\ University of North Florida

UNIVERSITY of ..
UNF NORTH FLORIDA. UNF Digital Commons
UNF Graduate Theses and Dissertations Student Scholarship
2004

Recent Trends in Software Engineering Research As Seen
Through Its Publications

Terry L. Smith
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

6‘ Part of the Computer Sciences Commons

Suggested Citation

Smith, Terry L., "Recent Trends in Software Engineering Research As Seen Through Its Publications"
(2004). UNF Graduate Theses and Dissertations. 205.

https://digitalcommons.unf.edu/etd/205

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital

Commons. It has been accepted for inclusion in UNF

Graduate Theses and Dissertations by an authorized \

administrator of UNF Digital Commons. For more

information, please contact Digital Projects. UNIVERSITY of

© 2004 All Rights Reserved UNF NORTH FLORIDA.

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fetd%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/205?utm_source=digitalcommons.unf.edu%2Fetd%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

RECENT TRENDS IN SCFTWARE ENGINEERING RESEARCH AS SEEN
THROUGH ITS PUBLICATIONS

Terry L. Smith

A thesis submitted to the
Department of Computer and Information Sciences
in partial fulfillment of the requirements for the
degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT OF COMPUTER AND INFORMATICN SCIENCES

April 2004

Copyright (®) 2004 by Terry L. Smith

All rights reserved. Reproduction in whole or in part
in any form reguires the prior written permission of
Terry L. Smith or designated representative.

o1 -

The thesis “Recent Trends in Software Engineering
Research as Seen through Its Publications” submitted
by Terry L. Smith in partial fulfillment of the
requirements for the degree of Master of Science of
Computer and Information Sciences has been

Approved by the thesis commitiee: Date

Signature deleted

%/16) €9
,

Dr. Neal 5. Coulter
Thesis Adviser and Committee Chairperson

Signature deleted

A o/ o4

‘Dr. Charles Winton

Signature deleted
¢/ /8 /:»9/

Dr. Yap S. Chua

Accepted for the Department of Computer and
Information Sciences:

Signature deleted p

RN} Dﬁ/
Dr. Zﬁdith.@élano ! {
Chai’person of the Department

Acceﬁted for the College of Computing, Engineering,
and Construction:

Signature deleted
24/

T

Dr. Neal g. Coulter
Dean of the College

Accepted for the University:

Signature deleted -
Y /7 /oy

Dr. Tom Serwatka
Dean of Graduate Studies

- 111 -

ACKNCWLEDGEMENT

It would be impossible to list everyone whose guidance
and encouragement made this endeavor possible, but of
special mention are Ms. Carrol Reilly, Dr. Neal
Coulter, Dr., Yap Chua, and Dr. Charles Winton.

For my family, especially Daniel, please accept my
most heartfelt gratitude for your continued faith and

encouragemert,

I wish to offer special thanks to Dr. Suresh Konda.
Dr. Konda’s pioneering work in the development of the
CAIR gysgtem, itsg port to Linux, and making CAIR
available to the Univergity of North Florida hag made
this study posgsible.

-1V -

CONTENTS

List of Figures it iinnnrannens
List of Tables0 iii i
2N o= ol = o
Chapter 1: Intreduction

Chapter 2: The Data

2.1 The CCS ..t i ittt e e eaan
2.2 SGML Data Set i

2.3 Initial Examination

Chapter 3: Preparing the Data

3.1 CAIR-PEED t ottt tit e ieeee e

3.2 Final Preparations

Chapter 4: Co-Word Analysis

4,1 The Metric

4.2 The Algorithm

4.3 The CAIR S5y8Lem ... vt vt v evennnn
4.3.1 CAIR Command-line Toocls
4.3.2 CAIR IM File
4.3.3 CAIR GUL ..ttt it

4.4 Naming Networksc.couunn.

Chapter 5: Keyword Analysis

5.1 Review of Keyword Maps
5.2 Keyword Map Cchesion and
Coupling

5.3 Keyword Supernetwork Analysis

Chapter 6: Themes and Trends
Chapter 7: Title Analysis

52
58
63
69

7.1 The Title Data s i vnnnn

7.2 CCS General TerME . .v v i vt enns

7.3 Themeg from the Title Index

7.4 Title NetwWorks ... v n i innne s

Conclusions

oooooooooooooooooooooooooooooo

Appendix A: Top Two Levels of the CCS

Appendix
Appendix
Appendix
Appendix

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

m O 0 o

=2 B X" g +H 0 0

References

(199B) vttt ittt e ettt
Sample SGML Data Set
Sample CAIR-Prep Keyword Data
Sample CAIR-Prep Title Data
Sample Keyword Data with SGML-
style Tagsot
CAIR Processing Sequence
CAIR LM File for Keywords
Keyword Mapscovuvvn..
Keyword Analysis Plots
Sorted Index of Title Terms
CAIR LM File for Titles
Title Mapst ii oo
Title Analysis Plots

................................

- Vi -

70
72
74
76
83

87
S0
S2
93

94

95

97
118
133
135
140
147
163
165
168

Figure
Figure
Figure

Figure

Figure

Figure

W O R

FIGURES

CAIR-Prep Results File Format
CAIR SGML Format
Strength of Association
Map-2: “Software development /

OO P i e e e e e s
Coupling-Cohesion Plot for
Keyword Datac.....

Supernetwork for Keyword Data

- Vil -

19
22
25

47

54
61

Table
Table
Table
Table
Table

Tabkble

Table

Table

Table

Table

Table

10:

11:

TABLES

CCS GCeneral Terms ... v vt ene ...

Software Fngineering Descriptors

Some SGML Tag-pairs
SGML Record Counts

Documents and Descriptors per

Time Periodo.uorimomnnnnenn

Co-occurrence and Number of

Keyword Networks

Assigned Names for Keyword Maps
Connectiong between Keyword Maps

General Terms and Their

Freguencies in the Title Data

Co-occurrence and Number of

Title Networks e e e

Assigned Names for Title Maps

- Viij -

10
12
14

30

32

44

59

74

76
78

ABSTRACT

This study provides some ingsight into the field of
goftware engineering through analysis of its recent
research publications. Data for this study are taken

from the ACM’'s Cuide to Computing Literature (GUIDE).

They include both the professionally assigned
Computing Classification System (CCS) descriptors and
the title text of each software engineering
publication reviewed by the GUIDE from 1998 through

2001.

The first part of this study provides a snapshot of
software engineering by applying co-word analysis
techniques to the data. This snapshot indicates
recent themes or areas of interest, which, when
compared with the results from earlier studies, reveal

current trends in software engineering.

-1X -

Software engineering continues to have no central
focus. Concepts like software development, process
improvement, applications, parallelism, and user
interfaces are persistent and, thus, help define the
field, but they provide little guidance for

regearchers or developers of academic curricula.

Cf more interest and use are the gpecific themes
illuminated by thisg study, which provideka clearer
indication of the current interests of the field. Two
prominent themes are the related issues of

programming-in-the-large and best practices.

Programming-in-the-large is the term often applied to
large-gscale and long-term software development, where
project and people management, code reusability,
performance measures, documentation, and software
maintenance issues take on special importance. These
issues began emerging in earlier periods, but seem to

have risen to prominence during the current period.

Another important discovery is the trend in software
development toward using networking and the Internet.
Many network- and Internet-related descriptors were
added to the CCS in 1998. The prominent appearance
and immediate use of these descriptors during this
period indicate that this is a real trend and not just

an aberration caused by their recent addition.

The titles of the period reflect the prominent themes
and trends. In addition to corroborating the keyword
analysis, the title text confirms the relevance of the

CC8 and its most recent revision.

By revealing current themes and trends in software
engineering, this study provides some guidance to the
developers of academic curricula and indicates

directions for further research and study.

- X1 -

Chapter 1

INTRODUCTION

This study uses content analysis techniques to examine
a large volume of software engineering research
publications to determine themes and trends both in
the specific discipline of software engineering and in
the general field of computer science. It is believed
that an undergtanding of these themes and trends would
be a useful and effective guide for curriculum,

research, and application.

The data for this empirical study are taken from the
Aggociation for Computing Machinery’s (ACM) Guide to

Computing Literature (GUIDE). The GUIDE reviews and

indexes a wide range of computing literature,
including individual articles, Jjournals, trade
magazines, book chapters, whole books, and other

published materials. The GUIDE is carefully indexed

by professionals using the ACM Computing
Clagsification System (CCS8), which provides a standard
method for categorizing publications included in the
GUIDE by assigning descriptors (or keywords) to each

publication.

A variety of content analysis techniques exist to aid
in the study of textual data. Similar to co-citation
analysis [see SMALL73] and bibliographic coupling [see
KESSLER63], this study examines the co-occurrence of
textual phrases within the data set of indexed
publications related to the field of software

engineering.

This study follows up and expands on an earlier study
[COULTER98B] that applies co-word analysis techniques
in the examination of GUIDE classificationa of
publications from 1982 through 19%4. This study
continues this analysis for publications from 1998
through mid-2001. The choice of the period, 1998 -

2001, 18 a natural one, as the data set contains

relatively current data and allows for an examination
of the GUIDE since the last update to the CCS. A
comparison of the results of the analysis with that of
the earlier study provides an excellent opportunity to
discover patterns and trends in socftware engineering

research.

In addition to analyzing the GUIDE classifications of
the publicationsg in the 1998 - 2001 time period, this
study also examines the title text. It is believed
that such an examination reveals general terms that
help define the field of software engineering.
Additionally, the title data analysis may offer
corroboration of the results of the descriptor

(keyword) data analysis.

Chapter 2

THE DATA

The ACM‘s Guide to Computing Literature (GUIDE)

provides an enormous repository of data for this
study. Publications indexed by the GUIDE include
individual articles, journals, trade magazines, book
chapters, books, conference proceedings, and other
items of computing literature. This sgtudy examines a

portion of the GUIDE data from 1998 through mid-2001.

Key to indexing in the GUIDE is the ACM‘'s Computing
Classification System (CCS). The CCS is a “carefully
designed and maintained taxonomy” [COULTERS8B, page
1207] used to categorize publicationa and provide

keywords for sorting and searching.

Profegsional indexers assign publications to one or

more CCS categories, taking into consideration that

publications may span multiple subjects. As part of
the category assignment, proper subject descriptors
(or keywords) and implicit subject descriptors (mostly
proper nouns, like “C++" and “Grace Murray Hopper”)
are associated with each publication. Both types of
descriptors provide the textual data to which co-word

analysis techniques are applied in this study.

Variations in the application of the CCS are averaged
out in this study by including a large volume of
publications. This study uses those publications
indexed by the GUIDE from 1398 through the firgt half
of 2001 that include at least one descriptor from the

“Software Engineering” category (D.2) of the CCS.

2.1 The CCS

The current version of the ACM Computing
Classification System (CCS) 1is based on the framework
established in 1982 when it was published as the

“Computing Reviews Classification System” [see

SAMMETS82]. It has been reviged four times since, in
1983 [SAMMETS83), 1987 [SAMMETS87], 1991 [CCULTER91],

and 1998 [COULTER98A] .

The CCS provides a fixed system of descriptors (or
keyvwords), which imposes a common nomenclature across
all computing literature. Professional indexers
assure that this system is applied to the computing
literature as homogeneousgly as humanly possgible.
Coneiderable research continues to be dcne on the
effectiveness of autcomating this process [see BORKOE3,

WONG96, and SEBASTIANIO2].

The CCS is a hierarchal structure with “11 top-level
nodes and a maximum of four levels of nodesg”
[COULTER98A, p. 111]. Appendix A lists the top two
levels of the CCS clasgsification tree. The first
level provides very broad categories designated by
letters (A through K). This is followed by more
gpecific levels, which are designated by numbers or
letters. For example, "D’ designates the “Software”
category, “D.2" designates “Software Engineering,” and

“D.2.8" designates “Metrics.”

Indexers associate descriptors with the publications
they review for the GUIDE., Desgcriptors (or keywords)
come from three gources: category names {such as
“Metrics”), explicit subject descriptors, and implicit
subject descriptors. Explicit subject descriptors are
text associated with most leaf nodes of the CCS tree
and are published as part of the CCS. For example,
the D.2.8 explicit subject descriptors are “Complexity
measures,” “Performance measures,” “Process metrics,”

“Product metrics,” and “Software science.”

The names of people, systemg, languages, and such are
not included as part of the published CCS. However,

indexers may choose from select proper nouns, called

implicit subject descriptors, which can be used to

further specify the subject of a given publication.

Some implicit descriptors are “Alan Turing,” “C++,”"
“DARPA,” “IBM,"” “QuickBASIC,” “UNIX,” and “World Wide
Webb (WWW) .*

In addition to the text already discussed, indexers
may specify general terms that are not asgociated with
any specific CCS category but which may apply to any
category. Table 1 lists the general terms that can

appear in the data of this study.

Algorithms Management
Degign Measurement
Documentation Performance
Economics Reliability
Experimentaticn Security

Human Factors Standardization
Languages Theory

Legal Aspects Verification

Table 1: CCS General Terms

The data for this research include publications
indexed with at least one descriptor from the D.2
Software Engineering category of the CCS. Table 2
liste the level-three descriptors for this category.
Since the documents of this study may be assigned
descriptors from other CCS categories in addition to
D.2 categories, one may learn scomething of the
interactions between software engineering and other
computing fields by examining the co-occurrences of

these descriptors.

@I Uk W o

.9

oguooguooguoguogoggogouogydg
(SIS IS SN SESESESESESESE S S

General

Requirements/Specifications

Design Tools and Techniques

Coding Tocls and Techniques
Software/Program Verification

Testing and Debugging

Programming Environments

Distribution, Maintenance, and Enhancement
Metrics

Management

.10 Design

.11 Software Architectures
.12 Interoperability

.13 Reusable Software

.2.m Miscellaneous

Table 2: Software BEngineering Descriptors

2.2 SGML Data Set

The D.2 Software Engineering portion of the ACM GUIDE

database is delivered for this study as several files

in Standard Generalized Markup Language (SGML). Each

SGML file contains a wealth of information about

publications that were added to the GUIDE during a

specific year. Depending on the type of publication,

-10-

a record may contain the title, authors or editors,
publication year, journal name, abstract, category
codes, and keywords. A sample record for a single
publication (in this case, a journal article) is

reproduced in Appendix B.

As a markup language, SGML provides a method for
specifying data in human-readable plain-text. For
example, the title of a publication in this study is
specified by placing the title text between <TITLE>
and </TITLE> tags. <TITLE> and </TITLE:> are referred
to herein as the TITLE tag-pair. Table 3 provides
descriptione for some of the tag-pairs found in the

data of this study.

11 -

Tag-Pair Delimitg ..

STARTREC Record for a single publication.

TITLE Title text.

8UB Subtitle text.

AUTHEDIT Name of an author, editor,
chalrperscon, or translator.

AUTHTYPE AUTHEDIT type for the name
gpecified in the preceding AUTHEDIT
field, which may be AUTHOR, EDITOR,
CHAIRPERSCN, or TRANSLATCR.

PUBTYPE Publication type, which may be BOOK
CHAPTER, DIVISIBLE BOOK, DOCTORAL
THESIS, JOURNAL ARTICLE, MASTER'S
THESIS, PROCEEDINGS PAPER, REPORT,
WHOLE BOOK, WHOLE JOURNAL, or WHOLE
PROCEEDINGS.

JRNLNAME Name of the journal, if applicable.

GENTERM A general term assigned to the
publication by an indexer.

PRICATDESC Primary subject descriptors
asgocliated with the PRICATCODE that
follows.

PRICATCODE Primary CCS category code, such as
D.2.2.

DESCRIPTOR Subject descriptors associlated with
the CATCODE that follows.

CATCODE CCS category code, such as F.3.1.

ABSTRACT Abgtract for the publication.

REVWTEXT Text of the review of the

publication.

Table 3: Some SGML Tag-pairs.

-12 -

Some tag-pairs may appear multiple times in a given
record and some tag-pairs must always appear together
with other tag-pairs. For instance, AUTHEDIT may
appear for each author, editor, chairperson, or
translator listed for a given publication. DESCRIPTOR
and CATCODE may also appear multiple times, but they

must always appear together.

Thiz study makes use of the text of the TITLE,
PRICATDESC, PRICATCODE, DESCRIPTOR, and CATCODE

fields.

2.3 Initial Examination

The data, as delivered, are in the form of a number of
SGML files, each labeled with a year. For this study,
the 1998, 1999, 2000, and 2001 data files are used.
Before proceeding teo parse and format the data, some
idea is needed of what data are actually available in

these files. The simplest approach is to perform some

13-

counts. This can be accomplished with some basic
commands found in many UNIX and UNIX-like operating

systems.

Table 4 lists the number of records in each data file.
These numbers may be obtained by issuing the following
command at the system prompt:

cat yeardata.sgml | grep ~c¢ "<STARTREC:>"
where “yeardata.sgml” represents the SGML data file

for a given year.

