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CHAPTER 1 

Interpopulation variation in the trade-off between body mass gain and 

age at oviposition in the eastern lubber grasshopper, Roma/ea microptera 

Abstract 

Isolated populations that inhabit various geographic and climatic ranges tend to 

diverge in their life history tactics. When development time is constrained by 

unfavorable seasons, often an organism must trade-off the investment of resource 

allocation between somatic and reproductive growth. The variation in reproductive 

tactics and juvenile hormone titers were studied among three populations of Roma/ea 

microptera from Athens, GA, Jacksonville, FL, and Miami, FL, all of which exist on a 

latitudinal cline. The Athens population was significantly younger at oviposition and 

gained significantly less body mass than both the Jacksonville and Miami populations, 

which did not differ from each other. Clutch mass did not differ across populations. With 

respect to both body size and oviposition age, Athens invested significantly more 

(measured by clutch size) to their first clutch than either Jacksonville or Miami, which 

did not differ from each other. Juvenile hormone and lipid profiles did not differ among 

populations. In response to the markedly reduced season length, results suggest that 

Athens grasshoppers respond with reproductive tactics that support terminal 

investment by investing more energy in less time to reproduction, at the expense of 

future reproduction. 



Introduction 

Studying interpopulation variation in common garden experiments can provide 

evidence of differences due to natural selection (Futuyma 1998). Populations from 

localities with shorter growing seasons may exhibit earlier life history transitions at 

lower body masses (Forrest 1987; Rowe & Ludwig 1991; Temte 1993; Berkenbusch & 

Rowden 2000; Hatle et al. 2002; Luker et al. 2002). This trade-off between 

development time and body mass is most critical when time constraints on growth and 

reproduction are imposed by seasonality (e.g., onset of winter). Models of life history 

evolution speculate that a decrease in lifespan will result in earlier development and 

an increased reproductive investment at early ages (e.g., Williams 1966; Charlesworth 

1980; Reznick et a1.1990; Roff 1992; Partridge et aI1995). 

Roma/ea microptera, the eastern lubber grasshopper, inhabits a wide 

geographic range that includes distinctly different climates. Lubber grasshoppers are 

flightless and disperse little (~5 0 m /lifetime, Whitman 1990). In addition, there are 

distinct differences in the size and color of distant populations of lubber 

grasshoppers. Sequencing of the mtDNA cytochrome-b gene showed that nearly all 

populations are distinguishable (Mutun & Borst 2004). Previous work suggested a 

latitudinal trend in the trade-off among age at oviposition, clutch mass, and body 

mass gain (Hatle et al. 2002). This study, which included populations from Miami, 

Florida (FL), Lydia, Louisiana (LA), and Athens, Georgia (GA), was confounded by 

longitudinal variation. To address this weakness, I compared a population from 

Jacksonville, Florida with Miami and Athens grasshoppers. 
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The Jacksonville population of lubber grasshoppers is of particular interest. 

First, it falls directly on a latitudinal cline between previously studied Athens and 

Miami populations, and is almost exactly in between them. Second, the Jacksonville 

population exists in a remarkably different ecosystem than the Miami and Athens 

populations. Miami and Jacksonville are separated by the "frost line", which marks 

the transition from mangroves in the south (Myers & Ewe11990) to pines in north 

Florida. Athens is in the primarily deciduous Southern Piedmont, distinct from both 

Jacksonville and Miami (Narsal 2007). 

In all major insect orders except Diptera, juvenile hormone (JH) is a major 

gonadotropin. It stimulates vitellogenin synthesis and mediates patency (Nijhout 

1994). In the lubber grasshopper, JH is required for vitellogenin-mRNA production (Fei 

et aI., 2005). Further, JH levels are associated with the timing of oviposition; low fed 

grasshoppers reach the maximum level of JH later and oviposit later than highly fed 

grasshoppers (Hatle et al. 2000). 

Variation in reproductive tactics and JH titers among Athens, Jacksonville, and 

Miami populations existing on a latitudinal cline were examined. I predicted that 

age at oviposition will vary such that Athens < Jacksonville < Miami. A cost for early 

oviposition should be observed in the Athens population, perhaps as a reduction in 

clutch mass or somatic growth. Further, I predict that the age at which the maximum 

level of JH is attained will vary such that Athens < Jacksonville < Miami. 



Methods 

Juvenile lubber grasshoppers were field-collected from Athens, Jacksonville, and 

Miami and shipped to the laboratory in Jacksonville. Latitudes for these locations 

are approximately 25° N, 30° N, and 33° N respectively. Athens has 249 frost-free 

days; Jacksonville has 345 frost-free days; and Miami is frost-free year round 

(NCDC 2007). 

Juveniles were reared en masse on ad libitum Romaine lettuce and oats 

and under heat lamps at 24±2 ° C on a 14L:10D photoperiod. On the day of adult 

molt, females were weighed, isolated and reared individually in 500 ml ventilated 

containers, at a 14L:lOD photoperiod and a corresponding 32:24°C thermocycle. 

Previous research suggests that variable reproductive plasticity among 

interpopulations is absent; i.e., Athens, LouiSiana, and Miami populations all 

responded to low food Similarly (Hatle et al. 2002). Therefore, individuals were 

offered the same relative diet adjusted for body size. To determine the amount of 

feed to be given to each insect, the femur length of each individual was multiplied 

by a constant (0.12) yielding the total mass of Romaine lettuce in grams. 

Hemolymph samples were taken twice a week and stored in hexane at -20°C 

for later analysis of JH titers (Hatle et al. 2000) and total hemolymph lipids. Beginning 

at day 24, females were tested for oviposition (Hatle et al. 2000). Once a female 

oviposited, she was weighed and retired from the study. Eggs from each female were 

counted and dried (Athens n = 9, Jacksonville n = 12, Miami n =11). Egg weight for each 
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individual was obtained by averaging the weight of ten eggs. Clutch mass (n = 9 for all 

populations) was calculated by multiplying an individual's average egg weight by the 

total number of eggs oviposited. 

Juvenile hormone titers over the course of each individual's reproductive cycle were 

analyzed via radio-immunoassay (Hatle et al. 2000). All of the samples from a single 

individual were analyzed simultaneously to avoid any effects of interassay variation. 

The order of analysis of individuals was randomized. The maximum level of JH (Athens 

n = 9, Jacksonville n = 12, Miami n = 6) was determined by comparing all samples for 

an individual and identifying the sample with the highest JH titer. The age at which 

that sample was collected was defined as the age at maximum level of JH (Athens n = 

9, Jacksonville n = 12, Miami n = 6) 

The total hemolymph lipids of seven individuals from each population were also 

measured from the same hemolymph samples. The transportation of lipids occurs via 

the hemolymph. Approximately 40% of the egg is lipid (Chapman 1998). Therefore, a 

minimum rate of lipid transport may be required to complete vitellogenesis. If lipids 

play an important role in the timing of oviposition, I predict a peak of lipid transport 

during the period of greatest growth of oocytes. Lipids were measured as vanillin-

positive material using vegetable oil standards (Hatle & Spring 1998). 

