
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

1995

Interaction and Interdependency of Software Engineering Interaction and Interdependency of Software Engineering

Methods and Visual Programming Methods and Visual Programming

Robert A. Touchton
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Computer Sciences Commons

Suggested Citation Suggested Citation
Touchton, Robert A., "Interaction and Interdependency of Software Engineering Methods and Visual
Programming" (1995). UNF Graduate Theses and Dissertations. 217.
https://digitalcommons.unf.edu/etd/217

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 1995 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fetd%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/217?utm_source=digitalcommons.unf.edu%2Fetd%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

Interaction and Interdependency of Software Engineering
Methods and Visual Programming Languages/Tools

by

Robert A. Touchton

A thesis submitted to the
Department of Computer and Information Sciences

in partial fulfillment of the requirements for the degree
of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

April, 1995

The thesis "Interaction and Interdependency of Software
Engineering Methods and Visual Programming Languages/Tools"
submitted by Robert A. Touchton in partial fulfillment of
the requirements for the degree of Master of Science in
Computer and Information Sciences has been

Approved by the thesis committee: Date

Dr. Ro er E. Eggtr{
Thesis Adviser and Committee Chairperson

s:; ,;(1 q 5
Dr. Behrooz Seyed-Abbassi

 Y·/'1r Dr. J dith . Solano

Accepted for the Department of Computer and Information
Sciences:

~7~19)
Chairperson of the Department

Accepted for the College of Computing Sciences and

En)"/;>../')
br. Charles N. Winton
Interim Dean of the College

the University:

- ii -

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGMENT

First and foremost, I thank my wife, Cheryle, my son,

Chris, and my daughter, Kelley, not only for their support

and tolerance, but also their enthusiasm and interest in

this endeavor. I also appreciate the prayers and tender

loving care that my church friends provided. They helped

me maintain and balance my priorities.

My employer, PathTech Software Solutions, Inc., receives

the credit for the inspiration and foundation for this

effort. My partners and co-workers enthusiastically

supported this undertaking with ideas, feedback and a solid

grounding in the practice of software engineering.

I especially must thank Ken Wilson, Maureen Page, and Ray

Schafer for the hours they spent with me as Peer Reviewers.

They each added a real-world flavor to this effort along

with a sense that the results can be of benefit to fellow

software engineering practitioners.

Finally, I want to extend a special word of thanks to the

CIS staff at UNF. I personally interacted with most of the

Professors and found them to be not only knowledgeable and

capable educators, but also truly interested in the

- iii -

conveyance of knowledge and the improvement of the state of

the practice of software engineering. The support staff

was always helpful and professional. My thesis committee

truly went the extra mile in their guidance and review of

this effort.

- iv -

CONTENTS

FIGURES ix

TABLES ... x

ABSTRACT xi

Chapter 1: Introduction 1

1.1 Statement of Problem 2

1 .2 Research Plan . 5

1.3 Literature Search 6

1.4 Summary of Results 7

Chapter 2: Conflict/Synergy Capture Mechanism 10

2.1 Conflict/Synergy Classifications 11

2.2 Conflict/Synergy Observation
Data Forms 12

Chapter 3: Software Engineering Methodologies and
CASE Tools 15

3.1 Synopsis of Software Engineering
Methodologies and CASE Tools
Evaluated 16

3.2 Gane & Sarson Data Flow Diagrams and
Entity Relationship Diagrams 18

- v -

3.3 Coad/Yourdon 22

3.4 System Architect CASE (Computer Aided
Software Engineering) Tool 24

Chapter 4: Visual Programming Languages and Tools 26

4.1 Synopsis of Visual Languages and
Tools Evaluated 27

4.2 Visual Basic 35

4.3 Object Vision 40

4.4 Smart Elements , 43

4.5 Layout 49

Chapter 5: Test Bed 55

5.1 Customer Support Tracking System 55

5.1.1 CSTS Design 56

5.1.2 CSTS Implementation in
Visual Basic 57

5.1.3 CSTS Implementation in
ObjectVision 60

5 . 2 Tic Tac Toe . 64

5.2.1 Tic Tac Toe Design 64

5.2.2 Tic Tac Toe Implementation
In Visual Basic 67

- vi -

5.2.3 Tic Tac Toe Implementation
in Smart Elements 70

Chapter 6 System Architect to Visual Basic Bridge
Prototype . 75

6.1 SA2VB.EXE Design and Scope 76

6.2 SA2VB.EXE Implementation and Testing 78

6.3 SA2VB.EXE Application '" ... 79

Chapter 7 Conclusions 81

7.1 Observation Results 81

7.2 Anticipated Trends and Developments 82

7.3 Guidelines for Development 84

7 .3.1 User Interface 85

7 . 3 . 2 DB Schema . 87

7.3.3 Event-Based and/or
Object-Oriented Design 90

7.3.4 Function Design 94

7.4 Summary of Findings 95

References 100

Appendix A: Customer Support Tracking System Design
Package . 104

- vii -

Appendix B: Customer Support Tracking System Visual
Basic Listings/Screens 119

Appendix C: Customer Support Tracking System
ObjectVision Listings/Screens 149

Appendix D: Tic Tac Toe Design Package 161

Appendix E: Tic Tac Toe Visual Basic
Listings/Screens 175

Appendix F: Tic Tac Toe Smart Elements
Listings/Screens 191

Appendix G SA2VB Bridge Listings and
Sample Results 219

Appendix H Test Bed (Self) Observation
Data Sheets 231

Appendix I Peer Observation Data Sheets 239

Vita 245

- viii -

FIGURES

Figure 1: Typical Observation Data Form 12

Figure 2 : Peer Observation Handout 14

Figure 3 : Gane & Sarson DFD Notation 20

Figure 4: ERD Notation 21

Figure 5: Coad/Yourdon OOA/D Notation 23

Figure 6: Iconic Object 32

Figure 7: Smart Elements Rule and Object Notations 47

Figure 8: Layout Flow Charts of Recursive Factorial ... 53

Figure 9: Individual versus Coalesced Messaging 93

- ix -

TABLES

Table 1: Experimentation Test Bed Matrix 9

Table 2: Visual Development Conflicts/Synergy Matrix .. 11

Table 3: SA2VB Scope Matrix 78

Table 4: Example Object Naming Convention 87

Table 5: Frequency of Conflicts and Synergies 96

- x -

ABSTRACT

Visual Programming Languages and Visual Programming Tools

incorporate non-procedural coding mechanisms that may

duplicate, or perhaps even conflict with, the analysis and

design mechanisms promulgated by the mainstream Software

Engineering methodologies. By better understanding such

duplication and conflict, software engineers can take

proactive measures to accommodate and, ideally, eliminate

them. Better still, there may be opportunities for synergy

that can be exploited if one is looking for them.

This research explored, documented and classified the

interactions and interdependencies, both positive

(synergies) and negative (conflicts), between two closely

related and rapidly evolving Computer Science

subdisciplines: software engineering and visual

programming. A literature search was conducted to surface,

evaluate, and build upon (where appropriate) recent and

ongoing research in this area. A mechanism was created to

capture observations of conflicts and synergies. This

capture mechanism was applied to an experimentation test

bed that was established to provide concrete examples of

gaps, overlaps, conflicts, and synergies. In this regard,

two relatively simple applications, one data-base oriented

- xi -

and one algorithm oriented, were designed and implemented

using multiple software engineering methods and multiple

visual tools/languages.

A software prototype, which bridges one of the gaps

discovered during the research, was built to underscore the

importance of eventually merging Computer Aided Software

Engineering and visual development tools. The overall

results as well as anticipated trends and developments in

the area of software engineering and visual programming

were summarized. The synergy/conflict observations, in

conjunction with the literature search results, were used

to develop strategies and guidelines for successfully using

visual programming languages and tools in concert with

sound software engineering methods.

- xii -

Chapter 1

INTRODUCTION

Visual Programming Languages (VPLs), such as Visual Basic

and Visual C++, and Visual Programming Tools (VPTs), such

as ObjectVision and PowerBuilder, incorporate non-

procedural coding mechanisms. Some of these mechanisms may

duplicate, or perhaps even conflict with, the analysis and

design mechanisms promulgated by the mainstream Software

Engineering methodologies, such as Gane & Sarson or

Coad/Yourdon [Pressman92]. By better understanding such

duplication and conflict, software engineers can take

proactive measures to accommodate and, ideally, eliminate

them. Better still, there may be opportunities for synergy

which can be exploited if one is looking for them.

VPLs and VPTs have been made possible by the maturation of

Object-Oriented Programming constructs, leading to a strong

correlation between the use of these new tools and OOP.

Indeed, everyone of the languages and tools studied rely

strongly upon OOP for their internal design and operation

(although they may differ in the degree to which they make

OOP constructs available to application developers)

[West92]. Therefore, this work was conducted with a

- 1 -

backdrop of object-orientation. However, the focus is on

identifying and resolving gaps, conflicts and synergies

between the use of structured, formal Software Engineering

methods and the use of VPLs and VPTs.

1.1 Statement of Problem

The importance and use of VPLs and VPTs is growing at a

rapid pace both locally and nationally. A recent issue of

Computer Magazine devoted over 50 pages to visual

programming [IEEE95] In the past 36 months, the number of

Jacksonville-based companies seriously using visual

development software has climbed from perhaps one or two to

dozens (based on a non-scientific review of Florida Times-

Union classified ads which mention one or more of the

recognized visual programming tools/languages). Similarly,

a casual search of the internet for job postings which

mention such languages and tools returns hundreds of hits

(just looking at the IEEE Careers, Career Mosaic and the

"Monster" Board on the world wide web). At the same time,

more and more companies are adopting formal software

engineering methodologies, usually in the form of a

commercially offered CASE (Computer Aided Software

Engineering) tool. Personal experience gained in the

author's work environment has increased his awareness of

inconsistencies between these two Computer Science

- 2 -

subdisciplines. He also became convinced that positive

steps can and should be taken to ensure that the benefits

from both of these technological advancements are realized.

This conviction forms the basis of this research.

The need for substantial advances was foreshadowed in

Lowry's 1992 article in AI Magazine where he suggested that

current CASE tools were shallow, that the latest

programming environments were good for proto typing but

lacked the ability to produce efficient, production-quality

code and that perhaps the use of artificial intelligence

could close the gap (Lowry92). More recently, the gap

between CASE tools and implementation tools have been

editorialized in software engineering trade journals. For

example, in one issue of Software Development magazine,

Larry Constantine emphasizes the importance of one day

being able to program by drawing models of the target

application [Constantine94) and Larry O'Brien points how

event-driven architectures, visual programming aids and the

like have seriously challenged the traditional CASE

tools[O'Brien94] .

Inconsistencies may manifest themselves as conflicts, gaps,

or overlaps in screen layout, process diagrams, Entity-

Relationship Diagrams, or Data Dictionaries. Synergies

take shape as opportunities for direct program generation

- 3 -

and rapid prototyping, as well as improved communication

with end users; the day may come where end-users can use a

VPT to build their own prototype as a starting point for

implementation by a central IS group.

An example of a conflict would be writing a traditional

Program Flow Chart only to find out that the VPT must

approach the flow of control in a completely different way.

Consider the fact that ObjectVision relies on two event-

driven program flow mechanisms, neither of which have a

direct mapping from a traditional flow chart: "when-

changed" methods attached to data elements and "logic

trees" for responding to user- and application-generated

messages. The flow chart, while useful for communicating

desired program behavior, will provide little or no insight

about how to implement that behavior. A similar case can

be built for pseudocode. To turn the example into one of

synergy, imagine that the designer had been able to access

a tree-like representation to devise and communicate the

program flow of control. This would provide insight into

its implementation in addition to its desired behavior.

Perhaps the software engineering method could be modified

to actually embrace the visual event trees of ObjectVision

as its program flow representation.

- 4 -

1.2 Research plan

During the formative stages of this research, the author

proposed a definitive series of steps aimed at ensuring

that the effort would be of graduate-level quality and

content and that the objectives of the effort would be

achieved. Upon consultation with the Thesis Committee, a

final research plan was established, as reflected in the

following steps:

1. Devise a problem classification scheme and mechanism

for capturing and documenting conflicts (e.g., gaps or

overlaps)and synergies (smooth transitions and

cooperation) between software engineering methods and

implementation languages and tools

2. Review and evaluate modern software engineering

methodologies

3. Review and evaluate visual programming languages and

tools

4. Create a controlled experimentation test bed to

provide concrete, working examples of interactions and

interdependencies in the form of gaps, overlaps,

conflicts, and synergies

- 5 -

5. Develop a prototypical bridge for generating Graphic

User Interface Screens in the "native tongue" of a

visual pr~c~amming language based on screens designed

in a CASE tool

6. Evaluate and Document Results, including a summary of

major trends and guidelines for avoiding problems and

ensuring synergies

The objective of this research was to explore, document and

classify the interactions and interdependencies, both

positive (synergies) and negative (conflicts), between two

closely related and rapidly evolving Computer Science

subdisciplines: software engineering and visual

programming.

1.3 Literature Search

One element of the research effort was conduct of a

literature search to surface, evaluate, and build upon

(where appropriate) recent and ongoing research in this

area. Much of the fruit of that search is embodied in this

thesis. Most of the remainder of the information found was

of general or bibliographic value, but not suitable for

direct reference.

- 6 -

The literature search included Journals, such as the

Journal of Visual Languages and Computing and IEEE

Transactions on Software Engineering,

Transactions/Proceedings, such as ACM Transactions on

Programming Languages and Systems, Texts, such as Object

Oriented Design with Applications by Booch [Booch91J, and

Code Complete, by McConnell [McConneI193]. The effort also

included a search of the internet, using archie.

1.4 Summary of Results

Chapter 2 describes the problem classification scheme and

observation collection mechanism called for in the first

Step. Problem groupings, as well as areas of cooperation,

arising between the software engineering methods and the

visual programming languages and tools are identified. A

data base tool to facilitate the capturing of conflict and

synergy observations is also described.

The results of the second step of the Research Plan are

presented in Chapter 3. The treatment briefly discusses

those traditional and object-oriented software engineering

methods used in this study, along with a summary of their

notation and use. A section on the CASE tool used for

portions of this effort is also provided.

- 7 -

The results of step 3 are included in Chapter 4, which

provides a synopsis of the visual programming languages and

tools evaluated along with an overview of visual

programming. The treatment briefly compares and contrasts

the various tools and languages and, for ones not used in

the test bed, provides specific examples of areas which

make these software packages unique. Since the maturity of

the desired guidance required immersion in the selected

language/tools, attention was paid to the mechanics and

details of their operation. Generalizations could then be

drawn from the specific experiences in their use.

During step 4, two test applications were defined: one data

base-oriented and one algorithmic in nature. Then, two

software engineering methods were selected, one used for

each application (see Table 1). Finally, one visual

programming language and two visual programming tools were

selected and each application was implemented using the VPL

and one VPT (see Table 1). As the applications were

designed and implemented, the capture mechanism from step 1

was applied. Table 1 summarizes the test bed resulting from

step 4 of the Research Plan, while Chapter 5 and Appendices

A through F present it in detail.

The software bridge between the System Architect CASE tool

and Visual Basic, resulting from step 5, are presented in

- 8 -

Chapter 6 and Appendix G. The bridge points to the

importance of eventually merging Computer Aided Software

Engineering and visual development tools.

The results of step 6 are presented in Chapter 7 and

Appendices H and I. Because of the impact on this research

of the rapidly changing software development environment, a

treatment on current trends and developments was compiled.

The synergy/conflict observations, in conjunction with the

literature search results, were used to develop strategies

and guidelines for successfully using visual programming

languages and tools in concert with sound software

engineering methods. The guidelines were segmented based

on type of problem being addressed. Finally, the overall

effort and its contribution to future efforts are

summarized.

Application Application Software Implementation Implementation
Type Name Engineering Language Tool

Methodology

Data Base- Customer Problem Gane & Sarson Visual Basic ObjectVision
Oriented Tracking System DFDs plus ERDs

Algorithm - Tic-Tac-Toe Coad/Y ourdon Visual Basic Smart Elements
Oriented

Table 1: Experimentation Test Bed Matrix

- 9 -

Chapter 2

Conflict/Synergy Capture Mechanism

During the planning stages of the research, it was

recognized that there needed to be a formal mechanism in

place to assist the author in capturing and distilling the

examples of conflict and synergy that were to be sought

("self observations"). Therefore, the premise that

conflict and synergy should be detectable was carried to

more specific categories, as discussed in Section 2.1.

These classifications would then be used to create a data

base which would serve both as a repository of experiment

observations and as a prompting device to elicit a

consistent slate of information about each observation

(Section 2.2). As the research moved into the

experimentation phase, it was further decided that the

observation data base would be altered slightly to enable

it to be used to elicit information from working

practitioners using similar combinations of CASE tools and

VPTs ("peer observations") .

- 10 -

2.1 Conflict/Synergy Classifications

The issues that might be encountered during visual

development were classified into two major categories,

Structural and Behavioral, each with three subcategories.

As shown in Table 2, types of conflicts and synergies were

identified for each subcategory (where applicable) and

specific examples given.

Category Conflict Synergy Examples
STRUCTURAL:
User Interface Layout Duplication of Automation of (-) Sketch in CASE (or on

Effort Effort paper), then re-sketch in the
tool or language

(+) Sketch in CASE with
generation of screens in the
tool or language

DB Schema Design - Automation of (+) Design Schema in CASE
Effort with generation DB

structures in the tool or
I anguaKe

Tool/Language - (-) Relational Design, but tool
Does Not Support or language only supports
the Schema "flat"

Object Representation Tool/Language Full Object- (+) Developer-definable
Does Not (fully) Oriented objects/attributes with
Support Environment multiple inheritance, such as

C++
(-) Limited ability to create/use

objects, such as Visual Basic
BEHAVIORAL:
ServicelUtiIity Modules Designing Modules Utilizing Them (+/-) File Browser; Print Setup

that are already
"Built-In" to the
Tool/Language

Function/Routine Tool/Language Tool/Language (+) Time Object in VB
Design Does Not Support Strongly Supports (-) Dealing with time in OV

the Concept the Concept
Event-Based Design SE Methods are Strong Support (+/-) See Pressman's Watch

limited from Modern example on [Pressman92,
Tools and pp. 495-497]
Languages

Table 2: Visual Development Conflicts/Synergy Matrix

- 11 -

2.2 Conflict/Synergy Observation Data Forms

The content of the classification scheme was used to derive

a series of data elements and types of textual information

that ought to be collected for each observation of a

conflict or synergy. These elements were used in turn to

create a data base and corresponding GUI. Figure 1 shows a

typical data form as it looks in the GUI. Objectvision,

which was used to create the application, has the ability

to print out th~ data base as a series of sheets that look

like the data entry form. The possible or likely values of

the data elements were used to populate pull-down menus and

to create the check boxes seen in the figure.

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

ob •• rvation Typel Project I Categoryl Date of Interviewl
~Conniet).S - CU.c..r service Appu,catJ,on DB 8c~ 3t:l/95 11,30
O.,.".rgy

~r.qu.ncy of Oblvervationt
Often

BE Applicationl BE Methodl Visual '1'0011
0..."",", BUll. ac.tboc101ogy SKn. - BPS !8l.,...
OW/A

Descriptionl
Theu h Ii ·one-"'ay· path trca CABS Jll()(!el to .cb ' CASK .. Uo provi~. autc.atic no:nu.lhation of datI. alld autc-atic Il.tIling of tabl .. and.
attribute.. 'the .uto-gan.r.t~ XlILIYi IlrO ry oryptic in nature. 'fh,.,rar:or., tn. dn.l~r typically -.dlt. tha lob ... to ...x.. the na... acra
·d.evelo~r-frieMly.·

Circumstance.t --
One_ the .oh hAl M.n -.1ited, tha CASK rapr •• Ol2tation 11 out of data, and alit eitbr M aanu&lly updat-.d. (i. •. , all edit. lAd ... inten.anc. of
the .cb--. lIU.t :btl c.\ona twice), or .1 •• the CASS repr .. .ntation .. at btl a.b&a4on~.

Guidance Ideal'
Chang. to .. tool t~t ha. revex .. e.ngiu •• xing capability ('0 tbat ch&ng .. to tM .chaJu C&ll ~ ttICS b&clt into tM .odel). Chang. to .. tool that
g~rah' .cb ... thAt an '0 good tha.t t~ do net hay. to be twlitltd, a.aJte ... int.u.a.nt:e chang .. in tb. CABS .".,.1 and, :r:.g~:r: .. t • • cb..al •• cb tt.. •
.:ru.t u .. tu CABK tool to 4 1op th. in.ltial ve:s=.!oa. and t~ abandon it.

Figure 1: Typical Observation Data Form

12

During the completion of the experimentation test bed (see

next Chapter), the "self observation" forms were filled out

soon after each conflict or synergy was encountered. The

"peer observation" version of the forms were used in an

interview setting. The author described the premise and

nature of the study, presented the preliminary results, and

then encouraged the participant to fill out a data form for

each memorable example of a conflict or synergy within the

scope of the research. A "Quick Reference Guide," shown in

Figure 2, was developed to help peers when filling out the

forms.

- 13 -

Observation Type:

Project:

Category:

Number of Times Observed:

SE Application:

SEMethod:

Visual Tool:

Description:

Circumstances:

Guidance Ideas:

Synergy/Conflict Observation Quick Reference Guide

Indicate whether this observation is an example of Conflict or Synergy

Fill in the name of the project

Select the design area that best fits this obse: .Ition, or type a new one

• User IfF Layout
• DB Schema
• Utility Modules
• Function Design
• Event-Based Design

Select the occurrence frequency that best fits this observation

• Once
• Occasionally
• Sometimes
• Often
• Usually
• Always

Indicate whether the Software Engineering methodology was applied
manually or via a CASE tool or whether its method of application was
irrelevant to the observation

Select the Software Engineering methodology to which this observation
applies, or type a new one

• Gane & Sarson
• ERD
• Gane & Sarson/ERD
• CoadlY ourdon
• Booch
• IEF

Select the visual programming tool (or language) to which this observation
applies, or type a new one

• Visual Basic
• C++
• PowerBuilder
• SQLWindows
• Open Interface

Enter a general description of the observation

Enter the Circumstances surrounding this observation, such as what lead
up to the problem or synergy, exacerbating or mitigating conditions, etc.

Enter possible remedies for Conflicts, possible levers for Synergies, and
Guideline Ideas surrounding the observation.

Figure 2: Peer Observation Handout

- 14 -

Chapter 3

Software Engineering Methodologies and CASE Tools

Software Engineering can be defined as "the establishment

and use of sound engineering principles in order to obtain

economically software that is reliable and works

efficiently on real machines," and comprises three key

elements: methods, tools, and procedures [Pressman92, pp.

23-24]. There is a wide variety of Software Engineering

techniques and methodologies in current use by Computer

Scientists in both academic and commercial settings. These

techniques and methodologies address a wide range of

issues, including project planning, management and

estimation, software quality and testing and detailed

software design and implementation. However, the focus of

this investigation is the areas of requirements analysis

and high-level design. Some methods are very formal and

structured, while others are more heuristic in nature,

providing good practice guidelines.

The sections that follow highlight the software engineering

methods and tools used in conducting the research for this

thesis. Section 3.1 provides a general synopsis of the

various methods and tools evaluated. Section 3.2 addresses

- 15 -

the more traditional techniques used to support the data

base applications. Section 3.3 looks at the object-

oriented/event-based techniques used for the algorithmic

applications. Section 3.4 explores the CASE tool used for

portions of the work.

3.1 Synopsis of Software Engineering Methodologies and
CASE Tools Evaluated

Each method has associated with it a set of tools, whether

applied manually, automatically, or both, which manifests a

special language or graphical notation. The more widely

used methods have been integrated with one another and

incorporated into Computer Aided Software Engineering

(CASE) tools. Two of the most widely used methods, Data

Flow Diagrams and Entity-Relationship Diagrams, are

described in section 3.2. Several other mainstream methods

were evaluated for use in the data base-oriented

application but were eliminated based on either unnecessary

complexity for the target problem or focus upon areas

irrelevant to the target problem. For example, a State

Transition Diagram (STD) can be developed to identify the

possible states of each data entity and the allowed

transitional events that can cause the state to change.

However, an STD for the Customer Support Tracking System

would have been trivial and of little value to the

research. Likewise, a Ward and Mellor real-time analysis

- 16 -

can be conducted to identify time-based processes and

interfaces to physical devices. However, the intended

system exhibited no complex real-time behaviors, rendering

a Ward and Mellor analysis useless.

Several object-oriented software engineering methods were

also evaluated. Coad/Yourdon, the one selected for the Tic

Tac Toe game, is described in section 3.3. Two other

methods, Rumbaugh and Booch, were investigated. Each of

the three has its own style and approach to object-oriented

analysis and design, with no one method appearing stronger

than the others. Therefore, the selection of Coad/Yourdon

was primarily based on the author's prior exposure to it.

