
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2004

Recent Trends in Software Engineering Research As Seen Recent Trends in Software Engineering Research As Seen

Through Its Publications Through Its Publications

Terry L. Smith
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Computer Sciences Commons

Suggested Citation Suggested Citation
Smith, Terry L., "Recent Trends in Software Engineering Research As Seen Through Its Publications"
(2004). UNF Graduate Theses and Dissertations. 205.
https://digitalcommons.unf.edu/etd/205

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2004 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fetd%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/205?utm_source=digitalcommons.unf.edu%2Fetd%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

RECENT TRENDS IN SOFTWARE ENGINEERING RESEARCH AS SEEN
THROUGH ITS PUBLICATIONS

by

Terry L. Smith

A thesis submitted to the
Department of Computer and Information Sciences

in partial fulfillment of the requirements for the
degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

April 2004

Copyright (©) 2004 by Terry L. Smith

All rights reserved. Reproduction in whole or in part
in any form requires the prior written permission of
Terry L. Smith or designated representative.

-n-

The thesis "Recent Trends in Software Engineering
Research as Seen through Its Publications" submitted
by Terry L. Smith in ~artial fulfillment of the
requirements for the degree of Master of Science of
Computer and Information Sciences has been

Approved by the thesis committee: Date

rbt.l tf<J • I . Dr. Neal S. Coulter
Thesis Adviser and Committee Chairperson

'Dr. Charles Winton

!tfc/
Accepted for the Department of Computer and
Information Sciences:

D~. ~dith J::rlo
Chai person of the Department

AcceJ(ed for the College of Computing, Engineering,
and Construction:

Dr. Neal S. oulter
Dean of the College

Accepted for the University:

Dr. Tom Serwatka
Dean of Graduate Studies

- 111 -

Signature deleted

Signature deleted

Signature deleted

Signature deleted

Signature deleted

Signature deleted

ACKNOWLEDGEMENT

It would be impossible to list everyone whose guidance
and encouragement made this endeavor possible, but of
special mention are Ms. Carrol Reilly, Dr. Neal
Coulter, Dr. Yap Chua, and Dr. Charles Winton.

For my family, especially Daniel, please accept my
most heartfelt gratitude for your continued faith and
encouragement.

I wish to offer special thanks to Dr. Suresh Konda.
Dr. Konda's pioneering work in the development of the
CAIR system, its port to Linux, and making CAIR
available to the University of North Florida has made
this study possible.

-IV-

CONTENTS

List of Figures

List of Tables

Abstract

Chapter 1: Introduction

Chapter 2: The Data

2.1 The CCS

2. 2 SGML Data Set

2.3 Initial Examination

Chapter 3: Preparing the Data

3. 1 CAIR-Prep

3.2 Final Preparations

Chapter 4: Co-Word Analysis

4. 1 The Metric

4.2 The Algorithm

4.3 The CAIR System

4.3.1 CAIR Command-line Tools .. .

4.3.2 CAIR LM File

4.3.3 CAIR GUI

4.4 Naming Networks

Chapter 5: Keyword Analysis

5.1 Review of Keyword Maps

5.2 Keyword Map Cohesion and

Coupling

5.3 Keyword Supernetwork Analysis

Chapter 6: Themes and Trends

Chapter 7: Title Analysis

- v-

vii

viii

ix

1

4

6

10

13

16

16

21

23

23

25

33

34

35

38

41

43

45

52

58

63

69

7.1 The Title Data

7.2 CCS General Terms

7.3 Themes from the Title Index

7.4 Title Networks

Conclusions

Appendix A: Top Two Levels of the CCS

(1998)

Appendix B: Sample SGML Data Set
Appendix C: Sample CAIR-Prep Keyword Data

Appendix D: Sample CAIR-Prep Title Data ...
Appendix E: Sample Keyword Data with SGML-

style Tags
Appendix F: CAIR Processing Sequence
Appendix G: CAIR LM File for Keywords
Appendix H: Keyword Maps
Appendix I : Keyword Analysis Plots
Appendix J: Sorted Index of Title Terms ...
Appendix K: CAIR LM File for Titles
Appendix L: Title Maps
Appendix M: Title Analysis Plots

70

72

74

76

83

87

90

92

93

94

95

97

118

133

135

140

147

163

References . 165

Vita . 168

- Vl-

FIGURES

Figure 1: CAIR-Prep Results File Format 19

Figure 2: CAIR SGML Format 22

Figure 3: Strength of Association 25

Figure 4: Map-2: "Software development /

OOP" . 47

Figure 5: Coupling-Cohesion Plot for

Keyword Data

Figure 6: Supernetwork for Keyword Data

-~-

54

61

TABLES

Table 1: CCS General Terms 9

Table 2: Software Engineering Descriptors . . 10

Table 3: Some SGML Tag-pairs 12

Table 4: SGML Record Counts 14

Table 5: Documents and Descriptors per

Time Period . 3 0

Table 6: Co-occurrence and Number of

Keyword Networks 32

Table 7: Assigned Names for Keyword Maps . . . 44

Table 8: Connections between Keyword Maps . . 59

Table 9: General Terms and Their

Frequencies in the Title Data 74

Table 10: Co-occurrence and Number of

Title Networks 76

Table 11: Assigned Names for Title Maps 78

- Vlll -

ABSTRACT

This study provides some insight into the field of

software engineering through analysis of its recent

research publications. Data for this study are taken

from the ACM's Guide to Computing Literature (GUIDE)

They include both the professionally assigned

Computing Classification System (CCS) descriptors and

the title text of each software engineering

publication reviewed by the GUIDE from 1998 through

2001.

The first part of this study provides a snapshot of

software engineering by applying co-word analysis

techniques to the data. This snapshot indicates

recent themes or areas of interest, which, when

compared with the results from earlier studies, reveal

current trends in software engineering.

-IX-

Software engineering continues to have no central

focus. Concepts like software development, process

improvement, applications, parallelism, and user

interfaces are persistent and, thus, help define the

field, but they provide little guidance for

researchers or developers of academic curricula.

Of more interest and use are the specific themes

illuminated by this study, which provide a clearer

indication of the current interests of the field. Two

prominent themes are the related issues of

programming-in-the-large and best practices.

Programming-in-the-large is the term often applied to

large-scale and long-term software development, where

project and people management, code reusability,

performance measures, documentation, and software

maintenance issues take on special importance. These

issues began emerging in earlier periods, but seem to

have risen to prominence during the current period.

- X -

Another important discovery is the trend in software

development toward using networking and the Internet.

Many network- and Internet-related descriptors were

added to the CCS in 1998. The prominent appearance

and immediate use of these descriptors during this

period indicate that this is a real trend and not just

an aberration caused by their recent addition.

The titles of the period reflect the prominent themes

and trends. In addition to corroborating the keyword

analysis, the title text confirms the relevance of the

CCS and its most recent revision.

By revealing current themes and trends in software

engineering, this study provides some guidance to the

developers of academic curricula and indicates

directions for further research and study.

- Xl-

Chapter 1

INTRODUCTION

This study uses content analysis techniques to examine

a large volume of software engineering research

publications to determine themes and trends both in

the specific discipline of software engineering and in

the general field of computer science. It is believed

that an understanding of these themes and trends would

be a useful and effective guide for curriculum,

research, and application.

The data for this empirical study are taken from the

Association for Computing Machinery's (ACM) Guide to

Computing Literature (GUIDE) . The GUIDE reviews and

indexes a wide range of computing literature,

including individual articles, journals, trade

magazines, book chapters, whole books, and other

published materials. The GUIDE is carefully indexed

- 1 -

by professionals using the ACM Computing

Classification System (CCS), which provides a standard

method for categorizing publications included in the

GUIDE by assigning descriptors (or keywords) to each

publication.

A variety of content analysis techniques exist to aid

in the study of textual data. Similar to co-citation

analysis [see SMALL73] and bibliographic coupling [see

KESSLER63], this study examines the co-occurrence of

textual phrases within the data set of indexed

publications related to the field of software

engineering.

This study follows up and expands on an earlier study

[COULTER98B] that applies co-word analysis techniques

in the examination of GUIDE classifications of

publications from 1982 through 1994. This study

continues this analysis for publications from 1998

through mid-2001. The choice of the period, 1998 -

2001, is a natural one, as the data set contains

- 2 -

relatively current data and allows for an examination

of the GUIDE since the last update to the CCS. A

comparison of the results of the analysis with that of

the earlier study provides an excellent opportunity to

discover patterns and trends in software engineering

research.

In addition to analyzing the GUIDE classifications of

the publications in the 1998 - 2001 time period, this

study also examines the title text. It is believed

that such an examination reveals general terms that

help define the field of software engineering.

Additionally, the title data analysis may offer

corroboration of the results of the descriptor

(keyword) data analysis.

- 3 -

Chapter 2

THE DATA

The ACM's Guide to Computing Literature (GUIDE)

provides an enormous repository of data for this

study. Publications indexed by the GUIDE include

individual articles, journals, trade magazines, book

chapters, books, conference proceedings, and other

items of computing literature. This study examines a

portion of the GUIDE data from 1998 through mid-2001.

Key to indexing in the GUIDE is the ACM's Computing

Classification System (CCS) . The CCS is a "carefully

designed and maintained taxonomy" [COULTER98B, page

1207] used to categorize publications and provide

keywords for sorting and searching.

Professional indexers assign publications to one or

more CCS categories, taking into consideration that

- 4-

publications may span multiple subjects. As part of

the category assignment, proper subject descriptors

(or keywords) and implicit subject descriptors (mostly

proper nouns, like "C++" and "Grace Murray Hopper")

are associated with each publication. Both types of

descriptors provide the textual data to which co-word

analysis techniques are applied in this study.

Variations in the application of the CCS are averaged

out in this study by including a large volume of

publications. This study uses those publications

indexed by the GUIDE from 1998 through the first half

of 2001 that include at least one descriptor from the

"Software Engineering" category (D.2) of the CCS.

- 5 -

2.1 The CCS

The current version of the ACM Computing

Classification System (CCS) is based on the framework

established in 1982 when it was published as the

"Computing Reviews Classification System" [see

SAMMET82] . It has been revised four times since, in

1983 [SAMMET83] I 1987 [SAMMET87] I 1991 [COULTER91] I

and 1998 [COULTER98A] .

The CCS provides a fixed system of descriptors (or

keywords) , which imposes a common nomenclature across

all computing literature. Professional indexers

assure that this system is applied to the computing

literature as homogeneously as humanly possible.

Considerable research continues to be done on the

effectiveness of automating this process [see BORK063,

WONG96, and SEBASTIANI02].

- 6 -

The CCS is a hierarchal structure with "11 top-level

nodes and a maximum of four levels of nodes"

[COULTER98A, p. 111]. Appendix A lists the top two

levels of the CCS classification tree. The first

level provides very broad categories designated by

letters (A through K) . This is followed by more

specific levels, which are designated by numbers or

letters. For example, "D" designates the "Software"

category, "D.2" designates "Software Engineering," and

"D.2.8" designates "Metrics."

Indexers associate descriptors with the publications

they review for the GUIDE. Descriptors (or keywords)

come from three sources: category names (such as

"Metrics"), explicit subject descriptors, and implicit

subject descriptors. Explicit subject descriptors are

text associated with most leaf nodes of the CCS tree

and are published as part of the CCS. For example,

the D.2.8 explicit subject descriptors are "Complexity

measures," "Performance measures," "Process metrics,"

"Product metrics," and "Software science."

- 7 -

The names of people, systems, languages, and such are

not included as part of the published CCS. However,

indexers may choose from select proper nouns, called

implicit subject descriptors, which can be used to

further specify the subject of a given publication.

Some implicit descriptors are "Alan Turing," "C++,"

"DARPA," "IBM," "QuickBASIC," "UNIX," and "World Wide

Web (WWW) . "

In addition to the text already discussed, indexers

may specify general terms that are not associated with

any specific CCS category but which may apply to any

category. Table 1 lists the general terms that can

appear in the data of this study.

- 8 -

Algorithms
Design
Documentation
Economics
Experimentation
Human Factors
Languages
Legal Aspects

Management
Measurement
Performance
Reliability
Security
Standardization
Theory
Verification

Table 1: CCS General Terms

The data for this research include publications

indexed with at least one descriptor from the D.2

Software Engineering category of the CCS. Table 2

lists the level-three descriptors for this category.

Since the documents of this study may be assigned

descriptors from other CCS categories in addition to

D.2 categories, one may learn something of the

interactions between software engineering and other

computing fields by examining the co-occurrences of

these descriptors.

- 9 -

D.2.0 General
D.2.1 Requirements/Specifications
D.2.2 Design Tools and Techniques
D.2.3 Coding Tools and Techniques
D.2.4 Software/Program Verification
D.2.5 Testing and Debugging
D.2.6 Programming Environments
D.2.7 Distribution, Maintenance, and Enhancement
D.2.8 Metrics
D.2.9 Management
D.2.10 Design
D.2.11 Software Architectures
D.2.12 Interoperability
D.2.13 Reusable Software
D.2.m Miscellaneous

Table 2: Software Engineering Descriptors

2.2 SGML Data Set

The D.2 Software Engineering portion of the ACM GUIDE

database is delivered for this study as several files

in Standard Generalized Markup Language (SGML) . Each

SGML file contains a wealth of information about

publications that were added to the GUIDE during a

specific year. Depending on the type of publication,

- 10-

a record may contain the title, authors or editors,

publication year, journal name, abstract, category

codes, and keywords. A sample record for a single

publication (in this case, a journal article) is

reproduced in Appendix B.

As a markup language, SGML provides a method for

specifying data in human-readable plain-text. For

example, the title of a publication in this study is

specified by placing the title text between <TITLE>

and </TITLE> tags. <TITLE> and </TITLE> are referred

to herein as the TITLE tag-pair. Table 3 provides

descriptions for some of the tag-pairs found in the

data of this study.

- 11 -

Tag-Pair Delimits ...
STARTREC Record for a single publication.
TITLE Title text.
SUB Subtitle text.
AUTHEDIT Name of an author, editor,

chairperson, or translator.
AUTHTYPE AUTHEDIT type for the name

specified in the preceding AUTHEDIT
field, which may be AUTHOR, EDITOR,
CHAIRPERSON, or TRANSLATOR.

PUB TYPE Publication type, which may be BOOK
CHAPTER, DIVISIBLE BOOK, DOCTORAL
THESIS, JOURNAL ARTICLE, MASTER'S
THESIS, PROCEEDINGS PAPER, REPORT,
WHOLE BOOK, WHOLE JOURNAL, or WHOLE
PROCEEDINGS.

JRNLNAME Name of the journal, if applicable.
GENTERM A general term assigned to the

publication by an indexer.
PRICATDESC Primary subject descriptors

associated with the PRICATCODE that
follows.

PRICATCODE Primary CCS category code, such as
D.2.2.

DESCRIPTOR Subject descriptors associated with
the CATCODE that follows.

CATCODE CCS category code, such as F.3.1.
ABSTRACT Abstract for the publication.
REVWTEXT Text of the review of the

publication.

Table 3: Some SGML Tag-pairs.

- 12-

Some tag-pairs may appear multiple times in a given

record and some tag-pairs must always appear together

with other tag-pairs. For instance, AUTHEDIT may

appear for each author, editor, chairperson, or

translator listed for a given publication. DESCRIPTOR

and CATCODE may also appear multiple times, but they

must always appear together.

This study makes use of the text of the TITLE,

PRICATDESC, PRICATCODE, DESCRIPTOR, and CATCODE

fields.

2.3 Initial Examination

The data, as delivered, are in the form of a number of

SGML files, each labeled with a year. For this study,

the 1998, 1999, 2000, and 2001 data files are used.

Before proceeding to parse and format the data, some

idea is needed of what data are actually available in

these files. The simplest approach is to perform some

- 13-

counts. This can be accomplished with some basic

commands found in many UNIX and UNIX-like operating

systems.

Table 4 lists the number of records in each data file.

These numbers may be obtained by issuing the following

command at the system prompt:

cat yeardata.sgml I grep -c "<STARTREC>"

where "yeardata.sgml" represents the SGML data file

for a given year.

Year No. of Records
1998 1590
1999 1194
2000 1379
2001 810

Table 4: SGML Record Counts

- 14-

There are 4973 records in the SGML data of these four

year files. Before an accurate count of the number of

actual publications for each year can be obtained, it

is necessary to ensure that the data files contain

records for only documents published in the specified

year and that the intersection of the data files is

empty.

Since each record contains a PUBYEAR field, it is

relatively easy to obtain a list of the publication

years contained in each data file. The following

command can be issued to obtain this list:

cat yeardata.sgml I grep "PUBYEAR" I sort -u.

The results for the 1998 SGML data file, for example,

include PUBYEAR values of 1996, 1997, 1998, 1999, and

2000. This means that the SGML data files contain

publications for more than the specified year, raising

the possibility of duplicate records.

