\ University of North Florida

UNIVERSITY of ..
UNF NORTH FLORIDA. UNF Digital Commons
UNF Graduate Theses and Dissertations Student Scholarship
1995

Interaction and Interdependency of Software Engineering
Methods and Visual Programming

Robert A. Touchton
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

6‘ Part of the Computer Sciences Commons

Suggested Citation

Touchton, Robert A., "Interaction and Interdependency of Software Engineering Methods and Visual
Programming" (1995). UNF Graduate Theses and Dissertations. 217.
https://digitalcommons.unf.edu/etd/217

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital

Commons. It has been accepted for inclusion in UNF

Graduate Theses and Dissertations by an authorized \

administrator of UNF Digital Commons. For more

information, please contact Digital Projects. UNIVERSITY of

© 1995 All Rights Reserved UNF NORTH FLORIDA.

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fetd%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/217?utm_source=digitalcommons.unf.edu%2Fetd%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

Interaction and Interdependency of Software Engineering
Methnods and Visual Programming Languages/Tools

Rokbert A, Touchton

A thesis submitted to the
Department of Computer and Information Sciences
in partial fulfillment of the requirements for the degree
of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT GF COMPUTER AND INPFORMATION SCIENCES

April, 1995

The thesis “Interaction and Interdependency of Software
Engineering Methods and Visual Programming Languages/Tools”
submitted by Robert A. Touchton in partial fulfillment of
the requirements for the degree of Master of Science in
Computer and Information Sciences has been

Approved by the theszis committee: Date
Signature Deleted _
: — 5255
Dr. Roder E. Eggérd
Thesis Adviser and Committee Chairperson
Signature Deleted
- 52,99
Dr. Behrooz Seyed-Abbassi
Signature Deleted o
S/v /93

Dr. Jhdith/l/. Solano

Accepted for the Department of Computer and Information

Sciences:
Signature Deleted .
572/

Dr’. Charles N. Winton
Chairperson of the Department

Accepted for the College of Computing Sciences and

Engineering;
Signature Deleted . .
/2 /55

Dr. Charles N. Winton
Interim Dean of the College

Accepted for the University:
Signature Deleted

Dr. Charles Galloway
Dean of Graduate Studies

ACKNOWLEDGMENT

First and foremost, I thank my wife, Cheryle, my son,
Chris, and my daughter, EKelley, not only for their support
and tolerance, but alse their enthusiasm and interest in
this endeavor. I also appreciate the prayers and tender
loving care that my church friends provided. They helped

me maintain and balance my priorities.

My employer, PathTech Software Solutions, Inc., receives
the credit for the inspiration and foundation for this
effort. My partners and co-workers enthusiastically
supported this undertaking with ideas, feedback and a seclid

grounding in the practice of software engineering.

I especially must thank Ken Wilson, Maureen Page, and Ray
Schafer for the hours they spent with me as Peer Reviewers.
They each added a real-world flavor to this effort along
with a sense that the results can be of benefit to fellow

software engineering practitioners.

Finally, I want to extend a special word of thanks to the
CIS staff at UNF. I personally interacted with most of the
Professors and found them to be not only knowledgeable and

capable educators, but also truly interested in the

- iii -

conveyance of knowledge and the improvement of the state of
the practice of software engineering. The support staff
was always helpful and professional. My thesis committee
truly went the extra mile in their guidance and review of

this effort.

CONTENTS

FIGURES e s o s et b e sttt s e e ix
L P g
N I - N X1
Chapter 1: i} ol aleTs | FTaA il e) o SRR 1
1.1 Statement of Problem.................. e 2
1.2 Research Planttt niannans 5
1.3 Literature Search 6
1.4 Summary ©f Resulhs .ot i i ittt s s ien 7
Chapter 2: Conflict/Synergy Capture Mechanism........ 10
2.1 Conflict/Synergy Classifications 11

2.2 Conflict/Synergy Observation

DAatA PFoOrmE & .t i et i s s e e e et e et 12
Chapter 3: Software Engineering Methodologies and
CABE T0018 v v vttt it e i ettt tie e 15

3.1 Synopsis of Software Engineering
Methodologies and CASE Tools
Evaluated o it i 16

3.2 Gane & Sarson Data Flow Diagrams and
Entity Relationship Diagrams 18

Chapter

Chapter

'8

821

Coad/YoUTXdOm + v v v v vt v et et tr i e

System Architect CASE (Computer Aided
Software Engineering) Tool

Visual Programming Languages and Tools ...

Svnopsis of Visual Languages and
Tools Bvaluatedc... ..

Visual Basic @it ittt e e e e e e e e

Object Vision .. iyttt ittt e et

SMATrt ElemEnES & vttt e e e e e e e

B5.1.1 CSTS Desigh vttt ittt ee et e e

5.1.2 C87S Implementation in
Visual Basicviiieunnnn

5.1.3 CSTS Implementation in
ObjectVision

AT B = Lo B N Y =

5.2.1 Tic Tac Toe Designveuuuuun.

5.2.2 Tic Tac Toe Implementation
in Visual Basic...............

Chapter 6

Chapter 7

References

Appendix A:

5.2.3 Tic Tac Toe Implementation
in Smart Elements»

System Architect to Visual Basic Bridge
ProCotye L L o i e e e e e e e

SA2VB.EXE Design and SCOPe ... v i i i ..
SAZVEB.EXE Implementation and Testing
SA2VB.EXE 2Application
ConCLlUSIOIIE & ity e it it et e
Observation Results
Anticipated Trends and Developments
Guidelines for Development
7.3.1 User Interfaceo ennn.s.
7.3.2 DB Schema i,

7.3.3 Event-~Based and/or
Object~Oriented Design........

7.3.4 Function Designvuevunuvnn..
Summary of Findingsc. i,

.......................................

Customer Support Tracking System Design
Package e e e

- vii -

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Vita

Customer Support Tracking System Visual
Bagsic ListingsS/SCreens ... e v

Custaomer Support Tracking System
ObjectVision Listings/Screens

Tic Tac Toe Design Package

Tic Tac Toe Visual Basic
LiStingS/SCreenS & vt e et e et

Tic Tac Toe Smart Elements
LiStingS/SCreens & v vt it i vt an

SA2VE Bridge Listings and
Sample Results

Test Bed (Self} Observation
Data Sheets ... it i i e e

- viii -

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

FIGURES

Typical Observation Data Form............... 12
Peer QObservation Handout 14
Gane & Sarson DFD Notation 20
ERD Notation S 21
Coad/Yourdon OOA/D NOtALIOM + v ev v v v i i 23
Tconilc ObJect .ot e e e e e e e e 32
Smart Elements Rule and Object Notations 47
Layout Flow Charts of Recursive Factorial ... 53
Individual versus Coalesced Messaging....... 93

Table

Table

Table

Table

Table

TABLES

Experimentation Test Bed Matrix 9

Visual Development Conflicts/Synergy Matrix .. 11

SAZVE Scoﬁe 3= o e 1 T8
Example Cbiject Naming Convention 87
Freguency of Conflicts and Synergies a6

ABSTRACT

Visual Programming Languages and Visual Programming Tools
incorporate non-procedural coding mechanisms that may
duplicate, or perhaps even conflict with, the analysis and
design mechanisms promulgated by the mainstream Scftware
Engineering methodologies. By better understanding such
duplication and conflict, software engineers can take
proactive measures to accommodate and, ideally, eliminate
them. Better still, there may be opportunities for synergy

that can be exploited if one is locking for them.

This research explored, documented and classified the
interactions and interdependencies, both positive
{synergieg) and negative (conflicts), between two closely
related and rapidly evolving Computer Science
subdisciplines: software engineering and visual
programming. A literature search was conducted to surface,
evaluate, and build upon {(where appropriate)} recent and
ongoing research in this area. A mechanism was created to
capture observations of conflicts and synergies. This
capture mechanism was applied to an experimentation test
bed that was established to provide concrete examples of
gaps, overlaps, conflictg, and synergies. In this regard,

two relatively simple applications, one data-base oriented

- ¥i -

and one algorithm oriented, were designed and implemented
using multiple software engineering methods and multiple

visual tools/languages.

A software prototype, which bridges one of the gaps
discovered during the research, was built to underscore the
importance of eventually merging Computer Aided Software
Engineering and visual development tools. The overall
results as well as anticipated trends and developments in
the area of software engineering and visual programming
were summarized. The synergy/conflict observations, in
conjunction with the literature search results, were used
to develop strategies and guidelines for successfully using
vigual programming languages and tools in concert with

sound software engineering methods.

- xii -

Chapter 1

INTRODUCTION

Visual Programming Languages {(VPLsg), such as Visual Basic
and Visual C++, and Visual Programming Tools (VPTs), such
as ObjectVision and PowerBuilder, incorporate non-
procedural coding mechanisms. Some of these mechanisms may
duplicate, or perhaps even conflict with, the analysis and
design mechanisms promulgated by the mainstream Software
Engineering methodclogies, such as Gane & Sarson or
Coad/Yourdon [Pressman92]. By better understanding such
duplication and conflict, software engineers can take
proactive measures to accommodate and, ideally, eliminate
them. Better still, there may be opportunities for synergy

which can be exploited if one is looking for them.

VPLs and VPTs have been made possible by the maturation of
Object-Oriented Programming constructs, leading to a strong
correlation between the use of these new tools and OOP.
Indeed, every one of the languages and tools studied rely
strongly upon OQP for their internal design and operation
(although they may differ in the degree to which they make
O00OP constructs available to application developers)

[West82]. Therefore, this work was conducted with a

backdrop of object-orientation. However, the focus is on
identifying and resolving gaps, conflicts and synergies
between the use of structured, formal Scoftware Engineering

methods and the use of VPLs and VPTs.

1.1 Statement of Problem

The importance and use of VPLs and VPTs 1s growing at a
rapid pace both locally and nationally. A recent issue of

Computer Magazine devoted over 50 pages to visual

programming [IEEESS] In the past 36 months, the number of
Jacksonville-based companies seriously using visual
development software has climbed from perhaps one or two to
dozens (based on a non-scientific review of Florida Times-
Union classified ads which mention one or more of the
recognized visual programming tools/languages). Similarly,
a casual search of the internet for job postings which
mention such languages and tools returns hundreds of hits
(just looking at the IEEE Careers, Career Mosaic and the
“Monster? Board on the world wide web). At the same time,
more and more companies are adopting formal software
engineering methodologies, usually in the form of a
commercially offered CASE (Computer Aided Software
Engineering) tool. Personal experience gained in the
author ‘s work environment hag increased his awareness of

inconsistencies between these two Computer Science

subdisciplines. He also became convinced that positive
steps can and should be taken to ensure that the benefits
from both of these technological advancements are realized.

This conviction forms the basis of this research.

The need for substantial advances was foreshadowed in
Lowry’s 16392 article in AI Magazine where he suggested that
current CASE tools were shallow, that the latest
programming environments were good for prototyping but
lacked the ability to produce efficient, production-gquality
code and that perhaps the use of artificial intelligence
could close the gap [Lowry92]. More recently, the gap
between CASE tools and implementation tools have been
editorialized in software engineering trade journals. For

example, in one issue of Software Development magazine,

Larry Constantine emphasizes the importance of one day
being able to program by drawing models of the target
application{Constantine94] and Larry O'Brien points how
event-driven architectures, visual programming aids and the
like have seriously challenged the traditional CASE

tools[O'Brieng4].

Inconsistencies may manifest themselves as conflicts, gaps,
or overlaps in screen layout, process diagrams, Entity-
Relationship Diagrams, or Data Dictionaries. Synergies

take shape as opportunities for direct program generation

and rapid prototyping, as well as improved communication
with end users; the day may come where end-users can use a
VPT to build their own prototype as a starting point for

implementation by a central IS group.

An example of a conflict would be writing a traditional
Program Flow Chart only to find out that the VPT must
approach the flow of control in a completely different way.
Consider the fact that ObjectVision relies on two event-
driven program flow mechanisms, neither of which have a
direct mapping from a traditional flow chart: "when-
changed" methods attached to data elements and "logic
trees" for responding to user- and application-generated
messages. The flow chart, while useful for communicating
desired program behavior, will provide little or no insight
about how to implement that behavior. A similar case can
be built for pseudococde. To turn the example into one of
synergy, imagine that the designer had been able to access
a tree-like representation to devise and communicate the
program flow of control. This would provide insight into
its implementation in addition to ite desired behavior.
Perhaps the software engineering method could be modified
to actually embrace the visual event trees of ObjectVision

as ite program flow representation.

1.2 Research Plan

During the formative stages of this research, the author
proposed a definitive series of steps aimed at ensuring
that the effort would be of graduate-~level guality and
content and that the objectives of the effort would be
achieved. Upon consultation with the Thesis Committee, a
final research plan was esgtablished, as reflected in the

following steps:

1. Devise a problem classification scheme and mechanism
for capturing and documenting conflicts (e.g., gaps or
overlaps)and synergies (smooth transitions and
cooperation) between software engineering methods and

implementation languages and tools

2. Review and evaluate modern software engineering
methodologiles

3. Review and evaluate visgual programming languages and
Lools

4, Create a controlled experimentation test bed to

provide concrete, working examples of interactions and
interdependencies in the form of gaps, overlaps,

conflicts, and synergles

5. Develop a prototypical bridge for generating Graphic
User Interface Screens in the “native tongue” cof a
visual pro~ramming language based on screens designed
in a CASE tool

6. Evaluate and Document Resultsg, including a summary of
major trends and guidelines for aveiding problems and

ensuring synergies

The objective of this research was to explore, document and
claggify the interactions and interdependencieg, both
posgitive {synergies) and negative {(conflicts), between two
closely related and rapidly evolving Computer Science
subdisciplines: software engineering and visual

programming.

1.3 Literature Search

One element of the research effort was conduct of a
literature search to surface, evaluate, and build upon
(where appropriate) recent and ongoing research in this
area. Much of the fruit of that search is embodied in this
thesis, Most of the remailnder of the information found was
of general or bibliographic value, but not suitable for

direct reference.

The literature sgearch included Journals, such as the
Journal of Visual Languages and Computing and IEEE
Transactions on Software Engineering,
Transactions/Proceedings, such as ACM Transactions on
Programming Languages and Systems, Texts, such as Object

Oriented Degign with Applications by Booch [Booch91l], and
Code Complete, by McConnell [McConnell23]. The effort also

included a search of the internet, using archie.

1.4 Summary of Results

Chapter 2 describes the problem classification scheme and
observation ccllection mechanism called for in the first
Step. Problem groupings, as well as areas of cooperation,
arising between the software engineering methods and the
visual programming languagesgs and tools are identified. A
data base tool to facilitate the capturing of conflict and

synergy observations is also described.

The results of the second step of the Research Plan are
presented in Chapter 3. The treatment briefly discusses
those traditional and object-oriented software engineering
methods used in this study, along with a summary of their
notation and use. A section on the CASE tool used for

portions of this effort is also provided.

The results of step 3 are included in Chapter 4, which
provides a synopsis of the visual programming languages and
tools evaluated along with an overview of wvisual
programming. The treatment briefly compares and contrasts
the various tools and languages and, for ones not used in
the test bed, provides specific examples of areas which
make these software packages unigue. Since the maturity of
the desired guldance required immersion in the selected
language/tools, attention was pald to the mechanics and
details of their operation. @Generalizations could then be

drawn from the specific experilences in their use.

During step 4, two test applications were defined: one data
base-oriented and one algorithmic in nature. Then, two
software engineering methods were selected, one used for
each application (see Table 1). Finally, one visual
programming languade and two visual programming tools were
selected and each application was implemented using the VPL
and one VPT (see Table 1). As the applications were
degigned and implemented, the capture mechanism from step 1
was applied. Table 1 summarizes the test bed resulting from
step 4 of the Research Plan, while Chapter 5 and Appendices

A through F present it in detail.

The software bridge between the System Architect CASE tool

and Visual Basic, resulting from step 5, are presented in

Chapter 6 and Appendix G. The bridge points to the
importance of eventually merging Computer Aided Software

Engineering and visual development tools.

The results of step 6 are presented in Chapter 7 and
Appendices H and I. Because of the impact on this research
of the rapidly changing software development environment, a
treatment on current trends and developments was compiled.
The synergy/conflict observations, in conjunction with the
literature search results, were used to develop strategies
and guidelines for Successfully using visual programming
languages and tocls in concert with sound software
engineering methods. The guidelines were segmented based

on type of problem being addressed. Finally, the overall

effort and its contributicon to future efforts are

summarized.
Application Application Software Implementation Implementation
Type Name Engineering Language Toal
Methodology
Data Base - Customer Problem Gane & Sarson Visual Basic ObjectVision
Oriented Tracking System | DDFDs plus ERDs
Algorithm - Tic-Tac-Toe Coad/Yourdon Visual Basic Smart Eiements
Oriented
Table 1: Experimentation Test Bed Matrix

Chapter 2

Conflict/Synergy Capture Mechanism

During the planning stages of the research, it was
recognized that there needed to be a formal mechanism in
place to assist the author in capturing and distilling the
examples cof conflict and synergy that were to be sought
(*self observations”}). Therefore, the premise that
conflict and synergy should be detectable was carried to
more specific categories, as discussed in Section 2.1.
These classifications would then be used to create a data
base which would serve both as a repository of experiment
observations and as a prompting device to elicit a
congistent slate of information about each observation
(Section 2.2). As the research moved into the
experimentation phase, it was further decided that the
obzservation data base would be altered slightly to enable
it to be used to elicit information from working
practitioners using similar combinations of CASE tools and

VPTs (“peer observations”).

2.1

Conflict/Synergy Classifications

The issues that might be encountered during visual

development were classified into two major categories,

Structural and Behavioral,
As shown in Table 2,

identified for each subcategory

specific examples given.

each with three subcategories.
tyvpes of conflicts and synergies were

(where applicable) and

Category

Conflict

Synergy

Examples

STRUCTURAL:

User Interface Layout

Duplication of
Effort

Automation of
Effort

(-} Sketch in CASE (or on
paper), then re-sketch in the
tool or language

(+) Sketch in CASE with
generation of screens in the

tool or language

DB Schema Design

Automation of
Effort

(+} Design Schema in CASE
with geperation DB
structures in the tool or
language

Tool/Language
Does Not Support
the Schema

(-) Relational Design, but tool
or language only supports
llﬂatﬂ

Object Representation

Tool/Language
Does Not {(fully)
Support

Full Object-
Oriented
Environment

(+) Developer-definable
objects/attributes with
multiple inheritance, such as
C++

{-) Limited ability to createfuse
objects, such as Visual Basic

BEHAVIORAL.

Service/Utility Modules

Designing Modules
that are already
"Built-In" to the

Utilizing Them

(+/-) File Browser; Print Setup

Tool/L.anguage
Function/Routine Tool/Language Tool/Language (+} Time Object in VB
Design Does Not Support | Strongly Supports | {-) Dealing with time in OV
the Concept the Concept

Event-Based Design

SE Methods are
limited

Strong Support
from Modern
Tools and
Languages

{+/-) See Pressman's Waitch
example on [Pressman92,
pp. 495-497]

Table 2:

Visual Development Conflicte/Synergy Matrix

2.2 Conflict/Synergy Observation Data Forms

The content of the classification scheme was used to derive
a series of data elements and types of textual information
that ought to be collected for each observation of a
conflict or synergy. These elements were used in turn to
create a data base and corresponding GUI. Figure 1 shows a
typical data form as it looks in the GUI. ObjectVision,
which was used to ¢reate the application, has the ability
to print out the data base as a series of sheets that look
like the data entry form. The possible or likely wvalueg of
the data elements were used to populate pull-down menus and

to create the check boxes seen in the figure.

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Obsarvation Typa: Project: Catagoryt Dakte of Intarviaew:
] contiice 0 - Custmar Fervice Applicstlon|ps Achams I/2/795 10420
O ayperay

Fraquency of Obavervatlon:
QECen

SE Application: BE Method: Vigual Tool:
D xacual BREK Ksthodology BEER - EXE
e

T

Dascriptiont

Thers if & "ohe-way* path from CASR model to schesa] CASZ aleo provides autokaric nobmalization of dats and avbomacic nimiog of teblas and
ACTribuCus, Ib& ANTo-ganerabed Duwes &I Yary Oryptic in ocaturd. Thersfors, the developsr typlcally sdits tha schama to maks the namss mors
rdevelopar-friendly.=

Circumatances:
omoa the schems has bawn adited; the CASE reprassoration is our of dats, and suet either ba maovally updsted {i,s,, sll sdits and mslotanance of
the schess wyst ba dons twice), or #lse the CASE represancaticn must be sbandoosd.

Guidance Zdeas:

Changd to & ool thet hAd Taverde Angicsering capabllicy {so that chingsd to the schéma cin be fad hatk into the modsl}. changsa to a tool chat
Jsnaratel dchazd that sxe so yood that thay do 0or hive to b edited; make malatensncs chioged ln the CAGE modal and refsnsrate chima sach tilms.
Just use Che CASE tool to deralop the Lloktial version snd then abandan it.

Figure 1: Typical Observation Data Form

During the completion of the experimentation test bed (see
next Chapter), the “self observation” forms were filled out
soon after each conflict or synergy was encountered. The
“peer observation” version of the forms were used in an
interview setting. The author described the premise and
nature of the study, presented the preliminary results, and
then encouraged the participant to £ill out a data form for
each memorable example of a conflict or synergy within the
scope of the research. A “Quick Reference Guide,” shown in
Figure 2, was developed to help peers when filling out the

forms.

Observation Type:
Project:

Category:

Number of Times Observed:

SE Application:

SE Method:

Visual Tool:

Description:

Circumslances;

Guidance ldeas:

Synergy/Conflict Observation Quick Reference Guide

Indicate whether this observation is an example ol Conflict or Synergy
Fill in the name of the praject

Select the design area that best fits this obser ation, or type a new one

« User I/F Layout

» DB Schema

» Utility Modules

» Function Design

¢+ Event-Based Design

Select the occurrence frequency that best fits this observation

* Once

s Occasionally
¢« Sometimes

s Often

¢ Usually

¢ Always

Indicate whether the Software Engineering inethodology was applied
manually or via a CASE tool or whether its method of application was
irrelevant to the observation

Select the Software Engineering methodology to which this observation
applies, or type a new one

+ QGane & Sarson

¢« ERD

« Gane & Sarson/ERD
¢ Coad/Yourdon

* Booch

. IEF

Select the visual programming tool (or language) to which this observation
applies, or type a new one

e Visual Basic

s Ci+

» PowerBuilder
* SQLWindows
¢ Open Interface

Enter a general description of the observation

Enter the Circumstances surrounding this observation, such as what lead
up to the problem or synergy, exacerbating or mitigating conditions, etc.

Enter possible remedies for Conflicts, possible levers for Synergies, and
Guideline Ideas surrounding the ohservation.

Figure 2: Peer Obgervation Handout

Chapter 3

Scftware Engineering Methodologies and CASE Tools

Software Engineering can be defined as “the establishment
and use of sound engineering principles in order to obtain
economically software that i1s reliable and works
efficiently on real machines,” and comprises three key
elements: methods, tools, and procedures [Pressman®2, pp.
23-241. There 18 a wiae variety of Software Engineering
technigues and methodologies in current use by Computer
Scientists in both academic and commercial settings. These
techniques and methodeclogies address a wide range of
igsuesg, including project planning, management and
estimation, software quality and testing and detailed
software degsign and implementation. However, the focus of
this investigation is the areas of reguirements analysis
and high-level design. Some methods are very formal and
structured, while others are more heuristic in nature,

providing good practice guidelines.

The sections that follow highlight the software engineering
methods and tools used in conducting the research for this
thesis. Section 3.1 provides a general synopsis of the

various methods and tools evaluated. Section 3.2 addresses

the more traditional techniques used to support the data
base applications. Section 3.3 looks at the object-
oriented/event-based technigques used for the algorithmic

applications. Section 3.4 explores the CASE tool used for

portions of the work.

3.1 Synopsis of Software Engineering Methodologies and
CASE Tools Evaluated

Fach method has associated with it a set of tools, whether
applied manually, automatically, or both, which manifests a
special language or graphical notation. The more widely
used methods have been integrated with cne another and
incorporated into Computer Aided Software Engineering
(CASE) tools. Two of the most widely used methods, Data
Flow Diagrams and Entity-Relationship Diagrams, are
described in section 3.2. Several other mainstream methods
were evaluated for use in the data base-oriented
application but were eliminated based on either unnecessary
complexity for the target problem or focus upon areas
irrelevant to the target problem. For example, a State
Transition Diagram (STD) can be developed to identify the
possible states of each data entity and the allowed
transitional events that can cause the state to change.
However, an STD for the Customer Support Tracking System
would have been trivial and of little value to the

research. Likewise, a Ward and Mellor real-time analysis

can be conducted to identify time-based processes and
interfaces to physical devices., However, the intended
system exhibited no complex real-time behaviors, rendering

a Ward and Mellor analysis useless.

Several object-oriented software engineering methods were
also evaluated. Coad/Youxrdon, the one selected for the Tic
Tac Toe game, 1s described in section 3.3. Two other
methods, Rumbaugh and Booch, were investigated. Each of
the three has its own style and approach to ckbject-oriented
analysis and design, with no one method appearing stronger
than the others. Therefore, the selection of Coad/Yourdon

was primarily based on the author’s prior exposure to it.

Commercial-grade CASE tools are now widely available, with
a wide range 1in both capabilities and price. High-end
tools, such as IEF by Texas Instruments and HPS by SEER,
are extremely robust and powerful within the framework of
their intent (e.g., legacy or mainframe data basesg), and
typically include a high degree of support for team
programming and automation of production tasks. Such tools
also bring with them a high per-developer price tag,
typically above $10,000. Unfortunately, the high-end tools
having any significant market share have their roots in
mainstream, conventional programming environments with

little to no support for object-oriented programming

environments, event-based programming, Graphic User
Interfaces or 4GLs {exceptions to this statement are

discussed in Secrtion 7.2)

Smaller, more specialized or gingle-purpose tools are algo
becoming more widely used, such as VisSim by Visual
Solutions Inc. VisSim, a tool that sells for under $200,
allows engineers to create on-screen diagrams that model
and simulate physical processes. In between is a c¢lass of
tools whose members are priced in the $1000 - $2000 per-
developer range and provide an assortment of the more
popular Software Engineering methods. Tools in this
category include ERWin, EasyCASE and System Architect. The
capabilities of System Architect will be discussed further
.in Section 3.4 since 1t was used during the course of this
research. Another category of CASE tools encompasses those
provided by data base vendors. For example, ORACLE now
provides an excellent suite of software engineering tools
as add-on products to their popular relational data base

product.

3.2 Gane & Sarson Data Flow Diagrams and Entity
Relationship Diagrams

The primary method used for analyzing and designing the
Data Base Management System (DBMS) aspects of the test bed

was the creation of Data Flow Diagrams (DFDs). The

specific DFD notation style of Gane & Sarson was adopted.
The use of DFDs for analysis and design of information
systems is well documented in a number of scftware
engineering texts [Pressman92, Chapters 7 and 11}. For
purposes of this thesis, it is sufficient to summarize that
DFDs provide a structured methodelogy for representing
external sources and sinks of data, the processes that
manipulate the data, stores of data, and the specific data
that must flow to and from each preocess. Figure 3 shows
the graphical notation for each of these items. The
methodology relies heavily on levels of abstraction, such
that a process modeled in general at one level can be
examined in greater detail at another level. The zeroceth
{most abstract) level is referred to as the “context”
diagram, showing only one process: the software applicaticn
under study. The level 1 DFD breaks the application deown
into its major modules, level 2 divides those modules into
smaller components, and sc it geoes until the modeler is
satisfied that the processes shown on the diagram are
sufficiently atomic tec be implemented. Although highly
subjective, the dividing line between analysis and design

ig often set between level 2 and level 3 DFDs.

The second software engineering method used in the test bed
was that of data modeling, using a powerful modeling tool

known as the Entity-Relationship Diagram (ERD) [PressmanS2,

External A producer or consumer of informalion thal resides oulside the bounds of the
enlity system lo be modeled

A lranstormer of informalion thal resides within the bounds of the sysiem to
be medeied

A dala nem or colleclion of data items. the arrowhead indicales Lhe duection
Dala ol dala llow

ilem

Data slore A reposilory of data thal is 1o be stored for use by one or moie processes: may
be as simple as a bufier or queue or as sophisticated as a relatwonal data base

Figure 3 Gane &k Sarson DFD Notation [Pressman92, page 210]

section 8.3]. ERDs pick up where DFDs leave off in terms
of detailing the feorm, content and structure of the
relevant data elements. Specifically, ERDs identify eéch
data entity, its attributes, and how it relates to other
entities in terms of cardinality and function. ERDs are
especially useful when the design calls for a relational
data base: the entities become tables, the attributes
become column names, and the relationships become cues to
the required referential keys. Figure 4 shows the ERD

graphical notation used for this effort.

Entity

Relationship (f-————~\\

Entity Name Entity Name
Primary Primary
Keys (PKn) D_ Keys (PKn)
Foreign Foreign
K FK Keys (FK
eys (FKn) Cardinality ys (FKn)
Attributes

Attributes Symbol
\\‘____ﬂ,// (see key) \\&_ﬂ_ﬁ__//

F X %

zero-to-one one-to-one zero-fo-many one-to-many

Key to Cardinality Symbols

Figure 4: ERD Notation

The transition from DFD to ERD takes place at the DFD Data
Store. 1In other words, the next level of abstraction for a
DFD Data Store is not another {(higher level) DFD, but
rather, 1g an ERD. In this fashion, the DFDs govern the
DBMS {with emphasis on “management system”) while the ERDs
govern the Data Definitions {(or structures) to be

manifested in the data base.

3.3 Coad/Yourdon

Object-Oriented Analysis and Desgign (OOA/D) was the primary
method used for the algorithmic porticn of the test bed
(i.e., the Tic Tac Toe game). The specific method and
notation style of Coad/Yourdon was adopted [Coad/Yourdon90
and Coad/Yourdon9l]. OOA/D was considered well-suited as
one component of the test bed because the visual tools
targeted for implementation were known to be object-
oriented and event-based in nature. For purposes of this
thesig, it is sufficient to summarize that OOA/D provides a
structured methodology for representing classes and
objects, their interconnecting structure, their attributes,
the services they provide and the message connections that
communicate the need for services. Filgure 5 summarizes the
graphical and semantic notation used in the Coad/Yourdon
approach to OOA/D. Note that the abstraction tool referred

to as “subject” was not required for this effort.

The Service Chart notation was also extrapolated to model
the overall behavior of the application. Thus, the
notation was used to provide a flow chart style

representation of an event-based design.

The procedural aspects of the OOA/D effort followed
Coad/Yourdon'’'s OOA Strategy Summary and OOD Strategy

Summary [Coad/Yourdon9l, pp. 164-181 (Appendix B and

Class-&-Dbject

e s g e - Class
[Class-&-Object Name [lop section} Class
Atiributet . Attribute
Agﬁbmzz Atlributes {middfe section)] Attripuie2
ica1) L Servicel
ggx;gzz Services (bottom section} | corvica?

Generalization

Gen-Spec Structure 1, Whale-Part Structure

.
Speciaiization Specialization2
{ m
Class-&-0Objectt) Class-&-Object2
1 instance Connection
1.m
Sender . Receiver
Message Connection N
'
1 1

Subject or Design Companent C:—-—_——_D i e, i .
(may be expanded or colapsed) Condition {if; pre-candition; trigger, terminate}

l l Text block
C::) Loop (while; do; repeat; trigger/terminate)

l Connector {connected to the top of the next symbof)

Service Chart notation (used within the template)

Figure 5: Coad/Yourdon OOA/D Notation
[Coad/Yourdon9l, page 162]

Appendix C)]. Although some of the strategy elements were
not relevant to the simple test bed application, the
sequence and content of the remainder were found to be

quite useful.

3.4 System Architect CASE (Computer Aided Software
Engineering} Tool

The System‘ArcFitect CASE tool (version 3.0) was used to
implement the software engineering methodologies discussed
in Section 3.2 [SysArch94A]. (The OOD/A methods were
applied manually.) Like most mid-range CASE

products, System Architect is a desktop workstation-based
suite of tools aimed at helping software developers provide
higher quality, more efficient work products. It maintains
an integrated, team—orientéd,repository {data base) of
results, referred to as an “encyclopedia,? which contains
project-wide Data Definitions, Diagrams, etc. System
Architect provides diagramming/modeling support and rules
checking for a wide variety of popular software engineering
methods, including all of the ones discussed in this thesis
(the Object-Oriented methods are obtained via an optional
upgrade module). It also provides, as upgrade options, a
project report generator, a data base schema generator, a
PowerBuilder bridge, and a reverse engineering tool.
Another optional module which was used in this effort is
the Screen Painter, which is a screen design and layout

tool with a Windows Dialog generator (see Chapter 6).

The mechanics of using System Architect are straight
forward. First, one must select the software engineering

method to be used. The tool then provides an on-screen

template of graphic icons relevant to that method which can
be “dragged” and “dropped” onto the diagram under
construction. Connection icons are further enabled to
allow the developer to click on the icons to which they are
connected with knowledge of directional flow (i.e., “from”
the first icon clicked *to” the second one). Each icon can
then be further refined by opening a series of “behind the
scenes” dialog boxes (using a right-click to pop up a menu
of options). These refinement dialogs handle duties from
the routine, such as names and labels, to the advanced,

such as cardinality and composite data definition

statements.

System Architect also supports levels of abstraction by
allowing each icon to link to a Child Diagram, which
represents a more detalled breakdown of its parent. One of
the rule-checking features of the tool is to verify that
the inputs and outputs of a Child Diagram are consistent

with those of the Parent (so-called “balancing”).

- 25 -

Chapter 4

Visual Programming Languages and Tools

“Visual Programming” has been defined as “the use of
meaningful graphic representations in the process of
programming” [Shu88, page 9]. Shu further defines a visual
programming language as one “which uses some visual
representations {in addition to or in place of words and
numbers) to accomplish what would otherwise have to be
written in a traditional one-dimensional programming
language” {ShuB88, page 138]. A vigual programming tool can
be thought of as a higher-level development environment,
incorporating a 4GL or scripting language and perhaps
project management aids, interpretive testing (i.e.,

without compilation) or team development aids.

Visual programming (at least in a commercial setting) 1is
tightly connected to object-oriented programming in that
all of the tools and languages evaluated were themselves
object-coriented and most allowed developers to enjoy the
benefits of object-oriented programming to some degree.
Further, visual programming enables object-oriented

practitioners “to build applications from simple, reusable

parts...by providing palettes of compatible parts in easily
accessible formats ready for use by developers’” [Jicha%4}.
Classification as a visual programming language or tool is
not absclute, but is by degree. The Gartner Group suggests
a continuum ranging from “Visual GUI with Text Scriptsg”
(e.g., Visual Basic} to “Wisual with Minor Text Required”
(e.g., Smart Elements) to “Visual with Text Optional”
(e.g., ObjectVision) to “Visual Only* {e.g., Layout)
[West92]. Shu further decomposes the “Visual Only”
category into *Diagrammatic systems® which use as tﬁeir
programming paradigm “flow charts and diagrams that are
already in use on paper” {(e.g., Layout)}), “Iconic systems”
wherein “graphical symbols are deliberately designed to
play the central role in programming” {e.g., G2) and “Form
systems” which employ graphical software representations of
physical tables and forms which “are designed asz an
integral part of a language” ({(e.g., Visual Basic} {[Shuf&S8,

pp. 12-16].