Commercial-grade CASE tools are now widely available, with

a wide range in both capabilities and price. High-end

tools, such as IEF by Texas Instruments and HPS by SEER,

are extremely robust and powerful within the framework of

their intent (e.g., legacy or mainframe data bases), and

typically include a high degree of support for team

programming and automation of production tasks. Such tools

also bring with them a high per-developer price tag,

typically above $10,000. Unfortunately, the high-end tools

having any significant market share have their roots in

mainstream, conventional programming environments with

little to no support for object-oriented programming

- 17 -

environments, event-based programming, Graphic User

Interfaces or 4GLs (exceptions to this statement are

discussed in Sortion 7.2)

Smaller, more specialized or single-purpose tools are also

becoming more widely used, such as VisSim by Visual

Solutions Inc. VisSim, a tool that sells for under $200,

allows engineers to create on-screen diagrams that model

and simulate physical processes. In between is a class of

tools whose members are priced in the $1000 - $2000 per-

developer range and provide an assortment of the more

popular Software Engineering methods. Tools in this

category include ERWin, EasyCASE and System Architect. The

capabilities of System Architect will be discussed further

in Section 3.4 since it was used during the course of this

research. Another category of CASE tools encompasses those

provided by data base vendors. For example, ORACLE now

provides an excellent suite of software engineering tools

as add-on products to their popular relational data base

product.

3.2 Gane & Sarson Data Flow Diagrams and Entity
Relationship Diagrams

The primary method used for analyzing and designing the

Data Base Management System (DBMS) aspects of the test bed

was the creation of Data Flow Diagrams (DFDs). The

- 18 -

specific DFD notation style of Gane & Sarson was adopted.

The use of DFDs for analysis and design of information

systems is well documented in a number of software

engineering texts [Pressman92, Chapters 7 and 11]. For

purposes of this thesis, it is sufficient to summarize that

DFDs provide a structured methodology for representing

external sources and sinks of data, the processes that

manipulate the data, stores of data, and the specific data

that must flow to and from each process. Figure 3 shows

the graphical notation for each of these items. The

methodology relies heavily on levels of abstraction, such

that a process modeled in general at one level can be

examined in greater detail at another level. The zeroeth

(most abstract) level is referred to as the "context"

diagram, showing only one process: the software application

under study. The level 1 DFD breaks the application down

into its major modules, level 2 divides those modules into

smaller components, and so it goes until the modeler is

satisfied that the processes shown on the diagram are

sufficiently atomic to be implemented. Although highly

subjective, the dividing line between analysis and design

is often set between level 2 and level 3 DFDs.

The second software engineering method used In the test bed

was that of data modeling, using a powerful modeling tool

known as the Entity-Relationship Diagram (ERD) [Pressman92,

- 19 -

External
entity

~ /~:~
Data store

A producer or consumer of information that resides outside the bounds of the
system to be mode ted

A transformer of Information that resides within the bounds of the system to
be modeted

A data Item or collection of data Items. the arrowhead indicates the direction
of data flow

A repository of data that is to be stored for use by one or more processes: may
be as simple as a buHer or queue or as sophisticated as a relational data base

Figure 3 Gane & Sarson DFD Notation [Pressman92, page 210]

section 8.3] . ERDs pick up where DFDs leave off in terms

of detailing the form, content and structure of the

relevant data elements. Specifically, ERDs identify each

data entity, its attributes, and how it relates to other

entities in terms of cardinality and function. ERDs are

especially useful when the design calls for a relational

data base: the entities become tables, the attributes

become column names, and the relationships become cues to

the required referential keys. Figure 4 shows the ERD

graphical notation used for this effort.

- 20 -

Entity Name

Foreign
Keys (FKn)

Attributes

/Entity

/ I Relationship

Cardinality
Symbol

(see key)

Entity Name

Foreign
Keys (FKn)

Attributes

zero-to-one one-to-one zero-to-many one-to-many

Key to Cardinality Symbols

Figure 4: ERD Notation

The transition from DFD to ERD takes place at the DFD Data

Store. In other words/ the next level of abstraction for a

DFD Data Store is not another (higher level) DFD/ but

rather/ is an ERD. In this fashion/ the DFDs govern the

DBMS (with emphasis on "management system ll
) while the ERDs

govern the Data Definitions (or structures) to be

manifested in the data base.

- 21 -

3.3 Coad/Yourdon

Object-Oriented Analysis and Design (OOA/D) was the primary

method used for the algorithmic portion of the test bed

(i.e., the Tic Tac Toe game). The specific method and

notation style of Coad/Yourdon was adopted [Coad/Yourdon90

and Coad/Yourdon91]. OOA/D was considered well-suited as

one component of the test bed because the visual tools

targeted for implementation were known to be object-

oriented and event-based in nature. For purposes of this

thesis, it is sufficient to summarize that OOA/D provides a

structured methodology for representing classes and

objects, their interconnecting structure, their attributes,

the services they provide and the message connections that

communicate the need for services. Figure 5 summarizes the

graphical and semantic notation used in the Coad/Yourdon

approach to OOA/D. Note that the abstraction tool referred

to as "subject" was not required for this effort.

The Service Chart notation was also extrapolated to model

the overall behavior of the application. Thus, the

notation was used to provide a flow chart style

representation of an event-based design.

The procedural aspects of the OOA/D effort followed

Coad/Yourdon's OOA Strategy Summary and OOD Strategy

Summary [Coad/Yourdon91, pp. 164-181 (Appendix Band

- 22 -

1 1
Class-&-Object - .. Class r;;;;:.

! Class-&-Object Name (top section) Class

Attribute 1 Attribute 1
Attribute2 Attributes (middle section) Attribute2

Servicel Services (bottom section) Service1
Service2 Service2

--

G",,,!;,,,;oo ! I B
..J

~ Gen-Spec Structure ~ ~. Whole-Part Structure 1

I r-= [E] I Part' I Specialization 1 Specialization2

Class-&-Object1
Instance Connection

Class-&-Object2
1

I,m

B Mess,!ge Connection B ~

1 1

Subject or Design Component < > Condition (if; pre-condition; trigger, terminate) (may be expanded or collapsed)

L I Text block

() Loop (while; do; repeat; trigger/terminate)

I Connector (connected to the top of the next symbol)

Service Chart notation (used within the template)

Figure 5: Coad/Yourdon OOA/D Notation
[Coad/Yourdon91, page 162]

Appendix C)] . Although some of the strategy elements were

not relevant to the simple test bed application, the

sequence and content of the remainder were found to be

quite useful.

- 23 -

3.4 System Architect CASE (Computer Aided Software
Engineering) Tool

The System Arcrjtect CASE tool (version 3.0) was used to

implement the software engineering methodologies discussed

in Section 3.2 [SysArch94A]. (The OOD/A methods were

applied manually.) Like most mid-range CASE

products, System Architect is a desktop workstation-based

suite of tools aimed at helping software developers provide

higher quality, more efficient work products. It maintains

an integrated, team-oriented repository (data base) of

results, referred to as an "encyclopedia," which contains

project-wide Data Definitions, Diagrams, etc. System

Architect provides diagramming/modeling support and rules

checking for a wide variety of popular software engineering

methods, including all of the ones discussed in this thesis

(the Object-Oriented methods are obtained via an optional

upgrade module). It also provides, as upgrade options, a

project report generator, a data base schema generator, a

PowerBuilder bridge, and a reverse engineering tool.

Another optional module which was used in this effort is

the Screen Painter, which is a screen design and layout

tool with a Windows Dialog generator (see Chapter 6).

The mechanics of using System Architect are straight

forward. First, one must select the software engineering

method to be used. The tool then provides an on-screen

- 24 -

template of graphic icons relevant to that method which can

be "dragged" and "dropped" onto the diagram under

construction. Connection icons are further enabled to

allow the developer to click on the icons to which they are

connected with knowledge of directional flow (i.e., "from"

the first icon clicked "to" the second one). Each icon can

then be further refined by opening a series of "behind the

scenes" dialog boxes (using a right-click to pop up a menu

of options). These refinement dialogs handle duties from

the routine, such as names and labels, to the advanced,

such as cardinality and composite data definition

statements.

System Architect also supports levels of abstraction by

allowing each icon to link to a Child Diagram, which

represents a more detailed breakdown of its parent. One of

the rule-checking features of the tool is to verify that

the inputs and outputs of a Child Diagram are consistent

with those of the Parent (so-called "balancing").

- 25 -

Chapter 4

Visual Programming Languages and Tools.

"Visual Programming" has been defined as "the use of

meaningful graphic representations in the process of

programming" [Shu88, page 9]. Shu further defines a visual

programming language as one "which uses some visual

representations (in addition to or in place of words and

numbers) to accomplish what would otherwise have to be

written in a traditional one-dimensional programming

language" [Shu88, page 138]. A visual programming tool can

be thought of as a higher-level development environment,

incorporating a 4GL or scripting language and perhaps

project management aids, interpretive testing (i.e.,

without compilation) or team development aids.

Visual programming (at least in a commercial setting) is

tightly connected to object-oriented programming in that

all of the tools and languages evaluated were themselves

object-oriented and most allowed developers to enjoy the

benefits of object-oriented programming to some degree.

Further, visual programming enables object-oriented

practitioners "to build applications from simple, reusable

- 26 -

parts ... by providing palettes of compatible parts in easily

accessible formats ready for use by developers" [Jicha94J.

Classification as a visual programming language or tool is

not absolute, but is by degree. The Gartner Group suggests

a continuum ranging from "Visual GUI with Text Scripts"

(e.g., Visual Basic) to "Visual with Minor Text Required"

(e.g., Smart Elements) to "Visual with Text Optional"

(e.g., ObjectVision) to "Visual Only" (e.g., Layout)

[West92J. Shu further decomposes the "Visual Only"

category into "Diagrammatic systems" which use as their

programming paradigm "flow charts and diagrams that are

already in use on paper" (e.g., Layout), "Iconic systems"

wherein "graphical symbols are deliberately designed to

play the central role in programming" (e.g., G2) and "Form

systems" which employ graphical software representations of

physical tables and forms which "are designed as an

integral part of a language" (e.g., Visual Basic) [Shu88,

pp. 12-16J.

4.1 Synopsis of Visual Languages and Tools Evaluated

Because of the variety and depth of visual programming

languages and tools available, one task of this research

was to evaluate a reasonable sampling of them and select

the ones to be used in the experimentation test bed. This

section provides a brief synopsis of each language/tool

- 27 -

evaluated. The sections that follow elaborate on the ones

actually used. It is important to note that the languages

and tools evaluated as part of this research are

representative of the class of visual programming languages

and tools; thus allowing one to reasonably generalize the

results of this study.

Visual Basic is a Microsoft product which provides a

WYSIWYG layout tool for quickly constructing functional

Windows front ends. It is somewhat object-oriented in that

each visual element has self-contained attributes and

behaviors; events which occur at run-time can trigger BASIC

functions and procedures. However, programmers cannot

define their own classes/objects or inheritance schemes.

The visual nature of Visual Basic is laying out of the user

interface and using the interface objects to organize and

contain much of the behavior of the application. Visual

Basic is an economical development language suitable for

small to medium applications and is supplemented by a large

catalog of third-party add-on tools and utilities. Section

4.2 elaborates on Visual Basic and how it was used to

support this effort.

ObjectVision is a Borland product which offers a form-

oriented WYSIWYG user interface layout tool, a tree-like

visual language for processing logic, a spreadsheet-like

- 28 -

macro language for manipulating data and a user-friendly

"point and click" tool for linking data base files/tables

with ObjectVision objects. If an application's

requirements align with such features, ObjectVision can be

an extremely powerful tool; conversely, attempting to build

an application for which a form-style user interface is not

appropriate, or one which requires procedural algorithms,

can prove to be frustrating and non-productive. Like

Visual Basic, it is somewhat object-oriented in that each

visual element has self-contained attributes and behaviors,

and events which occur at run-time can trigger ObjectVision

functions and procedures; however, programmers cannot

define their own classes or objects. ObjectVision offered

an extremely economical price point, but is now being

phased out by Borland. Therefore, it should not be used

for any production-grade application where upgrades or

support would be required. Section 4.3 elaborates on

ObjectVision and how it was used to support this effort.

Smart Elements, by Neuron Data, originated as an expert

system development tool named Nexpert Object (circa 1987) .

Later, they added a GUI development tool named Open

Interface (circa 1991). Most recently, they bundled and

integrated these two tools to form Smart Elements. Smart

Elements is completely object-oriented in both its own

implementation and its use by developers. It is also one

- 29 -

of the most portable development environments available

today in that even the most graphical application developed

on one platfor~ can be immediately recompiled on another

(e.g., develop on DOS/MSWindows and deploy on Unix/Motif

without touching the source). Smart Elements is visual in

several ways. First, its GUI editor provides much the same

functionality as discussed for Visual Basic, with the added

benefit of extendibility and full object-orientation (e.g.,

one can create new widget classes and inherit from them) .

Next, much of the behavior of the application is

implemented by filling out "point and click" and "fill in

the blank" dialog boxes. Last, class/object/attribute/

method hierarchies (as well as rule-bases) can be

visualized as graphical tree structures. Smart Elements

provides its own scripting language for high-level users

(analogous to BASIC for Visual Basic), while allowing full-

fledged software engineers to implement module details in C

(analogous to Visual C++). This tool is moderately-priced.

Section 4.4 elaborates on Smart Elements and how it was

used to support this effort.

Visual C++ is a Microsoft product which provides a very

robust class library for handling such diverse tasks as OLE

support, graphical drawing, printing services. It also has

the "Class Wizard" which handles the details of creating

subclasses and instances, such as inserting the correct

- 30 -

properties and behaviors and adding comments like "//ADD

APPLICATION SPECIFIC CODE HERE." Visual C++ is by far the

most powerful and robust of the tools evaluated. It is

unfortunately the least visuali for example, it has a

limited WYSIWYG layout tool when compared to Visual Basic.

PowerBuilder is a tool from PowerSoft for application

developers who are creating the "client" end of

client/server applications. It is geared towards MSWindows

applications networked to a SQL data base server.

PowerBuilder provides a WYSIWYG user interface layout tool,

a non-standard scripting language, automatic or manual

generation of SQL statements to put/get/manipulate server

data and hooks into the C language. Although not fully

open to programmers, its flexibility and power go well

beyond that of Visual Basic and ObjectVision but at about

30 times the price. SQLWindows by Gupta serves much the

same audience and provides much the same functionality as

PowerBuilder. However, SQLWindows is considerably more

open and extensible, probably due to the fact that is more

object-oriented. SQLWindows has a slightly more attractive

price point than PowerBuilder. Both tools offer team

development add-ons and are well-suited for large-scale,

production-grade development projects.

- 31 -

power

suction discharge;

Figure 6: Iconic Object

G2 by Gensym, Inc. is a real-time expert system development

shell which has a strong visual-programming component,

especially for modeling and simulating physical systems

such as process plants and factories. It supports Model-

Based Reasoning in conjunction with visually laying out and

connecting the components of the physical system. Each

class of physical object is manifested In a G2 class

object, including its visual icon, its connection ports,

its possible states and its behaviors (usually in the form

of an equation). Thus, the class, PUMPS, might have the

icon depicted in Figure 6 with a suction port, a discharge

port and a power porti states of pumping, available and

out-of-service, and a behavior of "If the POWER SUPPLY

object connected to the power port is energized, AND If the

FLOW LINE object connected to the suction port is open, AND

If the FLOW LINE object connected to the discharge port is

open, Then the state of this PUMP is pumping."

- 32 -

Such class objects can then be instantiated, dragged,

dropped, named and interconnected on a workspace using the

mouse. G2 is very object-oriented and open (considering

that it is a tool and not a language) but is very expensive

($50,000 to $100,000, depending on hardware platform and

options selected).

The most visual tool examined was VisualAge by IBM.

Because of the high price tag (and the fact that the

author's place of work has not yet purchased a copy), the

examination was at IBM at the hand of an IBM demonstrator.

Nonetheless, it was obvious that VisualAge is a fully-

functional visual programming tool. It is completely

object-oriented in both its implementation and its use. It

is built in Smalltalk and is extensible using Small talk.

VisualAge was originally introduced in OS/2, but is now

available in Windows as well. The tool has a GUI layout

scheme much like the other tools, but carries forward the

visual programming paradigm to include flow of information

and control. The behavior of the application is programmed

by dragging, dropping and connecting functional components

and then adding any necessary conditionals or parameters.

Were it not for the economic barrier involved, this author

would have included VisualAge as one of the VPTs used in

the experimentation test bed.

- 33 -

Layout from Objects, Inc., is the most unique of the VPTs

considered. It uses the flow-charting concept to visually

construct a working (and compilable) application. "Flow

charts" are made up of user-connected "black boxes," each

designed to provide a specific function (such as opening a

window, displaying information, accessing a file, etc.).

The basic program comes with over 200 pre-defined black

boxes and allows users to assemble black box abstractions

(called "procedures"), plus Layout allows a professional

programmer to build additional ones in C/C++, Turbo Pascal

and QuickBASIC. It claims that its compilation process

uses an expert system to generate optimized final source

code (in C/C++, Pascal or BASIC), rather than blindly

append code fragments based solely on how the developer

laid out the flow chart of black boxes. Objects Inc.

purports that "Layout is probably the ultimate CASE

tool ... a full life-cycle CASE tool, able to assist you ln

diagramming and designing your program, prototyping it,

fleshing it out, testing it, and then, when you're done,

create the finished program for you." [Layout92] Layout is

relatively inexpensive and supports DOS and MSWindows.

Layout was originally targeted for use in the test bed;

however, it turned out to be unsuitable for building an

algorithmic application under Windows. However, Section

4.5 shows an example of how recursion is implemented in a

visual programming tool.

- 34 -

There are other excellent visual programming languages and

tools in commercial use, such as Forte' (Forte' Software),

ObjectView (KnowledgeWare), VisualWorks (ParcPlace) and

several offerings from Computer Associates [Hanna94].

There are numerous experimental and developmental ones as

well, such as PFG (U. of Maryland), PT (U. Of Kansas), and

HI-VISUAL (Hiroshima University) [Chang90] [Ichikawa90].

The omission of any tool or language from this treatment is

not an indication of its value, but only a necessary

limitation of the scope of this research effort. The

sections that follow provide additional details for those

tools actually used to support this thesis.

4.2 Visual Basic

Microsoft Visual Basic (version. 3.0), Standard Edition,

was used on both of the applications in the experimentation

test bed [Microsoft93]. The Standard Edition is the entry-

level version of the product (the Professional Edition

provides a larger suite of tools and controls) .

Visual Basic uses "forms" as its primary layout and

organization metaphor. That is, a form module is both the

visual manifestation of the Graphic User Interface window

and its components, and a programmatic artifact which the

developer can access to establish the look and feel and the

- 35 -

behavior of the application. One form is established as

the master and is opened whenever the resulting program is

executed. Eacr additional window, whether modal or

mode1ess (referred to as a Multiple-Document Interface, or

MDI, child), is manifested as a form. ForTI,s have

properties which are set by the developer and which can be

altered programmatically during execution. Forms also may

have behaviors which respond to pre-defined user-generated

or system events, such as "Load," "Click," "Unload," etc.

Each form is stored as a file with an extension of ".FRM".

The visual elements are referred to as controls. Common

examples include push buttons, radio buttons, text boxes,

combo and pop-up menus, static text and graphics. Each

control type is shown as an icon on a toolbox window such

that an instance of the control can be dragged from the

toolbox and dropped onto a previously painted form. Once

on the form, the control can be sized by either grabbing it

with the mouse or by setting its left, top, height and

width properties to the desired values. Other properties

may be set, including aesthetics (e.g., colors, borders and

fonts) and behaviors (e.g., whether visible or what happens

to the mouse icon whenever it is over the control) . Some

controls include a special "Tag" property which can be used

by the developer to add a customized attribute when needed.

- 36 -

Like forms, controls also may have behaviors which respond

to pre-defined user-generated or system events, such as

"Change,H "Click,H "GotFocus," etc.

Visual Basic also provides a suite of tools. There is a

Menu Design tool for setting up the menu bar and

accelerator keys. There is a Data Manager for creating

data bases (in Access). There is a Setup Wizard for

creating distribution disks for stand-alone executables.

As touched on above, Visual Basic is an event-based

environment. Events can be spawned by the user, for

example, by moving or clicking the mouse or by keyboard

actions. The system can also programmatically generate

events, such as when a control changes value or it loses

focus. Events can also be used as a way of sending a

message to the degree that one can include in code the

ability to generate any registered event (including ones

normally reserved for users). The event handler also keeps

track of which object spawned the event and, if the control

was part of a control array (a group of id~ntical instances

of the same control and its options), it passes the index

to the calling member of the array. This allows the

receiver of the message to alter its response according to

who was the sender.

- 37 -

The "methods" themselves (i.e., the receivers of the event

messages) are in fact subroutines written in BASIC,

associated with a control and attached to the form which

holds it. Each control has its own built-in set of events

to which it will respond (advanced developers can also

create and register their own additional ones). If the

design calls for a certain behavior given a certain event,

then that behavior is implemented as a BASIC subroutine

whose name is the object name joined to the event name by

an underscore (e.g., Sub btnQuit_Click). If the control is

implemented as an array, then the subroutine would also set

up the indexing (e.g., Sub txtCell_Change (Index As

Integer)). However, this indexing scheme stops short of

allowing the code to be self-aware (the concept of the

"SELF" keyword will be discussed in Section 4.4).

The features and functionality of Visual Basic can be

significantly extended by buying add-on widgets from

Microsoft or third-parties and by writing your own custom

controls (so-called VBX's) in C. There is currently a

booming market for add-on custom controls for such diverse

areas as improved GUI widgets, communication utilities, and

image viewing tools.

To build an application in Visual Basic, start by creating

and naming an empty form. Then set its prcperties, such as

- 38 -

whether it will be sizable by users and the caption that

should be displayed in the title bar. Next, drag, drop,

name, and size each control and set its properties, such as

whether it is initially enabled or whether it is reachable

by user "tabbing."

For data base applications, special data controls must be

set up for each data base connection. The data control

enables the application to navigate, filter, and manipulate

the attached data base, using SQL-like commands (e.g.,

WHERE, GROUP BY, etc.) supplemented by a set of API-like

methods (e.g., MoveLast, MoveNext, etc.). The data control

also enables certain visual controls, such as Text Boxes,

to be directly linked to the data base such that their

current value is automatically updated when the associated

data base value changes and vice versa.

Next, for each relevant event of each form and control, add

GUI-specific code. When the developer double-clicks on the

object, the source code editor is opened with a default

event subroutine already sketched in (e.g., _Change for

Text Boxes and _Click for Buttons). The application-

specific code is then added there, if that is the intended

event, otherwise, a pull-down menu can be accessed to bring

up any other event that is meaningful to that object.

- 39 -

Any general purpose code (i.e., routines that are not tied

to the behavior of specific user interface control objects)

is implemented in a BASIC module associated with the

application under development (".BAS" file). Whether in a

".FRM" or a ".BAS" file, the general syntax, variable

definition/scoping and data structures of the BASIC

language apply.

4.3 Object Vision

Borland's ObjectVision (version. 2.1) was used as the

second implementation vehicle for the data base application

of the experimentation test bed [Borland91A]. Like Visual

Basic, ObjectVision uses the "form" as the metaphor for the

GUI. Conceptually, the construction of the forms and the

visual elements contained on them, referred to as objects,

is very similar to that described in Section 4.2. Unlike

Visual Basic, ObjectVision has only one file for the entire

application, stored with the extension ".OBV". Forms are

used to implement Windows and Dialog Boxes, and are

individually named. ObjectVision also provides support for

creating menus and accelerator keys and runtime deployment.

The visual objects are quite similar in form and function

to those discussed for Visual Basic. However, several of

them are more powerful (i.e., require less programming to

- 40 -

accomplish the same goal). For example, in Visual Basic,

one must programmatically populate the contents of a pop-up

menu; in ObjectVision, the developer can provide the

contents, or the application can dynamically populate the

menu itself based on data base values at runtime. Another

more advanced feature is support for data restriction via

the concept of content "pictures" (e.g., a local phone

number would have a picture of ###-####).

ObjectVision's capability for linking to data bases is

superior. The "links" tool allows one to create and modify

data base schema in several popular PC-based formats,

including Xbase, Paradox, B-trieve and even comma-delimited

ASCII flat files. More importantly, the links tool

examines objects on the forms that have built up to that

point and attempts to match them up to the data base.

Likewise, in data base creation mode, the schema is created

based on the data types and lengths found on the forms.

Another data base related area where ObjectVision excels is

in managing relational designs. Even though they are

manifested in traditionally non-relational data base

formats, Objectvision itself establishes and maintains the

contents as relational tables. This includes understanding

of foreign keys and automation of developer-selected

- 41 -

referential integrity rules. This tool also recognizes

likely joins and automatically establishes them.

ObjectVision is also an event-driven tool, responding to

both user-generated and system-generated events. Events

can also be invoked programmatically, but such usage is

less powerful since they cannot contain arguments or

report which object spawned them.

The primary means of implementing application behaviors is

by creating logic trees. These trees are constructed in a

visual editor that provides developmental support, such as

menus of available objects and guidance on legal maneuvers.