- 15 -

Chapter 3

PREPARING THE DATA

This study will use the Context Analysis and

Information Retrieval (CAIR) system, produced at the

Carnegie Mellon University Software Engineering

Institute, to perform co-word analysis and generate

graphical networks for publications between the years

1998 and 2001. To accomplish this, considerable

manipulation of the raw SGML data is required before

they may be fed into the CAIR system.

3.1 CAIR-Prep

It is a daunting task to manually select publication

records for a given year, ensure their uniqueness, and

reformat them for the CAIR system. Fortunately, a

software solution already exists to accomplish much of

- 16-

this. CAIR-Prep is a program designed by Hammond, et

al. [see HAMMOND99] to clean up the ACM SGML data

files and prepare them for analysis by the CAIR

system.

CAIR-Prep takes as input an SGML data file, the

current CCS specification, and a list of valid

implicit subject descriptors. For each publication

year found in the SGML data file, CAIR-Prep generates

two text files: one containing the publications'

subject descriptors and one containing their titles.

CAIR-Prep also generates an error file that provides a

list of invalid descriptors found in the SGML data.

Fortunately, the "invalid descriptors" in the SGML

data of this study are minor and easily corrected.

The most common error involves the inclusion or

exclusion of text used to clarify particular

descriptors. For example, the D.2.1 category includes

the descriptor, "Methodologies," which may include the

additional text, "(e.g., object-oriented,

- 17-

structured)." If such additional text is missing from

the SGML data, CAIR-Prep would list the descriptor as

being invalid. Likewise, the SGML data may include

example text not found in the version of the CCS

specification used by CAIR-Prep and, so, that

descriptor would also be listed as invalid.

The simplest solution to this problem involves the

removal of the additional text from both the CCS

specification used by CAIR-Prep and from the SGML

data. These deletions do not impact the validity of

this data set, as the additional text does not change

the assignment of the keywords (CCS descriptors) .

After correcting the "invalid descriptors" and re­

running CAIR-Prep for each SGML data file, a series of

new data files are generated. A sample of the

generated keyword and title files are reproduced in

Appendices C and D.

- 18-

Both files follow the basic format presented in Figure

1. CAIR-Prep keeps a running count of the number of

valid publication records it discovers, which is used

to generate the document_number for each record in the

output file. The "1998" seen in the sample records

shown in Appendices C and D refers to the CCS revision

year, not the year of publication.

*
\#
document number
\#
\!
document text
\!
*

Figure 1: CAIR-Prep Results File Format

- 19-

The document_text for the title file is simply the

title text. For the keyword file, however, it

includes descriptor text concatenated with the

associated CCS category code in the format, "-1

(descriptorcode) () 0." The descriptor text included

here is not the main category descriptors, but,

rather, the leaf-node descriptors actually assigned by

the indexer. Hence, "assertion checkersd.2.4" may

appear as a keyword even when the D.2.4 category name,

"Software/Program Verification," does not. This may

seem odd and, possibly, a loss of valuable data. But,

it should be remembered that the leaf nodes are more

specific than the category names and, thus, provide a

much better indication of the subject of a

publication.

-20-

3.2 Final Preparations

CAIR-Prep generates a separate file for each

publication year discovered in the SGML data. So, for

each SGML data file, several "year" files are

generated. For example, the 1999 SGML data file

spawns 1986, 1998, 1999, and 2000 keyword and title

files. One reason for this seemingly strange

occurrence is that the SGML data files may be divided

into year of insertion into the GUIDE database, not

the publication date. Another source of such records

is late publication of papers originally presented at

conferences in years past.

One of the concerns with the original SGML data is the

possibility of duplicate records. Despite the

convenient separation of records into publication

year, elimination of duplicates and inclusion of

records from earlier and later insertion years is

still a tedious, manual process. For this study, 4063

- 21 -

unique records from 1998 through mid-2001 are,

finally, available for analysis.

For the final data preparation, it must be noted that

the CAIR system has undergone additional revision

since the development of CAIR-Prep and its input data

format has changed. The new format uses a SGML style,

replacing the earlier*, \#, and\! delimiters with

DOC, DOCNO, and TEXT tag-pairs, as shown in Figure 2.

It is a simple matter to use a text processor to

replace the old-style delimiters with the new SGML-

style tags. A sample of the keyword data in the new

format is shown in Appendix E.

<DOC>
<DOCNO>

document number
</DOCNO>
<TEXT>
document text
</TEXT>
</DOC>

Figure 2: CAIR SGML Format

-22-

Chapter 4

CO-WORD ANALYSIS

Co-word analysis allows one .to reduce a large space of

related descriptors to smaller, inter-related spaces

that, hopefully, are easier to understand. From the

networks generated in this study, various levels of

analysis can be performed: (1) as the relationships

apparent within networks, (2) as relationships that

become obvious from the interaction of networks, and

(3) as the transformation of these structures over

time [COULTER98B] .

4.1 The Metric

In order to form networks (also referred to as

leximaps or, simply, maps), there must be a metric (or

measurement) used to distinguish between related and

- 23-

unrelated nodes and also to establish how related any

two nodes are. There has been extensive research on

metrics for co-word analysis [see CALLON86,

COURTIAL89, WHITAKER89, CALLON91, LAW92].

Two descriptors are said to co-occur if they are used

together to classify a single document. Consider a

corpus of N documents, each indexed by a set of unique

descriptors. Let ck be the number of times descriptor

k is used for indexing documents in the corpus. Let

Cij be the number of documents in which descriptor i

and descriptor j are used together for indexing.

As in the 1998 study by Coulter et al. [COULTER98B],

the metric chosen for this study is the strength of

the association between descriptor i and descriptor j,

Sij· This strength is defined by the expression shown

in Figure 3.

-24-

Figure 3: Strength of Association

This metric provides an intuitive measure of the

symmetrical relationship between the descriptors

[CALLON91] . It is also the default metric used by the

CAIR system.

4.2 The Algorithm

The co-word analysis algorithm employed in this study

uses the strength metric to build networks of related

descriptors. This is accomplished with two passes

through the data. The first pass, Pass-1, builds the

primary associations between descriptors. Descriptors

identified during this pass are referred to as

"internal nodes" and the links between them are

-25-

"internal links.n These internal links identify areas

of strong association.

Pass-2 identifies links between Pass-1 nodes in one

network with Pass-1 nodes in other networks, thus

forming the associations between networks. Pass-2

nodes may appear in several networks, where they are

referred to as "external nodes,n but each one must

appear as a Pass-1 node in exactly one network.

"External linksn highlight associations between the

networks produced in Pass-1, and, thus, may indicate

more pervasive issues.

Constraints are placed on the network-building process

in order to prevent dominance by common pairs of

descriptors and also to help break up large networks

into more manageable sizes. Consider what would

happen if two terms occur infrequently but, when they

do occur, they always occur together. Their strength

value would be quite large, but the meaning of that

strength would have little significance for the study.

-26-

Take, for instance, the occurrence of "petri" and

"net." These words almost always occur together in

titles as "Petri nets," but they may occur in only a

handful of documents. Thus, one of the constraints

used in this study is to require a minimum co­

occurrence value, Cij 1 before a link can be generated.

Networks can also become cluttered with legitimate

nodes and links. One can prevent this cluttering by

forcing the generation of a new network when a maximum

number of nodes or links is reached. Both node and

link constraints are used here. This may seem like a

very artificial and arbitrary means of breaking up

networks, but a better understanding of the algorithm

employed in this study helps to alleviate such

concerns.

Pass-1 of the algorithm begins with the link of

highest strength. The nodes of this link become

starting points for the first network. Additional

links and their corresponding nodes are determined

-27-

breadth-first and are added to the existing network

until one of the constraints (co-occurrence minimum,

link maximum, or node maximum) is reached. Once a

link and its nodes have been included in a Pass-1

network, they are removed from inclusion in subsequent

Pass-1 networks. The next Pass-1 network always

begins with the remaining link of highest strength.

Once all the links and nodes have been placed into

networks, Pass-2 begins by restoring all Pass-1 nodes

to the list of available nodes. Starting with the

first Pass-1 network, Pass-2 then builds links between

the Pass-1 nodes to Pass-1 nodes in other networks

that meet a minimum co-occurrence value and in order

of descending strength. After all the Pass-1 nodes in

the first network are exhausted, Pass-2 repeats the

process for the second Pass-1 network, and so on until

all Pass-1 networks have been completed.

- 28-

Occasionally, some of the links generated in Pass-2

are between Pass-1 nodes within the same network.

Such a link is sometimes referred to as a Pass-3 link.

Choosing appropriate constraints can be tricky.

Consider the co-occurrence minimum, which, if too

high, produces too few links and, if too low, produces

an excessive number of links. In the former case, the

networks are not granular enough to show important

details. In the latter case, the networks may be so

complex as to hide important themes.

As with the 1998 study [COULTER98B], parameters in

this study are chosen somewhat arbitrarily, and

considerable experimentation is done to determine

which constraint parameters produce the most useful

(i.e., detailed, yet coherent) networks from the

current data. Of principal concern is the minimum co­

occurrence value, as its effect on the number and

complexity of networks produced is less easily

determined than node and link count maxima.

-29-

Time Period Documents Descriptors Descriptor
I Document

Ratio
1982 - 1986 1646 5645 3.43
1987 - 1990 7650 28471 3.72
1991 - 1994 7395 23611 3.19
1998 - 2001 4063 15883 3.91

Table 5: Documents and Descriptors per Time Period

The 1998 study examines descriptors for documents from

three time periods: 1982 - 1986, 1987 - 1990, and 1991

- 1994. Both the number of documents and the number

of descriptors are varied, and, in the case of the

earliest period, these numbers are considerably

different. Table 5 reproduces these values from both

the 1998 study as well as this study. The computed

value of the descriptor to document ratio is included,

as it may provide some additional insight.

- 30-

In terms of number of documents, number of

descriptors, and descriptor/document ratio, the data

of the current period are not significantly different

from that of earlier periods. This should mean that

this study will see similar effects for changes in

minimum co-occurrence value to what was seen in the

earlier study.

The 1998 study notes that decreasing the minimum co­

occurrence value results in an increase in the number

of networks produced. A similar relationship is also

seen with the current data set, as shown in Table 6.

However, the correlation is not quite linear. Perhaps

a future study will determine the mathematical

relationships, if there are any, between descriptor­

to-document ratio, minimum co-occurrence value, and

the number of maps produced.

- 31 -

Min. Co-occurrence No. of Networks
15 8
10 10
7 15
5 15
3 18

Table 6: Co-occurrence and Number of Keyword Networks

For the portion of this study dealing with the CCS

descriptors (keywords) assigned to publications from

the 1998 - 2001 time period 1 a minimum co-occurrence

value of seven (7) is chosen. This produces a total

of 15 networks.

For the portion of this study dealing with words found

in the title text of publications from 1998 - 2001 1 a

minimum co-occurrence value of five (5) produces 16

useable networks 1 while a value of three (3) increases

the number of networks to 24. Hence 1 a minimum co-

occurrence level of five (5) is chosen for the study

of titles.

- 32-

4.3 The CAIR System

The Context Analysis and Information Retrieval (CAIR)

system is a series of programs to assist in the

analysis of large scale text corpora developed at the

Software Engineering Institute, Carnegie Mellon

University. The principal developers of this system

are Buresh Konda and Ira Monarch.

The CAIR system implements the two-pass algorithm used

in this study and provides a graphical user interface

with which the produced networks can be manipulated.

CAIR also includes tools for analyzing the "internal

strengths" and the strengths of the interactions

between networks with graphical representations.

- 33-

4.3.1 CAIR Command-Line Tools

The majority of the CAIR processing takes place at the

command-line through the execution of a sequence of

programs (outlined in Appendix F) . This command-line

portion of CAIR processes the input data and produces

leximap (LM) output files, which can then be used with

the CAIR graphical user interface to generate the

graphical network maps that are analyzed in this

study.

The 1m2 program is the last step before entering the

graphical portion of the CAIR system. It is with this

program that the network constraints are set,

including minimum co-occurrence (c) , maximum number

of nodes per network (n) , maximum number of links

per network (l) , and maximum number of maps m) .

For this study, the number of maps generated is never

greater than 30, so setting (m) to a high value

- 34-

(say, 100) simply has the effect of not excluding any

generated maps.

For this study, the (n) and (1) parameters are set

to 10 and 12, respectively. Because there are two

passes of the algorithm, this has the effect of

allowing a maximum of 20 nodes and 24 links per

network. These values are chosen to match those of

the 1998 study [COULTER98B] and seem to produce maps

of reasonable complexity.

4.3.2 CAIR LM File

The CAIR LM files provide a wealth of information

about the results of the co-word analysis and the

generated maps. The first part of the LM file lists

the run parameters, such as the minimum co-occurrence,

maximum numbers of links and nodes, and the resulting

number of maps. The rest of the file is devoted to

describing each of the generated leximaps.

- 35-

Each leximap description has four parts: header, node

list, link list, and summary. The header consists of

three numbers: the map number, the number of nodes,

and the number of links. For example, if the header

is "2 20 24," it means that this is Map-2, which has

20 nodes and 24 links.

Following the header are the nodes that make up the

map. Each node and its characteristics appear on a

single line. Consider,

Ajavad.3.2A 170 3 4 1 2.

In this typical example, the node text (javad.3.2) is

delimited by carets. The numbers that follow the node

give, respectively, the number of documents in which

the node text appears (170), the number of maps in

which the node appears (3), the number of links

involving the node in the current map (4) . The

penultimate number (1) tells whether the node is

generated during Pass-1 (a '1') or Pass-2 (a '2')

- 36-

The final number (2) provides the number of the map in

which the node is generated during Pass-1.

The next section contains information about the links

that make up the leximap with each link starting on a

new line. This includes the two linked nodes

(delimited by carets), the number of times the nodes

appear together, the strength of the link between the

nodes, and the pass during which the link was

generated (1, 2, or 3). Pass-3 links are just Pass-2

links between Pass-1 nodes in the same map. The

final value depends on the pass number of the link;

for Pass-1 or Pass-3 links, the final number is 0; and

for Pass-2 links, the final number is the map number

of the Pass-2 node.

Consider a link description of "Ametricsd.2.8A

Asoftware developmentk.6.3A 15 0.003805 2 9." In this

example, the nodes, "metricsd.2.8" and "software

developmentk.6.3," occur together 15 times; the

strength of the link between these nodes is 0.003805;

- 37-

the link is generated during Pass-2; and the Pass-2

node is generated as a Pass-1 node on Map-9.

The fourth section of each leximap description

consists of a single line and contains some useful,

computed values. From left to right, these values

are: cohesion (a measure of the internal strength of

the network), the sum of the Pass-2 strengths, and the

sum of the squares of the Pass-2 strengths.

4.3.3 CAIR GUI

The next step in using the CAIR system involves

entering the graphical user interface component of the

system (a program named, "gui"). The CAIR GUI permits

the user to view, manipulate, and print the individual

leximaps. The CAIR GUI produces two additional

graphical outputs: a coupling-cohesion distribution

plot and a representation of the supernetworks.

- 38-

There is something of an art to displaying the maps

produced by the CAIR system. Often, the maps are a

tangled web of nodes and links. This can make

analysis quite difficult. Fortunately, the CAIR

system includes a tool to help untangle these webs,

called "kamada." Kamada makes a best attempt to

reposition nodes to eliminate overlapping links. Some

manual repositioning of nodes is still often

necessary. Once the maps have been untangled, they

may be printed for more detailed analysis.

Two metrics used in the analysis of these networks are

cohesion and coupling. Cohesion (also called density)

is a measure of the internal strength of a network; it

is how strongly the nodes within a network are linked

with each other. Cohesion is formally defined as the

mean of the Pass-1 link strengths. Coupling (also

called centrality) is a measure of how strongly a

given network interacts with other networks; it is

defined as the square root of the sum of the squares

of Pass-2 strengths. Coupling, thus, is a "composite

- 39-

measure of a network's intersection with all other

networks" [COULTER98B] .

The CAIR system produces a coupling versus cohesion

plot. In this plot, the horizontal axis represents

coupling and the vertical axis represents cohesion,

with the median values at the origin. Each map

appears in this plot as a circle inscribed with its

map number, and it is positioned according to its

coupling and cohesion values.

Some general comments can be made based on the

positions of maps in the coupling-cohesion plot. It

is helpful to divide the plot into quadrants, starting

with Quadrant-I above and to the right of the axes,

and then numbering the quadrants counter-clockwise.

Maps in Quadrant-I are characterized by having both

strong internal and external interactions. Quadrant­

II, above and to the left, is characterized by having

strong internal interactions but weak external

interactions. Quadrant-III maps are loosely

-40-

interactive internally and externally. Quadrant-IV

maps are loosely bound internally but strongly

interact with other maps.

Quadrant-I maps represent more unitary concepts as

well as concepts that interface with many other

concepts. This makes Quadrant-I maps especially

important in identifying central concepts.

4.4 Naming Networks

The CAIR system numbers the networks it produces, but

no other distinguishing notations are provided. Thus,

it is useful to assign descriptive names to networks

that aid in their correct recognition and in the

interpretation of their interactions with other

networks.

