Finally in 2003, three different linear time approaches to construct suffix arrays without 

involving suffix trees were developed. We briefly describe the skew algorithm developed 

by Karldminen and Sanders [Karkkainen03]. The approach is indeed very fast and 

consists of the following four main steps: 

1. Given a stringS with suffices O .. n, l..n, 2 .. n, 3 .. n, ... , i .. n, divide the suffices into 

three buckets of k= i mod 3. So k= 0, 1, and 2. 

2. Recursively radix-sort the suffices for bucket k = 1 and 2 together. Then assign 

each suffix their ranking in the bucket. 

3. Repeat step 2 for bucket k = 0 and rank each element as well. 

4. Merge the resulting arrays from step 2 and step 3 using a regular sorted array 

merging technique. The result is a suffix array for stringS. 

6.4 The Longest Common Prefix 

The longest common prefix (lcp) is an auxiliary integer array that can improve the search 

time of a suffix array to 0( m + log n) time. The lcp array keeps track of the length of the 
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longest common prefix, lcp(i, j) of two adjacent suffices in the suffix anay. The lcp 

information for the string mississippi is shown in Figure 27. 

The lcp extension allows for the retrieval of the longest common prefix between two 

suffices in constant time. In 2001, Kasai, Lee, Arimura, Arikawa, and Park introduced a 

new lcp construction algorithm in O(n) time [KasaiOl]. Through clever observation of 

the relations between each suffix and previously acquired lcp result, the algorithm 

ensures that each character is examined only once during the iteration, hence achieving a 

linear time lcp construction. In [Manber93], Manber and Myers offered an ingenious 

augmentation to the regular binary search algorithm with the lcp array. They achieved 

the O(m +log n) search time by making sure each character in Pis compared only once 

in each search. 

1 7 ippi 1 
2 'l izsippi 
We _1 i.ssizsipp:. 'l 
'l 0 () 

.s 9 pi 0 
6 " 1 ... 
"'! 6 0 

" ~ 2 ... "' 0 "' l . ., 
1(1 2 zzissippi. 3 

Figure 27: The Suffix Array for mississippi 
with lcp Information 

6.5 The Advantages of a Suffix Array 

Unlike the suffix tree, a suffix array can be used to solve a range of practical problems 

with a modest memory requirement. Its competitive worse case search time of O(m + log 

n), which is independent of alphabet size, is another major advantage. In addition, a 
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suffix array is less complicated than a suffix tree, which contributes to its popularity 

among practitioners. As a suffix array and the lcp extension are both integer arrays, 

persisting them are considerably easier and a myriad of tools are readily available. 
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Chapter 7 

EXPERJMENTS 

In this chapter, we discuss a series of experiments conducted using two approximate 

string matching algorithms, to solve the k-difference problem on a very large text string 

and long pattern. 

7.1 Overview 

We conducted three sets of experiments using dynamic programming to solve the classic 

k-difference problem. We repeated the same experiments using hybrid dynamic 

programming with a suffix tree. We measured and compared the time required to locate 

the ending indices of the occurrences of pattern Pin text T. Each algorithm was run 

against two types of data: text strings from English literature (200KB- 1MB) and a 

section of a DNA sequence (200KB- 1MB). The first set of experiments measured the 

impact of text size on search time. We varied the text length n, while keeping the pattern 

length m and the number of enors allowed k constant. The second set of experiments 

evaluated the impact of pattern length m on search time, with n and k unchanged. The 

last set of experiments examined how changes in the number of errors allowed k affect 

search time, keeping the values of n and m constant. 

Several intrinsic differences between the dynamic programming and the hybrid dynamic 

progranlffiing algorithms are noteworthy. The dynamic progrming algorithm is an on

line algorithm that requires no preprocessing of the text or the pattern. On the other hand, 
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the hybrid dynamic programming algorithm preprocesses the text and constructs a suffix 

tree in advance to gain performance in subsequent searches. Although the suffix tree 

construction takes O(n) time, we were only concerned with the search time. In many 

applications, the text is known in advance. The results of our experiments are presented 

in tabular and graphical formats. 