All data were statistically analyzed to determine the effects of population. A 

MANCOVA with initial weight as a covariate was used to analyze the three-way trade-

off among age at oviposition, clutch mass and body mass gain after oviposition 
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(Athens n = 9, Jacksonvi"e n = 10, Miami n = 12). Because initial body mass was used 

as a covariate (Pillai's Trace = 0.337; F3, 20 = 3.38; P = 0.038), body mass after 

oviposition estimates the somatic mass gained from adult molt to oviposition. A 

second MANOVA was used to analyze data on maximum level of JH, age at maximum 

level of JH and time from maximum level of JH to oviposition (Athens n = 9, Jacksonville 

n = 12, Miami n = 6). A one-way ANOVA was used to analyze lipid data. SAS PROC GLM 

was used for all analysis (SAS 1989). 

Results 

Reproductive tactics 

Both body mass after oviposition (F3, 22 = 17.02, P < 0.0001) and age at 

oviposition (F3, 22 = 5.81; P = 0.004) were significantly affected by population (Fig. 1; 

MANCOVA; Pillai's Trace = 0.598; F6, 42 = 2.99; P = 0.016). Multivariate pairwise 

contrasts indicated that the Athens population differed significantly from both the 

Jacksonvi"e (P = 0.0005) and Miami (P = 0.0258) populations, which did not differ from 

each other (P = 0.3196). 

Standardized canonical coefficients (age at oviposition = 0.819; body mass after 

oviposition = 1.48; clutch mass = -0.061) indicate that the greatest effect of population 

was due to the mass after oviposition followed by the age at oviposition. Clutch mass 

had no contribution to population differences. Athens age at oviposition was 

significantly less than both Jacksonville (pairwise contrast statement P = 0.0113) and 

Miami (P = 0.0446) populations, which did not differ from each other (P = 0.6009). 
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Similarly, body mass after oviposition (adjusted for body mass at molt as a MANCOVA 

co-variate) for Athens was significantly less than both Jacksonville (P = 0.0003) and 

Miami (P = 0.0243) populations, which did not differ from each other (P = 0.0847). 

The ratio of clutch size to body size (as femur length) was significantly 

affected by population (ANOVA; F2, 25 = 8.932; P = 0.001). Pairwise comparisons 

indicate that the Athens population produced a larger dutch with respect to body 

size than both the Jacksonville (P = 0.001) and Miami (P = 0.015) populations, which 

did not differ from each other (P = 0.497). 

The ratio of dutch size to oviposition age was significantly affected by 

population (ANOVA; F2, 18 = 10.744; P = 0.001). Pairwise comparisons indicate that 

the Athens population produced a larger dutch with respect to age than both the 

Jacksonville (P = 0.001) and Miami (P = 0.011) populations, which did not differ from 

each other (P = 1.000). 

Juvenile Hormone attributes 

There was no significant population effect on JH attributes (Fig. 2; MAN OVA; 

Pillai's Trace = 0.338; F6, 46 = 1.56; P = 0.180). Populations did not differ statistically in 

their age at maximum level of JH (F2, 24 = 1.51; P = 0.242), time from maximum level of 

JH to oviposition (F2, 24 = 1.60; P = 0.222), or maximum titer of JH (h, 24 = 0.22; P = 

0.807). 

Hemolymph Lipids 
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No distinct peaks among the hemolymph lipid profiles existed for any of the 

populations (Fig. 3). The grand means of each population were compared by AN OVA. 

There was no significant population effect on mean hemolymph lipid concentration 

(F2, 14 = 0.44; P = 0.653). 

Discussion 

In this study, I examined interpopulation variation in a three-way trade-off 

among body mass gain, age at oviposition, and clutch mass. I also tested 

interpopulation variation in JH titers and lipid transport. Populations significantly 

differed in the three-way trade-off among body mass gain, age at oviposition, and 

clutch mass. The body mass gain and age at oviposition were the only variables that 

contributed significantly to the interpopulation variation (Fig. 1). 

Across populations, early oviposition correlated with less somatic growth. It 

has been hypothesized that somatic mass gained during egg production is directed 

toward reproduction of subsequent clutches (Hatle et al. 2002). This implies that the 

cost for early reproduction does not appear in the current reproductive event, but 

rather at the cost of future reproduction. The current reproduction over future 

reproduction trade-off, known as the terminal investment hypothesis, has been 

observed previously in various organisms faced with the threat of a reduced lifespan 

(Pianka & Parker 1975). Most previous research on terminal investment involves 

individual plasticity in responding to life-reducing events such as exposure to 

bacteria, parasites, or viruses (Adamo 1999; Bonneaud et al. 2004), injury (Javois & 
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Tammaru 2004), or senescence (Tatar & Carey 1995). My research involves adaptive 

responses due to population variation. Further studies would be needed to determine 

if the terminal investment theory might apply to populations as an adaptive response 

to environments that shorten lifespan. 

Athens was the only population that differed in body mass gain and age at 

oViposition with no difference in clutch mass among populations. Jacksonville 

populations are intermediate and equidistant from Athens and Miami both 

latitudinally and climatologically. However, the results indicate that biologically 

Jacksonville populations are more similar to Miami than to Athens. The results suggest 

that among the three populations, Athens is the only one that has undergone 

evolutionary divergence in reproductive tactics. The similarities between the 

Jacksonville and Miami populations are consistent with a linear relationship amo ng 

populations, yet are not consistent with the predicted latitudinal cline. The absence of 

a distinction between Jacksonville and Miami populations could be due to a balance 

between the costs and benefits that early reproduction yields upon fitness. In this 

case, it might suggest that the Jacksonville population does not sustain a sufficient 

reduction in lifespan to warrant the cost of reduction in somatic growth during 

oviposition. 

Investment into each reproductive event can be measured via clutch mass. 

Similarity in clutch mass alone among the populations implies that each population 

invested the same amount in their first clutch. However, when taking body size and 

oViposition timing into consideration, these populations differ in investment. All three 



populations significantly differ in body size (ANOVA; F2,30:: 39.370; P < 0.001) such that 

Athens < Miami < Jacksonville. As well as being smaller, Athens grasshoppers 

oviposited in significantly less time with no difference in clutch mass. Effectively, this 

indicates that in comparison to Jacksonville and Miami, Athens invests more energy 

and acquired resources to produce larger clutches with respect to bony size and age at 

oviposition. This accounts for the minimal body mass gain of Athens and is consistent 

with the current over future reproduction strategy. 