Year No. of Records
1598 1520
1999 11324
2000 1379
2001 810

Table 4: SGML Record Counts

- 14 -

There are 4973 records in the SGML data of these four
year files. Before an accurate count of the number of
actual publications feor each year can be cobtained, it
is necessary to ensure that the data files contain
records for only documents published in the specified
year and that the intersection of the data files is

empty.

Since each record contains a PUBYEAR field, it is
relatively easy to obtain a list of the publication
years contained in each data file. The following
command can be issued to obtain this list:

cat yeardata.sgml | grep "PUBYEAR" | sort -u.

The results for the 1998 SGML data file, for example,
include PUBYEAR values of 1996, 1997, 1998, 1999, and
2000. This means that the SGML data files contain
publications for more than the specified year, raising

the possibility of duplicate records.

- 15 -

Chapter 3

PREPARING THE DATA

This study will use the Context Analysis and
Information Retrieval (CAIR) system, produced at the
Carnegie Mellon University Scftware Engineering
Institute, to perform co-word analysis and generate
graphical networks for publications between the years
1998 and 2001. To accomplish this, considerable
manipulation of the raw SGML data is required before

they may be fed into the CAIR system.

3.1 CATR-Prep

It is a daunting task to manually select publication
records for a given year, ensure their uniqueness, and
reformat them for the CAIR system. Fortunately, a

gsoftware solution already exists to accomplish much of

-16 -

this. CAIR-Prep 1is a program designed by Hammond, et
al. [see HAMMOND99] to clean up the ACM SGML data
files and prepare them for analysis by the CAIR

system.

CAIR-Prep takes ae input an SGML data file, the
current CCS gpecification, and a liet of wvalid .
implicit subject descriptors. For each publication
year found in the SGML data file, CAIR-Prep generates
two text files: one containing the publications’
gubject descriptors and one containing their titles.
CAIR-Prep also generates an error file that provides a

list of invalid descriptors found in the SGML data.

Fortunately, the “invalid descriptors” in the SGML
data of this study are minor and easily corrected.

The mogt common error involves the inclusion or
exclusion of text used to clarify particular
descriptors. For example, the D.2.1 category includes
the degcriptor, "“Methodologies,” which may include the

additional text, “{e.g., object-oriented,

-17 -

structured) .” If such additional text is missing from
the SGML data, CAIR-Prep would list the descriptor as
being invalid. Likewise, the SGML data may include
example text not found in the version of the CCS
specification used by CAIR-Prep and, so, that

descriptor would alsc be ligted ag invalid.

The simplest solution to this problem involves the
removal of the additional text from both the CCS
specification used by CAIR-Prep and from the SGML
data. These deletions do ncot impact the validity of
this data set, as the additional text does not change

the assignment of the keywords (CCS descriptorsg).

After correcting the “invalid descriptors” and re-
running CAIR-Prep for each SGML data file, a series of
new data files are generated. A sample of the
generated keyword and title files are reproduced in

Appendices C and D.

- 18-

Both files follow the basic format presented in Figure
1. CAIR-Prep keeps a running count of the number of
valid publication records it discovers, which igs used
to generate the document number for each record in the
output file. The “1598* seen in the sample records
shown in Appendices C and D refers to the CCS revision

year, not the year of publication.

*

\#

document number
\#

\!

document text
\!

*

Figure 1: CAIR-Prep Results File Format

-19-

The document text for the title file is simply the
title text. For the keyword file, however, it
includes descriptor text concatenated with the
associated CCS category code in the format, “-1
{descriptorcode} () 0.7 The descriptor text included
here is not the main category descriptors, but,
rather, the leaf-ncde descriptorg actually assigned by
the indexer. Hence, “assertion checkersd.2.4” may
appear ag a keyword even when the D.2.4 category name,
“Software/Program Verification,” does not. This may
gseem odd and, possibly, a loss of valuable data. But,
it should be remembered that the leaf nodes are more
specific than the category names and, thus, provide a
much better indication of the subject of a

publication.

-20 -

3.2 Final Preparations

CAIR-Prep generates a separate file for each
publication year discovered in the SGML data. So, for
each SGML data file, several “year” files are
generated. For example, the 1599 SGML data file
spawns 1986, 1998, 1999, and 2000 keyword and title
files. One reason for this sgeemingly strange
occurrence is that the SGML data files may be divided
into year of insertion into the GUIDE database, not
the publication date. Another gource of such records
is late publication of papers originally presented at

conferences in years past.

One of the concerns with the original SGML data is the
possibility of duplicate records. Despite the
convenient separation of records into publication
year, elimination of duplicates and inclusion of
records from earlier and later insertion years is

still a tedious, manual process. For this study, 4063

-21 -

unique records from 1998 through mid-2001 are,

finally, available for analysia.

Fcr the final data preparation, it must be noted that
the CAIR system has undergone additional revision
since the development of CAIR-Prep and its input data
format has changed. The new format uses a SGML style,
replacing the earlier *, \#, and \! delimiters with
DOC, DOCNO, and TEXT tag-paireg, as shown in Figure 2.
It is a simple matter to use a text processor to
replace the old-gtyle delimiters with the new SGML-
gstyle tags. A sample of the keyword data in the new

format is shown in Appendix E.

<DOC>
<DOCNO>
document number
< /DOCNO>
<TEXT>
document text
</TEXT>
< /DOC>

Figure 2: CAIR SGML Format

-2 -

Chapter 4

CO-WORD ANALYSIS

Co-word analysis allows one to reduce a large space of
related descriptors to smaller, inter-related spaces
that, hopefully, are easier to understand. From the
networks generated in this study, various levels of
analysis can be performed: (1) as the relationships
apparent within networks, (2) as relationships that
become obwvious from the interaction of networks, and
{(3) as the transformation of these structures over

time [COULTER98B].

4,1 The Metric
In order to form networks {also referred to as

leximaps or, simply, maps), there must be a metric (or

measurement; used to distinguish between related and

-23 -

unrelated nodes and also to establish how related any
two nodes are. There has been extengive research on
metricg for co-word analysis [gsee CALLONSGE,

COURTIALS8Y, WHITAKER8S, CALLONS1, LAWS2].

Two descriptors are gsaid to co-occur i1f they are used
together to classify a single document. Consider a
corpus of N documents, each indexed by a set of unique
descriptors. Let cx be the number of times descriptor
k is used for indexind documents in the corpus. Let
ci{ be the number of documents in which descriptor i

and descriptor j are used todgether for indexing.

As in the 1998 study by Coulter et al. [COULTERSSE],
the metric chosen for this study is the strength of
the association between descriptor i and descriptor j,
Si;. This strength is defined by the expression shown

in Figure 3.

_24 -

Figure 3: Strength of Asscciation

This metric provides an intuitive measure of the
symmetrical relationship between the descriptors
[CALLON91] . It is also the default metric used by the

CAIR system.

4,2 The Algorithm

The co-word analysis algorithm employed in this study
uses the strength metric to build networks of related
degcriptors. This is accomplished with two passes
through the data. The first pass, Pass~1, builds the
primary associations between degcriptors. Descriptors
identified during this pass are referred to as

“internal nodesg*” and the links between them are

-25 -

“internal links.” These internal links identify areas

of strong asscciation.

Pass-2 identifies links between Pass-1 nodes in one
network with Pasg-1 nodes in other networks, thus
forming the asscciations between networks. Pags-2
nedes may appear in several networks, where they are
referred to as “external nodes,” but each one must
appear as a Pass-1 node in exactly one network.
“External links” highlight associations between the
networks produced in Pass-1, and, thus, may indicate

more pervasive issgues.

Congtrainta are placed on the network-building process
in order to prevent dominance by common pairs of
descriptors and also to help break up large networks
into more manageable sizes. Consider what would
happen if two terms occur infrequently but, when they
do occur, they always occur together. Their strength
value would be guite large, but the meaning of that

strength would have little significance for the study.

-26 -

Take, for instance, the occurrence of “petri” and
“net.” These words almost always occur together in
titleg as “Petri nets,” but they may occur in only a
handful of documents. Thus, one of the constraints
used in this study is to require a minimum co-

occurrence value, ¢y, before a link can be generated.

Networks can also become cluttered with legitimate
nodes and links. ©One can prevent this cluttering by
forcing the generation of a new network when a maximum
number of nodes or links is reached. Both node and
link constraints are used here. This may seem like a
very artificial and arbitrary means of breaking up
networks, but a better understanding of the algorithm
employed in this study helps to alleviate such

concerns.

Pass-1 of the algorithm begins with the link of
highest strength. The nodes of thig link become
starting points for the first network. Additional

links and their corregponding nodes are determined

_27-

breadth-first and are added to the existing network
until one of the constraints (co-occurrence minimum,
link maximum, or node maximum) is reached. Once a
link and ite nodes have been included in a Pags-1
network, they are removed from inclusion in subseguent
Pass-1 networks. The next Pass-1 network always

begins with the remaining link of highest strength.

Once all the links and nodes have been placed into
networks, Pass-2 begins by restoring all Pass-1 nodes
to the list of available nodes. Starting with the
first Pass-1 network, Pass-2 then builds links between
the Passg-1 nodes to Pass-1 nodes in other networks
that meet a minimum cc-occurrence value and in order
of descending strength. After all the Pass-1 nodes in
the first network are exhausted, Pass-2 repeats the
process for the second Pass-1 network, and so on until

all Pass-1 networks have been completed.

- 28 -

Occasionally, some of the links generated in Pass-2
are between Pass-1 nodes within the same network.

Such a link is sometimes referred to as a Pass-3 link.

Choosing appropriate constraints can be tricky.
Consider the co-cccurrence minimum, which, if too
high, produces too few links and, if too low, produces
an excesgive number of links. In the former case, the
networks are not granular enough to show important
details., 1In the latter case, the networks may be so

complex as to hide important themes.

As with the 1998 study [COQULTER98B], parameters in
this study are chosen somewhat arbitrarily, and
conslderable experimentation is done to determine
which constraint parameters produce the most useful
(i.e., detailed, yet coherent) networks from the
current data. Of principal concern is the minimum co-
occurrence value, as its effect on the number and
complexity of networks produced 1is less easily

determined than node and link count maxima.

-29.

Time Period Documents Degcriptors | Descriptor
/ Document
Ratio
1982 - 1986 1646 5645 3.43
1987 - 1939¢C 7650 28471 3.72
1991 - 1994 7395 23611 3.19
1998 - 2001 4063 15883 3.91

Table 5: Documents and Descriptors per Time Period

The 1998 study examines descriptors for documents from
three time periods: 1982 - 1986, 1987 - 1990, and 1991
- 1994. Both the number of documents and the number
of descriptors are varied, and, in the case of the
earliest period, these numbers are considerably
different. Table 5 reproduces these values from both
the 1998 study as well as this study. The computed
value of the descriptor to document ratio is included,

ag it may provide some additional insight.

-130 -

In termg of number of documents, number of
descriptors, and descriptor/document ratio, the data
of the current period are not significantly different
from that of earlier pericds. This should mean that
thie study will see similar effects for changes in
minimum co-occurrence value to what was seen in the

earlier study.

The 15%8 study notes that decreasing the minimum co-
occurrence value results in an increase in the number
of networks produced. A similar relationship is also
seen with the current data set, as shown in Table 6.
However, the correlation is not quite linear. Perhaps
a future study will determine the mathematical
relationships, if there are any, between descriptor-
to-document ratio, minimum co-occurrence value, and

the number of maps produced.

-31-

Min. Co-occurrence No. of Networks
15 8
10 10
7 15
5 15
3 18

Table 6: Co-occurrence and Number of Keyword Networks

For the portion of thisg study dealing with the CCS

descriptors (keywords) assigned to publications from
the 1998 - 2001 time pericd, a minimum co-occurrence
value of seven (7} is chosen. This produces a total

of 15 networks,

For the portion of this study dealing with words found
in the title text of publications from 19%8 - 2001, a
minimum co-occurrence value of five (5) produces 16
useable networks, while a value of three (3) increases
the number of networks to 24. Hence, a minimum co-
occurrence level of five (5} is chosen for the study

of titles.

-32-

4.3 The CAIR System

The Context Analysis and Information Retrieval (CAIR)
gystem ig a series of programs to assist in the
analysis of large sgcale text corpora developed at the
Software Engineering Institute, Carnegie Mellon
University. The principal developers of this system

are Suresh Konda and Ira Monarch.

The CAIR system implements the two-pass algorithm uged
in this study and provides a graphical user interface
with which the produced networks can be manipulated.
CAIR also includes tools for analyzing the “internal
strengths” and the strengths of the interactions

between networks with graphical representations.

-33 .

4.3.1 CAIR Command-Line Toocls

The majority of the CAIR procesging takegs place at the
command-line through the execution of a sequence of
programs (outlined in Appendix F). Thisg command-line
portion of CAIR processeg the input data and produces
leximap (LM) output files, which can then be used with
the CAIR graphical user interface to generate the
graphical network maps that are analyzed in this

study.

The 1m2 program is the last step before entering the
graphical portion of the CAIR system. It is with this

program that the network constraints are set,

including minimum co-occurrence (¢), maximum number
of nodes per network (n), maximum number of 1links
per network (1), and maximum number of maps (m).

For this study, the number of maps generated is never

greater than 30, so setting (m }) to a high value

-34 -

(say, 100) simply has the effect of not excluding any

generated maps.

For this study, the (n }) and (1) parameters are set
to 10 and 12, respectively. Because there are two
passes of the algorithm, this has the effect of
allowing a maximum of 20 nodes and 24 links per
network. These values are chosen to match those of
the 1998 study [COULTER98B] and seem to produce maps

of reasonable complexity.

4.3.2 CAIR LM File

The CAIR LM files provide a wealth of information
about the results of the co-word analysis and the
generated maps. The first part of the LM file lists
the run parameters, such as the minimum co-occurrence,
maximum numbers of links and nodes, and the resulting
number of maps. The rest of the file ig devoted to

describing each of the generated leximaps.

~35.

Each leximap description has four parts: header, node
lisgt, link list, and summary. The header congists of
three numbers: the map number, the number of nodeg,

and the number of links. FPor example, if the header
ig “2 20 24,” it means that this is Map-2, which has

20 nodes and 24 links.

Following the header are the nodesg that make up the
map. Each node and its characteristics appear on a
gingle line. Consider,

*jJavad.3.2” 170 3 4 1 2.
In this typical example, the node text (javad.3.2) is
delimited by caretg. The numbers that follow the node
give, respectively, the number of documents in which
the node text appears (170), the number of maps in
which the node appears (3), the number of links
involving the node in the current map (4}. The
penultimate number (1) tells whether the node is

generated during Pass-1 (a 'l'}) or Pass-2 {a ‘2’').

- 36 -

The final number (2) provides the number of the map in

which the node is generated during Pass-1.

The next section contains information about the links
that make up the leximap with each link starting on a
new line. This includes the two linked nodes
(delimited by caretg), the number of times the nodes
appear together, the gtrength of the link between the
nodes, and the pasa during which the link was
generated (1, 2, or 3). Pass-3 linke are just Pass-2
links between Paszss-1 nodes in the same map. The
final value depends on the pass number of the link;
for Pass-1 or Pass-3 links, the final number is 0; and
for Pass-2 links, the final number is the map number

off the Pass-2 node.

Consider a link description of “"metricsd.2.8”
*software developmentk.6.3" 15 0.003805 2 9.7 In this
example, the nodes, “metricsd.2.8" and “software
developmentk.6.3," occur together 15 times; the

gtrength of the link between these nodes is 0.003805;

-37-

the link is generated during Pass-2; and the Pass-2

node is generated as a Pass-1 ncde on Map-9.

The fourth section of each leximap description
congigsts of a single line and contains some useful,
computed values. From left to right, these values
are: cohesion (a measure of the internal strength of
the network), the sum of the Pass-2 strengths, and the

sum of the sgquares c¢f the Pass-2 strengths.

4.3.3 CAIR GUI

The next step in using the CAIR system involves
entering the graphical user interface compcnent of the
system (a program named, *“gui”). The CAIR GUI permits
the user to view, manipulate, and print the individual
leximaps. The CAIR GUI produces two additional
graphical outputa: a coupling-cohegion distribution

plot and a representation cf the supernetworks.

-38 -

There is something of an art to displaying the maps
produced by the CAIR gystem. Often, the maps are a
tangled web of nodes and links. This can make
analysis quite difficult. Fortunately, the CAIR
syatem includes a tool to help untangle these webs,
called “kamada.” Kamada makes a best attempt to
repogition nodes to eliminate overlapping links. Some
manual repositioning of nodes is still often
necessary. Once the maps have been untangled, they

may be printed for more detailed analysis.

Two metrics used in the analysis of these networks are
cohegion and coupling. Cohesgion (also called densgity)
is a measure of the internal strength of a network; it
is how strongly the nodes within a network are linked
with each other. Cohesion igs formally defined as the
mean of the Pass-1 link strengths. Coupling (also
called centrality) is a measure of how strongly a
given network interactsg with other networks; it is
defined as the square root of the sum of the squares

of Pass-2 strengths. Coupling, thus, is a “compogite

- 30 .

measure of a network’'s intersection with all other

networks” [COULTERSSE].