7.1 The Objectives 

The dynamic programming algorithm can be broken down into three parts: initialization 

of the dynamic programming table, construction of the table, and locating the 

occunences. The hybrid dynamic programming algorithm consists of three major parts 

as well: initialization of the suffix tree and lea data structures, construction of the d-path 

table, and locating the occunences. The suffix tree construction time and the lea 

preprocessing time were excluded from our measurement for reasons previously stated. 

We measured the time to initialize and fill in the d-path table and the time to retrieve the 

ending indices of matches. 

The experiments had two main objectives: 

1. To measure the impact of text size n, pattern length m, and number of enors 

allowed k, on both the dynamic programming and the hybrid algorithms by 

varying one variable at a time. 

2. To measure the impact of alphabet size rJ on both the algorithms using two sets of 

data: ASCII-based literature and a DNA sequence. 
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7.2 Experiment Details 

7.2.1 Hardware Platform 

The experiments were run on a computer with a 32-bit x86 AMD Athlon-XP 1. 7 GHz 

processor with 256KB L2 cache. The system runs at 266MHz front system bus speed 

with 768MB ofPC2100 (266 MHz) DDR RAM. 

7.2.2 Software Platform 

The experiments were conducted on a platform running SUN Java SDK version 1.4.2 10. 

The operating system was SuSE Linux 9.0 Professional with kernel version 2.4.2. 

7.2.3 Experiment Data 

The experiment input consisted of very large text strings in English and a sample DNA 

sequence. The text strings were collected from the Project Gutenberg archive, including 

Confucian Analects, Tao Te Ching, Moby Dick, The Notebooks of Leonardo Da Vinci, 

and The Art of War [GreatBooks06]. Figure 28a shows a snippet ofthe data. The DNA 

sample is part of the DNA sequence of a house mouse acquired from NCBI-GenBank 

[GenBank06]. A snippet is shown in Figure 28b. The text strings use the ASCII 

character set, which has an alphabet size of 128. The DNA sequence consists of 

nucleotides encoded with characters A, T, C, and G. It has an alphabet size of four. 

Each experiment was canied out in five runs and the average search time was recorded. 

To generate a pattern for the experiment, we randomly selected a string of length m from 

the body of text. We randomized the sampled string with up to k actions of insertions, 
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deletions, replacements, or doing nothing. Therefore, when we specified a pattern of 

length m, our randomized pattern generator returned a pattern with a length between m-

k, when k deletions were performed, and m + k, when k insertions were performed. 

C:th:P~ X?C! * !;;;.ze-.l'<-l asked 't·lneti'.ex he shcv.:..cl 
ca~:cy ;;.ntl;l pract.::..ce ~·.r:-~at" he heal.'ct. ·rhe H.ast.e:r 
fathe::,~ and e.::..cler b::>;::;thers t.c be cons;;l:.ted;-- -.dhy sh~;,~lcl yo~;;. act en 
tf'~a 'C c f irr<.rt~~dia t.eJ. y 
Zan 
p.::act.ice 'dhat he heard, and the Haste~ an.s~ .. ;e~ed_,. '"'"''·"''·'"-"' 
ca;:ry into pr.~ct::..ce ~v,rhax yo·0 hear. • Kur:g-h:s~ :hta ea:.d 7 * Yu asked 
t:he"C2".e:r he shot.'l..:i.d ca::ry irr.r:;ed.i-ately into ~d;~ac he r.eaxd_. 
and yo1..1 $O:.c{, 11 !::exe a:ce ycn.~-r father ar::ci bxot.he~.s t-o be 
C•-'~~v_:.tecL" Ch t iu aske:d ...-;neche~ :a~ ehc~~ .. ~ld :.n~.rtediately cazrv ::..:ntc• 
p.ract.tce (..·that h~ hec~:rd~ and yc~u sa:.,.d, "Ca.;:.l'Y .1.t. .l.ltJ;.\ed.l.ateli'" .ir~tj~ 
p.rac-cice. u :,. Ch * .:.h, am pe::tp2.exed> and vent;,.~.re 1:0 ask you tc~~ an 
e.xp.:::.an~t..lcn. ~ r::e Ha.sce;t ..said_. ~ Ch ~ .:..:.: .:..s xet.J..r.:.ng and e:o~·n 
tf~exe.fcxe.r 