Maternal environments have the ability to influence the expression of traits 

in their offspring (Mousseau & Fox 1998). Therefore, due to potential environmental 

maternal effects, the differences found between these populations may not be 

genetic. Some life history traits of lubber grasshoppers suggest that any potential 

maternal effects on reproduction would only have a minor contribution to the 

observed interpopulation variation. Varying egg size is a common mechanism used 

by mothers in response to different environments (Parker & Begon 1986). For 

example, in unfavorable environments with limited food, a mother may lay fewer 

but larger eggs in order to provide offspring with a better chance of survival. 

However, maternal diet in lubber grasshoppers has no effect on egg size (Moehrlin 

& Juliano 1998; Hatle et al. 2000). In addition, juvenile diet does not seem to affect 

reproductive tactics. In fact, unlike many insects, following adult molt lubber 

grasshoppers undergo a period of further somatic growth prior to any reproductive 

growth (Hatle et al. 2004). These tactics employed by lubber grasshoppers make 

maternal effects seem less likely. 
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The maximum level of JH occurs during the fixed phase of oviposition, 

indicating commitment to oviposition (Hatle et al. 2000). Vitellogenin and JH profiles 

have been shown to have similar developmental patterns (Borst et al. 2000; Hatle et 

al. 2000, 2001). Maximum vitellogenin levels among populations corresponded to 

oviposition timing (Hatle et al. 2004). Specifically, Athens oviposited earlier than the 

other populations, and exhibited a younger age at vitellogenin maximum. Hence, I 

predicted that the" maximum level of JH would vary across populations in concert with 

age at oviposition. However, the JH titers between populations did not differ. In 

previous studies, JH profiles exhibited distinct maxima (Hatle et. 2000), but profiles 

from this study did not reveal distinct maxima. It is possible that I have not obtained 

an accurate picture of the JH profiles, perhaps because hemolymph samples were 

taken only bi-weekly, or samples may have degraded. 

There were no distinct peaks in the lipid profiles and populations did not vary in 

the magnitudeof hemolymph lipids. Hemolymph lipids appear to remain stable 

throughout the somatic and reproductive growth phases in lubber grasshoppers, 

suggesting that oocyte production does not yield an increase in hemolymph lipid 

transport. 
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Appendix I 

Figure Legends 

Figure 1. Bi-variate plots of reproductive tactics (means ± SE). Data analyzed using a 

MANCOVA with initial weight as a significant covariate. The Athens population differed 

significantly from the Jacksonville and Miami populations in body mass after oviposition 

and oviposition age but not clutch mass. Somatic growth indicates the somatic storage 

retained after laying the first clutch, adjusted for mass at molt. 

Figure 2. Hemolymph juvenile hormone profiles (mean ±SE) for adult female lubber 

grasshoppers from three populations (Athens n = 9; Jacksonville n = 12; Miami n = 6). 

Hemolymph samples were collected bi-weekly. Profiles end at the median age of 

oviposition for each population. 

Figure 3. Hemolymph lipid profiles (mean ±SE) for adult female lubber grasshoppers 

from three populations (n = 7 for all populations). Hemolymph samples were collected 

bi-weekly. Profiles end at the median age of oviposition for each population. 
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Chapter 2 

A cumulative feeding threshold required for vitellogenesis can be 

obviated with juvenile hormone treatment in lubber grasshopper 

Abstract 

Developmental thresholds can ensure adequate condition has been attained to 

proceed through major transitions (e.g., initiation of reproduction, metamorphosis). 

Nutrition is critical to attaining most thresholds, because it is needed for both growth 

and storage. Attaining a threshold may stimulate the release of hormones that commit 

the animal to the developmental transition, yet the relationships between 

developmental thresholds and these endocrine signals are poorly understood. Lubber 

grasshoppers require a cumulative feeding threshold to initiate vitellogenesis and 

potentially commit to oviposition. I tested the relative roles of the major gonadotropin 

(juvenile hormone; JH) and the nutritional threshold in initiating vitellogenesis and 

committing to oviposition. The source of JH was removed from all females, and then 

JH analog was applied after different levels of feeding. Threshold feeding was not 

required to initiate vitellogenesis, suggesting that sub-threshold grasshoppers are 

competent to JH. Hence, threshold feeding is required only to cause the release of JH. 

The present experiment suggests that JH is more important than a nutritional 
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threshold. In addition, individuals that were restored with JH late in life tended to 

favor current reproduction, at the expense of future reproduction, supporting the 

terminal investment hypothesis; both time to oviposition and vitellogenin profiles 

were consistent with the hypothesis. Taken together, the results suggest that lubber 

grasshoppers can adjust reproductive tactics depending on their age, but this control 

is secondary to JH, which is in turn subject to nutrition. 
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Introduction 

Major post-embryonic developmental transitions (e.g., initiation of 

reproduction, metamorphosis, cessation of growth) are critical stages in an organism's 

life. Phenotypic plasticity in timing (e.g., age at oviposition) or resource allocation 

(e.g., size of clutch) at these developmental transitions is common (Stearns, 1992; 

Morey and Reznick, 2000; Schoech et aL, 2004; Davidowitz and Nijhout, 2005; this 

plasticity can have important effects on fitness (Denver et aL 1998). An individual's 

physiological condition often influences the plasticity at transitions, particularly in the 

timing of transitions (Zera and Harshman, 2001). Prior to a developmental transition, a 

threshold can ensure adequate condition has been attained to proceed through the 

transition (Wilbur and Collins, 1973; Frisch, 1994; Reynolds, 2003a; 2003b; Moczek, 

2003; Davidowitz et ai, 2004; Nijhout et aI., 2006), 

A developmental threshold describes the status needed to proceed through a 

developmental transition (Nijhout 2003). Thresholds can be described: 1) 

morphologically as a critical body or organ size (e.g., Nijhout and Williams. 1974a,b; 

Davidowitz and Nijhout 2004; Mirth et al. 2005), 2) physiologically as a level of storage 

(Frisch 1994), or 3) nutritionally as an amount ingested (Nijhout, 1979; Klowden, 1987; 

Juliano et aL 2004). First, critical size thresholds are most common in the literature. 

For example, male dung beetles must attain a critical body size to grow huge horns for 

aggressive male-male interactions; small males produce tiny horns (Emlen et aL, 

2005). More precisely, in Drosophila a critical organ size (Le., an enlarged prothoracic 

gland) stimulates metamorphosis at a body size smaller than the normal critical size 
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for metamorphosis (Mirth et aL, 2005). Second, a storage threshold for human 

ovulation has been identified, with 22% body fat required (Frisch 1994). Third, 

mosquitoes and blood sucking bugs require a single, large meal to stretch the gut and 

release a developmental transition (Nijhout 1979; Bowden 1987). Similarly, lubber 

grasshoppers must ingest a cumulative amount of lettuce over many meals to initiate 

vitellogenesis and later commit to oviposition (Juliano et aL 2004). Clearly, nutrition is 

vital to attaining all of these thresholds, because it is needed for both growth and 

storage. 

