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ABSTRACT 

The mechanisms oftransepithelial absorption of dietary D-glucose and D-fructose in the 

American lobster, Homarus americanus, were investigated in this study in order to detetmine 

whether sugar transport proteins have been conserved throughout evolution. Whole lobster 

intestine was isolated and mounted in a perfusion chamber to determine transepithelial mucosal 

to serosal (MS) and serosal to mucosal (SM) mechanisms of 3H-D-glucose and 3H-D-fructose 

transport across the intestine. Unidirectional MS and SM fluxes were measured by adding 

variable concentrations of 3H-D-glucose and 3H-D-fructose (2.5 to 50J.!M) to either the perfusate 

or the bath respectively and sampling the amount of radioactivity that exited the opposite side of 

the intestine. Both the transepithelial MS and SM transports of 3H-D-glucose and 3H-D-fructose 

were hyperbolic functions of sugar concentration. The net flux of both sugars indicated a net 

absorption ofD-glucose and D-fructose into the serosal compartment. Inhibitory analysis showed 

that while phloridzin decreased MS 3H-D-glucose transport via a sodium glucose transport 

(SGLT 1-like) protein located on the mucosal membrane, 3H-D-fructose transport was not 

affected by the drug. Mucosal phloretin decreased MS D-fructose transport but not MS D­

glucose transport. Immunohistochemistry analysis revealed the presence of a mucosal GLUT 5 

transport protein on the mucosal membrane. Increasing serosal concentrations of phloretin 

decreased both SM D-glucose and D-fructose transport suggesting the presence of a serosal 

GLUT 2 used by both sugars. The results of this study support the concept of conserved 

mechanisms of sugar transport in multicellular animals. 
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INTRODUCTION 

Dietary sugars are the main source of energy in living organisms and they play an 

essential role in the proper functioning of organs (Wright and Hirayama, 2007). Most 

heterotrophic organisms useD-glucose, D-:fructose and D-galactose as their main sources 

of carbon (Walmsley et.al. 1998). The biological membrane of organs is selectively 

permeable, allowing the passage of small molecules and lipid-soluble substances to pass 

through the hydrophobic interior of the plasma membrane. For example, certain 

molecules such as gases, small polar molecules like glycerol, and larger non-polar 

molecules like hydrocarbons can easily pass through the lipid membrane (Raven et al., 

2008). In addition, some larger polar molecules like glucose and charged molecules can 

pass through the lipid membrane much slower. The lipid portion of the membrane is 

relatively impermeable to ions, large, and small polar molecules like sugars; and as a 

result, certain integral membrane proteins are involved in the transport of these molecules 

into and out of cells (Raven et al., 2008). Transport occurs via passive and active 

mechanisms. Therefore the two types of transport proteins that were investigated in this 

study are facilitated diffusion carrier transport proteins and active transport proteins. 

Facilitated diffusion transport mechanisms involve proteins that are capable of 

transporting certain ions and molecules across the membrane and are dependent on a 

concentration gradient (Raven et al., 2008). In other words, facilitated diffusion is the net 

movement of molecules or ions from a region of high concentration to a region of low 

concentration. On the other hand, active transport involves a pump that uses metabolic 

energy to function, and transports ions and molecules against their concentration 
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gradients. There are two major types of active transport: primary and secondary active 

transport. The sodium-potassium pump is an example of primary active transport in 

which there is an unequal exchange of three sodium ions exported out of the cell for two 

potassium ions that is imported into the cell. This process requires the expenditure of 

energy leading to the generation of an electrical gradient across the plasma membrane 

(Raven et al., 2008). This means that the driving forces for actively transporting ions and 

molecules across the plasma membrane are both the concentration gradient and the 

electrical potential. Secondary active transport, on the other hand, uses a transport protein 

that indirectly utilizes the sodium-potassium pump to transport ions and molecules across 

the plasma membrane (Raven et al., 2008). In glucose transport for example, the sodium 

exported from the cell, using the sodium-potassium pump, is transported back into the 

cell and down its concentration gradient in conjunction with glucose using a specific 

glucose transporter. 

Absorption of glucose has been extensively studied in mammals, leading to the 

findings that two distinctly different types of sugar transport proteins have evolved to 

transfer this nutrient across membranes of living organisms. These transporters include 

the SLC5 co-transporter gene family and the SLC2A gene family (Wood and Trayhurn, 

2003). The SLC5 co-transporter gene family is a large family of75kDa proteins 

consisting of several sodium/glucose cotransporter (SGLT) proteins that transport 

glucose across biological membranes. SGL T transport proteins are powered by 

transmembrane ion gradients which transport glucose in conjunction with sodium into the 

cytosol of both eukaryotic and prokaryotic cells. Of all the SGLT transport proteins, the 

SGLT 1 transporter is the best studied member of the SLC5 gene family and it is present 
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in the apical membrane of the mammalian intestine. The SGL T 1 transpmi protein is 

made up of 14 transmembrane a-helices that span the plasma membrane with both the N 

and C termini facing the extracellular side ofthe membrane (Fig. 1A) (Wright et al., 

2007). Functional studies ofthe SGLT protein indicated that the sugar binding region is 

located in the C-terminal portion of the protein (Wright et al., 2007). 

On the other hand, the SLC2A gene family is a family of 50kDa proteins. They 

are composed of glucose transport proteins (GLUT) that act as facilitated diffusion 

systems. Unlike the SGLT family, members of the GLUT family possess 12 

transmembrane a-helices with both theN and C termini facing the intracellular side of 

the plasma membrane (Fig. 1B) (Manolescu et al., 2007). These 12 transmembrane a­

helices combine together to form a channel through which substrates are able to cross the 

lipid membrane (Fig. 1B) (Manolescu et al., 2007). The ability of the GLUT proteins to 

transport glucose or fructose depends on the amino acid residues present on the 

translocation channel (Manolescu et al., 2007). GLUT 2 is the carrier protein that is 

inserted in the luminal side of the intestinal epithelial cell and is responsible for uptake of 

luminal glucose in the presence of high concentration of glucose, while GLUT 5 is the 

known carrier responsible for luminal fructose transport (Caccia et al., 2007). Also, 

GLUT 2 is present on the basolateral membrane and is responsible for bringing in both 

glucose and fructose from the blood into the cytosol (Caccia et al., 2007). 
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SCLT I 