Such trees are the closest equivalent to methods available

in ObjectVision, and are one of two types. "Value Trees"

are used primarily to provide derived data values (when the

visual object to which it is attached remains null) and to

perform data validation (when the visual object to which it

is attached receives a value from the user) . "Event Trees"

are used for performing more general event-based duties and

are created for specific events for specific object. For

example, the "Quit" button object would likely have an

Event Tree attached to it to instruct the application on

how to respond to a "Click" event. The action to be taken

when a leaf of the tree is reached is articulated using

Lotus 1-2-3-like scripting language.

- 42 -

The events and script verbs can be extended by writing your

own custom DLL's in C and registering them with the

application at start-up.

If used correctly, and if the target application is data

base-oriented, ObjectVision can be a powerful tool.

Otherwise, it can be a drain to productivity. The first

task is to construct the GUI. The steps required include:

create and name an empty form; set its properties; drag,

drop, name, and size objects; set their properties.

The second task is to add the behavioral dimension to the

application by constructing the Event Trees and Value Trees

for each relevant event of each form and control.

The final task is to use the "link" tool to attach the GUI

objects to their counterparts in the data base. If data

elements in the GUI are missing from the data base, the

links tool will help create them. It will also prompt for

referential integrity options and other helpful options,

such as filters.

4.4 Smart Elements

Smart Elements (version 2.0), by Neuron Data, was used as

the second implementation vehicle for the algorithmic

- 43 -

application of the experimentation test bed

[NeuronData94C]. Smart Elements is actually a package that

integrates two independent Neuron Data products that had

achieved success in the marketplace: Open Interface

(version 3.0) and Nexpert Object (version 3.0). The Open

Interface element can be used alone to build portable GUI

front ends to C-based applications. The Nexpert Object

element can be used alone to build portable Knowledge-Based

Systems or object-oriented applications. Together, they

form a very complete, graphical environment for building

advanced, production-grade applications. Open Interface

supplies the front-end processing and Nexpert Object

provides the back-end processing.

On the surface, Smart Elements provides much the same set

of capabilities and features as were discussed in the

previous two sections. Using the "Open Editor" facility,

windows and dialogs (modal or modeless) and the visual

elements contained on them (referred to as "widgets") are

created by dragging, dropping, sizing, and naming them and

then setting their properties. The results are stored in

two formats: a platform-independent ASCII resource file

(".RC") and a platform-independent binary data base file

(" . DAT") . Push buttons, radio buttons, text edit boxes,

combo and pull-down menus, text and graphics are just some

- 44 -

of the standard widgets provided. Advanced users can

extend or alter these widgets as they see fit.

Open Interface provides tools for setting up menu bar and

accelerator keys and linking to knowledge bases (in Nexpert

Object). There is also a C source code generator that

creates a compilable version of the application front end.

Open Interface is highly event-driven in its architecture,

while the behavior of Nexpert Object is governed by a

complex and highly configurable agenda mechanism and

inference engine which handles both events and chaining of

rules. Behavior of the GUI is governed by procedures

written either in the Open Interface scripting language or

in C. The scripting language is itself based on C, and C

programmers will find it a familiar environment to work in.

On the Nexpert Object side, behaviors are implemented

either by methods, using the Method Editor, or by rules,

using the Rule Editor. Both elements support creation and

inheritance of very generic code which can adapt itself to

the situation at run-time, including interpretation of

reserved words: "@"V for knowledge base atom names, "SELF"

to represent the specific widget to which a script is

attached, and "EVENT" to represent the event currently

being processed.

- 45 -

Smart Elements is fully object-oriented in both its

internal design and its use by developers. Both elements

allow creation and exploitation of

class/subclass/object (instance) hierarchies, including

multiple inheritance. In Open Interface, the class

structures can be displayed graphically in the Resource

Browser and instances are created and modified in Open

Editor; however, creation of new classes requires

significant programming. On the other hand, in Nexpert

Object, objects, properties, methods and rules are all

written and modified by filling out dialog boxes. Results

can be visualized in a series of graphical browsers,

including a Rule Network and an Object Network. The

notation used for these browsers is shown in Figure 7.

The classes, objects, properties, rules and methods of a

Nexpert Object application are stored as a platform-

independent ASCII knowledge base file (".KB"). The

knowledge base can also be stored in a platform-specific

compiled (binary) format.

Another unique feature of Smart Elements is that the

environment is very open. For example, features can be

extended by writing your own procedures or DLL's in C.

More importantly, application modules built in Smart

- 46 -

Conditions ~

Action--+

Hypothesis

~ currenl_l6sk Is -refueling- ?~
tonk_l.pressure) 300 ?~

aevice.orientation Is -inW6ra·?-.7 r I ?------valve_prOblem?

=>Show -valve_prOblem" @'KEI?~~ __ _
-Evaluation Icons

(a) Rule Graph Notation

Properties

. /~
01 ~

level

D pressure

~
evel

b. tonL!
ORegulor_Tonks /\ ~level
~ w. tank_2

" " 0 pressure

Class

Figure 7:

Objects

(b) Class-Object Network Notation

Smart Elements Rule and Object Notations
[NeuronData94C, pp. 50-51)

Elements can be embedded into other C applications using a

very robust Application Programming Interface (API).

One of the most powerful features of Nexpert Object is

built in support for pattern matching in rules and methods.

Pattern matching allows very generic code to perform

searches of properties over class/object hierarchies and

return a list of the matching objects. The list persists

for the duration of the current operation and can thus be

used with subsequent conditionals or actions of that

- 47 -

operation. The list can also be passed as an argument to

another operation. The value of this feature will become

obvious in Sec r ;0n 5.2.3.

To build an application, first start up the Smart Elements

Main Window. From here, one may either proceed to create

the GUI in Open Interface or the back end in Nexpert

Object. The tool is so robust, that there are numerous

avenues to accomplish any task, so this treatment suggests

merely one, starting with building the GUI. In reality,

this is an interactive process, cycling among GUI widget

editing, widget script writing, and editing of classes,

objects, properties, methods, and rules.

First, display the Resource Browser, navigate to the "Win"

resource, and double-click on it to start the Open Editor

with an empty window. Use the tools, palettes and dialogs

to create and name the required windows; set their

properties; drag, drop, name, and size widgets; and set

their properties. For each relevant event of each window,

dialog and widget, add the GUI-specific script which will

achieve the desired behavior (or alternatively, generate a

C-source template and add C-code to implement behavior) .

For knowledge-based applications, set up links between the

GUI objects in Open Interface and knowledge base objects in

- 48 -

Nexpert Object. For data base applications, one can also

set up data links, using either an add-on product named

Data Elements for complex, client/server applications, or

the built-in scripting calls for simple ones.

Now, implement the structural aspects of the application in

Nexpert Object (i.e., classes, objects and properties) by

opening and using the Class Editor, Object Editor and

Property Editor, respectively. The results of this

hierarchical construct can be visualized using the Object

Network browser. Finally, implement the (non-GUI)

behavioral aspects of the application in Nexpert Object

(i.e., methods and rules) by opening and using the Method

Editor and Rule Editor, respectively.

4.5 Layout

Layout, by Objects, Inc., was originally slated as the tool

to be used to build the second algorithmic application in

the experimentation test bed [Layout92]. Although it was

ultimately abandoned for use in the test bed, it does

provide an interesting insight into visual programming. In

particular, a recursive version of the classic factorial

algorithm was visually programmed in Layout as part of the

evaluation process. Although somewhat tangential to the

main thrust of this thesis, the purpose of this section is

- 49 -

to demonstrate how a such an abstract concept as recursion

can be programmed visually.

The programming metaphor used by Layout is the flow chart.

Functional code modules are represented by icons known as

"Black Boxes." Cascading palettes of Black Boxes are

available from which one may select and drop onto the flow

chart. Black Boxes can have inputs and/or outputs, can

return a value to the Black Box which called it, and can

receive and send messages with arguments. Flow Charts can

be broken up into callable Procedures which themselves can

take arguments and return values. Woven throughout the

Flow Chart and Black Box metaphor are supporting ones, such

as "Filling out a Card" for opening a user dialog window.

Layout has a GUI painting tool to develop user windows and

populate it with the (now) usual slate of widgets. These

widgets are connected to the Flow Chart and its Black Boxes

in a very restrictive fashion. (ASIDE: The lack of

flexibility in the connection between the GUI and the Flow

Chart became the downfall of this tool for the Tic Tac Toe

game. Many hours of work-around attempts, discussions and

faxes with Layout Tech Support yielded no viable solution.)

User input data is collected and organized using the data

card (or index card) metaphor. There is also a tool for

creating/managing the variables used in the Black Boxes.

- 50 -

To build an application in Layout, use the Flow Chart tool

to begin visually building the application. When a Black

Box is chosen that requires a window, a screen painting

tool will open which will allow you to create and name an

empty window (or card) and set its properties. You may

also drag, drop, name, and size objects and set their

properties. When a Black Box is chosen that requires an

equation with variables, a Variables tool will open which

will allow you to create the needed data elements. The

process of editing the Flow Chart and its Black Boxes,

including the filling out of associated dialogs, when

requested, is repeated until the desired application

behavior is achieved.

With that background, the concept of visual recursion can

now be presented. Of course, the impact of visual

programming is significantly diminished when reduced to a

paper-based portrayal, such as this. However, the point

that visual programming opens new software engineering

opportunities and challenges should not be lost.

The factorial application presented here provides a simple

graphic user interface to accept the input value and

display the output value. The application also provides

input validation and feedback to the user if the input is

unacceptable (i.e., not a positive integer). Last, but

- 51 -

certainly not least, it must calculate the factorial of the

input value and place the result in the output value. It

is this last step that is implemented recursively. The

pseudo-code for a recursive version of the factorial

algorithm is as follows ("input" and "output" are global

integers) :

factorial (input, output)

If input > 1 Then

input = input - 1

output = output * input

factorial (input, output)

End If

End function

Figure 8 shows the Layout Flow Charts for the Main

("factorial") and Recursive Procedures ("factorial recur") .

The main program sets up the user window; sets up the main

event loop (while the user has not selected the "Done"

button); lets the user enter an input value (in an data

entry object named "Original Integer" on a Card named

"factorial"); sets up entry validation and correction loop

(while user input < 0); handles the special case for O! (If

user input = 0, result = 1) and otherwise initializes the

input ("FactVal") and output ("FactRes") variables and

calls the recursive procedure (the Else portion); makes a

- 52 -

Figure 8: Layout Flow Charts of Recursive Factorial

- 53 -

"beep" to acknowledge completion; closes the window and

exits (once the user has clicked on "Done").

The recursive procedure tests the input value ("FactVa1")

to verify that it has not yet become decremented all the

way to 1 (if it does equal 1, the procedure is immediately

exited); if not equal to 1, the procedure decrements the

input to the procedure by 1, sets the result ("FactRes")

equal to the old result times the newly decremented input

value and calls the recursive procedure; when control

returns, the procedure is exited.

The concept of a visually programmed recursive function may

be hard to imagine. However, when the Flow Chart is

displayed, it only shows the current level of recursion.

One can drill down to the next level in the recursion by

clicking on the small icon to the left of the "Use a

Procedure" Black Box and come back up back by clicking on

the small icon to the left of the "Start of Procedure"

Black Box. The developer may drill down as many levels as

desired and Layout will keep repainting the same recursive

procedure; however, it is keeping track of the levels

because the icon for coming back out will have to clicked

just as many times to get back to the main procedure.

- 54 -

Chapter 5

Experimentation Test Bed

The experimentation test bed described in this chapter was

conceived to create a controlled environment in which to

observe the interactions and interdependencies among the

software engineering methodologies discussed in Chapter 3

and the visual programming languages and tools discussed in

Chapter 4. The observation capture mechanism discussed in

Chapter 2 was applied throughout the design and

implementation process as noteworthy synergies and

conflicts were encountered.

5.1 Customer Support Tracking System

The Customer Support Tracking System (CSTS) was inspired by

a project ongoing at the author's workplace for which the

client was wanting the company to take incoming technical

support calls for a fielded software system and then bill

them for the time used. CSTS was conceived as a relational

data base aimed at managing a group of users of a fielded

software product. CSTS was designed using Gane & Sarson

DFDs and ERDs using System Architect and implemented in

Visual Basic and ObjectVision. The system must maintain a

- 55 -

data base of licensed users, including relevant data about

that user and the company for which he or she works. It

must also track the duration and content of technical

support calls taken from licensees. The GUI must serve as

both the end-user and maintenance interface.

5.1.1 CSTS Design

The CSTS Design Package is provided as Appendix A. The

package consists of a System Requirements Definition

statement, the Gane & Sarson DFDs and associated Process

Definitions, the ERD and associated Data Definitions.

The design was created using the System Architect CASE

tool. The tool is not only responsible for producing high-

quality printouts of the various diagrams and definitions,

but also maintains an association between the symbols on

the diagrams and the contents of the definitions data base.

Thus, System Architect was not used simply as a drawing

tool, but rather, was used as a repository of design

information, both symbolic and definitive. It also helped

reveal the need to normalize the data. The original

requirements did not specify a separate table for the

licensee (person) and the company for which they worked.

It turns out that one company may have mUltiple licensees

and as such the company data ought to be stored and

- 56 -

maintained separately. Therefore, the design divided the

CUSTOMER table that was specified into separate LICENSEE

and COMPANY tables.

5.1. 2 CSTS Implementation in Visual Basic

The listings and screens for the Visual Basic version of

CSTS are provided as Appendix B. There are four sections

in the appendix, one for each of the major modules. 'Each

module consists of a printout of the GUI screen, the

definitions of that screen and the visual objects it

contains, and a listing of the Visual Basic source code for

the object behaviors. The main module, CSTSMain, provides

the "Customer Support Tracking System" window and is saved

under the name CSTS.FRM. The company information

maintenance module, ChangeCompany, provides the "Change

Company Information" window and is saved under the name

CHANGECO.FRM. The technical support module, SupportCall,

provides the "Support Calls" window and is saved under the

name SUPPORTC.FRM. A module for deleting companies,

CSTSMnt, provides the "CSTS Company Maintenance" window and

is saved under the name CSTSMNT.FRM. This application has

no generic (.BAS) module files.

To use the Visual Basic version of CSTS:

• Start Visual Basic

- 57 -

• Load the CSTS Project (CSTS.MAK)

• Run the application and the CSTS main window will open

• You may exit the application either by first selecting

the "File" item from the menu bar or by double-clicking

on the system icon (the bar in the upper left corner of

the window)

• You may browse existing licensees using the navigation

icons (they are similar to VCR buttons) to go to the

first, previous, next and last record.

• You may edit the licensee information (the company

information cannot be edited from this screen)

• You may type a value in the Licensee ID ~ox; if that ID

already exists, that record will be displayed,

otherwise, a new licensee record will be created and the

"Change Company Information" window will be opened

(since every licensee must have a company associated

with it)

• You may Click on the "Change Company Info" Button to

open the "Change Company Information" window

• On the "Change Company Information" window, you may edit

the data, browse the existing company records (using the

navigation icons), select an existing company record

directly (using the pull-down menu) or create a new

company record by typing in a new namej you may either

"Accept" the changes or "Cancel" them, either of which

will return you to the main CSTS screen

- 58 -

• From the main CSTS screen, you may Click on the "Support

Calls" button to open the "Support Calls" window

• On the "Support Calls" window, you may type in a

description of the call of any length into the

scrollable text box; you may browse the past support

calls to that licensee using the navigation icons; you

may either "Accept" the support call information or

"Cancel" it, either of which will return you to the main

CSTS screen

• From the main CSTS screen, you may delete a company

record or a licensee record by first selecting

"Maintenance" item from the menu bar (NOTE: cascading

deletion of the related data is not automatically

provided by Visual Basic and was not programmatically

implemented)

During the implementation, several interesting things

occurred. One positive experience had to do with a

powerful data base connection device built in to Visual

Basic (known as the "data control"). It allows visual

objects to be directly linked to fields in a data table and

also automatically provides the data base browser feature.

A disappointing experience was discovering that the pull

down menus (e.g., combo boxes) are not populated

automatically at run time, but rather must be populated

- 59 -

programmatically. Other tools, such as ObjectVision, are

able to scan the contents of the data base at run time and

populate the me~u without the need to write a single line

of code.

5.1. 3 CSTS Implementation in ObjectVision

The listings and screens for the ObjectVision version of

CSTS are provided as Appendix C. There are three sections,

one containing printouts of the three screens, one

containing printouts of the behavioral eveilt trees and

scripts, and one containing sample screen shots from the

ObjectVision development environment. The three screens

are: the "Customer Support Tracking System" window, the

"Change Company Information" window, and the "Support Call"

window. Since this application was constructed in a visual

programming tool, it has no source code listing, per se.

Instead, event tree diagrams with their "mini-scripts" are

provided for: the "Change Licensee ID" (text edit) Event,

the "Open Change Company Information" (form) Event, the

"Click New Company" (button) Event, the "Click Return"

(button) Event (on "Change Company Information"), the

"Click Cancel" (button) Event (on "Change Company

Information"), the "Open Support Call" (form) Event, the

"Click Accept" (button) Event (on "Support Call"), and the

"Click Cancel" (button) Event (on "Support Call"). The

- 60 -

screen shots portraying typical parameters that were set

for various dimensions of the application are: combo box

setup (attribute menu, Field Type selection, Expected List

dialog for combo box showing "Automatic"), date field setup

(attribute menu, Field Type selection, Date Type selection

dialog), non-editable text edit box setup (attribute menu,

Protection choices dialog), constrained data entry text box

setup (attribute menu, , Field Type selection, Picture

String dialog), data base table creation (Data Links

dialog, Paradox Link Creation dialog, Data Base Table

Creation dialog), and data base filter setup (Data Links

dialog, Paradox Link Creation dialog, Optional Link

Capabilities dialog, Link Filters dialog).

To use the ObjectVision version of CSTS:

• Start ObjectVision

• FilelOpen CSTS.OVD (the CSTS main window will open)

• You may exit the application either by double-clicking

on the system icon (the bar in the upper left corner of

the window)

• You may browse existing licensees using the navigation

icons (they are similar to VCR buttons) to go to the

first, previous, next and last record.

• You may edit the licensee information (the company

information cannot be edited from this screen)

- 61 -

• You may select an existing licensee record directly from

the Licensee ID box (using the pull-down menu)

• You may type a value in the Licensee ID box; if that ID

already exists, that record will be displayed,

otherwise, a new licensee record will be created and the

"Change Company Information" window will be opened

(since every licensee must have a company associated

with it)

• You may Click on the "Change Company Info" Button to

open the "Change Company Information" window

• On the "Change Company Information" window, you may edit

the data, browse the existing company records (using the

navigation icons), create a new company record by

clicking "New Company" and typing in the new name, or

deleting the current company record by clicking on

"Delete"; you may either accept the changes by clicking

"Return" or "Cancel" them, either of which will return

you to the main CSTS screen

• From the main CSTS screen, you may Click on the "Support

Call" button to open the "Support Call" window

• On the "Support Call" window, you may type in a

description of the call of any length into the

scrollable text box; you may browse the past support

calls to that licensee using the navigation icons; you

may either "Accept" the support call information or

- 62 -

"Cancel" it, either of which will return you to the main

CSTS screen

• From the main CSTS screen, you may delete a licensee

record by clicking on "Axe".

The primary negative impression during the development

process was the nearly impossible task of documenting the

object attribute selections. There is no direct way to do

this. Taking screen shots (as was done for the few samples

in Appendix C) would be prohibitively time consuming on

even a medium-size project.

On the positive side, the data base connection (link tool)

was most impressive. ObjectVision successfully generated

"straw man" data tables based on visual objects,

automatically setup referential integrity constraints,

automatically setup joins at run time, and automatically

populated the combo box menus. At first, the fact that the

System Architect Schema Generator tool did not offer

support for any of the data base formats supported was

disappointing. However, the schemas for all three data

tables were ghosted in based on the GUI objects and

polished up in a matter of minutes.

- 63 -

5.2 Tic Tac Toe

The Tic-Tac-Toe game was inspired by an assignment in the

Software Tools class. It provides at straight-forward

application that is both visual and does not entail a data

base. It does, however, require (simple) logical and

numeric algorithms. Tic Tac Toe was designed using the

Coad/Yourdon methodology and implemented in Visual Basic

and Smart Elements.

5.2.1 Tic Tac Toe Design

The Tic Tac Toe Design Package is provided as Appendix D.

The package consists of a System Requirements Definition

Statement, the Coad/Yourdon Analysis and Design step

results, and the Coad/Yourdon Object State Transition

diagrams.

The design was not created using a CASE tool, but rather

was performed and documented manually. The analysis and

design process was nonetheless a productive exercise. The

information spelled out during completion of the OOA/D

steps did indeed layout a course for direct

implementation. The mapping from the design to the

programming environment was considerably better for Smart

Elements than for Visual Basic, as would be expected

- 64 -

considering that the former is a fully object-oriented

tool.

The original design did not include the Object State

Transition Diagrams. During the Visual Basic

implementation, the need to understand the cascading

sequence of events became evident (the author kept getting

lost in a not-so-visible web of events causing side-effects

causing more events and so on). At that point, effort was

directed back to the design phase and the states and the

events which could cause a change in state were laid out in

a manageable and understandable fashion.

The design calls for nine identical cell objects to

represent the nine locations of play on a Tic Tac Toe

board. There are also eight conceptual summation objects

to represent the state of the three rows, three columns and

two diagonals which are possible on a Tic Tac Toe board.

The object representation scheme is rounded out by a game

state object that contains the current state of play.

The key to the algorithms used by the gaming engine is to

represent the player's "X" with the integer "1", the game's

"0" with the integer "-1", and an unused cell with "0".

This allows the state of each row, column and diagonal to

be unambiguously discerned by simply adding up the values

- 65 -

of its three cells: +3 means the user has won, -2 means the

game will take the (necessarily) remaining empty space for

the win, and +~ ~eans the game will take the (necessarily)

remaining empty space for the block. The sums are also

used to help discern several special cases having to do

with the user attempting to get the game into a double-bind

(where there are two rows/columns/diagonals that must be

blocked, referred to as a "wedge").

The strategy devised for the gaming engine is, in order of

priority:

1. Test for user win (any sum = +3) ==> Game Over

2. Test for game win (any sum = -2) ==> Find and pick Empty

Cell and Game Over

3. Test for block (any sum = +2) ==> Find and pick Empty

Cell

4. Test for diagonal wedge (sum of the sums of both

diagonals = 0) ==> pick Center or Top Edge

5. Test for edge wedge (the only one of concern is when the

sum of the sums of the bottom row and the right column =
2) ==> Pick the Lower Right Corner Cell

- 66 -

6. pick the next empty cell according to th0 following

"search pattern":

2 6 3

7 8

4 9 5

5.2.2 Tic Tac Toe Implementation in Visual Basic

The listings and screens for the Visual Basic version of

Tic Tac Toe are provided as Appendix E. There are four

parts in the appendix, one for each type of information.

The first part is simply the GUI screen for the

application. The second part contains the definitions of

that screen and the visual objects it contains (saved as

MAIN.FRM). The third part provides the a listing of the

Visual Basic source code for the object behaviors (also in

MAIN.FRM). The fourth part is the Visual Basic source code

for the generic functions used by the application (saved as

TTT.BAS)

To use the Visual Basic version of Tic Tac Toe:

• Start Visual Basic

• Load the Tic Tac Toe Project (TTT.MAK)

• Run the application and the Tic Tac Toe window will open

- 67 -

• You may exit the application at any time either by

clicking on the "Quit" button or by double-clicking on

the system icon (the bar in the upper left corner of the

window)

• You may click on any cell to make your first move, or

Click on the "You Go First" button if you want the game

to make the first move

• You will always be "X" and the game will always be "0"

• Notice that the mouse cursor icon changes whenever it is

placed over a mouse-sensitive region of the game board.

• After each move by the game, you may select another

empty cell for your move

• Notice that the game will not allow you to make two

simultaneous moves or put your "X" in an already

occupied cell

• The game will notify you of the final result when there

is "three in a row" or when there are no more moves

• Warning: the game cannot be defeated, so do not spend

more than two or three hours trying

since design of the Tic Tac Toe game required both a

symbolic and numeric representation of each cellon the

board, the "Tag" property of Visual Basic TextBox object

was put into service. Whenever the Text value of a cell

changed to an "X", a "_change" method was invoked which set

the Tag value of that cell to +1. Likewise, when the game

- 68 -

decided its move, it set the Text value to ·0" and let the

change method set the Tag value to -1. This technique

allowed the human to see the symbolic values and the game

to apply its algorithms to the numeric values of the same

objects.

The Visual Basic's capability to allow creation of an

indexed array of identical visual objects was exploited in

the implementation. Specifically, the ·object_Change"

method (mentioned earlier) was implemented as a completely

generic subroutine. This routine was then attached to the

first cell that was created for the game board. The other

eight cells were added as indexed ·clones" of the first

one. In this fashion, all nine of the individual (indexed)

text cells on the game board shared the same (identical)

subroutine for handling changes in the value of a text

cell. Thus, the code fragment shown below was written once

and reused eight times with no additional programming

required:

Sub txtCell_Change (Index As Integer)

If txtCell{Index) . Text = "X" Then

txtCell(Index) . Tag = 1

ElseIf txtCell{Index) . Text = "0" Then

txtCell{Index) .Tag = -1

End If

- 69 -

End If

End Sub

5.2.3 Tic Tac Toe Implementation in Smart Elements

The listings and screens for the Smart Elements version of

Tic Tac Toe are provided as Appendix F. There are four

parts in the appendix, one for each type of information.