Hormones are likely to be essential to translating this growth or storage (via 

nutrition) into a developmental transition (Hatle 2003). The association between a 

threshold and a developmental transition does not infer direct control; rather the 

threshold must be translated to endocrine signals that mediate the life history transition 

{Nijhout and Williams, 1974a; 1974b; Day and Rowe, 2002; Juliano et aL, 2004; Moczek 

and Nijhout, 2002; Davidowitz and Nijhout, 2004; Nijhout et aL, 2006}. The relationships 

between developmental thresholds and these endocrine signals are poorly understood, 

yet they are a critical link in how environmental conditions produce variation in life 

histories (Em len and Nijhout 1999; Zera and Harshman 2001; Davidowitz and 

Nijhout, 2005; Shingleton et aL 2007). 

Studies that simultaneously manipulate both nutrition and hormones provide 

excellent approaches to determining the relationships of thresholds and endocrine 

signals in development. For example, imaginal discs in larvae of Manduca sexta 

continue to grow in the absence of JH despite starvation. However, both nutrition and 
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JH are required for normal larval growth to the critical size for metamorphosis 

(Truman et aI., 2006). In contrast, eye development in Manduca sexta is activated by 

nutritional cues and is independent of JH levels (MacWhinnie et aL, 2005). 

In lubber grasshoppers (Roma/ea microptera), a cumulative feeding threshold 

of 4.0 dry g of Romaine lettuce is required to initiate the transition from somatic 

growth to reproductive development, and ultimately oviposition (Juliano et aL, 2004; 

see Fig. 1). Diet prior to adult molt has little effect on the timing of reproduction 

(Moehrlin and Juliano, 1998). The developmental model that best described 

reproduction in lubber grasshoppers is a fixed threshold model (Reznick, 1990), in 

which a single developmental program produces different phenotypes simply due to 

its expression in different environments (e.g., nutritional levels). That is, the 

nutritional threshold did not change with the rate of feeding, but instead the 

threshold was fixed at 4.0 dry g of cumulative ingestion. Plasticity of reproductive 

timing was thus dependant only on the time to attain that threshold. 

In well-fed lubber grasshoppers (offered 0.77 dry g Romaine lettuce / day of 

adulthood), oviposition occurs ~ 35 days after adult molt. In contrast, in low fed animals 

(0.12 dry gjday), oviposition occurs ~ 65 days after adult molt (Hatle et aL, 2000; 

2003). Mature females generally lay 2 to 3 clutches during their life (Hatle et aL, 

2006). Lubber grasshoppers are univoltine and over-winter as eggs; therefore, 

reproduction is potentially time constrained with the onset of freezing or plant 

senescence (Luker et aL, 2002; Homeny and Juliano, in press). The large size of lubber 

grasshoppers enables the collection of multiple hemolymph samples with very little 
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interference of the reproductive cycle (d. Hatle et aI., 2002; Hatle et aI., 2004). 

Nutrition is clearly needed to stimulate the production of JH. But whether 

nutrition is needed to attain the status needed for JH response (i.e., competen ce) is 

unknown. During the oViposition cycle, JH levels start low, rise to a maximum around 

mid-vitellogenesis, and fall before oviposition. Low levels early in the cycle are 

involved in vitellogenin production. Higher levels later in the cycle coincide with 

oocyte growth and patency. The maximum titer of JH (the point at which JH 

degradation or export is favored over JH synthesis) always occurs about 12 d before 

oviposition, regardless of diet (Hatle et al. 2000; 2003). These studies on JH levels 

suggest that JH is sufficient for initiating vitellogenesis and the later commitment to 

oviposition, regardless of diet. That is, threshold feeding (see Juliano et al. 2004) is 

only needed to allow production of JH, and the female is competent to JH prior to 

attaining the threshold. 

Production of viteliogenin-mRNA requires JH (Fei et aI., 2005). In starved 

grasshoppers, the infusion of JH increases viteliogenin-mRNA, but feeding is 

required for synthesis of vitellogenin protein by the fat body (Fei et aI., 2005). 

These results suggest that JH may not be the only factor involved in the regulation 

of vitellogenin production, but instead some other nutrition-dependent change is 

needed. Similarly, Hatle et al. (2006a) examined the relative importance of 

stimulation of the fat body vs. total fat body mass in total vitellogenin production. 

They found that the total fat body mass was much more important than mass-

specific tissue stimulation (typically by JH). This suggests that growth factors 
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affecting the fat body, in addition to JH, might also be critical to promoting 

vitellogenesis (Hatle et aI., 2006a). Such growth factors are likely to be nutrition 

dependent. Hence, in contrast to studies on the levels of JH (see previous 

paragraph), studies on Vitellogenesis suggest that feeding to the threshold is 

required in addition to JH. That is, threshold feeding is needed both to initiate 

production of JH and to bring about competence to J H . 

I manipulated both the timing of initial treatment and feeding to test 

whether JH is solely responsible for vitellogenesis, or if the feeding threshold must 

also be met for competence to JH (Fig. 2). I predicted that the feeding threshold 

must be met (after Fei et aI., 2005; Hatle et aI., 2006). Specifically, I hypothesized 

that individuals which are sub-threshold at the start of JH analog treatment will 

delay vitellogenesis, and ultimately oViposition, in comparison to individuals that are 

supra-threshold at the start of JH analog treatment. In other words, I predict a 

statistically significant interaction of diet and timing of JH initiation on the onset of 

vitellogenesis and timing of oviposition. Alternatively, if attainment of the feeding 

threshold is not required along with JH, sub-threshold females treated with JH 

should undergo vitellogenesis in concert with supra-threshold females treated with 

JH. 

Methods 

Experimental design 

This experiment employed a 2 * 2 factorial design, manipulating both 
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cumulative feeding amount and age at initial analog application (JHAi). New adult 

female grasshoppers were serially assigned into two groups: low or high diet. Within 

both of these two diet groups, individuals were later assigned to either early or late 

JHAi The four treatment groups were: low food-early JHAi (n = 14), low food-late JHAi (n 

= 5), high food-early JHAi (n = 9), and high food-late JHAi (n = 2). Only individuals that 

ultimately oviposited were included in the study. Individuals in the late JHAi groups took 

longer to oviposit; therefore, their rates of survival to oviposition were lower, resulting 

in low sample sizes. Fortunately, the high food-late JHAi is the least important group for 

addressing the hypothesis. 