A 

Figure 1: Structural models for SGL T 1 and GLUT transport proteins. Fig. A represents 

the 14 transmembrane a-helices with extracellular N- and C.. termini of SGL T transport 

protein. Fig. B represents the 12 transmembrane a-helices with intracellular N-and C­

termini of the GLUT transport proteins (Wright et al., 2007; Manolescu et al., 2007). 
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While sugar transporters have been extensively studied in mammals, very little is 

known about absorption of sugars in invertebrates. In crustaceans, the hepatopancreas 

and the intestine have been shown to play a role in the absorption of dietary glucose 

(Verri et al., 2001) with the hepatopancreas being the major site of sugar absorption 

(Ahearn and Maginniss, 1976; Chu, 1986). There are three major parts to the crustacean 

digestive tract: the foregut, the midgut and the hindgut. The foregut is the portion of the 

intestine that is closer to the mouth of the animal while the hindgut is the portion closer to 

the tail of the animal. The midgut, located in between the foregut and hindgut, consists of 

the intestine and the hepatopancreas and these organs play the major role in nutrient 

absorption; on the other hand, the foregut and hindgut have a very little role in nutrient 

absorption (Wright and Ahearn, 1997). The hepatopancreas is a large, bilateral organ that 

is composed of 5 different cell types: E, F, R, Band M cells (Verri et al., 2001). Each of 

the cell types differ in their cell structure and as a result play different roles in digestive 

functions (Verri et al., 2001). On the contrary, the intestine is made up of a single type of 

epithelial cell. The study of an organ with a single cell type is important because it allows 

scientists to accurately make conclusions about cellular mechanisms occurring in an 

organism. In the American lobster, Homarus americanus, the intestine is considered a 

scavenger organ that absorbs nutrients that were not taken up by the hepatopancreas. A 

picture of a dissected lobster showing the position of the intestine and the hepatopancreas 

is shown in Fig. 2. 
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Figure 2: A dissected lobster showing the bilobed hepatopancreas HP and the intestine I. 

Part of the intestine lies underneath the hepatopancreas and runs through the tail of the 

lobster. This picture was taken at the University of North Florida Physiology Research 

Laboratory, Jacksonville, Fl. 

Some research on sugar transport in bacteria and protozoans has been conducted 

as well. Sugar transport in E. coli is evolutionary closer to mammalian transporters 

(Maiden et al. , 1987 and Henderson et al. , 1990) than to those of the eukaryotic parasitic 

protozoan, Trypanosoma brucei, the causative agent ofthe African sleeping sickness 

(Tetaud et al., 1997). Both E. coli and the parasitic protozoan sugar transporters belong 

to the superfamily termed the major facilitator (MF) superfamily (Walmsley et al. , 1998). 
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In E. coli, sugars are transported across the cell membrane via proton-dependent 

transporters such as the GalP, AraE, and XylE transport proteins which transport D-

glucose/D-galactose, arabinose and xylose, respectively (Walmsley et al., 1998). This 

mechanism of sugar transport in E. coli is similar to the SGL T transport proteins in 

mammals in the sense that an ion is used to transport glucose across the membrane (Turk 

et al., 1996). In E. coli, glucose is co-transported across the membrane using H+ 

(Henderson, 1990), unlike Na+ in mammals (Turk et. al1996). Parasitic protozoans, the 

kinetoplastida, also have sugar transporters that are members of the MF superfamily 

(Walmsley et al., 1998). These groups of organisms include Trypanosoma brucei, which 

cause sleeping sickness and Trypanosoma cruzi which causes Chagas disease (Tetaud et 

al, 1997; Walmsley et al., 1998). Much work has been done to understand the structure of 

the sugar transporter (THT1) in Trypanosoma brucei to develop a chemotherapeutic drug 

for killing the parasite (Tetaud et al, 1997). Sleeping sickness is transmitted to humans by 

tsetse flies. Trypanosoma brucei has evolved distinct sugar transporters due to its two 

separate life stages: in the midgut of the tsetse fly and in the mammalian bloodstream 

(Tetaud et al, 1997). In the human bloodstream where there is a relatively high 

concentration of glucose, the parasite has evolved a low affinity sugar transporter, but in 

the midgut of the tsetse fly, a high affinity sugar transport is present to meet the 

metabolic demands of the parasite in a low sugar environment (Tetaud et al, 1997). 

A comparison of the facilitated sugar transporters of members of the MF 

superfamily and mammalian sugar transporters reveals similarities in the primary 

structures of the sugar transport proteins (Walmsley et al., 1998). The facilitated diffusion 

carrier proteins of both mammals and members of the MF suparfamily are similar in 
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several ways. First, both transport proteins contain 12 transmembrane a-helices with both 

theN- and C- terminals facing the intracellular side of the plasma membrane (Walmsley 

et al., 1998). Second, both sugar transport proteins have inward and outward sugar 

binding sites (Walmsley et al., 1998). The transport of sugar across the plasma membrane 

is made possible as the transporter undergoes conformational changes in which binding 

of the sugar on one side of the membrane leads to closing of the opposite end (Walmsley 

et al., 1998). Finally both sugar transporters have specific amino acid residues that play 

crucial roles in the binding of substrates. For example, in mammals, the replacement of 

the amino acid isoleucine with valine leads to loss in the transport of D-fructose 

(Manolescu et al., 2005), while for members of the MF superfamily, replacement of 

tryptophan located in the amino acid position 412 with leucine decreased glucose 

transport (Walmsley et al., 1998). 

Sugar transport mechanisms have also been studied in insects. Aphid ervi is a 

parasitic wasp that lays its eggs in the haemocoel of a different species of aphids (Caccia 

et al., 2007). The larval development of the insect occurs in the hemolymph of its host 

(Caccia et al., 2007). In a study conducted on the midgut of Aphid ervi, apical and 

basolateral fluxes ofD-glucose and D-fructose, in addition to immunocytochemistry and 

western blot analysis were used to determine the localization of sugar transport proteins 

on the midgut epithelial plasma membranes (Caccia et al., 2007). The results obtained 

revealed the localization ofSGLT 1 and GLUT 5 on the apical membrane (Caccia et al., 

2007). GLUT 2 was shown to be present on the basolateral side of the gut and in the 

presence of high concentration of sugars, GLUT 2 was inserted into the apical side of the 

membrane to maximize uptake of the sugars (Caccia et al., 2007). The findings by Caccia 
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et al., (2007) are important because they are the only known non-vertebrate eukaryote 

studies that support the evolutionary conservation of sugar transporters in eukaryotic 

orgamsms. 