The first part is simply a printout of the GUI screen for

the application. The second part contains the Open

Interface definitions of that screen and the visual objects

it contains (saved as TTT.RC) Since the Open Interface

scripts are formatted in an unfriendly manner in the ".RC"

file, a manually edited listing of the scripts is also

included. The third part presents the Nexpert Object

"source code" for the Knowledge Representation Scheme

(i.e., the Classes, Objects and Properties and how they are

connected to one another). This part is a combination of

screen printouts from the browsers and editors of the

development environment plus a textual listing of the

Knowledge Base (saved as TTT.KB). The fourth part is the

Nexpert Object "source code" for the rules and methods used

to provide the behavior of the application. Once again,

this part is a combination of screen printouts from the

browsers and editors of the development environment plus a

textual listing.

- 70 -

To use the Smart Elements version of Tic Tac Toe:

• Start Smart Elements (this requires a security key)

• Load the Tic Tac Toe Knowledge Base (TTT.KB) i this

establishes the gaming engine in Nexpert Object

• Load the Tic Tac Toe compiled resource file (TTT.DAT) i

this establishes the GUI engine in Open Interface

• Navigate to the Open Editor main dialog (first, display

the Resource Browser, navigate to the "Win" resource,

and double-click on it to start Open Editor, which will

display the Tic Tac Toe window in development mode

• Run the application by clicking on the "Test" button

• You may exit the application at any time either by

clicking on the "Quit" button or by double-clicking on

the system icon (the bar in the upper left corner of the

window)

• You may click on any cell to make your first move, or

Click on the "You Go First" button if you want the game

to make the first move

• You will always be "X" and the game will always be "0"

• Notice that the mouse cursor icon changes whenever it is

placed over a mouse-sensitive region of the game board.

• After each move by the game, you may select another

empty cell for your move

• Notice that the game will not allow you to make two

simultaneous moves or put your "X" in an occupied cell

- 71 -

• The game will notify you of the final result when there

is "three in a row" or when there are no more moves

• The current ~~ate of the game is displayed for

information purposes and to give you something to do

besides fume over the fact that the game cannot be

defeated

Implementing Tic Tac Toe in Smart Elements was a truly

enjoyable experience. Although several dead ends and need

for work-arounds were encountered, all in all, the

environment delivered on the productivity and visualization

benefits touted for a high-end visual programming tool.

There was perhaps a factor of more than 5 times on

productivity over the Visual Basic implementation.

Incremental development in an object oriented tool

environment also paid rewards. The most dramatic example

was development of the part of the gaming engine that

manages the state of the game board (i.e., the sums of the

eight rows, columns and diagonals). Once the prototype

(one row of game board) was operating correctly, it took

less than 15 minutes to create a fully operation game

board. This rapid scalability was due to the self-

maintaining quality of the board objects achieved through

inheritance of generic methods. All that was required was

to clone the other six cells, clone the other seven

- 72 -

"summation" objects and connect the appropriate three cells

to the corresponding summation object. It worked on the

very first try, requiring not one line of new code and not

one session of debugging.

The concept of Pattern Matching in Nexpert Object was used

extensively in the generic methods mentioned above. For

example, the conditional (IF clause) of one of the rules

was:

(= «lsumsl>.Sum) 2)

This says "If the .Sum property of any child of the Sums

Class equals 2 (i.e., two "X"'s), then put the name of that

object in a list." That list can then be used in

subsequent operations in that rule and can be passed as an

argument to a method, as seen in the action (THEN clause)

of that same rule:

(SendMessage ("mthdPickLastCell")

(@TO=lcellsl .Vali@ARG1=<ISumsl>i))

This says "Send a message to the .Val property of all

children of the Cells class, and invoke the PickLastCell

method, with the previously generated list, locally known

as <ISumsl>, as an argument. II The method, expecting as an

- 73 -

argument a list of objects with one member whose .Val

property is 0, then sets off to identify its name (remember

that for a summation to have been equal to 2, two of the

cells in that row, column or diagonal must have been filled

with a 1, leading the knowledge that the third must still

be empty). Note that the same method is used by the rule

seeking a row, column, or diagonal equaling -2 (i.e., two

"O"s) to identify the empty cell.

One of the challenges of implementing Tic Tac Toe in Smart

Elements involved the need to mold the (tool-independent)

design into a distributed processing architecture. This

rethinking was required because the GUI engine (in Open

Interface) and the gaming engine (in Nexpert Object) are

completely independent processes communicating through a

software bridge. Thus, the design had to be augmented to

flesh which jobs should be done inside which process and

how the necessary inputs and outputs of each process should

be communicated to the other.

- 74 -

Chapter 6

System Architect to Visual Basic Bridge Prototype

One of the current trends (discussed in Section 7.2) has to

do with the merging of CASE tools and VPTs. This trend

embraces the concept of automatic programming. Indeed,

System Architect today can automatically generate SQL data

base schema from a data model built in the tool. However,

many other implementation aspects remain a manual process

in all but the most advanced tools. One such aspect is

that of graphic screen design and implementation. System

Architect provides a component for "painting" a Graphic

User Interface screen and then automatically generating a

generic MSWindows dialog file (which is characterized by a

".DLG" extension). Unfortunately, Visual Basic does not

recognize such dialog files, but rather, uses its own file

format for storing user interface data (characterized by a

".FRM" extension). Therefore, the author created a

prototypical bridge program, named SA2VB.EXE, which

automatically generates Visual Basic Forms (*.FRM) from

screens (*.DLG) generated using System Architect. The

purpose of this effort was to demonstrate that such bridges

are possible, are practical and should be pursued as part

of the maturation process of these tools.

- 75 -

6.1 SA2VB.EXE Design and Scope

To design a GUI translator, one must first understand the

syntax, coordinate system, and naming conventions used on

both sides of the translation (i.e., source and target).

Several reference documents were digested in order to pin

down these topics on the Windows Dialog side [Microsoft92]

[Petzoid92] [SysArch94B]. On the Visual Basic side, these

topics primarily were discovered by "reverse engineering"

example Forms, with some help from the Programmer's Guide

[Microsoft93]. For example, one can populate a form

(window) with an assortment of controls (widgets) each

having an assortment of options selected and then examine

the ".FRM" file for that form to discover the

representation scheme.

Because of the difference in coordinate systems between

System Architect and Visual Basic, the size and location

parameters had to be converted. The algorithms for doing

this were applied as each parameter was handled. In

Windows dialog files, x-coordinates and width parameters

are based on 1/4 of an average character width while y-

coordinates and height parameters are based on 1/8 of an

average character height [Petzoid92]. For standard Windows

GUI applications, a character is 8 units wide and 16 units

high, thus making the coordinate system symmetrical in both

axes. In Visual Basic, the default coordinate system uses

- 76 -

"twips," which are defined in terms of size at 1440 twips

per logical inch [Microsoft93, pp. 353-354] .. Visual Basic

on-line help, under "ScaleMode Property," further explains

that a standard character is 120 twips wide and 240 twips

tall. For most situations, the conversion algorithm was

simply the parameter's dialog-value times 30, which is a

good approximation for converting character height and

width fractions to twips (i.e., 120 twips/char width + 4

dialog units/char width or 240 twips/char height + 8 dialog

units/char height). The main window was the exception,

requiring the height and width to be offset by an

additional 360 and 60 twips, respectively, to account for a

slight difference in representing the origin of the window.

Since there are an enormous number of controls and options,

the scope of the translator was limited to the window

itself and three fundamental control types: Text Edit

Boxes, Pushbuttons and Static Text. The recognized options

for the main window and these three controls are summarized

in Table 3. Other design decisions were to implement the

bridge as a DOS-based utility program using Borland Turbo

C++, Version 1.01 [Borland91B], to accept the source file

name as a command line argument and to output the resulting

Visual Basic file with the name "out.frm".

- 77 -

Dialog Items Recognized Options

Main Window Size/location
No Border
Fixed Single Border
Thick (sizable) Border
Control Box (the menu box in upper left corner)
Maximize Button
Minimize Button
Caption text

Text Edit Box Size/location
Default text
Vertical Scroll Bar
Horizontal Scroll Bar
Both Scroll Bars
Multiline
Right Justified
Left Justified
Centered
Border Box

Pushbutton Size/location
Caption text
Default button

Label (Static Text) Size/location
Label text
Right Justified
Left Justified
Centered

Table 3: SA2VB Scope Matrix

6.2 SA2VB.EXE Implementation and Testing

The source listings for SA2VB.EXE can be found in Appendix

G. The program opens the source file (using fopen) and

scans it word by word (using fscan) to identify and test

each token. Because the possible tokens are well

constrained, the program was written using statically

defined variables (up to 256 characters) to represent each

word. When an in-scope item is encountered, the program

- 78 -

appends its Visual Basic equivalent to the output file

(using fprint). The program is written such that it

harmlessly ignores out-of-scope tokens.

The program first sets up the window and its options, and

then recursively seeks out and handles the controls and

their options. The coordinate algorithm discussed earlier

is applied as each control is handled; however, a defined

constant, FACTOR, is used in case a non-standard video

configuration creates a need for a different conversion

factor. When the end token is encountered, the program

wraps up out.frm and closes out the input and output files.

The program was tested using several cases designed to

exercise its various features. In addition, randomly

selected System Architect screen files developed by various

employees of PathTech Software Solutions, Inc., were

converted to ensure that the program could handle "real

world" conditions.

6.3 SA2VB.EXE Application

To use SA2VB.EXE, one must first go into System Architect

and use its "Graphic Screen" module to define a user

interface. This is done by dragging, dropping and shaping

the window and its components and by filling in the details

- 79 -

for each component in "behind the scenes" dialog boxes.

These dialog boxes, called up by either double-clicking on

the graphic component or by clicking the right mouse button

on it, are where the various options are selected. Once

the screen image and its properties are satisfactory, one

must then invoke the System Architect "Generate Dialog"

feature. This causes System Architect to automatically

create a Windows standard compliant ".DLG" file containing

the appropriate control parameters and definitions.

Once a valid ".DLG" file is available, one must shell out

to DOS and execute SA2VB.EXE with the dialog file as a

command line argument, as follows:

SA2VB TEST.DLG

Next, one must launch Visual Basic and add the file named

"OUT.FRM" (this is found under the "FilelAdd File" menu) .

Finally, the newly created user interface can be displayed

and examined (and later saved under a meaningful name) by

double-clicking on "OUT.FRM" in the Project Window.

This process was carried out for numerous test files, as

discussed earlier. One example, showing the image and file

listing before and after conversion, is included as part of

Appendix G.

- 80 -

Chapter 7

Conclusions

The conclusions which can be drawn from this research

effort have been divided into four areas of discussion.

The first points to the observations collected during

construction of the test bed. The second examines the

current trends in the literature as they relate to this

effort. The third section offers a series of guidelines

aimed at bridging the gap between the subject technologies.

The last summarizes the results and findings of the overall

effort.

7.1 Observation Results

As expected, a variety of instances occurred where subject

technologies worked in concert or in conflict. The self

observation forms which capture these instances are

collected in Appendix H. In addition, three colleagues who

regularly deal in the subject technologies were interviewed

to verify that the specific findings based on the test bed

could be reasonable generalized. The peer observation

forms are collected in Appendix I.

- 81 -

7.2 Anticipated Trends and Developments

Lowry forecasts the emergence of "knowledge-based software

engineering" where CASE tools will evolve to include

semantic content and where "software engineers will be

delivering the knowledge for generating software rather

than the software itself" [Lowry92] . Although well out of

this author's price range, Intellicorp's Object Management

Workbench (OMW) is well on its way to fulfilling that

forecast [Hanna94]. Based on a fully object-oriented

methodology known as Martin-Odell, OMW allows software

engineers to create analysis and design diagrams which are

directly executable and from which C++ source can be

generated and compiled when the time is right.

In early 1994, O'Brien expressed his concern that CASE tool

vendors were not keeping up with the rapid adoption of

event-based architecture, object-orientatiun, component-

based development and points to the need for a new

generation of CASE tools [O'Brien94]. If this is indeed

the case, the market need for new tools will draw them out

of the vendors, if not the current ones, then new ones who

crop up to fill the void [Linthicum94, Constantine95]. One

researcher, pondering how difficult it was to avoid

methodology obsolescence, envisioned a marriage of formal

software engineering techniques and visual programming

which he called Visual Software Engineering [Chang94].

- 82 -

The forerunner of such a marriage is automatic program

generation. This is a relatively mature technology for

non-visual setti~gs. However, automation of conceptual

models, often best candidates for visualization, is in its

infancy. Blum reinforces this belief as he classifies

software engineering methodologies according to whether

they are more concerned with conceptual modeling or

formalization, and then points to a gap between the two

[Blum94]. Indeed, it was the gap between GUI design and

implementation that spawned the idea for the SA2VB bridge

prototype that was discussed in Chapter 6. The (hopefully

interim) need for such utilities was underscored by Keuffel

as he described the techniques he used to narrow the gap

between Evergreen's EasyCASE and Microsoft FoxPro

[Keuffe194]. The off-loading of routine programming tasks

to end-users via "Wizards" is another concept that could be

carried into the software engineering domain (today's

Wizards are targeted at helping office workers create

custom charts, forms, layouts, etc.) and is a trend that

bodes well for the proposed marriage [Kiyooka95].

From the visual programming point of view, tools with more

and more power and flexibility are reaching the

marketplace. The most visual, such as IBM's VisualAge, are

empowered by full object orientation, an intuitive 4GL, and

support for relational data base concepts. VisualAge,

- 83 -

implemented in a combination of Smalltalk and itself

(making it both a tool and a language), offers visual

design and development of client/server applications,

including SQL schema generation and application

partitioning [Hanna94, Harding95].

The rapid growth in the use of visual programming tools is

being driven by their ability to deliver reasonably

transparent access to object-oriented programming and an

easier transition to event-based architectures, GUI front

ends, component-based development and the like [Jicha94,

Schmidt95). However, it is unlikely that even the best

visual programming environment can achieve its full

potential if it is not also delivering a sharable,

understandable, reusable, printable, widely accepted

software engineering methodology.

7.3 Guidelines for Development

This section of the thesis presents a collection of

guidelines for finding synergy and avoiding conflicts

between software engineering methodologies and visual

programming tools and languages. The guidelines that

follow are presented as a bridge to the day when CASE tools

and visual development tools are truly one in the same.

The guidelines are divided into the four major categories

- 84 -

of User Interface; DB Schema, Event-Based and/or Object-

Oriented Design, and Function Design.

7.3.1 User Interface

Look for CASE tools that can automatically generate the

Graphic User Interface "code" in the native tongue of the

Visual language/tool, thus avoiding duplication of effort.

If such a CASE tool is not available, or if a CASE tool is

not being used on the project, then consider using the

layout mode of the implementation language/tool as the

design tool. Most Visual Programming languages and tools

provide the capability to quickly sketch out a screen,

including titles, labels, and graphics, data presentation

and edit areas, and user control devices (e.g., pull-down

menus and buttons) .

Look beyond the obvious in stretching the features of the

tool to make it meet the specifications. For example, the

design may call for a text edit object with certain

behaviors regarding clicks or changes, but the tool may not

provide all of the desired behaviors for a text edit

object. However, a 1 x 1 spreadsheet or grid object looks

exactly like a text edit object and may provide enhanced

behaviors needed in the design. This guidance comes with

- 85 -

one caution, however. The benefit of stretching a tool may

reach a point of diminishing return, leading to excessive

labor costs and lost productivity.

Many languages/tools provide the ability to create custom

classes, objects or widgets. Doing such would provide the

ability to incorporate whatever "generic" attributes and

behaviors the object should have (e.g., a BoardCell in the

Tic-Tac-Toe application) and then create instances of it in

the User Interface. If the development team includes

strong computer science capability, then major extensions

can sometimes be coded using the underlying language of the

visual tool. For example, one can significantly alter the

features and behavior of IBM's Visual Age using its

underlying language, Small talk. Similarly, one can extend

Visual Basic by writing their own so-called "custom

controls" (identified by a ".VBX" extension) using C.

Establish a GUI object naming convention which expresses

the type of object, whether it is native or derived and

which options apply. Some object types are pervasive

enough to now be considered generic, such as a text edit

object or a combo box object. If the implementation tool

is known, then the naming convention can be more explicit

in how it represents the tool's objects and their options.

An example is shown in Table 4.

- 86 -

GUI Object Naming Pattern

Simple text edit tedObjectName

Specialized (i. e. , derived) projXtedObjectName

text edit

Delete Record Button delbtnObjectName

Delete Record Button, with delbtn?ObjectName

"Are You Sure?" flag

Table 4: Example Object Naming Convention

7.3.2 DB Schema

When selecting the data base engine and CASE tool for a

project, the compatibility of one with the other should be

an explicit selection criterion. However, this may spawn a

debate regarding whether a CASE tool should influence the

data base to be selected. Ironically, the CASE tool is

often selected before the data base engine is selected,

since some level of design must be completed in order to

specify the data base requirements. This problem can be

circumvented by using a CASE tool whose schema generator

supports a wide variety of data base products and

technologies. Chances are, there will be a match between

the "best" data base engine based on the design

requirements and those which are compatible with the CASE

tool. If such good fortune fails to arise, then

- 87 -

consideration should be given to switching to a CASE tool

that does support the data base of choice, since the

project will still be early in its life cycle and the cost

of switching CASE tools may be less than that of finishing

the project with mismatched tools. (Of course, if the data

base has been cast before the project begins, then select a

CASE tool that provides a schema generator for it.) For

example, Visual Basic now supports Microsoft Access 2.0 and

the System Architect CASE tool can generate a "vanilla" SQL

that can be used with minor editing to automatically create

the data base structures.

Incremental development (a.k.a. Spiral Model and Software

Accretion) is becoming a common strategy, especially when

using modern tools and languages such as those under

investigation. One challenge of this strategy is frequent

design changes based on "lessons learned" from the prior

increment. This, in turn, creates difficulties in keeping

the design synchronized with the current version of the

software. For synchronizing the design representation with

the "as-built" application during incremental development,

several approaches are suggested:

1. Settle on design conformity/leniency rules (i.e., how

far can the programmer deviate from the design without

invoking a redesign cycle) and design update

- 88 -

frequencies for manually synchronizing the design

(this approach applies whether or not a CASE tool is

being usee' .

2. This problem may be mitigated by deciding to carry a

minimum of detail in the design, leaving a great deal

of leeway for the programmer during implementation.

However, this approach adds a significant design and

documentation burden on the programmer. The

programming staff must be good at designing code

modules and be religious in the documentation of their

as-built code.

3. Select the CASE tool and data base such that reverse

engineering can be used to convey changes implemented

in the development tool back to the CASE tool.

Know your tool's presumptions about how an application will

be developed and go with the flow. By simply understanding

the expected sequence of development, one can streamline

the development process. Conversely, bucking the system

can easily cripple an otherwise useful tool. This is not

to say that one should use risky or unsatisfactory

development practices. And, of course, never, never, never

would I suggest that one change the problem to suit the

tool. However, if one approach is about the same as

- 89 -

another, then let the expected synergy with the development

tool make the decision. (This, in turn, means that someone

on the development team must know, or be able to find out,

how the tool expects the problem to be tackled.) For

example, ObjectVision assumes the sequence of development

will be: 1) Layout the User Interface, 2) Program the

Operational Behaviors, and 3) Create/Connect the Data

Base(s). When this pattern is followed, the data base

back-end practically "writes itself" since ObjectVision

drafts a "straw man" version of the data base schema based

on the existing GUI objects. It even suggests data types

and length based on how its associated GUI object has been

laid out. Thus, the developer must merely remove or edit

the schema elements. If one begins by laying out the data

base, every element will have to be put in by hand. This

example should be contrasted with PowerBuilder, which

presumes that a data base already exists and attempts to

aid the developer in building the front end and which can't

do much more than sketch out user screens unless an

underlying data base is actually available.

7.3.3. Event-Based and/or Object-Oriented Design

All of the visual programming tools and languages

investigated for this effort employed event-based

processing and object-oriented programming at least to some

- 90 -

degree. Some just scratch the surface of these non-

traditional programming paradigms (e.g., Visual Basic)

while others are quite mature (e.g., Smart Elements).

Thus, it is necessary to discuss potential conflicts and

synergies which arise not because of the visual nature of

the tool or language, but due to the intrinsic use of these

emerging programming paradigms. Further, if the

implementation tool/language is in fact known at design-

time, avoid fighting the language; it is better to adapt

(limit) the design methodology to take advantage of

whatever advanced features are available (e.g., object-

orientation, or event-based processing) and use procedural

or conventional approaches for the balance. Two examples

of such prudence follow:

1. When Visual Basic is known to be the implementation

language, the design should be geared to have only one

property per object causing event-based behaviors to

execute, since the "Tag" property does not spawn

events and no other value-properties can be added.

(This example presumes that the developer is not a C

programmer capable of constructing a custom control.)

2. When Visual Basic is known to be the implementation

language, one should avoid the use of objects other

than those destined for the User Interface, since

- 91 -

Visual Basic does not support OOP in the general

sense. Another approach (not tested) is to create a

Virtual Form to hold objects which will be used

internally but never actually displayed to the User;

this would in essence "trick" Visual Basic into having

a collection of objects for use (literally) "behind

the scenes."

If you are going to use an object-oriented tool to

implement an application, Go For The Gold in the design

process. Craft Methods that are as generic as possible.

Apply them as high in the hierarchy as possible. Take full

advantage of classification structures and let the benefits

of OOP shine through.

For fully equipped OOP environments, it may be preferable

to keep (reasonably related) communication links between

major system modules simple (like a "pinch point"). A

single, simple message from one module to the other is easy

to follow and debug if problems do arise. The target

method can then spawn however complex a set of processes as

are required (see Figure 9). This advice rrlay also be

useful in designing communications between modules in a

distributed application using a client/server architecture.

- 92 -

Job 1

Job 2
Module A ModuleB Module A Module B

Job 3 OneMsg
(tagged to

Job 4 convey
4 Jobs)

Figure 9: Individual versus Coalesced Messaging

Smart Elements does not provide a vehicle to explicitly

notify user interface objects when they to be updated.

Note that for objects having a one-to-one correlation

between the knowledge base and user interface, it does

provide a linking mechanism; however, it is often the case

that one would want to send a message from one Knowledge

Base object to a non-correlated GUI object. This type of

messaging is provided in the other direction. In the Tic-

Tac-Toe application, the Knowledge Base and GUI objects

could not be linked because the object value in the GUI was

symbolic (X, 0 or <space», whereas in the Knowledge Base,

the value was numeric (+1,-1 or 0).] The workaround used

in the Tic-Tac-Toe application causes a great deal of extra

work, since every interface object must be "pulsed" after

each call to the Engine to see if they need to "do

anything." Other tools suffer from similar front-end/back-

end communication gaps, such as opportunistically advising

a User Interface when a stored procedure has placed new

- 93 -

data into the data base. In a full strength application,

where performance could be in jeopardy, a more focused

(i.e., intelligent rather than exhaustive) messaging system

would have to be crafted. For example, one could add a

"black board" table into which the data base "engine" could

place a list of updated data objects and which an Interface

method could use to update just those Interface objects

whose data values had changed. Of course in the Smart

Elements application, the built-in linking mechanism could

have been used "as is" and then have an Interface method

convert the numeric value into its symbolic equivalent.

7.3.4 Function Design

Consider the use of a tool that provides an explicit rule-

based paradigm, even if the application is not an expert

system or does not require inferencing. The rules can be

used to expedite control strategy/logic or to explicitly

represent the business rules to be followed. The

visualization of such rules can be a powerful communication

tool for use with the internal customer how the program

will behave. Visualization of processing logic can also

accelerate the validation of the program by a testing or

design review group.

- 94 -

To accommodate nuances and/or unknowns of the

implementation tool, the design must be kept generic (tool-

free) down to ~ point. Then, if the tool and its special

needs are known, a layer of specialization can be added.

(Note that the Gane & Sarson process modeling technique

uses a drill-down approach to specificity, thus making it

suitable for this approach.)

For applications which include an underlying data base

(probably relational), consider using a hybrid of software

modeling methodologies. In particular, Gane & Sarson Data

Flow Diagrams for high-level context and major processes,

Entity-Relationship Diagrams for detailed data schema, and

Coad/Yourdon Event Diagrams for events make a good

combination.