4.1 Synopsis of Visual Languages and Tools Evaluated

Because of the variety and depth of visual programming
languages and tools available, one task of this research
was to evaluate a reasonable sampling of them and select
the ones to be used in the experimentation test bed. This

section provides a brief synopsis of each language/tool

evaluated. The sections that follow elaborate on the ones
actually used. It is important to note that the languages
and tools evaluated as part of this research are
representative of the class of visual programming languages
and tools, thus allowing one to reasonably generalize the

results of this study.

Visual Basic is a Microsoft product which provides a
WYSIWYG layout tool for guickly constructing functional
Windows front ends. It is somewhat object-oriented in that
each visual element has self-contained attributes and
behaviors; events which occur at run-time can trigger BASIC
functions and procedures. However, programmers cannot
define their own classes/objects or inheritance gschemes.
The wvisual nature of Visual Basic is laying out of the user
interface and using the interface objects to organize and
contain much of the behavior of the application. Visual
Bagic i1s an economical development language sultable for
small to medium applications and is supplemented by a large
catalog of third-party add-on tools and utilities. Section
4.2 elaborates on Visual Basic and how it was used to

support this effort.

ObjectVision is a Borland product which offers a form-
oriented WYSIWYG user interface layout tool, a tree-like

visual language for processing logic, a spreadsheet-like

macro language for manipulating data and a user-friendly
“point and click” tool for linking data base files/tables
with ObjectVision objects. If an application's
requirements align with such features, ObjectVision can be
an extremely powerful tool; conversely, attempting to build
an application for which a form-gtyle user interface is not
appropriate, or one which reguires procedural algorithms,
can prove to be frustrating and non-productive. Like
Visual Basilc, 1t is somewhat object-oriented in that each
visual element has self-contained attributes and behaviors,
and events which occur at run-time can trigger ObjectVision
functions and procedures; however, programmers cannct
define their own classes or objects. ObjectVision offered
an extremely economical price point, but is now being
phased out by Borland. Therefcore, it should not be used
for any production-grade appliication where upgrades or
support would be reguired. Section 4.3 elaborates on

ObjectVision and how it was used to support this effort.

Smart Elements, by Neuron Data, originated as an expert
system development tool named Nexpert Object (circa 1987).
Later, they added a GUI development tool named Open
Interface {circa 1991). Most recently, they bundled and
integrated these two tools to form Smart Elements. Smart
Elements 1s completely object-oriented in both its own

implementation and its use by developers. It is also one

of the most portable development environments available
today in that even the most graphical application developed
on one platform can be immediately recompiled on another
{e.g., develop on DOS/MSWindows and deploy on Unix/Motif
without touching the scurce}). Smart Elements 1s wvisual in
several ways. First, its GUI editor provides much the same
functionality as digcussed for Visual Bagic, with the added
benefit of extendibility and full object-orientation (e.g.,
one can create new widget classes and inherit from them).
Next, much of the behavior of the application is
implemented by filling out “point and click” and “fill in
the blank” dialog boxes. Last, class/object/attribute/
method hierarchies {as well as rule-bases) can be
visualized as graphical tree structures. Smart Elements
provides itg own scripting language for high-level users
{analogous to BASIC for Visual Basic), while allowing full-
fledged scftware engineers to implement module details in C
(analogous to Visual C++). This tool 1s moderately-priced.
Section 4.4 elaborates on Smart Elements and how it was

used to support this effort.

Visual C++ 1s a Microsoft product which provides a very
robust class library for handling such diverse tasks as OLE
support, graphical drawing, printing services. It also has
the "Class Wizard" which handles the details of creating

subclagses and instancesg, such as inserting the correct

properties and behaviors and adding comments like "//ADD
APPLICATION SPECIFIC CODE HERE." Visual C++ is by far the
most powerful and robust of the tools evaluated. It is
unfortunately the least wvisual; for example, it has a

limited WYSIWYG lavout tool when compared to Visual Basic.

PowerBuilder is a tocl from PowerSoft for application
developers who are creating the "client" end of
client/server applications. It is geared towards MSWindows
applications networked to a SQL data base server,
PowerBuilder provides a WYSIWYG user interface layout tool,
a non-standard scripting language, automatic or manual
generation of SQL statements to put/get/manipulate server
data and hooks into the C language. Although not fully
open to programmers, its flexibility and power go well
beyond that of Visual Bagic and ObjectVision but at about
30 times the price., SQLWindows by Gupta serves much the
same audience and provides much the same functionality as
PowerBuilder. However, SQLWindows is considerably more
open and extensible, probably due to the fact that is more
object-oriented. SQLWindows hag a slightly more attractive
price point than PowerBuilder. Both tools offer team
development add-ons and are well-suited for large-scale,

production-grade development projects.

power

suction discharge

Figure 6: ZIconic Object

G2 by Gensym, Inc. is a real-time expert system development
shell which has a strong visual-programming component,
especially for modeling and simulating physical systems
such as process plants and factories. It supports Model-
Based Reasoning 1n conjunction with visually laying out and
connecting the components of the physical system. Each
class of physical object is manifested in a G2 class
object, including its wvisual icon, its connection ports,
its possible states and its behaviors {(usually in the form
of an eqguation). Thus, the class, PUMPS, might have the
icon depicted in Figure 6 with a suction port, a discharge
port and a power port; states of pumping, available and

out-cof-service, and a behavior of "If the POWER SUPPLY

object connected to the power port is energized, AND If the
FLOW LINE object connected to the guction port is open, AND
If the FLOW LINE object connected to the discharge port is

open, Then the state of this PUMP is pumping."

- 32 -

Such class objects can then be instantiated, dragged,
dropped, named and interconnected on a workspace using the
mouse. G2 is very object-oriented and open {considering
that 1t is a tool and not a language)} but is very expensive
{450,000 to 5100,000, depending on hardware platform and

optiong selected).

The most visual tool examined was VisualAge by IBM.

Because of the high price tag (and the fact that the
author’s place of work has not yet purchased a copy), the
examination was at IBM at the hand of an IBM demonstrator.
Nonethelegs, it was obvious that VisualAge is a fully-
functional visual programming tcol. It is completely
object-oriented in both its implementation and its use. It
is built in Smalltalk and is extensible using Smalltalk.
VisuallAge was originally introduced in 05/2, but is now
avallable in Windows as well. The tool has a GUI layout
scheme much like the other tools, but carries forward the
visual programming paradigm to include flow of information
and control. The behavior of the application is programmed
by dragging, dropping and connecting functional components
and then adding any necessary conditionals or parameters.
Were 1t not for the economic barrier invelved, this author
would have included ViguallZge as one of the VPTs used in

the experimentation tesgst bed.

Layout from Objects, Inc., is the most unigue of the VPTs
considered. It uses the flow-charting concept to visually
censtruct a working (and compilable) application. "Flow
charts" are made up of user-connected "black boxes," each
designed to provide a specific function (such as opening a
window, displaying information, accessing a file, etc.).
The basic program comes with over 200 pre-defined black
boxes and allows users to assemble black box abstractions
{(called "procedures"), plus Layout allows a professional
programmer to build additional ones in C/C++, Turbo Pascal
and QuickBASIC. It claims that its compilation process
uses an expert system to generate optimized final source
code (in C/C++, Pascal or BASIC), rather than blindly
append code fragments based solely on how the developer
laid out the flow chart of black boxes. Objects Inc.
purports that "Layout 1s probably the ultimate CASE
tool...a full life-cycle CASE tool, able to assist you in
dlagramming and designing your program, prototyping it,
fleshing it out, testing it, and then, when you're done,
create the finished program for you." [Layout92] Layout 1is
relatively inexpensive and supports DOS and MSWindows.
Layout was originally targeted for use in the test bed;
however, it turned out to be unsuitable for building an
algorithmic application under Windows. However, Section
4.5 shows an example of how recursion is implemented in a

visual programming tool.

There are other excellent visual programming languages and
tocls in commercial use, such as Forte' {(Forte' Software),
ObjectView (KnowledgeWare), VisualWorks (ParcPlace) and
several offerings from Computer Associates [Hanna94].
There are numercus experimental and developmental ones as
well, such as PFG (U. of Maryland), PT {(U. Of Kansas}, and
HI—VISUAL {Hiroshima University) [Chang80] [Ichikawa90].
The omission of any tool or language from this treatment is
not an indication of i1ts wvalue, but only a necessary
limitation of the scope of this research effort. The
sections that feollow provide additional details for those

tools actually used to support this thesis.

4.2 Visual Basic

Microsoft Visual Basic (version. 3.0), Standard Edition,
was used on both of the applications in the experimentation
test bed [Microsoft93]. The Standard Edition is the entry-
level version of the product {(the Professional Edition

provides a larger suite of tools and controls).

Visual Basic uses “forms” as its primary layout and

organization metaphor. That is, a form module is both the
visual manifestation of the Graphic User Interface window
and its components, and a programmatic artifact which the

developer can access to establish the lock and feel and the

behavior of the application. One form is established as
the master and i1s opened whenever the resulting program 1s
executed. Eacl additional window, whether modal or
modeless (referred to as a MultiplewDocument Interface, or
MDI, child)}, is manifested as a form. Formns have
properties which are set by the developer and which can be
altered programmatically during executicn. Forms also may
have behaviors which respond to pre-defined user-generated
or system events, such as “Load,” “Click,” *“Unload,” etc.

Fach form is stored as a file with an extension of “.FRM”,

The visual elements are referred to as controls. Common
examples include push buttons, radio buttons, text boxes,
combo and pop-up menus, static text and graphics. Each
control type 1s shown as an icon on a toolbox window such
that an instance of the control can be dragged from the
toolbox and dropped onto a previously painted form. Once
on the form, the control can be sized by either grabbing it
with the mouse or by setting its left, top, height and
width properties to the desired values. Other properties
may be set, including aesthetics (e.g., colors, borders and
fonts) and behaviors (e.g., whether visible or what happens
to the mouse icon whenever it is over the control). Some
controls include a special “Tag" property which can be used

by the developer to add a customized attribute when needed.

Like forms, contrels also may have behaviors which respond
to pre-defined user-generated or system events, such as

*Change, ” “Click,” “GotFocusg,"” etc.

Vigual Basic also provides a sulte of tools. There is a
Menu Design tool for setting up the menu bar and
accelerator keys. There is a Data Manager for creating
data bases (in Access). There ig a Setup Wizard for

creating distribution disks for stand-alone executables.

As touched on above, Visual Basic 1s an event-based
envirconment., Events can be spawned by the user, for
example, by moving or clicking the mouse or by keyboard
actiong. The system can also programmatically generate
events, such as when a control changes value or it loses
focus. Events can also be used ag a way of sending a
message to the degree that one can include in code the
ability to generaté any registered event (including ones
normally reserved for users). The event handler alsc keeps
track of which object spawned the event and, if the control
was part of a control array (a group of identical instances
of the same control and its options), it passes the index
to the calling member of the array. This allows the
receiver of the message to alter its response according to

who was the sender.

The *methods?” themselves (i1.e., the receivers of the svent
messages) are in fact subroutines written in BASIC,
associated with a control and attached to the form which
holds it. Each control has its own built-in set of events
to which it will respond {advanced developers can also
create and register their own additional onesg). If the
design calls for a certain behavior given a certain event,
then that behavior is implemented as a BASIC subroutine
whose name 1is the object name joined to the event name by
an underscore (e.g., Sub btnQuit_Click). If the control is
implemented as an array, then the subroutine would also set
up the indexing (e.g., Sub txtCell_Change {(Index As
Integer)). However, this indexing scheme stops short of
allowing the code to bhe gelf-aware {(the concept of the

“SELF” keyword will be discussed in Section 4.4).

The features and functicnality of Visual Bagic can be
significantly extended by buying add-on widgets from
Microsoft or third-parties and by writing your own custom
controls (so-called VBX's) in C. There is currently a
booming market for add-on custom contrels for such diverse
areas ags 1lmproved GUI widgets, communication utilitles, and

image viewing tools,.

To build an application in Visual Basic, start by creating

and naming an empty form. Then set its prcperties, such as

whether it will be sizable by users and the caption that
should be displayed in the title bar. Next, drag, drop,
name, and size each control and set its properties, such as
whether it is initially enabhled or whether it is reachable

by user “tabbing.”

For data base applications, special data controls must be
set up for each data base connection. The data control
enables the application to navigate, filter, and manipulate
the attached data base, using SQL-like commands {(e.g.,
WHERE, GROUFP BY, etc.) supplemented by a set of API-like
methods {(e.g., Movelast, MoveNext, etc.). The data control
also enables certain visual controls, such as Text Boxes,
to be directly linked to the data base such that their
current value is automatically updated when the associated

data base value changes and vice versa.

Next, for each relevant event of each form and contreol, add
GUI-specific code. When the developer double-clicks on the
object, the source code editor is opened with a default
event subroutine already sketched in (e.g., _Change for
Text Boxes and _Click for Buttons). The application-
specific code ig then added there, if that is the intended
event, otherwise, a pull-down menu can be accessed to bring

up any other event that 1s meaningful to that object.

Any general purpose code (i.e., routines that are not tied
to the behavior of specific user interface control objects)
is implemented in a BASIC module associated with the
application under development (“.BAS” file). Whether in a
“,FRM" or a “.BAS”" file, the general syntax, variable
definition/scoping and data structures of the BASIC

language apply.

4,3 Object Vision

Borland’'s ObjectVision (version. 2.1) was used as the
second implementation vehicle for the data base application
of the experimentation test bed [Borland9l1AaA]. Like Visual
Basic, ObjectVision uses the “form” as the metaphor for the
GUI. Conceptually, the construction of the forms and the
visual elements contained on them, referred to as objects,
is very similar to that described in Section 4.2. Unlike
Visual Basic, ObjectVisicn has only one file for the entire
application, stored with the extension “.0BV". Forms are
used to implement Windows and Dialog Boxes, and are
individually named. ObjectVision also provides support for

creating menus and accelerator keys and runtime deployment.

The visual objects are gquite similar in form and function
to those discussed for Visual Basic. However, several of

them are more powerful (i.e., require less programming to

accomplish the same goal). For example, in Visual Basic,
one must programmatically populate the contents of a pop-up
menu; in ObjectVision, the developer can provide the
contents, or the application can dynamically populate the
menu itself based on data base values at runtime. Another
more advanced feature 1s support for data restriction via
the concept of content “pictures” {(e.g., a local phone

number would have a picture of ###-####).

ObjectVision’s capability for linking to data bases is
superior. The *“links” tool allows one to create and modify
data base schema in several popular PC-based formats,
including Xbase, Paradox, B-trieve and even comma-delimited
ASCII flat files. More importantly, the links tool
examines objects on the forms that have built up to that
point and attempts to match them up to the data base.
Likewise, in data base creation mode, the schema is created

based on the data types and lengths found on the forms.

Another data base related area where ObjectVision excels is
in managing relational designs. Even though they are
manifested in traditionally non-relational data base
formats, ObjectVision itself establishes and maintains the
contents as relational tables. This includes understanding

of foreign keys and automation of developer-selected

referential integrity rules. This tool also recognizes

likely joins and automatically establishes them.

ObjectVision is also an event-driven tool, responding to
both user-generated and system-generated events. Events
can also be invoked programmatically, but such usage is
less powerful since they cannot contain arguments or

report which object spawned them.

The primary means of implementing application behaviors isg
by creating logic trees. These trees are constructed in a
visual editor that provides developmental support, such as
menus of available objects and guidance on legal maneuvers.
Such trees are the closest egquivalent to metheds available
in ObjectVigion, and are one of two types. “Value Trees”
are used primarily to provide derived data values (when the
visual object to which it is attached remains null) and to
perform data validation (when the visual object to which it
is attached receives a value from the user). “Event Trees”
are used for performing more general event-based dutilies and
are created for gpecific events for specific object. For
example, the “Quit” button cbject would likely have an
Event Tree attached to it to instruct the zpplication on
how tc respond to a “Click” event. The action to be taken
when a leaf of the tree 1s reached is articulated using

Lotus 1~2~-3-like scripting language.

The events and script verbs can be extended by writing your
own custom DLL’s in C and registering them with the

application at start-up.

If used correctly, and if the target application is data
base-oriented, CbkbijectVision can be a powerful tool.
Otherwise, it can be a drain to productivity. The first
task 1s to construct the GUI. The steps reguired include:
create and name an empty form; set its properties; drag,

drop, name, and size objects; set their properties.

The second task is to add the behavioral dimension to the
application by constructing the Event Trees and Value Trees

for each relevant event of each form and control.

The final task is to use the “link” tool to attach the GUI
objects to their counterparts in the data base. If data
elements in the GUI are missing from the data base, the
links tool will help create them. It will also prompt for
referential integrity options and other helpful options,

such as filters.

4.4 Smart Elements

Smart Elements {version 2.0), by Neuron Data, was used as

the second implementation vehicle for the algorithmic

application of the experimentation test bed
[NeuronData%94C]. Smart Elements is actually a package that
integrates two independent Neuron Data products that had
achieved success in the marketplace: Open Interface
(version 3.0) and Nexpert Object (version 3.0}. The Open
Interface element can be used alone to build portable GUI
front ends to C-based applications. The Nexpert Object
element can be used alone to build portable Xnowledge-Based
Systems or object-oriented applications. Together, they
form a very complete, graphical environment for building
advanced, production-grade applications. Open Interface
supplies the front-end processing and Nexpert Object

provides the back-end processing.

On the surface, Smart Elements provides much the same set
of capabilities and features as were discussed in the
previous two sections. Using the “Open Editor” facility,
windows and dialogs (modal or modeless} and the visual
elements contained on them (referred to as “widgets”) are
created by dragging, dropping, sizing, and naming them and
then setting their properties. The results are stored in
two formats: a platform-independent ASCII rescurce file
(*".RC”") and a platform-independent binary data base file
{“.DAT”). Push buttons, radio buttons, text edit boxes,

combo and pull-down menus, text and graphics are just some

of the standard widgets provided. Advanced users can

extend or alter these widgets as they see fit.

Open Interface provides tools for setting up menu bar and
accelerator keys and linking to knowledge bases {in Nexpert
Object). There is also a C source code generator that

creates a compilable version of the application front end.

Open Interface is highly event-driven in its architecture,
while the behavior of Nexpert Object is governed by a
complex and highly configurable agenda mechanism and
inference engine which handles both events and chaining of
rules. Behavior of the GUI is governed by procedures
written either in the Open Interface scripting language or
in C. The scripting language is itself based on C, and C
programmers will find it a familiar environment to work in.
On the Nexpert Object side, behaviors are implemented
either by methods, using the Method Editor, or by rules,
using the Rule Editor. Both elements support creation and
inheritance of very generic code which can adapt itself to
the situation at run-time, including interpretation of
reserved words: “@7V for knowledge base atom names, “SELF*
to represent the specific widget to which a script is
attached, and “EVENT” to represent the event currently

being processed.

Smart Elements is fully object-oriented in both its
internal design and itsg use by developers. Both elements
allow creation and exploitation of

class/subclass/object (instance) hierarchies, including
multiple inheritance. In Open Interface, the c¢lass
structures can be displayed graphically in the Resource
Browser and instances are created and modified in Open
Editor; however, creation of new classes requires
significant programming. On the other hand, in Nexpert
Object, objects, properties, methods and rules are all
written and modified by filling out dialog boxes. Results
can be visualized in a series of graphical browsers,
including a Rule Network and an Object Network. The

notation used for these browsers is shown in Figure 7.

The classes, objects, properties, rules and methods of a
Nexpert Object application are stored as a platform-
independent ASCII knowledge base file (“.KB”). The
knowledge base can also be stored in a platform-specific

compiled (binary) format.

Another unigue feature of Smart Elements is that the
environment is very open. For example, features can be
extended by writing your own procedures or DLL’'s in C.

More importantly, application modules built in Smart

Hypothesis
Conditi current_task Is "refueling” ¢
onditions » tenk_I.pressure » 300 77 -
device.orientation {s “inward "P,.——--’*/ r valve_problem P
Action ——f =3Shgw "valve_problem’ @KEIP «—
Evaluation lcons
(a) Rule Graph Notation
Properties
level
level
K ,f,,ﬂ,,,,,ﬂ,_.,—f~’“"‘:::E§ pressure
A lank_1
Reqgular_Tanks 1
OReg A lank_2 L tevel
\ [T pressure
Class Objects
{b) Class-Object Network Notation
Figure 7: Smart Elements Rule and Object Nctations

[NeurconData94C, ppr. 50-51]

Elements can be embedded into other C applications using a

very robust Application Programming Interface (API).

One of the most powerful features of Nexpert Object is
built in support for pattern matching in rules and methods.
Pattern matching allows very generic code to perform
searches of properties over class/cbject hierarchies and
return a list of the matching objects. The list persists
for the duration of the current operation and can thus be

used with subsequent conditionals or actions of that

operation. The list can also be passed as an argument to
another operation. The value of this feature will become

cbvious 1n Section 5.2.3.

To build an application, first start up the Smart Elements
Main Window. From here, one may either proceed to create
the GUI in Open Interface or the back end in Nexpert
Object. The tocl is so robust, that there are numerous
avenues to accomplish any task, so this treatment suggests
merely one, starting with building the GUI. In reality,
this 1s an interactive process, cycling among GUI widget
editing, widget script writing, and editing of classes,

objects, properties, methods, and rules.

First, display the Resocurce Browser, navigate to the “Win”
resource, and double-click con it to start the Open Editor
with an empty window. Use the tools, palettes and dialogs
to create and name the required windows; set their
properties; drag, drop, name, and size widgets; and set
their properties. For each relevant event of each window,
dialog and widget, add the GUI-specific script which will
achieve the desired behavior {or alternatively, generate a

C-source template and add C-code to implement behavior).

For knowledge-based applications, set up links between the

GUI objects in Open Interface and knowledge base objects in

Nexpert Object. For data base applications, one can also
gset up data links, using either an add-on product named
Data Elements for complex, client/server applications, or

the built-in sgcripting calls for =imple ones.

Now, implement the structural aspects of the application in
Nexpert Object (i.e., classes, objects and preoperties) by
opening and using the Class Editor, Object Editor and
Property Editor, respectively. The results of this
hierarchical construct can be visualized using the Objéct
Network browser. Finally, implement the {(non-GUI)
behavioral aspects of the application in Nexpert Object
{i.e., methcds and rules) by opening and using the Method

Editor and Rule Editor, respectively.

4.5 Layout

Layout, by Objects, Inc., was originally slated as the tool
to be used to build the second algorithmic application in
the experimentation test bed [Layout92]. Although it was
ultimately abandoned for use in the test bed, it does
provide an interesting insight into visual programming. In
particular, a recursive version of the classic factorial
algorithm was visually programmed in Laycut as part of the
evaluation process. Although somewhat tangential to the

main thrust of this thesis, the purpose of this section 1is

to demonstrate how a such an abstract concept as recursion

can be programmed visually.

The programming metaphor used by Layout is the flow chart,
Functional code modules are represented by icons known as
“Black Boxes.” Cascading palettes of Black Boxes are
avallable from which one may select and drop onto the flow
chart. Black Boxes can have inputs and/or outputs, can
return a value to the Black Box which called it, and can
receive and send messages with arguments. Flow Charts can
be broken up into callable Procedures which themselves can
take arguments and return values. Woven throughout the
Flow Chart and Black Box metaphor are supporting ones, such

as “Filling out a Card” for opening a user dialog window.

Layout has a GUI painting tool to develop user windows and
populate it with the (now) usual glate of widgets. These
widgets are connected to the Flow Chart and its Black Boxes
in a very restrictive fashion. (ASTDE: The lack of
flexibility in the connection between the GUI and the Flow
Chart became the downfall of this tool for the Tic Tac Toe
game. Many hours of work-around attempts, discussions and
faxeg with Layout Tech Support yielded no viable solution.)
User input data is collected and organized using the data
card (or index card) metaphor. There is also a tool for

creating/managing the variables used in the Black Boxes.

To build an application in Layout, use the Flow Chart tool
to begin visually building the application. When a Black
Box 1s chosen that requires a window, a screen painting
tocl will open which will allow you to create and name an
empty window (or card) and set its properties. You may
also drag, drop, name, and size objects and set their
properties. When a Black Box is chosen that reguires an
equation with variables, a Variables tool will open which
will allow vou to create the needed data elements. The
process of editing the Flow Chart and its Black Boxes,
including the filling out of associated dialeogs, when
requested, is repeated until the desired application

behavior is achieved.

With that background, the concept of visual recursion can
now be pregented. Of course, the impact of visual
programming is significantly diminished when reduced to a
paper-based portrayal, such as this. However, the point
that visual programming opens new software engineering

opportunities and challenges should not be lost.

The factorial application presented here provides a simple
graphic user interface to accept the input value and
display the output value. The application also provides
input validation and feedback to the user if the input is

unacceptable (i.e., not a positive integer}. Last, but

certainly not least, it must calculate the factorial of the
input value and place the result in the output value. It
is this last step that is implemented recursively. The
pseudo-code for a recursive version of the factorial
algorithm is as follows (“input” and “output” are global

integers) :

factorial {input, output)
If input > 1 Then
input = input - 1
output = output * input
factorial (input, output)
End If

End function

Figure 8 shows the Laycut Flow Charts for the Main
(“factorial”) and Recursive Procedures (“factorial recur”).
The main program sets up the user window; sets up the main
event loop {(while the user has not selected the “Done”
button); lets the user enter an input value {in an data
entry object named “Original Integer” on a Card named
“factorial”); sets up entry validation and correction loop
{while user input < 0}; handles the special case for 0! (If
user input = 0, result = 1} and otherwise initializes the
input (“*Factval”) and output {(*FactRes”) variables and

calls the recursive procedure {the Else portion}; makes a

Starl Of Program
tactorial

¥
Open A Window
Recursive Factarial

il
_|

Repeat Whilc.

selecled abject <> Done on daciarials

e

[remamer2d(Let User FIIE Oul 2
@.’f fazloriais

. k3
el | Repcal While...

Original [nfeger on factorials < 0

H—————

¥
Put Value Inlo Yariabie
HNo Megatives Allowed

¥
QOpen A Dialog Box
HNOFE!

¥
Activatle Card
m’, No Negatives

¥
Pause the Program
quick dialog

¥
Close A Dlalog Box
NOPE

¥
Tet User FIlE Qui a Card
=1 faclorials

Original [nle;er an factorials < 0

Make A D:cisiun

Special case for 0

L 3
Put Value Inte Varlabie
FactRes = |

¥
Eise, [f No Decislon
Special case {or 0

¥
m Pul Volue into Varlable
set lactval = Origanal Integer

¥
Pul Value Into Variable
Set {acires = [aetval

— ¥
Use A Procedure
factorial wcur

=

E‘.""".J End of Dﬂ:isiun
Special case [ox [+

Make a Bccp
Acknowledgs completion
¥

[E=<RT] End of Repeat
P selecied object < Done on {aclorials

¥
Cloge A Window
Racursive Factorial

¥
End Of Program
factorial

Siart Of Procedure
{actorial recur

Make A Dccusmn
factval on facterials =1

¥
Put Value Into Variable
Decrement factval by 1

¥
Put ¥alue Into Yariable
Let [actres = [actval * facires

¥
Use A Procedure
[aclorial recur

¥
hETuI.IFn “Elge, If No Declsion

{actval on Eacionnls =1

[ttty] End of Declslnn
{actval on factoriais = !

k. 3
m End Of Procedure
[actorial recut

Figure 8: Layout

Flow Charts of Recursive Factorial

- 53 -

“beep” to acknowledge completion; closes the window and

exits (once the user has clicked on “Done”).

The recursive procedure tests the input value (“Factval*)
to verify that it has not yet become decremented all the
way to 1 (if it does equal 1, the procedure is immediately
exited); if not equal to 1, the procedure decrements the
input to the procedure by 1, sets the result (“FactRes”)
equal to the old result times the newly decremented input
value and calls the recursive procedure; when control

returns, the procedure 1is exited.

The concept of a visually programmed recursive function may
be hard to imagine. However, when the Flow Chart is
displayed, it only shows the current level of recursion.
One can drill down to the next level in the recursion by
clicking on the small icon to the left of the “Use a
Procedure” Black Box and come back up back by clicking on
the small icon to the left of the “Start of Procedure”
Black Box. The developer may drill down as many levels as
desired and Layout will keep repainting the same recursive
procedure; however, 1t is keeping track of the levels
because the icon for coming back out will have to clicked

just as many times to get back to the main procedure.

Chapter 5

Experimentation Test Bed

The experimentation test bed described in this chapter was
concelved to create a controlled environment in which to
observe the interactions and interdependencies among the
software engineering methodologies discussed in Chapter 3
and the wvisual programming languages and tools discussed in
Chapter 4. The observation capture mechanism discussed in
Chapter 2 was applied throughout the design and
implementation process as noteworthy synergies and

conflicts were encountered.

5.1 Customer Support Tracking System

The Customer Support Tracking System (CS$STS) was inspired by
a project ongoing at the author's workplace for which the
client was wanting the company to take incoming technical
support calls for a fielded software system and then bill
them for the time used. CSTS was conceived as a relational
data base aimed at managing a group of users of a fielded
software product. CSTS was designed using Gane & Sarson
DFDs and ERDs using System Architect and implemented in

Visual Basic and ObjectVision. The system must maintain a

data base of licensed users, 1lncluding relevant data about
that user and the company for which he or she works. It
must also track the duration and content of technical
support callg taken from licensees. The GUI must serve as

both the end-user and maintenance interface.

5.1.1 C8TS Design

The CSTS Design Package 1s provided as Appendix A. The
package consists of a System Requirements Definition
statement, the Gane & Sarson DFDs and associated Process

Definitions, the ERD and associated Data Definitions.

The design was created using the System Architect CASE
tool. The tool is not only responsible for producing high-
quality printouts of the various diagrams and definitions,
but alsoc maintains an association between the symbols on
the diagrams and the contents of the definitions data base.
Thus, System Architect was not used simply as a drawing
tool, but rather, was used as a repository of design
information, both symbolic and definitive. It also helped
reveal the need to normalize the data. The original
requirements did not specify a separate table for the
licensee (person) and the company for which they worked.

It turns out that one company may have multiple licensees

and as such the company data ought to be stored and

maintained separately. Therefore, the design divided the
CUSTOMER table that was specified into separate LICENSEE

and CCMPANY tables.

5.1.2 CSTS Implementation in Visual Basic

The listings and screens for the Visual BRasic version of
CSTS are provided as Appendix B. There are four sections
in the appendix, one for each of the major modules. -Each
module consists of a printout of the GUI screen, the
definitiong of that screen and the visual objects it
contains, and a listing of the Visual Basic source cocde for
the object behaviors. The main module, CSTSMain, provides
the ®“Customer Support Tracking System” window and is saved
under the name CSTS.FRM. The company information
maintenance module, ChangeCompany, provides the “Change
Company Information” window and is saved under the name
CHANGECO.FRM. The technical support module, SupportCall,
provides the “Support Calls” window and is saved under the
name SUPPORTC.FRM. A module for deleting companies,
CSTSMnt, provides the “CSTS Company Maintenance” window and
is saved under the name CSTSMNT.FRM. This application has

no generic (.BAS) module fileg.

To use the Visual Basic version of CSTS:

®» Start Visual Basic

Load the CSTS Project (CSTS.MAK)

Run the application and the CSTS main window will open
You may exit the application either by first selecting
the “File” item from the menu bar or by double-clicking
on the system icon (the bar in the upper left corner of
the window)

You may browse existing licensees using the navigation
icons (they are similar to VCR buttons) tc go to the
first, previous, next and last recoxrd.

You may edit the licensee information (the company
infqrmation cannot be edited from this screen)

You may type a value in the Licensee ID bhox; if that ID
already exists, that record will be displayed,
otherwise, a new licensee record will be created and the
“Change Company Information” window will be opened
(since every licensee must have a company associated
with it)

You may Click on the “Change Company Info? Button to
open the “Change Company Information” window

On the “Change Company Information” window, you may edit
the data, browse the existing company records (using the
navigation icong), select an existing company record
directly (using the pull-down menu} or create a new‘
company record by typing in a new name; you may either
*Accept” the changes or “Cancel” them, either of which

will return you toc the main CS8TS screen

¢ From the main CSTS screen, vyou may Click on the “Support
Calls” button to open the “Support Calls” window

¢ On the “Support Calls” window, you may type in a
description of the call of any length into the
scrollable text box; you may browse the past support
calls to that licensee using the navigation icons; you
may either “Accept” the support call information or
*Cancel®” i1it, either of which will return vou to the main
CSTS screen

e From the main CSTS screen, you may delete a company
record or a licensee record by first selecting
"Maintenance” item from the menu bar (NOTE: cascading
deletion of the related data is not automatically
provided by Visual Basic and was not programmatically

implemented)

During the implementation, several interesting things
occurred. One positive experience had to do with a
powerful data base connection device built in to Visual
Basic (known as the “data control”). It allows wvisual
objects to be directly linked to fields in a data table and

also automatically provides the data base browser feature.

A disappointing experience was discovering that the pull
down menus {e.g., combo boxes) are not populated

automatically at run time, but rather must be populated

programmatically. Other tools, such as ObjectVision, are
able to scan the contents of the data base at run time and
populate the menrnu without the need to write a single line

of code.

5.1.3 CSTS Implementation in ObjectVision

The listings and screens for the ObjectVision version of
CSTS are provided as Appendix C. There are three sections,
one containing printouts of the three screens, one
containing printouts of the behavioral event trees and
scripts, and one containing sample screen shots from the
ObjectVision development environment. The three screens
are: the “Customer Support Tracking System” window, the
“Change Company Information” window, and the “Support call”
window. Since this application was constructed in a visual
programming tool, it has no source code listing, per se.
Instead, event tree diagrams with their “mini-scripts” are
provided for: the “Change Licensee ID” (text edit) Event,
the “Open Change Company Information” (form) Event, the
"Click New Company” (button) Event, the *Click Return”
(button) Event {on *“Change Company Information?), the

“Click Cancel” (button) Event (on “Change Company

Information”), the “Open Support Call” {(form) Event, the
“Click Accept” (button} Event (on “Support Call”), and the
“Click Cancel” (button) Event (on “Support Call”). The

screen shots portraying typical parameters that were set
for various dimensions of the application are: combo box
setup (attribute menu, Field Type selection, Expected List
dialog for combo box showing “Automatic”), date field setup
(attribute menu, Field Type selection, Date Type selection
dialog), non-editable text edit box setup (attribute menu,.
Protection choices dialog), constrained data entry text box
getup {attribute menu, , Field Type selection, Picture
String dialog), data base table creation (Data Links
dialog, Paradox Link Creation dialog, Data Rase Table
Creation dialog), and data base filter setup (Data Links
dialog, Paradox Link Creation dialog, Optional Link

Capabilities dialog, Link Filters dialog)}.