The CAIR system produces a coupling versus cohesion
plot. 1In this plot, the horizontal axis represents
coupling and the vertical axis represents cohesion,
with the median wvalues at the origin. Bach map
appearsg in this plot as a circle inscribed with its
map number, and it is positioned according to its

coupling and cohesion values.

Some general comments can be made based on the
positiong of maps in the coupling-cohesion plot. It
is helpful to divide the plot into quadrants, starting
with Quadrant-I above and to the right of the axes,
and then numbering the quadrants counter-clockwise.
Maps in Quadrant-I are characterized by having both
strong internal and external interactions. Quadrant-
11, above and to the left, is characterized by having
strong internal interactions but weak external

interactions. Quadrant-III maps are loosely

- 40 -

interactive internally and externally. Quadrant-IV
mapeg are loosely bound internally but strongly

interact with other maps.

Quadrant-I maps represent more unitary concepts as
well as concepts that interface with many other
concepts. This makes Quadrant-J maps especially

important in identifying central concepts.

4.4 Naming Networks

The CAIR system numbers the networks it produces, but
no other distinguishing notations are provided. Thus,
it is useful to assign descriptive names to networks
that aid in their correct recognition and in the
interpretation of their interactions with other

networks,

Shah defines five criteria that can be used to name

networks and provides algorithms to aimplify the

-41 -

network naming task [SHAH97]. A less formal
application of these algorithms is used for this
study. Principally, networks are named in this study
by using the one to three nodes with the highest
number of Pass-1 links. Exceptions to this rule are
allowed when: (1) there is an especially strong link
between a chosen node and another Pass-1 node or (2)
Pags-1 node has at least as many Pass-1 and Pass-2

links as a chosen node.

S 42 -

a

Chapter 5

KEYWORD ANALYSIS

Fifteen networks are generated from the descriptor
data uging a minimum co-occurrence of seven (7). The
CAIR LM file for keywords is reproduced in Appendix G
and the resulting leximaps (graphical representations
of the networks, often referred to simply as “maps”)

are provided in Appendix H.

The first step in the analysis is to name the maps.

A2 stated, the name for each map is formed from the
text of its prominent node or nodesg. For example,
Map-4’'s prominent nodes are “user interfacesd.2.2” and
“documentationd.2.7.” Thus, the name assigned to Map-
4 is “User interfaces / documentation.” The names
chosen for the maps generated in this study are lisgted

in Table 7.

-43 -

No. | Asgigned Map Name
1l | Logic and constraint programming
2 | Software development / object-oriented
programming
3 | Applications / Petri nets / computer-
aided engineering
4 | User interfaces / documentation
5 | Web-baged services
6 | Distributed systems
7 | Performance measures / parallel
programming
8 | Design tools and techniques
9 | Management / metrics
10 | Compilers / optimization
11 | Software maintenance
12 | Language constructs and features
13 |Real-time and embedded systems
14 | Performance of gystems / network
protocols
15 | Requirements-gpecifications / testing

and debugging

Table 7: Assigned Names for Keyword Maps

- 44 -

5.1 Review of Keyword Maps

Several of the resulting keyword maps might be
claggified as cbvious, redundant, or simply
uninteresting. For example, Map-1, named “Logic and
constraint programming,” contains two nodes: “logic
programmingi.2.3” and “logic and constraint
programmingf.4.1.” The link strength is 0.606811,
which is fairly high and indicates that publications
classified with one of these descriptors are, more
often than not, classified with the other. Such maps,

thus, do not provide much useful information,

Some other maps that might be claggified as “obvious”
include: Map-5 (“Web-based gervices”), Map-6
{*Distributed gystems”), and Map-13 {“Real-time and
embedded systems”). The fact that these maps exist is
an indication that research in these areas is taking
place, but they do not interact much or at all with

other areas of software engineering.

- 45 -

Not all such poorly interacting maps are without

interest, Often, they serve to highlight important

concerns of a given area. Consider Map-7 (“Parallel
programming / performance measures”) and Map-10
{("Compilers / optimization”). These mapes clearly

illustrate that performance measures are important in
the study of parallel programming and that
optimization is still a big concern of compiler
design. Similarly, Map-11 (“Software maintenance”)
gshows that restructuring, reverse engineering, and re-
engineering are important parts of software

maintenance and scftware development.

- 46 -

..L.b_

'y aanbtyg

z-den

«d00 / JuswdoToadSp 2IBM3JOS,

< 1998-2001.¢7.n10.112m 100~S.LM 2 >

I softwars librariesd 2.2 I

I programmer workbenchd 2.6 I

objest—orisnted proprammingd. 2.3 I

I object—orianted design methoded. 22 I

daslgn tools and techniquasd 2.2]

object—oriented pregrammingd. 1.5 I
| software architecturesd. 2.1 1

programm ing teamsd. 2.9 I

requirements/spacificarionsd 2. 1

I software developm entle. 6.3

| user imtarfacead 2.2

managert entd 2.9
pererald 2.0

programming environm entsd 2 6 I

I software/propram verificationd, 2.4 |

With the largest number of Pasg-1 links, the “object-
oriented programmingd.l.5” node is clearly the
prominent node of Map-2 (see Figure 3). The “software
developmentk.6.3” node has a strong link with “object-
oriented programmingd.l.5” and has the largest total
number of links {(Pass-1 and Pass-2}. Hence, the name
of this map is “Software development / object-oriented
programming.” Structured programming does not appear
as a node in this map, showing the continued
prominence of object-oriented programming noted in the

earlier study [COULTER98E].

Some other noteworthy observations can be drawn from
Map-2. First, the major tools and environments of
software development are C++, Java, and CORBA.

Second, some basic areas of software development
continue to appear in the literature, namely software
architectures, requirements and specifications, design
tools and techniques, programming environments,

metrics, and management. In this case, “management”

- 48 -

may refer to more than just code management, as
evidenced by the Pass-2 node, “programming
teamgd.2.9.” Object-oriented programming techniques

naturally lend themselves to team projects.

Map-3 is about computer-aided engineering and
manufacturing. Petri nets continue to make an
appearance, ag they did in the latter of the three
periods studied in 1998 [COULTER98B]. Petri nets have
“become particularly important in the modeling of

automated manufacturing systems” [CHAPMAN97].

Map-4 (“User interfaces and documentation”) showg that
user interfaces continue to be a focus of research, as
they were during the 1987 - 1990 and 1991 - 1594
periods. The appearance of documentation, Java, and
parallel programming indicate their importance in the
area of uger interfaces and human-computer

interaction.

- 49 .

The spoke-like pattern of Map-8 centers about “design
tools and techniquesd.2.2” and highlights fundamentals
as well as some of the prominent, related concerns,
The fundamentals of design, such as programming
environments, requirements and specifications, testing
and debugging, and management are expected to appear
in such a map. The concentration on parallel and
concurrent programming during this period is
interesting to note as is the appearance of

engineering and the physical sciences.

Map-9 appears to have two prominent nodeg,
‘generald.2.0” and “managementd.2.9.” Management has
also appeared as a prominent node in networks of the
1982 - 1986, 1987 - 1990, and 1991 - 1994 time
periods. 1ts appearance in this data set i1s not
gurprising, nor is the appearance of metrics. This
map may indicate interest in formalizing the software

management process.

-50-

The general category is included in the CCS at first
and second levels for two purposes: to clagsify
documents that include broad treatments of a topic and
to classify documents that cover several related
topicg in the same category. Ag expected, then, the
“generald.2.0” node is linked with a number of issues
important to software engineering: computer-aided
engineering, algorithm degsign and analysis, software
development, user/machine gystems, software
management, computer science education, and curriculum

concerns.

Map-9 also shows links between the general categories
of software engineering, computer communication
networks, logics and meanings of programs, and legal
aspects of computing. The appearance of these general
nodes instead of others may indicate the current,

prominent research pursuits of software engineering.

-51-

Map-15 (“"Requirements-specifications / testing and
debugging”} outlines the software development process,
from defining requirementgs and specifications to
algorithm design and analysis to testing and debugging

to distribution, maintenance, and enhancement.

Further analysis of the keyword maps is made through
an examination of how the maps interact with each
other. To aid with this examinaticon, two graphs, a
coupling-cohesion plet and a supernetwork plot, are

presented in Appendix I.

5.2 Keyword Network Cohesion and Coupling

The coupling-cohegion plot for the keyword data of
this study (see Figure 4) hcelds no real surprises. In
the plot, most maps appear on or near the horizontal
(coupling) axis, meaning that there is little
difference in the internal strengths {(cohesion) of the

various mapg; the obvious exceptions are Map-1 and, to

~52 .

a legger extent, Map-%5. Also, there ig a clear
division between the weakly interacting maps (to the
left of the vertical axis) and the more strongly

interacting maps {(to the right).

- 853

Vg
eqeq pIomAs) I0J J0Td uoTsayoD-HuTTdnod :g aanbrtyg

1958-2001.¢7:010112.m 100-5.LM Distributions

L/

Cohesion: 0.031813

o &y ©

)
Y

Coupling: 0.00264575131106

The most interesting networks are the ones that appear
in Quadrant-I of the coupling-cohesion plot, as these
networks are both tightly bound internally and
interact strongly with other networks. Map-2 is the
only map to fall within Quadrant-I, which attests to
the centrality of scoftware development and object-
oriented programming to software engineering research
publications during the period of the study. Software
development and object-oriented programming appear

strongly during the 1991 - 1994 study as well,

Central concepts are often found in strongly
interacting maps. A map’s coupling value is a measure
of its interaction with other maps. Map-4 and Map-8
have the highest coupling values of this study, which
is represented by their pesiticons in the coupling-
cohesion plot. It is really no surprise that “user
interfaces / documentation” and “design tools and

technigues” should be central to software engineering.

- 55

Also of high centrality are Map-15 (“*regquirements-
specifications / testing and debugging”), Map-3
(*applications / Petri nets / computer-aided
engineering”), and Map-S (“management / metrics”).
Bgain, this ig not surprising, but it helps reinforce

the correctness of this interpretation.

It is intereating to note the centrality of Map-14
(“performance of gystems / network protocols”), which
is not as great as, say Map-9, but ig still greater
than the median. The concepts of Map-14 are not seen
in the 1998 study, so this may indicate the growing
importance of network protocols and performance of

systems to software engineering.

Map-1 (“Logic and constraint programming”)} appears
high in Quadrant-II; this means that it is strongly
cohesive but interacts weakly, 1f at all, with other
maps. In fact, Map-1l is completely isolated (its
coupling value is =zero), which can be confirmed by

noting the absence of Pass-2 links. The intuitive

- 56 -

explanation for Map-1’'s position is that the
descriptora, which are the nodes of this map, are so
similar that publications indexed with one are almost
always indexed with the other. Other than noting the
existence of research writing in the area of leogic and

constraint programming, Map-1 is of little interest.

Map-5 also has a high cchesion value and appeaxrs
higher in the plot than the majority of the other
maps, though not as high as Map-1. Its nodes, “web-
based servicesh.3.5” and “web-based interactionh.5.3,”
clearly have a great similarity and frequently occur
together. 1In addition to noting the existence of web-
based gervices in the literature, Map-5 also shows the
rapid incorporation of new descriptors, such as “web-
based mervicesh.3.5,” by indexers. This indicates the
importance of regular review and updating of the CCS

to maintain its relevance.

Maps-6, 7, 10, 11, 12, and 13 are clustered near the

origin of the coupling-cohesion plot. Although these

- 57 -

maps are not tightly bound and do not interact
strongly with other maps, they still represent some
importance in goftware engineering; consider the
continued importance of compilers and optimization

(Map-10} .

5.3 Keyword Supernetwork Analysis

Two networks are said to interact with each other when
a Pass-1 node in one map appears as a Pasgs-2 node in
another. An indication of the strength between two
interacting networks might be the number of such
linka. Congider, for instance, Map-2, which has three
Pasg-2 nodeg from Map-4, four from Map-8, four from

Map-9, and three from Map-15.

Table 8 listg all the connections between the maps
generated from the keyword data of this study. From
the table, it is c¢lear that Maps-1, 5, 6, 7, and 13

are isolated. Maps-10, 11, and 12 are very weakly

- 58 -

interacting, as they each only have one external link.
Map-14 is only slightly more interacting with its two
links. This leaves Maps-2, 3, 4, 8, 9, and 15 as
significant players in a supernetwork generated from

these smaller networks,

Map Connected Maps
No. [Map No. (number of links)]
1 None

2 4(3) B(4) 9{4) 15(3)

3 4(1) 8(2) 9(1) 14(1) 15(3)

4 2(4) 3{(1) 8(6) 9(1) 15{(1)

5 None

6 None

7 None

8 2(2) 3(1) 4(4) 9(1) 12(1) 15(4)
9 2(6) 3{1) 4(1) 8(2) 14(1) 15(3)
1G 8(1)

11 2(1)

12 8(1)

13 None

14 3(1) 9(1)

15 2(4) 3(3) 4(1) 8(5) 9(3)

Table 8: Connections between Keyword Maps

-59.

Figure 5 shows one possible supernetwork based on the
data of Table 8. In this case, a threshold <of three
or more connections is required to show the link. The
circles repregent maps with the indicated map numbers.
Connections between maps are shown with arrows and are
labeled with the number of connections. An arrowhead
indicates the map in which the link node is Pass-1.
Thus, for example, Map-15 contains four (4) Pass-2

nodes that appear as Pass-1 nodes in Map-2.

- 60 -

Figure 6: Supernetwork for Keyword Data

There is no single focus to this supernetwork, though
Map-2 (“Software development / object-oriented
programming”) and Map-15 (“Requirements-specifications
/ testing and debugging®) have the highest numbers of
connectiong. This attests tc the prominence of these
topice in the field of software engineering during the
period of this study, and it reinforces the earlier

interpretation of the coupling-cchesion plot.

-61 -

Some note should also be made of Map-3 (“Applications
/ Petri nets / computer-aided engineering”). Petri
nets appear in the 1991 - 1994 pericd of the 1998
gtudy as an isolated network. In the current study,
however, Petri nets have links, directly and
indirectly, to “User interfaces / documentation,”
“Degign tools and techniques,” “Management / metrics,”
“pPerformance of systems / network protocols,” and
“Requirements-gpecifications / testing and debugging.”
Clearly, Petri nets have become more central to

software engineering during the 1998 - 2001 peried.

- 62 -

Chapter 6

THEMES AND TRENDS

From the preceding analysis, it ie clear that software
engineering continues to lack a central focus, though
there are a number of areas of concentration (or
themes), Software engineering continues to evolve as
a field: it is incorporating new themes, maintaining
others, and dropping still others. Software
engineering is defined both by its central (or core)

themeg as well as its emerging interests.

In this study, the enormous volume of scftware
engineering publications from 1998 through 2001 is
reduced to a collection of fifteen networks that
represent the themes of the field. Some themes are
gelf-contained and have not yet developed past an

emerging interest, such as web-based services and

- 63 -

distributed systems. Others are mature themes that
exhibit limited interaction with others, like logic /
constraint programming and compilers / optimization.
Still other themes are found teo interact strongly with
many other themes, such as design tools and

techniques, user interfaces, and software development.

There is some consistency in the networks generated
for this study and those of the 1998 study. Software
development, design tools and technigques, and user
interfaceg, for example, recur in each of the time
periods of these studies. This is due in large part
to the fixed taxonomy of the CCS, but it also provides
gome asgsurance of the correctness of this taxonomy in

repregenting the core themes of software engineering.

The 1998 study [COULTER28B] notes a trend in software
development toward large-scale environments. This
trend is evidenced in the current study by the
prominence of “programming-in-the-large” issues,

tools, and techniques, such as object-oriented

64 -

programming, project and people management,

documentation, and software maintenance.

The incorporation of “relevant supporting tools” into
a theme provides some gauge of the “maturity” of a
trend [COULTER98B, page 1222]. &As a trend matures,
specific tools will appear as implicit descriptors.
The implicit descriptors that represent aspecific
object-oriented programming toolg, such as C++, Java,
and CORBA, do appear in the networks of this study.
Additionally, the appearance of compilers /
optimization and language conetructsg / features may
indicate continued work on incorporating the object-

oriented paradigm into the software engineering field.

Ag one might expect with an increase in programming-
in-the-large issueg, there is alsoc an apparent
increase in interest in best practices and process
improvement. This is evidenced by many of the same

keywords related to programming-in-the-large, such as

-65 -

“management,” “testing and debugging,” “metrics,”

“reliability,” and “program verification.”

Some new trends can also be seen. For instance, Petri

nets, which appear in the 1991 -~ 1994 period as an
igolated network, have resurfaced in a connected
network in the 1398 - 2001 period. Petri nets are
commonly used in modeling automated manufacturing
systems. As software engineering principles are
applied to computer-aided engineering and
manufacturing, it is not surprising to see links to
other themes of software engineering, such as
“requirements and specifications” and “design tools

and techniques.”