7.4 Summary of Findings

Table 5 is a matrix which presents the observation results

(from Section 7.1 and appendices H and I) mapped into the

functional categories developed in Section 7.3. Thus, the

table presents the observation frequency of conflicts and

synergies as a function of Application and Category. The

table indicates that, in general, the current state of the

technology provides more instances of conflict than of

synergy. Also note that the most advanced tool, Smart

- 95 -

Cate ories
User DB Event-Based/ Function

Application Definition Interface Schema 00 Design Design
Cnflct Syn Cnflct Syn Cnflct Syn Cnflct Syn

Customer Support Tracking 2 12 2
System (Visual Basic with CASE-
based DFDs and ERDs)
Customer Support Tracking 2 6 3 2
System (ObjectVision with CASE-
based DFDs and ERDs)
Tic Tac Toe (Visual Basic with 2 1
OOND)
Tic Tac Toe (Smart Elements with 2 2 5 1
OOA/D)
Peer Observations (with CASE) often often often often usual
Peer Observations (CASE not often
relevant)

Table 5: Frequency of Conflicts and Synergies

Elements, provided more instances of synergy than conflict.

Perhaps this is an indication that these technologies are

indeed beginning to mature.

Applying a software engineering methodology provided

benefits during the design and implementation of the test

bed applications. The design process surfaced data

structure and behavioral issues that would have not

otherwise have been discovered until the debugging stage

had begun. As such, there seemed to be considerably fewer

hours spent writing and debugging code compared to other

programming projects undertaken by this author. When

implementation problems did occur, reference back to the

design documents usually helped solve them. Although not

formally studied, the author also believes that the

- 96 -

conclusions of the research would have been the same no

matter which of the mainstream software engineering

methodologies had been chosen. Thus, the decision to use a

software engineering methodology is more critical than the

choice of which one or whether to use a CASE tool to

implement it.

Using a visual programming language or tool provided

benefits during the development of the test bed

applications. It would seem that this would always be the

case if the application has a visual component (e.g., a

GUI) or is such that visualization of its design and/or

operation is important (e.g., model-based reasoning or

simulation). Productivity was higher when using the tools

than when using Visual Basic. However, not all tools offer

the same flexibility. For example, for ObjectVision to

deliver a net benefit, the application must closely fit the

expected mold. Conversely, Smart Elements can be made to

look and feel more like a language than a tool when the

built-in functions and features are not sufficient.

Ironically, even though it was manipulating GUI resource

files, the SA2VB bridge itself had no visual dimension to

it. Thus, it was implemented in a non-visual development

environment. Further, since it required no complex data

structures and no complex architecture, hand-marked example

- 97 -

input and output files and hand-sketched logic diagrams

were the extent of analysis and design required to solve

the problem. The lesson here is that, as powerful as CASE

tools and visual development environments may be, there are

still cases where the complexity of the problem does not

warrant the investment required to procure and learn how to

use them.

Interpolating between the test bed applications, which

clearly benefited from both the application of software

engineering methods and visual development tools, and

bridge, which did not, leads to the possibility that there

lies a class of problems which can and should be solved

using the visual development environment alone. An example

of such might be the bridge application with the added

requirements of a GUI-based file browser and preview

capability. Conversely, a "pure" data base application

(perhaps CSTS without the call timer and with a simplified

user interface) could be designed in a CASE tool and

generated by it with little or no additional programming.

However, the relative number of problems whose solution fit

one of these profiles may be small, such that the best

advice is to establish a development environment that

provides a flexible, cooperative suite of software

engineering methodologies and visual programming languages

and tools. From there, standards can be developed as to

- 98 -

which tools and methodologies in the suite should be

applied to which problems.

Guidelines and utilities fashioned along the lines of those

presented in this thesis should be directly beneficial to

developers charged with delivering an application using a

visual language or tool while following a formal software

engineering methodology. This will be especially true for

projects involving a team of developers. Of more

importance, such guidelines and utilities are themselves

primary ingredients of the merged CASE and visual

programming environments of the future. Perhaps the

results presented here will facilitate the transition.

- 99 -

REFERENCES

[Blum94]
Blum, Bruce I., "A Taxonomy of Software Development
Methods," Communications of the ACM, 37, 11 (November
1994), pp. 82-94.

[Booch91]
Booch, Grady, Object Oriented Design with
Applications, The Benjamin/Cummings Publishing Company
Inc., 1991.

[Borland91A]
Borland ObjectVision version 2.1, Getting Started,
Borland International, Inc., 1991.

[Borland91B]
Borland Turbo C++ version 1.0.1, User's Guide, Borland
International, Inc., 1991.

[Braithwaite90]
Braithwaite, Kenmore S., Applications Development
Using CASE Tools, Academic Press, Inc., San Diego,
1990.

[Chang90)
Chang, Shi-Kuo, Visual Languages and Visual
Programming, Plenum Press, New York, 1990.

[Chang94)
Chang, Carl K., "Changing Face of Software
Engineering," IEEE Software, 11, 1 (January 1994), pp.
4-5.

[Coad/Yourdon90]
Coad, Peter and Edward Yourdon, Object-Oriented
Analysis, Prentice Hall, Englewood Cliffs, New Jersey,
1990.

[Coad/Yourdon91]
Coad, Peter and Edward Yourdon, Object-Oriented
Design, Prentice Hall, Englewood Cliffs, New Jersey,
1990.

[Constantine94]
Constantine, Larry, "Modeling Matters," Software
Development, February, 1994, pp. 96-94.

- 100 -

[Constantine95]
Constantine, Larry, "Shapes to Come," Software
Develogment, May, 1995, pp. 96-95.

[Hanna94]
Hanna, Ma~y, "New Breed of 4GL Puts Pretty Face on CIS
Apps," Software Magazine, 14, 12 (December 1994), pp.
33-40.

[Harding95]
Harding, Elizabeth U., "Will IBM Make Smalltalk?,"
Software Magazine, 15, 2 (February 1995), pp. 21-22.

[Ichikawa90]
Ichikawa, Tadao, et aI, Visual Languages and
Applications, Plenum Press, New York, 1990.

[IEEE95]
Burnett, Margaret M., and David W. McIntyre, Guest
Editors for Feature Articles on Visual Programming,
IEEE Computer, 28, 3, (March 1995), pp. 14-66.

[Jicha94]
Jicha, Henry, "Object Technology Explodes with Visual
Programming," Object Magazine, 4, 4 (July-August
1994), pp. 33-36.

[Keuffel94]
Keuffel, Warren, "MicroCASE: A Grass-Roots Strategy
for Deploying CASE Tools," Software Develogment,
February, 1994, pp. 37-42.

[Kiyooka95]
Kiyooka, Gen, "Ode To AppWizard," Software
Development, January, 1995, pp. 79-81.

(Layout92]
Layout version 3.03, Layout For Programmers, Objects,
Inc. 1992.

[Linthicum94]
Linthicum, David S., "Get the Picture with Visual
Programming," Apglication Development Trends,
February, 1994, pp. 52-58.

[Lowry92]
Lowry, Michael R., "Software Engineering in the
Twenty-First Century," AI Magazine, 14, 3 (Fall 1992),
pp. 71-87.

- 101 -

[Martin89]
Martin, James, Information Engineering. Book I:
Introduction, Prentice Hall, Englewood Cliffs, New
Jersey, 1989.

[McConnel193]
McConnell, Steven C., Code Complete: A Practical
Handbook of Software Construction, Microsoft Press,
Redmond, Washington, 1993.

[Microsoft92]
Microsoft Windows Software Development Kit,
Programmer's Reference, Volume 4: Resources, Chapter
7, "Resource Formats Within Executable Files," and
Chapter 13, "Resource-Definition Statements,"
Microsoft Corporation, 1992.

[Microsoft93]
Microsoft Visual Basic Programming System for Windows
Version 3.0, Programmer's Guide, Microsoft
Corporation, 1993.

[NeuronData94A]
Nexpert Object version 3.0, Nexpert Object: User's
Guide, Neuron Data, Inc., 1994.

[NeuronData94B]
Open Interface version 3.0, Open Interface: User's
Guide, Neuron Data, Inc., 1994.

[NeuronData94C]
Smart Elements version 2.0 Introduction Manual, Neuron
Data, Inc., 1994.

[NeuronData94D]
Nexpert Object version 3.0, Functional Description,
Neuron Data, Inc., 1994, pp. 71-80.

[O'Brien94]
O'Brien, Larry, "CASE's Gordian Knot," Software
Development, February, 1994, pp. 7-10.

[Petzoid92]
Petzoid, Charles, Programming Windows 3.1 PART 3 Using
Resources, Chapter 10 "Dialog Boxes," <???>, <???>,
1992.

[Pressman92]
Pressman, Roger S., Software Engineering: a
Practitioner's Approach, Third Edition, McGraw-Hill,
Inc., New York, 1992.

- 102 -

[Rich93]
Rich, Charles, and R. C. Waters, "Approaches to
Automatic Programming," Advances in Computers,
Marshall C. Yovits, ed., Academic Press, Inc., San
Diego, 1993.

[Schmidt95]
Schmidt, Jennifer, "Choice of Visual Tool Depends on
Focus," Application Development Trends, April, 1995,
pp. 31-40.

[Shu88]
Shu, Nan C., Visual Programming, Van Nostrand Reinhold
Company, New York, 1988.

[SysArch94A]
System Architect User Guide & Reference Manual, Popkin
Software & Systems Incorporated, 1994.

[SysArch94B]
System Architect Screen Painter, Section 5.4
"Generating .DLG and .H Files," Popkin Software &
Systems Incorporated, 1994.

[West92]
West, M., "How Object Oriented Is Your Visual
Programming Tool?," GartnerGroup Applications
Development & Management Strategies Research Note, T-
700-794, November 23, 1992.

- 103 -

APPENDIX A

Customer Support Tracking System Design Package

CSTS Requirements Definition Statement

Upon startup, the system shall present to the user a form-

like data entry screen, plus several options available from

either menus or buttons. The main data entry screen shall

be named "Customer Support Tracking System" and shall

provide a place for a User ID (which the system must

guarantee as unique), Company Name, Address (two lines,

plus City, State, and Zip+4), Country, Telephone (with 5

digit extension) and FAX, Contact Name and Title, Date

First Product Shipped and the Total Support Time rendered.

Information entered using this screen shall be stored in a

CUSTOMER data base using User ID as the primary key. The

system shall be designed such that a Customer's primary

record may be both created and maintained using this same

screen. The Total Support Time area shall not be user

editable, but rather shall be calculated by the system each

time support is provided; the system shall provide an

"Update Total Support Time" menu option under a

"Maintenance" menu bar item in case it must be overridden

- 104 -

by the user. The other functions under "Maintenance" shall

be "Delete Company" and "Delete Licensee." The Main screen

shall provide a <Support Calls> button which shall take the

user to the "Customer Support" screen. The Customer

Support screen shall also appear form-like and shall repeat

the Licensee ID and Contact Name from the customer's

primary record. It shall automatically provide the Support

Date and Time for the support currently being provided,

plus a scrollable, unlimited, editable text field for

capturing Comments, the Elapsed Time. and a user definable

Combo list of Support Types. The Customer Support screen

shall provide buttons for starting and stopping a timer and

for returning to the Main screen. The system shall

maintain a SUPPORT data base containing the data from

individual support entries with the Date/Time stamp as the

unique Primary Key and the User ID as the Foreign Key (to

CUSTOMER). Returning to the Main screen shall also cause

the system to increment the Total Support Time field by the

amount of time in the Elapsed field.

- 105 -

Context
Customer Support Tracking System

Users

0.0' ~
P1

Customer
Support

Tracking Syst.

,~

Reports

- 106 -

~ 1\ Users are enabled/responsible
for maintenance and reporting

as well as using the system
during a support call

Major Processes
Customer Support Tracking System

P1.3

Generate
Reports

(Not
Implemented)

oeo

080
P1.1

Browse!
Maintain

Customer Data

V

CSTS Data Stores

I D I
Licensees

I D I

I D I
Companies

I D I

- 107 -

0.0
P1.2

Browse!
Handle

Support Calls

)'

"

Support Calls

Problems

1 .1. Browse! Maintain Customer Data

P1.1.1

Browse/Edit
Licensees

l->D

o

P1.1.2

Add New
Licensee

Licensees

Companies

P1.1.3

BrowselEdit
Companies

-

- 108 -

P1.1.4

Add New
Company

1.2. Browse/Handle Support Calls

P1.2.1

Browse/Edit
Suppport Calls

P1.2.2

Begin New
Support Call

CSTS Data Stores

P1.2.3

End New
Suppport Call

'-----l~~·l D 1 Support Calls -<_

~-----li D I Licensees <E:-----'
L---'--____ _

- 109 -

Process Definitions
Page 1 3/06/95 6:18:45 pm

Name, Add New Company
Purpose:
This process finds the last record in Companies, reads its value for CMPY_LOC_ID,
increments by 1, creates a new record with that ID sets the current record pointer to it,
and returns control to the Browse/Edit Company Information process.

Documentation:
Responsible:
Transaction Frequency

Description:

Name: Add New Licensee
Purpose,

StartDt: CoropDate:

This process allows the user to enter a new Licensee ID and then ensures that it is unique.
If so, this process creates a new (empty) licensee record with that ID. If not, it sets the
current record pointer to that licensee. Control is then returned to Browse/Edit Licensees.

Documentation:
Responsible,
Transaction Frequency

Description:

Name. Begin New Support Call
Purpose:

StartDt:

Save current time stamp. Start timer object if appropriate.

Documentation:
Responsible:
Transaction Frequency

Description.

Name. Browse/Edit Companies
Purpose:

StartDt:

CoropDate:

CoropDate.

The Licensee and Company tables shall be joined via Company/Location ID(CMPY~LOC_ID) .
Company data may be edited directly. The user shall have the ability to page up and down
thru the records, go to the top or the bottom of the records. The user may invoke commands
to "Accept" (store changes), "Cancel", or "Add New Company".

Documentation.
Responsible.
Transaction Frequency

Description.

Name. Browse/Edit Licensees
Purpose:

StartDt. CoropDate:

The Licensee and Company tables shall be joined via company/Location ID(CMPY_LOC_ID) .
Licensee data may be edited directly; editing of Company data shall require the user to .
invoke a "Change Company Info" command. The user shall have the ability to page up and down

110

Process Definitions
Page 2 3/06/95 6:18:45 pm

thru the records, go to the top or the bottom of the records, delete a Licensee, or delete
a Company. The user my invoke commands for "Add New Licensee", "Add New Company" or
"Support Call".

Documentation.
Responsible.
Transaction Frequency

Description.

Name. Browse/Edit Suppport Calls
purpose.

StartDt. CompDate.

Filter records based on current LICENSEE_ID in Licensees. Support data may be edited
directly. The user shall have the ability to page up and down thru the records, go to the
top or the bottom of the records, or delete a record. The user my invoke commands for "New
Support Call", or "Done".

Documentation.
Responsible:
Transaction Frequency

Description.

Name. End New Suppport Call
PUrpose.

StartDt. CompDate.

Clock Duration of Support Call and Store its value (in minutes) in SPRT_TM of the cur~ent
(new) support record. Calculate a new summation of the support time for the current
Licensee and store it in LIC_TOT_SPRT_TM of that licensee's master record. Close the form
and return control to Browse/Edit Customers.

Documentation:
Responsible.
Transaction Frequency

Description.

Name: Maintain Customer Data
PUrpose.

Documentation.
Responsible.
Transaction Frequency

Description.

StartDt: CompDate:

StartDt. CompDate.

111

CSTS Data Stores

Licensees
-Key Data--------I
LlCENSEE_ID [PK1]

Problems
-Key Data--------I

PRBM_CD [PK1]
-Non-Key Data ------1

PRBM_DESC
=1=

Supports

CD
/

Support Calls
-Key Data--------I

LlCENSEE_ID [PK1] [FK]
SPRT _DATE [PK2]
-Non-Key Data ------
SPRT_CMT
PRBM_CD [FK]
SPRT TM

\1/

CD

Has Support Calls

-Non-Key Data -------~I+--1 _________ -.---1
CMPY _LaC_I 0 [FK] I r
LlC_ TOT _SPRT _ TM t--..."
LlC_ TLP _NB v \.J

LlC_ TLP _EXT
LlC_CNTC_1 ST _NM
LlC_CNTC_LAST _NM
LlC_CNTC_lTL
LlC_FNCNB
LlC SHIP DT

Works for a Company

- 112 -

=1=
Companies
-Key Data--------I

CMPY _LaC_I 0 [PK1]
-Non-Key Data -'-0 ------1
CMPY_NM
CMPY_AD1
CMPY_AD2
CMPY _CITY _NM
CMPY_ST_CD
CMPY_CNTRY
CMPY_ZIP
CMPY EXT ZIP

CSTS Data stores

companies
Volwne:
Comments:

Purpose:

CMPY_ADl
Type: CHARACTER
Domain:
Description:
Customer Address Part One

Comments:

CMPY.J<D2
Type: CHARACTER
Domain:
Description:
customer Address Line Two

Comments:

CMPY_Cl:TY_NM
Type: CHARACTER
Domain:
Description:
Customer City Name

Comments:

CMPY_CNTRY
Type: CHARACTER
Domain:
Description:
Customer Country

Comments:

CMPY_EXT_Zl:P
Type : INTEGER
Domain:
Description:
Plus 4 Zip Extension

Comments:

CMPY_LOC_l:D

Entity
Normalize: T

Width: 40
Length:

Width: 40
Length:

Width: 25
Length:

Width: 15
Length:

Width:
Length:

Type: INTEGER Width: 4
Domain: Length:
Description:
Unique Company/Location ID; automatically incremented as new record is added;
supports multiple users at same company and location, using the same license ID.

Comments:

CMPY_NM
Type: CHARACTER
Domain:

Data Store/Entity and Field Definitions (current)
As of 3/06/95

Width: 50
Length:

113

Page

CSTS Data Stores

Description:
Company name.

Conunents:

CMPY_ST_CD
Type: CHARACTER
Domain:
Description:
Customer State Code

Comments:

CMPY_Z:IP
Type: CHAR
Domain:
Description:
Customer zip Number

Comments:

Dat.a St.ore/Ent.ity and Field Definit.ions (current)
1\5 of 3/06/95

Width: 2
Length:

Width: 5
Length:

114

Page

Licensees
Volume:
Comments:

Purpose:

CMPY_LOC_ID
Type: INTEGER
Domain:
Description:

CSTS Data Stores

Entity
Normalize: T

Width: 4
Length:

Unique Company/Location 10; automatically incremented as new record is added;
supports multiple users at same company and location, using the same license 10.

Comments:

LICENSEE_ID
Type: CHARACTER
Domain:
Description:

Width: 28
Length:

Company's 10 which will be assigned when the Software package is shipped. This
number can be found in the runtime about box, for applications which support
embedded User IDs.

Comments:

LIC_CN"rC_1ST_NM
Type: CHARACTER
Domain:
Description:
Customer contact first name.

Comments:

LIC_CN"rC_LAST_NM
Type: CHARACTER
Domain:
Description:
Customer contact last name.

Comments:

LIC_CN"rC_TTI.
Type: CHARACTER
Domain:
Description:
Customer Contact Title Name

Cormnents:

LIC_FAX_NB
Type: CHARACTER
Domain:
Description:
Customer FAX Telephone Number

Comments:

Data Store/Entity and Field Definitions (current)
As of 3/06/95

Width: 20
Length:

Width: 20
Length:

Width: 40
Length:

Width: 14
Length:

115

Page

CSTS Data Stores

Type: DATE
Domain:
Description:

Width:
Length:

Shipping date for the original runtime package.

Comments:

LIC_TLP_EXT
Type: CHARACTER Width: 5
Domain: Length:
Description:
Customer Telephone Extension Number

Comments:

LIC_TLP_NB
Type: CHARACTER
Domain:
Description:
Customer Telephone Number

Comments:

LIC_TOT_SPRT_TM
Type: INT
Domain:
Description:

Width: 14
Length:

Width:
Length:

Total support time for this customer in minutes.

Comments:

Data Store/Ent.it.y and Field Definitions (current)
As of 3/06195

116

Page

Problems
Volume:
comments:

Purpose:

PRBM_CD

CSTS Data Stores

Entity
Normalize: T

Type: CHARACTER Width: 8
Domain: Length:
Description:
Problem Code will contain the code for the recurring instances of support given. for
example: problems with installation. or configuration.

Comments:

PRBM_DESC
Type: TEXT
Domain:
Description:
Description of a recurring problem.

Comments:

Data St.ore/Entity and Field Definitions (current)
As of 3/06195

Width:
Length:

Page

117

SUpport Calls
Volume:
Comments:

Purpose:

LICENSEE_ID
Type: CHARACTER
Domain:
Description:

CSTS Data Stores

Entity
Normalize: T

Width: 28
Length:

Company's ID which will be assigned when the Software package is shipped. This
number can be found in the runtime about box, for applications which support
embedded User IDs.

Comments:

PRB!CCD
Type: CHARACTER Width: 8
Domain: Length:
Description:
Problem Code will contain the code for the recurring instances of support given, for
example: problems with installation. or configuration.

Comments:

SPRT_CMT
Type: TEXT
Domain:
Description:

Width:
Length:

This is a memo field to contain the comment/reason for the support.

Comments:

SPRT_DATE
Type: DATE
Domain:
Description:
Contain the date of the support.

Comments:

SPRT_'l'M
Type: INT
Domain:
Description: •

Width:
Length:

Width:
Length:

Support Time will contain the duration of support time in minutes.

Comments:

Data Store/Entit.y and Field Definitions (current)
As of 3/06195

118

page

APPENDIX B

Customer Support Tracking System Visual Basic
Listings/Screens

r.;----------------------------------- - .. i= Customer Support Tracking System D;J
file Maintenance

~~~e~~~~ ~~ : : .! _____ :_----..... !! .... 
.• ' • licensees 2·. '.. :::: 11111 III:::: 

licensee Information ---------------------------, 

First Name: Telephone: I .... ______ ...J 

last Name: Extension: D 
Title: 

FAX Number: r'---------, 
Ship Date: Total Support Time Used: D Minutes 

Customer Support Tracking System Main Screen (Visual Basic Version) 

- 119 -



Main Form Object Definitions (CSTS.FRM) 

VERSION 2.00 
Begin Form CSTSMain 

Caption = "Customer Support Tracking System" 
ClientHeight = 6735 
ClientLeft = 360 
ClientTop = 1605 
ClientWidth = 8640 
Height = 7425 
Left = 300 
LinkTopic 
ScaleHeight 
ScaleWidth 
Top 
Width 

= "Form 1 " 
= 6735 
= 8640 

= 975 
= 8760 

Begin CommandButton btnSprtCall 
Caption = "Support Calls" 
Height = 495 
Left = 4440 
TabIndex = 40 
Top = 120 
Width = 1335 

End 
Begin Frame CMPYData 

BackColor = &HOOEOEOEO& 
Caption 
Height 
Left 
TabIndex 
Top 
Width 

= "Company Information" 
= 2895 

= 120 
= 18 

= 3600 
= 7935 

Begin CommandButton btnCoMaint 
Caption = "Delete Companies" 
Height = 615 
Left = 3480 
TabIndex = 9 
Top = 2160 
Width = 1935 

End 
Begin CommandButton btnChgCoInfo 

Caption = "Change Company Info" 
Height = 615 
Left = 5520 
TabIndex 
Top 
Width 

End 

= 10 
= 2160 
= 2175 

Begin Label Label2 
Caption = "Company Country:" 
Height = 255 
Left = 120 

- 120 -



Tablndex 
Top 
Width 

End 

= 38 
= 2520 
= 1575 

Begin Label Labell 
DataField = "CMPY_CNTRY" 
DataSource 
Height 
Left 
Tablndex 
Top 
Width 

End 

= "Licensees" 
= 255 

= 1680 
= 39 

= 2520 
= 1695 

Begin Label CompanyName 
DataField = "CMPY _NM" 
DataSource 
Height 
Left 
Tablndex 
Top 
Width 

End 

= "Licensees" 
= 375 

= 1560 
= 22 

= 480 
= 4815 

Begin Label CompanyAddrl 
DataField = "CMPY_AD1" 
DataSource 
Height 
Left 
Tablndex 
Top 
Width 

End 

= "Licensees" 
= 255 

= 1800 
= 23 

= 960 
= 4575 

Begin Label CompanyAddr2 
DataField = "CMPY _AD2" 
DataSource 
Height 
Left 
Tablndex 
Top 
Width 

End 

= "Licensees" 
= 255 

= 1800 
= 13 

= 1320 
= 4575 

Begin Label CompanySt 
DataField = "CMPY_ST_CD" 
DataSource 
Height 
Left 
Tablndex 
Top 
Width 

End 

= "Licensees" 
= 375 

= 6000 
= 14 

= 1680 
;:;; 375 

Begin Label CompanyCity 
DataField ;:;; "CMPY_CITY_NM" 
DataSource = "Licensees" 
Height = 375 

- 121 -



Left 
TabIndex 
Top 
Width 

End 

= 1440 
= 37 

= 1680 
= 2895 

Begin Label CmpyZPEXT 
DataField = "CMPY _EXT_ZIP" 
DataSource 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Licensees" 
= 255 

= 2760 
= 36 

= 2160 
= 615 

Begin LabellblCmpySt 
Caption = "Company State:" 
Height = 375 
Left = 4560 
Tab Index = 35 
Top = 1680 
Width = 1455 

End 
Begin Label IblCmpyCity 

Caption = "Company City:" 
Height = 375 
Left = 120 
Tab Index = 34 
Top = 1680 
Width = 1335 

End 
Begin LabellblCmpyAdl 

Caption = "Company Address:" 
Height = 615 
Left = 120 
TabIndex = 33 
Top = 960 
Width = 1695 

End 
Begin Line Line5 

BorderWidth 2 
Xl = 2400 
X2 2520 
YI = 2280 
Y2 

End 
2280 

Begin Label CompanyZip 
Alignment = I 'Right Justify 
DataField = "CMPY _ZP" 
DataSource 
Height 
Left 
TabIndex 
Top 

= "Licensees" 
= 255 

= 1320 
= 21 

= 2160 

- 122 -



Width 
End 

= 855 

Begin Line Line4 
BorderWidth 3 
XI = 7920 
X2 7920 
YI = 2880 
Y2 = 120 

End 
Begin Line Line3 

BorderWidth 3 
XI = 0 
X2 = 7920 
YI 2880 
Y2 = 2880 

End 
Begin LabellblHyph 

Caption = 
FontBold = -1 'True 
FontItalic = 0 'False 
FontName = "MS Sans Serif' 
FontSize = 12 
FontStrikethru = 0 'False 
FontUnderline = 0 'False 
Height = 255 
Left = 2280 
TabIndex = 15 
Top = 2160 
Width = 375 

End 
Begin LabellblCmpyName 

Caption = "Company Name:" 
Height = 375 
Left = 120 
TabIndex = 20 
Top 
Width 

End 

= 480 
= 1455 

Begin LabellblCmpyZP 
Caption = "Company Zip:" 
Height = 255 
Left = 120 
Tablndex 
Top 
Width 

End 
End 

= 19 
= 2160 
= 1215 

Begin Frame LicData 
Caption = "Licensee Information" 
Height = 2775 
Left = 120 
TabIndex = 16 
Top = 720 

- 123 -



Width = 7935 
Begin TextBox LicTST 

DataField = "LIC_TOT_SPRT_TM" 
DataSource 
Height 
Left 
TabIndex 
TabStop 
Top 
Width 

End 

= "Licensees" 
= 375 

= 6240 
= 30 
= 0 'False 

= 2040 
= 735 

Begin TextBox LicFAX 
DataField = "LIC_FAX_NB" 
DataSource 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Licensees" 
= 375 

= 5160 
= 7 

= 1320 
= 1695 

Begin TextBox LicTE 
DataField = "LIC_TLP _EXT" 
DataSource 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Licensees" 
= 375 

= 5160 
= 6 

= 840 
= 735 

Begin TextBox LicTN 
DataField = "LIC_TLP _NB" 
DataSource 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Licensees" 
= 375 

= 5160 
= 5 

= 360 
= 1695 

Begin TextBox LicSD 
DataField = "LIC_SHIP _DT" 
DataSource 
Height 
Left 
Tablndex 
Top 
Width 

End 

= "Licensees" 
= 375 

= 1560 
= 4 

= 2040 
= 2175 

Begin TextBox LicTtI 
DataField = "LIC_CNTC_TTL" 
DataSource 
Height 
Left 
MultiLine 

= "Licensees" 
= 615 

= 1560 
= -1 'True 

- 124 -



TabIndex 
Top 
Width 

End 

= 3 
= 1320 
= 2175 

Begin TextBox LicLN 
DataField = ":~~2_CNTC_LAST_NM" 

DataSource 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Licensees" 
= 375 

= 1560 
= 2 

= 840 
= 2175 

Begin TextBox LicFN 
DataField = "LIC_CNTC_1ST_NM" 
DataSource 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Licensees" 
= 375 

= 1560 
= 1 

= 360 
= 2175 

Begin LabellblLicTSTUnits 
Caption = "Minutes" 
Height = 255 
Left = 7080 
TabIndex 
Top 
Width 

End 

= 32 
= 2160 
= 735 

Begin LabellblLicTST 
Caption = "Total Support Time Used:" 
Height = 255 
Left = 3960 
TabIndex = 31 
Top = 2160 
Width = 2295 

End 
Begin LabellblLicFAX 

Caption = "FAX Number:" 
Height = 255 
Left = 3960 
TabIndex = 29 
Top = 1440 
Width = 1215 

End 
Begin LabellblLicTE 

Caption = "Extension:" 
Height = 255 
Left = 3960 
Tab Index = 28 
Top = 960 
Width = 1215 

- 125 -



End 
Begin LabellblLicTN 

Caption = "Telephone:" 
Height = 255 
Left = 3960 
Tab Index = 27 
Top = 480 
Width = 1215 

End 
Begin Label IblLicSD 

Caption = "Ship Date:" 
Height = 255 
Left = 360 
Tablndex 
Top 
Width 

End 

= 26 
= 2160 
= 1215 

Begin LabellblLicTtl 
Caption = "Title:" 
Height = 255 
Left = 360 
Tablndex = 25 
Top = 1560 
Width = 1215 

End 
Begin LabellblLicLN 

Caption = "Last Name:" 
Height = 255 
Left = 360 
Tab Index = 24 
Top = 960 
Width = 1215 

End 
Begin Line Line2 

BorderWidth 3 
Xl = 7920 
X2 7920 
YI 2760 
Y2 120 

End 
Begin Line Line I 

BorderWidth 3 
Xl 0 
X2 = 7920 
YI = 2760 
Y2 = 2760 

End 
Begin Label IblLicFN 

Caption = "First Name:" 
Height = 255 
Left = 360 
Tablndex 
Top 

= 17 
= 480 

- 126 -



Width 
End 

End 

= 1215 

Begin TextBox CompanyIDFK 
DataField = "Licensees.CMPY _LOC_ID" 
DataSource 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Licensees" 
= 285 

= 8040 
= 8 

= 1080 
= 495 

Begin TextBox LicenseeID 
Height = 495 
Left = 1440 
TabIndex = 0 
Top = 120 
Width = 2775 

End 
Begin Data Licensees 

Caption = "Licensees" 
Connect = 
DatabaseName = "C:\RA TFILES\THESIS\TEST_BED\ VB\CSTS\CSTS.MDB" 
Exclusive = 0 'False 
Height = 495 
Left = 5880 
Options = 0 
ReadOnly = 0 'False 
RecordSource = "select * from Licensees, Companies, Licensees INNER JOIN Companies ON 

Licensees.CMPY _LOC_ID = Companies.CMPY _LOC_ID order by LICENSEE_ID" 
Top = 120 
Width = 2175 

End 
Begin TextBox CompanyIDPK 

DataField = "Companies.CMPY _LOC_ID" 
DataSource 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Licensees" 
= 285 

= 8040 
= 11 

= 5760 
= 495 

Begin LabellblLicID 
Caption = "Licensee ID" 
Height = 255 
Left = 120 
TabIndex = 12 
Top 
Width 

End 

= 240 
= 1455 

Begin Menu MenuFile 
Caption = "&File" 
Begin Menu MenuFileExit 

- 127 -



Caption 
End 

End 

= "E&xit" 

Begin Menu MenuMaint 
Caption = "&Maintenance" 
Begin Menu MenuMaintDelCo 

Caption = "Delete &Company" 
End 
Begin Menu MenuMaintDelLic 

Caption = "Delete &Licensee" 
End 

End 
End 

Main Form Object Behaviors (CSTS.FRM) 

Option Explicit 

Sub btnChgCoInfo_Click 0 

Dim SavePlace As Variant 
'SavePlace = Licensees.Recordset.Bookmark 

'Licensees.Recordset.AddNew 

ChangeCompany.Show 1 

'If LicenseeID.Text = "" Then 
, Licensees.Recordset.Bookmark = SavePlace 
, Exit Sub 
'End If 

SavePlace = Licensees.Recordset("LICENSEE_ID") 'LicenseeID.Text 
On Error GoTo CheckErr 

Licensees .Recordset. Update 
Licensees.Refresh 
Licensees.Recordset.FindFirst "LICENSEE_ID = "' & SavePlace & ""' 

Exit Sub 'No errors 

CheckErr: 
Dim msg As String 
Dim Answer As Integer 

Select Case Err 
Case 3022 

msg = "That License ID already exists. Click Yes if you want to go to that record, or Click No if 
you want to try again." 

- 128 -



Answer = MsgBox(msg, 4, "Duplicate ID Decision") 
If Answer = 6 Then 'Yes, go to existing record 

SavePlace = Licensees.Recordset("LICENSEE_ID") 'LicenseeID.Text 
Licensees.Recordset.FindFirst "LICENSEE_ID = '" & SavePlace & "'" 
Exit Sub 

Else 
'btnNewLic_Click 'No, try again 
Exit Sub 

End If 

Case 3058 
msg = "You must choose a Company affiliation for consistency's sake. Please try again." 
MsgBox msg 
btnChgCoInfo_ Click 

Case 3101 
msg = "You must choose a Company affiliation for consistency's sake. Please try again." 
MsgBox msg 
btnChgCoInfo_Click 

End Select 

Resume 

End Sub 

Sub btnCoMaincClick 0 

CSTSMnt.Show I 

End Sub 

Sub btnSprtCalLClick 0 

SupportCall.Show 1 

End Sub 

Sub LicenseeID_LostFocus 0 

Dim SavePlace As Variant 
Dim SaveAffil As Variant 
Dim SQL As String 
Dim CompID As Integer 

SavePlace = LicenseeID.Text 
SaveAffil = Licensees.Recordset("Licensees.CMPY _LOC_ID") 

If SavePlace = "" Then 
Licensees.Recordset.MovePrevious 
Licensees.Recordset.MoveNext 
Exit Sub 

End If 

- 129 -



Licensees.Recordset.FindFirst "LICENSEE_ID = '" & SavePlace & "'" 

'Focus will now be on desired record IF it exists 

If Licensees.Recordset.NoMatch = True Then 

'Create a new LICENSEE record. 
Licensees.Recordset.AddNew 
Licensees.Recordset("LICENSEE_ID") = SavePlace 
'Each new Licensee must have a Company Affiliation or else the JOIN will be broken 
Licensees.Recordset("Licensees.CMPY _LOC_ID") = SaveAffil 'Set a Default 
Licensees.Recordset. Update 
'Set current record to this new one 
Licensees.Recordset.FindFirst "LICENSEE_ID = '" & SavePlace & "'" 

'Automatically invoke the Company info form 
btnChgCoInfo_Click 

'Refresh with all the lastest info 
Licensees .Recordset. Update 
Licensees.Refresh 
Licensees.Recordset.FindFirst "LICENSEE_ID = '" & SavePlace & "'" 

End If 

End Sub 

Sub Licensees_Error (DataErr As Integer, response As Integer) 
Dim msg As String 
Dim Answer As Integer 
Dim SavePlace As Variant 
Select Case DataErr 

Case 3022 
msg = "That License ID already exists. Click Yes if you want to go to that record, or Click No if 

you want to try again." 
Answer = MsgBox(msg, 4, "Duplicate ID Decision") 
If Answer = 6 Then 'Yes, go to existing record 

SavePlace = LicenseeID.Text 
Licensees.Recordset.FindFirst "LICENSEE_ID = '" & SavePlace & "'" 

Else 
'btnNewLic_Click 'No, try again 

End If 
response = 0 

End Select 
End Sub 

Sub Licensees_Reposition 0 

On Error GoTo CheckError 

LicenseeID.Text = Licensees.Recordset("LICENSEE_ID") 

- 130 -



Exit Sub 

CheckError: 
Dim msg As String 
Dim Answer As Integer 
Dim SavePlace As Va.::";lt 

Select Case Err 
Case 3022 

msg = "That License ID already exists. Click Yes if you want to go to that record, or Click No if 
you want to try again." 

Answer = MsgBox(msg, 4, "Duplicate ID Decision") 
If Answer = 6 Then 'Yes, go to existing record 

SavePlace = LicenseeID.Text 
Licensees.Recordset.FindFirst "UCENSEE_ID = '" & SavePlace & '"'' 
Exit Sub 

Else 
'btnNewLic_Click 'No, try again 
Exit Sub 

End If 

Case 3058 
msg = "You must choose a Company affiliation for consistency's sake. Please try again." 
MsgBox msg 
'btnNewLic_Click 

Case 94 
'btnChgColnfo_Click 
Exit Sub 

End Select 

Resume 

End Sub 

Sub MenuFileExiCClick 0 

End 

End Sub 

Sub MenuMaintDelCo_Click 0 

CSTSMnt.Show I 

End Sub 

Sub MenuMaintDelLic_Click 0 
Licensees.Recordset.Delete 
Licensees.Recordset.MoveNext 

End Sub 

- 131 -



: : : Select a Company. or 
: : : type in a new one (up to 
: : : 50 charactel$J-

: : : Edillreview the rest of 
: : : the in/ormation lor the 
. . . selected company. /I 
: : : there are multiple 
. . . locations lor a company. 
: : : you can SCIoli through 
: : : them to rmd the right 

.................................................................. 
: I 11m::::: 
: : : : : : : : : : : : : : : : : : : : Make Yow Changes Below: ::::: .. :::::::::::::::::: 

..................... 

: Company Address: ~I ================~I ~ ~ ~ ~ ~ ~ ~ ~ ~ 
~::::: ::::::::: :~I ____________________________________ ~I ~ ~~~~~~~~ 

" . one. . ................ '" ............................................. . 

j j j I_Companies lIe j .~~~~~ ~t~ .. j j j L! .-.-. -.. -. -:-:-: -: :-:-: -: :-:-: -: :-: -: :-:-: -": I j . : ; ~ .. ; ~ . : : ~ ; ; ; ; ! j i ~ ; 

••• ,t'M~~~~.:S:2.F ••• -.1 ••••• 1 ••••••••••••••••••••••••••••••• 

Customer Support Tracking System Company Maintenance Screen 
(Visual Basic Version) 

Company Maintenance Form Object Definitions (CHANGECO.FRM) 

VERSION 2.00 
Begin Form ChangeCompany 

Caption = "Change Company Information" 
ClientHeight = 4995 
CIientLeft = 75 
ClientTop = 2100 
ClientWidth = 10665 
Height = 5400 
Left 15 
LinkTopic 
ScaleHeight 
ScaleWidth 
Top 
Width 

= "Form 1 " 
= 4995 
= 10665 

= 1755 
= 10785 

Begin CheckBox chkBrowser 
Caption = "Browse All Companies" 
Height = 255 
Left = 480 
TabIndex 
Top 
Width 

= 18 
= 3720 
= 2295 

- 132 -



End 
Begin CommandButton btnCancel 

Caption = "Cancel" 
Height = 615 
Left = 1680 
Tablndex = 9 
Top = 4320 
Width = 975 

End 
Begin TextBox tedCompanyCntry 

DataField = "CMPY _CNTRY" 
DataSource 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "Companies" 
= 375 

= 4680 
= 7 

= 4560 
= 855 

Begin TextBox CompanyZPExt 
DataField = "CMPY_EXT_ZIP" 
DataSource 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Companies" 
= 375 

= 6120 
= 6 

= 3960 
= 735 

Begin TextBox tedCompanySt 
DataField = "CMPY_ST_CD" 
DataSource 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Companies" 
= 375 

= 4680 
= 4 

= 3360 
= 495 

Begin TextBox tedCompanyCity 
DataField = "CMPY_CITY_NM" 
DataSource 
Height 
Left 
Tab Index 
Top 
Width 

End 

= "Companies" 
= 375 

= 4680 
= 3 

= 2760 
= 3255 

Begin TextBox tedCompany Addr2 
DataField = "CMPY _AD2" 
DataSource 
Height 
Left 
Tablndex 
Top 
Width 

= "Companies" 
= 375 

= 4680 
= 2 

= 2160 
= 4815 

- 133 -



End 
Begin TextBox tedCompanyAddr1 

DataField = "CMPY _AD 1 " 
DataSource 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Companies" 
= 375 

= 4680 
= 1 

= 1680 
= 4815 

Begin TextBox CompanyZip 
DataField = "CMPY _ZP" 
DataSource 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Companies" 
= 375 

= 4680 
= 5 

= 3960 
= 855 

Begin ComboBox TempCoName 
Height = 300 
Left = 2880 
Sorted 
TabIndex 
Top 
Width 

End 

= -1 'True 
= 0 

= 360 
= 7095 

Begin CommandButton btnAccept 
Caption = "Accept" 
Height = 615 
Left = 480 
TabIndex = 8 
Top = 4320 
Width = 975 

End 
Begin Data Companies 

Caption "Companies" 
Connect = 
DatabaseName = "C:\RA TFILES\THESIS\TEST_BED\VB\CSTS\CSTS.MDB" 
Exclusive 0 'False 
Height = 615 
Left = 480 
Options = 0 
ReadOnly = 0 'False 
RecordSource = "Companies" 
Top = 2880 
Width = 2175 

End 
Begin LabellblCmpyCntry 

Caption = "Company Country:" 
Height = 255 
Left 2880 
TabIndex = 17 

- 134 -



Top 
Width 

End 

= 4560 
= 1575 

Begin Line Line5 
BorderWidth = 2 
Xl 5760 
X2 = 5880 
Y1 = 4080 
Y2 4080 

End 
Begin LabellblCmpyCity 

Caption = "Company City:" 
Height = 375 
Left = 2880 
Tablndex 
Top 
Width 

End 

= 14 
= 2760 
= 1335 

Begin LabellblCmpyAd1 
Caption = "Company Address:" 
Height = 615 
Left = 2880 
Tablndex 
Top 
Width 

End 

= 16 
= 1680 
= 1695 

Begin Label IblCmpySt 
Caption = "Company State:" 
Height = 375 
Left = 2880 
Tablndex = 15 
Top = 3360 
Width = 1455 

End 
Begin LabellblNameChg 

Caption = "Make Your Changes Below:" 
Height = 255 
Left = 5160 
Tablndex 
Top 
Visible 
Width 

End 

= 13 
= 720 

o 'False 
= 2415 

Begin LabellblCmpyZP 
Caption = "Company Zip:" 
Height = 255 
Left = 2880 
Tablndex 
Top 
Width 

End 

= 12 
= 3960 
= 1455 

Begin Label Label4 
Caption = "Edit/review the rest of the information for the selected company. If there are 

- 135 -



Height 
Left 
TabIndex 
Top 
Width 

End 

multiple locations for a company, you can scroll through them to find the right one." 
= 1575 

= 480 
= 11 

= 1200 
= 2175 

Begin Label Label2 
Caption = "Select a Company, or type in a new one (up to 50 characters)." 
Height = 735 
Left = 480 
TabIndex 
Top 
Width 

End 
End 

= 10 
= 240 
= 2175 

Company Maintenance Form Object Behaviors (CHANGECO.FRM) 

Option Explicit 

Dim Loading As Integer 

Dim browsing As Integer 

Sub btnAccepcClick 0 

Dim SQL As String 
Dim CompID As Integer 
Dim SavePlace As String 

'Mustn't have a blank company name, so let the default ride 
If TempCoName.Text = "" Then 

Unload ChangeCompany 
Exit Sub 

End If 

'Update the record with the current info 
Companies.Recordset.Edit 
Companies.Recordset("CMPY _ADI ") = (tedCompanyAddrl.Text) 
Companies.Recordset("CMPY _AD2") = (tedCompany Addr2.Text) 
Companies.Recordset("CMPY _CITY _NM") = (tedCompanyCity.Text) 
Companies.Recordset("CMPY _ST_CD") = (tedCompanySt.Text) 
Companies.Recordset("CMPY _EXT_ZIP") = Val(CompanyZPExt. Text) 
Companies.Recordset("CMPY _ZP") = Val(CompanyZip. Text) 
Companies.Recordset("CMPY _CNTRY") = (tedCompanyCntry.Text) 
CSTSMain.CompanyIDFK = Companies.Recordset("CMPY _LOC_ID") 
Companies.Recordset. Update 

Unload ChangeCompany 

End Sub 

- 136 -



Sub btnCancel_Click 0 

Unload ChangeCompany 
'NOTE: if you move the record with a button, any edits will be committed! 

End Sub 

Sub chkBrowsecClick 0 

If chkBrowser.Value = 1 Then 

browsing = True 
TempCoName_Click 

Else 

browsing = False 
TempCoName_Click 

End If 

End Sub 

Sub Companies_Reposition 0 

'The purpose of this procedure is to keep the company name synchronized with 
'the rest of the record when browsing, since it is not directly linked to the 
'table. 

'If we are populating the TempCoName menu (or we know that the current 
'record will be NULL), then we want,to exit this procedure 
If Loading Then 

Exit Sub 
End If 

'Otherwise, set the box to the value of the current record 
TempCoName.Text = Companies.Recordset("CMPY _NM") 

End Sub 

Dim SQL As String 
Dim PrevLoc As Integer 
SQL = "select * from Companies order by CMPY _NM" 
Companies.RecordSource = SQL 
Companies. Refresh 

Loading = True 'Flag for Reposition Event 

'Populate the pull-down menu 
TempCoName.Addltem "<Browse All Companies>" 
Do While Not Companies.Recordset.EOF 

'Skip duplicate names 

- 137 -



If TempCoName.List(TempCoName.NewIndex) <> Companies.Recordset("CMPY _NM") Then 
TempCoN ame.AddItem Companies.Recordset("CMPY _NM") 

End If 

Companies.Recordset.MoveNext 

Loop 

'Synchronize the Companies record with the Licensees record 
PrevLoc = CSTSMain.Licensees.Recordset("Licensees.CMPY _LOC_ID") 
Companies.Recordset.FindFirst "CMPY _LOC_ID = .. & PrevLoc & .... 
TempCoName.Text = Companies.Recordset("CMPY _NM") 

'The work for the rest of the Company data is the same as for a click 
TempCoName_Click 

Loading = False 'Flag for Reposition Event 

End Sub 

Sub TempCoName_Click 0 

Dim SavePlace As Variant 
Dim SaveIndex As Variant 
Dim SQL As String 
Dim CompID As Integer 

'Hang on to the desired company name 
SavePlace = TempCoName.Text 

'If it's the same as the current record, just hang on to the ID 
If SavePlace = Companies.Recordset("CMPY _NM") Then 

CompID = Companies.Recordset("CMPY _LOC_ID") 
Else 

'Otherwise, move to the beginning of the new name, and grab the ID 
Companies.Recordset.FindFirst "CMPY _NM = '" & SavePlace & .. ,,' 
CompID = Companies.Recordset("CMPY _LOC_ID") 

End If 

'Make sure that the entire table is available for the upcoming FindFirst 
'and sort it by company name, which is more meaningful to users than ID 
SQL = "select * from Companies order by CMPY _NM" 
Companies.RecordSource = SQL 
Companies. Refresh 

'Our job is done if the user is wishing to browse all companies 