Shah defines five criteria that can be used to name

networks and provides algorithms to simplify the

- 41 -

network naming task [SHAH97] . A less formal

application of these algorithms is used for this

study. Principally, networks are named in this study

by using the one to three nodes with the highest

number of Pass-1 links. Exceptions to this rule are

allowed when: (1) there is an especially strong link

between a chosen node and another Pass-1 node or (2) a

Pass-1 node has at least as many Pass-1 and Pass-2

links as a chosen node.

-42-

Chapter 5

KEYWORD ANALYSIS

Fifteen networks are generated from the descriptor

data using a minimum co-occurrence of seven (7) . The

CAIR LM file for keywords is reproduced in Appendix G

and the resulting leximaps (graphical representations

of the networks, often referred to simply as "maps")

are provided in Appendix H.

The first step in the analysis is to name the maps.

As stated, the name for each map is formed from the

text of its prominent node or nodes. For example,

Map-4's prominent nodes are "user interfacesd.2.2" and

"documentationd.2.7." Thus, the name assigned to Map-

4 is "User interfaces / documentation." The names

chosen for the maps generated in this study are listed

in Table 7.

- 43-

No. Assigned Map Name
1 Logic and constraint programming
2 Software development I object-oriented

programming
3 Applications I Petri nets I computer-

aided engineering
4 User interfaces I documentation
5 Web-based services
6 Distributed systems
7 Performance measures I parallel

programming
8 Design tools and techniques
9 Management I metrics

10 Compilers I optimization
11 Software maintenance
12 Language constructs and features
13 Real-time and embedded systems
14 Performance of systems I network

protocols
15 Requirements-specifications I testing

and debugging

Table 7: Assigned Names for Keyword Maps

-44-

5.1 Review of Keyword Maps

Several of the resulting keyword maps might be

classified as obvious, redundant, or simply

uninteresting. For example, Map-1, named "Logic and

constraint programming," contains two nodes: "logic

programmingi.2.3" and "logic and constraint

programmingf.4.1." The link strength is 0.606811,

which is fairly high and indicates that publications

classified with one of these descriptors are, more

often than not, classified with the other. Such maps,

thus, do not provide much useful information.

Some other maps that might be classified as "obvious"

include: Map-5 ("Web-based services"), Map-6

("Distributed systems"), and Map-13 ("Real-time and

embedded systems"). The fact that these maps exist is

an indication that research in these areas is taking

place, but they do not interact much or at all with

other areas of software engineering.

- 45-

Not all such poorly interacting maps are without

interest. Often, they serve to highlight important

concerns of a given area. Consider Map-7 ("Parallel

programming I performance measures") and Map-10

("Compilers I optimization"). These maps clearly

illustrate that performance measures are important in

the study of parallel programming and that

optimization is still a big concern of compiler

design. Similarly, Map-11 ("Software maintenance")

shows that restructuring, reverse engineering, and re­

engineering are important parts of software

maintenance and software development.

-46-

'Ij
f-'-

lQ
c
r;
(])

,j::> ..
:s:
PJ

'"d
I

I\) ..
:::

(f)

0
H1

~
-....l

rt
~
PJ
r;
(])

0,
(])

<
(])
1--'
0

'"d
3
(])

::J
rt

...........

0
0
'"d

::::

With the largest number of Pass-1 links, the "object­

oriented programmingd.1.5" node is clearly the

prominent node of Map-2 (see Figure 3). The "software

developmentk.6.3" node has a strong link with "object­

oriented programmingd.1.5" and has the largest total

number of links (Pass-1 and Pass-2). Hence, the name

of this map is "Software development / object-oriented

programming." Structured programming does not appear

as a node in this map, showing the continued

prominence of object-oriented programming noted in the

earlier study [COULTER98B] .

Some other noteworthy observations can be drawn from

Map-2. First, the major tools and environments of

software development are C++, Java, and COREA.

Second, some basic areas of software development

continue to appear in the literature, namely software

architectures, requirements and specifications, design

tools and techniques, programming environments,

metrics, and management. In this case, "management"

-48-

may refer to more than just code management, as

evidenced by the Pass-2 node, "programming

teamsd.2.9." Object-oriented programming techniques

naturally lend themselves to team projects.

Map-3 is about computer-aided engineering and

manufacturing. Petri nets continue to make an

appearance, as they did in the latter of the three

periods studied in 1998 [COULTER98B] . Petri nets have

"become particularly important in the modeling of

automated manufacturing systems" [CHAPMAN97]

Map-4 ("User interfaces and documentation") shows that

user interfaces continue to be a focus of research, as

they were during the 1987 - 1990 and 1991 - 1994

periods. The appearance of documentation, Java, and

parallel programming indicate their importance in the

area of user interfaces and human-computer

interaction.

-49-

The spoke-like pattern of Map-8 centers about "design

tools and techniquesd.2.2" and highlights fundamentals

as well as some of the prominent, related concerns.

The fundamentals of design, such as programming

environments, requirements and specifications, testing

and debugging, and management are expected to appear

in such a map. The concentration on parallel and

concurrent programming during this period is

interesting to note as is the appearance of

engineering and the physical sciences.

Map-9 appears to have two prominent nodes,

"generald.2.0" and "managementd.2.9." Management has

also appeared as a prominent node in networks of the

1982 - 1986, 1987 - 1990, and 1991 - 1994 time

periods. Its appearance in this data set is not

surprising, nor is the appearance of metrics. This

map may indicate interest in formalizing the software

management process.

-50-

The general category is included in the CCS at first

and second levels for two purposes: to classify

documents that include broad treatments of a topic and

to classify documents that cover several related

topics in the same category. As expected, then, the

"generald.2.0" node is linked with a number of issues

important to software engineering: computer-aided

engineering, algorithm design and analysis, software

development, user/machine systems, software

management, computer science education, and curriculum

concerns.

Map-9 also shows links between the general categories

of software engineering, computer communication

networks, logics and meanings of programs, and legal

aspects of computing. The appearance of these general

nodes instead of others may indicate the current,

prominent research pursuits of software engineering.

- 51 -

Map-15 ("Requirements-specifications I testing and

debugging") outlines the software development process,

from defining requirements and specifications to

algorithm design and analysis to testing and debugging

to distribution, maintenance, and enhancement.

Further analysis of the keyword maps is made through

an examination of how the maps interact with each

other. To aid with this examination, two graphs, a

coupling-cohesion plot and a supernetwork plot, are

presented in Appendix I.

5.2 Keyword Network Cohesion and Coupling

The coupling-cohesion plot for the keyword data of

this study (see Figure 4) holds no real surprises. In

the plot, most maps appear on or near the horizontal

(coupling) axis, meaning that there is little

difference in the internal strengths (cohesion) of the

various maps; the obvious exceptions are Map-1 and, to

-52-

a lesser extent, Map-5. Also, there is a clear

division between the weakly interacting maps (to the

left of the vertical axis) and the more strongly

interacting maps (to the right) .

-53-

F
ig

u
re

5

:
C

o
u

p
lin

g
-C

o
h

e
sio

n

P

lo
t

fo
r

K
ey

w
o

rd

D
a
ta

-5
4

-

The most interesting networks are the ones that appear

in Quadrant-I of the coupling-cohesion plot, as these

networks are both tightly bound internally and

interact strongly with other networks. Map-2 is the

only map to fall within Quadrant-I, which attests to

the centrality of software development and object­

oriented programming to software engineering research

publications during the period of the study. Software

development and object-oriented programming appear

strongly during the 1991 - 1994 study as well.

Central concepts are often found in strongly

interacting maps. A map's coupling value is a measure

of its interaction with other maps. Map-4 and Map-8

have the highest coupling values of this study, which

is represented by their positions in the coupling­

cohesion plot. It is really no surprise that "user

interfaces I documentation" and "design tools and

techniques" should be central to software engineering.

-55-

Also of high centrality are Map-15 ("requirements­

specifications I testing and debugging"), Map-3

("applications I Petri nets I computer-aided

engineering"), and Map-9 ("management I metrics")

Again, this is not surprising, but it helps reinforce

the correctness of this interpretation.

It is interesting to note the centrality of Map-14

("performance of systems I network protocols"), which

is not as great as, say Map-9, but is still greater

than the median. The concepts of Map-14 are not seen

in the 1998 study, so this may indicate the growing

importance of network protocols and performance of

systems to software engineering.

Map-1 ("Logic and constraint programming") appears

high in Quadrant-II; this means that it is strongly

cohesive but interacts weakly, if at all, with other

maps. In fact, Map-1 is completely isolated (its

coupling value is zero) , which can be confirmed by

noting the absence of Pass-2 links. The intuitive

-56-

explanation for Map-1's position is that the

descriptors, which are the nodes of this map, are so

similar that publications indexed with one are almost

always indexed with the other. Other than noting the

existence of research writing in the area of logic and

constraint programming, Map-1 is of little interest.

Map-5 also has a high cohesion value and appears

higher in the plot than the majority of the other

maps, though not as high as Map-1. Its nodes, "web­

based servicesh.3.5" and "web-based interactionh.5.3,"

clearly have a great similarity and frequently occur

together. In addition to noting the existence of web­

based services in the literature, Map-5 also shows the

rapid incorporation of new descriptors, such as "web­

based servicesh.3.5," by indexers. This indicates the

importance of regular review and updating of the CCS

to maintain its relevance.

Maps-6, 7, 10, 11, 12, and 13 are clustered near the

origin of the coupling-cohesion plot. Although these

-57-

maps are not tightly bound and do not interact

strongly with other maps, they still represent some

importance in software engineering; consider the

continued importance of compilers and optimization

(Map-10) .

5.3 Keyword Supernetwork Analysis

Two networks are said to interact with each other when

a Pass-1 node in one map appears as a Pass-2 node in

another. An indication of the strength between two

interacting networks might be the number of such

links. Consider, for instance, Map-2, which has three

Pass-2 nodes from Map-4, four from Map-8, four from

Map-9, and three from Map-15.

Table 8 lists all the connections between the maps

generated from the keyword data of this study. From

the table, it is clear that Maps-1, 5, 6, 7, and 13

are isolated. Maps-10, 11, and 12 are very weakly

-58-

interacting, as they each only have one external link.

Map-14 is only slightly more interacting with its two

links. This leaves Maps-2, 3, 4, 8, 9, and 15 as

significant players in a supernetwork generated from

these smaller networks.

Map Connected Maps
No. [Map No. (number of links)]
1 None
2 4 (3) 8 (4) 9 (4) 15 (3)
3 4 (1) 8 (2) 9 (1) 14 (1) 15(3)
4 2 (4) 3 (1) 8 (6) 9 (1) 15 (1)
5 None
6 None
7 None
8 2 (2) 3 (1) 4 (4) 9 (1) 12 (1) 15(4)
9 2 (6) 3 (1) 4 (1) 8 (2) 14 (1) 15 (3)
10 8 (1)
11 2 (1)
12 8 (1)
13 None
14 3 (1) 9 (1)
15 2 (4) 3 (3) 4 (1) 8 (5) 9 (3)

Table 8: Connections between Keyword Maps

-59-

Figure 5 shows one possible supernetwork based on the

data of Table 8. In this case, a threshold of three

or more connections is required to show the link. The

circles represent maps with the indicated map numbers.

Connections between maps are shown with arrows and are

labeled with the number of connections. An arrowhead

indicates the map in which the link node is Pass-1.

Thus, for example, Map-15 contains four (4) Pass-2

nodes that appear as Pass-1 nodes in Map-2.

-60-

6

Figure 6: Supernetwork for Keyword Data

There is no single focus to this supernetwork, though

Map-2 ("Software development I object-oriented

programming") and Map-15 ("Requirements-specifications

I testing and debugging") have the highest numbers of

connections. This attests to the prominence of these

topics in the field of software engineering during the

period of this study, and it reinforces the earlier

interpretation of the coupling-cohesion plot.

- 61 -

Some note should also be made of Map-3 (~Applications

I Petri nets I computer-aided engineering"). Petri

nets appear in the 1991 - 1994 period of the 1998

study as an isolated network. In the current study,

however, Petri nets have links, directly and

indirectly, to ~user interfaces I documentation,"

~Design tools and techniques," ~Management I metrics,"

~Performance of systems I network protocols," and

~Requirements-specifications I testing and debugging."

Clearly, Petri nets have become more central to

software engineering during the 1998 - 2001 period.

-62-

Chapter 6

THEMES AND TRENDS

From the preceding analysis, it is clear that software

engineering continues to lack a central focus, though

there are a number of areas of concentration (or

themes). Software engineering continues to evolve as

a field: it is incorporating new themes, maintaining

others, and dropping still others. Software

engineering is defined both by its central (or core)

themes as well as its emerging interests.

In this study, the enormous volume of software

engineering publications from 1998 through 2001 is

reduced to a collection of fifteen networks that

represent the themes of the field. Some themes are

self-contained and have not yet developed past an

emerging interest, such as web-based services and

- 63-

distributed systems. Others are mature themes that

exhibit limited interaction with others, like logic I

constraint programming and compilers I optimization.

Still other themes are found to interact strongly with

many other themes, such as design tools and

techniques, user interfaces, and software development.

There is some consistency in the networks generated

for this study and those of the 1998 study. Software

development, design tools and techniques, and user

interfaces, for example, recur in each of the time

periods of these studies. This is due in large part

to the fixed taxonomy of the CCS, but it also provides

some assurance of the correctness of this taxonomy in

representing the core themes of software engineering.

The 1998 study [COULTER98B] notes a trend in software

development toward large-scale environments. This

trend is evidenced in the current study by the

prominence of "programming-in-the-large" issues,

tools, and techniques, such as object-oriented

-64-

programming, project and people management,

documentation, and software maintenance.

The incorporation of "relevant supporting tools" into

a theme provides some gauge of the "maturity" of a

trend [COULTER98B, page 1222]. As a trend matures,

specific tools will appear as implicit descriptors.

The implicit descriptors that represent specific

object-oriented programming tools, such as C++, Java,

and COREA, do appear in the networks of this study.

Additionally, the appearance of compilers I

optimization and language constructs I features may

indicate continued work on incorporating the object­

oriented paradigm into the software engineering field.

As one might expect with an increase in programming­

in-the-large issues, there is also an apparent

increase in interest in best practices and process

improvement. This is evidenced by many of the same

keywords related to programming-in-the-large, such as

- 65-

"management," "testing and debugging," "metrics,"

"reliability," and "program verification."

Some new trends can also be seen. For instance, Petri

nets, which appear in the 1991 - 1994 period as an

isolated network, have resurfaced in a connected

network in the 1998 - 2001 period. Petri nets are

commonly used in modeling automated manufacturing

systems. As software engineering principles are

applied to computer-aided engineering and

manufacturing, it is not surprising to see links to

other themes of software engineering, such as

"requirements and specifications" and "design tools

and techniques."

One strong theme in software engineering is the

emphasis on parallelism and concurrency. Descriptors

related to parallelism and concurrency can be seen in

all four periods, but seem fairly ubiquitous in the

period of this study. For instance, parallelism­

related descriptors appear in Map-3 ("Applications I

-66-

Petri nets I computer-aided engineeringn), Map-4

("User interfaces I documentationn), Map-7

("Performance measures I parallel programmingn), Map-8

("Design tools and techniquesn), and Map-15

("Requirements-specifications I testing and

debuggingn).

The 1998 revision of the CCS includes over 225 new

subject descriptors [see COULTER98A]. Many of these

new terms are related to distributed and online

systems, including the World-Wide Web. It is

interesting to note the appearance of these terms in

the 1998 - 2001 period, which indicates that the

GUIDE's indexers found immediate need for these terms.

This is a clear indication that periodic review and

revision of the CCS is required for it to remain

relevant.

It is also interesting to note the disappearance from

the current period of the graphical user interfaces of

Windows and X-Windows, which had appeared in the 1991

- 67-

- 1994 period. Perhaps, this is an additional

indication of the trend toward online systems and the

use of the web browser as the user-interface of

choice.

- 68-

Chapter 7

TITLE ANALYSIS

Unlike earlier studies, this study has access to the

title text for most of the publications in the GUIDE

for the period 1998 - 2001. This allows a look at the

descriptive text chosen by the authors to represent

the topics of their published works. This may provide

corroboration of the results of the keyword analysis

and offer insight into the relevance and currency of

the CCS.

4063 titles are available for this analysis after

parsing the original SGML data. Some of these titles

are journal names, such as IEEE Transactions on

Software Engineering and Journal of Software

Maintenance. The incorporation of these titles into

this analysis skews the generated maps, simply because

these terms occur together more frequently.

-69-

Another concern is that there is no fixed taxonomy to

limit word choice, and, in some cases, the co-

occurrence of related terms may be diluted below the

threshold required to produce a link. Thus,

important, related terms may not appear in the final

maps.

7.1 The Title Data

The CAIR "check" command generates an index of terms

parsed from the input text. These terms form the

nodes of maps generated in later stages of the CAIR

analysis process. The "check" command's "-t"

parameter sets a threshold value for clustering. This

parameter is set to five, meaning that a word must

appear five times to qualify as a term. A higher

threshold can reduce the noise of less important

words, but there seems to be little to gain from such

a reduction in the current data set.