One strong theme in software engineering ig the

emphasis on parallelism and concurrency. Degcriptors

related to parallelism and concurrency can be seen in

all four periods, but seem fairly ubiquitous in the
period of this study. For instance, parallelism-

related descriptors appear in Map-3 (“Applications /

- 66 -

Petri nets / computer-aided engineering”), Map-4
(“User interfaces / documentation”), Map-7
(*Performance measures / parallel programming”), Map-8
{(*Design tools and technigues”}, and Map-15
(*Reguirements-gpecifications / testing and

debugging”) .

The 1998 revision of the CCS includes over 225 new
subject descriptors [see COULTER98A]. Many of these
new terms are related to distributed and online
gsystems, including the World-Wide Web. It is
interesting to note the appearance of thegse terms in
the 1998 - 2001 period, which indicates that the
GUIDE's indexers found immediate need for these terms.
This is a clear indication that periodic review and
revigion of the CCS is required for it to remain

relevant.

It is alsc interesting to note the disappearance from

the current period of the graphical user interfaces of

Windows and X-Windows, which had appeared in the 1991

-67 -

- 1994 period. Perhapsg, this iz an additional
indication of the trend toward online systems and the

uge of the web browser as the uger-interface of

choice,

-68 -

Chapter 7

TITLE ANALYSIS

Unlike earlier studies, this study has access to the
title text for most of the publications in the GUIDE
for the period 1998 - 2001. This allowsg a look at the
descriptive text chosen by the authors to represent
the topics of their published works. This may provide
corroboration of the results of the keyword analysis
and offer insight into the relevance and currency of

the CCS.

4063 titles are available for this analysis after
parsing the original SGML data. Some of these titles

are journal names, such as IEEE Transactions on

Software Engineering and Journal of Software

Maintenance. The incorporation of these titles into

this analysis skews the generated maps, simply because

these terms occur together more frequently.

- 69 -

Another concern is that there is no fixed taxonomy to
limit word choice, and, in some cases, the co-
occurrence of related termsg may be diluted below the
threshold required to produce a link. Thus,
important, related terms may not appear in the final

maps.

7.1 The Title Data

The CAIR “check” command generates an index of terms
parsed from the input text. These terms form the
nodes of maps generated in later stageg of the CAIR
analysis process. The “check” command’s “-t*
parameter sets a threshold value for clustering. This
parameter is get to five, meaning that a word must
appear five times to qualify as a term. A higher
thresheld can reduce the noise of lesg important
words, but there seems to be little to gain from such

a reduction in the current data set.

=70 -

The title terms consist of common nouns, such as
“window” and “technique,” proper nouns, such as “Java”
and "“Linux,” and compound noung, such as “software
engineering” and “object-oriented programming.” The
CAIR system parseg 485 termg from the title data. In
comparigon, 366 terme are pargsed from the keyword data
of the game period. The gimilarity of these numbers
implies that word choice, at least with respect to
goftware engineering titles, is not as unrestricted as

it might seem.

Appendix J reproduceg a portion of the title index
file sorted in order of decreasing frequency. The
most common terms {(“software,” “analysis,” and
“programming”) are expected, considering the subject
matter. Some term fregquencies may be artificially

inflated through their appearance in compound terms.

For instance, “goftware” appears alone and in
combination, such as “software engineering,” “sgsoftware
development,” “object-oriented software,” and so on.

-71 -

Some additional term frequency inflation is due to the
repeated appearance of journal titles in the data,

such as IEEE Transactions on Software Engineering and

Communications of the ACM. Since these journals

contain published articles on a wide variety of
topics, the inclusion of the journal title for each
issue, necessarily, skews analysis results toward the

words occurring in these titles,

7.2 CCS General Terms

The CCS includes sixteen General Terms that may be
associated with any category. It should be expected
that these General Termg are represented in the
titleg. In fact, most of the General Terms, like
“Design” and “Performance,” are found verbatim in the

index of title terms.

Other General Terms are represented by proxy. For

instance, “Experimentation” is represented by a number

=72 -

of clogely related or synonymous terms, like “study,”
“tegting,” and “empirical study.” Likewise, the
General Term, “Economics,” does not appear in the
title terms, but “business,” “cost,” and “business

process” do.

Table 9 lists the General Terms and their frequencies
in the title data. Where appropriate a proxy and its
frequency is listed in parentheses. It is interesting
that “Legal Aspects” and its potential proxies, such
as “law” and *liability,” do not appear freguently

enough be included in the index file.

73 -

119 Desgign 30 Languages
0 Experimentation 0 Standardization
(96 study) (26 Standard)
86 Performance 25 Measgurement
64 Verification 21 Reliability
55 Management 18 Security
40 Documentation 12 Algorithms
0 Bconomics 10 Theory
(35 Business)
0 Human Factors 0 Legal Aspects
(23 User Interface)

Table 9: General Terms and Their Frequencies in the
Title Data

7.3 Themes from the Title Index

The most frequent terms, such as “software,”
“analysis,” “programming,” “design,” and
“engineering,” are those that pervade the software
engineering field. These terms are clearly important
to the field, but do not tell much about the current

emphasis or trends in research.

- 74 -

One theme appearing clearly in the index of title
terms involves process improvement and best practices.

This is seen in the pervasiveness of terms like

“performance, * “evaluation,” “management,” “case
study,” “practice,” “quality,” “documentation,”
“businesgs,” “process,” “optimization,” “debugging,”

“improvement,” and many more.

Proper nouns, like “Java,” "“C++,” and “CORBA,” appear
with high frequencies, as do other terms, like
“object,” “object-oriented software,” “object-oriented
programming, ” and “software reuse.” These terms
confirm the emphasis on object-oriented programming
(O0OP) highlighted by the keyword analysis. Together
with the process improvement theme, OOP, hints at
another theme revealed by the keyword analysis: large-

gcale software development.

The trend toward online systems, which the keyword

analysis highlights, is also apparent from the titles.

Terms, like “communication,” “Internet,” “hypermedia,”

-75 -

“network,” and “web,” appear frequently enough to be
added to the index of title terms. The corroboration
of this new trend algso confirms the usefulness of the

new, “online” desgcriptors added to the CCS in 1998,

7.4 Title Networks

There are considerable differences between the keyword
and title data sets, not the least of which is the
lack of a fixed taxcnomy. Nevertheless, some
understanding of the represented publications can be
gained by performing an analygis of the CAIR-rendered

title maps.

Minimum Co-occurrence (¢) Number of Maps
3 21
5 16
7 8
10 3

Table 10: Co-occcurrence and Number of Title Networks

-76 -

As with the keyword analysis, the cheoice of parameters
for the CAIR system is somewhat arbitrary. If the co-
occurrence minimum is too low, then too many links are
produced and details are hidden in the complexity of
the generated maps. 1If the co-occurrence minimum is
too high, then too few links are produced and
important relationships are missed. Table 10 shows
the effect on the number of generated maps by the
choice of minimum co-occurrence value. A minimum co-
occurrence of five (5) produces networks comparable in
number to thosge created for the keyword analysis, so

this wvalue is chosen for the analysis.

CAIR generateg sixteen maps to represent the title

data. The resulting LM file can be found in Appendix
K and the maps themselves are reproduced in Appendix
L. Ccupling-ccohesion and supernetwork plots are also

generated and can be found in Appendix M.

-77-

The title maps are named with the same flexible naming
convention used for the keyword maps; that is, with
few exceptions, the names are taken from the most
prominent, Pass-1 nodes. Table 11 lists the assigned

title map names.

No. | Asgsigned Map Name

1| Interaction - Detection

2| TCL - TK

3 | Exception - Handling

4 | Client - Server

5| Analysis - Performance

6 | Effort - Estimation

7| 8oftware Process — Improvement
8 | Software Engineering

9 | Report - Experience

10 | Software Reliability

11 | Project - Management
12 | Application - Development
13 | Comparison - Technique

14 | User Interface

15 | Program ~ Verification

16 | Method - Tool

Table 11: Assigned Names for Title Maps

-8 -

Many of the maps generated from the title data are
“obvious.” That is, not much in the way of
substantial meaning can be derived from them. For
instance, Map-2 (*TCL - TK") contains two nodes, “tcl”
and “tk,” and does not interact with any other maps.
The nodes of this map refer to the scripting language,
TCL, and its graphical toolkit, Tk. These two
software development tools are almost always used
together, which explains thelr link strength of

0.684444.

Maps-1, 3, 4, 6, 7, 9, 10, 13, and 14 also likely
would be labeled, “obvious” or “uninteresting.” All
of these maps are isolated, except Map-13 (“Comparison
- Technique”), whose one Pass-2 link associates the
nominal nodes with the obviocusly related node,
“analysig.” Map-16 {(“Method - Tool”) has a moderate
coupling value, likely only because methods and tools

are concerns c¢f many aspects cof gsoftware development.

-79 -

The remaining maps, 5, 8, 11, 12, 15, and 16, have
high coupling values and may be considered more
interesting. Map-5 (“Analysis - Performance”)
repregents primary concerns of software engineering.
Notable is the appearance of Petri net, a modeling
tool often used in computer-aided manufacturing, which

is also seen in the keyword analysis.

Map-8 {(“Software Engineering”) is clearly skewed by

the journal title, IEEE Transactions on Software

Engineering. This map has the highest coupling value,

which is not unexpected, given the purview of this
journal. Map-8 is strongly coupled with Map-11
(“Project - Management”) through the “software” node.
Map-11 illustrates one of the trendg in software
development noted in both the 1998 study [COULTER98B]
and the keyword analysis of the current study: the
trend toward “programming-in-the-large” and the

related concern of “best practices.”

- RO -

Map-12 (“*Application - Development”) has the gsecond
highest coupling value and represents another core
concern of software engineering. “Internet” and
“network” appear in this map, along with real-time
gystemg, hinting at the trend toward online services

also noted in the keyword analysis.

Map-15% (“Program - Verification”) is not very
interegting at first glance. Its high coupling value
is clearly due to the pervagive nature of programming
in software engineering. The appearance of "27 ed”
reflects the relatively high frequency of second
edition programming texts. There were also a small
number of third edition works, but not enough to

appear in a map.

It is important to note that nothing in the title maps
stands out as discordant with the keyword analysis of
the same publications. The major themes of large-
scale scftware development, process improvement, and

even the trend toward online systems are seen in the

-81 -

title maps. This lends some credence to the results
of the keyword analysis and the relevance of the

recent additions to the CCS.

This analysis of the titles provides some
corroboration for the keyword analysis, but titles are
not necessarily the best indicators of content. The
abstracts, review texts, and the texts of the
publications themselves would provide a better source

of data for analysis.

-82 -

CONCLUSIONS

Current themes and trends in software engineering can
be determined through analysis of its recent research
publications. This study applies co-word analysis
technigues to publications reviewed in the Association

for Computing Machinery’s Guide to Computing

Literature (GUIDE) for the 1998 - 2001 period with the

goal of revealing these themes and trends.

The first part of this study looke at the descriptors
{or keywords) assigned tc publicationes by the GUIDE’s
indexers. Descriptors are taken from the fixed
taxonomy of the Computing Classification System (CCS).
This analysis extends a 1998 study of the GUIDE
descriptor data from the three periods, 1982 - 1986,
1987 - 1990, and 1991 - 1994, The 1998 - 2001 period
provides several advantages: it includes the most

recently available data, its veolume is comparable to

-83-

that of the earlier study, and all the data conform to

the last CCS revisgion.

The gecond part of this study applies co-word analysis
to the titles of the published works reviewed in the
GUIDE during this same period. Examination of the
titles reveals the same themes shown by the analysis
of descriptors, providing some corroboration of both

the results and the analysis technigues.

Software engineering has no central focus, but the
themes of software development, process improvement,
applications, parallelism, and user interfaces are
persistent and help define the field. Trends in the
field are more useful as guidance for regearch and
curriculum develcopment. The prominent trends revealed
by this study include increaged interest in large-
gscale goftware develcopment or programming-in-the-
large, best practices, and distributed and online

computing.

-84 -

The interest in best practices is a natural
consequence of large-scale projects, where planning,
management, and review take on special importance.
Also reflective of programming-in-the-large is the
prominent appearance of object-oriented programming
(00P) and its related tools and techniques. The 0OOP
paradigm naturally lends itsgelf to these large-scale
projects, and this may be seen as support for its

incorporation into academic curricula.

Distributed and online computing, especially with
regard to the Internet and the World-Wide Web, has
become a major interest of software engineering.
Distributed computing is not new to software
engineering, nor is the Internet, but the GUIDE’s
indexers found immediate use for the newly added
Internet-related descriptorg. Furthermore, the
disappearance from the current data of degcriptors
related to Windows and ¥-Windows may indicate a trend
toward online goftware systems that use the web

browser ag the usger-interface of choice,

-85 -

Many of the descriptors added in the 1998 revision of
the CC8 found immediate use in classifying recent
publications. A c¢lear conclusion from this is that
periodic review and revigion of the CCS is
appropriate, if not required, for it to remain

relevant.

This study successfully extends to the current period
an earlier analysis of software engineering
publications through their assigned CCS descriptors.
This study also includes an analysis of the titles of
these same publications, providing both the
corroboration of the desgcriptor analysis and some
ingight into the appropriateness and relevance of the

CCS to the current period.

- 86 -

APPENDIX A

The Top Two Levels of the CCS (1998)

s A. General Literature
0 A.0 GENERAL
o A.l INTRODUCTORY AND SURVEY
o A.2 REFERENCE (e.g., dictionaries,
encyclopedias, glossaries)
o A.m MISCELLANEQUS

¢ B. Hardware
o B.0 GENERAL
o B.l1l CONTROL STRUCTURES AND MICROPROGRAMMING
D.3.2)
ARITHMETIC AND LOGIC STRUCTURES
MEMORY STRUCTURES
INPUT/OUTPUT AND DATA COMMUNICATIONS
REGISTER-TRANSFER-LEVEL IMPLEMENTATION
LOGIC DESIGN
INTEGRATED CIRCUITS
PERFORMANCE AND RELIABILITY (C.4)
B.m MISCELLANEOQOUS

e C. Computer Systems Organization
o C.0 GENERAL
o C.l1 PROCESSCOR ARCHITECTURES
o C.2 COMPUTER-COMMUNICATION NETWORKS
o C.3 SPECIAL-PURPOSE AND APPLICATION-BASED
SYSTEMS (J.7)
o C.4 PERFORMANCE OF SYSTEMS
C.5 COMPUTER SYSTEM IMPLEMENTATION
o C.m MISCELLANEQUS

e D, Scoftware

(
B
B
B
B.
B
B
B

©C00000O0O

0

o D.0 GENERAL

o D.1 PROGRAMMING TECHNIQUES (E)

o D.2 SOFTWARE ENGINEERING (K.6.3)
o D.3 PROGRAMMING LANGUAGES

o D.4 OPERATING SYSTEMS (C)

o D.m MISCELLANEQUS

e E. Data

-87-

E

000000
e I el e B i v Il 3

o w oo

LM

GENERAL
DATA STRUCTURES

DATA STORAGE REPRESENTATIONS

DATA ENCRYPTION

CODING AND INFORMATION THEORY (H.1.1)
FILES (D.4.3, F.2.2, H.2)
MISCELLANEOQUS

. Theory of Computation
o F.0 GENERAL
o F.l COMPUTATION BY ABSTRACT DEVICES
o F.2 ANALYSIS OF ALGORITHMS AND PROBLEM
COMPLEXITY (B.&6, B.7, F.1.3)
o F.3 LOGICS AND MEANINGS OF PROGRAMS
o F.4 MATHEMATICAL LOGIC AND FORMAL LANGUAGES

C

00000 O0

ceeaae

1
2
3
4

.m

F.m MISCELLANEOUS

Mathematics of Computing
.0

GENERAL

NUMERICAL ANALYSIS
DISCRETE MATHEMATICS
PROBABILITY AND STATISTICS
MATHEMATICAL SOFTWARE
MISCELLANEOUS

Information Systems

(

C 00000000
HHHHHHHH

O 00 O0O0O0
aejiorgies e siis vila s
I A A e

e

S dO N h W R o

.0

GENERAL

MCDELS AND PRINCIPLES

DATABASE MANAGEMENT (E.S5)

INFORMATION STORAGE AND RETRIEVAL
INFORMATION SYSTEMS APPLICATIONS
INFORMATICN INTERFACES AND PRESENTATION

.g., HCI) (I.7)
o H.m MISCELLANEQUS

Computing Methodologies
I.