If SavePlace = "<Browse All Companies>" Then 

chkBrowser.Value = 1 
browsing = True 
Exit Sub 

End If 

'Now match the User-Supplied Company Name 

- 138 -



Companies.Recordset.FindFirst "CMPY _NM = '" & SavePlace & ""' 

If Companies.Recordset.NoMatch = True Then 
'Since there is no match, create a new COM_LOC_ID and add a new record with new company 

name. 
Loading = True 'to avoid illegal null in Companies_Reposition 
'move to the highest numbered company ID 
SQL = "select * from Companies order by CMPY _LOC_IO" 
Companies.RecordSource = SQL 
Companies.Refresh 
Companies.Recordset.MoveLast 
'and increment it to set the ID for the new company 
CompIO = Companies.Recordset("CMPY _LOC_IO") 
CompIO = CompIO + 1 
'Then create a new record with the new name and ID 
Companies.Recordset.AddNew 
Companies.Recordset("CMPY _LOC_IO") = CompIO 
Companies.Recordset("CMPY _NM") = SavePlace 
Companies.Recordset. Update 
Companies.Recordset.MoveLast 
'Add the new company to the pull-down menu 
TempCoN ame.AddItem SavePlace'or ... Companies.Recordset("CMPY _NM") 
'Finally, resort the table and put the new record in front of the user 
TempCoName.Text = Companies.Recordset("CMPY_NM") 
SQL = "select * from Companies order by CMPY _NM" 
Companies.RecordSource = SQL 
Companies.Refresh 
Companies.Recordset.FindFirst "CMPY _LOC_ID = " & CompID 
Loading = False 

Else 
'Since there is a match, filter the records and go to the first one 
'Unless the user is in Browsing Mode 
If browsing Then 

Companies.Recordset.FindFirst "CMPY_LOC_IO = " & Str(CompIO) 
Exit Sub 

End If 

SQL = "select * from Companies where CMPY _NM = "' & TempCoName.Text & ""' 
Companies.RecordSource = SQL 
Companies. Refresh 
Companies.Recordset.MoveLast 
'Move to the most recent ID 
Companies.Recordset.FindFirst "CMPY _LOC_ID = " & Str(CompID) 

End If 
End Sub 

Sub TempCoName_LostFocus 0 

TempCoName_Click 

End Sub 

- 139 -



i~------------------S-u-p-p-o-rt-C-8-lIs-------------------II-lIj 

Licensee ID: 

L-.. _________ --.J, : .. :Star~ ~:ate/Time:: : , , : : 
.... :.: ~ : : : : : : : : ~ : : : ~ ~ ~ ~ ~ ~ : ~ ~·u~~~r~ ·T~~~:· .. ·I~====;-:-· ... -:-i-:-~U---· t---~---s-.-' 
Description of Call: .......................... L-. ----' ••••••••• 

r-======== r-======~ .................. ==r=~-------~~~ 
D Browse All Calls Support Calls 

Customer Support Tracking System Support Call Screen (Visual Basic Version) 

Support Call Form Object Definitions (SUPPORTC.FRM) 

VERSION 2.00 
Begin Fonn SupportCall 

Caption = "Support Calls" 
ClientHeight = 6900 
ClientLeft = 1320 
ClientTop = 1815 
ClientWidth = 7365 
Height = 7305 
Left 1260 
LinkTopic 
ScaleHeight 
ScaleWidth 

"Fonnl" 
= 6900 
= 7365 

- 140 -



Top 
Width 

= 1470 
= 7485 

Begin CheckBox chkBrowser 
Caption = "Browse All Calls" 
Enabled = 0 'False 
Height = 375 
Left = 2520 
Tablndex = 6 
Top = 6360 
Width = 2055 

End 
Begin TextBox tedLicID 

DataField = "LICENSEE_ID" 
DataSource 
Height 
Left 
Tablndex 
Top 
Width 

End 

= "SupportCalls" 
= 495 

= 120 
= 3 

= 360 
= 2775 

Begin CornrnandButton btnCancel 
Caption = "Cancel" 
Height = 615 
Left = 1320 
Tablndex 
Top 
Width 

End 

= 2 
= 6240 
= 1095 

Begin CommandButton btnAccept 
Caption = "Accept" 
Height = 615 
Left = 120 
Tablndex 
Top 
Width 

End 

= I 
= 6240 
= 1095 

Begin Data SupportCalls 
Caption "Support Calls" 
Connect 
DatabaseName = "C:\RATFILES\THESIS\TEST_BED\VB\CSTS\CSTS.MDB" 
Exclusive 0 'False 
Height = 615 
Left = 4680 
Options = 0 
ReadOnly = 0 'False 
RecordSource = "Support" 
Top = 6240 
Width = 2415 

End 
Begin TextBox tedDescription 

DataField = "SPRT_CMT" 
DataSource 
Height 

= "SupportCalls" 
= 4455 

- 141 -



Left 
MultiLine 
ScrollBars 
Tablndex 
Top 
Width 

End 

= 120 
-1 'True 

= 2 'Vertical 
= 0 

= 1560 
= 6975 

Begin LabellblSprtTm 
Caption = "Support Time:" 
Height = 255 
Left = 3360 
TabIndex = 11 
Top = 1080 
Width = 1575 

End 
Begin LabellblStrtDt 

Caption = "Start Daterrime:" 
Height = 255 
Left = 3360 
TabIndex = 10 
Top 
Width 

End 

= 480 
= 1575 

Begin LabellblMin 
Caption = "Minutes" 
Height = 255 
Left = 6240 
TabIndex = 9 
Top = 1080 
Width = 735 

End 
Begin LabellblCallDescr 

Caption = "Description of Call:" 
Height = 255 
Left = 120 
TabIndex = 8 
Top = 1320 
Width = 1695 

End 
Begin Label IblLicID 

Caption = "Licensee ID:" 
Height = 255 
Left = 120 
TabIndex = 7 
Top = 120 
Width = 1215 

End 
Begin LabellblStartTime 

BorderStyle = 1 'Fixed Single 
DataField = "SPRT_DATE" 
DataSource 
Height 
Left 

= "SupportCaIls" 
= 495 

= 5040 

- 142 -



Tab Index 
Top 
Width 

End 

= 5 
= 360 
= 2055 

Begin LabellblSprtTimeUsed 
BorderStyle = 1 'PiAed Single 
DataField = "SPRT_TM" 
DataSource = "SupportCalls" 
Height = 495 
Left = 5040 
TabIndex 
Top 
Width 

End 
End 

= 4 
= 960 
= 1095 

Support Call Form Object Behaviors (SUPPORTC.FRM) 

Option Explicit 

Dim Prevloc As String 

Sub btnAccepcClick 0 

Dim Duration As Integer 

'Calculate the time used for the call 
Duration = DateDiff("n", IbIStartTime.Caption, Now) 
Duration = Duration / 15 
Duration = Duration * 15 + 15 
IblSprtTimeUsed.Caption = Duration 

'Put the record pointer at the new record 
SupportCalls.Recordset.MoveLast 

'Update the record with the current info 
SupportCalls.Recordset.Edit 
SupportCalls.Recordset("SPRT_CMT") = (tedDescription.Text) 
SupportCalls.Recordset("SPRT_TM") = Val(lbISprtTimeUsed.Caption) 
S u pportCalls .Recordset. Update 

Unload SupportCall 

End Sub 

Sub btnCanceLClick 0 

'Put the record pointer at the new record 
SupportCalls.Recordset.MoveLast 

'Delete the newly created record 

- 143 -



SupportCalls.Recordset.Delete 
SupportCalls.Recordset.MoveNext 

Unload SupportCall 
'NOTE: if you move the record with a button, any edits will be committed! 

End Sub 

Dim SQL As String 
Static Prevloc As String 

Prevloc = CSTSMain.Licensees.Recordset("Licensees.LICENSEE_ID") 

'Filter the records to the selected Licensee 
SQL = "select * from Support where Support.LICENSEE_ID = ...... 
SQL = SQL & Previoc 
SQL = SQL & ...... order by SPRT_DATE" 
SupportCalls.RecordSource = SQL 
SupportCalls.Refresh 

'Create a new record 
SupportCalls.Recordset.AddNew 

'Set the start date/time (key) and ID for the new support call 
SupportCalls.Recordset("SPRT_DATE") = Now 
SupportCalls.Recordset("LICENSEE_ID") = Prevloc 
SupportCalls.RecordsetC'SPRT_TM") = 0 'For Null protection, (just in case) 
SupportCalls.Recordset. Update 
SupportCalls.Recordset.MoveLast 

End Sub 

Sub Form_Unload (Cancel As Integer) 

Dim Total As Integer 
Dim SQL As String 
'Static PrevLoc As String 

're-filter, in case the user has selected "Browse All Calls" 
SQL = "select * from Support where Support.LICENSEE_ID = ...... & Prevloc & ........ 
SupportCalls.RecordSource = SQL 
S u pportCalls .Refresh 

'Calculate the total support time used to date for that licensee 
Total = 0 
Do While Not SupportCalls.Recordset.EOF 

Total = Total + SupportCalls.Recordset("SPRT_TM") 
SupportCalls.Recordset.MoveNext 

Loop 

- 144 -



CSTSMain.Licensees.Recordset.Edit 
CSTSMain.Licensees.Recordset("LIC_ TOT_SPRT _ TM") = Total 
CSTSMain.Licensees.Recordset. Update 

End Sub 

Sub tedLicID_GotFocus 0 

tedDescription.SetFocus 

End Sub 

- 145 -



: : : : : : : : : :: :Company Maintenance: : : : : : : : 
: : : : : : : Company Name: : : : : : : : : Company Zip: 

'::;:~;IL-_------J1;;;;;:1L-__ 1:·:::::::: 

Customer Support Tracking System Company Deletion Screen (Visual Basic Version) 

Company Deletion Form Object Definitions (CSTSMNT.FRM) 

VERSION 2.00 
Begin Form CSTSMnt 

Caption = "CSTS Company Maintenance" 
ClientHeight = 3405 
ClientLeft = 1095 
ClientTop = 1485 
ClientWidth = 7365 
Height = 3810 
Left 1035 

"Form 1 " 
= 3405 
= 7365 

LinkTopic 
ScaJeHeight 
ScaleWidth 
Top = 1140 
Width = 7485 
Begin CommandButton Command2 

Caption = "Return" 
Height = 615 
Left = 5280 
TabIndex = 1 
Top = 2400 
Width = 1455 

End 
Begin TextBox tedCompanyName 

DataField = "CMPY _NM" 
DataSource 
Height 
Left 

= "Companies" 
= 495 

= 960 

- 146 -



TabIndex 
TabStop 
Top 
Width 

End 

= 2 
= 0 'False 

= 1320 
= 2175 

Begin TextBox tedCompanyZip 
DataField = "CMPY _ZIP" 
DataSource 
Height 
Left 
TabIndex 
TabStop 
Top 
Width 

End 

= "Companies" 
= 495 

= 3960 
= 3 
= 0 'False 

= 1320 
= 2175 

Begin CommandButton Commandl 
Caption = "Delete" 
Height = 615 
Left = 3360 
TabIndex = 0 
Top = 2400 
Width = 1455 

End 
Begin Data Companies 

Caption = "Companies" 
Connect = 
DatabaseName = "C:\RA TFILES\THESIS\TEST_BEDWB\CSTS\CSTS.MDB" 
Exclusive = 0 'False 
Height = 615 
Left = 720 
Options = 0 
ReadOnly = 0 'False 
RecordSource = "Companies" 
Top = 2400 
Width = 2175 

End 
Begin Label Label3 

Alignment = 2 'Center 
AutoSize = -1 'True 
Caption 
FontBold 
Fontltalic 

= "Company Maintenance" 
= -1 'True 

= 0 'False 
FontName = "MS Sans Serif' 
FontSize = 18 
FontStrikethru = 0 'False 
FontUnderline = 0 'False 
Height = 435 
Left = 1485 
TabIndex = 6 
Top = 360 
Width = 4005 

End 
Begin Label Label2 

- 147 -



Caption 
Height 
Left 
TabIndex 
Top 
Width 

End 

= "Company Zip:" 
= 255 

= 3960 
= 5 

= 1080 
= 2055 

Begin Label Labell 
Caption = "Company Name:" 
Height = 255 
Left = 960 
Tablndex = 4 
Top = 1080 
Width = 1935 

End 
End 

Company Deletion Form Object Behaviors (CSTSMNT.FRM) 

Option Explicit 

Sub CommandLClick 0 
Companies.Recordset.Delete 
Companies.Recordset.MoveNext 

End Sub 

Sub Command2_Click 0 

Unload CSTSMnt 

End Sub 

- 148 -



APPENDIX C 

Customer Support Tracking System ObjectVision 
Listings/Screens 

IFirst N arne: Jumny ITelephone: 

ILast Narne: Bob IExtension: 

fFAX Number: Title: 
Chief Bottle Washser 

Customer Support Tracking System Main Screen (ObjectVision Version) 

- 149 -



a., 
ICompany Location ID: 3 

ICompany Name: Floors-A-Rama I 

I
company Address: 333 Downtown I 
.Sweet 16 . 
/Company City: Sue City I /Company State: 10 

ICompany Zip: 8888~~:1 I 
ICompany Country: USA 

Customer Support Tracking System Company Maintenance Screen 
(ObjectVision Version) 

- 150 -



/LicID: F200 I/Start Time: 3/11/95 19:07 

ISupport Time Used: 0.00 I IlIlIib. 11i~~ijJIl 

Support Description: 
We had another of those little crashes. 

Customer Support Tracking System Support Call Screen (ObjectVision Version) 

- 151 -



- . - - ObJedVision - CSTS.OVD -- ,. . 

~lignmenL. 

Label Eonl... 
Valye FonL. 
~olor... 

Bob /2orders ... 

ITelephone: L..J _-__ 

IExtension: 
Line Width... 
PrQtection ... 
YlIlue Tree IFAX Nwnber: L..J _-__ 

,; .Event Tree 
:============::::j Fie IQ ... 

M/lme[TexL otal Support Time Used: 
!:!elp ... 

Company Information I 
jCompany Location ill: 3 

ICompany Name: Hoors-A-Rama ., I 

I
company Address: 333 DOwntown, . 
. Sweet 16 I 
ICompany City: Sue City ,I ICompany State: IO 

L-IC=omp=an=y=7ip=' =: =8=88=88:::1=" ':::1 ====.::' I~. _-, 
ICompany _Counny: USA . 1::-

Minutes 

1 

1. Right-click on the field to bring up Attributes menu; Select "Field Type" 

2. Select & OK "Combo Box" 3. Select & OK "Automatic"; values will be 
populated from data base 

Visual "Source Code" for a Typical Automatic Combo Box 

- 152 -



After Selecting "Field Type" from Attribute Menu. and Selecting "Dateffime" from the "Field Type" 
Dialog. Select & OK desired "Date Format" 

Visual "Source Code" for a Typical Date Field 

After Selecting "Protection" from Attribute Menu. Select & OK "No Override" and "No Tree Display" 

Visual "Source Code" for a Typical Protected (non-editable) Field 

After Selecting "Field Type" from Attribute Menu. and Selecting "Picture" from the "Field Type" 
Dialog. Type in & OK desired "Picture String" 

Visual "Source Code" for a Typical Picture (constrained) Field 

- 153 -



1. Open "Data Links" Tool, Select the desired Data Base Type, and Click on "Create ... " 

2. IF a Table already exists, Type in a new "Link Name" on the "Link Creation" Dialog, Type in (or 
"Search ... " for) a Table, Click on "Defaults"; ObjectVision matches and links "Data Base Table Fields" 
with "ObjectVision Fields"; IF the Table must be created, Click on "Create Table ... " and go on to step 3 

Visual "Source Code" for Data Link Creation 

- 154 -



3. On the "Data Base Table Creation" Dialog, Type in a new Table Name and then edit (or accept as-is) 
the "Table Definitions" automatically drafted by ObjectVision based on the user interface fields created 

to that point 

Visual "Source Code" for Data Link Creation (continued) 

- 155 -



4. Once the link is OK'd, the "Optional Link Capabilities" Dialog appears for selecting (for example) 
Referential Integrity Rules and Filters 

5. If "Filters ..... is Clicked, the "Link Filters" Dialog is presented which allows the programmer to filter 
the contents of the data base before evaluation by the ObjectVision application 

Visual "Source Code" for Data Link Creation (continued) 

- 156 -



t~1 ~ t..ucR 

, 
@IF(@ISBLANK('Company Location. : 

·1.@EVENTr'Edit Company Info":'Oick'1.0) : , 

, 
_______________________________________________ 1 

Visual "Source Code" for a "Change Event" on the "Licensee ID" Field 

@ASSIGN(OriQ...JD:Company Location ID:1 

, 
1- ______________________________________________ I 

Visual "Source Code" for an "Open Event" on the "Change Company Information" 
Form 

- 157 -



!m·--------al 

, , 
'-r-------.,. 
: Qick 

, 

@STOREf'Company'1 
@FORMCLOSE("Change Company 
Information") 

, , 
1 ______ -----------------------------------------

Visual "Source Code" for a "Click Event" on the "Return" Button on the "Change 
Company Information" Form 

ilD----==========-----------E-v-en-t-t-re-e-f-o-r-c-a-n-c-e-I----======--------------~ 

, , 
:_---------------------------------------- ______ 1 

Visual "Source Code" for a "Click Event" on the "Cancel" Button on the "Change 
Company Information" Form 

- 158 -



1m Event tree for New Company Eii 

, , 

@BOTTOM("Company") 
SIGN(T emp:Company Location 10:1 

@NEXT(''Company'') 
@ASSIGN(,Company Location 10:',Temp+l) 
@RELORNO(,Company Name:') 

, _______________________________________________ 1 

Visual "Source Code" for a "Click Event" on the "New Company" Button on the 
"Change Company Information" Form 

l~-----------------------V-a-Iu-e-t-re-e-f-o-r-L-ic-ID-:-----------------------iii 

+'Ucensee 10:' 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _I 

Visual "Source Code" for assigning the value of the "LicID" Field 
on the "Support Call" Form 

- 159 -



Event tree for Accept 

@BOTTOM[''Sl4'PO'tc"as', 
SIGN{'Support Tme U.ed'J@NOW·'Start Tome:')"Q)"2~J 

@ASSIGNrrotai Support T me U.ed'J@UNKSUMr'Support 
C .. b":'Support Tme U.ed'1JJ 
@STOREr'Support Cal,', 
@FILTEROEACTIVATE[''Supportc"b'1 
@FORMCLOSE(@SELECTEDFORMJ 

Visual "Source Code" for a "Click Event" on the "Accept" Button 
on the "Support Call" Form 

~------------------------E-v-e-n-t-tr-e-e-f-or--C-a-n-ce--I------------------------~ 

, , 

@BOTTOM("SupportCalls"} 
r'Support Calls"J} 

@FILTERDEACTIVATEf'Support Calls") 
@FORMCLOSE(@SELECTEDFORM) 

,-----------------------------------------------, 

Visual "Source Code" for a "Click Event" on the "Cancel" Button 
on the "Support Call" Form 

- 160 -



APPENDIX D 

Tic Tac Toe Design Package 

Tic-Tac-Toe Requirements Definition Statement 

The application shall provide a Graphic User Interface 

which allows a player to select Tic-Tac-Toe moves by 

clicking on a mouse-sensitive board and to begin the game 

by clicking on a <New game> button. The game shall respond 

by painting a blank Tic Tac Toe board and presenting a 

message to "click on a square or select <YGU Go First> to 

begin play." The game shall alternately accept a user's 

move and make its own move with the goal of winning the 

game. The system shall reject illegal moves attempted by 

the user and shall fill in (legal) moves made by the user 

and itself. The system shall monitor for a win or a draw 

and display an appropriate message. The player shall be 

"X" and the program shall be "0." No player records or 

statistics will be kept; each game shall be a clean start. 

The gaming strategy shall first rule out a win by the 

player (this should be impossible), then look for a win for 

itself, then look for a block of an imminent win by the 

player and then determine an offensive move. 

- 161 -



Classes/Objects: 

Gen-Spec Structure: 

Whole-Part Structure: 

Attributes: 

Services/Calculations: 

On Cell 

CoadIY ourdon Object -Oriented Analysis 

(Domain Related) 
Playing Board, with Tic Tac Toe icon 
Cells (one for each play location) 
Tokens ("X", "0") 
Rows, Columns, Diagonals 
Player 
Strategies and Plays 
(Program Related) 
Window 
Message Box (to communicate with User) 
Controls (for starting a new game, quitting and letting the program go first) 
Game Engine (to make moves on behalf of the application) 

None 

Window:BoardlControlslMessageBox 
Board:Cells 
Cells:Tokens 
Board:RowslColumnslDiagonals (RICID) 

Cell. Value (internal integer representation of Token, -1 for "0", + 1 for "X" 
and 0 for "blank") 
Cell. Token (external string representation, including Font and Color) 
RowslColumnslDiagonals.Sum (an integer whose value is the sum of the three 
Cell.Value in that row, column or diagonal) 
Window and Board Geometry (in general, such as color and border) 

Monitor for Mouse-Click over Cell 
Validate User Changes to Cell.Token (is Cell empty?) 
Send a Message if Cell is taken (or game is over) 
Set Cell.Token to "X" after valid User click on Cell 
Set Cell.Value based on changes to Cell.Token 
Deactivate the < You Go First> control (on first move) 
Give control to Game Engine to make its move 

Game Strategies Look for User Win (any Sum = 3) (should be im{:ossible) 
Look for Game Winning Move (any Sum = -2) 
Look for Blocking Move (any Sum = 2) 
Look for a Wedge-prevention Move (to avoid the several ways a User might 
create a "double bind") 
Pick a Cell according to the following search pattern: 

2 6 3 

7 8 

4 9 5 

- 162 -



OnRICID 

Application 

Update the RICID.Sum whenever a member changes value 

Navigate Cells and Controls when the User presses the <Tab> key 
Emulate a Mouse-Click when the User presses other keys 

On <New Game> control (when clicked) 
Initialize all Cells to empty 
Activate the <You Go First> control 
Display a Message to the User 

On <You Go First> control (when clicked) 
The Game Engine will take the center Cell 
Deactivate the < You Go First> control 

On <Quit> control (when clicked) 
Close the Application 

- 163 -



Coad/Yourdon Object-Oriented Design 

Note: For Visual Basic implementation, there is no inheritance and only Classes/ObjectsfBehaviors 
related to the User Interface 

Human Interaction Component 

User Classes: 

Description: 

Command Hierarchy: 

Window: 

Tic Tac Toe Players (only one skill level; multiple skill levels is 
future scope) 

People who don't mind never being able to win a game they are 
playing 

New Game --> User First I Game First --> Alternating Moves 
Quit Button Available at all times 
Game Over when all Cells are Taken, or when User (impossible) or 
Game gets three of their Tokens in a row 

Titled "Tic Tac Toe" 
Large enough to contain a Tic Tac Toe board, three buttons and a 
Message Box 

Fields: Cell Array (9) Each consists of an editable TextBox (not sizable) 

Message Box 

Quit 

New Game 

You Go First 

May contain a single <blank> (the default value), a large bold "X", 
or "0" (l8point Sans Serif or equivalent) 
The Mouse Pointer Icon should change when it is over the active 
area of a Cell 
Each Cell should provide its own validation and updating services 
when clicked upon 
If possible, the Cell should keep two values, one textual ("X", "0", 
<blank» and one numeric (+1, -I, 0) 

A non-editable TextBox in which to display messages/prompts to the 
User 
Sized to display up to 4, 40-character lines, with word wrap 
Default contents should be "Click on <New Game> to begin." 

A Command Pushbutton which allows the User to exit the game 
Caption reads "Quit" 

A Command Pushbutton which allows the User to start a new game 
Caption reads "New Game" 

A Command Pushbutton which allows the User to instruct the 
program to make the first move 
Caption reads "You Go First" 
The Command should only be visible and enabled just after <New 
Game> is clicked, but before the User has clicked on any Cell 

Graphic Lines Four straight lines, organized to look like a traditional Tic Tac Toe 
board 

- 164 -



Note: 

Note: 

The User should be able to operate the system without a mouse by using the 