The timing of early JHAi was chosen to ensure that, when fed ad libitum, the 

high food-early JHAi group had consumed a supra-threshold quantity of lettuce at JHAi 

(i.e., greater than 4.0 dry g as determined by Juliano et aI., 2004). The timing of late 

JHAi was chosen to ensure that the low food-late JHAi group also had consumed a supra-

threshold quantity of lettuce at JHAi when fed at the same rate as the low food-early 

JHAi group. The low food-early JHAi group was the only sub-threshold feeding group at 

the start of hormone treatments (Fig. 2; Table 1). 

Animal rearing 

Lubber grasshoppers were shipped from a lab colony at Illinois State University 

in Normal, IL, USA. The colony was founded with grasshoppers from Copeland, FL, USA. 

Juveniles were reared en masse in screen cages with a 14L: 10 D photoperiod at 32°C. 

Juveniles were fed Romaine lettuce and oatmeal ad libitum. Newly molted females 
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were isolated and reared individually in 500 ml ventilated containers at a 14L:l0 D 

photoperiod and a corresponding 32:24° C thermocycle. 

Allatectomy procedure 

The corpora allata (the sole source of JH; TO Barry, JD Hatle and DW Borst, 

unpublished data) of all individuals were surgically removed 4 to 6 d after adult molt. 

The day before surgery, food was withheld. Grasshoppers were cold-anesthetized for 

~1 hr, fastened to the dissecting dish with modeling clay, and the intersegmental neck 

membrane was opened with a U-shaped incision. Two air sacs were removed, both 

corpora allata were excised, a 25 Ilg dose of gentamicin sulfate (lCN Biomedicals, Irvine, 

CA, US) was placed in the open wound, and the neck membrane was folded back into 

place. 

Diet treatments and timing of juvenile hormone analog initiation 

The experimental goal was to test whether each group was competent to 

respond to JH at the initiation of hormone treatment. Using this design, I predicted that 

individuals that individuals not competent to respond to JH at the moment of JHAi 

would have later times of vitellogenin onset (Vg onset; the first sampling date with 

detectable Vg) or oviposition. 

Daily food rations were weighed fresh and all grasshoppers were always fed 

fresh lettuce. The previously determined threshold was described as dry mass 

(Juliano et al. 2004), so the dry mass ingested at each meal was determined. Several 

5.0 wet g controls were dried and weighed to obtain a fresh-to-dry conversion factor. 
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Using this conversion factor, the dry mass offered was calculated. Daily, each individual 

was offered a specific amount of fresh lettuce. The next day, each individual's 

uneaten food was collected, dried at 55° C, and weighed. The dry mass uneaten was 

subtracted from the dry mass offered to determine the dry mass eaten. 

Juliano et al. (2004) found cumulative feeding, and not the feeding rate, to be 

critical for commitment to oViposition. Therefore, the important feeding variable to 

manipulate is the amount that has been ingested when JH is restored. From adult 

eclosion to the day before surgery, all individuals were fed 0.15 dry g of Romaine and 

3-5 oatmeal flakes daily. Immediately following surgery, the grasshoppers began their 

assigned diets. Allatectomized females eat low amounts of food (about 1/3 of 

unmanipulated females), and therefore take a longer time to reach the feeding 

threshold. The feeding schedules were designed to produce a sub-threshold feeding 

group (low food-early JHAi) and three supra-threshold feeding groups at JHAi (Fig. 2). 

Hormone analog treatments and hemolymph sampling 

Hormone replacement was achieved by applying methoprene (Sigma Chemical, 

St. Louis, MO, USA), an analog of JH (Nijhout, 1994; Flatt and Kawecki 2007). Once the 

designated age was reached, a 5 III hemolymph sample was collected from each 

grasshopper and a topical application of 500 Ilg of methoprene in 10 III of ethanol was 

applied to the neck membrane. This is approximately the same dosage per body mass 

used by Chizei and Wyatt (1985) for locusts. Hemolymph samples were acquired once 

a day for the first 5 days after methoprene treatment initiation and twice a week 
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thereafter. All hemolymph samples were placed in 250 ~I of hemolymph buffer (Hatle 

et aL, 2001) and stored at -20°C for later analysis of vitellogenin and total protein. 

Twice a week until oviposition, methoprene was applied immediately before 

hemolymph sampling. I repeatedly dosed grasshoppers with 500 ~g methoprene to 

force all individuals into the same hormonal status once hormone replacement was 

begun. This design has low power to separate the requirements for vitellogenesis from 

the requirements for oviposition. However, it is excellent for testing the primary 

experimental goal, namely isolating the competence of the individual at JHAi. By 

artificially maintaining high levels of JH in all groups regardless of past or current diet, 

effects from the individual's status at the time of JHAi (i.e., feeding level) could be 

identified. 

Oviposition 

Females were allowed to oviposit in their cages as virgins. Lubber grasshoppers 

will lay eggs without mating; if oviposition substrate is not available, egg laying is 

delayed ~ 7 d but still occurs (Mefferd et aL 2005). At oviposition, the individual's age 

was recorded and it was removed from the study. Laid eggs were counted; because 

individual egg size is largely fixed, this is a good estimate of clutch mass (Moerhlin and 

Juliano 1998; Hatle et aL 2000). Grasshoppers were dissected to measure the number 

of retained eggs, the number of secondary oocytes, and the size of secondary oocytes. 

Laid eggs and fully developed retained eggs were combined as the total number of 

developed eggs. 



Together, secondary oocyte size and number indicate the investment in future 

reproduction. The number of secondary oocytes implies the potential for the mass of 

the ensuing clutch. The size of secondary oocytes implies the probable timing of the 

ensuing clutch, because oocytes need to grow to 1.0 cm to be ready for oviposition. 

Hemolymph vitellogenin 

Vitellogenin was measured by ELISA (modified from Borst et al. 2000). All samples 

from an individual were analyzed concurrently, and groups were analyzed alternately. 

The time of Vg onset for each individual was determined by identifying the age at the 

first sample in which vitellogenin was detectable. The time of maximum vitellogenin 

titer was determined by identifying the age at the sample with the highest amount of 

vitellogenin for each individual, throughout the oviposition cycle. The maximum 

vitellogenin titer is the point at which sequestering ofvitellogenin into the oocytes 

becomes favored over synthesizing vitellogenin and exporting it into the hemolymph 

(Hatle et al. 2001). Individuals that showed detectable vitellogenin prior to JHAi (likely 

due to failed allatectomy) were removed from the study (n = 5). 