Apart from the above parasitic study conducted in insects, sugar transport 

mechanisms have not been studied in depth in any free living eukaryotic organism. In this 

study, the American lobster, Homarus americanus, was chosen because of its position on 

the phylogenetic tree between parasitic protozoans and vertebrate eukaryotes, and also 

because of its significant divergence from mammals. It was hypothesized that sugar 

transporters must be highly conserved throughout evolution because the glucose molecule 

is the same for all organisms that use it for energy; hence transepithelial sugar transport 

in crustaceans is expected to be similar to the standard model proposed in mammals. The 

intestinal mammalian sugar transport proteins are shown in Fig. 3. 
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Figure 3: Standard model for sugar transport proteins in the mammalian intestinal cells 

(Kellet, 2001). On the mucosal membrane is the SGLT 1 transport protein responsible for 

translocation of glucose into the cell in conjunction with sodium; GLUT 2 protein is 

involved in transport of both glucose and fructose into the cell; and GLUT 5 protein is 

specific for transport of fructose into the cell. On the serosal side is a GLUT 2 protein 

involved in transport of both glucose and fructose in and out of the cell. The 

sodium/potassium pump supplies Na+ needed for transporting mucosal glucose into the 

cell via the SGLT 1 protein. 
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MATERIALS AND METHODS 

Animals 

Live, male lobsters, Homarus americanus, were purchased from a local seller 

(Fisherman's dock, Jacksonville, Florida). Each lobster weighed approximately O.Skg and 

was kept in a tank containing fresh seawater at 15°C. Animals were fed half pound frozen 

mussel meat twice a week until needed for an experiment. 

Mucosal to Serosal (MS) Transport 

In vitro transmural transports of 3H-D-glucose and 3H-D-fructose were studied 

using a perfusion apparatus as previously described by Ahearn and Maginniss (1976) 

(Fig. 4). Isolated whole intestine was flushed with physiological saline ( 41 OmM NaCl, 

15mM KCl, SmM CaS04, 10mM MgS04, SmM NaHC03, and SmM Hepes; an addition 

ofKOH was used to obtain a pH of7.1) and mounted on an 18-20 gauge needle at both 

ends of the perfusion apparatus using a surgical thread. The length and diameter of the 

experimental intestine was measured and the intestinal surface area was calculated using 

the equation: A = Illd, where "1" and "d" represents the length and diameter of the 

intestine, respectively. The perfusion bath (serosal medium) was filled with 35mL of 

physiological saline. Experimental perfusate was pumped through the intestine using a 

peristaltic pump, (Instech Laboratories, Inc., Plymouth Meeting, P A, USA), at a rate of 

0.38mL min-1
• Time course kinetics experiments were conducted by adding experimental 

concentrations ofD-glucose or D-fructose to different 50mL tubes (Falcon, Newark, DE) 

containing 20J.!L of 3H-D-glucose or 10J.!L of 3H-D-fructose respectively depending on 
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the experimental protocol. Prior to the start of experimentation, triplicate aliquots of each 

perfusate (200J.!L) were collected from each Falcon tube and from the bath to determine 

the total count of radioactively labeled sugar in each tube and the amount of background 

radioactivity in the bath. An equal amount of saline as were removed from the bath was 

replaced to maintain a constant volume in the bath. Experimental solutions were then 

perfused through the intestine for a total of thirty minutes at each concentration of sugar. 

The perfusate of inhibition experiments contained the experimental concentration of D­

glucose or D-fructose, 3H-D-glucose or 3H-D-fructose and inhibitors such as phloretin 

and phloridzin. The solutions were perfused through the intestine for the duration of each 

treatment. All experimental procedures were carried out at room temperature (23°C). For 

both time-course and inhibition experiments, triplicate aliquots of radioactive samples 

(200J.!l) were obtained from the serosal medium after passage across the intestine every 

five minutes for the duration of each experimental treatment. An equal amount of saline 

was replaced in the serosal medium in order to maintain a constant volume in the bath. 

Serosal to Mucosal (SM) Transport 

In vitro transmural serosal to mucosal transport of 3H-D-glucose and 3H-D­

fructose was similarly studied. In this case, time course kinetics experiments were 

conducted by adding the corresponding radioactively labeled sugar required for each 

experiment to the bath. The total amount of radioactivity in the bath was determined by 

collecting triplicate samples of200J.!L of solution from the bath. During experimentation, 

physiological saline was perfused through the intestine and an increased experimental 

concentration of the sugar was added to the bath after every thirty minutes. A single 
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sample of radioactive 3H-D-glucose or 3H-D-fructose exiting the intestine into the 

prefusate was collected every five minutes, for the duration of the experiment, into a 7mL 

tube containing 3mL of scintillation cocktail. 

Data Analyses 

Each experimental sample was placed in a 7mL tube containing 3mL scintillation 

cocktail and counted for radioactivity in a Beckman LS6500 scintillation counter. The 

amounts of radioactivity in each tube for both MS and SM experiments were reported in 

counts per minute (cpm). An average of the background counts were subtracted from 

each triplicate sample at each time point. Transmural flux rates expressed in pmol/cm2 x 

min for MS experiments were calculated by taking the average of the samples during 

each time period, while taking into account intestinal surface area and dividing by the 

isotope specific activity for each concentration. Slopes of the time course data were 

determined using linear regression and data curve fitting analysis were performed using 

Sigma Plot software (Systat Software inc., Point Richmond, CA, USA). Bar graphs were 

obtained by plotting flux rate as a function of experimental treatment and are expressed in 

pmol/cm2 x min. Experiments were repeated two or three times providing qualitatively 

similar results between animals. 
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Figure 4: A diagram of the perfusion apparatus used to measure 3H-D-glucose and 3H-D-

fructose transport by the lobster intestine, Homarus americanus (Ahearn and Maginniss, 

1976). The serosallbasolateral medium represents the blood side while the mucosal/apical 

medium represents inside the intestine. 
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Tissue Preparation, Dehydration, Embedding and Sectioning 

Whole lobster intestines were isolated and were dissected into small pieces in 

cross section. Sections were placed in 10% buffered formalin and stored at room 

temperature for about 3-4 days. Each sections was dehydrated by placing it in a separate 

vial containing one of several concentrations of aqueous ethyl alcohol and three changes 

of citrisolv (70, 80, 95, 95, 100,100% ethyl alcohol, citrisolv in order) for one hour at 

each exposure. Tissues were then placed in a 50/50 citrisolv: paraffin mix overnight at 

57°C. Intestines were removed from the mix and placed in paraffin at 57°C for 1hour 

after which each intestinal piece was crossectionally embedded in a plastic block covered 

with paraffin and was allowed to cool at room temperature overnight. Excess paraffin 

was trimmed off from the face of the blocks and the lobster tissues were cut into ribbons 

of7Jlm thickness using a microtome and placed onto a water bath at 37°C. Each ribbon 

was picked and positioned on a labeled glass slide and each slide was placed on a slide 

warmer at 60-65°C for about 30-35 minutes. After tissues had adhered to the slides, the 

slides were then placed in a slide box and stored at room temperature for processing. 