Figure 28a: A Snippet of the Text Strings Used in the Experiments 

At.cceccaqQt t tgae.ga tc tQq&. te t. t.qtaa tctt;;tt;,;:a.g·a tee a t.tJr;;t;t t t t t t tc.aa t.gct t 
atcataaaaacatgca~catccatgcac~ggttggct~~otttgtgto~ccctaagttc~gtt 

go~gactccacqattgtactggaqcacacgttgaaaattgtgtatgttgggaggagatgcctg 

ttgqtqaccyctttQcaaqcyqtcttacaacyttgtqgacgataagaaccacoattqtaqcatcat 
acctgtcoatgttgttcccatgttcatcgttcagatattaaaatgtcac~tttatactggacc 

a~gccceQatcQaggtgqtgccttctgcctcag~cctgatcetcaaagccctcaa.gqaQccac 

qaagcagaagaacattaaacacagcgggaacat~acctttga~gagattt~caacattgoccg 

cqqtctttggccaqagaactttc~ggaactat•:;aag<;<agatc•:;tgg<;<t<;<ctgcacagtctgtg 

atggc~qccaccc~ca~gaoatcataqacgacatcaaoaQtggtgcageggagtqocoag~ta 

aagaaaa~attccaataaaagactatctqataaccagogcagggatgtttatgtcatcacatg 

ttctctttc&ttccttcac~tqccagtagcactQatcttttttccat~agqt~ccyaagaqgca 

a~cgaaagagcacttttc~ctG~tcat~~cac~Qtttgaaat~cagcataattaaactttttc 

ctttgaaaggaaccagtcaaaaatcaca~catagctgqgcatggtggcqcatgcctttaatcc 

gcaqaggcaaqca~att~ctqagetcgaggocaqcctgQtotataaagtgagctccaggaoao 

Figure 28b: A Snippet of the DNA Sequence Used in the Experiments 
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7.3 Experiment Results 

7.3.1 Experiment 1 

Figure 29a shows the results for Experiment 1, which measured the impact oftext size 

while keeping pattern length and number of errors allowed constant. Figure 29b and 29c 

show the graphs for the DNA and the literature results. 

Experiment 1a & 1b- The Impact of Text Length, n (with m=1000, k=20) 
Time (sec) 

~~-- - --~-- -----i 
DNA Literature . 

f-- ---- -f---

! File Size (KB) DP . Hybrid DP Hyb_ri_d 
200 8.T7i 1~.72 _8.591 13.82 

~· 400 17.961 27.281 17.12, 29.21 
600 26.421 40.38] 26.351 50.52 
sao' 55.031 54.961 34.64+--- -68.97 

1000 7 4. 91 89.92 44.451 76.1: 
.~ ~-- _ _______L__ ______ ________L___ --- ________[___ ·- -------' 

Figure 29a: The Result of Experiment 1 

Experiment 1a- The Impact of Text Length n 
(m=1 000, k=20) Data Type= DNA 

200 400 600 800 1000 

Text Length (KB) 

Figure 29b: The Graphs for the Results of Experiment 1a 
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80 

Experiment 1 b - The Impact of Text Length n 
(m=1000, k=20) Data Type= Literature 

,-------------------------

75 +---- ~· -- ---·------- -----~~ 

70 +------ ----~-·-. --~~--
65 +----
60 j--- ----------~-----------

() 55 +--------------/_· -·-----
~ 50 r--- ----~---------

........- 45-
(J) 

E 40 
+f' 35 --- -_~------->--n~""-/_-__ _ 

§ 30 - -'-/ ---~ ~ /~/ _____ _ 

~ 25I:S-" - ~-
0

-- - --20 -~ -- -~ -- ---o----
15 ~ ------- ----
10 ------------
5 -------------~--
0 -- -----,-- --~ --