To use the ObjectVision wversion of CSTS:

e Start ObjectVision

e File|{Open CSTS.OVD (the CSTS main window will open)

s You may exit the application either by double-clicking
on the system icon (the bar in the upper left corner of
the window)

* You may browse existing licensees using the navigation
icons (they are similar to VCR buttons) to go to the
first, previous, next and last record.

* You may edit the licensee information (the company

information cannot be edited from this screen)

You may select an existing licensee record directly from
the Licensee ID box (using the pull-down menu)

You.may type a value in the Licensee ID box; if that ID
already exists, that record will be displayed,
otherwise, a new licensee record will be created and the
“Change Company Information” window will be opened
(since every licensee must have a company associated
with it)

You may Click on the “Change Company Info” Button to
open the “Change Company Information” window

On the “Change Company Information” window, you may edit
the data, browse the existing company records (using the
navigation icons), create a new company record by
clicking “New Company” and typing in the new name, or
deleting the current company record by clicking on
“Delete”; you may either accept the changes by clicking
“Return” or “Cancel” them, either of which will return
you to the main CSTS screen

From the main CSTS screen, you may Click on the “Support
Call” button to open the “Support Call” window

On the “Support Call” window, you may type in a
description of the call of any length into the
scrollable text box; you may browse the past support
calls to that licensee using the navigation icons; you

may either “Accept” the support <¢all information or

“*Cancel” it, either of which will return you to the main
CSTS screen
e From the maln C8TS screen, you may delete a licensee

record by clicking on “aAxe’.

The primary negative impression during the development
process was the nearly impossible task of documenting the
object attribute selections. There is no direct way to do
this. Taking screen shots (as was done for the few samples
in Appendix C) would be prohibitively time consuming on

even a medium-size project.

On the positive side, the data base connection {link tool)
was most impressive. ObjectVision successfully generated
“straw man” data tables based on visual objects,
automatically setup referential integrity constraints,
automatically setup Jjoins at run time, and automatically
populated the combo box menus. At first, the fact that the
System Architect Schema Generator tool did not offer
support for any of the data base formats supported was
disappointing. However, the schemas for all three data
tables were ghosted in based on the GUI objects and

peolished up in a matter of minutes.

5.2 Tic Tac Toe

The Tic-Tac-Toe game was inspired by an assignment in the
Software Tools class. It provides at straight-forward
application that is both visual and does not entail a data
base. It does, however, reqguire (simple) logical and
numeric algorithms. Tic Tac Toe was designed using the
Coad/Yourdon methodology and implemented in Visual Basic

and Smart Elements.

5.2.1 Tic Tac Toe Design

The Tic Tac Toe Design Package is provided as Appendix D.
The package consists of a System Requirements Definition
Statement, the Coad/Yourdon Analysis and Design step
results, and the Coad/Yourdon Object State Transition

diagrams.

The design was not created using a CASE tool, but rather
was performed and documented manually. The analysis and
design process was nonetheless a productive exercigse. The
information spelled out during completion of the 0Q0A/D
steps did indeed lay out a course for direct
implementation. The mapping from the design to the
programming environment was congiderably better for Smart

Blements than for Visual Rasic, as would be expected

considering that the former is a fully object-oriented

tool.

The original design did not include the Chiject State
Transition Diagrams. During the Visual Basic
implementation, the need to understand the cascading
sequence of events became evident (the author kept getting
lost in a not-so-visible web of events causing side-effects
causing more events and so on). At that point, effort was
directed back to the design phase and the states and the
events which could cause a change in state were laid out in

a manageable and understandable fashion.

The design calls for nine identical cell objects to
represent the nine locations of play on a Tic Tac Toe
board. There are also eight conceptual summation obijects
to represent the state of the three rowsg, three columns and
two diagonals which are possible on a Tic Tac Toe board.
The object representation scheme is rounded out by a game

state object that containg the current state of play.

The key to the algorithms used by the gaming engine is to
represent the player’'s “X” with the integer “1", the game’s
“O" with the integer “-1*, and an unused cell with *“0~.
This allows the state of each row, column and diagonal to

be unambiguously discerned by simply adding up the values

of its three cells: +3 means the user has won, -2 means the

game will take the (necessarily) remaining empty space for
the win, and +2 means the game will take the {(necessarily)
remaining empty space for the block. The sums are also

used to help discern several special cases having to do

with the user attempting to get the game intc a double-bind

(where there are two rows/columns/diagonals that must be

blocked, referred to as a “wedge’).

The strategy devised for the gaming engine is, in order of

priority:

1. Test for user win (any sum = +3) ==> Game Over

2. Test for game win (any sum = -2) ==> Find and Pick Empty
Cell and Game Over

3. Test for block {any sum = +2) ==> Find and Pick Empty

Cell

4. Test for diagonal wedge (sum of the sums of both

diagonals = 0) ==> Pick Center or Top Edge

5. Test for edge wedge (the only one of concern is when the

sum of the sums of the bottom row and the right column

2) ==> Pick the Lower Right Corner Cell

6. Pick the next empty cell according to the following

“search pattern”:

2 6 3
7 1 8
4 Q 5

5.2.2 Tic Tac Toe Implementation in Visual Basic

The listings and screens for the Visual Basic version of
Tic Tac Toe are provided as Appendix E. There are four
parts in the appendix, one for each type of information.
The first part is simply the GUI screen for the
application. The second part contains the definitions of
that screen and the visual cbjects it contains {saved as
MAIN.FRM). The third part provides the a listing of the
Visual Basic source code for the object behaviors {also in
MAIN.FRM). The fourth part i1s the Visual Basic source code
for the generic functions used by the application (szaved as

TTT.BAS)

To use the Visual Basic version of Tic Tac Toe:
e Start Visual Basic
e Load the Tic Tac Toe Project {(TTT.MAK)

= Run the application and the Tic Tac Toe window will open

e You may exit the application at any time either by
clicking on the “Quit” button or by double-clicking on
the system icon (the bar in the upper left corner of the
window)

¢ You may click on any cell to make your first move, or
Click on the “You Go First” button if you want the game
to make the first move

¢ You will always be *¥X” and the game will always be 0"

s Notice that the mouse cursor icon changes whenever it is
placed over a mouse-sensitive region of the game board.

e After each move by the game, vou may select another
empty cell for your move

¢ Notice that the game will not allow you to make two
simultaneous moves or put your “X* in an already
occupied cell

¢ The game will notify you of the final result when there
is “three in a row’” or when there are no more moves

« Warning: the game cannot be defeated, so do not spend

more than two or three hours trying

Since design of the Tic Tac Tece game reqguired both a
symbolic and numeric representation of each cell on the
board, the “Tag” property of Visual Basic TextBox object
was put into service. Whenever the Text value of a cell
changed to an “*X”, a “_change” method was 1nvoked which set

the Tag value of that cell to +1. Likewise, when the game

decided 1ts move, it set the Text value to “0” and let the
change method set the Tag value to -1. This technigue
allowed the human to see the symbolic values and the game
to apply its algorithms te the numeric valueg of the same

objects.

The Visual Rasic’s capability to allow creation of an
indexed array of identical visual objects was exploited in
the implementation. Specifically, the “obiject_Change”
method (mentioned earlier) was implemented as a completely
generic subroutine. This routine was then attached to the
first cell that was created for the game board. The other
eight cells were added as indexed “clones” of the first
one. In this fashion, all nine of the individual {indexed)
text cells on the game board shared the same {(identical)
subroutine for handling changes in the value of a text
cell. Thus, the code fragment shown below was written once
and reused eight times with no additional programming

reqguired:

Sub txtCell Change {Index As Integer)
If txtCell{Index).Text = "X' Then

txtCell(Index) .Tag = 1

ElseIf txtCell (Index).Text = "O" Then
txtCell(Index) .Tag = -1
End If

gnd If

End Sub

5.2.3 Tic Tac Toe Implementation in Smart Elements

The listings and screens for the Smart Elements version of
Tic Tac Toe are provided as Appendix F. There are four
parts in the appendix, one for each type of information.
The first part 1s simply a printout of the GUI screen for
the application. The second part contains the Open
Interface definitions of that screen and the visual objects
it contains (saved as TTT.RC) Since the Open Interface
scripts are formatted in an unfriendly manner in the ".RC”
file, a manually edited listing of the scripts is also
included. The third part presents the Nexpert Object
“gsource code” for the Knowledge Representation Scheme
(i.e., the Classes, Objects and Properties and how they are
connected to one another). This part i1s a combination of
screen printouts from the browsers and editors of the
development environment plus a textual listing of the
Knowledge Base (saved as TTT.KB). The fourth part is the
Nexpert Object “source code” for the rules and methods used
to provide the behavior of the application. Once again,
this part i1s a combination of screen printouts from the
browsers and editors of the development environment plus a

textual listing.

To use the Smart Elements version of Tic Tac Toe:

¢ Start Smart Elements (this requires a security key)

¢« Load the Tic Tac Toe Knowledge Base (TTT.XB); this
establishes the gaming engine 1ln Nexpert Object

¢ Load the Tic Tac Toe compiled resource file (TTT.DAT);
this establishes the GUI engine in Open Interface

* Navigate to the Open Editor main dialog (firxrst, display
the Resource Browser, navigate to the “Win” resource,
and double-click on it to start Open Editor, which will
display the Tic Tac Toe window in development mode

* Run the applicaticn by clicking on the “Test” button

* You may exit the application at any time eilther by
clicking on the “Quit* button or by double-clicking on
the system icon (the bar in the upper left corner of the
window)

* You may click on any cell to make your first move, or
Click on the “You Go First” button if you want the game
to make the first move

» You will always be “X% and the game will always be *“Q”

» Notice that the mouse cursor icon changes whenever it is
placed over a mouse-~sensitive regiom of the game board.

*» After each move by the game, you may select another
empty cell for your move

¢ Notice that the game will not allow you to make two

simultaneous moves or put your “X” in an occupied cell

¢ The game will notify vou of the final result when there
ig “three in a row"” or when there are no more moves

¢ The current =+tate of the game is displayed for
information purposes and to give you something to do
besides fume over the fact that the game cannot be

defeated

Implementing Tic Tac Toe 1in Smart Elements was a truly
.enjoyable experience. Although several dead ends and need
for work-arounds were encountered, all in all, the
environment delivered on the productivity and visualization
benefits touted for a high-end visual programming tool.
There was perhaps a factor of more than 5 times on

productivity over the Visual Basic implementation.

Incremental development in an object oriented tool
environment also paid rewaxds. The most dramatic example
was development of the part of the gaming engine that
manages the state of the game board (i.e., the sums of the
eight rows, columns and diagonals). Once the prototype
{one row of game board) was operating correctly, it took
less than 15 minutes to create a fully operation game
board. This rapid scalability was due to the self-
maintaining quality of the bkoard okjectg achieved through
inheritance of generic methods. All that was required was

to clone the other six cells, clone the other seven

- 72 -

“gummation” cbjects and connect the appropriate three cells
to the corresponding summation object, It worked on the
very first try, requiring not one line of new code and not

one session of debugging.

The concept of Pattern Matching in Nexpert Object was used
extensively in the generic methods mentioned above. For
example, the conditicnal (IF clause) of one of the rules

was:

(= (<|Sums{>.sSum) 2)

This says “If the .Sum property of any child of the Sums
Class eguals 2 (i.e., two *X”’s}, then put the name of that
obiject in a list.” That list can then be used in
subsequent operations in that rule and can be passed as an
argument to a method, ags seen in the action (THEN clause)

of that same rule:

{SendMessage (*mthdPicklastCell”)

(@TO=|Cells|.Val; @ARGl=<]Sums|>;))

This says “Send a message to the ,vVal property of all
children of the Cells class, and invoke the PickLastCell
method, with the previously generated list, loecally known

as <|Sumsf>, as an argument.” The method, expecting as an

argument a list of objects with one member whose .Val
property is 0, then sets off to identify its name (remember
that for a summation to have been equal to 2, two of the
cells in that row, column or diagonal must have been filled
with a 1, leading the knowledge that the third must still
be empty). Note that the same method is used by the rule
seeking a row, column, or diagonal equaling -2 {(i.e., two

*07g) to identify the empty cell.

One of the challenges of implementing Tic Tac Toe in Smart
Elements involved the need to mold the (tool-independent)
design into a distributed processing architecture. This
rethinking was required because the GUI engine {(in Open
Interface) and the gaming engine (in Nexpert Object} are
completely independent processeg communicating through a
software bridge. Thus, the design had to be augmented to
flesh which jobs should be done inside which process and
how the necessary inputs and outputs of each process should

be communicated to the other.

Chapter 6

System Architect to Visual Basic Bridge Prototype

One of the current trends (discussed in Section 7.2} has to
do with the merging of CASE tools and VPTs. This trend
embraces the concept of automatic programming. Indeed,
System Architect today can automatically generate SQL data
base schema from a data model built in the tool. However,
many other implementation aspects remaln a manual process
in all but the most advanced tools. One such aspect 1is
that of graphic screen design and implementation. System
Architect provides a component for “painting” a Graphic
User Interface screen and then automatically generating a
generic MSWindows dialog file {(which is characterized by a
“ . DLG” extension). Unfortunately, Visual Basic does not
recognize guch dialog files, but rather, uses its own file
format for storing user interface data (characterized by a
“.FRM" extension}. Therefore, the author created a
prototypical bridge program, named SAZVB.EXE, which
automatically generates Visual Basic Forms (*.FRM} from
gscreens {*.DLG) generated using System Architect. The
purpose of this effort was to demonstrate that such bridges
are possible, are practical and should be pursued as part

of the maturation process of these tools.

6.1 SA2VB.EXE Design and Scope

To design a GUI translator, one must first understand the
syntax, coordinate system, and naming conventions used on
both sides of the translation {i.e., source and target).
Several reference documents were digested in order to pin
down these topics on the Windows Dialog side (Microsoft92]
[Petzoid92] [SysArch94B]. On the Visual Basic side, these
topics primarily were discovered by “reverse engineering”
example Forms, with some help from the Programmer’s Guide
[Microsoft93]. For example, one can populate a form
{(window) with an assortment of contreols (widgets) each
having an assortment of options selected and then examine
the “.FRM” file for that form to discover the

representation scheme.

Because of the difference in coordinate systems between
System Architect and Visual Basic, the size and location
parameters had to be converted. The algorithms for doing
this were applied as each parameter was handled. 1In
Windows dialog files, x-coordinates and width parameters
are based on 1/4 of an average character width while vy~
coordinates and height parameters are based on 1/8 of an
average character height [Petzoid92]. For standard Windows
GUI applications, a character is 8 units wide and 16 units
high, thus making the coordinate system symmetrical in both

axes. In Visual Basic, the default coordinate system uses

“twips, ” which are defined in terms of size at 1440 twips
per logical inch [Microsoft93, pp. 353-354}. Visual Basic
on-line help, under “ScaleMode Property,? further explains
that a standard character is 120 twips wide and 240 twips
tall. For most situations, the conversion algorithm was
simply the parameter‘s dialog-value times 30, which is a
good approximation for converting character height and
width fractions to twips {i.e., 120 twips/char width + 4
dialog units/char width or 240 twips/char height + 8§ dialog
units/char height). The main window was the exception,
reguiring the height and width to be offset by an
additional 360 and 60 twips, respectively, to account for a

slight difference in representing the origin of the window.

Since there are an enormous number of controls and options,
the scope of the tranglator was limited to the window
itself and three fundamental control types: Text Edit
Boxes, Pushbuttons and Static Text. The recognized options
for the main window and these three controls are summarized
in Table 3. Other design decislons were to implement the
bridge as a DOS~based utility program using Borland Turbo
C++, Version 1.01 [Borland91lBl, to accept the gource file
name as a command line argument and to output the resulting

Visual Basic file with the name “out.frm".

Dialog Items Recognized Oplions

Main Window Sizeflocation

No Border

Fixed Single Border

Thick (sizable) Border

Control Box (the menu box in upper left corner)
Maximize Button

Minimize Button

Caption text

Text Edit Box Size/location

Default text

Vertical Scroll Bar
Horizontal Scroll Bar
Both Scroll Bars
Multiline

Right Justified

Left Justified
Centered

Border Box

Pushbutton Size/location
Caption text
Default button

Label (Static Text) Sizeflocation
Label text
Right Justifieq
Left Justified
Centered

Table 3: SAZVB Scope Matrix

6.2 SA2VB.EXE Implementation and Testing

The source listings for SA2VB.EXE can be found in Appendix
G. The program opens the source file (using fopen) and
scans it word by word {(using fscan) to identify and test
each token. Because the possible tokens are well
constrained, the program was written using statically
defined variables (up to 256 characters) to represent each

word. When an in-scope item is encountered, the program

appends its Visual Basic eqguivalent to the cutput file
(using fprint). The program is written such that it

harmlessly ignores out-of-scope tokens.

The program first sets up the window and its options, and
then recursively seeks out and handles the controls and
their options. The coordinate algorithm discussed earlier
igs applied as each control is handled; however, a defined
constant, FACTOR, is used in case a non-standard videco
configuration creates a need for a different conversion
factor. When the end token is encountered, the program

wraps up out.frm and closes out the input and output files.

The program was tested using several cases designed to
exercise its wvarious features. In addition, randomly
selected System Architect screen files developed by variocus
employees of PathTech Software Solutions, Inc.,, were
converted to ensure that the program could handle “real

world” conditions.

6.3 SAZVB,.EXE Application

To use SAZVB.EXE, one must first go intoc System Architect
and use its “Graphic Screen” module to define a user
interface. This is done by dragging, dropping and shaping

the window and its components and by filling in the details

for each component in “behind the scenes” dialog boxes.
Thesé dialog boxes, called up by either double-clicking on
the graphic component or by clicking the right mouse button
on it, are where the various options are selected. Once
the screen image and its properties are satisfactory, one
must then invoke the System Architect “Generate Dialog”
featuvre., This causes System Architect to automatically
create a Windows standard compliant “.DLG” file containing

the appropriate control parameters and definitions.

Once a valid *.DLGY file is available, one must shell out
to DOS and execute SA2VB.EXE with the dialog file as a

command line argument, as follows:

SAZVE TEST.DLG

Next, one must launch Visual Basic and add the file named
“OUT.FRM” (this is found under the "File|Add File” menu) .
Finally, the newly created user interface can be displayed
and examined (and later saved under a meaningful name) by

double-clicking on “OUT.FRM” in the Project Window.

This process was carried out for numerous test files, as
discussed earlier. One example, showing the image and file
listing before and after conversion, is included as part of

Appendix G.

Chapter 7

Conclusions

The conclusions which can be drawn from this research
effort have been divided into four areas of discussion.

The first points to the observations collected during
construction of the test bed. The second examines the
current trends in the literature as they relate to this
effort. The third secticn offers a series of guidelines
aimed at bridging the gap between the subject technologies.
The last summarizes the results and findings of the overall

effort,

7.1 Observation Results

As expected, a variety of instances occurred where subject
technologies worked in concert or in conflict. The self
observation forms which capture these instances are
collected in Appendix H. In addition, three colleagues who
regularly deal in the subject technologies were interviewed
to verify that the specific findings based on the test bed
ccoculd be reasonable generalized. The peer cbservation

forms are collected in Appendix I.

7.2 Anticipated Trends and DPevelopments

Lowry forecasts the emergence of “knowledge-based software
engineering” where CASE tools will evolve to include
semantic content and where “software engineers will be
delivering the knowledge for generating software rather
than the software itself”[Lowry82}. Although well out of
this author’s price range, Intellicorp’s Object Management
Workbench (OMW} is well on its way to fulfilling that
forecast {Hanna94]. Based on a fully object-oriented
methodolegy known as Martin-Odell, OMW allows software
engineers to create analysis and design diagrams which are
directly executable and from which C++ source can be

generated and compiled when the time is right.

In early 1894, O'Brien expressed his concern ﬁhat'CASE tool
vendors were not keeping up with the rapid adoption of
event-based architecture, object-orientaticn, component-
based development and points to the need for a new
generation of CASE tools [0'Brien94]. If this is indeed
the case, the market need for new tcecls will draw them out
of the vendors, if not the current ones, then new ones who
crop up to fill the void [Linthicum94, Constantine95}. One
researcher, pondering how difficult it was to avoid
methodology obsolescence, envisioned a marriage of formal
software engineering techniques and visual programming

which he called Visual Software Engineering [Chang94].

The forerunner of such a marriage is automatic program
generation. This is a relatively mature technology for
non-visual settings. However, automation of conceptual
models, often bhest candidates for visualization, is in its
infancy. Blum reinforces this belief as he classifies
software engineering methodologies according to whether
they are more concerned with conceptual modeling or
formalization, and then points to a gap between the two
[Blum%94]. Indeed, it was the gap between GUI design and
implementation that spawned the idea for the SAZVE bridge
prototype that was discussed in Chapter 6. The (hopefully
interim) need for such utilities was underscored by Keuffel
as he described the techniques he used to narrow the gap
between Evergreen’s EasyCASE and Microsoft FoxPro
[Keuffel94]. The off-loading of routine programming tasks
to end-users via “Wizards” is another concept that could be
carried into the software engineering domain (today's
Wizards are targeted at helping office workers create
custom charts, forms, layouts, etc.) and is a trend that

bodes well for the proposed marriage [Kivocoka95].

From the visual programming point of view, toocls with more
and more power and flexibility are reaching the
marketplace. The most visual, such as IBM’s VisualAge, are
empowered by full object orientation, an intuitive 4GL, and

support for relational data base concepts. VisuallAge,

implemented in a combination of Smalltalk and itself
{making it both a tool and a language), offers wvisual
degsign and development of client/server applications,
including SQL schema generation and application

partitioning [Hanna94, Harding95].

The rapid growth in the use of visual programming tools is
being driven by their ability to deliver reasonably
transparent access to object-oriented programming and an
easier transition to event-based architectures, GUI front
ends, component-based development and the like [Jicha94,
Schmidt95]. However, it is unlikely that even the best
visual programming environment can achieve its full
potential if it i1s not also delivering a sharable,
understandable, reusable, printable, widely accepted

software engineering methodology.

7.3 Guidelines for Development

This section of the thesis presents a collection of
guidelines for finding synergy and avoiding conflicts
between software engineering methodologies and visual
programming toocls and languages. The guidelines that
follow are presented as a bridge to the day when CASE tools
and visual development tools are truly one in the same.

The guidelines are divided into the four major categories

of User Interface, DB Schema, Event-Based and/or Object-

Oriented Design, and Function Design.

7.3.1 User Interface

Look for CASE tools that can automatically generate the
Graphic User Interface "code" in the native tongue of the

Visual language/tool, thus avoiding duplication of effort.

If such a CASE tool is not available, or i1f a CASE tool is
not being used on the project, then consider using the
layout mode of the implementation language/tool as the
design tool. Most Visual Programming languages and tools
provide the capability to quickly sketch out a screen,
including titles, labels, and graphics, data presentation
and edit areas, and user control devices (e.g., pull-down

menus and buttons) .

Look beyond the obvious in stretching the features of the
tool to make it meet the specifications. For example, the
design may call for a text edit object with certain
behaviors regarding clicks or changes, but the tool may not
provide all of the desired behaviors for a text edit
object. However, a 1 x 1 spreadsheet or grid object looks
exactly like a text edit object and may provide enhanced

behaviors needed in the design. This guidance comes with

cne caution, however. The benefit of stretching a tool may
reach a point of diminishing return, leading to excessive

laber costs and lost productivity.

Many languages/tools provide the ability to create custom
classes, objects or widgets. Doing such would provide the
ability to incorporate whatever "generic" attributeg and
behaviors the object should have {(e.g., a BoardCell in the
Tic~Tac-Toe application) and then create instances of it in
the User Interface. If the development team includes
strong computer science capabllity, then major extensions
can sometimes be coded using the underlying language cof the
vigual tool. For example, cone can significantly alter the
features and behavicor of IBM's Visual Age using its
underlying language, Smalltalk. Similarly, one can extend
Vigual Basic by writing their own sgo-called “custom

controls” (identified by a “.VBX" extension) using C.

Establish a GUI object naming convention which expresses
the type of object, whether it is native or derived and
which options apply. Some object types are pervasive
enough to now be considered generic, such as a text edit
object or a combo box object. If the implementation tool
i1g known, then the naming convention can be more explicit
in how it represents the tool's objects and their options.

An example is shown in Table 4.

GUI Obiject Naming Pattern
Simple text edit tedObjectName
Specialized (i.e., derived) projXtedObjectName
text edit
Delete Record Button delbtnObjectName
Delete Record Button, with delbtn?0bjectName
“Are You Sure?” flag

Table 4: Example Cbject Naming Convention

7.3.2 DB Schema

When selecting the data base engine and CASE tool for a
project, the compatibility of one with the other should be
an explicit selection criterion. However, this may spawn a
debate regarding whether a CASE tool should influence the
data base to be selected. Ironically, the CASE tool is
often selected bhefore the data bhase engine is selected,
since some level of design must be completed in order to
specify the data base requirements. This problem can be
circumvented by using a CASE tool whose schema generator
supports a wide variety of data base products and
technologies. Chances are, there will be a match between
the “best” data base engine based on the design
reguirements and those which are compatible with the CASE

tool. TIf such good fortune fails to arise, then

consideration should be given to switching to a CASE tool
that does support the data base of choice, since the
project will still be early in its life cycle and the cost
of switching CASE tools may be less than that of finishing
the project with mismatched tools. (Of course, if the data
base has been cast before the project begins, then select a
CASE tool that provides a schema generator for it.) For
example, Visual Basic now supports Microsoft Access 2.0 and
the System Architect CASE tool can generate a "vanilla™ SQL
that can be used with minor editing to automatically create

the data base structures.

Incremental development (a.k.a. Spiral Model and Software
Accretion) is becoming a common strategy, especially when
using modern tools and languages such as those under
investigation. One challenge of this strategy is frequent
design changes based on “lessons learned” from the prior
increment. This, in turn, creates difficulties in keeping
the design synchronized with the current version of the
software. For synchronizing the design representation with
the “as-built” application during incremental development,
several approaches are suggested:
1. Settle on design conformity/leniency rules {(i.e., how
far can the programmer deviate from the design without

invoking a redesign cycle) and design update

frequencies for manually synchronizing the design
(this approach applies whether or not a CASE tool is

being used}.

2. This problem may be mitigated by deciding to carry a
minimum of detail in the design, leaving a great deal
of leeway for the programmer during implementation.
However, this approach adds a significant design and
documentation burden on the programmer. The
programming staff must be good at designing code
modules and be religious in the documentation of their

as-bullt code.

3. Select the CASE tool and data base such that reverse
engineering can be used to convey changes implemented

in the development tool back to the CASE tool.

Know your tcool's presumptions about how an application will
be developed and go with the flow. 3By simply understanding
the expected sequence of development, one can streamline
the development process. Conversely, bucking the system
can easily cripple an otherwise useful tool. This is not
to say that one should use risky or unsatisfactory
development practices. And, of course, never, never, never
would I suggest that one change the problem to suit the

tool. However, 1f one approach is about the same as

another, then let the expected synergy with the development
tool make the decision. {This, in turn, means that someone
on the development team must know, or be able to find out,
how the tool expects the problem to be tackled.) For
example, ObjectVision assumes the segquence of development
will be: 1) Layocut the User Interface, 2) Program the
Operatiocnal Behaviors, and 3} Create/Connect the Data
Base{s). When this pattern is followed, the data base
back-end practically ‘“writes itself” since ObjectVision
drafts a “straw man” version of the data base gchema based
on the existing GUI objects. It even suggests data types
and length based on how its associlated GUI object has been
laid out. Thus, the developer must merely remove or edit
the gchema elements. If one begins by laying out the data
base, every element will have to be put in by hand. This
example should be contrasted with PowerBuilder, which
presumes that a data base already exists and attempts to
aid the developer in building the front end and which can‘t

do much more than sketch out user screens unless an

underlying data base is actually available.

7.3.3 Event-Based and/or Object-Oriented Design

All of the visual programming tools and languages
investigated for this effort employed event-based

processing and object-oriented programming at least to some

degree. Some just scratch the surface of these non-
traditional programming paradigms (e.g., Visual Basgic)
while others are quite mature (e.g., Smart Elementsg).
Thus, it 1s necessary to discuss potential conflicts and
svnergies which arise not because of the visual nature of
the tool or language, but due to the intrinsic use of these
emerging programming paradigms. Further, if the
implementation tool/language is in fact known at design-
time, avoilid fighting the language; it is better to adapt
(limit) the design methodology to take advantage of
whatever advanced features are availlable (e.g., object-
orientation, or event-based processing) and use procedural
or conventional approaches for the balance. Two examples

of such prudence follow:

1. When Visual Basic is known to be the implementation
language, the design should be geared to have only one
property per object causing event-based behaviors to
execute, since the “Tag” property does not spawn
events and no cther value-properties can be added.
(This example presumes that the developer is not a C

programmer capable of constructing a custom control.)

2. When Visual Basic is known to be the implementation
language, one should avoid the use of objects other

than those destined for the User Interface, =zince

Visual Basic deoes not support 00P in the general
sense. Another approach {(not tested) is to create a
Virtual Form to hold objects which will be used
internally but never actually displayed to the User;
this would in essence "trick" Visual Basic into having
a collection of objects for use (literally) "behind

the scenesg."

If you are going to use an object-oriented tool to
implement an application, Go For The Gold in the design
process. Craft Methods that are as generic as possible.
apply them as high in the hierarchy as possible. Take full
advantage of classification structures and let the benefits

of OOP shine through.

For fully equipped OOP environments, it may be preferable
to keep (reascnably related) communication links between
major system modules simple (like a "pinch point"). A
single, simple message from one module to the other is easy
to follow and debug if problems do arise. The target
method can then spawn however complex a set of processes as
are required (see Figure 9). This advice may alsc be
useful in designing communications between modules in a

distributed application using a client/server architecture.

Jobi
Job2
Module A Module B Module A Module B
lob 3 One Msg
(tagged to
Job4 convey
4 Jobs)
Figure 9: Individual versus Coalesced Messaging

Smart Elements does not provide a vehicle to explicitly
notify user interface objects when they to be updated.

Note that for objects having a one-to-one correlation
between the knowledge base and user interface, it dces
provide a linking mechanism; however, it 1s often the case
that one would want to send a message from one Knowledge
Base object to a non-correlated GUI object. This type of
messaging is provided in the other direction. In the Tic-
Tac-Toe application, the Knowledge Base and GUI objects
could not be linked because the object wvalue in the GUI was
symbolic (X, O or <space>}, whereas 1n the Knowledge Base,
the value was numeric (+1,-1 or 0).] The workaround used
in the Tic-Tac-Toe application causes a great deal of extra
work, since every interface object must be "pulsed" after
each call to the Engine to see if they need to *“do
anything.” ©Other toocls suffer from similar front-end/back-
end communication gaps, such as opportunistically advising

a User Interface when a stored procedure has placed new

- 93 -

data into the data base. In a full strength application,
where performance could be in jeopardy, a more focused
(i.e., intelligent rather than exhaustive) messaging system
would have to be crafted, For example, one could add a
"black board" table into which the data base “engine” could
place a list of updated data objects and which an Interface
method could use to update just those Interface objects
whose data values had changed. ©Of course in the Smart
Elements application, the built-in linking mechaniém could
have been used "as i1s" and then have an Interface method

convert the numeric value into its symbolic equivalent.

7.3.4 Function Design

Consider the use of a tool that provides an explicit rule-
based paradigm, even if the application is not an expert
system or does not reguire inferencing. The rules can be
used to expedite control strategy/logic or to explicitly
represent the business rules to be followed. The
visualization of such rules can be a powerful communication
tool for use with the internal customer how the program
will behave. Visualization of processing logic can also
accelerate the validation of the program by a testing or

design review group.

- 94 -

To accommodate nuances and/or unknowns of the
implementation tool, the design must be kept generic (tool-
free) down to 2 point. Then, if the tool and its special
needs are known, a layver of specialization can be added.
{(Note that the Gane & Sarson process modeling technigque
uses a drill-down approach to sgspecificity, thus making it

suitable for this approach.)

For applications which include an underlying data base
(probably relational), consider using a hybrid of software
modeling methodologies. 1In particular, Gane & Sarson Data
Flow Diagrams for high-level context and major processes,
Entity-Relationship Diagrams for detailed data schema, and
Coad/Yourdon Event Diagrams for events make a good

combilnation.

7.4 Summary of Findings

Table 5 is & matrix which presents the observation results
(from Section 7.1 and appendices H and I) mapped into the

functional categories developed in Section 7.3. Thus, the
table presents the observation frequency of conflicts and

synergies as a function of Application and Category. The

table indicates that, in general, the current state of the
technology provides more instances of conflict than of

synergy. Also note that the most advanced tocl, Smart

Categories
User LB Event-Based/ Function
Application Definition Interface Schema 00 Design Pesign
Coflct | Syn } Coflet | Syn | Cnflct | Syn | Coflct | Syn

Customer Support Tracking 2 12 2
System (Visual Basic with CASE-
based DFDs and ERDs)
Customer Support Tracking 2 6 3 2
System (ObjectVision with CASE-
based DFDs and ERDs)
Tic Tac Toe (Visual Basic with 2 1
O0A/D)
Tic Tac Toe (Smart Elements with 2 2 5 1
O0A/D)
Peer Observations (with CASE} often often | often often | usual
Peer Observations (CASE not often
reievant)

Table 5: Freqguency of Conflicts and Synergles

Elements, provided more instances of synergy than conflict.
Perhaps this is an indication that these technologies are

indeed beginning to mature.

Applying a software engineering methodology provided
benefits during the design and impleméntation of the test
bed applications. The design process surfaced data
structure and behavioral issues that would have not
otherwise have been discovered until the debugging stage
had begun. As such, there seemed to be considerably fewer
hours spent writing and debugging code compared to other
programming projects undertaken by this author. wWhen
implementation problems did occur, reference back to the
design documents usually helped solve them. Although not

formally studied, the author also believes that the

- 96 -

conclusions of the research would have been the same no
matter which of the mainstream software engineering
methodeologies had been chosen. Thus, the decision to use a
gsoftware engineering methodology is more critical than the
choice of which one or whether to use a CASE tool to

implement it.

Using a visual programming language or tool provided
benefits during the development of the test hed
applications. It would seem that this would always be the
case 1f the application has a visual component (e.g., a
GUI) or is such that visualization of its design and/or
operation is important (e.g., model-based reasoning or
simulation). Productivity was higher when using the tools
than when using Visual Basic. However, not all tools offer
the same flexibility. For example, for ObjectVision to
deliver a net benefit, the application must closely fit the
expected mold. Conversely, Smart Elements can be made to
look and feel more like a language than a tool when the

built-in functions and features are not sufficient.