- 70-

The title terms consist of common nouns, such as

"window" and "technique," proper nouns, such as "Java"

and "Linux," and compound nouns, such as "software

engineering" and "object-oriented programming." The

CAIR system parses 485 terms from the title data. In

comparison, 366 terms are parsed from the keyword data

of the same period. The similarity of these numbers

implies that word choice, at least with respect to

software engineering titles, is not as unrestricted as

it might seem.

Appendix J reproduces a portion of the title index

file sorted in order of decreasing frequency. The

most common terms ("software," "analysis," and

"programming") are expected, considering the subject

matter. Some term frequencies may be artificially

inflated through their appearance in compound terms.

For instance, "software" appears alone and in

combination, such as "software engineering," "software

development," "object-oriented software," and so on.

- 71 -

Some additional term frequency inflation is due to the

repeated appearance of journal titles in the data,

such as IEEE Transactions on Software Engineering and

Communications of the ACM. Since these journals

contain published articles on a wide variety of

topics, the inclusion of the journal title for each

issue, necessarily, skews analysis results toward the

words occurring in these titles.

7.2 CCS General Terms

The CCS includes sixteen General Terms that may be

associated with any category. It should be expected

that these General Terms are represented in the

titles. In fact, most of the General Terms, like

"Design" and "Performance," are found verbatim in the

index of title terms.

Other General Terms are represented by proxy. For

instance, "Experimentation" is represented by a number

- 72-

of closely related or synonymous terms, like "study,"

"testing," and "empirical study." Likewise, the

General Term, "Economics," does not appear in the

title terms, but "business," "cost," and "business

process" do.

Table 9 lists the General Terms and their frequencies

in the title data. Where appropriate a proxy and its

frequency is listed in parentheses. It is interesting

that "Legal Aspects" and its potential proxies, such

as "law" and "liability," do not appear frequently

enough be included in the index file.

- 73-

119 Design
0 Experimentation

(96 Study)
86 Performance
64 Verification
55 Management
40 Documentation
0 Economics

(35 Business)
0 Human Factors

(33 User Interface)

30 Languages
0 Standardization

(26 Standard)
25 Measurement
21 Reliability
18 Security
12 Algorithms
10 Theory

0 Legal Aspects

Table 9: General Terms and Their Frequencies in the
Title Data

7.3 Themes from the Title Index

The most frequent terms, such as "software,"

"analysis," "programming," "design," and

"engineering," are those that pervade the software

engineering field. These terms are clearly important

to the field, but do not tell much about the current

emphasis or trends in research.

- 74-

One theme appearing clearly in the index of title

terms involves process improvement and best practices.

This is seen in the pervasiveness of terms like

"performance," "evaluation," "management," "case

study," "practice," "quality," "documentation,"

"business," "process," "optimization," "debugging,"

"improvement," and many more.

Proper nouns, like "Java," "C++," and "COREA," appear

with high frequencies, as do other terms, like

"object," "object-oriented software," "object-oriented

programming," and "software reuse." These terms

confirm the emphasis on object-oriented programming

(OOP) highlighted by the keyword analysis. Together

with the process improvement theme, OOP, hints at

another theme revealed by the keyword analysis: large­

scale software development.

The trend toward online systems, which the keyword

analysis highlights, is also apparent from the titles.

Terms, like "communication," "Internet," "hypermedia,"

- 75-

"network," and "web," appear frequently enough to be

added to the index of title terms. The corroboration

of this new trend also confirms the usefulness of the

new, "online" descriptors added to the CCS in 1998.

7.4 Title Networks

There are considerable differences between the keyword

and title data sets, not the least of which is the

lack of a fixed taxonomy. Nevertheless, some

understanding of the represented publications can be

gained by performing an analysis of the CAIR-rendered

title maps.

Minimum Co-occurrence (c) Number of Maps
3 21
5 16
7 8

10 3

Table 10: Co-occurrence and Number of Title Networks

- 76-

As with the keyword analysis, the choice of parameters

for the CAIR system is somewhat arbitrary. If the co-

occurrence minimum is too low, then too many links are

produced and details are hidden in the complexity of

the generated maps. If the co-occurrence minimum is

too high, then too few links are produced and

important relationships are missed. Table 10 shows

the effect on the number of generated maps by the

choice of minimum co-occurrence value. A minimum co­

occurrence of five (5) produces networks comparable in

number to those created for the keyword analysis, so

this value is chosen for the analysis.

CAIR generates sixteen maps to represent the title

data. The resulting LM file can be found in Appendix

K and the maps themselves are reproduced in Appendix

L. Coupling-cohesion and supernetwork plots are also

generated and can be found in Appendix M.

-77-

The title maps are named with the same flexible naming

convention used for the keyword maps; that is, with

few exceptions, the names are taken from the most

prominent, Pass-1 nodes. Table 11 lists the assigned

title map names.

No. Assigned Map Name
1 Interaction - Detection
2 TCL - TK
3 Exception - Handling
4 Client - Server
5 Analysis - Performance
6 Effort - Estimation
7 Software Process - Improvement
8 Software Engineering
9 Report - Experience

10 Software Reliability
11 Project - Management
12 Application - Development
13 Comparison - Technique
14 User Interface
15 Program - Verification
16 Method - Tool

Table 11: Assigned Names for Title Maps

- 78-

Many of the maps generated from the title data are

"obvious." That is, not much in the way of

substantial meaning can be derived from them. For

instance, Map-2 ("TCL - TK") contains two nodes, "tel"

and "tk," and does not interact with any other maps.

The nodes of this map refer to the scripting language,

TCL, and its graphical toolkit, Tk. These two

software development tools are almost always used

together, which explains their link strength of

0.694444.

Maps-1, 3, 4, 6, 7, 9, 10, 13, and 14 also likely

would be labeled, "obvious" or "uninteresting." All

of these maps are isolated, except Map-13 ("Comparison

- Technique"), whose one Pass-2 link associates the

nominal nodes with the obviously related node,

"analysis." Map-16 ("Method - Tool") has a moderate

coupling value, likely only because methods and tools

are concerns of many aspects of software development.

-79-

The remaining maps, 5, 8, 11, 12, 15, and 16, have

high coupling values and may be considered more

interesting. Map-5 ("Analysis - Performance")

represents primary concerns of software engineering.

Notable is the appearance of Petri net, a modeling

tool often used in computer-aided manufacturing, which

is also seen in the keyword analysis.

Map-8 ("Software Engineering") is clearly skewed by

the journal title, IEEE Transactions on Software

Engineering. This map has the highest coupling value,

which is not unexpected, given the purview of this

journal. Map-8 is strongly coupled with Map-11

("Project - Management") through the "software" node.

Map-11 illustrates one of the trends in software

development noted in both the 1998 study [COULTER98B]

and the keyword analysis of the current study: the

trend toward "programming-in-the-large" and the

related concern of "best practices."

- 80-

Map-12 ("Application - Development") has the second

highest coupling value and represents another core

concern of software engineering. "Internet" and

"network" appear in this map, along with real-time

systems, hinting at the trend toward online services

also noted in the keyword analysis.

Map-15 ("Program - Verification") is not very

interesting at first glance. Its high coupling value

is clearly due to the pervasive nature of programming

in software engineering. The appearance of "2nd ed"

reflects the relatively high frequency of second

edition programming texts. There were also a small

number of third edition works, but not enough to

appear in a map.

It is important to note that nothing in the title maps

stands out as discordant with the keyword analysis of

the same publications. The major themes of large­

scale software development, process improvement, and

even the trend toward online systems are seen in the

- 81 -

title maps. This lends some credence to the results

of the keyword analysis and the relevance of the

recent additions to the CCS.

This analysis of the titles provides some

corroboration for the keyword analysis, but titles are

not necessarily the best indicators of content. The

abstracts, review texts, and the texts of the

publications themselves would provide a better source

of data for analysis.

- 82-

CONCLUSIONS

Current themes and trends in software engineering can

be determined through analysis of its recent research

publications. This study applies co-word analysis

techniques to publications reviewed in the Association

for Computing Machinery's Guide to Computing

Literature (GUIDE) for the 1998 - 2001 period with the

goal of revealing these themes and trends.

The first part of this study looks at the descriptors

(or keywords) assigned to publications by the GUIDE's

indexers. Descriptors are taken from the fixed

taxonomy of the Computing Classification System (CCS) .

This analysis extends a 1998 study of the GUIDE

descriptor data from the three periods, 1982 - 1986,

1987 - 1990, and 1991 - 1994. The 1998 - 2001 period

provides several advantages: it includes the most

recently available data, its volume is comparable to

- 83-

that of the earlier study, and all the data conform to

the last CCS revision.

The second part of this study applies co-word analysis

to the titles of the published works reviewed in the

GUIDE during this same period. Examination of the

titles reveals the same themes shown by the analysis

of descriptors, providing some corroboration of both

the results and the analysis techniques.

Software engineering has no central focus, but the

themes of software development, process improvement,

applications, parallelism, and user interfaces are

persistent and help define the field. Trends in the

field are more useful as guidance for research and

curriculum development. The prominent trends revealed

by this study include increased interest in large­

scale software development or programming-in-the­

large, best practices, and distributed and online

computing.

- 84-

The interest in best practices is a natural

consequence of large-scale projects, where planning,

management, and review take on special importance.

Also reflective of programming-in-the-large is the

prominent appearance of object-oriented programming

(OOP) and its related tools and techniques. The OOP

paradigm naturally lends itself to these large-scale

projects, and this may be seen as support for its

incorporation into academic curricula.

Distributed and online computing, especially with

regard to the Internet and the World-Wide Web, has

become a major interest of software engineering.

Distributed computing is not new to software

engineering, nor is the Internet, but the GUIDE's

indexers found immediate use for the newly added

Internet-related descriptors. Furthermore, the

disappearance from the current data of descriptors

related to Windows and X-Windows may indicate a trend

toward online software systems that use the web

browser as the user-interface of choice.

- 85-

Many of the descriptors added in the 1998 revision of

the CCS found immediate use in classifying recent

publications. A clear conclusion from this is that

periodic review and revision of the CCS is

appropriate, if not required, for it to remain

relevant.

This study successfully extends to the current period

an earlier analysis of software engineering

publications through their assigned CCS descriptors.

This study also includes an analysis of the titles of

these same publications, providing both the

corroboration of the descriptor analysis and some

insight into the appropriateness and relevance of the

CCS to the current period.

- 86-

APPENDIX A

The Top Two Levels of the CCS (1998)

• A. General Literature
o A. 0 GENERAL
o A. 1 INTRODUCTORY AND SURVEY
o A. 2 REFERENCE (e.g., dictionaries,

encyclopedias, glossaries)
o A. m MISCELLANEOUS

• B. Hardware
o B . 0 GENERAL
o B.1 CONTROL STRUCTURES AND MICROPROGRAMMING

(D.3.2)
o B. 2 ARITHMETIC AND LOGIC STRUCTURES
o B . 3 MEMORY STRUCTURES
o B.4 INPUT/OUTPUT AND DATA COMMUNICATIONS
o B.5 REGISTER-TRANSFER-LEVEL IMPLEMENTATION
o B. 6 LOGIC DESIGN
o B. 7 INTEGRATED CIRCUITS
o B.B PERFORMANCE AND RELIABILITY (C.4)
o B . m MISCELLANEOUS

• C. Computer Systems Organization
o C . 0 GENERAL
o C .1 PROCESSOR ARCHITECTURES
o C. 2 COMPUTER-COMMUNICATION NETWORKS
o C.3 SPECIAL-PURPOSE AND APPLICATION-BASED

SYSTEMS (J.7)
o C. 4 PERFORMANCE OF SYSTEMS
o C. 5 COMPUTER SYSTEM IMPLEMENTATION
o C. m MISCELLANEOUS

• D. Software
o D . 0 GENERAL
o D .1 PROGRAMMING TECHNIQUES (E)
o D. 2 SOFTWARE ENGINEERING (K. 6 . 3)
o D. 3 PROGRAMMING LANGUAGES
o D. 4 OPERATING SYSTEMS (C)
o D. m MISCELLANEOUS

• E. Data

- 87-

o E . 0 GENERAL
o E. 1 DATA STRUCTURES
o E. 2 DATA STORAGE REPRESENTATIONS
o E. 3 DATA ENCRYPTION
o E.4 CODING AND INFORMATION THEORY (H.1.1)
o E.5 FILES (D.4.3, F.2.2, H.2)
o E . m MISCELLANEOUS

• F. Theory of Computation
o F . 0 GENERAL
o F.1 COMPUTATION BY ABSTRACT DEVICES
o F.2 ANALYSIS OF ALGORITHMS AND PROBLEM

COMPLEXITY (B.6, B.7, F.1.3)
o F. 3 LOGICS AND MEANINGS OF PROGRAMS
o F. 4 MATHEMATICAL LOGIC AND FORMAL LANGUAGES
o F . m MISCELLANEOUS

• G. Mathematics of Computing
o G. 0 GENERAL
o G. 1 NUMERICAL ANALYSIS
o G. 2 DISCRETE MATHEMATICS
o G. 3 PROBABILITY AND STATISTICS
o G. 4 MATHEMATICAL SOFTWARE
o G. m MISCELLANEOUS

• H. Information Systems
o H. 0 GENERAL
o H. 1 MODELS AND PRINCIPLES
o H. 2 DATABASE MANAGEMENT (E. 5)
o H.3 INFORMATION STORAGE AND RETRIEVAL
o H.4 INFORMATION SYSTEMS APPLICATIONS
o H.5 INFORMATION INTERFACES AND PRESENTATION

(e.g., HCI) (I. 7)
o H.m MISCELLANEOUS

• I. Computing Methodologies
o I . 0 GENERAL
o I.1 SYMBOLIC AND ALGEBRAIC MANIPULATION
o I. 2 ARTIFICIAL INTELLIGENCE
o I. 3 COMPUTER GRAPHICS
o I.4 IMAGE PROCESSING AND COMPUTER VISION
o I. 5 PATTERN RECOGNITION
o I. 6 SIMULATION AND MODELING (G. 3)
o I.7 DOCUMENT AND TEXT PROCESSING (H.4, H.5)
o I. m MISCELLANEOUS

- 88-

• J. Computer Applications
o J. 0 GENERAL
o J.l ADMINISTRATIVE DATA PROCESSING
o J. 2 PHYSICAL SCIENCES AND ENGINEERING
o J. 3 LIFE AND MEDICAL SCIENCES
o J.4 SOCIAL AND BEHAVIORAL SCIENCES
o J. 5 ARTS AND HUMANITIES
o J.6 COMPUTER-AIDED ENGINEERING
o J.7 COMPUTERS IN OTHER SYSTEMS (C.3)
o J. m MISCELLANEOUS

• K. Computing Milieux
o K. 0 GENERAL
0 K.l THE COMPUTER INDUSTRY
0 K.2 HISTORY OF COMPUTING
0 K.3 COMPUTERS AND EDUCATION
0 K.4 COMPUTERS AND SOCIETY
0 K. 5 LEGAL ASPECTS OF COMPUTING
0 K.6 MANAGEMENT OF COMPUTING AND

SYSTEMS
o K.7 THE COMPUTING PROFESSION
o K. 8 PERSONAL COMPUTING
o K.m MISCELLANEOUS

- 89-

INFORMATION

APPENDIX B

Sample SGML Data Set

<STARTREC>
<PUBTYPE>JOURNAL ARTICLE
<TITLE>

</PUBTYPE>

Toward formalizing structured analysis
</TITLE>
<AUTHEDIT>
Baresi, Luciano
</AUTHEDIT>
<AUTHTYPE>AUTHOR
<AUTHEDIT>
Pezzè, Mauro
</AUTHEDIT>

</AUTHTYPE>

<AUTHTYPE>AUTHOR </AUTHTYPE>
<GENTERM>PERFORMANCE
<GENTERM>DOCUMENTATION
<GENTERM>MEASUREMENT
<GENTERM>THEORY
<GENTERM>DESIGN
<KEYWORD>STRUCTURED ANALYSIS/REAL-TIME
</KEYWORD>

</GENTERM>
</GENTERM>
</GENTERM>
</GENTERM>
</GENTERM>

<KEYWORD>INFORMAL VERSUS FORMAL SPECIFICATIONS
</KEYWORD>
<KEYWORD>HATLEY AND PIRBHAI'S REQUIREMENTS DEFINITION
NOTATION </KEYWORD>
<PRICATDESC>
Software,
SOFTWARE ENGINEERING,
Requirements/Specifications,
Methodologies (e.g., object-oriented, structured)
</PRICATDESC>
<PRICATCODE> D.2.1</PRICATCODE>
<DESCRIPTOR>
Software,
SOFTWARE ENGINEERING,
Coding Tools and Techniques,
Structured programming

- 90-

</DESCRIPTOR>
<CATCODE> D.2.3</CATCODE>
<PUBYEAR>l998</PUBYEAR>
<JRLNAME>
ACM Transactions on Software Engineering and
Methodology
</JRLNAME>
<ABSTRACT>
<par>Real-time extensions to structured analysis
(SA/RT) are popular in industrial practice. Despite
the large industrial experience and the attempts to
formalize the various “dialects,” SA/RT
notations are still imprecise and ambiguous. This
article tries to identify the semantic problems of the
requirements definition notation defined by Hatley and
Pirbhai, one of the popular SA/RT
“dialects,” and discusses possible
solutions. As opposed to other articles that give
their own interpretation, this article does not
propose a specific semantics for the notation. This
article identifies imprecisions, i.e., missing or
partial information about features of the notation; it
discusses ambiguities, i.e., elements of the
definition that allow at least two different
(“reasonable”) interpretations of features
of the notation; and it lists extensions, i.e.,
features not belonging to the notation, but required
by many industrial users and often supported by CASE
tools. This article contributes by clarifying whether
specific interpretations can be given unique semantics
or retain ambiguities of the original definition. The
article allows for the evaluation of formal
definitions by indicating alternatives and
consequences of the specific choices.</par>
</ABSTRACT>
</STARTREC>

- 91 -

APPENDIX C

Sample CAIR-Prep Keyword Data

*
\#
1998;1
\#
\ !
-1 (petri netsd.2.2) () 0
-1 (assert ion checkersd. 2 . 4) () 0
-1 (mechanical verification£. 3. 1) () 0
-1 (hypertext/hypermediai.7.2) () 0
-1 (hypertext/hypermediah.5.4) () 0
\!
*
*
\#
1998;2
\#
\ !
-1 (generalk.3.0) () 0
-1 (generalj.O) () 0
-1 (interoperabilityd.2.12) () 0
\ !
*
*
\#
1998;3
\#
\ !
-1 (standardsk. 1) () 0
-1 (standardsd. 2. 0) () 0
\ !
*

- 92-

*
\#
1998;1
\#
\!