GENERAL

SYMBOLIC AND ALGEBRAIC MANIPULATION
ARTIFICIAL INTELLIGENCE

COMPUTER GRAPHICS

IMAGE PROCESSING AND COMPUTER VISION
PATTERN RECOGNITION

SIMULATTON AND MODELING (G.3)}

DOCUMENT AND TEXT PROCESSING (H.4, H.S5)
MISCELLANEQUS

- 88 -

¢ J. Computer Applications
o .0 GENERAL
ADMINISTRATIVE DATA PROCESSING
PHYSICAL SCIENCES AND ENGINEERING
LIFE AND MEDICAT, SCIENCES
SOCIAL AND BEHAVIORAL SCIENCES
ARTS AND HUMANITIES
COMPUTER-AIDED ENGINEERING
COMPUTERS IN OCTHER SYSTEMS (C.3)
.m MISCELLANEQOUS
e K. Computing Milieux
.0 GENERAL
THE COMPUTER INDUSTRY
HISTORY OF CCMPUTING
COMPUTERS AND EDUCATION
COMPUTERS AND SOCIETY
LEGAL ASPECTS OF COMPUTING
.6 MANAGEMENT OF COMPUTING AND INFORMATION
SYSTEMS
K.7 THE COMPUTING PROFESSION
K.8 PERSONAL COMPUTING
o K.,m MISCELLANEOUS

00 00O 000
(ST S S S S T T
~] 3 U W

Oo0COO0O0oO0
AR R R R R R
Ul WP

0 0

-89 .

APPENDIX B

Sample SGML Data Set

<3TARTREC>

<PUBTYPE>JOURNAL ARTICLE </PUBTYPE>

<TITLE>

Toward formalizing structured analysis

</TITLE>

<AUTHEDIT>

Baresi, Luciano

</AUTHEDIT»>

<AUTHTYPE>AUTHOR < /AUTHTYPE>

<AUTHEDIT>

Pezz&kegrave;, Mauro

</AUTHEDIT>

<AUTHTYPE>AUTHOR < /AUTHTYPE>
<GENTERM>PERFORMANCE < /GENTERM:>
<GENTERM>DOCUMENTATION < /GENTERM>
<GENTERM>MEASUREMENT < /GENTERM>
<GENTERM>THEQORY </GENTERM>
<GENTERM>DESIGN </GENTERM>
<KEYWORD>STRUCTURED ANALYSIS/REAL-TIME

</KEYWORD>

<KEYWORD>INFORMAL VERSUS FORMAL SPECIFICATIONS
</KEYWORD>

<KEYWORD>HATLEY AND PIRBHATI'S REQUIREMENTS DEFINITION
NOTATION < /KEYWORD>

<PRICATDESC>

Software,

SOFTWARE ENGINEERING,
Requirements/Specifications,

Methodologies (e.g., object-oriented, structured)
< /PRICATDESC>

<PRICATCODE > D.2.1l</PRICATCODE>
<DESCRIPTOR>

Software,

SOFTWARE ENGINEERING,

Coding Toolgs and Techniques,

Structured programming

-90 .

</DESCRIPTOR>

<CATCODE> D.2.3</CATCODE>
<PUBYEAR>1998</PUBYEAR>

<JRLNAME >

ACM Transactions on Scoftware Engineering and
Methodology

</JRLNAME >

<ABSTRACT >

<par>Real-time extensions to structured analysis
(SA/RT) are popular in industrial practice. Despite
the large industrial experience and the attempts to
formalize the various “dialects, ” SA/RT
notations are still imprecise and ambiguous. This
article tries to identify the semantic problems of the
requirements definition notation defined by Hatley and
Pirbhai, one of the popular SA/RT

“dialects, &rdqueo; and discusses posgsible
gsolutions. As opposed to other articleg that give
their own interpretation, this article doces not
propose a specific semantice for the notation, This
article identifies imprecisions, i.e., missing or
partial information about features of the notation; it
discusses ambiguities, i.e., elements of the
definition that allow at least two different
(&ldguo;reasonable&rdguo;} interpretationg of features
of the notation; and it lists extensions, i.e.,
features not belonging to the notation, but required
by many industrial users and often supported by CASE
tools. This article contributes by clarifying whether
specific interpretations can be given unique semantics
or retain ambiguities of the original definition. The
article allows for the evaluation of formal
definitions by indicating alternatives and
consequences of the gpecific choices.</pars>
</ABSTRACT >

</STARTREC>

-91 -

APPENDIX C

Sample CAIR-Prep Keyword Data

*

\#t

1988;1

\#

\!

-1 (petri netsd.2.2) () 0

-1 (asserticn checkersd.2.4) () 0
-1 (mechanical verificationf.3.1) () O
-1 {hypertext/hypermediai.7.2} () ©
-1 {(hypertext/hypermediah.5.4) () ©
\!

\ *

\ *

\#

19388;2

\#

\!

-1 {generalk.3.0) () O
-1 {generalj.o) () ©
-1 {(interoperabilityd.2.12) ()} 0

-1 {standardsk.l1l) () 0
-1 {standardsd.2.0) () 0

- 02 -

APPENDIX D

Sample CAIR-Prep Title Data

*

\#

1958;1

\#

\!

Hyperdocuments as automata: verification of trace-
based browsing properties by model checking

\ 1

*

*

\#

1598;2

\#

\!

(v.41 n.l1l) Communications of the ACM

\!

*

*

\#

1558;3

\#

\ !

Corporate shortcut to gtandardization

\!

*

-03 .

APPENDIX E

Sample Keyword Data with SGML-style Tags

<DOC>

<DOCNQO>

1998;1

</DOCNC>

<TEXT>

~1 {optimizationd.3.4) () 0

-1 (algorithm design and analysisg.4) () 0

-1 (requirements/specificationsd.2.1) () 0

-1 (lambda calculus and related systemsf.4

</TEXT>

</DOC>

<DOC>

<DOCNQO>

1998;2

</DOCNO>

<TEXT>

-1 {(design tcols and techniquesd.z2.2)} (

-1 {language clasgsificationsd.3.2) (} O

-1 (operaticnal semanticsf.3.2} () 0

</TEXT>

< /DOC>

<DOC>

<DOCNO >

1998;3

< /DOCNO>

<TEXT>

-1 {object-oriented programmingd.1l.5) ()} O

-1 {reugable goftwared.z2.13} () 0

-1 {(modulesg and interfacesd.2.2) () 0O

-1 {(distribution, maintenance, and enhancementd.2.7)
() 0

</TEXT»>

</DOC>

) 0

-94 -

APPENDIX F

CAIR Proceasing Sequence

The CAIR system implements the two-pass co-word
analysis algorithm at the command-line. The sequence
of commands is illustrated by the steps presented

below.

The before tagger, tagger, and reg_exp parser are used
to prepare free text for co-word analysis. Part of
this process involves parsing nouns and noun phrases
from the input text. These nouns and noun phrases
form the keywords for which co-cccurrence metrics are
computed. This part of the process is required when
analyzing the title text, but the keyword data c¢f this
study (see Appendix E) are already in the “.parse”

format.

The remaining steps perform counts of terms, compute

strengths and co-occurrences, and generate the leximap

-95 -

(LM) files used by the graphical portion of the CAIR

system.

1. before_tagger < sample.prep > sample.pretag
2. tagger < sample.pretag > sample.tag

3. reg-exp-parser < sample.tag > sample.parse
4. clugtl < sample.parse

5. sort files

6. clust2

7. check -t 0 -1 5 > gample.index
[*-17 is a lowercase ‘-L']

8. 1lml -v < gample.index > sample.LMDB

9. 1m2 -¢ 7 -n 10 -1 12 -m 100 ~-S < sample.LMDB >
sample.c7.n10.112.m100-5.1LM

_96 -

APPENDIX G

CAIR LM File for Keywords

Run Parameters: Eliminate by Nodes

Pagss Two Node Filter: Beth nodes. Link
Selection: Strength and Max. Nodes

Min. Strength: 0.000000. Min. Co-Occurrence: 7.
Max links: 12.

Max maps 100. Max nodes 10. Maps Produced: 15
121
“logic and constraint programmingf.4.1” 19 1 1 1 1
*logic programmingi.z.3® 17 1 1 1 1

*logic and constraint programmingf.4.1” “logic
programmingi.2.3” 14 0.606811 1 0

0.606811 0.000000 ©.000000 20 14

2 20 24
“software developmentk.6.3” 384 6 9 1 2
“object-oriented programmingd.i.5”" 287 3 § 1 2
“c++d.3.2% 112 1 5 1 2

*jJavad.3.2” 170 3 4 1 2

“programmer workbenchd.2.6” 26 1 2 1 2

-97-

“requirements/specificationsd.2.1™ 306 4 2 2 15
“design tools and techmiquesd.2.2” 692 8 2 2 8
“programming environmentsd.2.6” 218 3 2 2 4
“software architecturesd.2.11” 160 3 2 2 8
“software librariesd.2.2” 96 1 2 1 2

“user interfacesd.2.2™ 182 2 1 2 4

*cd.3.2"7 33 111 2

“object-oriented design methodsd.2.2” 58 1 1 1 2
“object-oriented programmingd.2.3® 19 1 1 1 2
“corbad.2.1” 48 1 1 1 2

*managementd.2.9™ 278 4 1 2 9

*programming teamsd.2.9” 30 2 1 2 9
“generald.2.0” 498 6 1 2 9

“metriced.2.8” 154 2 1 2 9

“software/program verificationd.2.4™ 218 3 1 2 15

“programmer workbenchd.2.6” “software
librariesd.2.2” 24 0.230769 1 0

“objectc-oriented design methodsd.2.2” “object-
oriented programmingd.l1.5" 29 0.050523 1 0

*c++d.3.2" “software librariesd.2.2” 17 0.026879 1 0

*c++d.3.2" “programmer workbenchd.2.6” 8 0.021978 1
0

-98§ -

“object-oriented programmingd.l1.5" “object-oriented
programmingd.2.3” 10 0.018339 1 0

*c++4d.3.2" *cd.3.2™ 7 0.013258 1 0

*Javad.3.2” “object-oriented programmingd.l.5" 20
0.0081%8 1 0

“corbad.2.1” "“object-oriented programmingd.1l.5" 10
0.007259 1 0

*c++d.3.2" “object-oriented programmingd.l.5" 15
0.007000 1 0

“object-oriented programmingd.l1.5" “software
developmentk.6.3" 26 0.006134 1 0

*managementd.2.9” “software developmentk.6.3" 39
0.014248 2 9

AA

*software architecturesd.2.11 software
developmentk.6.3% 28 0.012760 2 8

*software

.}
>

“design tools and techniguesd.2.
developmentk.6.3" 42 0.006638 2

w

*requirements/gpecificationsd.2.1” “software
developmentk.6.3” 25 0.005319 2 15

“programming teamsd.2.9" “software developmentk.é&.3”
7 0.004253 2 9

“generald.2.0” “software developmentk.6.3" 28
0.004100 2 9

*metricsd.2.8" “software developmentk.6.3™ 15
0.003805 2 9

*javad.3.2” “programming environmentsd.z2.6” 11
0.003265 2 4

-99 -

*javad.3.2” “software/program verificationd.2.4”™ 10
0.002698 2 15

*object-oriented programmingd.l.5”
“requirements/specificationsd.2.1”™ 14 0.002232 2 15

*Javad.3.2” “user interfacesd.2.2” 8 0.002069 2 4

*c++d.3.2" “design tools and technigquesd.2.2” 12
0.001858 2 8

“object-oriented programmingd.l.5" “software
architecturesd.2.11”™ 9 0.001764 2 8

*programming environmentsd.2.6” “software
developmentk.6.3” 12 0.001720 2 4

0.039034 0.066729 0.000524 2855 331

3 15 23

“petri netsd.2.2” 151 4 9 1 3
“applicationsi.6.3” 140 2 8 1 3
“computer-aided engineeringj.6” 85 2 6 1 3
*engineeringj.2”™ 71 2 5 1 3

*manufacturingj.1”™ 42 1 4 1 3

“generalg.2.0” 94 2 3 1 3

*design tools and techniquesd.2.2” 692 8 2 2 8
*algorithm design and analysisg.4” 55 4 2 2 15

*generald.2.0” 498 6 1 2 39

- 100 -

*stochastic processesg.3” 19 1 1 1 3

*model validation and analysisi.6.4” 49 1 1 1 3
*gimulation output analysisi.6.6” 28 1 1 1 3
*parallelism and concurrencyf.1.2” 102 4 1 2 4
“performance of systemsc.4™ 109 2 1 2 14
“requirements/specificationsd.2.1” 306 4 1 2 15

*computer-aided engineeringj.é” “manufacturingj.1i”
24 0.161345 1 ¢

“petri netsd.2.2” “stochastic processesg.3” 13
0.058906 1 0

“applicationsi.6.3” “petri netsd.2.2” 27 0.034484 1
0

*computer-aided engineeringj.é6” “engineeringj.2” 13
0.028003 1 O

*engineeringj.2”® “manufacturingj.1”® 8 0.021462 1 0

“applicationsi.6.3” “model validation and
analysigi.6.4” 12 0.020991 1 0

“applicationsi.6.3” “manufacturingj.1” 11 0.020578 1
0

“manufacturingj.1” “petri netsd.2.2" 11 0.019079 1 0

“applicationsi.6.3” "“simulation output
analysisi.6.6" 8 0.016327 1 0

“computer-aided engineeringj.6” “petri netsd.2.2” 12
0.011219 1 0O

- 101 -

“applicationsi.6.3” “computer-aided engineeringj.é6”
11 0.010168 1 0O

*generalg.2.0” “petri netsd.2.2” 12 0.010145 1 0
“applicationsi.6.3” “engineeringj.2” 9 0.008149 3 0
“applicationsi.6.3” “generalg.2.0” 8 0.004863 3 0

A 1 . L] ~ A ' A

engineeringj.2 petri netsd.2.2” 7 0.004570 3 0

“algorithm design and analysisg.4” “generalg.2.0” 7
0.009478 2 15

A

“parallelism and concurrencyf.l.2” *petri netsd.2.2
12 0.00934% 2 4

*performance of systemsc.4” “petri netsd.2.2”™ 12
0.008749 2 14

A

“algorithm design and analysisg.4” “petri netsd.z.2
8 0.007706 2 15k

*design tools and techniquesd.2.2” “engineeringij.2”
12 0.002931 2 8

*applicationsi.6.3”
*requirements/specificationsd.2.1® 11 0.002824 2 15

*computer-aided engineeringj.6” “design tools and
techniquesd.2.2™ 10 0.001700 2 8

“computer-aided engineeringj.6” “generald.2.0” 7
0.001158 2 9

0.028686 0.043895 0.000334 1500 139

4 18 24

-102 -

“programming environmentsd.2.6” 218 3 6 1 4
“user/machine systemsh.1.2® 125 2 6 1 4

“uger interfacesd.2.2” 182 2 5 1 4
*parallelism and concurrencyf.1.2” 102 4 5 1 4
“documentationd.2.7® 121 1 4 1 4

“uper interfacesh.5.2" 137 1 3 1 4

*visual programmingd.l.7” 51 1 2 1 4

*software developmentk.6.3” 384 6 2 2 2
“training, help, and documentationh.5.2" 32 1 2 1 4
“concurrent programmingd.l.2” 131 3 2 2 8§
*language classificationsd.3.2” 118 2 2 2 8
*Javad.3.2” 170 3 2 2 2

“design tools and techniquesd.2.2” 692 8 2 2 8
“electronic publisghingi.7.4™ 10 1 1 1 4
*generald.2.0” 498 6 1 2 9

“human factorsgh.1.2” 37 1 1 1 4

“algorithm design and analysisg.4” 55 4 1 2 15
“petri netsd.2.2” 151 4 1 2 3

“documentationd.2.7” “training, help, and
documentationh.5.2”% 22 0,125000 1 0

“documentationd.2.7” “electronic publishingi.7.4” 9
0.066942 1 O

- 103 -

*user interfacesd.2.2” "user interfacesh.5.2”" 31
0.038542 1 0

*documentationd.2.7” “user/machine systemsh.1.2” 24
0.038083 1 0

*training, help, and documentationh.5.2"
“user/machine systemsh.1.2” 11 0.030250 1 0

“human factorsh.1.2” “user interfacesd.2.2” 10
0.014850 1 0

“user interfacesd.2.2” “visual programmingd.l.7” 10
0.010774 1 O

“user interfacesd.2.2” “user/machine systemsh.1.2”"
15 0.005850 1 0O

*parallelism and concurrencyf.l.2” “programming
environmentsd.2.6” 12 0.006476 1 0

“uger interfacesh.5.2" “user/machine systemsh.1.2” 9
0.004730 1 0

*programming environmentsd.2.6" “visual
programmingd.1.7” 7 0.004407 1 0

*concurrent programmingd.l.3” “parallelism and
concurrencyf.1.2” 18 0.024248 2 8

*algorithm design and analysisg.4” “parallelism and
concurrencyf.1.2” 8 0.011408 2 15

A

*parallelism and concurrencyf.l.2” “petri netsd.z2.2
12 0.008345 2 3

“language classificationsd.3.2” “parallelism ang
concurrencyf.1.2® 7 0.004071 2 8