Ironically, even though it was manipulating GUI resource
files, the SA2ZVB bridge itself had no visual dimension to
it. Thus, it was implemented in a non-visual development
environment. Further, since it required no complex data

structures and no complex architecture, hand-marked example

input and output files and hand-sketched logic diagrams
were the extent of analysis and design reguired to solve
the problem. The lesson here is that, as powerful as CASE
tools and visual development environments may be, there are
gtill cases where the complexity of the problem does not

warrant the investment reguired toc procure and learn how to

use them.

Interpolating between the test bed applications, which
clearly benefited from both the applicaticon of software
engineering methods and visual development tools, and
bridge, which did not, leads to the possibility that there
lies a class of problems which can and should be solved
using the visgual development environment alone. An example
of such might be the bridge application with the added
requirements of a GUI-based file browser and preview
capability. Conversely, a “pure’ data base application
(perhaps CSTS without the call timer and with a simplified
user interface) could be designed in a CASE tocl and
generated by it with little or no additional programming.
However, the relative number of problems whose solution fit
one of these profiles may be small, such that the best
advice is to establish a development environment that
provides a flexible, cooperative suite of software
engineering methodologies and visual programming languages

and tools. From there, standards can be developed as to

which tools and methodologies in the suite should be

applied tc which problems.

Guidelines and utilities fashioned along the lines of those
presented in this thesis should be directly beneficial to
developers charged with delivering an applicatiocn using a
visual language or tool while following a formal software
engineering methodology. This will be especially true for
projects involving a team of developers. Of more
importance, such guidelines and utilities are themselves
primary ingredients of the merged CASE and wvisual
programming environments of the future. Perhaps the

results presented here will facilitate the transition.

REFERENCES

[Blum94]
Blum, Bruce I., “A Taxonomy cof Scftware Development

Methods, * Communicaticns of the ACM, 27, 11 (November
1994), pp. 82-94.

[Booch9l]
Booch, Grady, Object Oriented Design with
Applicationg, The Benjamin/Cummings Publishing Company

Inc., 1991.

[Borland91la)
Borland ObjectVigion version 2.1, Getting Started,
Borland International, Inc., 1991.

[Borland91Bi

Borland Turbo C++ version 1.0.1, User’s Guide, Borland

Internaticnal, Inc., 1991.

[BraithwaiteS0)]
Braithwaite, Kenmore S., Applications Development
Using CASE Tools, Academic Press, Inc., San Diegc,
1990,

[Chang90]
Chang, Shi-Kuo, Visual Languages and Visual
Programming, Plenum Press, New York, 1990.

[Chang94]
Chang, Carl K., “Changing Face of Software
Engineering, * IEEE Software, 11, 1 (January 1994), pp.
4-5,

[(Coad/Yourdon90]

Coad, Peter and Edward Yourdon, Object-Oriented
Analvsig, Prentice Hall, Englewcod Cliffs, New Jersey,
19380.

[Coad/Yourdon91]
Coad, Peter and Edward Yourdon, QObiject-Oriented
Design, Prentice Hall, Englewood Cliffs, New Jersey,
1990.

[Constantine94}

Constantine, Larry, “Modeling Matters,” Software
Development, February, 1994, pp. 96-94.

- 100 -

[{Constantine95]
Constantine, Larry, “Shapes to Come, ” Software
Development, May, 1395, pp. 96-95.

[Hanna94]
Hanna, Mary, “New Breed of 4GL Puts Pretty Face on C/S

Apps, " Software Magazine, 14, 12 (December 19%4), pp.
33-40.

[Harding95]
Harding, Elizabeth U., “Will IBM Make Smalltalk?,”
Software Magazine, 15, 2 (February 1995}, pp. 21-22.

[Ichikawa90]
Ichikawa, Tadao, et _al, Visual Languages and
Applications, Plenum Press, New York, 1990.

[IEEESS]
Burnett, Margaret M., and David W. McIntyre, Guest
Editors for Feature Articles on Visual Programming,
IFEEE Computer, 28, 3, (March 1995%), pp. 14-66.

[Jichad4]
Jicha, Henry, “Object Technology Explodes with Visual

Programming, ” Object Magazine, 4, 4 (July-August
1994), pp. 33-36.

[Keuffeldd]
Keuffel, Warren, "MicroCASE: A Grass-Roots Strategy

for Deploying CASE Tools,” Software Development,
February, 1994, pp. 37-42.

[Kiyooka?5]
Kiyooka, Gen, “0Ode To AppWizard, " Software
Development, January, 19385, pp. 79-81.

[Layout92]
Layout version 3.03, Layout For Programmers, Objects,
Inc. 1992.

[Linthicum84]
Linthicum, David S., "Get the Picture with Visual

Programming, * Application Development Trends,
February, 19%4, pp. 52-58.

fLowry92]
Lowry, Michael R., “Software Engineering in the
Twenty-First Century,” AI Magazine, 14, 3 {(Fall 1992),
. 71-87.

- 101 -

[Marting9]
Martin, James, Information_ Engineering., Book TI:

Introduction, Prentice Hall, Englewcod Cliffs, New
Jersey, 1989.

[McConnell93)]
McConnell, Steven C., Code Complete: A Practical

Handbook of Software Construction, Microsoft Press,
Redmond, Washington, 1993.

[Microsoft92]
Microsoft Windows Software Development Kit,
Programmer’s Reference, Volume 4: Resources, Chapter
7, “Resource Formats Within Executable Files, * and
Chapter 13, “Resgource-Definition Statements, *
Microsoft Corporation, 1992,

[Microsoft93]
Microsoft Visual Basic Programming System for Windows

Version 3.0, Programmer’s Guide, Microsoft
Corporation, 1993.

[NeuronData942a]

Nexpert Object version 3.0, Nexpert Object: User’s

Guide, Neuron Data, Inc., 1994,

[NeuronData94B)]
Open Interface vergion 3.0, Open Interface: User’s

Guide, Neuron Data, Inc., 1994.

[NeuronData94C]
Smart Elements wversion 2.0 Introduction Manual, Neuron

Data, Inc., 1994.

[NeuronData94D])

Nexpert Obiject version 3.0, Functional Description,
Neuron Data, Inc., 1994, pp. 71-80.

[0'Brien94]}
O’Brien, Larry, “CASE’'s Gordian Knot,” Software
Development, February, 1994, pp. 7-10.

[Petzoid92]
Petzoid, Charles, Programming Windows 3.1 PART 3 Using

Regources, Chapter 10 “Dialog Boxes,? <?7??>, <???>,
1952,

[Pressman9Z)
Pressman, Roger 5., Software Engineering: a
Practiticner'’s Approach, Third Edition, McGraw-Hill,
Inc., New York, 1992,

- 102 -

[Rich93]
Rich, Charles, and R. C. Waters, “Approaches to
Automatic Programming, ” Advances in Computers,
Marshall C. Yovits, ed., Academic Press, Inc., San
Diego, 1993.

[Schmidt95]
Schmidt, Jennifer, “Choice of Visgual Tool Depends on
Focus, * Application Development Trends, April, 1995,

pp. 31-40.

[Shu88]
Shu, Nan C,.,, Visual Programming, Van Nostrand Reinhold
Company, New York, 1988.

[SysArch94A)
System Architect User Guide & Reference Manual, Popkin
Software & Systems Incorporated, 1994.

[SysAarch94B]
Syvstem Architect Screen Painter, Section 5.4
“Generating .DLG and .H Files, Popkin Software &
Systems Incorporated, 19%4.

[(West92]
West, M., “How Object Oriented Is Your Visual
Programming Tool?,” GartnerGroup Applications
Development & Management Strategies Research Note, T-
700-794, November 23, 1992.

- 103 -

APPENDIX A

Customer Support Tracking System Design Package

CSTS Requirements Definition Statement

Upon startup, the system shall present to the user a form-
like data entry screen, plus several options available from
either menus or buttons. The main data entry screen shall
be named "Customer Support Tracking System" and shall
provide a place for a User ID (which the system must
guarantee as unique), Company Name, Address {(twe lines,
plus City, State, and Zip+4), Country, Telephone (with 5
digit extension} and FAX, Contact Name and Title, Date
First Product Shipped and the Total Support Time rendered.
Information entered using this screen shall be stored in a
CUSTOMER data basgse using User ID as the primary key. The
system shall be designed such that a Customer's primary
record may be both created and maintained using this same
screen. The Total Support Time area shall not be user
editable, but rather shall be calculated by the system each
time support is provided; the system shall provide an
"Update Total Support Time" menu option under a

"Maintenance" menu bkar item in case it must be overridden

- 104 -

by the user. The other functions under "Maintenance" shall
be "Delete Company" and "Delete Licensee." The Main screen
shall provide a <Support Calls> button which shall take the
uger to the "Customer Support" screen. The Customer
Support screen shall alsc appear form-like and shall repeat
the Licensee ID and Contact Name from the customer's
primary record. It shall automatically provide the Support
Date and Time for the support currently being provided,
plus a scrollable, unlimited, editable text field for
capturing Comments, the Elapsed Time. and a user definable
Combo list of Support Types. The Customer Support screen
shall provide buttons for starting and stopping a timer and
for returning to thé Main screen. The system shall
maintain a SUPPORT data base containing the data from
individual support entries with the Date/Time stamp ag the
unigue Primary Key and the User ID as the Foreign Key {to
CUSTOMER). Returning to the Main screen shall also cause
the system to increment the Total Support Time field by the

amount of time in the Elapsed field.

- 105 -

Context

Customer Support Tracking System

Users

Qe
P1

All Users are enabled/responsible
tor maintenance and reporting
as well as using the system
during a suppon call

Customer
Support
Tracking Syst,

Reports

- 106 -

Major Processes
Customer Support Tracking System

Qeo
P1.1

Browse/
Maintain
Customer Data

- _/ Qe
P13) A Pl2)

Generate Browse/
Repoits Handle
Suppon Calls
{Not

Implemented)

T) ﬁ_/

o) 1o Y Y

CSTS Data Stores

D Licensees D Suppor Calls

D Companies D Problems

- 107 -

1.1. Browse/ Maintain Customer Data

™

-

A A

A A

TS T ATy ST Ty
P11 P1.1.2) P1.1.3 P1.1.4
Browse/Edit Add New Browse/Edit Add New
Licensees Licenses Companies Company
. AN J

\T/

CST%Data Stores

Licensaes

Companies i——“

- 108 -

- 1.2. Browse/Handle Support Calls

Pt1.2.1 Pt1.2.2 P1.2.3
Browse/Edit Begin New End New
Suppport Calls Support Call Suppport Call

W . \. J

CSTS Data Stores

D Support Calls
—> -

D Licensees

- -

- 109 -

Process Definitions
Page 1 3/06/95 6:18:45 pm

Name: Add New Cempany

PUurposa: :
This process finds the last record in Companies, reads its value for CMPY_LOC_ID,

increments by 1, creates a new recerd with that ID sets the current record peinter te it,
and returns control to the Browse/Edit Company Information process.

Documentations
RespopAible:
Transaction Fregquency : StartDu: CompDate !

Daescription:

Name: Add Hew Licensee

Purpcses
This process allows the user to enter a new Licensee ID and then ensdres that it is unique.

If so, thls process creates a new (empty) licensee record with that ID. If not, it sets che
current recerd peinter to that licensee. Control is then recurned te Browse/Edit Licensees.

Documentation:
Responsible:
Tranpaction Frequency ¢ BtartDt: CompData:

papcription:

Name; Begin New Support Call

Purpceea:
Save current time stamp. Start timer object Lf appropriate.

Dacumentationt
Repponsible:
Transactlion Fregquency startbc: CompDate:

Descriptien:

Nama: Browse/Edit Companies

PUurpose;

The Licensee and Company tables ghall be joined via Company/Location ID(CHPY.LOC_ID).
Company data may be ediced directly. The user shall have the ability to page up and down
thru the records, ge te the top or the bottom of the records. The user may invoke commands
to "Accept" (store changes), "Cancel”, or "Add Hew Company*.

Documentation:
Responeible:
Transaction Freguency H StarcthDt: CampDate :

DPedcription:

Namet Browse/Edit Licensees

Purposea:

The Licensee and Company tables shall be joined via Company/Location ID(CMPY_LOC_ID) -
Licensee data may be edited directly; editing of Company deta shall reguire the user Lo
invake a "Change Company Info* command. The user shall have the ability to page up and down

- 110 -

Process Definitions
Page 2 3/06/85 €:18:45 pm

thru the records, go to the top or the bottom of the records, delete a Licensee, or delete
a Company. The user my invcke commands for *Add Mew Licensee®, "Add New Company" or

Support Call.

Documentation:
Resporsibla:
Transactlon Freguency H StartpDes CompDate

Dedoriptlon:

Hame: Browse/Edivr Suppport Calls

PUrpoEQT
Filter records based on current LICENSEE_ID in Licensees, Support data may be ediced

directly. The user shall have the ability to page up and down thru the records, go to the
top or the bottom of the records, or delete a record. The user my invoke commands for "New
Support Call*, or “Done".

Documentation:
Respongible:
Transaction Freguency BtartDt: CaompDate:

Dapcription:

Name: End New Suppport Call

PUrposes
Clock Duration of Support Call and Store its wvalue (in minutes) ipn SERT_TM of the curient

{new)} support record. Calculate a new summation of the support time for the current
Licensee and store it in LIC_TOT_SPRT_TM of that licensee's master record. Close the form
and return contrcl to Browse/Edit Customers.

Documentations
Responsible:
Trapgaction Fregquency 1 BtartDt: CompDate :

Dascription:

KName: Maintain Customer Data
Purpceeat

Documantation:
ReEponeiblet
Transaction Freguency EtartDt: CompDats

Dageription:

- 1311 -

CSTS Data Stores

(Licensees

-Key Data
LICENSEE_ID {PK1]

-Non-Key Data
CMPY_LOC_ID [FK]
LIC_TOT_SPRT_TM
LIC_TLP_NB
LIC_TLP_EXT
LIC_CNTC_1ST_NM
LIC_CNTC_LAST_NM
LIC_CNTC_TTL
LIC_FAX_NB
\LIC_SHIP_DT

Has Support Calls

Problems
-Key Data

PRBM_CD [PK1]
-Non-Key Data

PRBM_DESC

Supports

(Support Calis

-Key Data

LICENSEE_ID {PK1] [FK]
SPRT_DATE [PKZ]

-Non-Key Data
SPRT_CMT
FRBM_CD [FK]

SPRT_TM
0

Works for a Company

112

6ompanies

-Key Data
CMPY_LOC_ID [PKA1]

-Non-Key Data -
CMPY_NM
CMPY_ADH1
CMPY_AD2
CMPY_CITY_NM
CMPY_ST_CD
CMPY_CNTRY
CMPY_ZIP
\CMPY_EXT_ZIP

CsSTS Data Stores

Companiep
Volume :
Commenkts ¢

Purpose:

CMPY_ AD1
Type: CHARACTER
Domain:
Description:
Customer Address Part One

Comments:

cMPY_AD3
Type: CHARACTER
Domain:
Dascriptian:
customer Address Line Two

Comments:

CHEY CITY_ NM
Type: CHARACTER
bomain;
bescription:
Customer City Name

Comments:

CHMPY_CHTRY
Type: CHARACTER
Domain:
Description:
Customer Country

Comments:

CHMPY_EXT ZIP
Type: INTEGER
Domain:

Description:
Plue 4 Zip Extension

Comments :

CMPY_LOC_ID
Type: INTEGER
Domain:
Description:

Entity
Normalize:

Width: 40
Length:

width: 40
Length:

width: 25
Length:

width: 15
Length:

Width:
Langth:

Width: 4
Length:

T

Unique Company/Location ID; automatically incremented as new record is added;
supports multiple users at same company and lecation,

Comments :

CHMPY_NM
Type: CHARACTER
Domain:

Data Store/Entity and Pield Definitions {current}
As of 3/06/95%

Widch: 50
Length:

113 -

using the same license ID.

Page 1

CSTS Data Stores

Description:
Company name .

Comments :

CMPY_ST_CD
Type: CHARACTER
Domain:
Description:
Customer Scate Code

Comments:

CMPY_ZIFP
Type: CHAR
Domain:
Description:
customer Zip Number

Comments ;

bats Store/Entity and Field Definitions {current)
As of 1/06/95

widch: 2
Length:

wWidth: 5
Length:

114 -

Page

2

CSTS5 Data

Licensaes
volume:
Comments :

Purpese:

CMPY_LOC_ID
Type: INTBEGER
Domain;
Description:
Unigue Company/Location ID;

Stores

Entity
Normalize: T

Width: 4
Length:

automatically incremented as new record is added:

supports multiple users at same company and locacion, using the same license ID.

Commencs:

LICENSEE ID
Type: CHARACTER
Domain:
Description:

width: 28
Length: 4

Company's ID which will be assigned when the Software package is shipped. This
number can be found in the runtime about box, for applications which support

embedded User IDs.

ComMments :

LIC_CNTC_18T_NM
Type: CHARACTER
Domain:
Description:
Customer contact first name.

Comments :

LIC_CNTC_LAST NM
Type: CHARACTER
Domain:
Description:
Custamer contact last name.

Comments :

LIC_CNTC_TTL
Type: CHARACTER
Domain:
bescription:
Customer Contact Title Name

Comments :

LIC_FAX_ NP
Type: CHARACTER
Domain:
Description:

Customer FAX Telephone Number

Comments :

LIC_EHIP DT

Daca Store/Entity and Field Definircions {current)

As of 3706/s95

Width: 20
Length:

width: 20
Length:

Widch: 40
Length:

Widch: 14
Length:

Page 3

115 -

CSTS Data Stores

Type: DATE width:
Domain: Length:
Descripcion:

Shipping date for the original runtime package.

Comments:

LIC_TLP_EXT

Type: CHARACTER Width: &
Domain: Length:
Descriprion:

CusStomer Telephcne Extension Number

Comments:

LIC_TLP_NB

Type: CHARACTER Widch: 14
Domain: Length:
Dascription:

Customer Telephone Number

Comments :

LIC_TOT_SPRT_TM

Type: INT widch:
Domain: Length:
Description:

Total support time for this customer in minutes.

Comments :

Daca Store/Entity and Fileld Definicians (currenc)

ks of 3/06/95 Page

- 116 -

CSTS Data Stores

Encity

Problems
Normalize: T

Volume :
Comments ;

Purpose:

PREM_CD
Type: CHARACTER width: 8
Domain: Length:

Description:
pProblem Code will contain the code for the recurring instances of support given, for

example: problems with installation, or configuration.
Comments :
PREM_DESC
Type: TEXT widch:
Domain: Length:
Descriprion:

pescriprion of a recurring problem.

Commencs :

Data Store/Entity and Field Definicions {currenc}
As of 1/06/95 Page 5

- 117 -

CSTS Data Stores

Support Calls Encity
Volume : Normalize: T

Comments:

Purpose:

LICENSEE_ID
Type: CHARACTER widch: 28
Domain: Length: 4
Descriprion:
Company's ID which will be assigned when the Software package is shipped. This
number ¢an be found in the runctime aboutr box, for applications which support
embedded User IDs.

Comments :

PREM_CD
Type: CHARACTER Width: 8
pomain: Length:
Description:

Problem Code will contain the code for the recurring instances of support given, for
example: problems with installation, or configuration.

Comments :

SPRT_CHMT
Type: TEXT width:
Domain: Length:
Description:

This is a memo field to contain the comment/reason for the support.

Comments:

EPRT_DATE
Type: DATE width:
Demain: Length:
Description:

Contain the dace of the support.

Comments :

BPRT_TM
Type: INT width:
Domain: Length:
Description:-

Support Time will contain the duration of support time in minutes.

Comments :
Data Store/Entity and Field Definicions (current)
AE of /06795 Page 6

- 118 -

APPENDIX B

Customer Support Tracking System Visual Basic
Listings/Screens

Customer Support Tracking System

Licensee |D o

Licensees

Fl_icen:ee Information
First Name: J Telephone:]
Last Name: Extension:
Title: FAX Number:
Ship Date: | Total Support Time Used: l:] Minutes

A e e e O e

A S R

AR
i ’:Company State:

oy

s ‘-Mm ¥

SRR

Customer Support Tracking System Main Screen (Visual Basic Version)

- 119 -

Main Form Object Definitions (CSTS.FRM)

VERSION 2.00
Begin Form CSTSMain
Caption = "Customer Support Tracking System”

ClientHeight = 6735
ClientLeft = 360

ClientTop = 1605
ClientWidth = 8640

Height = 7425

Left = 300

LinkTopic = "Forml"
ScaleHeight = 6735
ScaleWidth = 8640

Top = 975

Width = 8760

Begin CommandButton btnSprtCall
Caption = "Support Calls"
Height = 495

Left = 4440

TabIndex = 40

Top = 120

Width = 1335

End

Begin Frame CMPYData
BackColor = &HOOEOEOEO&
Caption = "Company Information”
Height = 2895

Left = 120

TabIndex = 18

Top = 3600

Width = 7935

Begin CommandButton btnCoMaint

Caption = "Delete Companies”
Height = 15

Left = 3480

Tablndex = 9

Top = 2160

Width = 1935

End

Begin CommandButton binChgColnfo
Caption = "Change Company Info"
Height = 615

Left = 5520

TabIndex = 10

Top = 2160

Width = 2175

End
Begin Label Label2

Caption = "Company Country:"
Height = 255

Left = 120

- 120 -

TablIndex = 38

Top = 2520
Width = 1575
End
Begin Label Labell
DataField = "CMPY_CNTRY"
DataSource = "Licensees"
Height = 255
Left = 1680
TablIndex = 39
Top = 2520
Width = 1695
End
Begin Label CompanyName
DataField = "CMPY_NM"
DataSource = "Licensees"
Height = 375
Left = 1560
TablIndex = 22
Top = 480
Width = 4815
End
Begin Label CompanyAddr]
DataField = "CMPY_ADI1"
DataSource = "Licensees”
Height = 255
Left = 1800
TablIndex = 23
Top = 960
Width = 4573
End
Begin Label CompanyAddr2
DataField = "CMPY_AD2"
DataSource = "Licensees”
Height = 255
Left = 1800
Tablndex = 13
Top = 1320
Width = 4575
End
Begin Label CompanySt
DataField = "CMPY_ST_CD"
DataSource = "Licensees"
Height = 375
Left = 6000
Tablndex = 14
Top = 1680
Width = 375
End
Begin Label CompanyCity
DataField = "CMPY_CITY_NM"
DataSource = "Licensees”
Height = 375

121

Left = 1440

TabIndex = 37

Top = 1680

Width = 2895

End

Begin Label CmpyZPEXT
DataField = "CMPY_EXT_ZIP"
DataSource = "Licensees"
Height = 255

Left = 2760

TabIndex = 36

Top = 2160

Width = 615

End

Begin Label 1bICmpySt

Caption = "Company State:"
Height = 375

Left = 4560

Tablndex = 35

Top = 1630

Width = 1455

End
Begin Label IblCmpyCity

Caption = "Company City:"
Height = 375

Left = 120

Tablndex = 3

Top = 1680

Width = 1335

End
Begin Label 1bICmpyAd1

Caption = "Company Address:"
Height = 615

Left = 120

TabIndex = 33

Top = 960

Width = 1695
End

Begin Line Line5
BorderWidth = 2

X1 = 2400

X2 = 2520

Y1 = 2280

Y2 = 2280

End
Begin Label CompanyZip
Alighment = 1 'Right Justify
DataField = "CMPY_ZP"
DataSource = "Licensees”
Height = 255

Left = 1320
Tablndex = 21

Top = 2160

122

Width = B8535
End
Begin Line Lined
BorderWidth = 3
X1 = 7920
X2 = 7920
Yl = 2880
Y2 = 120
End
Begin Line Line3
BorderWidth = 3
X1 = 0
X2 = 7920
Yl = 2880
Y2 = 2880
End
Begin Label IblHyph
Caption = ""
FontBold
Fontltalic = 0 ‘False
FontName = "MS Sans Serif”
FontSize = 12
FontStrikethru = 0 'False
FontUnderline = 0
Height = 255
Left = 2280
TabIndex = 15
Top = 2160
Width = 375
End
Begin Label |bICmpyName
Caption
Height = 375
Left = 120
Tablndex = 20
Top = 480
Width = 1455
End
Begin Label IICmpyZP
Caption
Height = 255
Left = 120
TabIndex = 19
Top = 2160
Width = 1215
End
End
Begin Frame LicData
Caption =
Height = 2775
Left = 120
TabIndex = 16
Top = 720

= -1 True

= "Company Name:"

= "Company Zip:"

= "“Licensee Information'

123

Width = 7935

Begin TextBox LicTST
DataField = "LIC_TOT_SPRT_TM"
DataSource = "Licensees”
Height = 375
Left = 6240
TablIndex = 30
TabStop = 0 Talse
Top = 2040
Width = 735
End
Bepin TextBox LicFAX
DataField = "LIC_FAX_NB"
DataSource = "Licensees”
Height = 375
Left = 5160
TablIndex = 7
Top = 1320
Width = 1695
End
Begin TextBox LicTE
DataField = "LIC_TLP_EXT"
DataSource = "Licensees”
Height = 375
Left = 5160
Tablndex = 6
Top = 8§40
Width = 735
End
Begin TextBox LicTN
DataField = "LIC_TLP_NB"
DataScurce = "Licensees”
Height = 375
Left = 5160
TablIndex = 5
Top = 360
Width = 1695
End
Begin TextBox LicSD
DataField = "LIC_SHIP_DT"
DataSource = "Licensees"
Height = 375
Left = 1560
TablIndex = 4
Top = 2040
Width = 2175
End
Begin TextBox LicTtl
DataField = "LIC_CNTC_TTL"
DataSource = "Licensees”
Height = 615
Left = 1560
MultiLine = -] "True

- 124

TabIndex = 3

Top = 1320
Width = 2175
End
Begin TextBox LicLN
DataField = "LIC_CNTC_LAST _NM"
DataSource = "Licensees”
Height = 375
Left = 1360
TabIndex = 2
Top = 840
Width = 2175
End
Begin TextBox LicFN
DataField = "LIC_CNTC_1ST_NM"
DataSource = "Licensees"
Height = 375
Left = 1560
TablIndex =1
Top = 360
Width = 2175
End
Begin Label 1bILicTSTUnits
Caption = "Minutes"
Height = 255
Left = 7080
TabIndex = 32
Top = 2160
Width = 735
End
Begin Label IbiLicTST
Caption = "Total Support Time Used:"
Height = 255
Left = 3960
TabIndex = 31
Top = 2160
Width = 2295
End
Begin Label IblLicFAX
Caption = "FAX Number:"
Height = 255
Left = 3960
TabIndex = 29
Top = 1440
Width = 1215
End
Begin Label IbILicTE
Caption = "Extension:”
Height = 255
Left = 3960
TablIndex = 28
Top = 960
Width = 1215

- 125

End
Bepin Label 1biLicTN

Caption = "Telephone:”
Height = 255
Left = 3960
TabIndex = 27
Top = 480
Width = 1215
End
Begin Label IblLicSD
Caption = "Ship Date:"
Height = 255
Left = 360
Tablndex = 26
Top = 2160
Width = [215
End
Begin Label 1blLicTt]
Caption = "Title:"
Height = 255
Left = 360
TabIndex = 25
Top = 1560
Width = 1215
End
Begin Label 1blLicLIN
Caption = "Last Name:"
Height = 255
Left = 360
TabIndex = 24
Top = 960
Width = 1215
End

Begin Line Ling2
BorderWidth = 3

X1 = 7920
X2 = 7920
Y1 = 2760
Y2 = 120
End
Begin Line Linel
BorderWidth = 3
X1 = 0
X2 = 7920
Y1 = 2760
Y2 = 2760
End
Begin Label IblLicFN
Caption = "First Name:"
Height = 255
Left = 360
TablIndex = 17
Top = 480

- 126

Width = 1215

End
End
Begin TextBox CompanyIDFK
DataField = "Licensees.CMPY_LOC_ID"
DataSource = "Licensees”
Height = 285
Left = 8040
TabIndex = 8
Top = 1080
Width = 495
End
Begin TextBox LicenseelD
Height = 495
Left = 1440
TabIndex =0
Top = 120
Width = 2775
End
Begin Data Licensees
Caption = "Licensees"
Connect ="

DatabaseName = "CARATFILES\THESIS\TEST_BED\VBACSTS\CSTS.MDB"
Exclusive = 0 'False

Height = 495

Left = 5880

Options =0

ReadOnly = { 'False

RecordSource = "select * from Licensees, Companies, Licensees INNER JOIN Companies ON

Licensees. CMPY_LOC_ID = Companies. CMPY_LOC_ID order by LICENSEE_ID"

Top = 120

Width = 2175

End

Begin TextBox CompanylDPK

DataField = "Companies. CMPY_LOC_ID"
DataSource = "Licensees"

Height = 285

Left = 8040

TabIndex = 11

Top = 5760

Width = 495

End
Begin Label IblLiciD

Caption = "Licensee ID"

Height = 255

Left = 120

TabIndex = 12

Top = 240

Width = 1455
End
Begin Menu MenuFile

Caption = "&File"

Begin Menu MenuFileExit

- 127 -

Caption = "E&xit"

End
End
Begin Menu MenuMaint
Caption = "&Maintenance"
Begin Menu MenuMaintDelCo
Caption = "Delete &Company"
End
Begin Menu MenuMaintDelLic
Caption = "Delete &Licensee"
End
End
End

Main Form Object Behaviors (CSTS.FRM)

Option Explicit
Sub binChgColnfo_Click ()

Dim SavePlace As Variant
'‘SavePlace = Licensees.Recordset. Bookmark

Licensees.Recordset. AddNew
ChangeCompany.Show 1

If LicenseeIlD.Text = "* Then
" Licensees.Recordset. Bookmark = SavePlace

' Exit Sub
'End If

SavePlace = Licensees.Recordset{"LICENSEE_ID") 'LicenseelD.Text
On Error GoTo CheckErr

Licensees.Recordset. Update
Licensees.Refresh
Licensees Recordset. FindFirst "LICENSEE_ID ='" & SavePlace & """

Exit Sub '"No errors

CheckErr:
Dim msg As String
Dim Answer As Integer

Select Case Err
Case 3022
msg = "That License ID already exists. Click Yes if you want to go to that record, or Click No if

you want to try again."

- 128 -

Answer = MsgBox{msg, 4, "Duplicate ID Decision")

If Answer = 6 Then 'Yes, go to existing record
SavePlace = Licensees.Recordset("LICENSEE_ID") LicenseelD. Text
Licensees.Recordset.FindFirst "LICENSEE_ID ="" & SavePlace & "
Exit Sub

Else
‘betnNewLic_Click 'No, try again
Exit Sub

End If

Case 3058
msg = "You must choose a Company affiliation for consistency's sake. Please try again."

MsgBox msg
btnChgColnfo_Click

+

Case 3101
msg = "You must choose a Company affiliation for consistency's sake. Please try again.”

MsgBox msg
btnChgColnfo_Click

End Select
Resume

End Sub

Sub btnCoMatnt_Click ()
CSTSMnt.Show 1

End Sub

Sub btnSprtCall_Click ()
SupportCall.Show 1

End Sub

Sub LicenseeID_LostFocus ()
Dim SavePlace As Variant
Dim SaveAffil As Variant
Dim SQL As String

Dim ComplD As Integer

SavePlace = LicenseelD. Text
SaveAffil = Licensees.Recordset("Licensees. CMPY_LOC_ID")

If SavePlace = "" Then
Licensees.Recordset. MovePrevious
Licensees.Recordset. MoveNext
Exit Sub

End If

- 1298 -

Licensees.Recordset.FindFirst "LICENSEE_ID =" & SavePlace & ™"
‘Focus will now be on desired record IF it exists
If Licensees.Recordset. NoMatch = True Then

'‘Create a new LICENSEE record.

Licensees.Recordset. AddNew

Licensees.Recordset{"LICENSEE_ID") = SavePlace

'Each new Licensee must have a Company Affiliation or else the JOIN will be broken
Licensees.Recordset{"Licensees. CMPY_LOC_ID") = SaveAffil 'Set a Default
Licensees.Recordset.Update

'Set current record to this new one

Licensees.Recordset. FindFirst "LICENSEE_ID =" & SavePlace & "

'Automatically invoke the Company info form
btnChgColnfo_Click

'Refresh with all the {astest info
Licensees.Recordset. Update

Licensees.Refresh
Licensees.Recordset. FindFirst "LICENSEE_ID =" & SavePlace & "'"

End If
End Sub

Sub Licensees_Ermor (DataErr As Integer, response As Integer)
Dim msg As String
Dim Answer As Integer
Dim SavePlace As Variant
Select Case DataErr
Case 3022
msg = "That License ID already exists. Click Yes if you want to go to that record, or Click No if
you want to try again.”
Answer = MsgBox(msg, 4, "Duplicate 1D Decision")
If Answer = 6 Then "Yes, go to existing record
SavePlace = LicenseelD.Text
Licensees.Recordset. FindFirst "LICENSEE_ID =" & SavePlace & "

Else
‘btnNewLic_Click 'No, try again
End If
response =0
End Select
End Sub

Sub Licensees_Reposition ()
On Error GoTo CheckEmor

LicenseeID.Text = Licensees.Recordset("LICENSEE_ID")

- 130 -

Exit Sub

CheckError:
Dim msg As String
Dim Answer As Integer
Dim SavePlace As Va. Lt

Select Case Err

Case 3022
msg = "That License ID already exists. Click Yes if you want to go to that record, or Click No if

you want to try again.”
Answer = MsgBox(msg, 4, "Duplicate ID Decision™)
If Answer = 6 Then "Yes, go to existing record
SavePlace = LicenseelD.Text
Licensees.Recordset.FindFirst "LICENSEE_ID ='" & SavePlace & "™

Exit Sub
Else
‘btnNewLic_Click 'No, try again
Exit Sub
End If
Case 3058
msg = "You must choose a Company affiliation for consistency's sake. Please try again."

MsgBox msg
‘binNewLic_Click

Case 94
'btnChgColnfo_Click
Exit Sub
End Select
Resume
End Sub
Sub MenuFileExit_Click ()
End
End Sub
Sub MenuMaintDelCo_Click ()
CSTSMnt.Show 1
End Sub
Sub MenuMaintDelLic_Click ()
Licensees.Recordset. Delete

Licensees.Recordset. MoveNext

End Sub

- 131 -

... Select a Company. of .
I tgpeinanewone [upto
- - 50 characters).

[. _ . Edit/review the resi of
T the nfoimalion for the

- - - selected compang. i
.. there are multiple
. locations for & company,
-+ you can scroll through
. . them o find the right
- one.