Rehydration 

Prior to staining, tissue sections were re-hydrated by placing each tissue slide in 

different vials containing citrisolv and several concentrations of aqueous ethyl alcohol 

(citrisolv1, 2 and 3, 100, 100, 95, 95, 80, 80, 70% ethyl alcohol in order) for 5 minutes at 

each exposure. After exposure to 70% ethyl alcohol, the slides were held in water for 2 to 

3 minutes before staining. 
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Masson Trichrome Staining 

Rehydrated slides were placed in the following solutions: Bouin's fluid at 56°C 

for 1 hour, Wrigert's iron hematoxylin stain for 10 minutes, Biebrich scarlet acid fuchsin 

solution for 5 to 10 minutes until desired intensity was achieved, phosphotungstic­

phosphomolybdic acid solution for 5 minutes, aniline blue stain solution for 5 to 10 

minutes to achieve desired intensity and, 1% acetic acid solution for 1 minute. The slides 

were rinsed with tap water in between each solution. After the slides were placed in 

acetic acid solution, they were rinsed in distilled water and dehydrated in two changes of 

anhydrous alcohol for 1 minute each. Slides were then placed in three changes of citrisolv 

for 1 minute and cover slips were placed on each slide using parmount for storage. 

Pictures of the slides were taken using an Olympus BX60 microscope. 

Immunohistochemistry 

Rehydrated slides were incubated in pre-incubation buffer (TBS and 2% normal 

goat serum) at room temperature for 1 hour to block non specific binding. Next, the slides 

were washed in TBS three times and then incubated overnight at 4°C in 1:100 rabbit 

polyclonal, primary antibody to GLUT 5 diluted in pre-incubation buffer. After 

incubation, the slides were washed in TBS 3 times and then incubated in the dark for 1 

hour in 1: 100 goat anti rabbit secondary antibody conjugated with FITC diluted in pre­

incubation buffer. Vector shield was used to place cover slips on the slides for storage. 

Pictures of the slides were taken using an Olympus BX60 microscope. Negative controls 

were not incubated in primary antibody. The difference between the intensity of 

fluorescence on the mucosal and serosal aspect of the villi-like projections was analyzed 
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using Kodak Molecular Imaging Software (Carestream Health Inc., Rochester, NY, 

USA). The mean intensities of thirty randomly sampled areas on the mucosal aspect of 

the projection were compared to an equal number of randomly sampled areas on the 

serosal aspect of the projection. Student's T-test was used to determine significant 

differences between the mean fluorescence intensities of both the mucosal and the serosal 

aspect of the villi-like projections. 

RESULTS 

3H-D-glucose and 3H-D-fructose Transport Kinetics 

In order to determine the presence of a mucosal and serosal transporter, 

transmural 3H-D-glucose was studied in the presence of increasing mucosal and serosal 

concentrations ofD-glucose. The effect of increasing mucosal D-glucose on MS 3H-D­

glucose transport and increasing serosal D-glucose on SM 3H-D-glucose transport are 

shown in Fig. 5 and 6 respectively. Time course analysis of 3H-D-glucose transport was 

determined by taking triplicate samples every five minutes at each concentration for a 

duration of thirty minutes. Each data point represents pmoles/cm2
• Fig. 5 and 6 showed 

that the transport rates of 3H-D-glucose were greater in MS uptake experiments than in 

SM uptake experiments. When MS and SM 3H-D-glucose transport rates were plotted as 

a function of mucosal and basolateral glucose concentrations, the graph indicated that 

increasing concentration of luminal glucose increased 3H-D-glucose transport in a 

hyperbolic manner (Fig. 7). Each data point represents the slope ± SEM at each 
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concentration ofD-glucose, as shown in Fig. 5 and 6. Net flux was calculated by 

subtracting SM flux from MS flux at each concentration. The net flux of 3H-D-glucose 

suggests an overall absorption of glucose by the intestine (Fig. 7). Also, the hyperbolic 

curve for both MS and SM 3H-D-glucose transport indicated the presence ofD-glucose 

transport proteins on both the mucosal and serosal sides of the intestine. 

Kinetic constants are listed in Table 1. Km is the concentration at which the 

transporter is working at half its maximum speed while Jmax represents the maximum 

transport velocity of the substrate. A smaller Km implies that the transporter has a higher 

binding affinity to the substrate. A high Jmax suggests an accumulation of the sugar in the 

cell. MS and SM 3H-D-glucose transport had similar Km values but the Jmax values ofMS 

3H-D-glucose transport were about 4 times more than those of SM 3H-D-glucose 

transport (Table 1 ). 
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Figure 5: A time course experiment showing the effect of increasing mucosal D-glucose 

concentration on MS 3H-D-glucose transport. Each individual data point represents the 

mean of± SEM of three replicate samples per time point. Symbols are pmoles/cm2 for 

each concentration of glucose. Transmural MS flux at each concentration is the 
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Table 1: Comparison ofMS and SM kinetic constants for 3H-D-glucose and 3H-D­

fructose transmural transport. 

Substrate Jmax (pmol/cm2 x min) Km(U:M) 

MS 3H-D-glucose 66± 4.7 21 ± 3.0 

MS 3H-D-fructose 6 ± 0.14 11 ± 0.73 

SM 3H-D-glucose 15 ± 1.9 29 ± 7.3 

SM 3H-D-fructose 3 ± 0.29 13 ± 3.9 

Values are means ± 1 SEM from triplicate observations. Kinetic constants were obtained 

using Sigma 10.0 curve fitting software. 
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Mucosal and serosal transmural 3H-D-fructose transport was studied similarly. 

The effects of increasing mucosal D-fructose concentration on MS 3H-D-fructose 

transport and increasing serosal D-fructose concentration on SM 3H-D-fructose transport 

are shown in Figure 8 and 9 respectively. Time course analysis of 3H-D-fructose transport 

was determined as described above. Similar to glucose transport, MS transport of 3H-D­

fructose was also greater than SM transport of 3H-D-fructose. An analysis ofMS and SM 

transport rates plotted against mucosal and basolateral concentrations of D-fructose also 

showed hyperbolic curves (Fig. 10). Net flux of 3H-D-fructose (MS-SM) was absorptive. 