*javad.3.2" “programming environmentsd.2.6” 11
0.003285 2 2

- 104 -

*language classificationsd.3.2” “programming
environmentsd.2.6” 9 0.00314% 2 8

*concurrent programmingd.l.3” “programming
environmentsd.2.6” 9 0.002836 2 8

*generald.2.0” *user/machine systemsh.1.2” 13
0.002715 2 9

*javad.3.2” “user interfacesd.2.2” 8 0.002069 2 2

“design tools and techniquesd.2.2” “user
interfacesh.5.2" 14 0.002067 2 8

“programming environmentsd.2.6” “software
developmentk.6.3”" 12 0.001720 2 2

“design tools and techniquesd.2.2” “user/machine
systemsh.1.2” 12 0.001665 2 8

*documentationd.2.7” “software developmentk.6.3" 8
0.001377 2 2

0.031813 0.069940 0.000874 2390 220

5 2 1
*web-baged gervicesh.2.5" 67 1 1 1 5
“web-basgsed interactionh.5.2% 52 1 1 1 5

“web-based interactionh.5.2" “web-based
servicesh.3.5% 19 0.103617 1 0

0.103617 0.000000 0.000000 71 19

- 105 -

*distributed databasesh.2.4” 17 1 1 1 6
*distributed systemsc.2.4” 47 1 1 1 6

*distributed databasesh.2.4” “distributed
systemac.2.4” 7 0.061327 1 0

0.,061327 0.000000 0.000000 56 7

72 1
“parallel programmingd.l1.3” 39 1 1 1 7
“performance measuresd.2.8” 47 1 1 1 7

“parallel programmingd.l.3” “performance
measuresd.2.8” 10 0.054555 1 0

0.054555 0.000000 0.000000 76 10

8 20 22

“design tools and techniquesd.2.2” 692 8 13 1 8
*concurrent programmingd.l.3™ 131 3 5 1 8
*language classificationad.3.2” 118 2 3 1 8
“software architecturesd.2.11” 160 3 3 1 8
*software developmentk.6.3” 384 6 2 2 2
*programming environmentsd.2.6” 218 3 2 2 4
“interoperabilityd.2.12” 63 1 2 1 8

“parallelism and concurrencyf.1.2” 102 4 2 2 4

- 106 -

*managementd.2.9" 278 4 1 2 9
*requirements/specificationsd.2.1” 306 4 1 2 15
“testing and debuggingd.2.5" 271 3 1 2 15

*digtribution, maintenance, and enhancementd.2.7” 82
31 2 15

“parallel architecturesc.1.4” 21 1 1 1 8
*processorsd.3.4” 50 1 1 1 8

*communications managementd.4.4” 13 1 1 1 8
Aprocess managementd.4.1” 24 1 1 1 8

“physical sciences and engineeringj.2” 21 1 1 1 8
*software/program verificationd.2.4” 218 3 1 2 15
*engineeringj.2”™ 71 2 1 2 3

A

*language constructs and featuresd.2.3™ 81 2 1 2 12

“interoperabilityd.2.12” “parallel
architecturesc.1.4” 8 0.048375 1 0

A

“design tools and techniquesd.2.2” “processorsd.3.4
18 0.009364 1 0O

“communications managementd.4.4” “design tools and
techniquesd.2.2® 9 0.009004 1 0

*design tools and techniquesd.2.2” “language
clagsificationsd.3.2” 25 0.007654 1 0

*design tools and techniquesd.2.2” “process
managementd.4.1” 11 0.007286 1 0

- 107 -

“design tools and techniquesd.2.2” “physical
sciences and engineeringj.2” 10 0.006881 1 0

*interoperabilityd.2.12" “goftware
architecturesd.2.11” 7 0.004861 1 0

*concurrent programmingd.l.3” “design tools and
techniquesd.2.2® 20 0,004412 1 0

“design tools and techniquesd.2.2” “software
architecturesd.2.11” 22 0.004371 1 0

“concurrent programmingd.l1.3” “parallelism and
concurrencyf.1.2” 18 0.024248 2 4

“software architecturesd.2.11” “software
developmentk.6.3" 28 0.012760 2 2

*design tools and techniquesd.2.2” “software
developmentk.G.BA 42 0.006638 2 2

*language clagsificationsd.3.2” “parallelism and
concurrencyf.1.2® 7 0,004071 2 4

*concurrent programmingd.l.3” "“software/program
verificationd.2.4® 10 0.003502 2 15

“language classificationsd.3.2” “programming
environmentad.2.6” 9 0.003149 2 4

A

“design toole and techniquesd.2.2” “engineeringj.2
12 0.002931 2 3

“concurrent programmingd.l.3” “programming
environmentsd.2.6” 9 0.002836 2 4

“design tools and techniquesd.2.2” “language
constructs and featuresd.3.3” 12 0.002569 2 12

“design tools and techniquesd.2.2” “managementd.2.9”
22 0.002516 2 9

- 108 -

“design tools and techniguesd.2.2”
“requirementsg/specificationsd.2.1” 22 0.002286 2 15

“concurrent programmingd.l.3” “testing and
debuggingd.2.5" 9 0.002282 2 15

“design tools and techniquesd.2.2” “distribution,
maintenance, and enhancementd.2.7” 11 0.002132 2 15

0.011357 0.071%20 0.000878 2301 277

9 19 24

“generald.2.0” 498 6 10 1 9

*managementd.2.9” 278 4 7 1 9

*software managementk.6.3” 162 2 4 1 9
*software developmentk.6.3” 384 6 4 2 2
“metriced.2.8" 154 2 3 1 9

*programming teamsd.2.9” 30 2 2 1 9

“project and people managementk.6.1” 35 1 2 1 9
“computer science educationk.3.2” 48 1 2 1 9
*curriculumk.3.2® 77 1 2 1 9

“design tools and techniquesd.2.2” 692 8 2 2 8
*object-oriented programmingd.l.5" 287 3 2 2 2

*distribution, maintenance, and enhancementd.2.7” 82
31 2 15

“user/machine systemsh.1.2” 125 2 1 2 4

- 109 -

“testing and debuggingd.2.5" 271 3 1 2 15
*generalc.2.0™ 41 2 1 2 14

“algorithm design and analysisg.4”™ 55 4 1 2 15
“computer-aided engineeringj.6” 85 2 1 2 3
*generalf.3.0" 151 1 1 9

*generalk.5.0" 11 1 1 1 9

*programming teamsd.2.9" “project and people
managementk.6.1” 7 0.046667 1 0

“computer science educationk.3.2” “generald.2.0” 33
0.045557 1 0

“computer science educationk.3.2”® “curriculumk.3.2”
12 0.038%61 1 O

A

*generald.2.0” “software managementk.e6.3” 46

0.026228 1 0
“curriculumk.3.2” “generald.2.0” 30 0.023471 1 ©

“managementd.2.9” “software managementk.6.3" 29
0.018674 1 0

*generald.2.0” “generalk.5.0" 7 0.008945 1 0
*generald.2.0” “generalf.3.0” 8 0.008568 1 0
*managementd.2.9” “metricsd.2.8" 19 0.008432 1 0

*managementd.2.9” “project and people
managementk.6.1” 8 0,006578 1 0

“managementd.2.9” “goftware developmentk.6.3” 39
0.014248 2 2

- 110 -

*programming teamsd.2.9" “software developmentk.s6.3”
7 0.004253 2 2

A

*generald.2.0” “software developmentk.6.3” 28

0.004100 2 2

*metricsd.2.8" “software developmentk.6.3” 15
0.003805 2 2

distribution, maintenance, and enhancementd.2,7
*managementd.2.9” 9 0.003553 2 15

*generald.2.0” “user/machine systemsh.1.2" 13
0.002715 2 4

A

“design tools and techniguesd.2.2” “managementd.2.9
22 0.002516 2 8

“generalc.2.0” “generald.2.0” 7 0.002400 2 14

*algorithm design and analysisg.4” “generald.2.0” 7
0.00178% 2 15

*managementd.2.9” “object-oriented programmingd.l.5”

11 ¢.001517 2 2

*design tools and techniquesd.2.2” “software
managementk.6.3” 13 0.001508 2 8

“software managementk.6.3” “testing and
debuggingd.2.5" 8 0.001458 2 15

“metricsd.2.8”" “object-oriented programmingd.l.5” 8
0.001448 2 2

*computer-aided engineeringj.6” “generald.2.0”™ 7
0.001158 2 3

0.023208 0.046466 0.000298 2383 313

- 111 -

10 3 2
*compilersd.3.4™ 70 1 2 1 10

“optimizationd.3.4” 31 1 1 1 10

“design tools and techniquesd.2.2” 692 8 1 2 8
*compilersd.3.4” “optimizationd.3.4™ 10 0.046083 1 0O

“compilersd.3.4” “design tools and techniquesd.2.2”
9 0.001672 2 8

0.046083 0.001672 0.000003 764 17

11 3 2
*goftware maintenancek.6.3” 82 1 2 1 11

*restructuring, reverse engineering, and
reengineeringd.2.7” 86 1 1 1 11

*software developmentk.6.3™ 384 6 1 2 2
“restructuring, reverse engineering, and
reengineeringd.2.7” “software maintenancek.6.3” 16

0.036302 1 0

*goftware developmentk.é6.3” “software
maintenancek.6.3™ 7 0.001556 2 2

0.036302 0.001556 0.000002 515 23

12 4 3

*language constructs and featuresd.3.3® 81 2 3 1 12

- 112 -

“studies of program constructsf.3.3” 28 1 1 1 12
“visual basicd.2.2” 62 1 1 1 12
“design tools and techniquesd.2.2” 692 8 1 2 8

“language constructs and featuresd.3.3” “studies of
program constructsf.3.3” 9 0.035714 1 0

*language constructs and featuresd.3.3” “visual
bagicd.2.2” 9 0.016129 1 0

“design tools and techniquesd.2.2” “language
constructg and featuresd.3.3” 12 0.002569 2 8

0.025922 0.002562 0.000007 808 28

13 2 1
“real-time and embedded systemsc.3” 50 1 1 1 13

“real-time systemg and embedded systemsd.4.7” 37 1 1
1 13

“real-time and embedded systemsc.3” “real-time
systems and embedded systemsd.4.7” 7 0.026486 1 0

0.026486 0.000000 0.000000 68 7

14 5 4
*performance of systemsc.4”™ 109 2 3 1 14
*generalc.2.0”™ 41 2 2 1 14

“network protocolsc.2.2” 54 1 1 1 14

-113 -

*petri netsd.2.2” 151 4 1 2 3
“generald.2.0” 498 6 1 2 9

*network protocolsc.2.2” “performance of systemsc.4”
10 0.016S82 1 0

“generalc.2.0” “performance of systemsc.4” 7
0.010964 1 ©

*performance of systemsc.4” “petri netsd.2.2” 12
0.008749 2 3

*generalc.2.0” *“generald.2.0” 7 0.002400 2 9

0.013977 0,011149 0.,000082 784 31

15 20 24

“requirements/specificationsd.2.1” 306 4 9 1 15
“testing and debuggingd.2.5” 271 3 7 1 15
“algorithm design and analysisg.4” 55 4 5 1 15
*software/program verificationd.2.4” 218 3 5 1 15

“distribution, maintenance, and enhancementd.2.7” 82
33 1 15

“software developmentk.6.3” 384 6 2 2 2

*specifying and verifying and reasoning about
programsf.3.1" 45 1 2 1 15

*concurrent programmingd.l1.3”™ 131 3 2 2 8

*design tools and techniquesd.z2.2” 692 8 2 2 8

114 -

“petri netsd.2.2” 151 4 1 2 3
“reliabilityd.2.4™ 44 1 1 1 15
*managementd.2.9™ 278 4 1 2 9

“*software architecturesd.2.11® 160 3 1 2 8
“applicationsi.6.3” 140 2 1 2 3

“Javad.3.2” 170 3 1 2 2

*software managementk.6.3" 162 2 1 2 9
“object-oriented programmingd.l1.5” 287 3 1 2 2
*generald.2.0” 498 6 1 2 9

“parallelism and concurrencyf.1.2” 102 4 1 2 4
“generalg.2.0” 94 2 1 2 3

“software/program verificationd.2.4” “testing and
debuggingd.2.5" 25 0.010579 1 0O

“software/program verificationd.2.4” “gpecifying and
verifying and reasoning about programsf.3.1" 10
0.0101%4 1 0O

“requirements/specificationsd.2.1” “specifying and
verifying and reasoning about programsf.3.1” 8

0.004648 1 0O

“reliabilityd.2.4” “testing and debuggingd.2.5" 7
0.004109 1 O

*algorithm design and analysisg.4”
*requirements/specificationsd.2.1”™ 8 0.003803 1 0

*distribution, maintenance, and enhancementd.2.7”
“testing and debuggingd.2.5" 8 0.002880 1 0

- 115 -

*requirements/specificationsd.2.1” “software/program
verificationd.2.4” 13 0.002533 1 0

“requirements/specificationsd.2.1” “testing and
debuggingd.2.5" 9 0.000977 1 ©

*algorithm design and analysisg.4” “parallelism and
concurrencyf.1.2” 8 0.011408 2 4

“algorithm design and analysisg.4” “generalg.2.0” 7
0.,009478 2 3

“algorithm design and analysisg.4” “petri netsd.2.2”
8 0.007706 2 3

“requirements/specificationsd.2.1” “software
developmentk.6.3” 25 0.005319 2 2

*dietribution, maintenance, and enhancementd.2.7”
“managementd.2.9” 9 0.003553 2 9

“concurrent programmingd.l.3” “software/program
verificationd.2.4” 10 0.003502 2 8

“applicationsi.s.3”
“requirements/specificationsd.2.1™ 11 0.002824 2 3

“dJavad.3.2” “software/program verificationd.2.4” 10
0.002698 2 2

“design tools and techniquesd.2.2”
*requirements/specificationsd.2.1” 22 0.002286 2 8

*concurrent programmingd.l.3” “testing and
debuggingd.2.5% 9 0.002282 2 8

“object-oriented programmingd.l.5"
“requiremente/specificationsd.2.1” 14 0.002232 2 2

“design tools and techniquesd.2.2” “distribution,
maintenance, and enhancementd.2.7” 11 0.002132 2 8

-116 -

“algorithm design and analysisg.4” “generald.z2.0” 7
0.001785% 2 9

*requirements/specificationsd.2.1” “software
architecturesd.2.11”™ 9 0.001654 2 8

“software managementk.6.3” “testing and
debuggingd.2.5" 8 0.001458 2 9

“software developmentk.6.3” “testing and
debuggingd.2.5" 11 0.001163 2 2

0.0045365 0.061484 0.000377 2873 211

-117 -

-811-

:T-den

Butwweaboxd juTexlsuod pue DTHOT

1998-2001.¢7.n10.112m 100-8.LM 1

logic programmingi. 2.3

logic and constraint rogrammigf. 4.

sdepn paomiAay

H XIANHddY

-61T -

putwwezbhoxd

pajustio-joalqo / juswdolsasp sIemijos

z-den

C 1998-3001.¢7.nl10.112m100-8.LM 2)

| goftware librariesd. 2.2 |

I rroprammer workbenchd 2 € I

wbject—oriented programmingd. 2.3 I

corbad 2.1

|l object—oriented design methedsd, 2.2

programm ing t¢arnsd, 2,9 |

requirementsfspecificationsd 2.1
I software developmentk. 6.3

| user interfacesd 2.2

managementd 2.9

| propramming environm entsd, 2.6 I

generald. 2.0

I software/propram verificationd 2.4 |

metricsd 2.8

-0¢1 -

putassutbus

popTe-I03ndwos / s39U Tijsd / suoTjedtrddy

£ -dey

.
.