Customer Support Tracking System Company Maintenance Screen
(Visual Basic Version)

Company Maintenance Form Object Definitions (CHANGECO.FRM)

VERSION 2.00
Begin Form ChangeCompany
Caption = "Change Company Information"
ClientHeight = 4995
ClientLeft = 75
ClientTop = 2100
ClientWidth = 10665
Height = 5400
Left = 15
LinkTopic = "Forml"
ScaleHeight = 4995
ScaleWidth = 10665
Top = 1755
Width = 10785
Begin CheckBox chkBrowser
Caption = "Browse All Companies”
Height = 255
Left = 480
TabIndex = 18
Top = 3720
Width = 2295

- 132 -

End
Begin CommandButton btnCancel

Caption = "Cancel"
Height = Hl15
Left = 1680
TabIndex =9
Top = 4320
Width = 975
End
Begin TextBox tedCompanyCntry
DataField = "CMPY_CNTRY"
DataSource = "Companies”
Height = 375
Left = 4680
TabIndex = 7
Top = 4560
Width = 855
End
Begin TextBox CompanyZPExt
DataField = "CMPY_EXT_ZIP"
DataSource = "Companies"
Height = 375
Left = 6120
TabIndex = 6
Top = 3960
Width = 735
End
Begin TextBox tedCompanySt
DataField = "CMPY_ST_CD"
DataSource = "Companies”
Height = 375
Left = 4680
TabIndex = 4
Top = 3360
Width = 495
End
Begin TextBox tedCompanyCity
DataField = "CMPY_CITY_NM"
DataSource = "Companies”
Height = 375
Left = 4680
TabIndex =3
Top = 2760
Width = 3255
End
Begin TextBox tedCompanyAddr2
DataField = "CMPY_AD2"
DataSource = "Companies”
Height = 375
Left = 4680
Tablndex = 2
Top = 2160
Width = 4815

- 133

End
Begin TextBox tedCompanyAddrl

DataField = "CMPY_AD1"
DataSource = "Compantes"
Height = 375

Left = 4680

TabIndex =]

Top = 1680

Width = 4815

End
Begin TextBox CompanyZip
DataField = "CMPY_ZP"
DataSource = "Companies"
Height = 375

Left = 4680

TabIndex = 5

Top = 3960

Width = B35

End
Begin ComboBox TempCoName
Height = 300

Left = 2880

Sorted = -1 True
TabIndex =0

Top = 360

Width = 7095

End

Begin CommandButton btnAccept
Caption = "Accept”
Height = 615

Left = 480

TablIndex = 8

Top = 4320

Width = 975

End

Begin Data Companies

Caption = "Companies”
Connect = "

DatabaseName = "CARATFILES\THESIS\TEST_BED\VBACSTS\CSTS MDB"
Exclusive = ('False

Height = 615

Left = 480

Options =0

ReadOnly = (0 'False
RecordSource = "Companies”
Top = 2880

Width = 2175

End
Begin Label IblICmpyCntry
Caption = "Company Country:"
Height = 255

Left = 2880

TablIndex = 17

- 134 -

Top = 4560

Width = 1575
End
Begin Line Line5
BorderWidth = 2
X1 = 5760
X2 = 5880
Y1 = 4080
Y2 = 4080
End
Begin Labe] IblICmpyCity
Caption = "Company City:"
Height = 375
Left = 2880
Tablndex = 14
Top = 2760
Width = 1335
End
Begin Label 1blCmpyAdl1
Caption = "Company Address:"
Height = 615
Left = 2880
TabIndex = 16
Top = 1680
Width = 1695
End
Begin Label 1blCmpySt
Caption = "Company State:"
Height = 375
Left = 2880
TabIndex = 15
Top = 3360
Width = 1455
End
Begin Label 1bINameChg
Caption = "Make Your Changes Below:"
Height = 255
Lefi = 5160
TabIndex = 13
Top = 720
Visible = ('False
Width = 2415
End
Begin Label 1bICmpyZP
Caption = "Company Zip:"
Height = 255
Left = 2880
Tablndex = 12
Top = 3960
Width = 1455
End
Begin Label Label4
Caption = "Edit/review the rest of the information for the selected company. If there are

- 135 -

multiple iocations for a company, you can scroll through them to find the right one.'

Height = 1575
Left = 480
TabIndex = 11
Top = 1200
Width = 2175
End
Begin Labe] Label2
Caption = "Select a Company, or type in a new one (up to 50 characters)."
Height = 735
Left = 480
TabIndex = 10
Top = 240
Width = 2175
End
End

Company Maintenance Form Object Behaviors (CHANGECQ.FRM)

Option Explicit
Dim Loading As Integer
Dim browsing As Integer
Sub btnAccept_Click ()

Dim 5QL As String
Dim CompID As Integer
Dim SavePlace As String

‘Mustn't have a blank company name, so let the default ride
If TempCoName.Text = "" Then

Unload ChangeCompany

Exit Sub
End If

‘Update the record with the current info

Companies.Recordset. Edit

Companies.Recordset("CMPY_AD1") = (tedCompanyAddr].Text)
Companies.Recordset("CMPY_AD2") = (tedCompany Addr2.Text)
Companies.Recordset("CMPY_CITY_NM") = (tedCompanyCity. Text)
Companies.Recordset("CMPY_ST_CD") = (tedCompanySt. Text)
Companies.Recordset("CMPY_EXT_ZIP") = ValCompanyZPExt. Text)
Companies.Recordset("CMPY_ZP") = Val{CompanyZip.Text)
Companies.Recordset("CMPY_CNTRY") = (tedCompanyCniry.Text)
CSTSMain.CompanyIDFK = Companies.Recordset("CMPY_LOC_ID™")
Companies.Recordset.Update

Unload ChangeCompany

End Sub

- 136 -

Sub btnCancel_Click ()

Unload ChangeCompany
"NOTE: if you move the record with a button, any edits will be committed!

End Sub
Sub chkBrowser_Click ()
If chkBrowser.Value = 1 Then

browsing = True
TempCoName_Click
Else

browsing = False
TempCoName_Click

End If
End Sub
Sub Companies_Reposition ()

"The purpose of this procedure is to keep the company name synchronized with
'the rest of the record when browsing, since it is not directly linked to the
‘table.

If we are populating the TempCoName menu (or we know that the current
‘record will be NULL), then we want to exit this procedure
If Loading Then
Exit Sub
End If

'‘Otherwise, set the box to the value of the current record
TempCoName.Text = Companies.Recordset("CMPY_NM")

End Sub
Sub Form_lLoad ()

Dim SQL As String

Dim PrevLoc As Integer

SQL = "select * from Companies order by CMPY_NM"
Companies.RecordSource = SQL

Companies.Refresh

Loading = True 'Flag for Reposition Event
‘Populate the pull-down menu
TempCoName.AddItem "<Browse All Companies>"

Do While Not Companies. Recordset. EOF
'Skip duplicate names

- 137 -

If TempCoName List(TempCoName.NewIndex) <> Companies.Recordset("CMPY_NM") Then
TempCoName.AddItern Companies.Recordset("CMPY_NM")
End If

Companies.Recordset. MoveNext

Loop

'Synchronize the Companies record with the Licensees record

PrevLoc = CSTSMain.Licensees. Recordset("Licensees. CMPY_LOC_ID"™)
Companies.Recordset.FindFirst "CMPY_LOC_ID =" & PrevLoc & ""
TempCoName.Text = Companies.Recordset("CMPY_NM")

'The work for the rest of the Company data is the same as for a click
TempCoName_Click

Loading = False 'Flag for Reposition Event
End Sub
Sub TempCoName_Click ()

Dim SavePlace As Variant
Dim Savelndex As Variant
Dim SQL As String

Dim CompID As Integer

'Hang on to the desired company name
SavePlace = TempCoName. Text

'If it's the same as the current record, just hang on to the ID
If SavePlace = Companies.Recordset("CMPY_NM") Then
CompID = Companies.Recordset("CMPY_LOC_ID")

Else
‘Otherwise, move to the beginning of the new name, and grab the ID

Companies. Recordset.FindFirst "CMPY_NM ='" & SavePlace & "
ComplD = Companies. Recordset("CMPY_LOC_ID"}
End If

‘Make sure that the entire table is available for the upcoming FindFirst
‘and sort it by company name, which is more meaningful to users than ID
SQL = "select * from Companies order by CMPY_NM"
Companies.RecordSource = SQL

Companies.Refresh

'Our job is done if the user is wishing to browse all companies
If SavePlace = "<Browse All Companies>" Then
chkBrowser.Value = 1
browsing = True
Exit Sub
End If

‘Now match the User-Supplied Company Name

- 138 -

Companies.Recordset, FindFirst "CMPY_NM = "" & SavePlace & ™"

If Companies.Recordset. NoMatch = True Then
'Since there is no match, create a new COM_LOC_ID and add a new record with new company

name.
Loading = True 'to avoid illegal null in Companies_Reposition
'move to the highest numbered company 1D
SQL = "select * from Companies order by CMPY_LOC_ID"
Companies.RecordSource = SQL
Companies.Refresh
Companies.Recordset. MoveLast
‘and increment it to set the ID for the new company
ComplID = Companies.Recordset("CMPY_LOC_ID")
CompID = CompID + 1
'"Then create a new record with the new name and ID
Companies.Recordset. AddNew
Companies.Recordset("CMPY_LOC_ID") = CompID
Companies.Recordset{"CMPY_NM") = SavePlace
Companies.Recordset. Update
Companies.Recordset.MoveLast
‘Add the new company to the pull-down menu
TempCoName.AddItem SavePlace'or...Companies Recordset("CMPY_NM")
Finally, resort the table and put the new record in front of the user
TempCoName.Text = Companies.Recordset("CMPY_NM")
SQL = "select * from Companies order by CMPY_NM"
Companies.RecordSource = SQL
Companies.Refresh
Companies.Recordset. FindFirst "CMPY_LOC_ID = " & ComplD
Loading = False

Else
'Since there is a match, filter the records and go to the first one

‘Unless the user is in Browsing Mode

If browsing Then
Companies.Recordset. FindFirst "CMPY_LOC_ID = * & Str(CompID)

Exit Sub
End If

SQL = "select * from Companies where CMPY_NM =" & TempCoName.Text & ™"
Companies.RecordSource = SQL

Companies.Refresh

Companies.Recordset. MoveL ast

'Move to the most recent ID

Companies.Recordset.FindFirst "CMPY_LOC_ID = * & Str(CompID)

End If
End Sub

Sub TempCoName_ILostFocus ()
TempCoName_Click

End Sub

- 139 -

Support Calls

L] Browse All Calis

Customer Support Tracking System Support Call Screen (Visual Basic Version)

Support Call Form Object Definitions (SUPPORTC.FRM)

VERSION 2.00

Begin Form SupportCall
Caption = "Support Calls"
ClientHeight = 6900
ClientLeft = 1320
ClientTop = 1815
ChientWidth = 7365
Height = 7305
Left = 1260
LinkTopic = "Forml"
ScaleHeight = 6900
ScaleWidth = 7363

- 140 -

Top = 1470

Width = 7485

Begin CheckBox chkBrowser
Caption = "Browse All Calls"
Enabled = 0 'False
Height = 375

Lefi = 2520

TabIndex = 6

Top = 6360

Width = 2055

End

Begin TextBox tedLicID
DataField = "LICENSEE_ID"
DataSource = "SupportCalls"
Height = 495

Left = 120

TabIndex = 3

Top = 360

Width = 2775

End

Begin CommandButton btnCancel
Caption = "Cancel”
Height = 615

Left = 1320

TablIndex = 2

Top = 06240

Width = 1095

End
Begin CommandButton btnAccept
Caption = "Accept"
Height = 615

Left = 120

TabIndex = 1

Top = 6240

Width = 1095
End
Begin Data SupporiCalls

Caption = "Support Calls"
Connect = "

DatabaseName = "CARATFILES\THESIS\TEST _BEDAVB\CSTS\CSTS.MDB"
Exclusive = 0 'False

Height = 615

Left = 4680

Options = 0

ReadOnly = 0 'False
RecordSource = "Support”
TOp = 6240

Width = 2415

End
Begin TextBox tedDescription
DataField = "SPRT_CMT"
DataSource = "SupportCalls"
Height = 4455

- 141 -

Left = 120

MultiLine = -1 "True
ScrofliBars = 2 'Vertical
TablIndex = 0
Top = 1560
Width = 6975
End
Begin Label IbISprtTm
Caption = "Support Time:"
Height = 255
Left = 3360
TabIndex = 11
Top = 1080
Width = 1575
End
Begin Label IblStrtDt
Caption = "Start Date/Time:"
Height = 255
Left = 3360
TabIndex = 10
Top = 480
Width = 1575
End
Begin Label IbIMin
Caption = "Minutes"
Height = 255
Left = 6240
TabIndex =9
Top = 1080
Width = 735
End
Begin Label 1blCallDescr
Caption = "Description of Call:"
Height = 255
Left = 120
TabIndex = 8
Top = 1320
Width = 1695
End
Begin Label 1blLiclD
Caption = "Licensee ID:"
Height = 255
Left = 120
TabIndex = 7
Top = 120
Width = 1215
End
Begin Label 1blStartTime
BorderStyle = 1 'Fixed Single
DataField = "SPRT_DATE"
DataSource = "SupportCalls"
Height = 495
Left = 5040

142

TabIndex =5

Top = 360
Width = 2055
End

Begin Label 1blSpriTimeUsed
BorderStyle = 1 Tised Single

DataField = "SPRT_TM"
DataSource = "SupportCalls"
Height = 495
Left = 5040
Tablndex = 4
Top = 960
Width = 1095
End
End

Support Call Form Object Behaviors (SUPPORTC.FRM)

Option Explicit
Dim Prevloc As String
Sub btnAccept_Click ()
Dim Duration As Integer
'Calculate the time used for the call
Duration = DateDiff("n", IblStartTime.Caption, Now)
Duration = Duration / 15
Duration = Duration * 15+ 15

lblSpriTimelUsed.Caption = Duration

‘Put the record pointer at the new record
SupportCalls.Recordset. MoveLast

"Update the record with the current info
SupportCalls.Recordset.Edit
SupportCalls.Recordset{"SPRT_CMT") = (tedDescription. Text)
SupportCalls.Recordset("SPRT_TM") = Val(IblSprtTimeUsed.Caption)
SupportCalls.Recordset. Update
Unload SupportCail

End Sub

Sub btnCancel_Click ()

'Put the record pointer at the new record
SupportCalis Recordset. MoveLast

'Delete the newiy created record

-~ 143 -

SupportCalls.Recordset, Delete
SupportCalls.Recordset. MoveNext

Unload SupportCail
'NOTE: if you move the record with a button, any edits will be committed!

End Sub
Sub Form_Load ()

Dim SQL As String
Static Prevloc As String

Prevloc = CSTSMain,Licensees.Recordset("Licensees . LICENSEE_ID™)

‘Filter the records to the selected Licensee

SQL = "select * from Support where Support. LICENSEE_ID = """
SQL. = SQL & Previoc

SQL =SQL & """ order by SPRT_DATE"
SupportCalls.RecordSource = SQL

SupportCalis.Refresh

‘Create a new record
SupportCalls.Recordset. AddNew

'Set the start date/time (key) and ID for the new support call
SupportCalls.Recordset("SPRT_DATE") = Now
SupportCalls.Recordset("LICENSEE_ID") = Previoc

SupportCalls Recordset("SPRT_TM™) = 0 'For Null protection, (just in case)
SupportCails Recordset, Update

SupportCalls. Recordset MoveLast

End Sub
Sub Form_Unload (Cancel As Integer)

Dim Total As Integer
Dim SQL As String
‘Static PrevLoc As String

‘re-filter, in case the user has selected "Browse All Calis"

SQL = "select * from Support where Support. LICENSEE_ID = """ & Prevloc & """
SupportCalls.RecordSource = SQL

SupportCalls.Refresh

'Calculate the total support time used to date for that licensee
Total =0
Do While Not SupporiCalls.Recordset. EOF
Total = Total + SupportCalls.Recordset("SPRT_TM")
SupportCalls.Recordset. MoveNext

Loop

- 144 -

CS8TSMain.Licensees. Recordset. Edit
CSTSMain.Licensees, Recordset("LIC_TOT_SPRT_TM") = Total
CSTSMain.Licensees.Recordset. Update

End Sub

Sub tedLicID_GotFocus ()

tedDescription.SetFocus

End Sub

- 145 -

CSTS Company Maintenance

Customer Support Tracking System Company Deletion Screen (Visual Basic Version)

Company Deletion Form Object Definitions (CSTSMNT .FRM)

VERSION 2.00
Begin Form CSTSMnt
Caption = "CSTS Company Maintenance"
ClientHeight = 3405
ClientLeft = 1095
ClientTop = 1485
ClientWidth = 7365
Height = 3810
Left = 1035
LinkTopic = "Forml"
ScaleHeight = 3405
ScaleWidth = 7365
Top = 1140
Width = 7485
Begin CommandButton Command?2
Caption = "Return”
Height = 615
Left = 5280
Tablndex =1
Top = 2400
Width = 1455
End
Begin TextBox tedCompanyName
DataField = "CMPY_NM"
DataSource = "Companies"
Height = 495
Left = 960

- 146 -

Tablndex = 2

DatabaseName = “"CARATFILESYTHESIS\TEST_BED\VB\CSTS\CSTS.MDB"

TabStop = 0 ‘False
Top = 1320

Width = 2175

End

Begin TextBox tedCompanyZip
DataField = "CMPY_ZIP"
DataSource = "Companies”
Height = 495

Left = 3960

Tablndex = 3

TabStop = (0 'False
Top = 1320

Width = 2175

End

Begin CommandButton Command
Caption = "Delete"
Height = 615

Left = 3360
Tablndex =0

Top = 2400

Width = 1455

End

Begin Data Companies

Caption = "Companies"
Connect = "

Exclusive = 0 ‘False
Height = 615

Left = 720

Options =0

ReadOnly = 0 ‘False
RecordSource = "Companies”
Taop = 2400

Width = 2175

End

Begin Label Label3

Alignment = 2 'Center
AutoSize = -1 "True
Caption = "Company Maintenance"”
FontBold = -1 'True
Fontltalic = 0 TFalse
FontName = "MS Sans Serif”
FontSize = 18
FontStrikethru = 0 'False
FontUnderiine = 0 'False
Height = 435

Left = 1485

TablIndex = 6

Top = 360

Width = 4005
End

Begin Label Label2

147

Caption = "Company Zip:"

Height 255
Left = 3960
Tablndex =5
Top = 1080
Width = 2055
End
Begin Label Label1
Caption = "Company Name:"
Height = 255
Left = 960
TabIndex =4
Top = 1080
Width = 1935
End
End
Company Deletion Form Object Behaviors (CSTSMNT.FRM)
Option Explicit

Sub Commandi_Click ()
Companies.Recordset.Delete
Companies.Recordset. MoveNext

End Sub

Sub Command2_Click ()

Unload CSTSMnt

End Sub

- 148 -

APPENDIX C

Customer Support Tracking System ObjectVision
Listings/Screens

£=a stomer Support Tracking System [G

Licensee ID: F200 =&

Licensee Information |

First Name: Jimmy Telephone:

Last Name: Bob Fxtension:

Title: AX Number:

Chief Bottle Washser

Ship Date: | Total Support Time Used: 1 =~ Minutes
— __—_L

Customer Support Tracking System Main Screen (ObjectVision Version)

- 149 -

_ Change Company Information{Edit] —-I

Company Location ID: 3 1
Igompany Name: Floors-A-Rama |

Company Address: 333 Downtown
Sweet 16

Company City: Sue City Company State: IO
|Company Zip: 88888:: I
[Company Country: USA ‘

Customer Support Tracking System Company Maintenance Screen
(ObjectVision Version)

- 150 -~

cID: F200

Support Time Used: 0.00

Support Description:
We had another of those little crashes.

Customer Support Tracking System Support Call Screen (ObjectVision Version)

- 151 -

. - - - ObjectVision - CSTS.0VD

Propertie Yiew Toals

File Edit Farm Objects

Liccnscc Informat{ Alignment...

Label Fonl...
lFirst Name: Jimm| Value Fonl... {Tclcphonc: D]
Color...
Last Name: Bob | Borders.. Extension:
Line Width...
- Pratection .. :
Title: Vaive Tree !FAX Number {) -]
Cl’ucf Bottle Wash + Event Tree
Field... - -
Ship Date: Name/Text... jotal Support Time Used: 1 Minutes
Help...
BREEE
Coropany Information |

{Company Location ID: 3 |
- j

ICnmpany Name: Floors-A-Rama .
Company Address: 333 Downtown

Sweet 16 . s
IComme City: Sue City l IC"mP.ﬁﬂy o l
Company Zip: 88888 - |] + ..

ICdmpany_ Country: TISA

1. Right-click on the field to bring up Atuibutes menu; Select “Field Type”

2. Select & OK “Combo Box™ 3. Select & OK “Automatic”; values will be
populated from data base

Visual “Source Code” for a Typical Automatic Combo Box

- 152 -

After Selecting “Field Type” from Attribute Menu, and Selecting “Date/Time” from the “Field Type”
Dialog, Select & OK desired “Date Format”

Visual “Source Code” for a Typical Date Field

After Selecting “Protection” from Attribute Menu, Select & OK *“No Override” and “No Tree Display™

Visual “Source Code” for a Typical Protected (non-editable) Field

After Selecting “Field Type” from Attribute Menu, and Selecting “Picture” from the “Field Type’
Dialog, Type in & OK desired “Picture String”

Visual “Source Code” for a Typical Picture (constrained) Field

- 153 -

2. IF a Table already exists, Type in a new “Link Name” on the “Link Creation™ Dialog, Type in {or
“Search...” for) a Table, Click on “Defaults”; ObjectVision matches and links “Data Base Table Fields”
with “ObjectVision Fields”; IF the Table must be created, Click on “Create Table...” and go on to step 3

Visual “Source Code” for Data Link Creation

- 154 -

3. On the “Data Base Table Creation™ Dialog, Type in a new Table Name and then edit (or accept as-is}
the “Table Definitions™ automatically drafted by ObjectVision based on the user interface fields created
to that point

Visual “Source Code” for Data Link Creation (continued)

- 155 -

4, Once the link is OK’d, the “Optional Link Capabilities” Dialog appears for selecting (for example)
Referential Integrity Rules and Filters

5. If “Filters...” is Clicked, the “Link Filters” Dialog is presented which allows the programmer to filter
the contents of the data base before evaluation by the ObjectVision application

Visual “Source Code” for Data Link Creation (continued)

- 156 -

Event tree {or License_e_TD:

(RF[@ISBLANK('Company Location

Event Mm;q,@ws NT("Ed? Company Info" "Click")0}

Visual *“Source Code” for a “Change Event” on the “Licensee ID” Field

Event tree for Change Company Information

Visual “Source Code™ for an “Open Event” on the “Change Company Information”
Form

- 157 -

Event tree for Returh

@STORE['Company’’
Event { Click @FORMCLOSE[Change Company
! infarmation’]

Visual “Source Code” for a “Click Event” on the “Return” Button on the “Change
Company Information” Form

@a5SIGN[Company Location 1D:.0rig_ID]
Click @FORMCLOSE[®SELECTEDFOAM]

Event

Visual “Source Code” for a “Click Event” on the “Cancel” Button on the “Change
Company Information” Form

- 158 -

Event tree for ﬁew Company

Event Cick @ASSIGN(Temp, Company Location [D:]
BNEXT('Company")
@ASSIGN[Company Location ID:". Temp+1)

@EBOTTOM['Compary’') :
@FIELDFIND['Company Name:)

Visual “Source Code” for a “Click Event” on the “New Company” Button on the
“Change Company Information” Form

Value tree for Lic!Df .

+'Licensee ID:'

y

Visual “Source Code” for assigning the value of the “LicID” Field
on the “Support Call” Form

- 158 -

Eventtree for Accept

: @B0TTOM[Suppoxt Calls') :
E vent : () @ASSIGN[Support Time Used’ [@NOW-Start Tome: TE0724) !
s @ASSIGNITotal Suppont Tame ised " fEUNKSUM Suppat
N Cals”,"Support Time Used:")]) H
@S TORE[Support Cals™)
@FILTERDEACTIVATE(S uppaet Cals”)
@FORAMCLOSE|@SELECTEDFOAM)

Visual “Source Code” for a “Click Event” on the “Accept” Button
on the “Support Call” Form

Event tree for Cancel

Evert Click @DELETE["Support Calls",1)
EFILTERDEACTIVATE["Suppoart Calls")
@FURMCLOSE(@SELECTEDFORM)

EBOTTOM("Support Calis™} :

Visual “Source Code” for a “Click Event” on the “Cancel” Button
on the “Support Call” Form

- 160 -

APPENDIX D

Tic Tac Toe Design Package

Tic-Tac-Toce Requirements Definition Statement

The application shall provide a Graphic User Interface
which allows a player to select Tic-Tac-Toe moves by
clicking on a mouse-sensitive board and to begin the game
by clicking on a <New game>» button. The game shall respond
by painting a blank Tic Tac Toe board and presenting a
message to "click on a square or select <Yocu Go First> to
begin play." The game shall alternately accept a user’'s
move and make its own move with the goal of winning the
game. The system shall reject illegal moves attempted by
the user and shall fill in (legal) moves made by the user
and itself. The system shall monitor for a win or a draw
and display an appropriate message. The player shall be
"X" and the program shall be "C." No player records or
statistics will be kept; each game shall be a c¢lean start.
The gaming strategy shall first rule out a win by the
player (this should be impossible), then look for a win for
itself, then lock for a block of an imminent win by the

player and then determine an offensive move.

- 161 -

Coad/Yourdon Object-Oriented Analysis

Classes/Objects: (Domain Related)
Playing Board, with Tic Tac Toe icon
Cells {one for each play location)
Tokens (*X”, “0™)
Rows, Columns, Diagonals
Player
Strategies and Plays
(Program Related)
Window
Message Box (to communicate with User)
Controls (for starting a new game, quitting and letting the program go first)
Game Engine (to make moves on behalf of the apptication)

Gen-Spec Structure: None

Whole-Part Structure: Window:BoardlControlsiMessageBox
Board:Cefls
Cells:Tokens
Board:RowsIColumnsiDiagonals (RICID)

Attributes: Cell.Value (internal integer representation of Token, -1 for “0”, +1 for “X”
and O for “blank’™)
Cell.Token {external string representation, including Font and Color)
RowslColumnsiDiagonals.Sum (an integer whose value is the sum of the three
Cell. Value in that row, column or diagonal)
Window and Board Geometry (in general, such as color and border)

Services/Calculations:

On Cell Monitor for Mouse-Click over Cell
Validate User Changes to Cell. Token (is Cell empty?)
Send a Message if Cell is taken (or game is over)
Set Cell. Token to “X” after valid User click on Cell
Set Cell.Value based on changes to Cell. Token
Deactivate the < You Go First> control {on first move)
Give control to Game Engine to make its move

Game Strategies Look for User Win (any Sum = 3) (should be imgossible}
Look for Game Winning Move (any Sum =-2)
Look for Blocking Move {any Sum = 2}
Look for a Wedge-prevention Move (to avoid the several ways a User might
create a “‘double bind”™)
Pick a Cell according to the following search pattern:

2 4] 3
7 1 8
4 9 &

- 162 -

On RICID Update the RICID.Sum whenever a member changes value

Application Navigate Cells and Controls when the User presses the <Tab> key
Emulate a Mouse-Click when the User presses other keys

On <New Game> control (when clicked)
Initialize all Cells to empty
Activate the <You Go First> control
Display a Message to the User

On <You Go First> control {when clicked}
The Game Engine will take the center Cell
Deactivate the < You Go First> controi

On <Quit> control (when clicked)
Close the Application

- 163 -

Coad/Yourdon Object-Oriented Design

Note; For Visual Basic implementation, there is no inheritance and only Classes/Objects/Behaviors

related to the User Interface

Hurmnan Interaction Component

User Classes:

Description:

Command Hierarchy:

Window:

Fields: Cell Array (9)

Message Box

Quit

New Game

You Go First

Graphic Lines

Tic Tac Toe Players {only one skill level, muitiple skill levels is
future scope)

People who don’t mind never being able to win a game they are
playing

New Game --> User First | Game First --> Alternating Moves

Quit Button Available at all times

Gamne Over when all Cells are Taken, or when User {impossible) or
Game gets three of their Tokens in a row

Titied “Tic Tac Toe”
Large enough to contain a Tic Tac Toe board, three buttons and a
Message Box

Each consists of an editable TextBox (not sizable)

May contain a single <blank> (the default value), a large bold “X”,
or “O" (18point Sans Serif or equivalent)

The Mouse Pointer Icon should change when it is over the active

area of a Cell
Each Cell should provide its own validation and updating services

when clicked upon
If possible, the Cell should keep two values, one textual (“X",”0",
<blank>) and one numeric (+1, -1, 0}

A non-editable TextBox in which to display messages/prompts to the

User
Sized to display up to 4, 40-character lines, with word wrap
Default contents should be “*Click on «New Game> to begin.”

A Command Pushbutton which allows the User to exit the game
Caption reads *“Quit”

A Command Pushbutton which allows the User to start a new game
Caption reads “New Game”

A Command Pushbutton which allows the User to instruct the
program to make the first move

Caption reads “You Go First”

The Command should only be visible and enabled just after <New
Game> is clicked, but before the User has clicked on any Cell

Four straight lines, organized to look like a traditional Tic Tac Toe
board

- 164 -

Note: The User should be able to operate the system without a mouse by using the
<Tab> key to navigate the Board and Buttons, and any standard key 1o place
an "X or activaie a button.

Note: Standard MSWindows pull-down menus (e.g., File, Edit, etc.) were deemed
unnecessary for this application.

Task Management Component

Event Driven Tasks: Sec User Interface and Game Engine Diagrams
Clock Driven Tasks None
Priority/Critical Tasks ~ Not Applicable

Other Tasks See User Interface and Game Engine Diagrams

- 165 -

User Interface Service Diagram (Main Event Loop and Command Buttons)

User Interface
Behavior

Begin

Draw Window
and Objects

l

Send Click Event to
"New Game" Button

Main Event Loop

Clicked on
llQuit"

Clicked on
"New Game"

Chicked on
"You Go First"

Clicked on
BoardCell(i)

Button Button Button
Exit Progra Set GameState ,,?:llleg?b;z,
Xt fragram to SYSTEM I

Button
Set Each
) Call
End Boardt(;ell'l(ll').Text MakeMove()
NOTE: This
spawns a
"Changed Settfglrzl;ifate Done
BoardCell"
Event
Call
UpdateSums()

User Message: "Click on any cell to make
your first move, or... Click on the <You Go
First> Button if you want me to go first.”

Show/Enable
"You Go First"
Button

Done

- 166 -

Changed
BoardCell{1}

User Interface Service Diagram (Clicked on Text Cell)

A

IF "You Go
First" Button is
Enabled

Hide/Disuule
"You Go First"

Button
|

User Message: "Get over it... because
the Game is. Click on <New Game>

IF
GameState

to play again.” <> PLAY
E User Message: "Sorry, that cell i
Done BoardCell(i). Text essage: - Sorry, thal co 18
PR already in use... please try again,
User Message:
"Processing.” Done
Set NOTE: This spawns a
BoardCell(i). Text "Changed BoardCell" Event
[O |lX|l
Call
MakeMove(}
IF
User Message: "Your move." GameState
=PLAY
IF User Message: "Tic Tac Toe, Three in a
Done GameState = t row! You lose, [win, You will have to try
AMEWIN again (Click on <New Game>)"

User Message: " guess the cat got
this one... Click on <New Game> to

IF
GameState
=DRAW

Done

Else, GameSiate
= USERWINS

_play again."
User Message: "I don't believe it,
Done YOU WON!!! Quick, Click on <New
Game>."
Done

IF
GameState
=PLAY

User Interface Service Diagram {Changed Value on Text Cell)

IF

Done

IF
BoardCell(i), Text
= HOII

Done

BoardCell(i). Text
= I|X!I

BoardCell(i). Value
=1

BoardCell(i).Value
=-1

Call

UpdateSums

168

Done

User Interface Service Diagram (Update Sums)

User Interface
Subroutine

Begin
UpdateSums(}

Column(0) = BoardCell(0). Value + BoardCel(3).Value + BoardCell{6).Value

Column(1) = BoardCell(1).Value + BoardCell{4).Value + BoardCeli{7).Value

Column(2) = BoardCell(2).Value + BoardCell(5).Value + BoardCell(8).Value

Row{(0) = BoardCel}{0).Value + BoardCell(1).Value + BoardCell(2).Value

Row(1) = BoardCeli(3).Value + BoardCeli(4).Value + BoardCell(5).Value

Row(2) = BoardCell(6).Value + BoardCell(7).Vaiue + BoardCell(8).Value

Diagonal(() = BoardCell{0).Value + BoardCell(4}. Value + BoardCell(8).Value

Diagonal(1) = BoardCell(2).Value + BoardCell(4).Value + BoardCell(6).Value

Done

- 169 -

Game Engine Service Diagram (Main Move Selection Logic)

Game Engine

Begin
Subroutine

MakeMove()

F Set GameState
okForUserWin = USERWINS

AN

Set GameState
= Fi dAiV'n() Done
GAMEWINS IEAWE

0

—

F
Done FindABlock(Done

IF Done
ustAWedge o
< IF
PickCell(4) Done
IF
F <PickCell(8) > Done
PickCell(0) Done
IF >
- <PickCell(1) Done
PickCell(2) Done
IF
I <PickCell{3) > Done
PickCell(6) Done
IF
<PickCe!](S) > Done
IF
<PickCcll(7) > Done
Done

- 170 -

Game Engine Service Diagram (Look for User Win and Lock for Draw)

Begin Game Engine
LookForUserWin() Subrouﬂne
Fori=0to 2 IF Done; Return |
ori=0to Column(i) = 3 ne; Return
Next i
Fori=0to2 ¥ Done; R 1
ori=0to Row(i) =3 one; Return
Next i
Fori=0to 1 I Done; Return 1
or1=Uto iagonal(i) - one; Return
Done; Return 0 Next i
Begin ;
LookFor Game En.gme
Draw() Subroutine
Set Count =0
IF
Fori=0to8 BoardCell(i).Text Count++
<"

IF .
Done; Return | 4@ o= 8 Next i

>

Done: Return 0

- 171 -

Game Engine Service Diagram (Look for Win and Look for Block)

Begin
FindAWin()

Game Engine
Subroutine

IF
{BoardSum)
=-2

PickCell(ist Choice)

PickCell(2nd Choice)

Process
this

conditional
based on

PickCell(3rd Choice)

the Logic

Table

Done; Return 1

Done; Return 0

Begin
FindABlock()

Logic Table

BoardSum CI:cfitce Cﬁg?ce Cg(r)?ce
Column{{) 0 3 6
Column(1) 1 4 !
Column(2) 2 3 B

Row(0) 0 ! 2

Row(1) 3 4 >

Row(2) 6 7 8
Diagonal(®) | 0 4 i
Diagonal(1) 2 4 6

Game Engine
Subroutine

IF
{Board5um}
=2

PickCell(1st Choice)

PickCell{2nd Choice)

Process
this

conditional
based on

PickCell(3rd Choice)

the Logic

Table

Done; Return 1

Done; Return 0

172

Logic Table

Board5um Cli Sitce Cﬁgﬁ:e cg;?ce
Column(0) 0 3 6
Column(1) 1 4 7
Column(2) 2 5 8

Row(0) 0 ! z

Row(l) 3 4 >

Row(2) 6 7 8
Diagonal(0) 0 4 8
Diagonal(1) 2 4 o

Game Engine Service Diagram (Bust a Wedge)

Game Engine
Subroutine

Begin
BustAWedge()

IF

Diagonal(0) + Diagonal{1) =0 Done; Return 1

PickCell{4)

Y

PickCell(1) Done; Return 1

Y

IF

Row(0) + Column(0) = 2 PickCell(0}

Done; Return 1

/\
X
S

i

IF

Row(0) + Column(2) =2 PickCell(2) Done; Return 1

iF

Row(2} + Column(0) = 2 Done; Return 1

IF

Row(2) + Column(2) = 2 PickCell(8) Done; Return 1

AWAWA

Done; Return O

Game Engine Service Diagram (Pick a Cell)

Game Engine
Subroutine

Begin
PickCell(i)
IF Set GameState
BoardCell(i). Text=" " =SYSTEM
Daone: Return 0 Set BoardCell(i).Text = "O"
NOTE: Set BoardCell(i). Value = -1
This
Spawns a
"Changed
BoardCell" Set GameState
Event =PLAY
IF Set GameState
LookForDraw() =DRAW
1

Done; Return 1

- 174 -~

APPENDIX E

Tiec Tac Toe Visual Basic Listings/Screens

Tic Tac Toe

Click on <New Game> to begn.