Although both MS and SM transport of 3H-D glucose and 3H-D-fructose exhibited 

hyperbolic curves, it was clear that the transport rates of both MS and SM 3H-D-glucose 

were greater than MS and SM transport rates of 3H-D-fructose respectively (Figs. 7 and 

10). Kinetic constants ofMS and SM transport rates of 3H-D-glucose and 3H-D-fructose 

are shown in Table 1. Similar to glucose transport, MS and SM 3H-D-fructose transport 

had similar Km values but the Imax values ofMS 3H-D-fructose transport was about 2 

times more than SM 3H-D-fructose transport (Table 1). 
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Effect of phloridzin and phloretin on MS 3H-D-glucose and MS 3H-D-fructose 

Transport 

The inhibitors, phloridzin and phloretin dissolved in 100% ethanol were used to 

determine the possible presence of SGLT 1-like and GLUT 2- like transporters on the 

mucosal membrane. Phloridzin is a known inhibitor of the SGLT 1 Na+/glucose 

cotransporter located on the musosal membrane, while phloretin is an inhibitor of glucose 

and fructose transport via the GLUT 2 transport protein. The concentration of25!1M D­

glucose and D-fructose was chosen for experimentation because at that concentration, 

both sugars have not reached their maximum transport rate. This means that the effect of 

the inhibitors could be easily observed since the sugar transporters are not saturated. 

When 25!1M MS 3H-D-glucose uptake was treated with I0011M phloridzin, the data 

showed a decrease in transmural25!1M 3H-D-glucose transport (Fig. 11). In Fig. llA, 

3H-D-glucose transport by animal I decreased by 68% while in Fig. liB 3H-D-glucose 

transport by animal2 decreased by 64%. In addition, I0011M phloridzin did not inhibit 

25!1M 3H-D-fructose transport (Figs. 13A and 13B). Phloridzin was dissolved in 100% 

ethanol. Transport of25!1M D-glucose and 25!1M D-fructose was not affected in the 

presence of 100% ethanol (Figs. 11 and 13). These data suggests the presence of a 

mucosal SGLT 1 transport protein that is responsible for transport of 3H-D-glucose but 

not 3H-D-fructose. 

Furthermore, transmural transport of25!1M MS 3H-D-glucose in the presence of 

10011M phloretin was not inhibited and ethanol did not significantly affect 25!1M 3H-D­

glucose transport (Figs. 12A and 12B). The addition of I0011M mucosal phloretin 
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decreased 25~-.tM MS 3H-D-fructose transport (Fig. 14A and Fig 14B). In Figs. 14A, 3H­

D-fructose transport by animal I was decreased by 30% while in Fig. 14B 3H-D-fmctose 

transport by animal2 was decreased by 58%. As before, ethanol did not affect 25~-.tM MS 

3H-D-glucose and 3H-D-fructose transport (Figs. 12 and 14). These data suggest the 

presence of a mucosal GLUT 2 transport protein responsible for transport of 3H-D­

fructose but not 3H-D-glucose. 
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Effect of Varying Concentrations of Mucosal D-glucose on Transmural MS 3H-D­

fructose Transport and Varying Concentration of Mucosal D-fructose on 

Transmural MS 3H-D-glucose Transport. 

The effect of increasing mucosal D-fructose (0, 10, 25, 50, 100, and 250J..lM) on 

transmural 3H-D-glucose transport is shown in Figs. 15 and 16. The thirty minutes time 

course uptake ofmucosal5J..lM 3H-D-glucose transport in the absence of mucosal D­

fructose served as the control (Fig. 15). The control represents 3H-D-glucose transport in 

the absence of fructose. At 10 and 25J..lM concentrations of mucosal D-fructose, 

transmural5J..lM 3H-D-glucose transport was no different from that of the control (Fig. 

15). At 50, 100 and 250!-lM mucosal D-fructose, 5J..lM transmural 3H-D-glucose transport 

was reduced compared to the control (Fig. 15). Similarly, at 10 and 50!-lM mucosal D­

fructose did not affect transmural transport of25J..lM 3H-D-glucose (Fig. 16). But 

transmural25J..lM 3H-D-glucose transport was reduced at 100 and 250J..lM compared to 

the control (Fig. 16). The effects of increasing mucosal D-glucose on 3H-D-fructose 

transport are shown in Figs. 17 and 18. Unlike mucosal 3H-D-glucose transport, 5J..lM 3H­

D-fructose transport (Fig. 17) and 25!-lM 3H-D-fructose transport (Fig. 18) were not 

decreased at any concentration of mucosal D-glucose compared to the control. These data 

suggest the presence of a possible shared transport protein located on the serosal 

intestinal surface that has a higher affinity forD-fructose than forD-glucose. 
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Histological Stain and Immunohistochemistry 

Histological analysis of the lobster intestine stained with Masson trichrome is 

shown in Fig. 19A. In this figure, there appear to be projections into the lumen that are 

somewhat similar to villi. True villi have blood vessels running through the length of the 

intestinal villi. Blood vessels were not observed in the lobster intestinal villi (Fig. 19A 

and 19B). These villi-like projections (V) are made up of cells that might be responsible 

for absorption of nutrients. Below the projections are connective tissues ( CT) and 

muscles which provide structural support and motility and mediates exchange of nutrients 

between tissues. In addition, connective tissues and muscles also contain blood cells (BC) 

that are involved in immune defense. A higher magnification of these villi-like 

projections is shown in Fig. 19B and there appear to be cellular structures that might be 

responsible for transport of substrates into the cells. 

Immunohistochemistry analysis was performed on cross sections of the intestinal 

tissue to identify the presence of GLUT 5 transport protein responsible for transepithelial 

mucosal transport of 3H-D-fructose across the intestine (Fig. 20A and 20B). The negative 

control of the tissue was not incubated in primary antibody (Fig. 20A). The negative 

control revealed the absence of fluorescence on the villi-like projections. Analysis of the 

villi-like projections incubated in both primary and secondary antibody is shown in Fig. 