200 400 600 800 1 000 

Text Length (KB) 

~-J o DP 
<> Hybrid 

Figure 29c: The Graphs for the Results of Experiment 1 b 

In Experiment 1, the search times for both the dynamic programming approach and the 

hybrid approach increased linearly with text size. Note that dynamic programming 

outperformed hybrid dynamic programming in this experiment, but we were mainly 

interested in the effect of the text size on search times. This set of experiments clearly 

supports the O(mn) and O(kn) analysis on the search time, since m and k are constant. 

7.3.2 Experiment 2 

Keeping text size and number of errors allowed constant, Experiment 2 examined the 

impact of pattern length on search time. The results are shown in Figure 30a and graphed 

in Figure 30b and 30c. 
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Experiment 2a & 2b- The Impact of P~ttern Length, m (\/lfith n=400KB, k=20) 
Time (sec) 

m 
DNA Literature 

(thc:Jusand) DP Hybrid DP Hybrid 
0.5 9.27 27.981 13.8 28.51 
1.01 18.55 31.56: 17.22 28.71 
1.5i 

- -----c+ -

30.64' 26.581 25.63 28.82. 
--

2.01 40.861 26.7 35.081 28.461 
-

2.51 51.081 26.87 44.941 31.141 
61.691 31.98'1 

. - -c-1 
33.71 :3·~ ~3.5~1 

71.861 32.161 33.181 3.51 
4.01 

i-~1 
5.0, 

59.891 
82.361 31.61 68.82 32.81 

--+ 
92.67 30.991 86.41 34.81 

--· 
_, 

103.02 32.51· 100.991 33.55 -
Figure 30a: The Results of Experiment 2 

Experiment 2a- The Impact of Pattern Length, m 
(with n=400KB, k=20) Data Type= DNA 

110 

100 /:.0 

90 /a 
/ 

80 
0 

70 
u· 

60 .Q 

50 n:_ 

40 n· ---

20 /u/ 

10 ,¥·/ ______ ----------

0 +--~-~-

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Pattern Length (thousand) 

Figure 30b: The Graphs for the Results of Experiment 2a 
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Experiment 2b- The Impact of Pattern Length, m 
(with n=400KB, k=20) Data Type = Literature 

110 

100 

90 

80 

70 

60 

50 

40 

30 

1-------·--~-~··--··--P 

/ 
/ ----- -- ·--------7- --

p ---- ·-- ~- 1-

o· 
1---- --··-.~/ __ ·--"-·--

f-------- -· 

20 +-~~----.-[]~..---------·-----

1 0 1----

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Pattern Length (thousand) 

Figure 30c: The Graphs for the Results of Experiment 2b 

In Experiment 2, we observed the advantages offered by a suffix tree, especially for a 

vety long pattern. The hybrid approach easily outperformed the dynamic programming 

approach because it solves the k-difference using the suffix tree's lee, which can be 

performed in constant time. Although the increase in the pattern length m led to an 

increase in the d-path table processing time, which is O(k(n + m)), the increase is quite 

trivial. We simplified the processing time to O(kn) (section 5.3). 

Even at a modest text size of 200KB, we observed a markedly superior performance by 

the hybrid approach using a suffix tree. For text larger than 600KB and patterns longer 

than 2KB, the performance of the dynamic programming algorithm deteriorated so much 

that the hybrid programming approach is advantageous even if we include the time for 

suffix tree construction in the comparison. It is evident the hybrid dynamic programming 
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algorithm with a suffix tree has a significant edge over the pure dynamic programming 

algorithm, when the text is very large and the pattern is long. 

7.3.3 Experiment 3 

Experiment 3 examined how the number of errors allowed affects search time. Figure 

31 a shows the results. Figure 31 b and 31 c show the graphs for the results. 