< 1998-2001.¢7 0101 1Im100-3.LM 3 >

| perallelism and concarrencyf 1.2 ‘

| swochesioprocassesgs | 1 algorithen design and snalysisg.4 J

| performance of systemsc. 4 | ‘

ganarald. 2.0

petri netsd 2.2 |

——II generalg. 2.0 I

&
3
>
#
g
&
§
R
N
3
&
&
3

F computer-aided enginaeering). 6

3
3
&
3
5
o
=
& l stmulation output analyzisi.6.6 Il
&
53
«5“\
&
3
3

desipritools and techniquesd. 2.2

applicationsi 6.3 ‘

—
RCL
\\\“\\“-,\‘\\\\
)

enginesringj.2

AT e

I model validation and analysisi.é.4 I | requirements/specificationsd 2.1

- 121 -

UOTABIUDUNDOP / §90vII8jUT a9sn :p-den

1998-2001.¢7n10.11Zm100-S.LM 4

generald, 2.0

| design tools and techniquesd 2.2

training, nelp, and docomentationh 5.2 |

weer interfacash.5.2

| electronis publishingi7.4 |

| user/machine systemsh 1.2 |

| docum entationd.2.7 1

/ | corairrent programuingd. 1.3

I software developmentk. 5.3 ‘

| user interfacesd 2% J

I hman factorsh. 1.2 I

programuning emvirenmentsd 2.6

visuzl programrngd, 1.7

I language classificationsd 3.2 I

| algerithm desipn and analysise.4 I———-I perallelian and concarencyf 1.2 I
petrinetsd. 2.2

-Zcl -

:g-den

SS0TAISS paseq-gomM

|< 1998-2001.¢/.nl0.112m 100-3.LM 3 >

web—based servicesh. 3.5

web—based interactionti 5.3

- €l -

:9-depn

swolsAs peIngrIistd

k 1998-2001.¢7.n10.112m100-8.LMé

disiributed systemsc.2.4

distributed databasesh.2.4

- ¥l -

1L -den

putuwexboxd torTexed / seansesw S0URWIOIIDG

k 1998-2001.¢7.n10.112m100-8LM7

performance measuresd. 2.8

parallel programmingd. 1.3

- SC1 -

g-den

gonbTuynsy pue 81003 ubtsag

KT 198320017 n10.112m100-8LM B)

I perallel architechmrese, 1.4 l—l interoperabilitpd 2. 12 I

N\

| | software architecamesd 2 11 |

managementd 2.8

I communications managsmentd. 4.4

| softwears developmermy, 5.3

distr bartion, m aiitenance, 2nd snhancementd 2.7

design tools and techniquesd 22

language classificationsd. 3.2 l

processorsd 3.4

I Precess managementd.d4.1

| programming errvironmentsd 2.6 |

I parallellsm and concarrencyf. .2

I physical 2clences and <ngineering. 2 I

I GOnCUITent programmingd. 1.3 I

’ software/program verificationd 2.4] I tosfing md debuzzingd 23

- 91 -

6 -den

3sw / juswabeuel

S0TI

¢ 1998-2001.¢7.010112mI00-2LM S >

| object—erianted programmingd. 1.5

| dlstribution, mainteriancs, and enhanesmentd 2.7 |

melricsd 2 &

managementd. 29

testing and debuggingd. 2.5 I

project and peaple m anagementic, 6. 1 l

I computer science edncationk.3.2 |

software managementi. 6,3 I

| design tools and techniquesd. 2 2

| softwrare developmertk. 5.3 |

I propramm ing teamsd 2.9 |

| userfoachine systemsh 1.2 1

generald 2.0

generalle, 5.0

carriczumk. 3.2

generale. 2.0

I algorithm design and anal ysisg.4

computer—aided engineeringy.6 ‘

-Lel-

to1-den

uotjezTwrado / sIiaTTdwoD

k 1998-2001.¢7n10112m 100-8.LM 10 >

optimizationd.3.4

desipn tools and techniquesd.2.2 |I

compilersd 3.4

- 81 -

1T -den

SoURUSJUTRW SIBMIIOS

k 1998-2001.07n10.112m100-5.LM 11 >

restructuring, reverse enogineering, and reengineeringd 2.7

software maintenancek. 6.3

| software developmentl;. 6.3

-6C1 -

tz1-den

sainieal puer £730NI3SUCOD sbenbuer]

k 1998-2001.¢7.n10.112m100-8LM 12)

—

design tools and techniqussd. 2.2

language constracts and featuresd. 3.3

studies of program construetsf 3.3

visual basicd. 2.2

- 0T -

tep-den

SWa]SAE poppaqus pue swtj-Teay

1993-2001.¢7.n10.112m 100—5.LA 13

real—time systames and embedded systemsd. 4.7

real—time and embedded systemse.3

- IEl -

rpT-dep

grono3joxd Jxomisu / Swe3IsAs JO IDUBWIOIIRG

k 1998-2001.¢7.n10.112m100-5.LM 14 >

generalc. 2.0

nstwork protocolsc.2.2

performance of gystemasc. 4

generald.2.0 I petri netsd.2.2 |

-CEl -

qep

butbbn
pue butissi / suotilepijTnads-sjuswusainbay

S1-den

1%98~2001.c7 01011 2.m 100-S LM 15
T SED

I distribution, maintenancs, and enhancamentd 2.7 I

reliabilityd. 2.4 ‘

I software menagementlk. 5.3 I

1 conoTren progr A g L3 l_/.l testing and debuggirgd. .5 | [desigm tools and techniquesd 2.2

I softwere developmentis. 6.3 I

software/program verificationd 2.4

javad.3.2

I specifying and verifying and reasoning ebout programsfi 3,1

| petri netsd 2.2 |

| parallglism and concurrencyf. .2 I

APPENDIX I

Keyword Analysis Plots

Coupling: 0.00264575131106

R50—8

1998-2001.¢7.n10.112.m 100-8.LM Distributions

@

&,

Cohesion: 0.031813

Coupling-Cohesion Plot for Keyword Data

-133 -

Supernetwork for Keyword Data

134 -

236
213
198

187

145
132
119
117

102

96
95
92
86
82
72
71
68
68
64
64

59
55
50

49
49
47
46

46
45
45
45
45
44

software
analysis
program-
ming
applica-
tion
approach
program
design
software
engineer-
ing
engineer-
ing
study
development
testing
performance
system
technique
method
evaluation
java
technology
verifica-
tion
information
management
implementa-
tion
model
real-time
framework
software
develop-
ment
tool
case study
experience
practice
quality
object

APPENDIX J

Sorted Index of Title

44

43
42
40

40
40
39

39
39

38
38
38
38
37

35
34
33
33

31
30
30
30
30
29
29
29
29
28
28
28
28
28

27

27

software
architec-
ture
uge
generation
documenta-
tion
maintenance
parallel
communica-
tion
project
specifica-
tion
control
interaction
pattern
service
introduc-
tion
business
integration
semantic
user
interface
requirement
class
internet
language
science
concept
detection
process
workshop
corba
database
interface
modelling
optimiza-
tion
architec-
ture
assessment

-135-

Terms

27

26
26
26
26
26
25
25
25

25
25
25
24
23
23
23
23
23
22
22
22
22
22
21
21
21

21
21
21
21
21

20
20

20
20
20
20

design
pattern
ada
component
reuse
standard
team

C++

change
formal
specifica-
tion
measurement
roadmap
support
debugging
improvement
issue
prototyping
uml
validation
2nd ed

data
strategy
synthesis
usability
error
egtimation
formal
method
metric
petri
property
reliability
software
process
complexity
construc-
tion
description
methodology
module
server

20
20
19
19
19
19
135
19
18
18
18
18
18

18
18
17
17
17

17
17
17

17
16
16

1le
16
16
16
16
le
16
16

16
16

16
16

15
15

teaching
vear
environment
foundation
legacy
moniteoring
part

style
calculus
learning
miltimedia
security
visual
basic
window
workflow
building
journal
cbject-
oriented
software
petri net
poster
software
mainten-
ance

user

code
collabora-
tieon
computer
science
configura-
tion
evoluticn
pointer
prediction
programmer
real-time
system
representa-
tion
simulation
software
gsystem
tutorial
undersgtand-
ing

case

cost

15

15
15
15
15
15
15

15

15

15
14
14
14
14
14
14
14

14
i3
13
13
13
13
13
13

13
13
13

13
13
13
13

13
13
12
12
12
12

empirical
study
impact
lesson
panel
problem
product
programming
language
software
quality
software
reliabil-
ity
space
&mdash
consistency
fortran
net
perspective
resource
software
reuse
student
abstract
complex
effect
enterprise
future
hypermedia
infra-
structure
microsoft
network
object-
oriented
program-
ming
report
solution
survey
vigualiza-
tion
web
world
abstraction
algorithm
comparison
concurrent
program

- 136 -

12
12
12
12

12
11
11

11
11
11
11
11

11
11
11
11
11
11
11
11
11
11
il

11

11

10
10
10

10
10

i0
10
10
10
10
10
10
10
10

defect
more
overview
parallel
program
role
correctness
development
process
editorial
extension
aquide
hardware
investiga-
tion
platform
principle
procedure
production
reasoning
reference
reusgability
risk
scheduling
selection
software
engineer-
ing
education
pynchroniz-
ation
workshop
segsion
active
com
configura-
tion
management
diagram
distributed
obiject
domain
editor
exception
hierarchy
image
inspection
library
mechanism
message

10

10

10
10

10

10

10
10
10
10
10
10
10
10

10
10
10

D W WO v o

0

oW ww

0w

mobile
agent
object-
oriented
design
paradigm
performance
analysis
rapid
proto-
typing
relation-
ship
research
reverse
review
suite
test
theory
training
tutorial
gession
use case
verifying
way
access
alternative
apl
challenge
client
comprehen-
sion
definition
design ,
implement -
ation
effective-
ness
embedded
system
fault
generator
java program
object
technology
portable
poster
gession

W WD WD \D

WO W W WD N

[ne] @©

OO oo W @®Eom

® @©

programming
environ-
ment
proof
recovery
repository
scheme
software
component
software
procegs
improve-
ment
goftware
project
software
testing
gource
stl
type
version
viewpoint
vs
work
application
develop-
ment
benefit
buginess
process
case tool
class-
ification
curriculum
efficiency
effort
failure
feature
formalism
handling
instrument -
ation
linux
middleware
partial
evaluation
performance
evaluation
power
productivity

- 137 -

[=a]

~ -~ ~1 ~1 -1 -1 -1 1] -1 m

~] ~J

~1 ~1

Bt R |

~]

retrieval
robust
software
engineer
software
perform-
ance
software
tool
template
toolkit
y2k
3rd ed
agent
allocation
box
broker
bug
collection
commentary
company
component -~
based
system
composition
computer
cost
egtimation
cot
depend-
ability
editorial
pointer
example
execution
experience
report
experiment
extraction
forum
indugtry
inter-oper-
ability
monitor
object-
oriented
syatem
opportunity
panel
segsion

~1

IS B B B B]

o W o I L B3 [N e R« W o) T 3 ~1 1

o

path
pattern
language
perl
priority
protocol
query
ragce
refinement
reusable
goftware
reverse
engineer-
ing
search
gsoftware
evolution
goftware
product
line
specific-
ation
language
time
timing
transaction
tuning
virtual
environ-
ment
writing
abstract
interpret-
ation
adaptation
analyzer
animation
architec-
tural
style
aspect
assignment
cluster
component -
ware
concurrent
system
conflict
contribution
customer

[o R e I R)

OV O O OV N

[aa A T o2 T o A o W o T L W YR ¢ A TR 4 L W 00

a

Ty Oy O YO

T

distance
engineer
exploration
fault-
tolerant
formal
approach
formal
verific-
ation
function
guideline
individual
inference
integrity
interaction
detection
invariant
loto

manipulation

mapping
migration
mpi
object model
object-z
organization
paper
parallel-
ization
partition-
ing
portability
predicate
presentation
primer
reduction
requirement
specific-
ation
restructur -
ing
scalability
simple
software
design
software
developer
statechart
task
tcl

- 138 -

o)}

Uy y B &

Ui (8] un i o

n

Loy oo, u;m;

o

timed petri
net
tk
translation
unit
unix
visualizing
acm
action
algorithms
application
framework
automata
automating
benchmark
business
object
character-
istic
character-
ization
codesign
compiler
computation
computer
program-
ming
concept
analysis
constraint
conversion
coupling
crisis
delivery
delphi
dependency
deployment
development
project
distributed
system
education
empirical
analysis
feature
inter-
action
field
goal
good

)] [S2 e BN | n Ul

8]

Qe

ieee trans-
actions on
goftware
engineer-
ing
implication
information
gystem
innovation
internet
applie-
ation
iso
iterator
laboratory
legacy
system
load
meagure
meta-
computing
mobility
note
novel
object-
oriented
program
powerbuilder

un m ;g ;v

U

oo |

practical
guide
practical
programmer
presence
process
model
program
analysis
progress
propagation
gquestion
reachability
reality
reflection
regression
testing
responee
reusable
software
component
rule
safety
scenario
schemas
simplicity
sgoftware
configur-

-139 -

(S IR RO R e, |

o

ation
management
software
cost
software
engineer-
ing
regearch
gsoftware
ingpection
structure
syetem
design
technical
communic-
ation
tip
trangition
view
visual c++
visual
language
web site
workbench
workflow
management
world wide
web
xml

APPENDIX K

CAIR LM File for Titles

Run Parameters: Eliminate by Nodes

Pase Two Node Filter: Both nodes. Link Selection:
Strength and Max. Nodes. Min. Strength: 0.000000.
Min. Co-Occurrence: 5. Max links: 12. Max maps
100. Max nodes 10. Maps Produced: 16

15 4
*detection™ 29 1 3 1 1
“feature interaction”
“interaction detectiocn
*race® 71 111
“interaction™ 38 1 1 1 1

*feature interaction™ “interaction detection™ 5
0.833333 1 0

“detection™ “race” 6 0.177340 1 0

“*detecticn® “feature interaction®™ 5 0.172414 1 0
*detection” “interaction® 6 0.032668 1 0
0.303939 0.000000 0.000000 16 12

51 2 11
61111

221

tk 6111 2

*tel® 6 111 2

*tecl™ *tk™ 5 0.694444 1 0
0.694444 (0.000000 0.000000 6 5

321
“exception™ 10 1 1 1 3

*handling® 8 1 1 1 3

“*exception® “handling”™ 6 0.450000 1 0
0.450000 0,000000 0.000000 4 6

4 2 1

“server® 20 1 1 1 4

“client”™ 9 1 1 1 4

*client” “sexrver”™ 8 0.355556 1 0

- 140 -

0.355556 0.000000 0.000000 7 8

5 20 24
“analysis”™ 213 § 12 1 5

“performance” 86 3 6 1 5
“design® 119 3 5 1 5
“software”™ 236 6 3 2 8

A~

evaluation™ 68 1 3 1 5
pointer™ 16 1 2 1 &5

“petri® 46 1 2 1 5

*program”™ 132 2 2 2 1§

*approach”® 145 4 2 2 15

“design , implementation”™ 9 1 1 1 5
“technique” 72 2 1 2 13

“testing”® 92 2 1 2 15

“editorial® 11 1 1 1 5

“real-time™ 49 2 1 2 12

“model” 49 2 1 2 15

“method”™ 71 3 1 2 16

application®™ 187 5 1 2 12

study”™ 96 4 1 2 12

measurement™ 25 1 1 1 5

net® 17 1 1 1 5

“editorial”® “pointer”® 7 0.278409 1 ©
“net” “petri” 14 0.250639 1 0

“design”® “design , implementation” 9 0.075630 1 0
“analysis”® “pointer”™ 8 0.018779 1 0
“analysis” “performance” 16 0.013975 1 0
*evaluation”® “performance” 9 0.013851 1 0
*analysis”™ “petri”® 11 0.012349 1 0
“measurement” “performance™ 5 0.011628 1 0
*design® “evaluation”™ 9 0.010010 1 0
*analysis”® “design® 12 0.005681 3 0
analysis® “program™ 15 0.008003 2 15
analysis”™ “testing”™ 10 0.005103 2 15
performance” “program”™ 7 0.004316 2 15
analysis”™ “software” 14 0.003899% 2 8
analysis”® “real-time” 6 0.00344% 2 12
analysis™ “model”™ 6 0.003449 2 15
*design” “method™ 5 0.002959 2 16
“approach™ “performance” 6 0.002887 2 15
“analysis”™ “approach”™ 9 0.002623 2 15

N

LR S I

> r r > > >

- 141 -

*analysis”™ “study”™ 7 0.002396 2 12
*performance” “software™ 6 0.001774 2 8
*analysis® “technique”® 5 0.001630 2 13
“application” “design® 6 0.001618 2 12
“evaluation® “software™ 5 0.001558 2 8
0.069095 0.045664 0.000188 393 168

6 2 1

*estimation™ 21 1 1 1 6

*effort™ 8 1 1 1 6

*effort”™ “estimation”™ 6 0.214286 1 0
0.214286 0.000000 0,000000 3 6

721

“software process™ 21 1 1 1 7

*improvement” 23 1 1 1 7

*improvement” “software process”™ S 0.167702 1 0
0.167702 0.000000 0.000000 10 &

8 19 24

“software”™ 236 € 10 1 8

“engineering”™ 107 3 9 1 8

“software engineering”® 122 2 6 1 8

*methodology™ 20 2 3 1 8

*science” 30 2 3 1 8

“ieee transaction® 51 2 1 8

“application™ 187 5 2 2 12

“approach” 145 4 2 2 15

*software development” 46 2 1 2 12

“roadmap”™ 25 1 1 1 8

“configuration™ 16 2 1 2 11

*development™ 95 2 1 2 12

“ieee transaction on software engineering™ 5 1 1 1 8
project™ 39 2 1 2 11

programming” 198 3 1 2 15

analysis®™ 213 5 1 2 5

study”™ 96 4 1 2 12

reverse” 10 1 1 1 8

workshop session™ 11 1 1 1 8

engineering”® “software engineering” 41 0.128773 1 0
roadmap”™ “software engineering”™ 13 0.055410 1 ©
engineering” “ieee transaction™ 5 0.046729 1 0