20B. The mucosal aspect (mV) of the projections showed a greater intensity of green 

fluorescence than the serosal aspect (sV) of the projections (Fig. 20B). Upon analysis, 

there was a significant difference between the intensity of fluorescence on the mucosal 

(81.0 ± 3.3) and serosal (35.4 ± 0.9) aspects ofthe villi-like projections (P < 0.01) 
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suggesting that a GLUT 5-like protein is located on the mucosal membrane of the 

projections. 
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Figure 19: Cross sections of the lobster intestine stained with Masson Trichrome. Tissue 

sections were fixed in formalin and cut in sections using a microtome. Tissues were 

visualized using an Olympus BX60 microscope. Structures identified are lumen L, Villi­

like projections V, connective tissues CT, and Blood cells BC. Magnification bar 

represents 20011m and 501-lm for picture A and B respectively. 
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A 

B 

Figure 20: Immunohistochemistry analysis of the lobster intestine. Picture A represents a 

negative control incubated only in secondary antibody. Picture B represents the 

experimental treatment incubated in both primary and secondary antibody. Note the 

increased intensity of fluorescence on the mucosal villi (mV) than on the serosal villi, 

(sV). The intensity of fluorescence on mV is significantly different from that on sV (P < 

0.01). Magnification bar represents 200f..lm and 50f..lm for picture A and B respectively. 
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Transepithelial Serosal to Mucosal Transport of 3H-D-glucose and 3H-D-fructose 

In order to determine the presence of a serosal transporter used by D-glucose and 

D-fructose, 25f!M transepithelial SM 3H-D-glucose transport was investigated in the 

presence of 100f!M serosal fructose (Fig. 21). The same study was conducted on 25f!M 

transepithelial SM 3H-D-fructose transport in the presence of 100f!M serosal glucose as 

well (Fig. 22). Upon analysis, it was determined that 1 OOf!M serosal fructose decreased 

serosal 3H-D-glucose transport by 24% (Fig. 21) while 100f!M serosal glucose decreased 

serosal 3H-D-fructose transport by 14% (Fig. 22). Next, 3H-D-glucose transport was 

analyzed in the presence of increasing serosal D-glucose concentrations (1, 2.5, 5, 10, 25, 

50, and 100f!M) (Fig. 23). Curve fitting analysis was achieved using an exponential 

decay curve with an asymptote: lsubstrate =Yo+ a*exp(-b* x). It was determined that 

increasing unlabelled serosal D-glucose decreased SM 3H-D-glucose transport and that 

about 44% ofSM 3H-D-glucose transport was carrier mediated (Fig. 23). 3H-D-fructose 

was analyzed in like manner (Fig. 24). Data analysis revealed that increasing unlabelled 

serosal D-fructose decreased SM 3H-D-fructose transport by 57% (Fig. 24). The 

proportion of total SM transport inhibited by the addition of unlabelled substrate was 

attributed to carrier transport. 

To determine whether GLUT 2 is the transport protein responsible for SM 3H-D­

glucose and 3H-D-fructose transport, transepithelial SM 3H-D-glucose and 3H-D-fructose 

transports were investigated in the presence of varying concentrations of serosal phloretin 

as described above Fig. 25 and 26 respectively. The exponential decay data analysis 

indicated that while 48% of the initial SM transport of 3H-D-glucose occurred through a 
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phloretin sensitive transporter (Fig. 24), 54% of the initial SM transport of 3H-D-fructose 

occurred through a phloretin sensitive transporter (Fig. 26). Thus, these data suggest that 

a GLUT 2 transport protein is located on the serosal membrane of the intestine and is 

responsible for SM carrier transport ofD-glucose and D-fructose. 
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Figure 21: Effect of serosal100J.!M D-fructose on 25J.!M SM transport of 3H-D-glucose. 

Bar graphs are the means ± 1 SEM of triplicate replicates at each time point obtained 

from the time course data. 
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each serosal concentration of glucose. Each arrow on the graph represents the time at 

which the different concentrations of serosal glucose was added. 
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Figure 24: Effect of increasing serosal D-fructose on SM transport of 3H-D-fructose. 

Symbols are total luminal 3H-D-fructose CPM collected over a 5 min sampling interval at 

each serosal concentration of fructose. Each box on the graph represents the time at 

which the different concentrations of serosal fructose was added. 
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DISCUSSION 

The finding of a homology between mammalian, bacteria and parasitic protozoan 

sugar transport proteins and the position of crustaceans on the phylogenetic tree between 

bacteria and mammals is what led to this study. This study was conducted by 

investigating the absorption of 3H-D-glucose and 3H-D-fructose in physiological saline 

that mimics the ionic composition of the lobster hemolymph in the presence of varying 

experimental treatments. The results of the dietary glucose and fructose transport 

obtained from this present investigation revealed that there has been an evolutionary 

conservation of function of the sugar transport proteins despite varying environmental 

and nutritional requirements among these organisms over time. 

3H-D-glucose and 3H-D-fructose Transport Kinetics 

In order to determine the presence of mucosal and serosal D-glucose and D­

fructose transport proteins, experiments were conducted that involved increasing mucosal 

and serosal D-glucose and D-fructose concentrations and measuring the sugar transport 

rates across the intestine at each concentration. These transport rates were found to be 

hyperbolic functions (Figs. 7 and 1 0). The hyperbolic curves followed the Michaelis­

Menten equation: 

V=Jm~ 

(Km + [S]) 

Where Imax is the maximum transport velocity, Km is the concentration at half maximal 

transport velocity, Sis substrate concentration and Vis the rate of the reaction. The 

findings of hyperbolic transport functions suggest that both MS and SM D-glucose 
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transport are mediated by transport proteins. The kinetic constants of MS and SM D-

glucose transport are shown in Table 1. The Km constant indicates that at that 

concentration of MS or SM D-glucose, the transport protein is half saturated and is 

therefore working at half the maximum speed. The values of the Imax ofMS or SM D-

glucose transport indicate the maximum transport rate of MS and SM D-glucose 

transport. This means that any concentration of mucosal or serosal D-glucose above its 

maximum transport rate will not change the rate of its uptake. Intestinal net fluxes of D-

glucose and D-fructose as indicated in Figs. 7 and 10 does suggest that there is a net 

absorption of both sugars across the intestine. It was noted earlier that the crustacean 

intestine is considered a scavenger organ that is responsible for absorbing excess dietary 

sugars that were not otherwise absorbed by the hepatopancreas; as a result, the transport 

proteins located on the intestine should have a higher affinity for the uptake of both 

sugars than in the hepatopancreas. This point is supported by comparing the kinetic 

constants of both sugars in the hepatopancreas and in the intestine. The Km for both D-

glucose and D-fructose in the hepatopancreas is in the mM range (Verri et al., 2001) in 

comparison to the J.!M range in the intestine (Table 1) supporting a higher affinity binding 

proteins for both sugars. It is also important to note that the maximum transmural MS 

flux of D-glucose was 4 times that of SM D-glucose flux (Table 1) and supports a net 

absorption ofD-glucose across the intestine. 