Experiment 3a & 3b- The Impact of errors allowed, k as a 
Percentage of Pattern Length,_m (with n=400KB, 111=2000_) -· .

lime (sec) 
-

DNA Literature 
-

k (%of m) 
f--·· ---

DP Hybrid DP _ Hybrid 
AO (2%) 
f---- - --

39.37 59.42 39.52 60.491 
80 (4%) 
(12o (6%) --t-

38.65 120.88 35.5 116.79i 
- 38.02-r---· 176.7fr--- 35.53 _ 188.8~ 

38.i7 225.04' 37.28 268.081 16o (8%) 
,200 (10%) 39.06_. --· 290.59. ____ . 36.83: ____ 346.871 

0 
Q) 
en 
"-" 

Q) 

E 
:+::; 

I 
c 
:::::1 

0::: 

Figure 3la: The Results of Experiment 3 

Experiment 3a- The Impact of errors allowed, k 
as a Percentage of Pattern Length, m 

(with n=400KB, m=2000) Data Type=DNA 

300 

275 -- ///0 ------

250 

225 1--------

200 

175 

150 ------~,-L/_/ __ -------

125 /. 
100 

75 // 

50 c--------- -------

- -[] 

25 1--------

0 1-----, 

40 (2%) 80 (4%) 120 (6%) 160 (8%) 200 
(10%) 

Errors Allowed k (% of m) 

Figure 31 b: The Graphs for the Results of Experiment 3a 
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Experiment 3b- The Impact of errors allowed, k 
as a Percentage of Pattern Length, 

(with n=400KB, m=2000) Data Type=Literature 
350 E··-··------· .------. ____,. 
325 . ·-- .. -- -- -- ·~ 

300 - ·~-
275 

u 250 ·-- .-- --/--- ·--

Q) 
en ........, 
Q) 

E 
:;::::; 

I c 
:::::! 

0::: 

225 ~-

200 
175 ---

/ --·· --~-r---------·--
¥ 

--------~~-------~ 

150 
/ 

---··-----T---··--··--··-
/ 

125 
100 

+---~·--------·--·-----
/"' 

75 // 
--_/"' L-----·---··--------··-

40 (2%) 80 (4%) 120 (6%) 160 (8%) 200 
(10%) 

Errors Allowed k (% of m) 

looP! 
~~ 

Figure 3lc: The Graphs for the Results of Experiment 3b 

In Experiment 3, we examined how k, the number of errors allowed, affects the search 

time. It showed a change in k has a significant impact on the hybrid approach, but not on 

the dynamic programming approach. The latter remains unaffected by changes ink, 

because we simply scan through the last row of the dynamic programming table and find 

entries smaller thank, which requires O(n) time regardless of the value of k. This 

underscores our O(kn) and O(mn) analysis for each approach respectively. 

7.4 Analysis of the Experiments 

Overall, our experiments yielded outcome consistent with the theory. The results give us 

great insight into the role of the variables we measured and confirmed our understanding 

of the data structures. 
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7.4 .1 The Impact of the Alphabet Size 

The outcome of all tluee experiments were not affected by the alphabet size, 0. This can 

be explained by om implementation. For the hybrid approach with a suffix tree, we used 

the hash table class from the JAVA collection API, to keep track of transitions coming 

out of each node. The hash table has an 0(1) average retrieval time and has a 

significantly smaller memory footprint compared to reference arrays. Although we could 

achieve 0( 1) worst case retrieval time using a reference array, the higher memory 

requirement of each node would eventually offset the benefit, especially if 0 is large. On 

the other hand, the dynamic programming approach does not have dependency on the 

alphabet size, because an integer array is used to store the edit distances. 

However, this does not imply that alphabet size did not play a role in om suffix tree 

implementation. When the input text is very long and the alphabet size is small, such as 

in the case of the DNA sequence, the resulting suffix tree is deeper. That translates to 

more tree nodes, longer construction time, as well as greater memory consumption. The 

negative impact of a smaller alphabet did not manifest itself in om results because our 

hardware platform was not pushed to the limit in these experiments. 