Tic Tac Toe Main Screen (Visual Basic Version)

- 175 -

Main Form Object Definitions (MAIN.FRM)

VERSION 2.00
Begin Form frmMain
BorderStyle = 3 'Fixed Double
Caption = "Tic Tac Toe"
ClientHeight = 5820
ClientLeft = 1065
ClientTop = 1740
ClientWidth = 7365
Height = 6225
Left = 1005
LinkTopic = "Forml"
ScaleHeight = 5820
ScaleWidth = 7365
Top = 1395
Width = 7485
Begin CommandButton btnQuit
Caption = "Quit"
Height = 495
Left = 3640
TabIndex = 12
Top = 3840
Width = 1455
End
Begin TextBox txtCell
Alignment = 2 'Center
BorderStyle = { 'None
FontBold = -1 'True
Fontltalic = 0 'False
FontName = "MS Sans Serif"
Font3ize = 18

FontStrikethru = 0 ‘False
FontUnderline = 0 ‘False

Height = 435

Index = 8

Left = 3120
MousePointer = 10 'Up Armow
TabIndex = 11

Text = ""

Top = 2400

Width = 375

End

Begin TextBox txtCell

Alighment = 2 'Center
BorderStyle = 0 'None
FontBold = -1 'True
Fontltalic = 0 'False
FontName = "MS Sans Serif”
FontSize = 18
FontStrikethru = 0 ‘'False
FontUnderline = 0 'False
Height = 435

- 176 -

Index = 7

Left = 2520
MousePointer = 10 'Up Arrow
TabIndex = 10

Text = ""

Top = 2400

Width = 375

End
Begin TextBox txtCell

Alignment = 2 'Center
BorderStyle = 0 'None
FontBold = -1 "True
Fontltalic = 0 'False
FontName = "MS Sans Serif"
FontSize = 18
FontStrikethru = 0 'False
FontUnderline = 0 'False
Height = 435

Index = 6

Left = 1920
MouscPointer = 10 'Up Arrow
TablIndex =9

Text = ""

Top = 2400

Width = 375

End

Begin TextBox txtCell

Alignment = 2 'Center
BorderStyle = 0 'None
FontBold = -1 "True
Fontltalic = 0 'Faise
FontName = "MS Sans Serif”
FontSize = 18

FontStrikethru = 0 'False
FontUnderline = 0 'False

Height = 435
Index =35
Left = 3120
MousePointer = 10 'Up Arrow
TabIndex = 8
Text = ""
Top = 1800
Width = 375

End

Begin TextBox txtCell
Alignment = 2 'Center
BorderStyle = ('None
FontBold = -1 "True
Fontltalic = 0 'False
FontName = "MS Sans Serif”
FontSize = 18

FontStrikethru = O ‘False
FontUnderline = (O 'False

177

Height = 435

Index = 4
Left = 2520
MousePointer = 10 'Up Arrow
TablIndex =7
Text = "
Top = 1800
Width = 375

End

Begin TextBox txtCell
Alignment = 2 'Center
BorderStyle = 0 'None
FontBold = -1 'True
Fonttalic = 0 'False
FontName = "MS Sans Serif"
FoniSize = 18

FontStrikethru = 0 ‘False
FontUnderline = 0 'False

Height = 435

Index =3

Left = 1920
MousePointer = 10 'Up Arrow
TabIndex = 6

Text = ""

Top = 1800

Width = 375
End
Begin TextBox txtCell

Alignment = 2 'Center
BorderStyle = 0 'None
FontBold = -1 True
Fontltalic = 0 'False
FontName = "MS Sans Serif"
FontSize = 18
FontStrikethru = 0 ‘'False
FontUnderline = 0 'False
Height = 435

Index = 2

Left = 3120
MousePointer = 10 'Up Amow
TablIndex =5

Text = ""

Top = 1200

Width = 375

End

Begin TextBox txtCell

Alignment = 2 'Center
BorderStyle = 0 'None
FontBold = -1 "True
Fontltalic = 0 'False
FontName = "MS Sans Serif"

FontSize = 18
FontStrikethru = 0 'False

178

FontUnderline = 0 ‘False

Height = 435

Index =1

Left = 2520
MousePointer = 10 'Up Arrow
Tabindex = 4

Text = ""

Top = 1200

Width = 375

End
Begin CommandButton btnYouGoFirst
Caption = "You Go First”
Enabled = ('False
Height = 495

Left = 5640

TablIndex =0

Top = 1320

Visible = ('False

Width = 1455

End
Begin CommandButton btnNewGame
Caption = "New Game"
Height = 495

Left = 5640

Tablndex =1

Top = 3240

Width = 1455

End
Begin TextBox txtCell

Alignment = 2 'Center
BorderStyle = 0 'None
Dragleon = MAIN.FRX:0000
FontBold = -1 "True
Fontltalic = 0 'False
FontName = "MS Sans Serif"
FontSize = 18
FontStrikethru = O 'False
FontUnderline = 0 'False
Height = 435

Index =0

Left = 1920
MousePointer = 10 'Up Arrow
TabIndex = 3

Text = ""

Top = 1200

Width = 375

End
Begin TextBox xtMsgBox

Height = 1095

Left = 480

MultiLine = -1 "True
TablIndex =2

TabStop = 0 'False

178

"Click on <New Game> to begin,’

"Labell”

Text =
Top = 3240
Width = 4575
End

Begin Line Line2
BorderWidth = 2
X1 = 3000
X2 = 3000
Y1 = 1080
Y2 = 2880
End

Bepin Label Labell
Caption =
Height = 375
Index =0
Left = 3600
Tablndex = 13
Top = 1080
Width = 615
End

Begin Line Line4
BorderWidth = 2
X1 = 1800
X2 = 3600
Yl = 2280
Y2 = 2280
End

Begin Line Line3
BorderWidth = 2
X1 = 1800
X2 = 3600
Y1 = 1680
Y2 = 1680
End

Begin Line Linel
BorderWidth = 2
X1 = 2400
X2 = 2400
Y1 = 1080
Y2 = 2880
End

End

180

Main Form Object Behaviors (MAIN.FRM)

Sub btnNewGame_Click ()
Dim i As Integer
‘Blank cut board
gnGameState = SYSTEM_CONTROL
Fori=0To§
txtCell(i) Tag = 0
txtCell(i). Text=""
Label1(i).Caption = txtCell{i). Tag
Next

‘Set up for play
gnGameState = PLAY

Call UpdateSums

txtMsgBox.Text = "Click on any cell to make your first move, or... Click on the <You Go First>
button if you want me to go first."

btnY ouGoFirst.Enabled = True
btnYouGoFirst. Visible = True

End Sub
Sub btnQuit_Click ()
End
End Sub
Sub btnYouGoFirst_Click (3
Dim temp As Integer

binY cuGoFirst.Enabled = False
btnYouGoFirst.Visible = False

temp = PickCell(4)

End Sub

Sub Form_Load ()
Call btnNewGame_Click

End Sub

Sub txtCell_Change (Index As Integer)
IT gnGameState = PLAY Then

It Val(txtCeli(Index).Tag) = 1 Then
txtCell(Index). Text = "X"

- 181 -

Elself Val(txtCell(Index).Tag) = -1 Then

txtCell{Index).Text = "O"

Else txtCell(Index).Text = "X"
txtCell(Index).Tag = 1
Labell(Index).Caption = txiCell{(Index).Tag

‘Update ColiRowlDiag Sums
Call UpdateSums
End If
End If

End Sub
Sub txtCell_Click (Index As Integer)

'Just in case the User is faster than the system
If gnGameState = SYSTEM_CONTROL Then
Exit Sub
End If

'Get rid of <You Go First> if it is stil] there
If btnY ouGoFirst.Enabled = True Then
btnYouGoFirst.Enabled = False
btnYouGoFirst.Visible = False
End If

‘See if game is still in progress
If gnGameState <> PLAY Then
txtMsgBox Text = "Get over it... because the game is. Click on <New Game> to play again.”
Exit Sub
End If

‘Validate User Move
If txtCell(Index).Text <> " " Then
txtMsgBox.Text = "Sorry, that cell is already in use...please try again.”
Exit Sub
End If

‘Set Cell to X
txtMsgBox. Text = "Processing...” 'this invokes txtCell_Change()

txtCell{Index).Text = "X"

‘Let program make its move
Call MakeMove

'Handle Game State

Select Case {(gnGameState)
Case PLAY
txtMsgBox.Text = "Your Move"
Case GAME_WINS
ixtMsgBox.Text = "Tic Tac Toe, Three in a Row... You lose, I win! You will have to try again
{Click on <New Game>)"
Case DRAW

- 182 -

txtMsgBox.Text = "I guess the cat got this one...Click on <New Game> to play again.”
Case USER_WINS
txtMsgBox.Text = "I don't believe it, YOU WON!!!._ Quick, click on <New Game>."

End Select
End Sub

Sub txtCell_KeyPress (Index As Integer, KeyAscii As Integer)
Call txtCell_Click(Index)
End Sub

Global varColTot(3) As Integer
Global varRowTot(3) As Integer
Global varDiagTot(2) As Integer
Global gnGameState As Integer

(Global Const SYSTEM_CONTROL =-1
Global Const PLAY =0

Global Const GAME_WINS =1

Global Const DRAW =2

Global Const USER_WINS =3

- 183 -

Supporting Functions and Subroutines (TTT.BAS)

Function BustAWedge ()

If (varDiagTot(0) + varDiagTot(1)) = 0 Then
If PickCell{4) Then
BustAWedge =1
Exit Function
End If
If PickCell{1) Then
BustAWedge =1
Exit Function
End If
End If

If (varRowTot(0) + varColTot(0)) = 2 Then
If PickCell(0) Then
BustAWedge = 1
Exit Function
End If
End If

If (varRowTot(0) + varColTot(2)) = 2 Then
If PickCell(2) Then
BustAWedge = |
Exit Function
End If
End If

If (varRowTot(2) + varColTot(0)) = 2 Then
If PickCell(6) Then
BustAWedge =1
Exit Function
End If
End If

If (varRowTot(2) + varColTot(2)) = 2 Then
If PickCell(8) Then
BustAWedge = 1
Exit Function
End If
End If

BustAWedge =0

End Function

- 184 -

Function FindABlock ()

Dim i As Integer
If varColTot(0) = 2 Then

i = PickCell(0®)

i = PickCell(3)

i = PickCell(6)

FindABlock = 1

Exit Function
End If

If varColTot{(1} = 2 Then
i = PickCell(1)
i = PickCell(4}
i = PickCell(7)
FindABlock =1
Exit Function

End If

If varColTot(2) = 2 Then
i = PickCell(2)
i = PickCell(5})
i = PickCell(8)
FindABlock =1
Exit Function

End If

If varRowTot{() = 2 Then
i = PickCel(0)
i = PickCell(1)
i = PickCell(2)
FindABlock = 1
Exit Function

End If

If varRowTot(1) =2 Then
i = PickCell(3)
i = PickCell(4)
i = PickCell(5)
FindABlock =1
Exit Function

End If

If varRowTot(2) = 2 Then
i = PickCell(6)
1 = PickCell(7)
i = PickCell(8)
FindABlock =1
Exit Functicn

End If

- 185

If varDiagTot(0) = 2 Then
i = PickCell{0)
i = PickCell(4)
i = PickCell(8)
FindABlock = 1
Exit Function

End If

If varDiagTot(1) = 2 Then
i = PickCell(2)
i = PickCell(4)
i = PickCell(6)
FindABlock = 1
Exit Function

End If

End Function

Function FindAWin {}
Dim i As Integer
If varColTot{0) = -2 Then

1 = PickCell(0)

i = PickCell(3)}

i = PickCell(6)

FindAWin =1

Exit Function
End If

If varColTot(1) = -2 Then
i = PickCell(1)
i = PickCeli(4)
i = PickCell(7)
FindAWin=1
Exit Function

End If

If varColTot(2) = -2 Then
i = PickCell(2)
i = PickCell(5)
i = PickCell(8)
FindAWin=1
Exit Function

End If

If varRowTot(0) = -2 Then
i = PickCell(0}
i = PickCell(1})
i = PickCell(2}
FindAWin =1
Exit Function

- 186

End If

If varRowTot{1) = -2 Then
i = PickCeli(3)
i = PickCell(4)
i = PickCell(5)
FindAWin = 1
Exit Function

End If

If varRowTot(2) = -2 Then
i = PickCell(6})
i = PickCell(7)
i = PickCell(B)
FindAWin=1
Exit Function

End If

If varDiagTot(0) = -2 Then
i = PickCell(0)
i = PickCell{4)
i = PickCell(8)
FindAWin =1
Exit Function

End If

If varDiagTot(l) = -2 Then
i = PickCell(2)
i = PickCell(4)
i = PickCell{6)
FindAWin=1
Exit Function

End If

End Function
Function LookForDraw ()
Dim count, i As Integer
count=0
Fori=0To 8
If frmMain.txtCell(i}, Text <> " " Then
count = count + 1

End If
Next

If count >= 8 Then
LookForDraw = 1
Exit Function

End If

- 187

LookForDraw = 0
End Function
Function LookForUserWin ()
Dim i As Integer

Fori=0To2
If varColTot(i} = 3 Then
LookForUserWin = 1
Exit Function
End If
Next

Fori=0Tao2
If varRowTot(i) = 3 Then
LookForUserWin =1
Exit Function
End If
Next

Fori=0To i
If varDiagTot(i) = 3 Then
LookForUserWin = 1
Exit Function
End If
Next

LookFoirUserWin =0
End Function

Sub MakeMove ()
Dim i

If LookForUserWin(} Then
Beep
gnGameState = USER_WINS
Exit Sub

End If

If FindAWin() Then
Beep
gnGameState = GAME_WINS
Exit Sub

End If

If FindABlock() Then
Exit Sub
End If

If BustAWedge() Then

188

Exit Sub
End If

If PickCell(4) Then
i=4
Exit Sub

End If

If PickCeli(0) Then
i=0
Exit Sub

End If

If PickCell(2) Then
i=2
Exit Sub

End If

If PickCell(6) Then
i=6
Exit Sub

End If

If PickCell(8) Then
i=8
Exit Sub

End If

If PickCell{(1) Then
i=1
Exit Sub

End If

If PickCell(3) Then
i=3
Exit Sub

End If

If PickCell(5) Then
i=5
Exit Sub

End If

If PickCell(7) Then.
i=7
Exit Sub

End If

End Sub
Function PickCell (Index As Integer)
If frmMain.txtCell(Index}.Text = " * Then

gnGameState = SYSTEM_CONTROL
frmMain.txtCell{Index).Text = "O"
frmMain.txtCell{Index). Tag = -1
frmMain.Label1(Index).Caption = frmMain.txtCell(Index). Tag
gnGameState = PLAY

If LookForDraw() Then

- 189 -

Beep
gnGameState = DRAW
End If

PickCell = 1
Exit Function
End If

PickCell = 0
Exit Function

End Function
Sub UpdateSums ()

varColTot{Q) = Val(frmMain.txtCell(0).Tag) + Val(frmMain.txtCell(3).Tag) +
Val(frmMain.txiCell(6).Tag)

varColTot(1) = Val(frmMain.txtCell(1).Tag) + Val{frmMain,txtCell(4).Tag} +
Val(frmMain.txtCell(7).Tag)

varColTot{2) = Val{frmMain.txtCell(2). Tag) + Val(frmMain.txtCell(5). Tag) +
Val(frmMain, txtCell(8).Tag)

varRowTot(0) = Val(frmMain.txtCell(().Tag) + Val{frmMain.txtCell(1).Tag) +
Val(frmMain.txtCell(2). Tag)

varRowTot(1) = Val(frmMain.txtCell(3).Tag) + Val(frmMain.txtCell(4).Tag) +
Val{frmMain.txtCell(5).Tag)

varRowTot(2) = Val(frmMain.txtCell(6). Tag} + Val(frmMain.txtCell(7).Tag) +
Val(frmMain.txtCell(8).Tag)

varDiagTot(() = Val(frmMain.txtCell(0).Tag) + Val(frmMain.txtCell(4).Tag) +
Val{(frmMain.txtCell(8).Tag)}

varDiagTot(1) = Val{frmMain txtCell(2).Tag) + Val(frmMain.txtCeli(4). Tag) +
Val(frmMain.txtCell(6). Tag)

End Sub

- 190 -

APPENDIX F

Tic Tac Toe Smart Elements Listings/Screens

Game State:

I |

Click on <New Game:> to begin.

Tic Tac Toe Main Screen (Smart Elements Version)

- 191 -

Open Interface Resource File for Tic Tac Toe (TTT SE.RC)

Note: For better readability, the object scripts were pulled from the individual objects and put into the
“Script File” which follows this Resource File listing. Also, objects and operations not related to the
applicaticn (i.e., overhead) were removed,

{Win.Compile
Name: "ttt_se.winMain"
Version: 8
Flags: 0x0001
Deco: 0x0007
MinWidth: 100
MinHeight; 40
LabelColor: "Win.DetLabelColor"
FacusColor: "Win.DefFocusColor"
IconFont: "Win.DeflconFont"
TIcon: "Win.Deflcon"
PosFlags: 0x0001
OptFlags: 0x0010
DpiX: 78
Dpi¥Y: 78
KeysNext: "Panel. KeysNextWgt"
KeysPrev: "Panel. KeysPrevWgt"

KeysNextInGrp: "Panel KeysNextRadio"
KeysPrevinGrp: "Panel.KeysPrevRadio"
Label: "Tic Tac Toe"

FgColor: "Win.DefFgColor”
BgColor: "Win.DefBgColor"
Font: "Win.DefFont"

Pen: "Win.DefPen"

Pattern: "Patt. Empty"

Cursor: "Curs.DefArrow"

X 125

Y: 50

W: 44()

H: 310

WgtFlags: 0x0001

Script: <MOVED TO SCRIFT FILE>
)

(PBut.Compile
Name: "ttt_se.winMain.btnQuit"
Version: 8
Label: "Quit"
FeColor: "TBut.DefFgColor"
BgColor; "TBut.DefBgColor"

Font; "TBut.DefFont"
Pen: "Wgt.DefPen"
Pattern: "Patt, Empty*
Cursor: "Curs.DefArrow"

. & 331
Y 257
w: 91

- 182 -

"on event TBUT_HIT\n\tWIN_Terminate(WGT_GetWin(SELF));\nend event\n”

H: 34
WetFlags: 0x0001
Seript:
)
{(PBut.Compile
Name: "tit_se.winMain.btonNewGame"
Version: 8
Label: "New Game"
FaColor: "TBut.DefFgColor"
BgColor: "TBut.DefBgColor"
Font: "TBut.DefFont"
Pen: "Wet.DefPen"
Pattern: "Patt. Empty"
Cursor: "Curs.DefArrow"
Index: 1
X 331
Y: 202
W: o1
H: 34
WetFlags: 0x0001
Script: <MOVED TO SCRIPT FILE>
)
(PBut.Compile
Name: "ttt_se.winMain.btnYouGoFirst"
Version: 8
Label: "You Go First"
FgColor: “TBut.DefFgColor”
BgColor: "“TBut.DefBgColor"
Font: "TBut.DefFont"
Pen: "Wet.DefPen”
Pattern: "Patt. Empty"
Cursor; "Curs.DefArrow"
Index: 2
X a3l
Y: 47
W: 91
H: 34
WgtFlags: 0x0001
Script: <MOVED TO SCRIPT FILE>
)

(Panel.Compile
Name:
Version: 8
KeysNext:
KeysPrev;
KeysNextInGrp:
KeysPrevinGrp:
LabelJustif:
FeColor:
BgColor:

“ttt_se.winMain.pnlBoard"

"Panel KeysNextWgt"
"Panel.KeysPrevWgt"
“Panel KeysNextRadio"
“Panel.KeysPrevRadio"
0x0001
"Panel.DefFgColor"
"Panei.DefBgColor"

- 193

Font: "Wpgt DefFont"
Pen: "Win.DefPen"
Pattern: "Patt, Empty”
Cursor: "Curs.DefArrow”

Index: 3
p. & 81
Y: 42
W 136
B 136
WeiFlags: (0x(0001
)
{IArea.Compile
Name: "ttt_se.winMain.pnlBoard.imgBoard"
Version: 8
Icon: "TArea.Deflcon”
FgColor: "IArea DefFgColor™
BgColor: "LArea.DefBgColor"
Font: "Wgt DefFont"
Pen: "Win.DefPen"
Pattern: "Patt. Empty”
Cursor: "Curs,DefArrow”
W 311
H: 186
WatFlags: 0x0001
}

(LBox.Compile

Name: "ttt_se winMain.pniBoard.lbCellt"
Version: 8

StartCol: 0x0001

StartRow: 0x0001

ColWidth: 0x0032

RowHeight: 0x0014

ColNum; 1

RowNum: 1

LbKeys: "LBox.KeysDef"

CellPen: "Win,DefPen"

TextEditor: "NMsgEd. EditTEd"
ShSepW: 4

SbSepH: 4

KeysNext: "Panel. KeysNextWgt"
KeysPrev: "Panel. KeysPrevWgt"

KeysNextInGrp: "Panel KeysNextRadio"
KeysPrevinGrp: "Panel.KeysPrevRadio"
FgColor: "LBox.DefFgColor"
BgColor: "LBox.DefBgColor”
Font: "i1{_se.Font2"

Pen: "Win.DefPen"

Pattern: "Patt. Empty"

Cursor: "Curs.Cross"

Index: 1

X 5

-~ 194

Y: 13

W 26
H 31
WegtFlags: 0x0001
Script: <MOVED TO SCRIPT FILE>
)
{(LBox.Compile
Name: "ttt_se.winMain.pnlBoard.1bCell2"
Version: 8
StartCol: 0x0001
StartRow: 0x0001
ColWidth: 0x0032
RowHeight: 0x0014
ColNum; 1
RowNum;: 1
LbKeys: "LBox.KeysDef"
CellPen: "Win.DefPen"
TextEditor: "NMsgEd EditTEQ"
SbhSepW: 4
SbSepH: 4
KeysNext: "Panel. KeysNextWgt"
KeysPrev: "Panel. KeysPrevWgt"
KeysNextInGrp: "Panel. KeysNextRadio"
KeysPrevlnGrp: "Panel.KeysPrevRadic"
FegColor: "LBox.DetFgColor”
BgColor: "LBox.DefBgColor”
Font: "ttt_se.Font2"
Pen: "Win.DefPen"
Pattern: "Patt.Empty"
Cursor; "Curs.Cross”
Index: 2
X 50
Y: 13
W 26
H: 31
WetFlags; 0x0001
Script: <MOVED TO SCRIPT FILE>
)
{LBox.Compile
Name: "ttt_se.winMain.pnlBoard.|bCell3"
Version: 8

StartCol: 0x0001

StartRow; 0x0001

ColWidth: 0x0032

RowHeight: 0x0014

ColNum: 1

RowNum: 1

LbKeys: "LBox.KeysDef™

CellPen: "Win.DefPen"

TextEditor: "NMsgEd EditTEd"
SbSepW: 4

- 195

)

SbSepH: 4

KeysNext: "Panel. KeysNextWgt"
KeysPrev: "Panel. KeysPrevWgt"
KeysNextInGrp: "Panel. KeysNextRadio"
KeysPrevInGrp: "Panel.KeysPrevRadio”
FgColor: "LBox.DefFgColor"
BgColor; "LBox.DefBgColor"
Font: "ttt_se.Font2"

Pen: "Win DefPen"

Pattern: "Patt. Empty”

Cursor: "Curs.Cross"

Index: 3

X 95

Y: 13

W 26

H: 31

WetFlags: 0x0001

Script: <MOVED TO SCRIPT FILE>

(LBox.Compile

Name: "ttt_se.winMain.pnlBoard.1bCell4"
Version: 8

StartCol: 0x0001

StartRow: 0x0001

ColWidth: 0x0032

RowHeight: 0x0014

ColNum: 1

RowNum: i

LbKeys: "LBox.KeysDef"

CellPen: "Win.DefPen"

TextEditor: "NMsgEd.EditTEd"
SbSepW: 4

SbSepH: 4

KeysNext: "Panel. KeysNextWgt"
KeysPrev: “Panel KeysPrevWgt"

KeysNextInGrp: "Panel KeysNextRadio"
KeysPrevinGrp: "Panel KeysPrevRadio"
FgColor: "LBox.DefFgColor"
BgColor: "LBox.DefBgColor"
Font: “ttt_se.Font2"

Pen: "Win.DefPen"

Pattern: "Patt. Empty"

Cursor: "Curs.Cross"

Index: 4

X 5

Y 43

W 26

H: 31

WetFlags: Ox0001

Script: <MOVED TO SCRIPT FILE>

- 196

{L.Box.Compile
Name:; "ttt_se.winMain.pnlBoard.tbCell3"
Version: 8
StartCol: 0x0001
StartRow: 0x0001
ColWidth: 0x0032
RowHeight: 0x(0014
ColNum: 1
RowNum; 1
LbEeys: "LBox.KeysDet™
CellPen: "Win.DefPen"

TextEditor: "NMsgEd.EditTEd"
SbSepW: 4

SbSepH: 4

KeysNext: "Panel. KeysNextWgt"
KeysPrev: "Panel.KeysPrevWwgt"

KeysNextInGrp: "Panel.KeysNextRadio"
KeysPrevinGrp; "Panel.KeysPrevRadio"
FgColor: "LBox.DefFgColor"
BgColor: "LBox.DefBgColor"
Font: "ttt_se.Font2"

Pen: "Win.DefPen"

Pattern: "Patt Empty"

Cursor: "Curs.Cross”

Index: 5

X; 50

Y: 43

W: 26

H 31

WetFlags: 0x 0001

Script: <MOVED TO SCRIPT FILE>
)
(LBox.Compile

Name: “tti_se.winMain.pniBoard.lbCell6"

Version: 8

StartCol: 0x0001
StartRow: 0x0001
ColWidth: 0x0032
RowHeight: 0x0014
ColNum: 1
RowNum: 1
LbKeys: "LBox.KeysDef"
CellPen: “Win.DefPen"

TextEditor: "NMsgEd EditTEQ"
SbSepW: 4

SbSepH: 4

KeysNext: “Panel. KeysNextWgt"
KeysPrev: "Panel. KeysPrevWgt"

KeysNextinGrp: "Panel. KeysNextRadio"
KeysPrevinGrp: "Panel KeysPrevRadio”
FgColor: "LBox.DefFgColor"
BgColor: "LBox.DefBgColor"

- 197

Font: "tit_se.Font2"
Pen: "Win.DefPen"
Pattern: "Patt.Empty"
Cursor; "Curs.Cross”

Index; 6
X 95
Y: 48
W: 26
H: 31
WetFlags: 0x0001
Script: <MOVED TO SCRIPT FILE:
)
{(LBox.Compile
Name: "ttt_se.winMain.pnlBoard IbCell7"
Version: 8
StartCol; 0x0001
StartRow: 0x0001
CoiWidth: 0x0032
RowHeight: 0x0014
ColNum: 1
RowNum; 1
LbKeys: "LBox.KeysDef"
CellPen: "Win.DefPen"
TextEditor: “NMsgEd.EditTEd"
SbSepW: 4
SbSepH: 4
KeysNext: "Panel. KeysNextWgt”
KeysPrev: "Panel. KeysPrevW gt"
KeysNextInGrp: "Panel. KeysNextRadio"
KeysPrevInGrp: "Panel.KeysPrevRadio"
FgColor; "LBox.DefFgColor”
BeColor: "LBox.DefBgColor"
Font: "ttt_se Font2"
Pen: "Win.DefPen"
Pattern: "Patt. Empty"
Cursor: "Curs.Cross"
Index: 7
X 5
Y: 83
Ww: 26
H: 31
WetFlags; Ox0001
Script: <MOVED TO SCRIPT FILE>
)
(LBox.Compile

Name: "ttt_se.winMain.pnlBoard.ibCell8"
Version: 8

StartCol: 0x0001

StartRow: 0x0001

ColWidth: 0x0032

RowHeight: 0x0014

- 198

ColNum;: 1
RowNum: 1
LbKeys: "LBox.KeysDef"
CellPen: "Win.DefPen"

TextEditor: "NMsgEd. EditTEd"
ShSepW: 4

SbSepH: 4

KeysNext: "Panel. KeysNextWgt"
KeysPrev: "Panel.KeysPrevWgt"

KeysNextInGrp: "Panel.KeysNextRadio"
KeysPrevinGrp: "Panel.KeysPrevRadio"
FeColor: "LBox.DefFgColor"
BgColor: "LBox.DefBgColor"
Font: "ttt_se.Font2"

Pen: "Win.DefPen"

Pattern: "Patt.Empty”

Cursor: "Curs.Cross"

Index: 8

X 50

Y: 83

W 26

H: 31

WgtFlags: 0x0001

Script: <MOVED TO SCRIPT FILE>

)

(LBox.Compile
Name: "ttt_se.winMain.pnlBoard.1bCell9"
Version: 8
StartCol: 0x0001
StartRow: 0x0001
ColWidth: 0x0032
RowHeight: 0x0014
ColNum: 1
RowNum: 1
LbKeys: "LBox.KeysDef"
CellPen: "Win.DefPen"

TextEditor: "NMsgEd.EditTEd"
ShSepW: 4

ShSepH:4

KeysNext: "Panel. KeysNextWgt"
KeysPrev: "Panel.KeysPrevWgt"

KeysNextInGrp: "Panel.KeysNextRadio"
KeysPrevinGrp: "Panel.KeysPrevRadio”
FeColor: "LBox.DefFgColor”
BgColor: "LBox.DefBgColor”
Font: "ttt_se.Fon¢2"

Pen; "Win,DefPen"

Pattern; "Patt.Empty"

Cursor; "Curs.Cross”

Index: 9
X 95
Y: 83

- 199

W 26

H: 3
WegtFlags: 0x0001
Script: <MOVED TO SCRIPT FILE=
)
(MTEd.Compile
Name: "ttt_se.winMain.txtMsgBox"
Version: §
Justif: 0x0011
OptFlags: 0x0002
LeftMargin: 4
RightMargin: 4
Labe]Font: "TEd.DefFont"
LabelPen: “Pen.Solid"
LabelPattern; "Patt Empty"
LabelFgColor: "TEd.DefFgColor"
LabelBgColor: "Color. Transparent”
Initial Text: "Click on <New Game>> to begin."
ShSepW: 4
SbSepH: 4
KeysNext: "Panel. KeysNextWgt"
KeysPrev: "Panel KeysPrevWgt"
KeysNextInGrp: "Panel KeysNextRadio"
KeysPrevinGrp: "Panel KeysPrevRadio"
LabelJustif: 0x0041
FgColor: "TEd.DefFgColor"
BgColor: "TEd.DefBgColor”
Font: "TEd.DefFont"
Pen: "TEd.DefPen”
Pattern: "Patt. Empty"
Cursor; "Curs.DefArrow”
Index: 4
X: 11
Y: 212
W 311
H: 81
RzFlags: 0x0100
WetFlags: 0x0001
)
{(STEd.Compile
Name: "ttt_se.winMain.txtGameState"
Version; 8
Tustif: 0x0011
OptFlags: 0x0003

LeftMargin; 4

RightMargin: 4

LabelFont; "TEd.DefFont"
LabelPen: "Pen.Solid”
LabelPattern: "Patt. Empty"
LabelFgColor; "TEd.DefFgColor"

- 200 -

LabelBgColor: "Color. Transparent”

HSepH: 20

SbSepW: 4

SbSepH: 4

KeysNext: "Panel. KeysNextWpgt"
KeysPrev: "Panel.KeysPrevWgt"

KeysNextInGrp: "Panel KeysNextRadio"
KeysPrevinGrp: "Panel KeysPrevRadio"
Label: "Game State:"

LabelTustif; 0x0041

FgColor: "TEd.DefFgColor"
BgColor: "TEd.DefBgColor"
Font: "TEd.DetFont"

Pen: "TEd.DefPen”

Pattern: "Patt. Empty"

Cursor; "Curs.DefArrow"

Index: 5

X 331

Y: 137

W: 96

H: 26

RzFlags: 0x0100
WetFlags: 0x0001

Script: <MOVED TO SCRIPT FILE>

- 201

Open Interface Script File for Tic Tac Toe

On “winMain” object:
on event WIN_OPENED

/fCollect some useful pointers
winMainptr = WGT_GetWin{SELF),

txtGameStateptr = WIN_GetNamedW gt(winMainptr, "txtGameState");
txtMsgBoxpir = WIN_GetNamedWgt(winMainptr,"txtMsgBox");

/Nnitialize text areas
TED_SetStr(txtGameStateptr, "SYSTEM");

TED_SetStr(txtMsgBoxptr, "Processing..."};

//nitialize Nexpert
NOIR_RestartSession();

/Mnitialize Cells
1bCellptr = WIN_ GetNamedW gt{winMainptr,"I[bCell1"};
LBOX _SetCellString(1bCellptr,1,1," ™

IbCellptr = WIN_GetNamedW gt{winMainptr,"1bCell2™);
LBOX_SetCellString(IbCellptr,1,1," ");

1bCellptr = WIN_GetNamedW gt{winMainptr,"1bCell3"};
LBOX SetCellString(lbCellptr,1,1," ");

ibCellptr = WIN_GetNamed W gt(winMainptr,"IbCell4");
LBOX_SetCellString(IbCellptr,1,1," ");

1bCellptr = WIN_GetNamed Wgt{winMainptr,"ibCell5");
LBOX_SetCellString(IbCellptr,1,1," "};

leel]ptr = WIN_GetNamedet(wl nMainp tl‘,"leell6");
LBOX_SetCellString(IbCelptr, 1,1," *);

1bCellptr = WIN_GetNamedW gt{winMainptr,"1bCell 7"},
LBOX_SetCellString(1bCellptr,1,1," ");