Although MS and SM 3H-D-fructose influx kinetic curves show hyperbolic 

functions (Fig. 10), the MS and SM transport rates of 3H-D-fructose were much lower 

than MS and SM D-glucose transport rates (Fig. 7 and 1 0). The lower kinetic constants 

for SM D-fructose transport than SM D-glucose transport suggest a much higher affinity 
59 



transport protein for fructose than glucose on the serosal membrane of the intestine 

(Table 1 ). A comparison of MS kinetic constants, Km values, for fructose in the 

hepatopancreas and in the intestine also reveals a higher affinity transport protein for 

fructose in the intestine (Table 1) than in the hepatopancreas (Sterling et al., 2009). 

Similar to glucose transport, there was a net absorption of dietary fructose across the 

intestine but the maximum transport rate, Imax ofMS D-fructose transport, was only twice 

that ofthe SM transport ofD-fructose (Table 1). Lastly, the maximum transport ofMS 

D-glucose was 1 0 times greater than MS D-fructose maximum transport rate, while SM 

D-glucose maximum transport rate was only about 4 times SM D-fructose transport rate. 

These kinetics data lead to the following conclusions: (1) The presence ofD-glucose and 

D-fructose transport proteins, (2) A net absorption ofD-glucose and D-fructose, (3) 

Higher affinity fructose transporters than glucose transporters and ( 4) Higher affinity 

transporters for both sugars in the intestine than in the hepatopancreas. 

Effect of phloridzin and phloretin on MS 3H-D-glucose and 3H-D-fructose Transport 

Several inhibitors like phloridzin and phloretin are known to affect the sodium 

dependent glucose transporter and the facilitated sugar transporters. Shapiro (1946) 

demonstrated that phloridzin prevents glucose reabsorption by interfering with 

phosphorylation of glucose. Phloretin on the other hand interferes with transport of 

sugars by interfering with the orientation and conformation of the sugar molecules 

(Andersen et al., 1976). In studies performed on other organisms, there was molecular 

evidence that the mammalian gene sequences of sugar transporters were similar to sugar 

transport gene sequences in bacteria (Maiden et al., 1987) and in lobster (Sterling et al., 
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2009). In this study, phloridzin was used to characterize mucosal sodium dependent D­

glucose transport, while phloretin was used to characterize the possible presence of 

facilitated glucose transporter, GLUT 2, on both the mucosal and serosal intestinal 

surfaces. Treatment of 100~-tM phloridzin decreased mucosal25~-tM D-glucose transport 

compared to the control (Fig. 11 ). Since phloridzin was dissolved in 100% ethanol, 

transport of 25~-tM D-glucose was studied in the presence of 100% ethanol and the data 

showed that there was no significant difference in D-glucose transport in the presence of 

100% ethanol (Fig. 11). Conversely, 100~-tM phloridzin did not inhibit 25~-tM 3H-D­

fructose transport compared to the control (Fig. 13). These findings suggest that the 

SGLT 1 transport protein is present on the mucosal membrane of the intestine and it is 

responsible for mucosal D-glucose transport but not for D-fructose transport. 

The above findings of an SGLT 1 transport protein are similar to the mechanism 

of mucosal transport ofD-glucose and D-fructose found in other organisms. In mammals, 

SGLT 1 is located on the human chromosome 23 (Wright et al., 2004) and is found on 

the apical membrane of the absorptive intestinal cells (Wood and Trayhurn. 2003). 

Homologues of the SGL T gene family are found in yeast, insects and bacteria (Turk and 

Wright. 1997). Characterization of a sodium/glucose cotransporter revealed the presence 

of an SGLT 1 homologue in bacteria, Vibro parahaemolyticus (Xie et al., 2000), insects, 

Aphidius ervi (caccia et al., 2007), and in the hepatopancreas ofthe American lobster, 

Homarus americanus (Sterling et al., 2009). ForD-fructose transport, there is no 

evidence that D-fructose transport is sensitive to phloridzin but recently, there was 

evidence that D-fructose might be absorbed in the hepatopancrease through a different 
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sodium dependent transporter, SGLT 4 (Sterling et al., 2009) which was first identified in 

humans (Tazawa et al., 2005). 

In Fig. 12, 3H-D-glucose transport was insensitive to treatment of I0011M 

phloretin, but not with 3H-D-fructose transport which showed a 30 to 58 percent decrease 

in the transport rate (Fig. 14). The la,ck of sensitivity of 3H-D-glucose to phloretin could 

be explained by the low affinity binding ofD-glucose to GLUT 2 (Wood and Trayhum. 

2003). Since 3H-D- glucose has a low binding affmity to GLUT 2, treatment of phloretin 

will not decrease 3H-D-glucose transport (Fig. 12) because of the presence ofSGLT 1 

transport protein which is specific for mucosal transport of 3H-D-glucose. On the 

contrary, because of the high affinity binding of 3H-D-fructose to GLUT 2, treatment of 

phloretin decreased 3H-D-fructose transport (Fig. 14). In a study conducted by Caccia et 

al., (2007), the data revealed the absence of a GLUT 2 on the midgut of the insect, 

Aphidius ervi at low glucose levels. At very high glucose levels, the study revealed that 

GLUT 2 was rapidly inserted on the mucosal membrane for absorption of excess glucose. 

The finding of GLUT 2 on the mucosal membrane ofthe lobster intestine at a low sugar 

concentration, as shown in Fig. 14, revealed not only a difference between sugar transport 

in the lobster intestine and in the midgut of an insect (Caccia et al., 2007), but also a 

difference between the lobster intestine and mammals (AU et al., 2002). Furthermore, 

there was evidence in previous studies of a facilitated D-fructose transporter, GLUT 5, on 

the intestinal mucosal membrane (Miyamoto et al., 1994). In intact mammalian intestine, 

GLUT 5 is highly specific for fructose (Miyamoto et al., 1994; Kellet, 2001). 
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In previous studies, molecular analysis had been used to determine the presence 

of a GLUT 5 transport protein on cellular membranes. In this study, 

immunohistochemistry was used to determine the presence of the GLUT 5 transport 

protein on the intestinal mucosal membrane (Fig. 20A and 20B). Prior to 

immunohistochemistry analysis, cross sections of the lobster intestine were histologically 

fixed and prepared in paraffin. Observations of the slides revealed the presence of 

projections that looked like villi (Fig. 19A). Under a higher magnification, the projections 

seemed to have cellular structures that might be responsible for absorption of nutrients 

(Fig. 19B). When sections were incubated in both primary and secondary antibodies, 

there was an indication of a greater intensity of fluorescence on the mucosal aspect of the 

intestinal projections compared to the serosal aspect (Fig. 20B). This result suggests the 

presence of a GLUT 5 transporter on the mucosal membrane of the intestine as 

previously observed in other studies (Caccia et al., 2007; Corpe et al., 2002; and 

Miyamoto et al., 1994). 