Hemolymph storage proteins 

Total hemolymph protein was measured using the Bradford (1976) assay with 

bovine serum albumin standards. The amount of vitellogenin in the same sample was 

subtracted from this measure of total protein. Total non-vitellogenin hemolymph 

protein is an estimate of storage proteins, because N 80 % of nonvitellogenin 

hemolymph protein exists as 3 hexamerin storage proteins throughout the first 
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· oviposition cycle (Hatle et al. 2001). Hexamerins are a conserved family of storage 

proteins in insects (Haunerland 1996). The time to storage protein maximum and the 

storage protein maximum were calculated in the same way as in the vitellogenin 

analysis. 

Statistical analysis 

All data were tested for the effects of food, JHAi, and the interaction of food 

and JHAi. Data were analyzed primarily by MANOVA. I used 3 MANOVAs: 1) number and 

size of secondary oocytes; 2) time of Vg onset, time of maximum Vg, time from Vg 

maximum to oviposition, and Vg maximum titer; and 3) initial storage protein titer 

and storage protein maximum. Data were transformed to meet assumptions of 

normality and homogeneity of variances as needed. Due to the inability to transform 

multiple variables to meet the assumptions of the test, data on oviposition timing and 

numbers of eggs were analyzed using separate ANOVAs. 

RESULTS 

Diet treatment 

The treatments were successful at producing groups that differed in cumulative 

feeding but not timing of JHAi (see Table 1). At JHAi, the low food/early JHAi group (57% 

ofthe 4.0 g dry mass threshold) was well below the threshold, whereas all other groups 

were above the threshold {low food/late JHAi = 135% of threshold; high food/early JHAi 
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= 175% of threshold; high food/late JHAi = 278% of threshold). Body mass gains through 

adulthood supported the efficacy of the feeding treatments (Fig. 2). 

Oviposition 

The time from JHAi to oviposition was significantly affected by timing of JHAi (ANOVA; 

F1 = 7.184; P = 0.013) but not by diet (Fl = 2.311; P = 0.141) or the interaction of JHAi 

and diet (Fl = 2.468; P = 0.129). Early JHAi groups had a longer period from JHAi to 

oviposition than did late JHAi groups (Fig. 3). Notably, the low food/early JHAi (sub-

threshold) group did not have a longer period from JHAi to oViposition than all three 

other groups. 

Egg and oocyte production 

The number of eggs was significantly affected by the timing of JHAi (ANOVA; Fl = 

5.488; P = 0.027) but not by diet (F1 = 1.081; P = 0.308) or interaction (Fl = 0.064; P = 

0.802). Early JHAi groups produced fewer eggs than the late JHAi groups (Fig. 4). 

Secondary oocyte characteristics (i.e. number and size of secondary oocytes) were 

significantly affected by diet (MANOVA; Pillai's trace F2,25 = 7.4S4; P = 0.003) and the 

timing of JHAi (F2,25 = 9.417; P = 0.001) but not by their interaction (F1, 27 = 1.020; P = 

0.375). Canonical coefficients (number of secondary oocytes = 1.095; secondary oocyte 

length = 0.437) suggested that the main effect was due mostly to the number of 

secondary oocytes, with the size of the oocytes being less important. Upon dissection 

immediately following oviposition, the low food groups had fewer secondary oocytes 

than the high food groups (Fig.S) (P = 0.001). This was the only significant effect of diet 



in the entire experiment. The number of secondary oocytes was not affected by the 

timing of JHAi (P = 0.732) or the interaction of diet and JHAi timing (P = 0.173). By 

contrast, early JHAi groups had larger secondary oocytes than the late JHAi groups (Fig. 

5) (P < 0.001). Yet, secondary oocyte length was not significantly affected by diet (P = 

0.968) or interaction (P = 0.471). 

Analysis of vitel/ogenin 

Vitellogenin profile characteristics were significantly affected by the timing of 

JHAi (MANOVA; Pillai's trace F4,21 = 6.918; P = 0.001) but not by diet (F4,21 = 2.754; P = 

0.055) or interaction (F4,21 = 0.541; P = 0.708). For diet, all univariate P > 0.10. Because 

diet did not have a significant effect on Vg parameters, we combined the Vg parameter 

data by diet groups for clearer graphical presentation (Fig. 6). 

Canonical coefficients (maximum level of Vg = 0.351; time of Vg maximum = 0.219; time 

from Vg maximum to oviposition = 1.024) suggest that the effect on Vg timing was due 

primarily to the time from Vg maximum to oviposition and secondarily to timing from 

JHAi to Vg maximum and the maximum level of Vg, and Vg onset was not significant. 

Compared with late JHAi groups, early JHAi groups had a longer period from JHAi to Vg 

maximum, a shorter time from Vg maximum to oviposition, and a lower maximum level 

of Vg (Fig. 6). The primary prediction (see last paragraph of Introduction) was that 

vitellogenesis would be delayed in females with sub-threshold food intake that were 

treated with JH (i.e. low food/early JHAi). Hence, the Vg onset data are particularly 

relevant to the hypothesis. The time from JHAi to Vg onset was not significantly affected 



by JHAi {P = 0.051}, diet {P = 0.130} or interaction {P = 0.493}. The mean {± s.e.m.} times 

of Vg onset were: low food/early JHAi = 15.5 ± 2.1 days; low food/late JHAi = 7.2 ± 1.8 

days; high food/early JHAi = 16.0 ± 3.9 days; and high food/late JHAi = 10.2 ± 2.9 days. 

The non-significant trend was for Vg onset to be delayed in all early JHAi groups, not 

only the low food/early JHAi group. 

Storage proteins 

Storage protein profiles were not significantly affected by the timing of JHAi {Fig. 

7} {MANOVA; Pillai's trace F2,26 = 1.144; P = 0.334}, diet {F2,26 = 0.175; P = 0.841} or the 

interaction {F2,26 = 0.202; P = 0.819}. 

Discussion 

Developmental thresholds are important indicators of body condition that 

stimulate life-history transitions, but the relative roles of diet and hormones in these 

transitions are not well understood. I tested whether JH treatments are sufficient to 

initiate vitellogenesis and the commitment to oviposition in sub-threshold lubber 

grasshoppers. The prediction that females with sub-threshold feeding would not be 

competent to respond to the hormone was wrong; a significant statistical interaction of 

JHAi and diet is needed to confirm this prediction, but there were no significant 

interactions in the entire study. From the results, it is clear that vitellogenesis depended 

only on the presence of JH. In addition, by controlling the timing of JHAi, we identified a 

developmental shift in the trade-off between current and future reproduction. 

Individuals that initiated first reproduction early in life favored future reproduction, 
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relative to individuals that initiated first reproduction late in life, which favored current 

reproduction. 