IbCellptr = WIN_GetNamedW gt(winMainptr,"1bCellB");
LBOX_SetCellString(IbCellptr,1,1," *);

IbCellptr = WIN_GetNamedW gt(winMainptr, "IbCell9";
LBOX_SetCeliString(IbCellptr,1,1," ™)

// Enable <You Go First> Button
WGT_Enable(WIN_GetNamedW gt{winMainptr, "btnYouGoFirst"));

- 202 -

//Set text areas for play
TED_SetStr{txtMsgBoxptr, "Click on any cell to make your first move, or... Click on the
<You Go First> button if you want me to go first.");

TED_SetStr(txtGameStateptr, "PLAY");

end event /fWIN_OPENED

On “1bCell” object:

on event LBOX_CELILCILICKED
HCollect some useful pointers
winMainptr = WGT_GetWin(SELF);

txtGameStateptr = WIN_GetNamedW gt(winMainptr,"txtGameState");

txtMsgBoxptr = WIN_GetNamed W gt(winMainptr, "txtMsgBox");

/fJust in case the User is faster than the system
while(TED_GetStr(txtGameStateptr} == "SYSTEM")
{

LBOX_UnselectCell(SELF,1,1);

return;

}

/! Gray out <You Go First> Button
WGT_Disable(WIN_GetNamedWgt(winMainptr, "btnYouGoFirst"));

//Make sure the pame is still in progress
while(TED_GetStr(txtGameStateptr) = "PLAY")
(
TED_SetStr{txtMsgBoxptr,"Get over it... because the game is, Click on <NewGame>
1o play again.");
LBOX UnselectCell(SELF,I1,1);
return;

)

//V alidate User Move
currVal = LBOX_GetCellString(SELF,1,1);
if{currVal != " "){
TED_SetStr(txtMsgBoxptr, "Sorry, that cell is already in use...please try again,");
)
elsef
/fTake Control and process User's move
TED_SetStr(txtGameStateptr, "SYSTEM");

TED_SetStr(txtMsgBoxptr, "Processing...");

/fUpdate board with User's move
LBOX_SetCellString(SELF,1,1,"X");

- 203 -

/{Update and run the NEXPERT game engine
NOIR_Volunteer(NOIR_GetAtomlId("Cell1.Val", NXP_ATYPE_SLOT), NXP_DESC_INT, 1,
NXP_VSTRAT_VOLFWRD);
NOIR_SendMessage("mthdUpdate", NOIR_GetAtomId("Sums", NXP_ATYPE_CLASS), "");

NOIR_Suggest(NOIR_GetAtomld("hypMakeAMove", NXP_ATYPE_HYPO),
NXP_SPRIO_SUG);

NOIR_Knowcess();
NOIR_ ProcessForm{winMainptr),

/fHandle Game State
NOIR_UpdateW gt{txtGameStateptr);

if (TED_GetStr(txtGameStateptr) == "PLAY")
TED__SetStr(txtMsgBoxptr, "Your move."),

else {
if (TED_GetStr(txtGameStateptr) == "GAME WINS")

TED_SetStr{txtMsgBoxptr, "Tic Tac Toe, Three in a Row... You lose, [win! You will have to
try again (click on <New Game>).");

else {
if (TED_GetStr(txtGameStateptr) == "DRAW™)

TED_SetStr(txtiMsgBoxptr, "I guess the cat got this one... Click on <New Game>
to play again.”);

else {
if (TED_GetStr{txtGameStatepir) == "USER WINS")

TED_SetStr(txtMsgBoxpir, "I don't believe it, YOU WON!!!...Quick, click on
<New Game>.");

}

} /end else process the User's move
LBOX UnselectCell{(SELE,1,1);

end event /LBOX _CELLCLICKED

on event NOIR_PROCESSFORM

/fTest to see if the NEXPERT game engine placed an O in this cell

- 204 -

currVal = LBOX_GetCellString(SELF,1,1};
if(currVal ==" "}{

nxpCellVal = NOIR_GetIntVal{NOIR_GetAtomId("Celll.Val", NXP_ATYPE_SLOT));
if(nxpCellVal == -1)
LBOX_SetCellString(SELF,1,1,"0");

}

end event // NOIR_PROCESSFORM

On “btnNewGame” Object:
on event TBUT_HIT
/Collect some useful pointers
winMainptr = WGT_GeiWin(SELF);
ixtGameStateptr = WIN_GetNamedWgt(winMainptr,"1xtGameStaie");
txtMsgBoxpir = WIN_GetNamedW gt{winMainptr,"txtMsgBox");

/Mnitialize text areas
TED_SetStr{txtGameStateptr, "SYSTEM™);

TED_SetStr(txtMsgBoxptr, "Processing...");

/Mnitialize Nexpert
NOIR_RestartSession();

/nitialize Cells
IbCellptr = WIN_GetNamedW gt(winMainptr,"1bCell 1");
LBOX_SetCellString(IbCellptr,1,1," ");

IbCellptr = WIN_GetNamed Wet{winMainptr,"1bCell2");
LBOX_SetCellString(IbCellptr,1,1," ");

IbCellptr = WIN_GetNamed Wgt{winMainptr,"IbCell3");
LBOX_SetCellString{IbCellptr,1,1," *);

IbCellptr = WIN_GetNamedW gt{ winMainptr,"IbCell4™;
LBOX_SetCellString(IbCellptr,1,1," ");

IbCeliptr = WIN_GetNamedWgt{winMainptr, "IbCell5"),
LBOX_SetCellString(lbCellptr,1,1,” "};

IbCellptr = WIN_GetNamedWgt(winMainptr, IbCell6");
LBOX_SetCellString(1bCellptr,1,1," "};

IbCellptr = WIN_GetNamedW gt(winMainptr,"1bCell7");
LBOX_SetCellString(lbCellptr,1,1," ");

- 205 -

IbCellptr = WIN_GetNamedW gt(winMainptr,"1bCell&");
LBOX_SetCellString(IbCellptr,1,1," ");

IbCellptr = WIN_GetNamedW gi{winMainptr,"1bCell9");
LBOX_SetCellString(IbCellptr,1,1," ");

// Enable <You Go First> Button
WGT_Enable(WIN_GetNamedWgt{winMainptr, "btnY ouGoFirst")},

{/Set text areas for play
TED_SetStr(txtMsgBoxptr, "Click on any cell to make your first move, ar... Click on the
<You Go First> button if you want me to go first."};

TED_SetStr(txtGameStateptr, "PLAY"};

end event /TBUT_HIT

On “btnQuit” Object;
on event TRUT_HIT
WIN_Terminate{WGT_GetWin(SELF));

end event /TBUT_HIT

On “btnYouGoFirst” Object:
on event TBUT_HIT

HCollect some useful pointers
winMainptr = WGT_GetWin(SELF};

txtGameStateptr = WIN_GetNamedW gt(winMainptr, "txtGameState");
txtMsgBoxptr = WIN_GetNumedWgt{winMainptr,"txtMsgBox"),

// Gray out <You Go First> Button
WGT_Disable(WIN_GetNamedWgt(winMainptr, "btnYouGoFirst"));

{fTake Control and process User's move
TED_SetStr(txtGameStateptr, "SYSTEM");

TED_SetStr{txtMsgBoxptr, "Processing...");

/fUpdate and run the NEXPERT game engine
NOIR_SendMessage("mthdUpdate”, NOIR_GetAtomld("Sums", NXP_ATYPE_CLASS), "");

NOIR _Suggest(NOIR_GetAtomld("hypMake AMove", NXP_ATYPE_HYPO), NXP_SPRIO_SUG);

NOIR_Knowcess();

- 206 -

NOIR _ProcessForm{winMainpir);

/fHandle Game State
NOIR_UpdateW gt{txtGameStateptr};

TED_SetStr(txtMsgBoxptr, "Your move.");

end event /TBUT_HIT

On “txtGameState” Object:
on event INITIALIZE
NOIR,_LinkTextEdit(SELF, NOIR_GetAtomld({"Game.State", NXP_ATYPE_SLOT), I);

end event // INITIALIZE

- 207 -

Nexpert Object Graphs and File Excerpts for Tic Tac Toe (TTT.KB)

FoNiGhangt s Me saAds K URHATNS
rrrcm
REER— W] RG] :
L — (WA
EEE—- _____ . | .,.- =z
wem-mwE S]
7 r&mwﬂ‘m
oy ==
- &
ANEETE - W I7E Q] R
o "QF'fgendlC‘l SsagermindRick]
[VE
m_ ST » N ASsIgn0:] ;'.'i[33
. SEFEHE m 5418
2N il L1 71| S RN Ma A S m R eky
a

AU PicRCall

TR A e

BleRCelt

¢ nD asi

Class-Object Hierarchy for the “Cells” Class

- 208 -

s
“\-__\\ _m
“"fl_ﬁ_\ ei ﬂ
T —— [WEW
WEeTd
- A
e

ey A

_____\“““_—-—ﬁ
N i
- AT

s BN A o

B L1 111

@G -R30paates0a

SandMaseaqarlpdatBey
e A RS e b Gama Win|
N ST A TR LSBT WIn
S BsehypOlockUse
G AT G ama Meves)|

AT

Class-Object Hierarchy for the “Sums” Class

- 209 -

Class-Object Hierarchy for the “Game” Object

- 210 -

-

Object [Game | k8 {TITKB

|EECClasEs

SubObjects
Moves 5 in
State DRAW (3)
mihdCheckDraw Moves Pub

Typical Object Dialog in Nexpert Object

211

Rule Graph

Rules Listing:

{@RULE= R_hypUserWins
@INFCAT=30;
(@LHS=

({(<ISumsl>.Sum) (3))

)
(@HYPO= hypMakeAMove)
{(@RHS=
(Assign ("USER WINS™) {Game.State))
)
)
(@RULE= R_hypGameWins
@INFCAT=20;
(@LHS=

((<ISumsl>.Sum) ((0-2))

I

)
{(@HYPO= hypMakeAMove}

{@RHS=
(SendMessage ("mthdPickLastCell™)

- 212 -

{@TO=|Cells|.Val; @ ARG1=<ISumsl>;}}

(Assign ("GAME WINS")
)

)

{@RULE= R_hypBlockUser
@INFCAT=10;
(@LHS=

(

(<ISumsl>.Sum) (2})
)
(@HYPO=
(@RHS=
(SendMessage
(SendMessage

hypMakeAMave)

("mthdPickLastCell")
{"mthdCheckDraw")
)
)
(@RULE= R_hypBustAWedgelA
@INFCAT=6,
(@LHS=
(= (SUM(Diagl.Sum,Diag2.Sum})
(= {Celi5.Val) (00}
)
(@HYPO=
(@RHS=
(Assign ((0-1)) (Cell5.Val))
(SendMessage ("mthdCheckDraw™)

hypMakeAMove)

)
)
{(@RULE= R_hypBustAWedge 13
@INFCAT=5;
(@LHS=
(= (SUM(Diagl.Sum,Diag2.Sum})
(= (Cell2.Val) ()
)
(@HYPO=
(@RHS=
(Assign ((0-1)) (Cell2,Val))
(SendMessage ("mthdCheckDraw™)

hypMakeAMove)

)
)
{@RULE= R_hypBustAWedged
@INFCAT=2,
(@LHS=
(= (SUM(Row3.5um,Coll1.5um))
(= (Celi7.Val) ()]
)
(@HYPO=
(@RHS=
{Assign ((0-1)) (Cell7.Val))
{SendMessage ("mthdCheckDraw")

hypMakeAMove)

)

)
(@RULE= R_hypBustAWedge5

(@LHS=
(= (SUM{Row3.5um,Col3.Sum))

- 213 -

(Game.State))

(@TO=ICells|.Val, @ ARG1=<|Sumsl>;))
{(@TO=Game Moves;))

(o»

{@TO=Game . Moves;))

0y

{@TO=Game.Moves;})

(2))

(@TO=Game.Moves;))

(2

I

{ (Cell9.Val) ()

)
(@HYPO= hypMakeAMove)

(®RHS=
(Assign ((0-1)) (Cell9.Val))
{(SendMessage ("mthdCheckDraw")
)
(@EHS=
{SendMessage ('mthdPickCell5")

)

- 214

{@TO=Game.Moves;))

{@TO=Cell5.Val;})

Method [UpdateSum Ike [TOks

Attached To I Sums.Sum —|Type [__] Slot

Local [Nome Nature | Dato Type | Def Vaive | List

Argumenits *
-
:

SUM{<SELF=>.Val)

SELF.Sum

i

Commenis r

Why L

Typical Method Dialog in Nexpert Object

Methods Listing:

(@METHOD= IiChange
(@ ATOMID=Cells.Val,@ TYPE=SLOT})
{@FLAGS=PUBLIC;)

{@RHS=
(SendMessage ("UpdateSum") (@TO=<iSumsl>.Sum;))
}

)

(@METHOD= mthdCheckDraw
(@ATOMID=Game.Moves; @ TYPE=SLOT;)
(®@FLAGS=PUBLIC;)

(@LHS=
(= (Game.Moves) {5))
}
{@RHS=
(Assign ("DRAW™) (Game, State))
)

-~ 215 -

(@EHS=
(Assign ("PLAY™) {Game,State))
)

)
{@METHOD= mthdPickCelil

{@ATOMID=Cells.Val;@TYPE=SLOT;)
{@FLAGS=PUBLIC;)
(@LHS=
(= (Cell1.Val) ()]
)
{(@RHS=
(Assign ((0-1)) (Celll.Val)}
(SendMessage ("mthdCheckDraw") {@TO=Game.Moves;))
)
{@EHS=
(SendMessage ("mthdPickCell3") (@TO=Cell3.Val;))
)

)
(@METHOD= mthdPickCell2

(@ATOMID=Cells.Val; @ TYPE=5LOT;)
(@FLAGS=PUBLIC;)
(@LHS=
(= {Cell2.Val) (1))
)
(@RHS=
(Assign ((0-1)) (Cell2.Val))
{SendMessage {"mthdCheckDraw") {@TO=Game,Moves;))
)
(@EHS=
{SendMessage ("mthdPickCell4") (@TO=Cell4.Val:))
)

)
(@METHOD= mthdPickCell3

{(@®@ATOMID=Cells.Val; @ TYPE=SLOT;)
(@FLAGS=PUBLIC;)
(@LHS=
(= (Cell3.Val} (1))}
)
(@RHS=
{Assign {(0-1)) (Cell3.Val))
(SendMessage ("mthdCheckDraw") (@TO=Game.Moves;)}
)
(@EHS=
(SendMessage ("mthdPickCell7™) (@TO=Cell7.Val;))
}

)
(@METHOD= mthdPickCell4

(@ ATOMID=Cells.Val; @ TYPE=SLOT;)
{(@FLAGS=PUBLIC;)
(@LHS=

{ {Cell4.Val) (0))

)
(@RHS=

- 21e -~

(Assign ({(0-1)) (Cell4d.Val))

(SendMessage ("mthdCheckDraw") {@TO=Game.Moves;)}
)
(@EHS=

(SendMessage ("mthdPickCell6™) {@TO=Cell6.Val;h
)

)
(@METHOD= mthdPickCell5

{@ATOMID=Cells.Val;@TYPE=SLOT;}
(@FLAGS=PUBLIC;}
(@LHS=
(= (Cell5.Val) (0)
)
(@RHS=
(Assign ((0-1)) (Cell5.Val))
(SendMessage ("mthdCheckDraw™) (@TO=Game.Moves;))
)
{(@EHS=
(SendMessage ("mthdPickCelll") (@TO=Celll.Val;))
)
)
(@METHOD= mthdPickCell6
(@ATOMID=Cells.Val;@TYPE=SLOT:;)
{@FLAGS=PUBLIC;)
{(@LHS=
(= (Cell6. Val) ()
)
(@RHS=
(Assign ((0-1)) (Cell6.Val))
(SendMessage ("mthdCheckDraw") (@TO=Game.Moves;))
)
(@EHS=
(SendMessage ("mthdPickCellg™) {(@TO=Cell8.Val;))
}

)
(@METHOD= mthdPickCell?

(@ATOMID=Cells.Val;@ TYPE=SLOT;)
(@FLAGS=PUBLIC;)
(@LHS= ‘
(= (Cell7.Val) {0
)
{@RHS=
(Assign ((0-1)) (Cell7.Val))
(SendMessage {"mthdCheckDraw") (@TO=Game.Moves;))
)
(@EHS=
{SendMessage ("mthdPickCell9") (@TO=Cell9.Val;})
)

}
(@METHOD= mthdPickCell8

(@ATOMID=Cells.Val; @ TYPE=SLOT:)
(@FLAGS=PUBLIC;)
(@LHS=

- 217 -

(= (Cell8. Val) ()]
)
(@RHS=

(Assign ((0-1)) (Cell8.Val))

(SendMessage ("mthdCheckDraw”) {@T0O=Game.Moves;))

)
(@EHS=

(Assign ("DRAW") (Game.State))
)

)

(@METHOD= mthdPickCell9
(®@ATOMID=Cells.Val,@TYPE=SL.OT;)
(@FLAGS=PUBLIC;)

(@LHS=

(= (Cel9.val) ()
)
(@RHS=

(Assign ((0-1)) (Celi9.Val))

(SendMessage ("mthdCheckDraw") {@TO=Game.Moves;))

)
(@EHS=

(SendMessage ("mthdPickCeli2") (@TO=Cell2.Val;»)

)

)
(@METHOD=mthdPickLastCell

{@ATOMID=Cells.Val,@ TYPE=SL.OT;)
(@ ARG1=_CurSum;@NATURE=Object; @LIST;)
(@FLAGS=PUBLIC:)
(@LHS=
(Member (<ICeilsl>) (<_CurSumz))
(= (<ICellsl>Val) (ON
)
{(@RHS=
(Assign ((0-1)) (<ICellst>.Val))
)

)
(@METHOD= mthdUpdate

(@ATOMID=Sums; @TYPE=CLASS;)

{(@FLAGS=PUBLIC;)

{@RHS=
(SendMessage ("UpdateSum") (@TO=<iSumsl>.Sum;))
(Assign ((Game.Moves+1)) (Game Moves))
(Reset (hypMakeAMove))

)

)

(@METHOD= UpdateSum
{@ATOMID=Sums.Sum; @ TYPE=SL.OT;)
(@FLAGS=PUBLIC))

(@RHS=
(Assign (SUM(<SELF>.Val)) (SELF.Sum))

)

- 218 -

APPENDIX G

SA2VB.EXE Bridge Listings and Sample Results

Source Code for SA2VB.C

#include <stdio.h>
#include <ctype.h>
#include "SA-VB.h"
/##include <strings.h>*/

/* global variables */

FILE *infile; /* to point to the input file */
FILE *outfile; /* to point to the output file */
int COUNTER = I;

/f doControl (recursively) processes CONTROL statements
int doControl{FILE *infile,FILE *outfile){

char nextword[256];
char caption[256],

char name[256];

char type[236];

char style[256];

char count[4];

inl datum, len, flag = 0;

/' Scan for CONTROL to process or END to bail
while (fscanf(infile, "%s", &nextword) != EOF){
if(!stremp{pextword,"CONTROL"))
break;
else{
if(tstremp{nextword,"END"))
return 0;

)

// Pull out the Caption/Text, based on ", as the delimiter
strepy(caption,™”);
while(fscanf(infile, "%s", &nextword) = EOF){
if(strstr(nextword,"\","y == NULL){
strcat(caption,nextword); // keep parsing the caption
strcat(caption,” ");

- 219 -

}

else{
len = strlen{nextword}; // lose the comma and break
strncat(caption,nextword,len-1);
break;

}

}

/! Grab the object name, checking for illegal names
strcpy(name,"");
fscanf(infile, "%s", &nextword);
len = strlen(nextword);
strncat{name,nextword,len-1);

// set tlag if name begins with a non-alpha, so we can create a good name later
i(!isalpha(name[01)){
flag = 1;
}

// Grab the type of the object
strepy(type,"");
fscanf(infile, "%s", &nextword);
len = strlen{nextword);
strncat(type,nextword,len-1};

//Check the flag and generate a unique name, if appropriate

if{flag){
itoa(COUNTER,&count, 1 (;
strepy(name,"SA2VB_");
strcat(name,type);
strecat(name,count);
flag = 0,

}

/! Grab the style info
strepy(style,"");
fscanf(infile, "%s", &nextword);
len = strlen(nextword);
strcat(style,nextword,len-1);

// Set up a COMMAND_BUTTON

if(!stremp(type,"BUTTON"} && strstr{style,"PUSHBUTTON")}{
fprintf(outfile," Begin CommandButton %s\n",name);
fprintf(outfile," Caption\t=\t%s\n",caption);
HMHANDLE STYLE OPTIONS
if(strstr(style, "DEFPUSHB UTTON")){

fprintf(outfile," Default\t=\t-1 'True\n");

}

)

else{

/f Set up a TEXT_EDIT_BOX
if(!stremp(type,"EDIT™)}{

- 220 -

}

else{

// Setup a LABEL

fprintf(ontfile," Begin TextBox %es\n",name);

fprintf(outfile,” Text\t=\t%s\n" caption);

/HANDLE STYLE OPTIONS

if(strstr(style,"VSCROLL") && strstr(style, "HSCROLL")){
fprintf(outfile,” ScrollBarsit=\t3 ‘Both\n");

)
else {
if(strstr(style,"HSCROLL")}{
fprintf(outfile," ScrollBars\t=\t] 'Horizontal\n");
]
else {
if(strstr(style,"VSCROLL"){
fprintf(outfile,” ScrollBars\t=\t2 'Vertical\n");
}
)
}

if(strstr(style,"MULTILINE")}{

fprintf(outfile,” MultiLine\t=\-1 "True\n");
]
if(strstr(style,"RIGHT")){

fprintf(outfile," Alignmentit=\t1 Right Justify\n");
}
if(strstr{style,"CENTER")}{

fprintf(outfile," Alignment\t=\2 'Center\n");
]
if({stestr(style,"BORDER ")) {

fprintf(outfile,” BorderStyle\t=\t0 'None\n"};

}

if(!strcmp(type,"STATIC"))}{
fprintf(outfile," Begin Label %s\n",name};
fprintf{outfile," Caption\t=\t%s\n",caption);
/HANDIE STYLE OPTIONS
if{strstr(style,"RIGHT"}){
fprintf(outfile,” Alignmentit=Atl Right Justify\n");
}
if(strstr(style,"CENTER" }){
fprintf{outfile," Alignment\i=\t2 'Center\n™);
!
!

else{

/7 Relinquish processing to the next object

COUNTER ++;
doControl(infile,outfile);
return (;

- 221 -

/! If we're still here, that means it's time to do the coordinates
fscanf(infile, "%s", &nextword);
datum = FACTOR * atoi(nextword);
fprintf{outfile,” - Leftu=\t%d\n",datum);

fscanf(infile, "%s", &nextword);

datum = FACTOR ¥ atoi(nextword);
fprintf{outfile," TopWit=\t%d\n" datum};
fscanf(infile, "%s", &nextword);

datum = FACTOR * atoi(nextword);
fprintf(outfile," Width\t=\t%d\n",datum);
fscanf(infile, "%s", &nextword);

datum = FACTOR * atoi(nextword);
fprintf(outfile,” Heightvi=\t%d\n",datum);

/! Close out this object
fprintf{outfile,” End\n");

COUNTER++;

/! Process the next object
doControl{infile,outfile);

return 0;

} /fend doControl()

void main(int arge, char *argv[]) {
char nextword[256];
char caption[256];

int datum;

if(arge '=2){ /* verify something was entered as a command line argument */
printf("You must enter an input filename as a command line argument...exiting.\n"};

exit(Q);
}
infile = fopen(argv|[1],"t");
if(infile == NULL){ /* error-check to confirm successful file opening */
printf("Can't open input file...exiting \n");
exit{0),
)

1M

outfile = fopen{"out.frm","w"};

if(outfile == NULL){ * error-check to confirm successful file opening */
printf("Can't open output file...exiting.\n";
fclose(infile), :
exit(0);
)
/! Opening Header and Object Name

- 222 -

fscanf(infile, "%s", &nextword);
fprintf{outfile,"VERSION 2.00AnBegin Form %s\n" ,nextword);

Verify DIALQOG, then scan, calc and output window dimensions
fscanf(infile, "%s", &nextword);
iffstremp(nextword,"DIALOG")}{

printf{"Couldn't find DIALOG in input file...exiting.\n");
fclose(infile);
fclose(outfile);
exit(0};
)
fscanf(infile, "%s", &nextword);
datum = FACTOR * atoi{nextword);
fprintf{outfile," Left\t\t=\t%d\n",datum);

fscanf(infile, "%s", &nextword),
datum = FACTOR * atoi(nextword);
fprintf{outfile,” Top\\t=\t%d\n",datumy;

fscanf(infile, "%s", &nextword);
datum = (FACTOR * atoi(nextword)) + 60;
fprintf(outfile,” Width\t\t=\t%d\n",datum);

fscanf(infile, "%s", &nextword),
datum = (FACTOR # atoi(nextword)) + 360;
fprintf{outfile,” Height\t=\t%d\n",datum);

// Verify STYLE information is present
fscanf(infile, "%s", &nextword);
if(Ystrcmp(nextword,"STYLE")}{

// Handle STYLE information
fscanf(infile, "%s", &nextword);
if{!strstr(nextword,”"BORDER"} && !strstr(nextword," THICKFRAME")){
fprinif{outiile," BorderStyle\t=\t) 'None\n");
}
if(strstr{nextwaord,"BORDER") && !strstr(nextword, "THICKFRAME")){
fprintf(outfile," BorderStyleM=\t] 'Fixed Single\n");
)
if(istrstr{nextword,"SYSMENU™)}{
fprinif{outfile,” ControlBox\t=\t0 'False\n");
]
il(!stestr(nextword,"MAXIMIZEBOX")}{
fprintf(outfile,” MaxButton\t=\t0 'False\n");
}
if(!strstr(nextword,"MINIMIZEBOX")){
fprintf(outfile,” MinButton\M=\0 'False\n");
)
}
/! Verify CAPTION is present
fscanf(infile, "%s", &nextword);
if{!stremp(nextword,"CAPTION")}{

- 223 -

/#/ Handle CAPTION

strepy(caption,"");

fscanf(infile, "%s", &nextword);

streat(caption,nextword);

while (fscanf(infile, "%s", &nextword) != EOF){

if(strcmp(nextword,"BEGIN")){

streat{caption,” ");
strcat{caption,nextword);

}

else
break;

}
fprintf(outfile," Caption\=\t%s\n",caption);

}

doControl{infile,outfile);

fprintf(outfile,"End\n");

fclose(infile);
fclose(outfile);

} /* end main */

- 224 -

“TestForm” Screen Designs

Labell

Label2

“TEST.DLG” from System Architect

TestForm DIALOG 48, 51, 192, 117
STYLE WS_TABSTOPIWS_GROURIWS_BORDERIWS_BORDERIWS_DLGFRAMEI
WS _MINIMIZEBOXIWS_MAXIMIZEBOXIWS_THICKFRAME
CAPTION "TestForm"
BEGIN
CONTROL "Labell”, IDG_LABELI, STATIC, SS_LEFT, 56, 16, 25, 9
CONTROL "Label2", IDG_LABEL2, STATIC, SS_LEFT, 58, 44, 25,9
CONTROL ", IDG_TEXT!, EDIT,
WS_TABSTORIWS_BORDERIWS_BORDERIWS_VSCROLLIWS_HSCROLLI
ES_MULTILINEIES_CENTER, 102, 11, 68, 23
CONTROL ", IDG_TEXT2, EDIT, WS_TABSTOPIWS_BORDERIWS_BORDERIES_LEFT,
102, 40, 69, 13
CONTROL "Command1”, IDG_COMMANDI, BUTTON,
WS_TABSTOPIBS_DEFPUSHBUTTON, 22, 76, 43, 25
CONTROL "Guit", IDG_COMMAND?2, BUTTON, WS_TABSTOPIBS_PUSHBUTTON, 1086,
77,20, 24
END

- 225 -

“TEST.FRM” from Visual Basic

VERSION 2.00
Begin Form TestForm

Left = 1440

Top = 1530

Width = 5820

Height = 3870

ControlBox = 0 'False

Caption = "TestForm”

Begin Label IDG_LABEL1
Caption = "Labell”
Left = 1680
Top = 480
Width = 750
Height = 270

End

Begin Label IDG_LABEL?2
Caption = “Label2"
Left = 1740
Top = 1320
Width = 750
Height = 270

End

Begin TextBox IDG_TEXT1
Text = "
ScrollBars = 3 'Both
MultiLine = -1 "True
Alignment = 2 'Center

~ 226 -

Left = 3060
Top = 330
Width = 2040
Height = 690

End

Begin TextBox IDG_TEXT?2
Text = "
Left = 3060
Top = 1200
Width = 2070
Height = 390

End

Begin CommandBuiton IDG_COMMANDI
Caption = "Command]"
Default = -1 "True
Left = 660
Top = 2280
Width = 1290
Height = 750

End

Begin CommandButton IDG_ COMMAND?2
Caption = "Quit"
Left = 3180
Top = 2310
Width = 600
Height = 720

End

End

227

“Difficult Test” Screen Designs

Enter Your Memo in the Box Below

“TEST4.DLG” from System Architect

hardtest DIALOG 14, 17, 227, 140
STYLE WS_BORDERIWS_BORDERIWS_DLGFRAMEIWS_VSCROLLIWS_HSCROLLI

WS_SYSMENUIWS_THICKFRAME
CAPTION "Difficult Test"

BEGIN
CONTROL "&0K", IDG_RUTTONI, BUTTON, WS_TABSTOPIBS_DEFPUSHBUTTON,

78,115,129, 15
CONTROL "&Clear", IDG_BUTTON2, BUTTON, WS_TABSTOPIBS_PUSHBUTTON, 134,

115,28, 15
CONTROL "Enter Your Memao in the Box Below", 1IDG_TITLE, STATIC,
SS_NOPREFIXISS_CENTER, 63, 8, 117, 9

CONTROL ", IDG_MEMO, EDIT,
WS_TABSTOPIWS_BORDERIWS_BORDERIES_AUTOVSCROLLIES_MULTILINE

[ES_LEFT, 63, 29, 117,79
END

- 228 -

Difficult Test

“TEST4.FRM” from Visual Basic

VERSION 2.00
Begin Form hardtest
Left = 420
Top = 510
Width = 6870
Height = 4560
MaxButton =) "False
MinButton =) 'False
Caption = "Difficult Test"
Begin CommandButton IDG_BUTTON1
Caption = "&OK"
Default = -1 'True
Left = 2340
Top = 3450
Width = 870
Height = 450
End
Begin CommandButton IDG_BUTTON2
Caption = "&Clear”
Left = 4020
Top = 3450
Width = 840
Height = 450
End
Begin Label IDG_TITLE
Caption = "Enter Your Memo in the Box Below"
Alignment = 2 "Center

- 229 -

Left
Top
Width
Height
End

i nu

1890
240
3510
270

Begin TextBox IDG_MEMO

Text
ScroliBars
MultiLine
Left
Top
Width
Height
End
End

[I T I |

nir

2 'Vertical
-1 'True
1890

870

3510
2370

- 230

APPENDIX H

Test Bed (Self) Observation Data Sheets

- 231 -

Software Engineering Methods versus Visual Programming Tools/Languages

Synergy/Conflict Observations

Date Initially Chmerved:

Type Projecit Category!
%::;:r;ion ! gc’u{tm: #ve D Jrer I/F Layout 3/avied 33401
i #ymurgy = Tio Tac Toe
R0path Humbar of Timas Chbaervadi
a

EE Applications SE Hathod: Tool /Language:

Mynual {Jcans & sarwon

CASE g:udliwrdm [viaual Basic ¥ ovjectvinica
Llw/a Both

B visusl Cev 00 gmart Blemantsz

toal / Lasgoage.

Dascription:
Whan one uses tha sorsan layout facllity of the CASK tovl to deslgo the User I/T, ths work must ba duplicated in tha vimusl Frogrisslbog

Circunstances

This Prodles only surfacsd when using the CAFE to0l's soresn layous Eeclllcy,

Cuidance Idenst

conflick,

IE would nlsc apply £o tha uss of Arawlog and charting tools.

Look for CASY tools that can autcsatigally gsnsrecs tha Deer I/F “code” in cha native toopum of cha Yisual bool/lscguags, tlum remsdying bhis
{Wotas T don’t ¥uow of mny yet on the markat.)

Software Engineering Methods versus Visual Programming Tools/Languages

Synergy/Conflict Observations

[obsexrvution Typa: Prajects Cacagoryt Pate Initially Obasrved:
B comtlior {Jcustomer Zvc DB Xvant-Hased Desipn AFZ4494 16:72
[aymargy Bitic Tae Tos
Bl E!mmbar of Timea Obssxved; o
1
BE Applications BE Hsthod: Tool /Langungs:
[Jsacusl dans & Smrson
Floasz Coat/¥ourdon ivional pasie Dobieatvinton
[EETES Both
Tviman) cae {[Jemart xlemancs
Dascription:

¥B only provides "whes chabged® svent processiog oo the prlmary atiyxlbute of mo object (as datermined st the "factory®*}) this msans that changes in
othar properties, Such Al the "Tag® DProperty. g0 unnoticed,

-] the dagign callied for trackicy &f both the baxt valus {"X®, "0%, or * *] amd ite nwsserical squivslsnt {3, -i, or) for each cell,
roa original Mllcﬂ bad the Uest causing the text valus (Frisary} to change to *1® aad udlng & whan chavgsd mathnd to updats the pumsrics) walus
{Tag) Iollowed Ly m whan_changsd mebthod on the nussrical wvalus o Update the sceatepr valums {(sum of rowsd, columas and dlegonals); this approach hed
to ba mliared to lmt thae Eirat changs drive both updabss.

Guidance Idenst —
Mbaen VB Lo Jowewn £0 e the implessntatios langusys, the dedlga should bhe geased te bavs cnly cos proparty par cbisct causing svent-based behaviors to

ARNCUTS .

[Software Engineering Methods versus Visual Programuming Tools/Languages
Synergy/Conflict Observations

Chaervation Typet Project) [Catagory: [pate Initially Obmerved:
[confiict [Joustomez v DB Evact-kassd Dasign VIV TR
[]ayrecor FdTic Tac Toa
(e Number of Times Observed:
1
8E Application: 19E Mathod: Tool/Languagst
(I marmusz [Coane & Barscn
cas (X comaryourdon [Gvieual panke [Jon3eceviaton
[T [3cch
[Ivieunl ces [(Jsmart Xlemants

baacziptions
Wham um. an chisctworissted approack, it is coomen to abscract all system paramstsrs as obiects; bowwrwr, VB coly uses ohiacta €0 Tepresent morean

sntities {sa-called Contxold). Thus#, wntitles that would AoTAlly b4 reprasantad s ODIeobe, Othex than those vildlble to the Teer, msp
i mu varisbler of posa Lypa,

Circumstancess
15 the VE TTT A%, thers Lm & scratagy aram keapt *babind the scanss® £or wAe by tha program £o Astacvhains ite némt mowve (the sum of the cell wvaluss

by Rows, Colnsns and Dlagonal, Tha orlginal Jdasign called for crsatlon of s strategy object to maimtmin mich Information, The dapign had to bha
altarad tc uss global varlebles instead.