Transepithelial Serosal to Mucosal Transport of D-glucose and D-fructose 

Evidence for the presence of a serosal transport protein for glucose and fructose 

transport is supported by Fig. 21, 22, 23 and 24. In Fig. 23, increasing serosal D-glucose 

concentration resulted in a 44% decrease in the SM transport of 3H-D-glucose. The same 

effect was observed in the SM transport 3H-D-fructose when serosal D-fructose was 

increased; SM transport of 3H-D-fructose was decreased by 57% (Fig. 24). GLUT 2 was 

determined to be present on the serosal membrane as observed by decrease in the SM 

transport of 3H-D-glucose and SM transport of 3H-D-fructose upon increasing the 
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concentration of serosal phloretin (Fig. 25 and 26), respectively. The observation of a 

shared GLUT 2 transport protein by D-glucose and D-fructose on the serosal membrane 

has been previously reported in mammals (Drozdowski and Thomson, 2006), and in 

insects (Caccia et al., 2007). 

Increasing mucosal fructose decreased 5J1M 3H-D-glucose transport at 50, 100 

and 250J1M concentrations while at 25J1M 3H-D-glucose concentration, 3H-D-glucose 

was only decreased at 100 and 250J1M concentration ofD-fructose (Fig. 13 and 14) 

respectively. Conversely, both 5J1M and 25J1M 3H-D-fructose transport was not 

decreased at any concentration of mucosal D-glucose compared to the control (Fig. 15 

and 16). A possible explanation for the observed inhibition of 3H-D-glucose by mucosal 

D-fructose is that since both sugars share the same exit transport protein, GLUT 2, on the 

serosal membrane, and D-fructose has a higher binding affinity for GLUT 2, and 

increasing mucosal D-fructose will inhibit the exit transport of 3H-D-glucose. In other 

words, because D-fructose will more readily bind GLUT 2, increasing mucosal D­

fructose concentration will out compete 3H-D-glucose binding to GLUT 2, thereby 

inhibiting 3H-D-glucose exit from the cell. The lack of inhibition of 3H-D-fructose by D­

glucose had been supported in previous studies by Corpe et al., 2002 and Miyamoto et 

al., 1994. 

Woking Model ofD-glucose and D-fructose Transport in the Lobster Intestine. 

Figure 27 represents the proposed working model for the mechanism of MS and 

SM D-glucose and D-fructose transport across the American lobster, Homarus 

americanus, intestine. This model is based on the physiological investigations reported in 
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this study. The presence of a sodium/glucose cotransporter, SGLT 1, on the mucosal 

membrane is supported in this model in Figure 9. Likewise, the presence of a mucosal 

GLUT 2 and GLUT 5 transport proteins is supported by Fig. 12 and Fig. 20, respectively. 

Finally, on the serosal membrane the presence of a GLUT 2 transport protein is supported 

by data represented in Figure 25 and 26. The Na+/K+ ATPase pump supplies Na+ for 

cotransport of glucose into the cell. The similarities between the working model for the 

transport of D-glucose and D-fructose across the lobster intestine and the standard model 

proposed in mammals (Fig. 3) are the presence of an SGLT1 and GLUT 5 transport 

proteins on the mucosal membrane and the presence of a shared serosal GLUT 2 

transport protein. The only difference between the two models as documented by this 

study is that in mammals, GLUT 2 is inserted in the presence of a high concentration of 

sugar unlike in the lobster intestine where GLUT 2 is present at low sugar concentration. 

The similarities between transepithelial sugar transport mechanisms in the lobster and 

mammalian intestine suggest a highly conserved sugar transport protein suite for the 

absorption ofD-glucose and D-fructose. 
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Figure 27: Working model ofD-glucose and D-fructose transport across the American 

lobster, Homarus americanus, intestine. The working model is based on the physiological 

analysis of the mechanism of sugar transport presented in this study and is similar to the 

proposed standard model of sugar transport in mammals (Kellet, 2001 ; Manolescu et al. , 

2007; Miyamoto et al. , 1994; Wood and Trayhurn, 2003; and Wright et al. , 2007). 
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CONCLUSION 

The following points can be concluded from this study: 

1. Transepithelial MS and SM D-glucose and D-fructose transport follows the 

Michaelis Menton equation indicating the presence of mucosal and serosal 

transport proteins for D-glucose and D-fructose on the lobster intestinal 

membrane. 

2. Net flux data of MS and SM D-glucose and D-fructose transport indicates a net 

absorption of D-glucose and D-fructose across the intestinal epithelium. 

3. A comparison of kinetic constants oftransepithelial SM D-glucose and D-fructose 

transport suggests a serosal transport protein that has a higher affinity for D­

fructose than D-glucose. 

4. The effect of phloridzin on mucosal D-glucose and D-fructose transport reveals 

the presence of a phloridzin-sensitive, SGLT 1-like, transporter on the mucosal 

membrane responsible for mucosal entry of D-glucose into the cell. 

5. GLUT 2 is present on the mucosal membrane of the lobster intestine with a higher 

binding affinity forD-fructose as observed by the sensitivity of mucosal phloretin 

to D-fructose but not to D-glucose. 

6. Immunohistochemistry analysis shows the presence of a GLUT 5-like transporter 

on the apical membrane of the intestine and is responsible for mucosal D-fructose 

transport into the cell. 
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7. Inhibition studies of the effect of D-glucose on D-fructose transport and D­

fructose on D-glucose transport reveals a shared transport protein for both sugars 

for exit out of the cell. 

8. Analysis of the effect of serosal D-glucose inhibiting 3H-D-glucose transport and 

serosal D-fructose inhibiting 3H-D-fructose suggests that 50 percent of serosal to 

mucosal transport of both sugars occurs through cellular or paracellular diffusion. 

9. The effect of increasing serosal phloretin on D-glucose and D-fructose transport 

indicates the presence of a carrier mediated GLUT 2-like transport protein utilized 

by both sugars for exit out of the cell. 
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