APPENDIX D

Sample CAIR-Prep Title Data

Hyperdocuments as automata: verification of trace­
based browsing properties by model checking

\!
*
*
\#
1998;2
\#
\!
(v.41 n.1) Communications of the ACM
\!
*
*
\#
1998;3
\#
\ !
Corporate shortcut to standardization
\ !
*

- 93-

APPENDIX E

Sample Keyword Data with SGML-style Tags

<DOC>
<DOCNO>
1998;1
</DOCNO>
<TEXT>
-1 (optimizationd. 3. 4) () 0
-1 (algorithm design and analysisg.4) () 0
-1 (requirements/specificationsd.2.1) () 0
-1 (lambda calculus and related systemsf.4.1) () 0
</TEXT>
</DOC>
<DOC>
<DOCNO>
1998;2
</DOCNO>
<TEXT>
-1 (design tools and techniquesd.2.2) () 0
-1 (language classificationsd.3.2) () 0
-1 (operational semanticsf.3.2) () 0
</TEXT>
</DOC>
<DOC>
<DOCNO>
1998;3
</DOCNO>
<TEXT>
-1 (object-oriented programmingd.1.5) () 0
-1 (reusable softwared. 2. 13) () 0
-1 (modules and interfacesd. 2. 2) () 0
-1 (distribution, maintenance, and enhancementd.2.7)

() 0
</TEXT>
</DOC>

-94-

APPENDIX F

CAIR Processing Sequence

The CAIR system implements the two-pass co-word

analysis algorithm at the command-line. The sequence

of commands is illustrated by the steps presented

below.

The before_tagger, tagger, and reg_exp_parser are used

to prepare free text for co-word analysis. Part of

this process involves parsing nouns and noun phrases

from the input text. These nouns and noun phrases

form the keywords for which co-occurrence metrics are

computed. This part of the process is required when

analyzing the title text, but the keyword data of this

study (see Appendix E) are already in the ".parse"

format.

The remaining steps perform counts of terms, compute

strengths and co-occurrences, and generate the leximap

- 95-

(LM) files used by the graphical portion of the CAIR

system.

1. before_tagger < sample.prep > sample.pretag

2. tagger < sample.pretag > sample.tag

3. reg-exp-parser < sample.tag > sample.parse

4. clust1 < sample.parse

5. sort files

6. clust2

7. check -t 0 -l 5 > sample.index
['-l' is a lowercase '-L']

8. lm1 -v < sample.index > sample.LMDB

9. 1m2 -c 7 -n 10 -l 12 -m 100 -s < sample.LMDB >
sample.c7.n10.l12.m100-S.LM

-96-

APPENDIX G

CAIR LM File for Keywords

Run Parameters: Eliminate by Nodes

Pass Two Node Filter: Both nodes. Link
Selection: Strength and Max. Nodes

Min. Strength: 0.000000. Min. Co-Occurrence: 7.
Max links: 12.

Max maps 100. Max nodes 10. Maps Produced: 15

1 2 1

Alogic and constraint programmingf.4.1A 19 1 1 1 1

Alogic programmingi.2.3A 17 1 1 1 1

Alogic and constraint programmingf.4.1A Alogic
programmingi.2.3A 14 0.606811 1 0

0.606811 0.000000 0.000000 20 14

2 20 24

Asoftware developmentk.6.3A 384 6 9 1 2

Aobject-oriented programmingd.1.5A 287 3 8 1 2

AC++d.3.2A 112 1 5 1 2

Ajavad.3.2A 170 3 4 1 2

Aprogrammer workbenchd.2.6A 26 1 2 1 2

-97-

Arequirements/specificationsd.2.1A 306 4 2 2 15

Adesign tools and techniquesd.2.2A 692 8 2 2 8

Aprogramming environmentsd.2.6A 218 3 2 2 4

Asoftware architecturesd.2.11A 160 3 2 2 8

Asoftware librariesd.2.2A 96 1 2 1 2

Auser interfacesd.2.2A 182 2 1 2 4

ACd.3.2A 33 1 1 1 2

Aobject-oriented design methodsd.2.2A 58 1 1 1 2

Aobject-oriented programmingd.2.3A 19 1 1 1 2

Acorbad.2.1A 48 1 1 1 2

Amanagementd.2.9A 278 4 1 2 9

Aprogramming teamsd.2.9A 30 2 1 2 9

Agenerald.2.0A 498 6 1 2 9

Ametricsd.2.8A 154 2 1 2 9

Asoftware/program verificationd.2.4A 218 3 1 2 15

Aprogrammer workbenchd.2.6A Asoftware
librariesd.2.2A 24 0.230769 1 0

Aobject-oriented design methodsd.2.2A Aobject­
oriented programmingd.1.5A 29 0.050523 1 0

AC++d.3.2A Asoftware librariesd.2.2A 17 0.026879 1 0

AC++d.3.2A Aprogrammer workbenchd.2.6A 8 0.021978 1
0

- 98-

Aobject-oriented programmingd.1.5A Aobject-oriented
programmingd.2.3A 10 0.018339 1 0

Ajavad.3.2A Aobject-oriented programmingd.1.5A 20
0.008198 1 0

Acorbad.2.1A Aobject-oriented programmingd.1.5A 10
0.007259 1 0

AC++d.3.2A Aobject-oriented programmingd.1.5A 15
0.007000 1 0

Aobject-oriented programmingd.1.5A Asoftware
developmentk.6.3A 26 0.006134 1 0

Amanagementd.2.9A Asoftware developmentk.6.3A 39
0.014248 2 9

Asoftware architecturesd.2.11A Asoftware
developmentk.6.3A 28 0.012760 2 8

Adesign tools and techniquesd.2.2A Asoftware
developmentk.6.3A 42 0.006638 2 8

Arequirements/specificationsd.2.1A Asoftware
developmentk.6.3A 25 0.005319 2 15

Aprogramming teamsd.2.9A Asoftware developmentk.6.3A
7 0.004253 2 9

Agenerald.2.0A Asoftware developmentk.6.3A 28
0.004100 2 9

Ametricsd.2.8A Asoftware developmentk.6.3A 15
0.003805 2 9

Ajavad.3.2A Aprogramming environmentsd.2.6A 11
0.003265 2 4

-99-

Ajavad.3.2A Asoftware/program verificationd.2.4A 10
0.002698 2 15

Aobject-oriented programmingd.1.5A
Arequirements/specificationsd.2.1A 14 0.002232 2 15

Ajavad.3.2A Auser interfacesd.2.2A 8 0.002069 2 4

AC++d.3.2A Adesign tools and techniquesd.2.2A 12
0.001858 2 8

Aobject-oriented programmingd.1.5A Asoftware
architecturesd.2.11A 9 0.001764 2 8

Aprogramming environmentsd.2.6A Asoftware
developmentk.6.3A 12 0.001720 2 4

0.039034 0.066729 0.000524 2855 331

3 15 23

Apetri netsd.2.2A 151 4 9 1 3

Aapplicationsi.6.3A 140 2 8 1 3

Acomputer-aided engineeringj.6A 85 2 6 1 3

Aengineeringj.2A 71 2 51 3

Amanufacturingj.1A 42 1 4 1 3

Ageneralg.2.0A 94 2 3 1 3

Adesign tools and techniquesd.2.2A 692 8 2 2 8

Aalgorithm design and analysisg.4A 55 4 2 2 15

Agenerald.2.0A 498 6 1 2 9

- 100-

Astochastic processesg.3A 19 1 1 1 3

Amodel validation and analysisi.6.4A 49 1 1 1 3

Asimulation output analysisi.6.6A 28 1 1 1 3

Aparallelism and concurrencyf.1.2A 102 4 1 2 4

Aperformance of systemsc.4A 109 2 1 2 14

Arequirements/specificationsd.2.1A 306 4 1 2 15

Acomputer-aided engineeringj.6A Amanufacturingj.1A
24 0.161345 1 0

Apetri netsd.2.2A Astochastic processesg.3A 13
0.058906 1 0

Aapplicationsi.6.3A Apetri netsd.2.2A 27 0.034484 1
0

Acomputer-aided engineeringj.6A Aengineeringj.2A 13
0.028003 1 0

Aengineeringj.2A Amanufacturingj.1A 8 0.021462 1 0

Aapplicationsi.6.3A Amodel validation and
analysisi.6.4A 12 0.020991 1 0

Aapplicationsi.6.3A Amanufacturingj.1A 11 0.020578 1
0

Amanufacturingj.1A Apetri netsd.2.2A 11 0.019079 1 0

Aapplicationsi.6.3A Asimulation output
analysisi.6.6A 8 0.016327 1 0

Acomputer-aided engineeringj.6A Apetri netsd.2.2A 12
0.011219 1 0

- 101 -

Aapplicationsi.6.3A Acomputer-aided engineeringj.6A
11 0.010168 1 0

Ageneralg.2.0A Apetri netsd.2.2A 12 0.010145 1 0

Aapplicationsi.6.3A Aengineeringj.2A 9 0.008149 3 0

Aapplicationsi.6.3A Ageneralg.2.0A 8 0.004863 3 0

Aengineeringj.2A Apetri netsd.2.2A 7 0.004570 3 0

Aalgorithm design and analysisg.4A Ageneralg.2.0A 7
0.009478 2 15

Aparallelism and concurrencyf.1.2A Apetri netsd.2.2A
12 0.009349 2 4

Aperformance of systemsc.4A Apetri netsd.2.2A 12
0.008749 2 14

Aalgorithm design and analysisg.4A Apetri netsd.2.2A
8 0.007706 2 15

Adesign tools and techniquesd.2.2A Aengineeringj .2A
12 0.002931 2 8

Aapplicationsi.6.3A
Arequirements/specificationsd.2.1A 11 0.002824 2 15

Acomputer-aided engineeringj.6A Adesign tools and
techniquesd.2.2A 10 0.001700 2 8

Acomputer-aided engineeringj.6A Agenerald.2.0A 7
0.001158 2 9

0.028686 0.043895 0.000334 1900 139

4 18 24

- 102-

Aprogramming environmentsd.2.6A 218 3 6 1 4

Auser/machine systemsh.1.2A 125 2 6 1 4

Auser interfacesd.2.2A 182 2 5 1 4

Aparallelism and concurrencyf.1.2A 102 4 5 1 4

Adocumentationd.2.7A 121 1 4 1 4

Auser interfacesh.5.2A 137 1 3 1 4

Avisual programmingd.1.7A 51 1 2 1 4

Asoftware developmentk.6.3A 384 6 2 2 2

Atraining, help, and documentationh.5.2A 32 1 2 1 4

Aconcurrent programmingd.1.3A 131 3 2 2 8

Alanguage classificationsd.3.2A 118 2 2 2 8

Ajavad.3.2A 170 3 2 2 2

Adesign tools and techniquesd.2.2A 692 8 2 2 8

Aelectronic publishingi.7.4A 10 1 1 1 4

Agenerald.2.0A 498 6 1 2 9

Ahuman factorsh.1.2A 37 1 1 1 4

Aalgorithm design and analysisg.4A 55 4 1 2 15

Apetri netsd.2.2A 151 4 1 2 3

Adocumentationd.2.7A Atraining, help, and
documentationh.5.2A 22 0.125000 1 0

Adocumentationd.2.7A Aelectronic publishingi.7.4A 9
0.066942 1 0

- 103-

Auser interfacesd.2.2A Auser interfacesh.5.2A 31
0.038542 1 0

Adocumentationd.2.7A Auser/machine systemsh.1.2A 24
0.038083 1 0

Atraining, help, and documentationh.5.2A
Auser/machine systemsh.1.2A 11 0.030250 1 0

Ahuman factorsh.1.2A Auser interfacesd.2.2A 10
0.014850 1 0

Auser interfacesd.2.2A Avisual programmingd.1.7A 10
0.010774 1 0

Auser interfacesd.2.2A Auser/machine systemsh.1.2A
15 0.009890 1 0

Aparallelism and concurrencyf.1.2A
environmentsd.2.6A 12 0.006476 1 0

A ,
programmlng

Auser interfacesh.5.2A Auser/machine systemsh.1.2A 9
0.004730 1 0

Aprogramming environmentsd.2.6A Avisual
programmingd.1.7A 7 0.004407 1 0

Aconcurrent programmingd.1.3A Aparallelism and
concurrencyf.1.2A 18 0.024248 2 8

Aalgorithm design and analysisg.4A Aparallelism and
concurrencyf.1.2A 8 0.011408 2 15

Aparallelism and concurrencyf.1.2A Apetri netsd.2.2A
12 0.009349 2 3

Alanguage classificationsd.3.2A Aparallelism and
concurrencyf.1.2A 7 0.004071 2 8

Ajavad.3.2A Aprogramming environmentsd.2.6A 11
0.003265 2 2

- 104-

Alanguage classificationsd.3.2A Aprogramming
environmentsd.2.6A 9 0.003149 2 8

Aconcurrent programmingd.1.3A Aprogramming
environmentsd.2.6A 9 0.002836 2 8

Agenerald.2.0A Auser/machine systemsh.1.2A 13
0.002715 2 9

Ajavad.3.2A Auser interfacesd.2.2A 8 0.002069 2 2

Adesign tools and techniquesd.2.2A
interfacesh.5.2A 14 0.002067 2 8

A user

Aprogramming environmentsd.2.6A Asoftware
developmentk.6.3A 12 0.001720 2 2

Adesign tools and techniquesd.2.2A Auser/machine
systemsh.1.2A 12 0.001665 2 8

Adocumentationd.2.7A Asoftware developmentk.6.3A 8
0.001377 2 2

0.031813 0.069940 0.000874 2390 220

5 2 1

Aweb-based servicesh.3.5A 67 1 1 1 5

Aweb-based interactionh.5.3A 52 1 1 1 5

Aweb-based interactionh.5.3A Aweb-based
servicesh.3.5A 19 0.103617 1 0

0.103617 0.000000 0.000000 71 19

6 2 1

- 105-

Adistributed databasesh.2.4A 17 1 1 1 6

Adistributed systemsc.2.4A 47 1 1 1 6

Adistributed databasesh.2.4A Adistributed
systemsc.2.4A 7 0.061327 1 o

0.061327 0.000000 0.000000 56 7

7 2 1

Aparallel programmingd.1.3A 39 1 1 1 7

Aperformance measuresd.2.8A 47 1 1 1 7

Aparallel programmingd.1.3A Aperformance
measuresd.2.8A 10 0.054555 1 0

0.054555 0.000000 0.000000 76 10

8 20 22

Adesign tools and techniquesd.2.2A 692 8 13 1 8

Aconcurrent programmingd.1.3A 131 3 5 1 8

Alanguage classificationsd.3.2A 118 2 3 1 8

Asoftware architecturesd.2.11A 160 3 3 1 8

Asoftware developmentk.6.3A 384 6 2 2 2

Aprogramming environmentsd.2.6A 218 3 2 2 4

Ainteroperabilityd.2.12A 63 1 2 1 8

Aparallelism and concurrencyf.1.2A 102 4 2 2 4

- 106-

A d A management .2.9 278 4 1 2 9

"'requirements/specificationsd.2.1"' 306 4 1 2 15

"'testing and debuggingd.2.5"' 271 3 1 2 15

"'distribution, maintenance, and enhancementd.2.7"' 82
3 1 2 15

"'parallel architecturesc.1.4"' 21 1 1 1 8

"'processorsd.3.4"' 50 1 1 1 8

"'communications managementd.4.4"' 13 1 1 1 8

"'process managementd.4.1"' 24 1 1 1 8

"'physical sciences and engineeringj.2"' 21 1 1 1 8

"'software/program verificationd.2.4"' 218 3 1 2 15

"'engineeringj.2"' 71 2 1 2 3

"'language constructs and featuresd.3.3"' 81 2 1 2 12

"'interoperabilityd.2.12"' "'parallel
architecturesc.1.4"' 8 0.048375 1 0

"'design tools and techniquesd.2.2"' "'processorsd.3.4"'
18 0.009364 1 0

"'communications managementd.4.4"' "'design tools and
techniquesd.2.2"' 9 0.009004 1 0