L S N S A A I

- 142 -

“ieee transaction” “software engineering”™ 5 0.040984
10

“ieee transaction on software engineering” “software
engineering”™ 5 0.040984 1 0

“engineering” “software” 31 0.038056 1 0
“engineering” “reverse” 5 0.023364 1 0
“engineering”® “workshop session”™ 5 0.021240 1 0
“engineering”® “science”™ 8 0.,019%38 1 ©
“engineering” “methodology”™ 6 0.016822 1 0
“science” “software engineering”™ 7 0.013388 3 0
“software” “scftware engineering” 14 0.006807 3 0
*methcdology” “software” 5 0.005297 3 0
“configuration” “software” 7 0.012977 2 11
*development” “software” 14 0.008742 2 12
“application® “methodology”™ 5 0.006684 2 12
*project” “software” 7 0.005324 2 11
*programming” “science” 5 0.004209 2 15
“analysis™ “software” 14 0.003899 2 5

*software” “study”® 9 0.003575 2 12

“approach® “engineering”® 7 0.003158 2 15
*approach”® “software” 10 0.0029%22 2 15
“application” “engineering” 7 0.002449 2 12
*software” “software development”™ 5 0.002303 2 12
0.035215 0.056242 0.000393 365 152

9 21

*experience” 45 1 1 1 9

“report™ 13 1 1 1 9

“experience” “report”™ 8 0.109402 1 0
0.109402 0.000000 0.000000 29 8

10 2 1
*reliability™ 21 1 1 1 10

“goftware reliability”™ 15 1 1 1 10

“reliability”® “software reliability”™ 5 0.079365 1 0
0.079365 0.000000 0.000000 13 5

11 4 5

*management”™ 55 1 3 1 11
“software” 236 6 3 2 8
“configuration™ 16 2 2 1 11
*project”™ 3% 2 2 1 11

- 143 -

“configuration® “management”® 6 0.040909 1 0
*management” “project® 5 0.011655 1 0
“configuration® “software® 7 0.012977 2 8
*project”™ “software™ 7 0.005324 2 8
“management” “software” 5 0.001926 2 8
0.026282 0.020227 0.000200 48 22

12 20 24
*application” 187 5 14 1 12

“study” 96 4 6 1 12

*development® 95 2 4 1 12

“goftware”™ 236 6 4 2 8

*real-time™ 49 2 3 1 12

“analysis™ 213 5 2 2 5

*software development”™ 46 2 2 1 12
“approach”™ 145 4 1 2 15

*tool™ 46 2 1 2 16

“method”™ 71 3 1 2 16

“engineering”® 107 3 1 2 8

“degign®™ 119 3 1 2 5

“performance” 86 3 1 2 5

*real-time system”™ 16 1 1 1 12

“internet”™ 30 1 1 1 12

*framework”™ 47 1 1 1 12

*network”™ 13 1 1 1 12

"metric™ 21 1 1 1 12

*programming® 198 3 1 2 15

*methodology”™ 20 2 1 2 8

*real-time”® *real-time system™ 5 0.031888 1 0
*development” “software development”™ 10 0.022883 1 0
*metric® “study” 6 0.017857 1 0
“application® “internet®™ 8 0.011408 1 0
“application”™ “framework”™ 10 0.011378 1 0
*application” “network”™ 5 0.010284 1 0
“development”™ “study”™ 9 0.008882 1 0
*application® “development® 12 0.008106 1 0
“application® *real-time™ 7 0.005348 1 0
*application® “study”™ 5 0.001393 3 ©
“development” “goftware”™ 14 0.008742 2 8
“application® “programming” 16 0.006914 2 15
“application® “methodology”™ 5 0.006684 2 8
“application™ “approach”™ 13 0.006233 2 15

- 144 -

“application® “tool”™ 7 0.005696 2 16
*method” *study”™ 5 0.003668 2 16
“software® “study” 9 0.003575 2 8
“analysis” “real-time”™ 6 0.003449 2 5
“application™ “engineering”™ 7 0.002449 2 8
analysis® “study” 7 0.002396 2 5
software” “goftware development™ 5 0.002303 2 8
application® “design”™ 6 0.001618 2 &5
application” “performance™ 5 0.001555 2 5
application” “software™ 8 0.001450 2 8
0.012943 (0.056733 0.000303 464 142

> x> x>

13 3 2

“*technique® 72 2 2 1 13

*comparison® 12 1 1 1 13

“analysis® 213 5 1 2 5

“comparison” “technique” 5 0.028935 1 0
“*analysis” “technique™ 5 0.001630 2 5
0.028935 0.001630 0.000003 81 10

14 2 1

*interface® 28 1 1 1 14

“user interface” 33 1 1 1 14

*interface® *user interface™ 5 0.027056 1 0
0.02705¢ 0.000000 0.000000 20 5

15 17 21
“approach”™ 145 4 8 1 15
*program”™ 132 2 6 1 15
programming”™ 198 3 4 1 15
*analysis™ 213 5 4 2 5
*verification™ 64 1 3 1 15
“testing™ 92 2 3 1 15
“model” 49 2 2 1 15
*performance” 86 3 2 2 5
“application”™ 187 5 2 2 12
“specification™ 39 1 1 1 15
“property™ 21 1 1 1 15
“parallel”™ 40 1 1 1 15

*2nd ed”™ 22 1 1 1 15
“science”™ 30 2 1 2 8
“engineering” 107 3 1 2 8

>

- 145 -

“software”™ 236 6 1 2 8

*software engineering”™ 122 2 1 2 8
“specification® “verification” 8 0.025641 1 0
“property” *verification™ 5 0.018601 1 0
“2nd ed” “programming™ 8 0,014692 1 0
*parallel”™ “program™ 8 0.012121 1 0
“program” “verification” 6 0.004261 1 0
*model” “program™ 5 0.003865 1 0

*program® “testing”® 6 0.002964 1 0
“approach® “programming” ¢ 0.002821 1 0
“approach® “testing™ 6 0.002699 1 0
“analysis”® “program”™ 15 0.008003 2 5
*application® “programming” 16 0.006914 2 12
application” “approach” 13 0.006233 2 12
analysis® “testing® 10 0.005103 2 5
performance”™ “program™ 7 0.004316 2 5
programming”® “science™ 5 0.004209 2 8
analysis®™ "model”™ 6 0.003449 2 5

approach” “engineering” 7 0.003158 2 8
approach” “software” 10 0.002922 2 8
approach” “performance” 6 0.002887 2 5
“analysis”® “approach®™ 9 0.002623 2 5
*approach”® “software engineering™ 5 0.001413 2 8
0.009741 0.051230 0.000261 434 141

LD D I

> r >

16 6 5
“method”™ 71 3 4 1 16

“tool”™ 46 2 2 1 16

“application™ 187 5 1 2 12

“study”® 96 4 1 2 12

“design™ 119 3 1 2 5

*software”™ 236 6 1 2 8

*method”™ “tool”™ 6 0.011023 1 0
“application® “tool”™ 7 0.0056396 2 12
*method” “study” 5 0.003668 2 12
*design”® “method™ 5 0.002959 2 5
“method” “software™ 5 0.001492 2 8
0.011023 0.013815 0.000057 222 26

_ 146 -

- LyT-

:1-depn

uUoT310932d-uoTjoeialjul

k!998—2001 5010112 m100-5. LM I p

feature interaction

interaction detection

detection

sdewy 9T3TL

T XIANAddY

1A%

:z-depn

AL-TOL

4 1998—2001 5110112 m100-S.LM 2)

tcl

4%

to-den

butTpueg-uoT3dsoxy

K 1998—2001 <5n10112m100-S.LM E >

exception

-0S1 -

:p-den

ISAISS-3USTID

k ! 998-2001.¢5.n10.112.m100-S.L.M E)

- 161 -

apuBWICIISd — STSATEUY :G-del

E 1998-2001.c5.010.112.m100-S1M 5

measurement

design , implementation I

application
~ T
%
b technique
~
software X
\
X
N
=
X
performance Y

approach

editorial

real-time

study

-CS1-

:g-dep

UOT3eWTI3IsSH - 2IIOIIH

-e6l-

1/ -den

quswaasoxdw - S89001d 2IemM3JO0S

998-2001.¢5.n10112.m100-S.LM 7/

improvement

| | | |
software process

-pS1 -

:g-den

tutiosutbug =sIem1I08

; i998—2001 5010112 m100—-8.LM §>

| project |

configuration

software development

engineering

Teverse

analysis

Ioadmp

software \\'\‘\\\\\\\\\\\\\\\\\\\\\\\i software engineeling l

ieee transaction

I ieee transaction on software engineering1|

‘l?orkshop session I

-6ST-

1 g-den

spusTaadxg- 3jxodsy

k !998—2001.c5.1110.112.m100—S.LM 2)

| :
; experience

- 961 -

:01-den

AQTTTRTI oY =2IemM3J0S

Ei998~2001351ﬂ0112jn100—Sl$A19)

- LST-

tTT-den

jquswabeueny - 3oeload

E i998—2001.05.n10.112.m100-S.LM 1 I >

management

o]

- 881 -

tz1-den

quswdoTaasg - uorjeorTddy

Ei998—2001.05.111 0112.ml100-S.LM 12)

software devel opment

engineering

software development

AR
\\\«\\.\\“\\\\\\\
S
AR

, application

methodology

e

Ireal—ﬁme Fystem I

network
- framework
|
approach

tool

-6S1 -

te1-den

snbtuyns], - uostaedwod

<1998—200L05n101121n100%$LA41;)

comparison

=091 -

:y1-den

soeJIojul I8sn

Ei998—2001.c5 nl10.112.m100-S.LM 13)

user interface

1910 -

:gT-den

UOTIBDNTITISA - Wexbold

E @98—200] 5010112 ml00-S LM 1§ >

verification

I parallel =

property ‘

program

software engineering ‘

performance
application
| approach ' programming
software 2nd ed

e

- 291 -

:9T-den

1005 - POY3IW

Ei 998-2001.¢5.n10112.m100-S.LM 1§>

software

[application I

APPENDIX M

Title Analysis Plots

©

98-2001.¢5n10.112.m100-S.LM Distributions

® OO COCE

Coupling SQRTsumSQ: 0.0

1S

O ee 0

Cohesion: 0.07423

Title Coupling-Cohesion Plot

- 163 -

- $91 -

jyaxomisuaxadng ST3ITL

§98-2001.¢5.n101122m100-S.LM Networy

REFERENCES

[CALLONS84]
Calleon, M., et al., Mapping of the Dynamics of Science
and Technology, MacMillan, London, 1986,

[CALLON91]

Calleon, M., et al., “Co-word Analysis as a Tool for
Describing the Network of Interactions between
Basic and Technological Research: The Case of
Polymer Chemistry,” Scientometrics 22, 1 (1991},
pp. 153-203.

[CHAPMANS7]

Chapman, N., “Petri Net Models,” SURPRISE 97: Surveys
and Pregentations in Information Systems
Engineering, Imperial College of Science
Technology and Medicine, London, UK, (May - June
1997) .

[COULTER91]

Coulter, N. S., “Changes to the CR Classification
System,” Computing Reviews 32, 1 (January 1991},
pp. 7-10.

[COULTER96]

Coulter, N. 8. and I. Monarch, "“Best Practices: What
Software Engineering Can Learn from Manufacturing
Engineering,” SEI Scftware Engineering Symposium,
Pittgburg, September 1996, pp. 7-8.

[COULTER98A]

Coulter, N. 8., “ACM’'s Computing Classification System
Reflects Changing Times,” Communicaticns of the
ACM 40, 12 (December 1997), pp. 111-112.

- 165 -

[COULTER98R]

Coulter, N. 5., et al., "“Software Engineering as Seen
through Ite Research Literature: A Study in Co-
Word Analysie,” Journal of the American Society
For Information Science 49, 13 (1998), pp. 1206-
1223.

[COURTIALBY]

Courtial, J. P. and J. Law, “A Co-word Study of
Artificial Intelligence,” Social Studies in
Science 19 (1989), pp. 301-311,

[HAMMOND9 9]

Hammond, T., et al., “CAIR-Prep,” Team Project for CEN
4010: Principles of Software Engineering, taught
by Dr, Neal S. Coulter, Florida Atlantic
Univergity, Boca Raton, Florida, 1998.

[KESSLER63]

Kessler, M., “Bibliographic Coupling between
Scientific Papers,” American Documentation 14
(1963), pp. 10-25,

[LAW92]

Law, J. and J. Whittaker, "Mapping Acidification
Research: A Test of the Co-word Methed,”
Scientometricg 23, 2 (1992), pp. 417-461.

[SAMMETS82]

Sammet, J. E. and A. Ralston, “The New {1982)
Computing Reviews Clasgification System - Final
Vergion,” Communications of the ACM 25, 1
(January 1982), pp. 13-25.

[SAMMET83]

Sammet, J. E., "“Summary of Changes from 1982 to 1983
Version of CR Clasgification System,” Computing
Reviews 24, 1 {January 1983), pp. 7-8.

- 166 -

[SAMMET87]

Sammet, J. E.,, “Summary of Additiong from 1983 to 1987
Version of CR Classification System,” Computing
Reviews 28, 1 (January 1987), pp. 5-6.

[SHAHS7]

Shah, P. P., “Content Analysis of Design Practiceg,”
Master’s thesgis, College of Engineering, Florida
Atlantic University, Boca Raton, 1997.

[SMALL73]

Small, H., “Co-citation in the Scientific Literature:
A New Measure of the Relationships between
Documents,” Journal of the American Society for
Information Science 24 (1973), pp. 265-269.

[WHITTAKERS8Y]

Whittaker, J., “Creativity and Conformity in Science:
Titles, Keywords, and Co-word Analysis,” Social
Science in Science 19 (1989}, pp. 473-496.

- 167 -

VITA

Terry Smith has a Bachelor of Science from the
University of North Florida in Mathematics and
Physics, 1989, and expects to receive a Master of
Science in Computer and Information Sciencea from
the University of North Florida in April 2004. Dr.
Neal Coulter of the University of North Florida is

serving as Mr. Smith’s thesis advisor.

Mr. Smith is the Director of Information
Technologies for the College of Computing,
Engineering, and Construction at the University of
North Florida and has held this position since 2001.
Mr. Smith has held a number of IT posgitions outside
academia, but he is most proud of his years teaching

at the University of North Florida.

Mr. Smith began his teaching career in 1989 as a

teaching assistant in the Department of Mathematics

- 168 -

and Statistics. In 1991, he accepted the position
of instructor of astronomy and physics in the
Department of Natural Sciences. Later, from 1995 to
2000, he was an instructor in the Department of
Computer and Information Sciences, where he taught a

variety of freshman- through senior-level classes.

Mr. Smith has authored a number of published works,
including printed books, journal articles, training
manualg, a plethora of online reference materials,

and one online book.

Mr. Smith has on-going interests in content analysis
and its application to a wide wvariety of complex
fields, including continued analysis of software

engineering, astronomy, and linguistics.

- 169 -

	Recent Trends in Software Engineering Research As Seen Through Its Publications
	Suggested Citation

	TITLE PAGE
	CONTENTS
	LIST OF FIGURES

	LIST OF TABLES

	ABSTRACT
	Chapter 1
INTRODUCTION
	Chapter 2 THE DATA

	2.1 The CCS
	2.2 SGML Data Set
	2.3 Initial Examination

	Chapter 3
PREPARING THE DATA
	3.1 CAIR-Prep
	3.2 Final Preparations

	Chapter 4 CO-WORD ANALYSIS

	4.1 The Metric
	4.2 The Algorithm
	4.3 The CAIR System
	4.3.1 CAIR Command-Line Tools
	4.3.2 CAIR LM File
	4.3.3 CAIR GUI

	4.4 Naming Networks

	Chapter 5 KEYWORD ANALYSIS

	5.1 Review of Keyword Maps
	5.2 Keyword Network Cohesion and Coupling
	5.3 Keyword Supernetwork Analysis

	Chapter 6 THEMES AND TRENDS

	Chapter 7 TITLE ANALYSIS

	7.1 The Title Data
	7.2 CCS General Terms
	7.3 Themes from the Title Index
	7.4 Title Networks

	CONCLUSIONS
	APPENDIX A
The Top Two Levels of the CCS (1998)

	APPENDIX B Sample SGML Data Set

	APPENDIX C Sample CAIR-Prep Keyword Data

	APPENDIX D Sample CAIR-Prep Title Data

	APPENDIX E Sample Keyword Data with SGML-style Tags

	APPENDIX F CAIR Processing Sequence

	APPENDIX G CAIR LM File for Keywords

	APPENDIX H Keyword Maps

	APENDIX I Keyword Analysis Plots

	APPENDIX J
Sorted Index of Title Terms
	APPENDIX K CAIR LM File for Titles

	APPENDIX L Title Maps

	APPENDIX M Title Analysis Plots

	REFERENCES