7.4.2 Memory Management Issue 

The O(mn) space limitation of the dynamic programming approach presents a memory 

management problem. For shmi strings, the O(mn) space requirement is negligible. 

However, the memory requirement increases rapidly as m and n increase. For example, 

for a small text of 1MB in size, if the pattern we are trying to match is 50K in length, the 
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dynamic programming table size equates to 1MB * 5K =5GB. Since most computers 

today are equipped with one to two GB of memory, this leads to virtual memory 

management issues such as thrashing. 

To avoid this problem, we enhanced our dynamic programming algorithm to use an 

integer array of only 2n, and we improved the d-path table for the hybrid algorithm to use 

a character array of only 2(m + n). In either approach, we search the last row of the 

tables to locate the ending positions of the approximate matches. As a result, we are able 

to process longer strings while avoiding (delaying) the on set ofthrashing. This allowed 

us to conduct experiments with a longer pattern length m and larger k. 

7.4.3 Experiment Conclusion 

The hybrid approach performs well when k is small. Fortunately, in practice, applications 

such as DNA sequence matching, voice recognition, and error conections are limited to a 

low level of error. Nonetheless, it is important to recognize that given its strengths, the 

use of a suffix tree is only appropriate when the right conditions are present. These 

conditions include: 

1. When k is small, 

2. When m is large, and/or 

3. When the combination of mn is not conducive for the pure dynamic programming 

approach. 
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8.1 Research Results 

Chapter 8 

CONCLUSIONS 

The applications of approximate string matching algorithms are ubiquitous in our daily 

lives even though their presence is not always immediately obvious. Rapid growth of 

data volume in our lives and advancement in the sciences only exemplifY the importance 

of string algorithms in the foreseeable future. Although string matching algorithms have 

been well studied and researched in the past few decades, there continues to be 

breakthroughs and improvements to achieve faster and better results. This thesis aimed 

to introduce the concept of an approximate string matching algorithm and explore some 

of the advanced algorithms. We covered a wide range of topics from exact string 

matching to approximate string matching. We examined Uldconen's linear time suffix 

tree construction and implemented a hybrid dynamic programming algorithm using a 

suffix tree. We conducted a series of experiments using two of the algorithms discussed 

and analyzed the results. 

8.2 Experiment Results 

Our empirical data demonstrated the effectiveness of the lea extension of a suffix tree and 

how it can be used to augment regular dynamic programming in the k-difference 

problem. It also showed how hybrid dynamic programming is very much susceptible to 

changes ink. While dynamic programming works well for small to medium text size and 

pattern length, it is also ideal as k increases. On the other hand, the hybrid dynamic 
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programming approach has an advantage when the string and pattern are long. It is 

generally ideal for very large text strings that can be preprocessed for subsequent 

searches. 

8.3 Future Work 

Until recently, the construction of a suffix array was derived from its corresponding 

suffix tree in order to achieve O(n) worst-case time. This requires a suffix tree be 

constructed before the suffix array and is a major restriction. With the newly developed 

O(n) time suffix array construction and O(n) time lep computation, the use of suffix 

arrays is expected to become commonplace in many areas. Although we have 

successfully tackled the construction of a suffix array and the lcp extension in linear time, 

our focus was on suffix trees, the lea extension and the lee extension. We fell short of 

exploring suffix arrays in depth. Our future plans include implementing search 

algorithms using suffix arrays as described in [Gusfield97], investigating generalized 

suffix arrays for multiple strings, and computing the lea of two suffices. Other 

interesting topics include the persisting and compression of suffix trees and suffix arrays. 

Cache obliviousness has also been mentioned in several research papers. Finally, we 

would like to solve the k-difference problem with a suffix array and compare the results 

with experiment results in this work. 
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APPENDIX A 

Glossary 

I =alphabet of a finite set of symbols. III = a 

T = a string of text derived from I. I Tl = n 

P = a string of pattern derived from I. !PI = m where m <= n. 

k = the maximum number of errors allowed 

a = the error level = kIm 

dO = the distance function 
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