"'design tools and techniquesd.2.2"' "'language
classificationsd.3.2"' 25 0.007654 1 0

"'design tools and techniquesd.2.2"'
managementd.4.1"' 11 0.007286 1 0

- 107-

A process

Adesign tools and techniquesd.2.2A Aphysical
sciences and engineeringj.2A 10 0.006881 1 0

Ainteroperabilityd.2.12A Asoftware
architecturesd.2.11A 7 0.004861 1 0

Aconcurrent programmingd.1.3A Adesign tools and
techniquesd.2.2A 20 0.004412 1 0

Adesign tools and techniquesd.2.2A Asoftware
architecturesd.2.11A 22 0.004371 1 0

Aconcurrent programmingd.1.3A Aparallelism and
concurrencyf.1.2A 18 0.024248 2 4

Asoftware architecturesd.2.11A Asoftware
developmentk.6.3A 28 0.012760 2 2

Adesign tools and techniquesd.2.2A Asoftware
developmentk.6.3A 42 0.006638 2 2

Alanguage classificationsd.3.2A Aparallelism and
concurrencyf.1.2A 7 0.004071 2 4

Aconcurrent programmingd.1.3A Asoftware/program
verificationd.2.4A 10 0.003502 2 15

Alanguage classificationsd.3.2A Aprogramming
environmentsd.2.6A 9 0.003149 2 4

Adesign tools and techniquesd.2.2A Aengineeringj.2A
12 0.002931 2 3

Aconcurrent programmingd.1.3A Aprogramming
environmentsd.2.6A 9 0.002836 2 4

Adesign tools and techniquesd.2.2A Alanguage
constructs and featuresd.3.3A 12 0.002569 2 12

Adesign tools and techniquesd.2.2A Amanagementd.2.9A
22 0.002516 2 9

- 108-

Adesign tools and techniquesd.2.2A
Arequirements/specificationsd.2.1A 22 0.002286 2 15

Aconcurrent programmingd.1.3A Atesting and
debuggingd.2.5A 9 0.002282 2 15

Adesign tools and techniquesd.2.2A Adistribution,
maintenance, and enhancementd.2.7A 11 0.002132 2 15

0.011357 0.071920 0.000878 2301 277

9 19 24

Agenerald.2.0A 498 6 10 1 9

Amanagementd.2.9A 278 4 7 1 9

Asoftware managementk.6.3A 162 2 4 1 9

Asoftware developmentk.6.3A 384 6 4 2 2

Ametricsd.2.8A 154 2 3 1 9

Aprogramming teamsd.2.9A 30 2 2 1 9

Aproject and people managementk.6.1A 35 1 2 1 9

Acomputer science educationk.3.2A 48 1 2 1 9

Acurriculumk.3.2A 77 1 2 1 9

Adesign tools and techniquesd.2.2A 692 8 2 2 8

Aobject-oriented programmingd.1.5A 287 3 2 2 2

Adistributio~, maintenance, and enhancementd.2.7A 82
3 1 2 15

Auser/machine systemsh.1.2A 125 2 1 2 4

- 109-

Atesting and debuggingd.2.5A 271 3 1 2 15

Ageneralc.2.0A 41 2 1 2 14

Aalgorithm design and analysisg.4A 55 4 1 2 15

Acomputer-aided engineeringj.6A 85 2 1 2 3

Ageneralf.3.0A 15 1 1 1 9

Ageneralk.5.0A 11 1 1 1 9

Aprogramming teamsd.2.9A Aproject and people
managementk.6.1A 7 0.046667 1 0

Acomputer science educationk.3.2A Agenerald.2.0A 33
0.045557 1 0

Acomputer science educationk.3.2A Acurriculumk.3.2A
12 0.038961 1 0

Agenerald.2.0A Asoftware managementk.6.3A 46
0.026228 1 0

Acurriculumk.3.2A Agenerald.2.0A 30 0.023471 1 0

Amanagementd.2.9A Asoftware managementk.6.3A 29
0.018674 1 0

Agenerald.2.0A Ageneralk.5.0A 7 0.008945 1 0

Agenerald.2.0A Ageneralf.3.0A 8 0.008568 1 0

A d A management .2.9 Ametricsd.2.8A 19 0.008432 1 0

Amanagementd.2.9A Aproject and people
managementk.6.1A 8 0.006578 1 0

A d A management .2.9 Asoftware developmentk.6.3A 39
0.014248 2 2

- 110-

Aprograrnrning tearnsd.2.9A Asoftware developrnentk.6.3A
7 0.004253 2 2

Agenerald.2.0A Asoftware developrnentk.6.3A 28
0.004100 2 2

Arnetricsd.2.8A Asoftware developrnentk.6.3A 15
0.003805 2 2

Adistribution, maintenance, and enhancernentd.2.7A
Arnanagernentd.2.9A 9 0.003553 2 15

Agenerald.2.0A Auser/rnachine systernsh.1.2A 13
0.002715 2 4

Adesign tools and techniquesd.2.2A Arnanagernentd.2.9A
22 0.002516 2 8

Ageneralc.2.0A Agenerald.2.0A 7 0.002400 2 14

Aalgorithrn design and analysisg.4A Agenerald.2.0A 7
0.001789 2 15

Arnanagernentd.2.9A Aobject-oriented prograrnrningd.1.5A
11 0.001517 2 2

Adesign tools and techniquesd.2.2A Asoftware
rnanagernentk.6.3A 13 0.001508 2 8

Asoftware rnanagernentk.6.3A Atesting and
debuggingd.2.5A 8 0.001458 2 15

Arnetricsd.2.8A Aobject-oriented prograrnrningd.1.5A 8
0.001448 2 2

Acornputer-aided engineeringj.6A Agenerald.2.0A 7
0.001158 2 3

0.023208 0.046466 0.000298 2383 313

- 111 -

10 3 2

Acompilersd.3.4A 70 1 2 1 10

Aoptimizationd.3.4A 31 1 1 1 10

Adesign tools and techniquesd.2.2A 692 8 1 2 8

Acompilersd.3.4A Aoptimizationd.3.4A 10 0.046083 1 0

Acompilersd.3.4A Adesign tools and techniquesd.2.2A
9 0.001672 2 8

0.046083 0.001672 0.000003 764 17

11 3 2

Asoftware maintenancek.6.3A 82 1 2 1 11

Arestructuring, reverse engineering, and
reengineeringd.2.7A 86 1 1 1 11

Asoftware developmentk.6.3A 384 6 1 2 2

Arestructuring, reverse engineering, and
reengineeringd.2.7A Asoftware maintenancek.6.3A 16
0.036302 1 0

Asoftware developmentk.6.3A Asoftware
maintenancek.6.3A 7 0.001556 2 2

0.036302 0.001556 0.000002 515 23

12 4 3

Alanguage constructs and featuresd.3.3A 81 2 3 1 12

- 112-

Astudies of program constructsf.3.3A 28 1 1 1 12

Avisual basicd.2.2A 62 1 1 1 12

Adesign tools and techniquesd.2.2A 692 8 1 2 8

Alanguage constructs and featuresd.3.3A Astudies of
program constructsf.3.3A 9 0.035714 1 0

Alanguage constructs and featuresd.3.3A Avisual
basicd.2.2A 9 0.016129 1 0

Adesign tools and techniquesd.2.2A Alanguage
constructs and featuresd.3.3A 12 0.002569 2 8

0.025922 0.002569 0.000007 808 28

13 2 1

Areal-time and embedded systemsc.3A 50 1 1 1 13

Areal-time systems and embedded systemsd.4.7A 37 1 1
1 13

Areal-time and embedded systemsc.3A Areal-time
systems and embedded systemsd.4.7A 7 0.026486 1 0

0.026486 0.000000 0.000000 68 7

14 5 4

Aperformance of systemsc.4A 109 2 3 1 14

Ageneralc.2.0A 41 2 2 1 14

Anetwork protocolsc.2.2A 54 1 1 1 14

- 113-

Apetri netsd.2.2A 151 4 1 2 3

Agenerald.2.0A 498 6 1 2 9

Anetwork protocolsc.2.2A Aperformance of systemsc.4A
10 0.016989 1 0

Ageneralc.2.0A Aperformance of systemsc.4A 7
0.010964 1 0

Aperformance of systemsc.4A Apetri netsd.2.2A 12
0.008749 2 3

Ageneralc.2.0A Agenerald.2.0A 7 0.002400 2 9

0.013977 0.011149 0.000082 784 31

15 20 24

Arequirements/specificationsd.2.1A 306 4 9 1 15

Atesting and debuggingd.2.5A 271 3 7 1 15

Aalgorithm design and analysisg.4A 55 4 5 1 15

Asoftware/program verificationd.2.4A 218 3 5 1 15

Adistribution, maintenance, and enhancementd.2.7A 82
3 3 1 15

Asoftware developmentk.6.3A 384 6 2 2 2

Aspecifying and verifying and reasoning about
programsf.3.1A 45 1 2 1 15

Aconcurrent programmingd.1.3A 131 3 2 2 8

Adesign tools and techniquesd.2.2A 692 8 2 2 8

- 114-

A petri netsd.2.2A 151 4 1 2 3

Areliabilityd.2.4A 44 1 1 1 15

A managementd.2.9A 278 4 1 2 9

A software architecturesd.2.11A 160 3 1 2 8

Aapplicationsi.6.3A 140 2 1 2 3

Ajavad.3.2A 170 3 1 2 2

Asoftware managementk.6.3A 162 2 1 2 9

Aobject-oriented programmingd.1.5A 287 3 1 2 2

Agenerald.2.0A 498 6 1 2 9

Aparallelism and concurrencyf.1.2A 102 4 1 2 4

Ageneralg.2.0A 94 2 1 2 3

Asoftware/program verificationd.2.4A Atesting and
debuggingd.2.5A 25 0.010579 1 0

Asoftware/program verificationd.2.4A Aspecifying and
verifying and reasoning about programsf.3.1A 10
0.010194 1 0

Arequirements/specificationsd.2.1A Aspecifying and
verifying and reasoning about programsf.3.1A 8
0.004648 1 0

Areliabilityd.2.4A Atesting and debuggingd.2.5A 7
0.004109 1 0

Aalgorithm design and analysisg.4A
Arequirements/specificationsd.2.1A 8 0.003803 1 0

Adistribution, maintenance, and enhancementd.2.7A
Atesting and debuggingd.2.5A 8 0.002880 1 0

- 115-

Arequirements/specificationsd.2.1A Asoftware/program
verificationd.2.4A 13 0.002533 1 0

Arequirements/specificationsd.2.1A Atesting and
debuggingd.2.5A 9 0.000977 1 0

Aalgorithm design and analysisg.4A Aparallelism and
concurrencyf.1.2A 8 0.011408 2 4

Aalgorithm design and analysisg.4A Ageneralg.2.0A 7
0.009478 2 3

Aalgorithm design and analysisg.4A Apetri netsd.2.2A
8 0.007706 2 3

Arequirements/specificationsd.2.1A Asoftware
developmentk.6.3A 25 0.005319 2 2

Adistribution, maintenance, and enhancementd.2.7A
Amanagementd.2.9A 9 0.003553 2 9

Aconcurrent programmingd.1.3A Asoftware/program
verificationd.2.4A 10 0.003502 2 8

Aapplicationsi.6.3A
Arequirements/specificationsd.2.1A 11 0.002824 2 3

Ajavad.3.2A Asoftware/program verificationd.2.4A 10
0.002698 2 2

Adesign tools and techniquesd.2.2A
Arequirements/specificationsd.2.1A 22 0.002286 2 8

Aconcurrent programmingd.1.3A Atesting and
debuggingd.2.5A 9 0.002282 2 8

Aobject-oriented programmingd.1.5A
Arequirements/specificationsd.2.1A 14 0.002232 2 2

Adesign tools and techniquesd.2.2A Adistribution,
maintenance, and enhancementd.2.7A 11 0.002132 2 8

- 116-

Aalgorithm design and analysisg.4A Agenerald.2.0A 7
0.001789 2 9

Arequirements/specificationsd.2.1A Asoftware
architecturesd.2.11A 9 0.001654 2 8

Asoftware managementk.6.3A Atesting and
debuggingd.2.5A 8 0.001458 2 9

Asoftware developmentk.6.3A Atesting and
debuggingd.2.5A 11 0.001163 2 2

0.004965 0.061484 0.000377 2873 211

- 117-

A
P

P
E

N
D

IX

H

K
ey

w
o

rd

M
ap

s

.........

"'<1"
4

-i
b

J)
!=:

.......
s ~ bh
0 1-t
0

.

-~ ~ 0 0

.........
"'0

~

~ 0
1--l

.......
(I)

b
J)

0
I

........
0 0
.........

(""')

s
M

M

.......

.........
b

J)
........

.8
0

s
!=:

~
to

bh
........

0
0

1
-t

0
A

M

0

I
.......

0
0

b

J)

0
\

0
0

\
........

........

M
ap

-1
:

L
o

g
ic

a
n

d

c
o

n
s
tra

in
t

p
ro

g
ra

m
m

in
g

-
1

1
8

-

.........

.........
1.0

3:
Q98-200l.c7.n10.112ml00-S.L9

Pl
'0

I
1\) ..
(/)

0
t-n
r-r
::s
Pl
1-1
CD

0.
'0 CD
1-1 ~
0 CD
lQ 1---'
1-1 0
Pl'"d
;3 ;3
;3 CD
1-'· ::l
::l r-r
lQ

..........

0
tJ'

LJ.

CD
()
r-r
I

0
1-1
1-'·
CD
::l
r-r
CD
0.

.........
N
0

3:
PJ

tO
I

w ..
~

tO
'0
I-'
1-'-
0
PJ
rt
1-'-
0
::I
01

CD
:::::~-........

lQ
1-'- 11)

::I CD
CD rt
CD 1-i
1-i 1-'-
1-'-
::I ::I
lQ CD

rt
01

..........

0
0
.§
c
rt
CD
1-i
I

PJ
1-'-
p..
CD
p..

1998-200 l.c7.n!O.ll2.m 100-S.LM 3

parallelism and concurrencyf. I. 2

-N -

:s:
PJ
'd

I
,)::>

c::::
Ol
CD
11

I-'·
::s
rt
CD
11
Hl
PJ
0
CD
Ol

..........

0..
0
0
~
;3
CD
::s
rt
PJ
rt
1--'-
0
::s

1998-200 l.c7.n10.112m 100-S.LM 4

algorithm design and analysisg.4

........
N
N

3:
Pl

1-(j
I

U1

:::8
CD
t1
I

t1
Pl
Ol
CD
0..

Ol
CD

~
I-'­
()

CD
Ol

1998-200 l.c7.n10.l12.m 100-S.LM 5

web-based interactionh 5. 3

web-based servicesh.3.5

M
ap

-6
:

D
is

trib
u

te
d

sy

ste
m

s

-
1

2
3

-

0
0

ri
'"Ci

1:12
IV

~ IV

s IV

0 fa @

¢
:

1-<
IV

0..

('I)

.......
'"Ci
b.()

.s s § 5h
0 1-<
0..

........
IV

........
ta (<J

r-.
0..

~

.....:!
iJ.l I
0 0 s r
i

.......
........
0
~

r....::
0

.......
0 0 <"l
I

0
0

0

\
0

\

M
ap

-7
:

P
e
rfo

rm
a
n

c
e

m
e
a
su

re
s

I
p

a
ra

lle
l

p
ro

g
ra

m
m

in
g

-
1

2
4

-

1998-200!.c7.nl0.112.m 100-S.LM 8

3: I I parallel archltecturesc.!.4

P.l
"0

I
00 ..
t:J
(0
(Jl
1-'-
lQ
::s
rt
0 ,_..

N 0
V'l 1-'

(Jl

P.l
::s
0..

rt
(0
()

::r
::s
1-'-

i-0 c
(0
(Jl

.........
N
0\

3:
Pl
'Ll

I
1.0

3:
Pl
!:l
Pl
lQ

CD
;3
CD
!:l
rt

...........