Juvenile hormone was sufficient for vitellogenesis, even with sub-threshold 

feeding 

Due to differences in the timing of JHAi, the low food-late JHAi group 

consumed 137% more food before JHAi than the low food-early JHAi group. Similarly, 

the high food-late JHAi group consumed 59% more food before JHAi than the high food-

early JHAi group. Despite these large differences in cumulative consumption, when JH 

was controlled, diet only had an effect on the number of secondary oocytes. No other 

variables measured in this experiment were affected by diet. Previous work has 

repeatedly found strong effects of diet on the timing of first oviposition, age at Vg 

maximum, and the number of eggs (Moehrlin and Juliano 1998; Hatle et al. 2000; 

2001; 2003a,b; 2004; Juliano et al. 2004). By controlling JH levels, in the present paper 

I determined that diet, when analyzed separately from JH, did not affect any of these 

three reproductive tactics. This suggests that feeding for vitellogenesis is required only 

to produce adequate JH. 

This demonstration of the dominance of JH over diet in vitellogenesis has been 

conducted in a species for which a feeding threshold has been explicitly established 

by two distinct approaches. Juliano et al. (2004) used constant feeding rates and 

mathematical modeling to estimate the threshold as 4.0 dry g cumulative feeding. 

Further, Moehrlin and Juliano (1998) used abrupt switches in food availability to show 



that the timing of oviposition is unaffected by diet level (short of starvation) after 14 d 

of full feeding. This later result was repeated in an independent experiment which 

demonstrated that the maximum titer of JH during adulthood always occurs ~ 12 d 

before oviposition regardless of diet (Hatle et al. 2000; 2003). Therefore, in intact 

grasshoppers the requirement for feeding to initially increase levels of JH is clear, but 

this dietary requirement is eliminated when JH reaches high levels. Further, JH titers 

have been directly measured in lubber grasshoppers (Borst et al. 2000; Hatle et al. 

2000), and the requirement of JH for Vg-mRNA production is clear (Hatle et al. 2000; 

Fei et al. 2005). Hence, it is appropriate to use an analog of JH (Zera 2006). 

The experiment focused on the ability to commit to vitellogenesis, and 

perhaps ultimately oviposition, after certain levels of feeding. Hence, once I restored 

gonadotropin (i.e., JHL I continued hormone treatments until oviposition. This design 

allowed me to test the main hypothesis, namely the competence of females before 

the feeding threshold was attained. However, a weakness of this design was the low 

probability of identifying developmental plasticity between the initiation of 

vitellogenesis and oviposition. Indeed, I failed to find effects of post-JHAi diets on 

reproductive tactics, as could be expected with repeated methoprene applications. At 

least a low level of developmental plasticity between the initiation of vitellogenesis 

and oviposition seems likely. Indeed, complete starvation starting at 20 d (i.e., after 

Vg onset but 2 weeks before oviposition in well-fed grasshoppers) prevents 

oviposition (DW Whitman, personal communication). Similarly, in Fei et al. (2005L 

complete starvation reduced the rate of vitellogenin production over 48 h, even when 
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JH was infused. Nonetheless, this experiment demonstrates that even sub-threshold 

females, maintained on a low diet throughout adulthood, have the hormonal 

competence and resources needed to initiate vitellogenesis and commit to 

oviposition if JH is provided and maintained. 

Undergoing vitellogenesis in the absence of adequate nutrition (as done by 

the low diet-early JHAi females in this experiment) implies that some cost would be 

incurred. In grasshoppers the investment presently allocated for future reproduction 

can be observed at any point by measuring the size and number of secondary oocytes 

(Sandberg et al. 2001). Low diet groups had significantly fewer secondary oocytes 

than high diet groups, suggesting a reduced number of eggs possible for the second 

clutch. However, both low diet-early JHAi and low diet-late JHAi had fewer secondary 

oocytes, and low diet-late JHAi grasshoppers had supra-threshold feeding. Hence, the 

reduced number of secondary oocytes in low diet-early JHAi females likely does not 

represent a cost of reproduction without sufficient nutrition. It is possible that the 

number of secondary oocytes responds to the feeding rate early in production of the 

first clutch. 

The time from JHAi to Vg onset was statistically indistinguishable across 

groups; however, the low probability (P = 0.051) suggests that a trend might exist. 

This trend was for Vg onset to occur later in both early JHAi groups, not only in the low 

diet-early JHAi group as I predicted. It is clear that low diet-early JHAi did not take 

longer for Vg onset than other groups, because their mean time of Vg onset was 



actually less than that for the high diet-early JHAi group. These data on Vg onset are 

consistent with the notion that threshold feeding is unneeded for competence to JH. 

Instead, they are consistent with current reproduction being favored by late JHAi 

groups. 

Current reproduction was favored by late JHAi groups 

The terminal investment hypothesis suggests that as life expectancy decreases 

(e.g., with increasing age), favoring of current reproductive investment increases, at the 

cost of future reproduction (Hirshfield and Tinkle 1975; Clutton-Brock 1984). Indeed, 

patterns of contributions to current vs. future reproductive investment have been 

observed in response to age (Williams 1966; Langley and Clutton-Brock 1998) and to 

reductions of life expectancy (i.e., illness or environmental conditions). 

The present results are consistent with the terminal investment hypothesis. 

Because lubber grasshoppers are univoltine, their life history may be constra ined by 

time, creating a pressure to reproduce early (see Rowe and Ludwig 1991; Rowe et al. 

1994). I observed a trade-off between the timing of the first clutch (i.e., time from 

JHAi to oviposition) and the timing of the second clutch (as estimated by the length of 

secondary oocytes). At the expense of ovipositing the second clutch later, late JHAi 

individuals allocated more resources in less time to their first clutch. By 

manipulating JH, I have demonstrated a developmental shift from initial relative 

favoring of future reproduction to later favoring current reproduction. This effect of 



age on reproductive tactics was previously undetected in experiments manipulating 

only diet (e.g., Juliano et al. 2004; Hatle et al. 2006). 

Vitellogenin profiles also tended to fit the predictions of the terminal 

investment hypothesis. The late JHAi groups had significantly earlier and higher Vg 

maxima than the early JHAi groups, but a longer period between Vg maximum and 

oviposition. In other words, late JHAi females had a faster rate and greater magnitude 

of vitellogenin production. Further, as estimated by the mean slopes after Vg 

maximum (late JHAi = 1.38±0.44 mgjday; early JHAi = 0.86±0.34 mgjday), the rate of Vg 

transport into the oocytes appears to be greater in late JHAi females (Fig. 7). Both of 

these are consistent with the terminal investment hypothesis. Taken together, the 

results suggest that lubber grasshoppers can adjust reproductive tactics depending on 

their age, but this control is secondary to JH, which is in turn subject to nutrition. 