Guldance Ideas:
Woen VB la known to be the iwmplessntstion language, oos should avcid tbs use of cbjects othar than thoss destinsd for tha User Intarfacs, Angthar

apronoh (Dot terted) is to orsats A Yirtusl Form to hold objests which will be used intersally twb never actually displeyed to the Ussc; this would
io sssenas *Epick® Ve into hawing s collestion of objects Eor use “hehind tha poases,”

L -

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Chsarvation Typa: Project: Category: “Toare Int?fa?ly Obsarved:
(Jecnriice Clcusromsr ave ve |Rvant-hassd Daxign 434784 1Al
b aymazoy fdrie Tao Tow
[zeth Numbsr of Times Obsarvad:
1

52 Application: HE Mathod; Tool/Languags - -

Marmal [Joana & sareen

chan M eand/sourtea K vinunl Basic [Jobdactvision

win {Inotn

[Jvipual Ces {Jamart rlamante
bascxiption; -
I

¢moa tha objsct-orientsd pusncad of VB wars undsxatond wad factored into the dssign, tha lmplessntaticm nf tha TTT gams Ln ¥V weat very Fubothly,
was able to construct ths program incressntally witbout any ootmworthy dlfficultiss.

Clroumstances:
Thé C/Y wathodology premumesd m vertaln level of wwppert of both cbjectrorlested constructs and svant-drivan bahsvicra, whlis V¥ ooly partially

(UPPOTEE Ches (e Talated *gonfliots"),

guldance Ideass
Coce VB has Daan chossn as tha lsplesentation lengusge, avold fightinog the laneuscss it in better to adapt (limlt] tha design methodology to thors

chisctuorianted/evant-driven fsaturss supported by VB and use procadural approachas for ths balance,

- 233 -

Software Engineering Methods versus Visual Programming Tools/Languages

Synergy/Conflict Observations

Obmsrvation Typa:
) contlice
Ll mynargy

Froject:

[Jeusromar gve B

Pl Tic Taz Toa
»oth

Catagory:s
Frant-2ased Dasign

Date Initially Observed:
/27794 30139

{Hurbar of Times Observed:
1

5E Appllcationt A Mathod: Taol/Langusgs:
] samal dana & FaFson
[} eass K coad/ Tourdon (Jvisusl Baslc [Jobisctvidion
Husn [JBath
[Dviauni cs+ K emart Xiemants
Dascriptions
Commainlication of evsots {rvis SandNessapa} from the User £ {Open } to tha Engins (Bexpart Oxject) ix limited to » single targat

obiect, Vpdating of the mums of tha various Aows, Columns and Dlagonals reduired the sésrige to ba broafcask to w1l childran of Juss. To get
this iimitaticn, two Mathoda were lmplasantsd: Ons stteched £0 tha parent Fums tiass which wllowed the Incsrfmce to Intsract at a 'jl_nq],- poine of
contact®) and & wore Compled cfid which wad in turn sctivatsd by the slsple cos poce control was passsd f£7om the Interface to tha Ingine

Clrcumstancast

Guidancs Ideza:

an mre raguirsd.

It may sctually be préferable to bhavs
from com mcdule to tha othar le sasy to follew and debug A2 problesa dc ariss,

This was a minor incourience; in fack, oncs tha sacond, mors complax Magbod was in place, I Found mors ways to téle sdvactage of iE,

leation 1lohs b

major wystem modules b4 mismcis {llke & =pinch polnt=),
Tha Etargs® mathod can than apawn bowmrar coaplex & set of proonlu

A #lngle,

—

Obearvation Type:
Pl contliot
O sysergy

Software Engineering Methods versus Visual Programming Tocls/Languages

Synergy/Conflict Observations

Projuctt

Catsgoryt
Tassxr I/F Layout

pats Initially Obaerved:
7727794 11118

thunber of Times Observed:
1

BE Application: 8 Methods Tool/Languagei
(Iwamal Gans & Parsocn
[Jonse [¥ cond fYaurden [Iviaual Basic Cobjectvision
Emea Cisotn

Ovirunl o4+) smart Tlmmpnts
Dascription:

Tha design called for & simple Text B4IC Bix ad the mechaniem for bullding the cine oslls of bhe ThO Tic Yo B0aTd, NHoOWAYer, the Smart Elemants Taxt
2dit obiset pravided & vary limitsd of aucomatlc Eventsy In parcicular, it 414 ¥oT provide s MoussClick evsot ss oallad for in ths dasigm,
1 had ¢o use tha morg complax List Bax object (which la similer to & sprsadshsst in natura),

dsd accmss to tho MouseClick avaat.

Inmkead,
limiting it ¢o m single row aod & aingls colvsan. This

Clrcumstancan:
the basie Taxt Edit chjscb.

smary flemanta doss support the crastiom of custom widgats, so I could have goos cutside of the *builk in® widgate and addsd the MousaZlick srant to
Howevexr, & godl of mine whs to uie the "off tha shakf® widgets and scripting language to Luplamsht the design.

Guldapce Ideas:
ook
|nasdsd it to,

Dwyond tha obvipus In stretobing tha featrues of the tool.

A lx) pprasdghset looks sxactly lika a Taxt Bdlt ¢bjesat aod hebavay just the dssigm

- 234 -

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

— — ——]

Observation Typet FProjecti Categoryt pate Initially Obsepved:
IR cone1ice [[Jcustomar #vo DD |Evant~Rassd Casign FIATIBA A2127
) myoacery [Rric Tao Toe

L)nocn Number of Times Chsarvexi:

1

BE Application: BE Mathodt Tool/Language!

(lGans & Aerwen

CASE P coudsrourdon Clvisnal masic [Jobjectvigion
B wrn (Y
Clviwsal cee [tmart Blemacts
Dascription:
TO worh mrousd

Bmart Elsswnts does 3ot provide & mdaps for the knglns (Mawpart Obhjest) to sand mesrsges back to ths Iuterface (open Interface).
thu, with tlms congral im rebrunad to the Intarfaca I hmd to hava asch call in ths Eokerface guary itd Latsst valus in cthe correrpaoding obiect LB

ins wod npdate lts own current walus accordloply.

Circumstancent
mary Rlemsntsd Gosd provids a mechaniss refarzed to a# "cbjsct llnking® which causad an cbjsct in tha User Interfmce to be continucusly updsted with

tha wvalua of a corrasponding cbjedt 1o the Englos. Thfortunstaly, this approsch wes oot uesble in this instance becsuss thy Englos ohisct yaad
Duseric yalues (-1,0,+1), whils tha Uper isterfaocs cbject Tequired symbollc valuss (0, ' *, %),

S

Cuidance Ideas: -
The workirvund weed lo this case Causss & great desl of satra work, slpce wyery ipterfaos object must ba “pulded= after sach call to the Engina. In

& full strangth appllicacion, whara parforsance oculd be in i & BOrd FOCuIed wARRAULNG AYdcem would have t0 bd craftad (e.g., & "blach board=
cbinct cnte which thae Engins could placa s ligt of ndated Ecglos ohjocta pnd which an Intsrfacs metbod could use to ulats just those Interface
ocbjects whozm Engind values had changad, Altarnatively, ths linking mechaniss cculd have besxs usad “se is® and than have an Interfacs matbhod gomyert

the bumdric walus inte its symbolic squivilent.

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Obaearvation Type: P:é_jsc:r;ﬁﬁ Catagory: Date Eﬁ?ﬂllfoblewad;
Ricontlion [Joustomar Bvo OB TeaT I/¥ Layoub TETIEL 21447
D) ynexey Riric Tac Toe
; (mE22Y Nuzbar of Timas ObSarved:
1
8L Application: 8E Mathodi Tool/Languaga
(I Marunl [josom & garsan
Jearx & condsrourdon [Dvionay aasto (Oebjearvision
Gl ra Peth
Dvlmnl Cé4 Ehnxt Blumants

|
[Dageriptlion:
rha dasign called for an indewsd #st of nine Cells for the Tie Tao Toe Bokrd., Tha Bdart Elssents Ufer Intecfacs widgets are oot dlrectly indarsd {ad

in visusl Basic). Thls capability laproves the rafsranciog of tha chisctd ## wall as the ability to “dlome® the calls without modlfyldg tha
wndaTlying colls.

Circumstancasi
Working arcund this shortcomliog wes Eairly sacsyeabls for thisd sispla dpplicetion) howster, s mors complax application would suffsr gxsatly.

culdance Tdeaw:
#nart Elesants provides the sbility to grssts so-celisd custom widgers, Dafng sugh would prorids the ability Lo incorpoxsts whaterer “gepario”
actriputes and bshaviord the ehjesck ahould have (s BoardCell In this cass) pod Ehan craate instances of it in thse User Incwriace.

- 235 -

— . . P 3

Software Engineering Methods versus Visual Programming Tools/Languages

Synergy/Conflict Observations
[Chasmtvation Type: Project: o category: pate Initinlly Observed:
ccatiict lcustomer svc DB Evant-gassd Dazign 7/21/94 G115
[mroargy Hrie Tac Tos
[patn Number of Times Obswrved:
5
8K Application: 8B Hathod: Tool/Language:
T] Macrand Doane & sarren
Donsz [l coadsYourdon CIviswal Rawic [Jobimctvinsion
mra (zeth
Cviwal Cor () pmart Hluants

Dasoription:
Tha Ssart Elssents Engine (Mexpert Cbiset) fully and paturally supports the cbject bisrarchy apd inheritanos ¢alled £oT Lo the design. Extressly
qenaric mathods were writien apd pppiled mt tha clama level, lmhariced dows to the sppropriate child cbjests and then applisd o give the dapipsd

emulk,

Clizrcumstances:

My goal war to nor hawa to rwmak tha cods used in matbods based oo whate tha cols waw stbschad, Ytha svelution of the spplication was lospirzing. A

mare sxelston of the guma wam used tc dsvelop tha Methods) whan the rest of ths gams cbjact® weére added, btbe fully implmsented gams boar worked cu
t

tha FIRIT TAY

Guldanca Idean: .
If you irs folng to uss an object-orieitsd tool to lumplesant «n application, 00 For Tha Gold in the dsslgn proCels, Craft Msthods thst ars as
Teneric as porpibie. Apply thes ax bigh in the blerarchy as possibla. Taeke full sdvantage of clapsifficatlon structuras and let the Densfits of oOp

#hina through.

I Software Engineering Methods versus Visual Programming Tools/Languages
; Synergy/Conflict Observations

Tlerofesky T T Category: - Date Initially Observed:

[Jcuatomar v D0 rungtion cemigm 13/4%/94 17130

K=ic Tma Tos

Lletn Number of Times Cbserved:

1
BE Applicatiom HE Method; Tool {Languags;
(Jseannal [loans & Baraca
%CMI %ﬁu;'-"““m TIviausl Basic [Jebjmctvinion
L AN ot
Visual Cas GRart Wlemsnts
[}]
— —

pancription;

The rules in gmart Plssments are saally visuaiized in the rules browser. Yhis mads it vty to Implessnt the AsWired gaminp strabtegy in the infaranca
sagine. Although thls program i palthar an axpart system nor performlog soy reasoning or inferancing, the ruls-based paradigm proved to facllitste
the implementation procuss.

Cirounstances:
Implessntation of the gontxol loglo for dagiding the appropriate responss to s ussr sslection of & spacs an bEhe playing board,

Guidanca Jdmsas
Conmidar the use of B Cool that provides affecs Ao anpllodt rule-hbaded paradlgm, wven if the spplication Is not en axpart systam or fAoss not requlzs
infarancing. The rulas can ba used to axpsdlta control stratagy/loglo oF to amplicitly tepresant the busipesy rules to be followed.

- 236 -

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Obeaxrvacion Typei lpxojacts Categoryt Date Initinmlly Obsarvaed:
S confiiat [customer ove DB D3 Schama 1L/23/%4 171583
C) eynaryy [ltie rac Tow
Jnotn Kunbsr of Times Observed:
+
BE Application SE Methodt Tool/Language1
(CMacunl Ddosue & daraon
wn gcm:nmlrdw Fvisual sasie [tbsmorvision
ETiY ot
{Ivisvat ces] smart Tlamants
-
Dapeription:

Upable to directly cresats tha ichemk uiding tha CASE tool.

Clroumstances
The varslond of tha dsvelopmant toold Léing uded were puilt to support less open dhtibdssa, In particulsr, aucomated schama geosrstion wes pot
avnilable for VB (Access 1.1) or Ohjestviplon (Faradox 3.m or dsass},

Guidance Ideas:
when using & full-fsatured CAHE €o0l, be sFurs t6 Felect & dstpbuss enging that is supportad by the CASE t0dl's schamk Jenaratar. Yor miaSple, VB now
mupports picroscft Accasd 2.0 and tha Gyskem Archibsct CAOE too) can panstate s *vanills® RQL that can be yiaed with mipor editing to sutomaticelly

craste tha Jatsbass Skbrnctureas.

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Obssrvation Type: Project: Catbagorys pate Initially Observed:
) conriict (X tustomar #vc D8 BB Robema 13733094 0107
L wyweray Orie Tae 70w
Uz Nupber of Timss Chserved
12
BE Application: SE Method: Tool fLanguagas
) armunl [Koans & sarsem
%m' E:“:"""‘m Fviaunl nansa Flobssetvinion
wIn Bot.
[Jvisusl cos [omart Tlmsants

weriptiony
pifficult Eo kssp CAFE reprasastation of tha applicatlon in synch with changem which svolved during thes leplamantaticon procems.

Circunstances!
The versload of the dsvalotwsat EOolE Daing uded wers buile to Jupport less Opn databarss, In PAFELCuUlar. ravarss shjinsering wikh oot mvallable for

VB (Aoossa 1.1) or obiecrvislon (Paradox 3,m or dRass),

——
Quidance Idema)

1. HSattla oo desipm contormiby/lacimncy Tulas and dssigs updats frequanciss and manually synchranlzs the dealgn lp Ehe CASK tool from bims to tima,
4. #ssleot tha CANE tool and dithbdss mich that reversa adglbearing can bé uded tb comvey chinjes lmplemanted ln the davelopmant toal back to the
CASE tool.

- 237 -

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

e Type Frojacts T [eategory: Date Initinlly Observed:
iujlluc.a:zu::mn) E;cin—-z Brc DR I8 dchema X1/23/94 220
B wrnacey [(Jric Tao roa

[Jactn Hunber of Timas Obsarved;
1
BR. Application HE Methads Teol /hangunge:
(CManusy [nans & parscn
[case] cosd/Yourdan Olvirual sasic X objectvision
O msa lacth
Cvimal cos Dlemart slemancs

Desoxiptions

homa wed antremsly sady {(about 3 mimucas givan that ths gssr Interfaos wee alrasdy mappsd oct}l,

Maocal ereation of the date

Clrocumstancas:
OhiectVislon prarussd that tha Asvalopmant process will call for crestion of the Ousr Iotsxfaced {callsd Forms} prior to creatlom of tha databass

eablus. Thus, it bas & very sophisticstsd achsma crestlon engind thit sdsuses that dats [tems griuped on a Form will 1llkaly De in tha samé tublas,
ansd that thelr dsta typas mnd ai wlll confoxm with how thay aye spechfisd co the Form as wall, It Chan grsates u "straw man® daks strughture which
oan thao be aditad for thode Pla whars tha Rasruspticn doas not hold.

Guidance Ideas:
Foow FoUF Lool's presumptions and go with tha flow, 27 slmply unsd ing the - of dyvsl r CON OAD lna ths dayslopsent
process, Convarsaly, ucking tha systes can sasily cripple s otherwiae useful teol, Thim iF not to say that cba mbhowld uas risky or unsatifmotory
dgvelopmant practices. Asd, of Courks, Dy¥ar, Daver, Paver would I mupgest thst cne changs tha problem to sult tha tool. Eowever, if ons approach
is about thé mhkis ad anothey, than jet tbe wrpectsd synsxgy with tha developmant to0l mals the decisbon. This, 1p Cursn, seand that FoReche oo Chae
Qurrelopaent Teoam Wupt know (or be sbls to find out) how the tecl wxpests the probles to e ctackled.

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations
Opbsarvation Typsi Project: Category) Date Initislly Observed:
[Rantlict [cuntomer svc DB Funstion Pasign 11/23754 0137
D ammargy ClTia Ta0 Tos
Omotn Nunbsz of Tiows Obeerved;
' FH
SE Application: 8B Methodt Tool/Languags:
) smrmad K oana & garsom
e ceadsrourdon Hvisuny pamie [Debiecevinion
I=LTIN Eoth
Ovisunt cos |l emart Bimmants

Desdcription
I Alf mot Ficd the Gans & Barsco Proceds Dlagpramming technlque to b swpressive escugh to taks dlractly to implemestathion. ZIdeally, the dszlired
Assign could ba modalled to 4 falrly detallsd leval without prior knowledgs of tha leplesantatiocd tool, with parhapy & flral laywr which Talas into
ageount particulars of the pool,

|

Clxcunwtances:

mach of tha lmplessatmtion tools turnad put to raquire quits AlFEZsrsnt dasigns in gsrtein hey aress, The process Bodal in cha 4dasign waa bland,
leaving mast of tha details to ba worhed cut during implsmantation. Ewpsclally troublsacms wecs tha Rulilt-io *powex® & much my ion of
rafmrsntisl Iategricy in OV, but et io ¥», Or Butomated jolne lo oY, Wit not ilo VB, A I look at thé working applicemtiou, I still ponder how to
Eapredsnt the [now proved) dsnign in cans & farsoa, [)11] 7 casd o LooM AT thip sows mors to maks gure tha problem iss't my gresanmnsis lo using oRl
lprocess Dlaprame, If o, I will redirect this ona towards how Eo modsl better. 111}

Guldance Ideas:

TO ACcimcdate suancss and/or wamecwna of tha implssantation tool, tha daplgn must be kept genecde (Cool-frea) dAown Lo & polot. Then, 1f tha tool and
ity special nesds nre Enown, R layes of specialization can be addsd, {Mots that tha Gans & BATson process Bodslling techoique uses & Arill-dows
approach to wpecificlty, thus making it sultabls for this approach.}

- 238 -

APPENDIX I

Paer Obgervation Data Sheets

- 239 -

Software Engir‘ﬁaje;ﬁrg Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

—t
[onservation Type: Project: Cateagory) Dats of Interview:
Rcomeaict O - MmO Quexy Deslow 1R733754 19045
D P——————— e
Fraquancy of Obsvarvationt
OEtan
S W — — —
8E Application: BE Mathod: Visual Tool:
aminl by Ay
canx
Hin
Dascription:
Thers ix £ 1y & AMajoine b what is specified bn the desigu of & query wnd the bshavior that 1d actually implesantad. Alad 4 probles
in nom=visusl boold, but with visual rools the wrong bahaviors osn De implesented mich faster,
[EEE———

Ciroumstances:

Khao: & guary i¢ spacified, tha szact datsbass schawa is oftan not fully sscablished. Sosetimss the FQL dialest L4 alpo unknown. Thus, the guary
will lmly ba wpacifisd in o getaral way, typlemlly using the langusgs of the domaln (s oppossd to pausdo-coda or simplified HQL). Whan it
comsy tima for the appll lom derdlopsy to lwplement the query, ths wssancs a! what was intendsd ig lost, Tho query {oas rot behave propecly by
returning locorrect, sxceafsive, oF lorosplsts information.

cuidance Idsamt
An idss (not tasted) is to ioelude in the specificatlion Weversl axamplaes of what tha quary mhould raturn, X dhweey sst of cables/records wouid
have €0 D4 provided ro Smsonstrate how the queTy slght cparacs,

As vimusl guary tools wyolvs, perhips 8 compatible method of dlsgrumming & quary at the design mtege cmn be propossd,

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

[Obamrvation Type: pProject; Catagory: Satm of Intarview:

Gooaslict i - Mumarcus Prodsats Oaax /¥ Laymut 11723/94 16100

[Jayoerey e
Fraguancy of Obavervation
Taually

8E Application: BE Matnod: |visual Toolt k

(LTI Any Ay

= oas

Cwra

pasceiption: -
The WL Layout facllitiss providsd hy most #very CASR tool ars provida licele or no bansfir ovar papar or drawlng tool akatchas.

Circumstances:

Snce CAMPE toodw da pot gansrate native oods for any of the wisual cooly in gomson ups, the U2 must ba reimplessnted manuslly. {Sose CASEL tools
40 ganarste C source gods that will giva = look and faesl liks that of tha dasmign, but that scurce oods Le not upabls by way of the typloal visual
foole, wuch am Vieusl Bawic, PowsiPuilder or SQLNLlndowy.)

Guldance Ideass

in gansral, 4o not uss the CASE tool to Elesh cut your GUT dasign. Instesd;, uss the visus) programming tool iteelf to skatck It out, but kawp tha
rarxlt groupsd with the dasign packags, Lates, when leplemantsticn beglos, the OUL flie can D4 copled into the acurce sras and used as & stercing
pator for dewvsloping the epplivation.

- 240 -

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Ohaervation Typst Pxoj-ct.: Cakagory: Date of Intexviswi

Ccontiict Wumaroua ¥rojects DB Schama 11/23/84 16115

g’?ﬂl‘ﬂ
Frequancy af Obsvarvmtion:
ofgan

8X Aapplication: SE Methed: vigual Tool: -

Manual Gads & Sarsoo/EAD ¥isunl Badic/Powwrdullder

%M

[METY

Dascoriptioni

The structursd datw modeling fsatures providsd in today's CakR teole coupled with AL automated schems gensration facllity providas slgnificant
produstivity benefics,

Clrcumatacces;

CASE toola typlcally provide ag on-line data dictiocnary and the establisbmant of dsts dcmains. Thay alsc provida halancing routines which ansure
that mach leyer of inorsaslog Aetail haw the same input and ouLput ACructurs ad its parent. Automatic scheama ganarators orsats #QL code In tha
Data Dafinitlon Languegs Alalect of the chosen relational database product, typleally coverlny tha watariront (a.g., Gybams, Qracia, IogTess,
Iaformin, PA3, atc,). Whan the DOL source file Ax procasssd by tha target databass sngins, ths Assired tebles and columns ars created with tha

propar typa And alze.

Guidance Ideast

structursd data modeliny should b applisd whacever poasible. Oné very suocessful combloation used fxequently by Xaf i CAnS & S4Tfon DAGE Flow

nuq'nu and Eotity Relmcionahip Diagrams. Automatic schame gansration shodld he expleited whensver possible. Bacsfles of thia spprosgh inaluda
sghancad sbility to crears tha ihitisl protobyps, mchanced sbility to undaracand how objests nre ussd {cross-rafaranding of which

uh.‘-u/:ulun.l are uisd whers), anhaoced sbility to #ind things wnd dlscuss things,

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Chasrvation Typat Project: Category: Date of Interview:

Fcontaict ROl = Musarous Databass Projecta(Punction pasigm 13733794 16130

) synargy
Yraquency of Obsvervacion:
often

8E applicaticas i 8E Hethodi Visual Tool:

[Juanaer Ganw & Baraon Yisual pasic/Fowsrpuildar

] enom

PHETZN

Dascription:

1t s very diZficult to dazcriba dasired functional bshavior of modérn GUI databasms froot ands using thes traditicnal procass modsling paradigms
offered in modt softwars snginssring mathodolgisd, gans & farscn baing che cass in point.

; -

Clroumstancas;
The ¥Yiiual progrsmming tools mrs aoyvhers from wlightly to complstely ohisct-orlanved in thair dasign and w and 2ll are svaot-haped at least
for thalr responas bto usar interactions. GCans & Sarron, IMDa and tha obbar mors traditionsl modsiing techogues provida llttle support fox
mxpranaing chbiect-prisnted oz wysnt-based beharvlors. This .l.ud.l to wordy DACTAClyes acCompanying sach dlugris, or lsavisy tha programmer to thair
oen devlicas to translate & prooetursl dasign into its cbjact-orisntsd, avent-hassd counterpar,

Guidance Idenst
Tas Drba and ERDS to modsl tha dats skructures ocly [not behavior}:. VUas Cosd/Yourdon Event ModslsTTT or Stmts Yransltlco Dispraus to modal

baharior.

- 241 -

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

rvation Type Projeokts CAtegory: pate of Intarview:
g;:ma: o ! I - projects with formal Tellity Modules 11723784 16145
O Dlstribucicon
Fragusncy of Obsvarvationg
Bomat iman
— L
BE Applicstion: HE Mathod: Visual Tool:
[Dsarmnt Aoy Any domponant-baasd
casx
®in
Daacription: R

It im wery Aifficuik to sefaly and rellshly packags a dlstxibution dlgkette({s) when daploring so spplication bullt io & compoosog-bassd tool or
language {which Lpciudes most, Lf oot all, of the yisual onss}. Tas problem includes both créaticd Lsxuss (4.0, Kaowing which componants must be
incindad) snd iostallscion/setup isguga {a.g., versiom compatibillty whes two independanily crastad applicRtions rely oo Che Susd cOBpooant) .

circumstancens:

2ha creatiou and use of Rausabls Components Ls a kay banafit of today's open and standardized softwars initistives. Altbough wtlll in lew
infancy, this goal providas s grast dsal of potentisl £or leversging the softwara davelopmant acergles of the ectirs induscry, Xt introduces &
now B8t of challanges, howwres. Componasts ilnolude DLLA, VATE, ODBG Arlysrs and the llke, usually supplisd by tbhe major scfbwazs tool yuodors,
ok as Ricrosefy, and thelr thicd-party developecs.

Guidance Idens:

Crestes m 1ibrary of componsnts which ara claarly lubaled and olsatly defissd/desoribed,

Clearly rpecify which companants are to be uesd lp & project,

bo pot put litersl toples of & standard componsnt io tha coofig Alrxectory for a proledt, but retbex point to ik,

Iosist that Oombonent yandors wabead yaraios acd dAsks in tbhe componsant (Lo sUpport PFOOCRSMACLC Yarslon codticl DrewantlioD of Ovarwrolting A Dawar
version with an 9ldsx oow).

Insist that companant yendaors provids forward compatibility for newsr warsloos {sa that if my spplicablon suppliss & owwer yerslon of & compatant,
[scmacons slsa's epplleation won't suddanly quit working).

Software Engineering Methods versus Visual Programming Tools/Languages
! Synergy/Conflict Observations

Obsarvation Type: rrojects Catagory:s T

Meonflict R - Custmar garvice Applicition|Caar I/F Layout A3 95 1100

O #ynargy
Fragquency ©f Obavarvation:
Oftan

BE Applicationt BE Methodi Visual Tool:

[Marus1 BEER Mathodolody BKEX - P¥E

Moanm

Du/a

—_

Ceacription:

Ibherest beliavior of Combo Bo cbjest anuly alicwsd Ehe list bom €0 contain atatio {(pradafinad} cholowa) incernsl customar reqpuiced dyoawio
miditional to the Lisgt of choicas. 7This lssd toc soormous expsndlturs of sffort to provids the dynamic bahavior (1.s., mooths, including handts-on
[mupport of tool wandor).

|

Clrcumstancast

Interaal custonar dedirsd "cowserciui-grada® bsbavler of Combo Box {l.e., tha purpose of a combo box is to allow the umer to sltber piok from o
1lst of previcusly sttersd cholces or type in = Dew boa), MOt Windowd spplicaitons autceatloslly add any oevwly typed-in items to the 1ist for
uae Dy Toture uBecs.

Guidanae Ideas:

Cut losses sarly in the process, This could be acoomplishad by reiaxlog the requirswsnts (in this %, by sioxificing tha dymnmig-update

Fahavior}., Mlrarnatiwaly, the davalopesant teol fould ba awitchad €O On8 wmOTA CONgUUCLE With CUICOMMT TeZuirssents (probably only makes sanse if
ars mosarous instances of micmatch, sincs most wvery tool will haws xoms limitatione).

- 242 -

r Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Observation Typa: Project: Category: Tate of Interview:
Comgllct RE - Custwar Macvics Applicacionirunctlen Desism 342798 1br1%
Fynazgy
Freaquency ¢f Chevervatlon:
Usunlly
9K Application: SE Wethod! - Visual ool
Taausl SIER Mathodology aExR - MRS
X oass
Dwa

Description:

tha funceionsl design parsdips ussd by HEER 4id not land ltaslf to Fworld class™ look & fesl and bahovicor wpeolifisd by Intarnal cuscomer,

Oircumstances:
EnoTmoul ties asd snargy expanded trying to foroe fit dssirsd functiomalicvy loro tool mot Teally designsd to provida tha dssirad look & feal or

hahayior,

Guidacca Ldaas:
Pilot & *grod® inlklsl dsiivarable based oz the "Elow" or iohanent capabilitlss of the chosas dewelopsant tools; thes paxfars & valus/cosk
mpmant baswd on fasdback cm the pllot to determlna whathsr the origloal requiramants wers (ocesd valid (sm> mwitch tools for £0llow-on) of Dot

(=w> proceed with original cool eo complete the final wermiom).

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Obsarvation Typal Projsct: Category: rate of Interview:
< coatiiet PE - Custsér Bervice Applicatlod|dn ohama 373735 1430
L aynacay
Frequensy of Chavervation:
DEtexn
SE Arpplicaticni 8B Mathod: Visual Teocl:
Namand SEER Hathoiology SXEN -+ EPE
[N
(uin
Pescription,

Thare Ls b "cos-way* path from CAIX modsl to mchams; CASE sleo Drovides sutisutic pormelization af date and putcmatic oaming of tables and
attributes. The suto-gasaratsd ocamér ate very cryptic ia saturs, Tharsfors, the developwmI typloally wdits the schwss tO makse ths namas sore
"Asvelopar-frisndly.®

Circumstances:
Onea tha Schasi has Deen sdited, thse CASX repressntaticon is ocut of dats, and sust sither be manwally updatsd {i,ws., si} edtlcs apd malntensnce of
the Echams mast Ds dops twica), or alse tha CRYE represantstiom mest ba abandoned.

¢uidance Tdams:

Cohange A tool that bhas raveras snginssring capabllity [so that changsi to tha schems can bea fad hack inoko ths model}, Changs %o » tool that
ganeral achama thit are S0 good that théy do oot bave to be wdlted; sahe ssintecencs changes 1o tha CAYE model and regmosrsts dchams sach tims,
Just use the CAFE tool to develop tha initial wersion and phan abandon it,

- 243 -

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

" |pate of Incerview:

Observation Typa: Project: Categoryt

Dlcentilet K8 - Custmar Ssrvics ApplicationiBvact-Based Dasign 172798 1a145

B syoacgy
Fraquency of Obsvervationi
Ofkmn

8E Application: SE Msthod: Visual Tool:

[danual FEER Kethodology SEER - ETS

[case

Clwsn

Dascriptiont
The SKEX product mnd matbod wera devalopsd with svent-basred, cllsat/sarver campucing sppllication dawsjiopment in miod. Thus, ths dsvelopment
procens and lmplmmantation procass for sappliceticns targeted for mich as architsckturs are mxcsilmnt.

Circumstances:

For tha wubject project, tha SEER product sDd methodology waDs Chofan Lacaussd tha tacgst application wes mlmted for Tunning multipls data Escvers
o mailtiple placfcras (VEAM on mainframs, D3] co painframs, and D82.2 on O8/2 FO), and taking sdventags of svent-based programming. Thass arpacts
of the enyiroomant matched up vary wwll (tha problaes mastiomed lo the othsr chssrvations not withatanding) .,

Guidance Jdeas:
Match your tool's gapabilitiss to tha lsplemantation architscturs.

- 244 -

VITA

Mr. Touchton received a Bachelor of Science in Engineering
(Nuclear Engineering) from the University of Florida in
1974 and a Master of Science in Nuclear Engineering from
Carnegie-Mellon University in 1977. He is a licensed

Professional Engineer in the state of Florida.

Mr. Touchton has 20 years experience including 10 years as
a nuclear engineer for Westinghouse and a small consulting
firm, and 10 years as a consultant in the application of
advanced computing technologies for PathTech Software
Solutions, Inc. Mr. Touchton is a co-founder and President
of PathTech. His areas of expertise include the design and
development of knowledge-based systems, client/server
applications, and relational data bases. He is a champion
of object-oriented programming and the incremental

development paradigm.

- 245 -

	Interaction and Interdependency of Software Engineering Methods and Visual Programming
	Suggested Citation

	Title Page

	Table of Contents

	Figures

	Tables

	Abstract

	Chapter 1: Introduction

	1.1 Statement of Problem
	1.2 Research Plan
	1.3 Literature Search
	1.4 Summary of Results

	Chapter 2: Conflict/Synergy Capture Mechanism
	2.1 Conflict/Synergy Classifications
	2.2 Conflict/Synergy Observation Data Forms

	Chapter 3: Software Engineering Methodologies and CASE Tools
	3.1 Synopsis of Software Engineering Methodologies andCASE Tools Evaluated
	3.2 Gane & Sarson Data Flow Diagrams and Entity Relationship Diagrams
	3.3 Coad/Yourdon
	3.4 System Architect CASE (Computer Aided SoftwareEngineering) Tool

	Chapter 4: Visual Programming Languages and Tools.
	4.1 Synopsis of Visual Languages and Tools Evaluated
	4.2 Visual Basic
	4.3 Object Vision
	4.4 Smart Elements
	4.5 Layout

	Chapter 5: Experimentation Test Bed
	5.1 Customer Support Tracking System
	5.1.1 CSTS Design
	5.1.2 CSTS Implementation in Visual Basic
	5.1.3 CSTS Implementation in ObjectVision

	5.2 Tic Tac Toe
	5.2.1 Tic Tac Toe Design
	5.2.2 Tic Tac Toe Implementation in Visual Basic
	5.2.3 Tic Tac Toe Implementation in Smart Elements

	Chapter 6: System Architect to Visual Basic Bridge Prototype
	6.1 SA2VB.EXE Design and Scope
	6.2 SA2VB.EXE Implementation and Testing
	6.3 SA2VB.EXE Application

	Chapter 7: Conclusions
	7.1 Observation Results
	7.2 Anticipated Trends and Developments
	7.3 Guidelines for Development
	7.3.1 User Interface
	7.3.2 DB Schema
	7.3.3 Event-Based and/or Object-Oriented Design
	7.3.4 Function Design

	7.4 Summary of Findings

	References

	Appendix A: Customer Support Tracking System Design Package

	Appendix B: Customer Support Tracking System Visual Basic Listings/Screens

	Appendix C: Customer Support Tracking System ObjectVision Listing/Screens
	Appendix D: Tic Tac Toe Design Package

	Appendix E: Tic Tac Toe Visual Basic Listings/Screens

	Appendix F: Tic Tac Toe Smart Elements Listings/Screens

	Appendix G: SA2VB.EXE Bridge Listings and Sample Results

	Appendix H: Test Bed (Self) Observation Data Sheets

	Appendix I: Peer Observation Data Sheets