;3
CD
rt
t-i
1-'-
0
(11

1998-200l.c7.n10.112.m100-S.LM 9

distribution, maintenance, and enhancementd.2. 7

testing and debuggingd.2.5

progranun ing teams d. 2. 9

user/machine systemsh.l.2

.....
N
-..)

:s:
PJ

t-el
I

I-'
0

()
0
,a
1--'­
f--'
(J)

ti
{))

........._

0
t-el
(""t

1--'­
;3
1--'­
N
PJ
(""t

1--'-
0
::l

1998-200 l.c7.n10.l12.m 100-S.LM 10

optimizationd. 3. 4 design tools and techniquesd.2.2

1998-200 l.c7.n10.112.m 100-S.LM 11

3:
PJ

tO
I

I-'
I-' ..
(/)

0 restructuring, reverse engineering, and reengineeringd. 2. 7
t-h
(I

,..... :::
N PJ
00 1-'l

CD

;3
PJ
1-'·
::s
(I

CD
::s software maintenancek. 6. 3
PJ
::s
()

CD

software developmentk. 6. 3

3:
Pl

tO
I

1998-200 l.c7.n10.112.m 100-S.LM 12
f--l
tv ..
t"'
Pl
::J
lQ
s::
Pl design tools and techniquesd.2.2

lQ
(I)

(}

0 ::J tv Ol \0 rt
li s::
(}
rt language constructs and featuresd.3.3
Ol

Pl
::J
0..

Hl
(I)
Pl
rt
s::
li
(I)
Ol

1998-200 l.c7.n10.112.m 100-S.LM 13
:s:
PJ

1-(j
I

f--1
w ..
:::0
(J)

PJ
I--'
I
rt

real-time and embedded systemsc.3
1-'-
3
(J)

,.........
PJ w
::::1 0
0. I

(J)

3 rr
(J)

0.
0.
(J)

0.

01
"<
01
rt
(J)

3
01

real-time systems and embedded systemsd.4.7

........
w
........

3:
!lJ
"d

I

I-'
.+::>

'1:1
(])

1-<:
1-il
0
1-<:
3
!lJ
::l
()
(])

0
Hl

lJ.l
"<
lJ.l
rt
(])

3
lJ.l

..........

::l
(])
rt
~
0
1-<:
;;>;"'

"d
1-<:
0
rt
0
()

0
I-'
lJ.l

1998-200 l.c7.n10.112.m 100-S.LM 14

petri netsd. 2. 2

.......
w
N

3:
PJ

t-cJ
I

f-'
U1

:::0
(!)

!-0
~
1-'·
1-1
(!)

3
(!)

::J
rt
Ul

0,1
(!) Ul
t:Jt-cj
~ (!)

lQ ()
lQ 1-'·
1-'· H1
::J 1-'·
lQ ()

PJ
rt
1-'·
0
::J
Ul

..........

rt
(!)
Ul
rt
1-'·
::J
lQ

PJ
::J
Po

1998-200l.c7.n10.112.m 100-S.LM 15

software architecturesd.211

genera1~20

A
P

P
E

N
D

IX

I

K
ey

w
o

rd

A

n
a
ly

s
is

P

lo
ts

C
"l

.....
0

0

.....
9 0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
~
~
-
-
-
-
-
~

1 u

C
o

u
p

lin
g

-C
o

h
e
sio

n

P

lo
t

fo
r

K
ey

w
o

rd

D
a
ta

-
1

3
3

-

6

Supernetwork for Keyword Data

- 134-

APPENDIX J

Sorted Index of Title Terms

236 software 44 software 27 design
213 analysis architec- pattern
198 program- ture 26 ada

ming 43 use 26 component
187 applica- 42 generation 26 reuse

tion 40 document a- 26 standard
145 approach tion 26 team
132 program 40 maintenance 25 C++
119 design 40 parallel 25 change
117 software 39 communica- 25 formal

engineer- tion specifica-
ing 39 project tion

102 engineer- 39 specifica- 25 measurement
ing tion 25 roadmap

96 study 38 control 25 support
95 development 38 interaction 24 debugging
92 testing 38 pattern 23 improvement
86 performance 38 service 23 issue
82 system 37 introduc- 23 prototyping
72 technique tion 23 uml
71 method 35 business 23 validation
68 evaluation 34 integration 22 2nd ed
68 java 33 semantic 22 data
64 technology 33 user 22 strategy
64 veri fica- interface 22 synthesis

tion 31 requirement 22 usability
59 information 30 class 21 error
55 management 30 internet 21 estimation
50 implementa- 30 language 21 formal

tion 30 science method
49 model 29 concept 21 metric
49 real-time 29 detection 21 petri
47 framework 29 process 21 property
46 software 29 workshop 21 reliability

develop- 28 corba 21 software
ment 28 database process

46 tool 28 interface 20 complexity
45 case study 28 modelling 20 construe-
45 experience 28 optimiza- tion
45 practice tion 20 description
45 quality 27 architec- 20 methodology
44 object ture 20 module

27 assessment 20 server

- 135-

20 teaching 15 empirical 12 defect
20 year study 12 more
19 environment 15 impact 12 overview
19 foundation 15 lesson 12 parallel
19 legacy 15 panel program
19 monitoring 15 problem 12 role
19 part 15 product 11 correctness
19 style 15 programming 11 development
18 calculus language process
18 learning 15 software 11 editorial
18 multimedia quality 11 extension
18 security 15 software 11 guide
18 visual reliabil- 11 hardware

basic ity 11 investiga-
18 window 15 space tion
18 workflow 14 &mdash 11 platform
17 building 14 consistency 11 principle
17 journal 14 fortran 11 procedure
17 object- 14 net 11 production

oriented 14 perspective 11 reasoning
software 14 resource 11 reference

17 petri net 14 software 11 reusability
17 poster reuse 11 risk
17 software 14 student 11 scheduling

main ten- 13 abstract 11 selection
ance 13 complex 11 software

17 user 13 effect engineer-
16 code 13 enterprise ing
16 col labor a- 13 future education

tion 13 hypermedia 11 synchroniz-
16 computer 13 infra- at ion

science structure 11 workshop
16 configura- 13 microsoft session

tion 13 network 10 active
16 evolution 13 object- 10 com
16 pointer oriented 10 configura-
16 prediction program- tion
16 programmer ming management
16 real-time 13 report 10 diagram

system 13 solution 10 distributed
16 representa- 13 survey object

tion 13 visualiza- 10 domain
16 simulation tion 10 editor
16 software 13 web 10 exception

system 13 world 10 hierarchy
16 tutorial 12 abstraction 10 image
16 understand- 12 algorithm 10 inspection

ing 12 comparison 10 library
15 case 12 concurrent 10 mechanism
15 cost program 10 message

- 136-

10 mobile 9 programming 8 retrieval
agent environ- 8 robust

10 object- ment 8 software
oriented 9 proof engineer
design 9 recovery 8 software

10 paradigm 9 repository perform-
10 performance 9 scheme ance

analysis 9 software 8 software
10 rapid component tool

proto- 9 software 8 template
typing process 8 toolkit

10 relation- improve- 8 y2k
ship ment 7 3rd ed

10 research 9 software 7 agent
10 reverse project 7 allocation
10 review 9 software 7 box
10 suite testing 7 broker
10 test 9 source 7 bug
10 theory 9 stl 7 collection
10 training 9 type 7 commentary
10 tutorial 9 version 7 company

session 9 viewpoint 7 component-
10 use case 9 vs based
10 verifying 9 work system
10 way 8 application 7 composition
9 access develop- 7 computer
9 alternative ment 7 cost
9 apl 8 benefit estimation
9 challenge 8 business 7 cot
9 client process 7 depend-
9 comprehen- 8 case tool ability

sion 8 class- 7 editorial
9 definition ification pointer
9 design , 8 curriculum 7 example

implement- 8 efficiency 7 execution
at ion 8 effort 7 experience

9 effective- 8 failure report
ness 8 feature 7 experiment

9 embedded 8 formalism 7 extraction
system 8 handling 7 forum

9 fault 8 instrument- 7 industry
9 generator at ion 7 inter-oper-
9 java program 8 linux ability
9 object 8 middleware 7 monitor

technology 8 partial 7 object-
9 portable evaluation oriented
9 poster 8 performance system

session evaluation 7 opportunity
8 power 7 panel
8 productivity session

- 137-

7 path 6 distance 6 timed petri
7 pattern 6 engineer net

language 6 exploration 6 tk
7 perl 6 fault- 6 translation
7 priority tolerant 6 unit
7 protocol 6 formal 6 unix
7 query approach 6 visualizing
7 race 6 formal 5 a em
7 refinement veri fie- 5 action
7 reusable at ion 5 algorithms

software 6 function 5 application
7 reverse 6 guideline framework

engineer- 6 individual 5 automata
ing 6 inference 5 automating

7 search 6 integrity 5 benchmark
7 software 6 interaction 5 business

evolution detection object
7 software 6 invariant 5 character-

product 6 loto is tic
line 6 manipulation 5 character-

7 specific- 6 mapping ization
at ion 6 migration 5 codesign
language 6 mpi 5 compiler

7 time 6 object model 5 computation
7 timing 6 object-z 5 computer
7 transaction 6 organization program-
7 tuning 6 paper ming
7 virtual 6 parallel- 5 concept

environ- ization analysis
ment 6 partition- 5 constraint

7 writing ing 5 conversion
6 abstract 6 portability 5 coupling

interpret- 6 predicate 5 crisis
at ion 6 presentation 5 delivery

6 adaptation 6 primer 5 delphi
6 analyzer 6 reduction 5 dependency
6 animation 6 requirement 5 deployment
6 architec- specific- 5 development

tural at ion project
style 6 restructur- 5 distributed

6 aspect ing system
6 assignment 6 scalability 5 education
6 cluster 6 simple 5 empirical
6 component- 6 software analysis

ware design 5 feature
6 concurrent 6 software inter-

system developer action
6 conflict 6 statechart 5 field
6 contribution 6 task 5 goal
6 customer 6 tel 5 good

- 138-

5 ieee trans- 5 practical at ion
actions on guide management
software 5 practical 5 software
engineer- programmer cost
ing 5 presence 5 software

5 implication 5 process engineer-
5 information model ing

system 5 program research
5 innovation analysis 5 software
5 internet 5 progress inspection

applic- 5 propagation 5 structure
at ion 5 question 5 system

5 iso 5 reachability design
5 iterator 5 reality 5 technical
5 laboratory 5 reflection communic-
5 legacy 5 regression at ion

system testing 5 tip
5 load 5 response 5 transition
5 measure 5 reusable 5 view
5 meta- software 5 visual C++

computing component 5 visual
5 mobility 5 rule language
5 note 5 safety 5 web site
5 novel 5 scenario 5 workbench
5 object- 5 schemas 5 workflow

oriented 5 simplicity management
program 5 software 5 world wide

5 powerbuilder configur- web
5 xml

- 139-

APPENDIX K

CAIR LM File for Titles

Run Parameters: Eliminate by Nodes
Pass Two Node Filter: Both nodes. Link Selection:
Strength and Max. Nodes. Min. Strength: 0.000000.
Min. Co-Occurrence: 5. Max links: 12. Max maps
100. Max nodes 10. Maps Produced: 16

1 5 4
AdetectionA 29 1 3 1 1
Afeature interactionA 5 1 2 1 1
Ainteraction detectionA 6 1 1 1 1
AraceA 7 1 1 1 1
AinteractionA 38 1 1 1 1
Afeature interactionA Ainteraction detectionA 5
0.833333 1 0
AdetectionA AraceA 6 0.177340 1 0
AdetectionA Afeature interactionA 5 0.172414 1 0
AdetectionA AinteractionA 6 0.032668 1 0
0.303939 0.000000 0.000000 16 12

2 2 1
AtkA 6 1 1 1 2
AtclA 6 1 1 1 2
AtclA AtkA 5 0.694444 1 0
0.694444 0.000000 0.000000 6 5

3 2 1
AexceptionA 10 1 1 1 3
AhandlingA 8 1 1 1 3
AexceptionA AhandlingA 6 0.450000 1 0
0.450000 0.000000 0.000000 4 6

4 2 1
AserverA 20 1 1 1 4
AclientA 9 1 1 1 4
AclientA AserverA 8 0.355556 1 0

- 140-

0.355556 0.000000 0.000000 7 8

5 20 24
AanalysisA 213 5 12 1 5
AperformanceA 86 3 6 1 5
AdesignA 119 3 5 1 5
AsoftwareA 236 6 3 2 8
AevaluationA 68 1 3 1 5
ApointerA 16 1 2 1 5
ApetriA 46 1 2 1 5
AprogramA 132 2 2 2 15
AapproachA 145 4 2 2 15
Adesign 1 implementationA 9 1 1 1 5
AtechniqueA 72 2 1 2 13
AtestingA 92 2 1 2 15
AeditorialA 11 1 1 1 5
Areal-timeA 49 2 1 2 12
AmodelA 49 2 1 2 15
AmethodA 71 3 1 2 16
AapplicationA 187 5 1 2 12
AstudyA 96 4 1 2 12
AmeasurementA 25 1 1 1 5
AnetA 17 1 1 1 5
AeditorialA ApointerA 7 0.278409 1 0
AnetA ApetriA 14 0.250639 1 0
AdesignA Adesign 1 implementationA 9 0.075630 1 0
AanalysisA ApointerA 8 0.018779 1 0
AanalysisA AperformanceA 16 0.013975 1 0
AevaluationA AperformanceA 9 0.013851 1 0
AanalysisA ApetriA 11 0.012349 1 0
A A A f A measurement per ormance 5 0.011628 1 0
AdesignA AevaluationA 9 0.010010 1 0
AanalysisA AdesignA 12 0.005681 3 0
AanalysisA AprogramA 15 0.008003 2 15
AanalysisA AtestingA 10 0.005103 2 15
AperformanceA AprogramA 7 0.004316 2 15
AanalysisA AsoftwareA 14 0.003899 2 8
AanalysisA Areal-timeA 6 0.003449 2 12
AanalysisA AmodelA 6 0.003449 2 15
AdesignA AmethodA 5 0.002959 2 16
AapproachA AperformanceA 6 0.002887 2 15
AanalysisA AapproachA 9 0.002623 2 15

- 141 -

AanalysisA AstudyA 7 0.002396 2 12
AperformanceA AsoftwareA 6 0.001774 2 8
AanalysisA AtechniqueA 5 0.001630 2 13
AapplicationA AdesignA 6 0.001618 2 12
AevaluationA AsoftwareA 5 0.001558 2 8
0.069095 0.045664 0.000188 393 168

6 2 1
AestimationA 21 1 1 1 6
AeffortA 8 1 1 1 6
AeffortA AestimationA 6 0.214286 1 0
0.214286 0.000000 0.000000 3 6

7 2 1
Asoftware processA 21 1 1 1 7
AimprovementA 23 1 1 1 7
Ao A A f A 1mprovement so tware process
0.167702 0.000000 0.000000 10 9

8 19 24

9 0.167702 1 0

AsoftwareA 236 6 10 1 8
AengineeringA 107 3 9 1 8
Asoftware engineeringA 122 2 6 1 8
AmethodologyA 20 2 3 1 8
AscienceA 30 2 3 1 8
Aieee transactionA 5 1 2 1 8
AapplicationA 187 5 2 2 12
AapproachA 145 4 2 2 15
Asoftware developmentA 46 2 1 2 12
AroadmapA 25 1 1 1 8
AconfigurationA 16 2 1 2 11
AdevelopmentA 95 2 1 2 12
Aieee transaction on software engineeringA 5 1 1 1 8
AprojectA 39 2 1 2 11
AprogrammingA 198 3 1 2 15
AanalysisA 213 5 1 2 5
AstudyA 96 4 1 2 12
AreverseA 10 1 1 1 8
Aworkshop sessionA 11 1 1 1 8
AengineeringA Asoftware engineeringA 41 0.128773 1 0
AroadmapA Asoftware engineeringA 13 0.055410 1 0
AengineeringA Aieee transactionA 5 0.046729 1 0

- 142-

Aieee transactionA Asoftware engineeringA 5 0.040984
1 0
Aieee transaction on software engineeringA Asoftware
engineeringA 5 0.040984 1 0
AengineeringA AsoftwareA 31 0.038056 1 0
AengineeringA AreverseA 5 0.023364 1 0
AengineeringA Aworkshop sessionA 5 0.021240 1 0
AengineeringA AscienceA 8 0.019938 1 0
AengineeringA AmethodologyA 6 0.016822 1 0
AscienceA Asoftware engineeringA 7 0.013388 3 0
AsoftwareA Asoftware engineeringA 14 0.006807 3 0
AmethodologyA AsoftwareA 5 0.005297 3 0
AconfigurationA AsoftwareA 7 0.012977 2 11
AdevelopmentA AsoftwareA 14 0.008742 2 12
AapplicationA AmethodologyA 5 0.006684 2 12
AprojectA AsoftwareA 7 0.005324 2 11
AprogrammingA AscienceA 5 0.004209 2 15
AanalysisA AsoftwareA 14 0.003899 2 5
AsoftwareA AstudyA 9 0.003575 2 12
AapproachA AengineeringA 7 0.003158 2 15
AapproachA AsoftwareA 10 0.002922 2 15
AapplicationA AengineeringA 7 0.002449 2 12
AsoftwareA Asoftware developmentA 5 0.002303 2 12
0.035215 0.056242 0.000393 365 152