It was previously hypothesized that a threshold level of hemolymph storage 

protein would serve as a physiological manifestation of the feeding threshold (Hatle et 

al. 2003 Juliano et al. 2004). The present data are inconsistent with this hypothesis. 

Sub-threshold feeding did not affect initial storage protein titers or response to JH. In 

fact, Hatle et al. (2006a) found a tighter association between changes in fat body mass 

and reproductive plasticity than between changes in storage protein titers and 

reproductive plasticity. Indeed, it is the fat body that produces the storage proteins 

and vitellogenin. In Drosophila, the fat body serves as a nutrient sensor, regulating 

body growth (Colombani et al. 2003). From the present data, I hypothesize that the fat 

body is more critical to pre-reproductive development than are hemolymph storage 



proteins. Further studies on the regulation of fat body growth are needed to fully 

comprehend the initiation of vitellogenesis and commitment to oviposition. 

Hormonal cue exceeds nutritional threshold 

In other animals that exhibit growth dependent thresholds for development, 

the nutritional state or critical size induces development via endocrine cues, rather 

than a direct response to the dietary nutrient (e.g., Emlen and Nijhout 1999). This 

suggests that endocrine-producing tissues would respond to some signal to make the 

hormonal signal and stimulate the commitment to the next developmental stage. 

However, it does not yield insight into whether or not the subsequent events will be 

followed through without the actual nutritional state or critical size. In other words, is 

the hormone alone sufficient, or is attaining the storage threshold necessary for 

competence? The present experiment suggests that hormones are more important 

than growth or size thresholds, and individuals early in development are competent to 

developmental hormones, but simply have not yet attained sufficient levels of these 

hormones. Further studies on other experimental systems are needed to test the 

generality of this conclusion. 



Appendix I 

Table and Figure Legends 

Table 1. Mean ± SE feeding rates and cumulative amounts eaten for lubber 

grasshoppers. Feeding treatments were designed to create one sub-threshold 

feeding group at initiation of gonadotropin treatment and three supra-threshold 

feeding groups at initiation of gonadotropin treatment. The cumulative feeding 

threshold for initiation of vitellogenesis and ultimately oviposition is 4.0 dry g 

(Juliano et al. 2004). The gonadotropin is juvenile hormone, and methoprene was 

used as an analog. JHAi refers to the timing of initiation of the JH analog. By 

manipulating food amount and hormone timing, I tested whether JH alone was 

sufficient to undergo vitellogenesis or if a cumulative feeding threshold was also 

necessary. 

Figure 1. The experimental design was a 2 * 2 manipulation of cumulative feeding and 

timing of initiation of juvenile hormone (JH) analog (methoprene). The timing of the 

initiation of JH treatments is referred to as JHAi. Lubber grasshoppers have a 

cumulative feeding threshold of 4.0 dry g needed to initiate vitellogenesis and 

ultimately oviposition (Juliano et al. 2004). The low diet-early JHAi group had not 

attained the feeding threshold at JHAi, whereas all three other groups had attained 

the threshold at JHAi. Hence, the low diet-JHAi group was used to test whether JH is 

sufficient for reproduction, or if the feeding threshold is also required. 
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Figure 2. Body mass profiles of lubber grasshoppers on low or high diets and early or 

late juvenile hormone analog initiation (JHAi). The body mass profiles imply responses 

to feeding levels. 

Figure 3. Early juvenile hormone analog initiation (JHAi) reduces the time from JHAi to 

oviposition in lubber grasshoppers, regardless of whether the feeding threshold for 

vitellogenesis has been attained. See Fig. 2 for experimental design. A cumulative 

feeding threshold of 4.0 dry g for the initiation of vitellogenesis and ultimately 

oviposition has been demonstrated for lubber grasshoppers (Juliano et at. 2004). 

Figure 4. The number of eggs laid by lubber grasshoppers was significantly decreased 

by early juvenile hormone analog initiation (JHAi), but was not affected by diet. See 

Fig. 2 for experimental design. A cumulative feeding threshold of 4.0 dry g for the 

initiation of vitellogenesis and ultimately oviposition has been demonstrated for 

lubber grasshoppers (Juliano et at. 2004). 

Figure 5. The number of secondary oocytes was significantly greater on hi g h die t 

than on low diet in lubber grasshoppers, but was not affected by the timing of juvenile 

hormone analog initiation (JHAi). In contrast, the length of secondary oocytes was 

greater in grasshoppers subjected to early JHAi than late JHAi, but was not affected by 

diet. See Fig. 2 for experimental design. A cumulative feeding threshold of 4.0 dry g for 

the initiation of vitellogenesis and ultimately oviposition has been demonstrated for 

lubber grasshoppers (Juliano et at. 2004). 
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Figure 6. Vitellogenin profile characteristics in lubber grasshoppers treated with 

juvenile hormone early or late in life. Females subjected to juvenile hormone analog 

initiation (JHAi) later had vitellogenin profiles consistent with favoring current 

reproduction at the expense of future reproduction, relative to females on early JHAi. 

Numbers on the graphs label, from left to right: time of vitellogenin onset; time from 

JHAi to vitellogenin maximum; maximum level of vitellogenin; and time from 

vitellogenin maximum to oviposition. See Fig. 2 for experimental design. A cumulative 

feeding threshold of 4.0 dry g for the initiation of vitellogenesis and ultimately 

oviposition has been demonstrated for lubber grasshoppers (Juliano et al. 2004). 

Figure 7. Hemolymph storage protein parameters were not affected by timing of 

juvenile hormone analog initiation (JHAi) or diet. See Fig. 2 for experimental design. A 

cumulative feeding threshold of 4.0 dry g for the initiation of vitellogenesis and 

ultimately oviposition has been demonstrated for lubber grasshoppers (Juliano et al. 

2004). 



Appendix II 

Tables and Figures 

Table 1 

low food- low food- High food- High food-
early JHAi late JHAi early JHAi lateJHAi 
(sub- (supra- (supra- (supra-
threshold) threshold) threshold) threshold) 

Consumption 
rate before O.O58±O.OO1 O.O61±O.OO2 O.184±O.O16 O.131±O.O33 
JHAi (g/day) 

Age atJHAi 40.000±O.OOO 40.000±O,OOO 40.000±O.OOO 40.000±O.OOO (d) 

Cumulative 
amt. eaten at 
JHAi (dry g) 2.282±O.O33 5.400±O.399 7.001±O.367 11,127±2.778 

Consumption 
rate after 
JHAi (g/day) O.O59±O.OO1 O.O60±O.OO5 O.104±O.O11 O.O99±O.O17 

Cumulative 
amt. eaten at 5.176±O.175 7,843±O.495 12.692±O.592 15.347±3.430 oviposition 
(dry g) 
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