9 2 1
AexperienceA 45 1 1 1 9
AreportA 13 1 1 1 9
AexperienceA AreportA 8 0.109402 1 0
0.109402 0.000000 0.000000 29 8

10 2 1
AreliabilityA 21 1 1 1 10
Asoftware reliabilityA 15 1 1 1 10
AreliabilityA Asoftware reliabilityA 5 0.079365 1 0
0.079365 0.000000 0.000000 13 5

11 4 5
AmanagementA 55 1 3 1 11
AsoftwareA 236 6 3 2 8
AconfigurationA 16 2 2 1 11
AprojectA 39 2 2 1 11

- 143-

AconfigurationA AmanagementA 6 0.040909 1 0
AmanagementA AprojectA 5 0.011655 1 0
AconfigurationA AsoftwareA 7 0.012977 2 8
AprojectA AsoftwareA 7 0.005324 2 8
A A A f A management so tware 5 0.001926 2 8
0.026282 0.020227 0.000200 48 22

12 20 24
AapplicationA 187 5 14 1 12
AstudyA 96 4 6 1 12
AdevelopmentA 95 2 4 1 12
AsoftwareA 236 6 4 2 8
Areal-timeA 49 2 3 1 12
AanalysisA 213 5 2 2 5
Asoftware developmentA 46 2 2 1 12
AapproachA 145 4 1 2 15
AtoolA 46 2 1 2 16
AmethodA 71 3 1 2 16
AengineeringA 107 3 1 2 8
AdesignA 119 3 1 2 5
AperformanceA 86 3 1 2 5
Areal-time systemA 16 1 1 1 12
AinternetA 30 1 1 1 12
AframeworkA 47 1 1 1 12
AnetworkA 13 1 1 1 12
AmetricA 21 1 1 1 12
AprogrammingA 198 3 1 2 15
AmethodologyA 20 2 1 2 8
Areal-timeA Areal-time systemA 5 0.031888 1 0
AdevelopmentA Asoftware developmentA 10 0.022883 1 0
AmetricA AstudyA 6 0.017857 1 0
AapplicationA AinternetA 8 0.011408 1 0
AapplicationA AframeworkA 10 0.011378 1 0
AapplicationA AnetworkA 5 0.010284 1 0
AdevelopmentA AstudyA 9 0.008882 1 0
AapplicationA AdevelopmentA 12 0.008106 1 0
AapplicationA Areal-timeA 7 0.005348 1 0
AapplicationA AstudyA 5 0.001393 3 0
AdevelopmentA AsoftwareA 14 0.008742 2 8
AapplicationA AprogrammingA 16 0.006914 2 15
AapplicationA AmethodologyA 5 0.006684 2 8
AapplicationA AapproachA 13 0.006233 2 15

-144-

AapplicationA AtoolA 7 0.005696 2 16
AmethodA AstudyA 5 0.003668 2 16
AsoftwareA AstudyA 9 0.003575 2 8
AanalysisA Areal-timeA 6 0.003449 2 5
AapplicationA AengineeringA 7 0.002449 2 8
AanalysisA AstudyA 7 0.002396 2 5
AsoftwareA Asoftware developmentA 5 0.002303 2 8
AapplicationA AdesignA 6 0.001618 2 5
AapplicationA AperformanceA 5 0.001555 2 5
AapplicationA AsoftwareA 8 0.001450 2 8
0.012943 0.056733 0.000303 464 142

13 3 2
AtechniqueA 72 2 2 1 13
AcomparisonA 12 1 1 1 13
AanalysisA 213 5 1 2 5
AcomparisonA AtechniqueA 5 0.028935 1 0
AanalysisA AtechniqueA 5 0.001630 2 5
0.028935 0.001630 0.000003 81 10

14 2 1
AinterfaceA 28 1 1 1 14
Auser interfaceA 33 1 1 1 14
AinterfaceA Auser interfaceA 5 0.027056 1 0
0.027056 0.000000 0.000000 20 5

15 17 21
AapproachA 145 4 8 1 15
AprogramA 132 2 6 1 15
AprogrammingA 198 3 4 1 15
AanalysisA 213 5 4 2 5
AverificationA 64 1 3 1 15
AtestingA 92 2 3 1 15
AmodelA 49 2 2 1 15
AperformanceA 86 3 2 2 5
AapplicationA 187 5 2 2 12
AspecificationA 39 1 1 1 15
ApropertyA 21 1 1 1 15
AparallelA 40 1 1 1 15
A2nd edA 22 1 1 1 15
AscienceA 30 2 1 2 8
A I I A englneerlng 107 3 1 2 8

- 145-

AsoftwareA 236 6 1 2 8
Asoftware engineeringA 122 2 1 2 8
AspecificationA AverificationA 8 0.025641 1 0
ApropertyA AverificationA 5 0.018601 1 0
A2nd edA AprogrammingA 8 0.014692 1 0
AparallelA AprogramA 8 0.012121 1 0
AprogramA AverificationA 6 0.004261 1 0
AmodelA AprogramA 5 0.003865 1 0
AprogramA AtestingA 6 0.002964 1 0
AapproachA AprogrammingA 9 0.002821 1 0
AapproachA AtestingA 6 0.002699 1 0
AanalysisA AprogramA 15 0.008003 2 5
AapplicationA AprogrammingA 16 0.006914 2 12
AapplicationA AapproachA 13 0.006233 2 12
AanalysisA AtestingA 10 0.005103 2 5
AperformanceA AprogramA 7 0.004316 2 5
AprogrammingA AscienceA 5 0.004209 2 8
AanalysisA AmodelA 6 0.003449 2 5
AapproachA AengineeringA 7 0.003158 2 8
AapproachA AsoftwareA 10 0.002922 2 8
AapproachA AperformanceA 6 0.002887 2 5
AanalysisA AapproachA 9 0.002623 2 5
AapproachA Asoftware engineeringA 5 0.001413 2 8
0.009741 0.051230 0.000261 434 141

16 6 5
AmethodA 71 3 4 1 16
AtoolA 46 2 2 1 16
AapplicationA 187 5 1 2 12
AstudyA 96 4 1 2 12
AdesignA 119 3 1 2 5
AsoftwareA 236 6 1 2 8
AmethodA AtoolA 6 0.011023 1 0
AapplicationA AtoolA 7 0.005696 2 12
AmethodA AstudyA 5 0.003668 2 12
AdesignA AmethodA 5 0.002959 2 5
AmethodA AsoftwareA 5 0.001492 2 8
0.011023 0.013815 0.000057 222 26

- 146-

3:
Pl

t-el
I

f-l ..
H
:J
(i f-3 ;J:;I
(]) 1-'- t-c1

........ 1-i

.j:::. Pl
(i t-c1

-..J ()
1--' t:r:l

(i
(]) z

t:J
1-'- 3: H
0
:J

Pl :X:

I
t-el
(/l Ll

t:J
(])
(i
(])
()
(i
1-'-
0
:J

M
ap

-2
:

T
C

L
-T

K

-
1

4
8

-

M
ap

-3
:

E
x

c
e
p

tio
n

-H
a
n

d
lin

g

-
1

4
9

-

M
ap

-4
:

C
lie

n
t-S

e
rv

e
r

-
1

5
0

-

3:
Ill
'd

I
U1 ..

~
Ill
I-'
'< (/l

VI 1--'-....... (/l

I

'1:1
(])

1-l
H1
0
1-l
3
Ill
::l
0
(])

!=l
1:::

0
·.p

@

i:d

.§
(1;1

0
0

(1;1

~
 ~ r:J)

I
0 0 ,....-!

~
N

,....-!

......;
0 ,....-!

~

~

,....-!

0 0 N
 I

®
 M

ap
-6

:
E

ffo
rt

-
E

s
tim

a
tio

n

-
1

5
2

-

rJ:I

~

rJ:I
<U
0

<U
0

s
~

<U

6
<U

~

a
~

s

~

•1""'1
0 rJ:I

~

rj)
I

0 0 1"""4

~
(
'l

1"""4
....-J
0 1"""4

~

1.(")
0

1"""4

0 0 (
'l
I

0
0

'@
 M

ap
-7

:
S

o
ftw

a
re

P

ro
c
e
ss

-
Im

p
ro

v
e
m

e
n

t

-
1

5
3

-

-VI
..j::>.

3:::
PJ

tO
I

(X)

(/)

0
Hl
rt
~
PJ
ti
(])

tr.l
~

lQ
f-'-
~
(])
(])

ti
f-'-
~

lQ

"998-2001.c5.n10112.m10G-S.LM

software development

I I I programnring

M
ap

-9
:

R
e
p

o
rt

-E
x

p
e
rie

n
c
e

-
155 -

M
ap

-1
0

:
S

o
ftw

a
re

R

e
lia

b
ility

-
156-

M
ap

-1
1

:
P

ro
je

c
t

-
M

an
ag

em
en

t

-
1

5
7

-

I

.......
Vl
00

3:
Pl

t-el
I

1-'
tv

~
t-el
1-'
f-'­
()

Pl
rt
f-'-
0
::J

tJ
(I)

<:
(I)
1-'
0

t-el
:3
(I)

::J
rt

998-200l.c5.n10112.m100-S.LM 1

analysis 1 1 1
c:

M
ap

-1
3

:
C

o
m

p
a
riso

n
-

T
e
c
h

n
iq

u
e

-
1

5
9

-

M
ap

-1
4

:
U

se
r

In
te

rfa
c
e

-
1

6
0

-

-01 -

:$
Pl

'"d
I

I-'
lJl

'1j
~
0
lQ
~
Pl
;3

<!
(])

~
I-'·
t-h
I-'·
()

Pl
rt
I-'·
0
::J

998-200l.c5.nl0112ml00-S.LM 1

M
ap

-1
6

:
M

e
th

o
d

-
T

o
o

l

-
1

6
2

-

A
PPE

N
D

IX

M

T
itle

A

n
a
ly

s
is

P

lo
ts

0 ci

g E

:;,

~ a (f)

0
)

,§

0
.

:;,
0
0 ®

~

""" !:; ci
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
~
~
-
-
-
-
-

c

T
itle

C

o
u

p
lin

g
-C

o
h

e
sio

n

P

lo
t

-
1

6
3

-

0
'(ij
Q

)
..c:
0
0

T
itle

S

u
p

e
rn

e
tw

o
rk

-
1

6
4

-

REFERENCES

[CALLON86]
Callon, M., et al., Mapping of the Dynamics of Science

and Technology, MacMillan, London, 1986.

[CALLON91]
Callon, M., et al., "Co-word Analysis as a Tool for

Describing the Network of Interactions between
Basic and Technological Research: The Case of
Polymer Chemistry," Scientometrics 22, 1 (1991),
pp . 15 3 - 2 0 3 .

[CHAPMAN9 7]
Chapman, N., "Petri Net Models," SURPRISE 97: Surveys

and Presentations in Information Systems
Engineering, Imperial College of Science
Technology and Medicine, London, UK, (May - June
1997) .

[COULTER91]
Coulter, N. S., "Changes to the CR Classification

System," Computing Reviews 32, 1 (January 1991),
pp. 7-10.

[COULTER96]
Coulter, N. S. and I. Monarch, "Best Practices: What

Software Engineering Can Learn from Manufacturing
Engineering," SEI Software Engineering Symposium,
Pittsburg, September 1996, pp. 7-8.

[COULTER9 8A]
Coulter, N. S., "ACM's Computing Classification System

Reflects Changing Times," Communications of the
ACM 40, 12 (December 1997), pp. 111-112.

- 165-

[COULTER98B]
Coulter, N. S., et al., "Software Engineering as Seen

through Its Research Literature: A Study in Co­
Word Analysis," Journal of the American Society
For Information Science 49, 13 (1998), pp. 1206-
1223.

[COURTIAL89]
Courtial, J. P. and J. Law, "A Co-word Study of

Artificial Intelligence," Social Studies in
Science 19 (1989), pp. 301-311.

[HAMMOND99]
Hammond, T., et al., "CAIR-Prep," Team Project for CEN

4010: Principles of Software Engineering, taught
by Dr. Neal S. Coulter, Florida Atlantic
University, Boca Raton, Florida, 1998.

[KESSLER63]
Kessler, M., "Bibliographic Coupling between

Scientific Papers," American Documentation 14
(1963) 1 PP• 10-25.

[LAW92]
Law, J. and J. Whittaker, "Mapping Acidification

Research: A Test of the Co-word Method,"
Scientometrics 23, 3 (1992), pp. 417-461.

[SAMMET82]
Sammet, J. E. and A. Ralston, "The New (1982)

Computing Reviews Classification System - Final
Version," Communications of the ACM 25, 1
(January 1982), pp. 13-25.

[SAMMET83]
Sammet, J. E., "Summary of Changes from 1982 to 1983

Version of CR Classification System," Computing
Reviews 24, 1 (January 1983), pp. 7-8.

- 166-

[SAMMET87]
Sammet, J. E., "Summary of Additions from 1983 to 1987

Version of CR Classification System," Computing
Reviews 28, 1 (January 1987), pp. 5-6.

[SHAH97]
Shah, P. P., "Content Analysis of Design Practices,"

Master's thesis, College of Engineering, Florida
Atlantic University, Boca Raton, 1997.

[SMALL73]
Small, H., "Co-citation in the Scientific Literature:

A New Measure of the Relationships between
Documents," Journal of the American Society for
Information Science 24 (1973), pp. 265-269.

[WHITTAKER89]
Whittaker, J., "Creativity and Conformity in Science:

Titles, Keywords, and Co-word Analysis," Social
Science in Science 19 (1989), pp. 473-496.

- 167-

VITA

Terry Smith has a Bachelor of Science from the

University of North Florida in Mathematics and

Physics, 1989, and expects to receive a Master of

Science in Computer and Information Sciences from

the University of North Florida in April 2004. Dr.

Neal Coulter of the University of North Florida is

serving as Mr. Smith's thesis advisor.

Mr. Smith is the Director of Information

Technologies for the College of Computing,

Engineering, and Construction at the University of

North Florida and has held this position since 2001.

Mr. Smith has held a number of IT positions outside

academia, but he is most proud of his years teaching

at the University of North Florida.

Mr. Smith began his teaching career in 1989 as a

teaching assistant in the Department of Mathematics

- 168-

and Statistics. In 1991, he accepted the position

of instructor of astronomy and physics in the

Department of Natural Sciences. Later, from 1995 to

2000, he was an instructor in the Department of

Computer and Information Sciences, where he taught a

variety of freshman- through senior-level classes.

Mr. Smith has authored a number of published works,

including printed books, journal articles, training

manuals, a plethora of online reference materials,

and one online book.

Mr. Smith has on-going interests in content analysis

and its application to a wide variety of complex

fields, including continued analysis of software

engineering, astronomy, and linguistics.

- 169-

	Recent Trends in Software Engineering Research As Seen Through Its Publications
	Suggested Citation

	TITLE PAGE
	CONTENTS
	LIST OF FIGURES

	LIST OF TABLES

	ABSTRACT
	Chapter 1
INTRODUCTION
	Chapter 2 THE DATA

	2.1 The CCS
	2.2 SGML Data Set
	2.3 Initial Examination

	Chapter 3
PREPARING THE DATA
	3.1 CAIR-Prep
	3.2 Final Preparations

	Chapter 4 CO-WORD ANALYSIS

	4.1 The Metric
	4.2 The Algorithm
	4.3 The CAIR System
	4.3.1 CAIR Command-Line Tools
	4.3.2 CAIR LM File
	4.3.3 CAIR GUI

	4.4 Naming Networks

	Chapter 5 KEYWORD ANALYSIS

	5.1 Review of Keyword Maps
	5.2 Keyword Network Cohesion and Coupling
	5.3 Keyword Supernetwork Analysis

	Chapter 6 THEMES AND TRENDS

	Chapter 7 TITLE ANALYSIS

	7.1 The Title Data
	7.2 CCS General Terms
	7.3 Themes from the Title Index
	7.4 Title Networks

	CONCLUSIONS
	APPENDIX A
The Top Two Levels of the CCS (1998)

	APPENDIX B Sample SGML Data Set

	APPENDIX C Sample CAIR-Prep Keyword Data

	APPENDIX D Sample CAIR-Prep Title Data

	APPENDIX E Sample Keyword Data with SGML-style Tags

	APPENDIX F CAIR Processing Sequence

	APPENDIX G CAIR LM File for Keywords

	APPENDIX H Keyword Maps

	APENDIX I Keyword Analysis Plots

	APPENDIX J
Sorted Index of Title Terms
	APPENDIX K CAIR LM File for Titles

	APPENDIX L Title Maps

	APPENDIX M Title Analysis Plots

	REFERENCES