<Tab> key to navigate the Board and Buttons. and any standard key to place 
an "X" or activate a button. 

Standard MSWindows pull-down menus (e.g .. File. Edit. etc.) were deemed 
unnecessary for this application. 

Task Management Component 

Event Driven Tasks: See User Interface and Game Engine Diagrams 

Clock Driven Tasks None 

Priority/Critical Tasks Not Applicable 

Other Tasks See User Interface and Game Engine Diagrams 

- 165 -



User Interface Service Diagram (Main Event Loop and Command Buttons) 

User Interface 
Behavior 

Exit Program 

End 

NOTE: This 
spawns a 
"Changed 

BoardCell" 
Event 

Set GameState 
to SYSTEM 

Set Each 
BoardCell(i).Text 

Call 
UpdateSumsO 

Begin 

Draw Window 
and Objects 

Send Click Event to 
"New Game" Button 

"You Go First" 
Button 

Call 
MakeMoveO 

Done 

User Message: "Click on any cell to make 
your first move, or. .. Click on the <You Go 

First> Button if ou want me to 0 first." 

"You Go First" 
Button 

Done 

- 166 -



User Interface Service Diagram (Clicked on Text Cell) 

A 
I 

First" Button is "You Go First" 
IF "You GO'1- HidelDis .. JJe 

Enabled L-_.::B:..::u:.;:tt::;:o.:.:.n_----l 
I I 
I 

User Message: "Get over it... because k IF 
the Game is. Click on <New Game> GameState 

'--___ ....;t;;;:.o..c..:.;; plla-......rYa .... g.a;:;i:..:;n.:...." ___ ---' <> PLAY 

I I 
Done User Message: "Sorry, that cell is 

already in use ... please try again." BoanI~(:!.T">-
I ~----~I----~ 

User Message: "Your move." 

User Message: 
"Processing. " 

I 
Set 

BoardCell(i).Text 
to "X" 

I 
Call 

MakeMoveO 

I 

kGam~tate 
~ __________ ~ ________ ~ = PLAY 

I I 

Done 

NOTE: This spawns a 
"Changed BoardCelI" Event 

IF )-- User Message: "Tic Tac Toe, Three in a 
GameState = row! You lose, I win, You will have to try 

AMEWIN '--__ a,,::.."a_in_<;...C_li_ck_o_n_<TN_e_w_G_am_e_>.:....)" __ .....J 

Done 

1 I 
User Message: "I guess the cat got k IF 

this one ... Click on <New Game> to GameState 
'--____ ....1;;;; plla;:L.:Ya:p=g.ai;.;,;n.;..,. " ____ .....J = DRAW 

I I 
Done 

User Message: "I don't believe it, 
YOU WON!!! Quick, Click on <New V 

Game>." 

1 

Done 

- 167 -

Done 

Else, GameState 
= USERWINS 



Done 

User Interface Service Diagram (Changed Value on Text Cell) 

IF 
BoardCell(i).Text )---------~ 

Done 

BoardCell(i).Value 
= -1 

- 168 -

BoardCell(i).Value 
= 1 

Call 
UpdateSums 

Done 



User Interface Service Diagram (Update Sums) 

User Interface 
Su broutine Begin 

UpdateSumsO 

I 
Column(O) = BoardCel1(O).Value + BoardCel1(3).Value + BoardCell(6).Value 

I 
Column(1) = BoardCell(l).Value + BoardCel1(4).Value + BoardCel1(7).Value 

I 
Column(2) = BoardCell(2).Value + BoardCell(5).Value + BoardCell(8).Value 

I 
Row(O) = BoardCel1(O).Value + BoardCell(l).Value + BoardCell(2).Value 

I 
Row(l) = BoardCell(3).Value + BoardCel1(4).Value + BoardCell(5).Value 

I 
Row(2) = BoardCell(6).Value + BoardCeIl(7).Value + BoardCeIl(8).Value 

I 
Diagonal(O) = BoardCell(O). Value + BoardCell( 4). Value + BoardCell(8). Value 

I 
Diagonal(l) = BoardCell(2).Value + BoardCell(4).Value + BoardCell(6).Value 

I 
Done 

- 169 -



Set GameState 

GAMEWINS 

Done 

Game Engine Service Diagram (Main Move Selection Logic) 

Begin 
MakeMoveO 

Done 

Done 

Done 

Done 

Set GameState 
=USERWINS 

Done 

Done 

Done 

- 170 -

Done 

Game Engine 
Subroutine 

Done 

Done 

Done 

Done 

Done 



Done; Return 1 

Game Engine Service Diagram (Look for User Win and Look for Draw) 
~------~------~ 

Begin Game Engine 
LookForUserWinO Subroutine 

Done; Return 0 

Begin 
LookFor 
DrawO 

Set Count = 0 

Done; Return 0 

Nexti 

Nexti 

Nexti 

- 171 -

Done; Return 1 

Done; Return 1 

Done; Return 1 

Game Engine 
Subroutine 

Count++ 



Game Engine Service Diagram (Look for Win and Look for Block) 

Begin Game Engine 
FindAWinO Subroutine 

I 

IF }- Logic Table 
(BoardSum) PickCel1( I st Choice) 

1st 2nd 3rd = -2 BoardSum 

I I Choice Choice Choice 

Column(O) 0 3 6 

PickCelI(2nd Choice) Column(l) I 4 7 

Process Column(2) 2 5 8 
I this Row(O) 0 I 2 

conditional 
PickCel1(3rd Choice) Row(l) 3 

based on 
4 5 

theLO~ 
Row(2) 6 7 8 

I Table Diagonal(O) 0 4 8 

Done; Return I Diagonal(l ) 2 4 6 ~ 

I 
I 

Done; Return 0 

Begin Game Engine 
FindABlockO Subroutine 

I 
I 

IF '1--1 Logic Table 
(Boa:d;um) PickCel1( I st Choice) 

1st 2nd 3rd BoardSum 

1 I 
Choice Choice Choice 

Column(O) 0 3 6 

PickCell(2nd Choice) Column(l) I 4 7 

Process Column(2) 2 5 8 
I this Row(O) 0 1 2 

conditional 
PickCel1(3rd Choice) based on 

Row(l) 3 4 5 

theL~ 
Row(2) 6 7 8 I Table Diagonal (0) 0 4 8 

Done; Return 1 Diagonal(l ) 2 4 6 -
I , 

Done; Return 0 

- 172 -



Game Engine Service Diagram (Bust a Wedge) 

Begin 
BustA WedgeO 

IF 
Diagonal(O) + Diagonal(1) = 0 

IF 
Row(O) + Column(O) = 2 

IF 
Row(O) + Column(2) = 2 

IF 
Row(2) + Column(O) = 2 

IF 
Row(2) + Column(2) = 2 

Done; Return 0 

- 173 -

Game Engine 
Subroutine 

Done; Return 1 

Done; Return 1 

Done; Return 1 

Done; Return 1 

Done; Return 1 

Done; Return I 



Game Engine Service Diagram (Pick a Cell) 

Begin 
PickCeIl(i) 

I 
IF 

BoardCelI(i).Text =" " 

I 
Done; Return 0 

NOTE: 
This 

spawns a 
"Changed 

BoardCeIl" 
Event 

}O------l Set GameState 
= SYSTEM 

I 
Set BoardCeIl(i).Text = "0" 

I 
Set BoardCeIl(i).Value =-1 

I 
Set GameState 

= PLAY 

I 
LookF::lliawo>-

Game Engine 
Subroutine 

Set GameState 
= DRAW 

I ~--~----~ 

Done; Return 1 

- 174 -



APPENDIX E 

Tic Tac Toe Visual Basic Listings/Screens 

................. ~=---.-=--=. 
· . . . . . . . . . . . . . . . ............... . · ............. -.-..,I-----lf--- ............... . 

· . . . . . . . . . . . . . . . .............................. . · ............. ---+---+--- .............................. . 

· ........................................................... .. 
Click on <New Game> to begin. 

· ........................................................... . 

Tic Tac Toe Main Screen (Visual Basic Version) 

- 175 -



Main Form Object Definitions CMAIN.FRM) 

VERSION 2.00 
Begin Form frmMain 

BorderStyle = 3 'Fixed Double 
Caption = "Tic Tac Toe" 
ClientHeight = 5820 
ClientLeft = 1065 
ClientTop = 1740 
ClientWidth = 7365 
Height = 6225 
Left = 1005 
LinkTopic 
ScaleHeight 
ScaleWidth 
Top 
Width 

"Form 1 " 
= 5820 
= 7365 
1395 

= 7485 
Begin CommandButton btnQuit 

Caption = "Quit" 
Height = 495 
Left = 5640 
TabIndex = 12 
Top = 3840 
Width = 1455 

End 
Begin TextBox txtCell 

Alignment = 2 'Center 
BorderStyle = 0 'None 
FontBold = -1 'True 
FontItalic = 0 'False 
FontName = "MS Sans Serif' 
FontSize = 18 
FontStrikethru = 0 'False 
FontUnderline = 0 'False 
Height = 435 
Index 8 
Left = 3120 
MousePointer = 10 'Up Arrow 
TabIndex = 11 
Text 
Top 
Width 

End 

= 
= 2400 
= 375 

Begin TextBox txtCell 
Alignment = 2 'Center 
BorderStyle = 0 'None 
FontBold = -1 'True 
FontItalic = 0 'False 
FontName = "MS Sans Serif' 
FontSize = 18 
FontStrikethru = 0 'False 
FontUnderline = 0 'False 
Height = 435 

- 176 -



Index 
Left 

= 7 
= 2520 

MousePointer = 10 'Up Arrow 
Tablndex = 10 
Text 
Top 
Width 

End 

= 
= 2400 
= 375 

Begin TextBox txtCell 
Alignment = 2 'Center 
BorderStyle = 0 'None 
FontBold = -1 'True 
FontItalic = 0 'False 
FontName = "MS Sans Serif' 
FontSize = 18 
FontStrikethru = 0 'False 
FontUnderline = 0 'False 
Height 435 
Index = 6 
Left = 1920 
MousePointer = 10 'UpArrow 
TabIndex = 9 
Text = 
Top = 2400 
Width = 375 

End 
Begin TextBox txtCell 

Alignment = 2 'Center 
BorderStyle = 0 'None 
FontBold = -1 'True 
FontItalic = 0 'False 
FontName = "MS Sans Serif' 
FontSize = 18 
FontStrikethru = 0 'False 
FontUnderIine = 0 'False 
Height = 435 
Index 5 
Left = 3120 
MousePointer = 10 'Up Arrow 
Tablndex = 8 
Text 
Top 
Width 

End 

= 
= 1800 
= 375 

Begin TextBox txtCell 
Alignment = 2 'Center 
BorderStyle = 0 'None 
FontBold = -1 'True 
Fontltalic = 0 'False 
FontName = "MS Sans Serif' 
FontSize = 18 
FontStrikethru = 0 'False 
FontUnderline = 0 'False 

- 177 -



Height 
Index 
Left 

= 435 
= 4 

= 2520 
MousePointer = 10 'Up Arrow 
TabIndex = 7 
Text 
Top 
Width 

End 

= 1800 
= 375 

Begin TextBox txtCell 
Alignment = 2 'Center 
BorderStyle = 0 'None 
FontBold = -1 'True 
Fontitalic = 0 'False 
FontName = "MS Sans Serif' 
FontSize = 18 
FontStrikethru = 0 'False 
FontUnderline = 0 'False 
Height 435 
Index = 3 
Left = 1920 
MousePointer = 10 'Up Arrow 
Tab Index = 6 
Text 
Top 
Width 

End 

= 
= 1800 
= 375 

Begin TextBox txtCell 
Alignment = 2 'Center 
BorderStyle = 0 'None 
FontBold = -1 'True 
Fontltalic = 0 'False 
FontName = "MS Sans Serif' 
FontSize = 18 
FontStrikethru = 0 'False 
FontUnderline = 0 'False 
Height = 435 
Index = 2 
Left = 3120 
MousePointer = 10 'Up Arrow 
Tablndex = 5 
Text 
Top 
Width 

End 

= 
= 1200 
= 375 

Begin TextBox txtCell 
Alignment = 2 'Center 
BorderStyle = 0 'None 
FontBold = -1 'True 
FontItalic = 0 'False 
FontName = "MS Sans Serif' 
FontSize = 18 
FontStrikethru = 0 'False 

- 178 -



FontUnderIine = 0 'False 
Height 
Index 
Left 

= 435 
1 

= 2520 
MousePointer = 10 'Up Arrow 
TabIndex = 4 
Text 
Top 
Width 

End 

= 1200 
= 375 

Begin CommandButton btnYouGoFirst 
Caption = "You Go First" 
Enabled = 0 'False 
Height = 495 
Left = 5640 
TabIndex = 0 
Top = 1320 
Visible 0 'False 
Width 1455 

End 
Begin ConunandButton btnNewGame 

Caption = "New Game" 
Height = 495 
Left = 5640 
TabIndex 
Top 
Width 

End 

= 1 
= 3240 
= 1455 

Begin TextBox txtCell 
Alignment = 2 'Center 
BorderStyle = 0 'None 
DragIcon = MAIN.FRX:OOOO 
FontBold = -1 'True 
FontItalic = 0 'False 
FontName = "MS Sans Serif' 
FontSize = 18 
FontStrikethru = 0 'False 
FontUnderline = 0 'False 
Height = 435 
Index = 0 
Left = 1920 
MousePointer = 10 'Up Arrow 
TabIndex = 3 
Text 
Top 
Width 

End 

= 
= 1200 
= 375 

Begin TextBox txtMsgBox 
Height = 1095 
Left = 480 
MultiLine 
Tablndex 
TabStop 

= -1 'True 
= 2 
= 0 'False 

- 179 -



Text 
Top 
Width 

= "Click on <New Game> to begin." 
= 3240 
= 4575 

End 
Begin Line Line2 

BorderWidth = 2 
Xl = 3000 
X2 = 3000 
Yl = 1080 
Y2 = 2880 

End 
Begin Label Labell 

Caption = "Labell" 
Height = 375 
Index = 0 
Left = 3600 
TabIndex = 13 
Top = 1080 
Width = 615 

End 
Begin Line Line4 

BorderWidth = 2 
Xl = 1800 
X2 3600 
Yl 2280 
Y2 = 2280 

End 
Begin Line Line3 

BorderWidth 2 
Xl = 1800 
X2 = 
Yl = 
Y2 = 

End 
Begin Line Linel 

BorderWidth 
Xl 
X2 
Yl 

3600 
1680 
1680 

2 
2400 
2400 
1080 

Y2 = 2880 
End 

End 

- 180 -



Main Form Object Behaviors CMAIN.FRM) 

Sub btnNewGame_Click 0 

Dim i As Integer 

'Blank out board 
gnGameState = SYSTEM_CONTROL 
For i;;;;; 0 To 8 

txtCell(i).Tag = 0 
txtCell(i).Text;;;;; " " 
Labell (i).Caption ;;;;; txtCell(i).Tag 

Next 

'Set up for play 
gnGameState = PLAY 

Call UpdateSums 

txtMsgBox.Text = "Click on any cell to make your first move, or. .. Click on the <You Go First> 
button if you want me to go first." 

btn Y ouGoFirst.Enabled = True 
btnYouGoFirst.Visible = True 

End Sub 

Sub btnQuiCClick 0 

End 

End Sub 

Sub btnYouGoFirsCClick 0 

Dim temp As Integer 

btn YouGoFirst.Enabled = False 
btn YouGoFirst. Visible = False 

temp = PickCell(4) 

End Sub 

Sub Form_Load 0 
Call btnNewGame_Click 

End Sub 

Sub txtCell_Change (Index As Integer) 

If gnGameState = PLAY Then 
If Val(txtCell(lndex).Tag) = 1 Then 

txtCell(Index).Text = "X" 

- 181 -



ElseIfVal(txtCell(Index).Tag) = -1 Then 
txtCell(Index).Text = "0" 
Else txtCell(Index).Text = "X" 

txtCell(Index).Tag = 1 
Labell (Index).Caption = txtCell(lndex).Tag 

'Update ColiRowlDiag Sums 

End If 
End If 

End Sub 

Call UpdateSums 

Sub txtCell_Click (Index As Integer) 

'Just in case the User is faster than the system 
If gnGameState = SYSTEM_CONTROL Then 

Exit Sub 
End If 

'Get rid of <You Go First> if it is still there 
If btn YouGoFirst.Enabled = True Then 

btn Y ouGoFirst.Enabled = False 
btnYouGoFirst.Visible = False 

End If 

'See if game is still in progress 
If gnGameState <> PLAY Then 

txtMsgBox.Text = "Get over it... because the game is. Click on <New Game> to play again." 
Exit Sub 

End If 

'Validate User Move 
If txtCell(lndex).Text <> " " Then 

txtMsgBox.Text = "Sorry, that cell is already in use ... please try again." 
Exit Sub 

End If 

'Set Cell to X 
txtMsgBox.Text = "Processing ... " 'this invokes txtCell_ChangeO 
txtCell(lndex). Text = "X" 

'Let program make its move 
Call MakeMove 

'Handle Game State 

Select Case (gnGameState) 
Case PLAY 

txtMsgBox.Text = "Your Move" 
Case GAME_WINS 

txtMsgBox.Text = "Tic Tac Toe, Three in a Row ... You lose, I win! You will have to try again 
(Click on <New Game»" 

Case DRAW 

- 182 -



txtMsgBox.Text = "I guess the cat got this one ... CIick on <New Game> to play again." 
Case USER_WINS 

txtMsgBox.Text = "I don't believe it, YOU WON!! !. .. Quick, click on <New Game>." 
End Select 

End Sub 

Sub txtCell_KeyPress (Index As Integer, KeyAscii As Integer) 
Call txtCeILClick(Index) 

End Sub 

Global varColTot(3) As Integer 
Global varRowTot(3) As Integer 
Global varDiagTot(2) As Integer 
Global gnGameState As Integer 

Global Const SYSTEM_CONTROL =-1 
Global Const PLAY = 0 
Global Const GAME_WINS = 1 
Global Const DRAW = 2 
Global Const USER_WINS = 3 

- 183 -



SU{2{2orting Functions and Subroutines (TIT.BAS) 

Function BustA Wedge 0 

If (varDiagTot(O) + varDiagTot(l)) = 0 Then 
If PickCell( 4) Then 

BustAWedge = 1 
Exit Function 

End If 
If PickCelJ(l) Then 

BustAWedge = 1 
Exit Function 

End If 
End If 

If (varRowTot(O) + varCoITot(O)) = 2 Then 
If PickCell(O) Then 

BustAWedge = 1 
Exit Function 

End If 
End If 

If (varRowTot(O) + varCoITot(2)) = 2 Then 
If PickCelJ(2) Then 

BustA Wedge = 1 
Exit Function 

End If 
End If 

If (varRowTot(2) + varCoITot(O)) = 2 Then 
If PickCell(6) Then 

BustAWedge = 1 
Exit Function 

End If 
End If 

If (varRowTot(2) + varCoITot(2)) = 2 Then 
If PickCell(8) Then 

BustA Wedge = 1 
Exit Function 

End If 
End If 

BustAWedge = 0 

End Function 

- 184 -



Function FindABlock 0 

Dim i As Integer 
If var<:oITot(O) = 2 Then 

i = PickCell(O) 
i = PickCell(3) 
i = PickCell(6) 
FindABlock = 1 
Exit Function 

End If 

If var<:oITot(1) = 2 Then 
i = PickCell( 1) 
i = PickCell(4) 
i = PickCell(7) 
FindABlock = 1 
Exit Function 

End If 

If varCoITot(2) = 2 Then 
i = PickCell(2) 
i = PickCell(5) 
i = PickCell(8) 
FindABlock = 1 
Exit Function 

End If 

If varRowTot(O) = 2 Then 
i = PickCell(O) 
i = PickCell(l) 
i = PickCell(2) 
FindABlock = 1 
Exit Function 

End If 

If varRowTot( 1) = 2 Then 
i = PickCell(3) 
i = PickCell(4) 
i = PickCell(5) 
FindABlock = 1 
Exit Function 

End If 

If varRowTot(2) = 2 Then 
i = PickCelJ(6) 
i = PickCell(7) 
i = PickCelJ(8) 
FindABlock = 1 
Exit Function 

End If 

- 185 -



If varDiagTot(O) = 2 Then 
i = PickCell(O) 
i = PickCell(4) 
i = PickCell(8) 
FindABlock = 1 
Exit Function 

End If 

If varDiagTot(1) = 2 Then 
i = PickCell(2) 
i = PickCell(4) 
i = PickCell(6) 
FindABlock = 1 
Exit Function 

End If 

End Function 

Function FindA Win 0 
Dim i As Integer 
If varCoITot(O) ::: -2 Then 

i = PickCell(O) 
i = PickCell(3) 
i = PickCell(6) 
FindAWin = 1 
Exit Function 

End If 

If varCoITot(1) = -2 Then 
i = PickCell(1) 
i = PickCell(4) 
i = PickCell(7) 
FindAWin = 1 
Exit Function 

End If 

If varCoITot(2) = -2 Then 
i = PickCell(2) 
i = PickCell(5) 
i = PickCell(8) 
FindAWin = 1 
Exit Function 

End If 

If varRowTot(O) = -2 Then 
i = PickCell(O) 
i = PickCell(1) 
i = PickCell(2) 
FindAWin = 1 
Exit Function 

- 186 -



End If 

If varRowTot(1) = -2 Then 
i = PickCeIl(3) 
i = PickCelI(4) 
i = PickCeIl(5) 
FindAWin = 1 
Exit Function 

End If 

If varRowTot(2) = -2 Then 
i = PickCeIl(6) 
i = PickCeIl(7) 
i = PickCeIl(8) 
FindAWin = 1 
Exit Function 

End If 

If varDiagTot(O) = -2 Then 
i = PickCeIl(O) 
i = PickCeIl(4) 
i = PickCeIl(8) 
FindAWin = 1 
Exit Function 

End If 

If varDiagTot(1) = -2 Then 
i = PickCell(2) 
i = PickCell(4) 
i = PickCell(6) 
FindAWin = 1 
Exit Function 

End If 

End Function 

Function LookForDraw 0 

Dim count, i As Integer 

count = 0 

For i = 0 To 8 
If frmMain.txtCell(i).Text <> " " Then 

count = count + 1 
End If 

Next 

If count >= 8 Then 
LookForDraw = 1 
Exit Function 

End If 

- 187 -



LookForDraw = 0 

End Function 

Function LookForUserWin 0 

Dim i As Integer 

For i = 0 To 2 
If varCoITot(i) = 3 Then 

LookForUserWin = 1 
Exit Function 

End If 
Next 

For i = 0 To 2 
If varRowTot(i) = 3 Then 

LookForUserWin = 1 
Exit Function 

End If 
Next 

For i = 0 To 1 
If varDiagTot(i) = 3 Then 

LookForUserWin = 1 
Exit Function 

End If 
Next 

LookForUserWin = 0 

End Function 

Sub MakeMove 0 
Dimi 

If LookForUserWinO Then 
Beep 
gnGameState = USER_WINS 
Exit Sub 

End If 

If FindA WinO Then 
Beep 
gnGameState = GAME_WINS 
Exit Sub 

End If 

If FindABlockO Then 
Exit Sub 

End If 

If BustA WedgeO Then 

- 188 -



Exit Sub 
End If 

If PickCell( 4) Then 
i = 4 
Exit Sub 

End If 
If PickCell(O) Then 

i = 0 
Exit Sub 

End If 
If PickCell(2) Then 

i = 2 
Exit Sub 

End If 
If PickCell(6) Then 

i = 6 
Exit Sub 

End If 
If PickCell(8) Then 

i = 8 
Exit Sub 

End If 
If PickCell( 1) Then 

i = 1 
Exit Sub 

End If 
If PickCell(3) Then 

i = 3 
Exit Sub 

End If 
If PickCell(5) Then 

i = 5 
Exit Sub 

End If 
If PickCell(7) Then. 

i = 7 
Exit Sub 

End If 

End Sub 

Function PickCell (Index As Integer) 

If frmMain.txtCell(Index).Text = " " Then 
gnGameState = SYSTEM_CONTROL 
frmMain.txtCell(Index).Text = "0" 
frmMain.txtCell(Index).Tag = -1 
frmMain.Label1 (Index).Caption = frmMain.txtCell(Index).Tag 
gnGameState = PLAY 

If LookForDrawO Then 

- 189 -



Beep 
gnGarneState = DRAW 

End If 

PickCell = 1 
Exit Function 

End If 

PickCell = 0 
Exit Function 

End Function 

Sub UpdateS urns 0 

varCoITot(O) = Val(frrnMain.txtCell(O).Tag) + Val(frmMain.txtCell(3).Tag) + 
Val(frmMain.txtCell(6).Tag) 

varCoITot(l) = Val(frmMain.txtCell(l).Tag) + Val(frmMain.txtCell(4).Tag) + 
Val(frmMain.txtCell(7). Tag) 

varCoITot(2) = Val(frrnMain.txtCell(2).Tag) + Val(frmMain.txtCell(5).Tag) + 
Val(frrnMain. txtCell(8). Tag) 

varRowTot(O) = Val(frrnMain.txtCell(O).Tag) + Val(frrnMain.txtCell(l).Tag) + 
Val(frrnMain.txtCell(2).Tag) 

varRowTot(1) = Val(frrnMain.txtCell(3).Tag) + Val(frrnMain.txtCell(4).Tag) + 
Val(frmMain.txtCell(5).Tag) 

varRowTot(2) = Val(frrnMain.txtCell(6).Tag) + Val(frmMain.txtCell(7).Tag) + 
Val(frmMain. txtCell(8). Tag) 

varDiagTot(O) = Val(frmMain.txtCell(O).Tag) + Val(frrnMain.txtCell(4).Tag) + 
Val(frrnMain.txtCell(8).Tag) 

varDiagTot(l) = Val(frrnMain.txtCell(2).Tag) + Val(frmMain.txtCell(4).Tag) + 
Val(frrnMain.txtCell(6).Tag) 

End Sub 

- 190 -



APPENDIX F 

Tic Tac Toe Smart Elements Listings/Screens 

Game State: 
I 

Click on <New Game> to begin. 

Tic Tac Toe Main Screen (Smart Elements Version) 

- 191 -



Open Interface Resource File for Tic Tac Toe (TTT SE.RC) 

Note: For better readability, the object scripts were pulled from the individual objects and put into the 
"Script File" which follows this Resource File listing. Also, objects and operations not related to the 
application (Le., overhead) were removed. 

(Win. Compile 
Name: "ttcse.winMain" 
Version: 8 
Flags: OxOOOl 
Deco: Ox0007 
Min Width: 100 
MinHeight: 40 
LabelColor: "Win.DefLabeIColor" 
FocusColor: "Win.DefFocusColor" 
IconFont: "Win.DefIconFont" 
Icon: "Win.DefIcon" 
PosFlags: OxOOOl 
OptFlags: OxOOlO 
DpiX: 78 
DpiY: 78 
KeysNext: "Panel.KeysNextW gt" 
KeysPrev: "Panel. KeysPrevW gt" 
KeysNextInGrp: "Panel.KeysNextRadio" 
KeysPrev InGrp: "Panel.KeysPrevRadio" 
Label: "Tic Tac Toe" 
FgColor: "Win.DefFgColor" 
BgColor: "Win.DefBgColor" 
Font: "Win.DefFont" 
Pen: 
Pattern: 
Cursor: 
X: 
Y: 
W: 
H: 

"Win.DefPen" 
"Patt.Empty" 
"Curs.DefArrow" 
125 
50 
440 
310 

WgtFIags: OxOOOl 
Script: <MOVED TO SCRIPT FILE> 

(PBut.Compile 
Name: "ttCse. winMain.btnQuit" 
Version: 8 
Label: "Quit" 
FgCoIor: "TBut.DefFgColor" 
B gColor: "TB ut.DefB gCoIor" 
Font: "TBut.DefFont" 
Pen: "Wgt.DefPen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.DefArrow" 
X: 331 
Y: 257 
W: 91 

- 192 -



H: 34 
WgtFlags: OxOOOI 
Script: "on event TBUT_HI1\n\tWIN_Terminate(WGT_GetWin(SELF»;\nend event\n" 

(PBut.Compile 
Name: "ttCse.winMain.btnNewGame" 
Version: 8 
Label: "New Game" 
FgColor: "TBut.DetFgColor" 
B gColor: "TB ut.DefB gColor" 
Font: "TBut.DetFont" 
Pen: "Wgt.DetPen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.DefArrow" 
Index: 1 
X: 331 
Y: 202 
W: 91 
H: 34 
WgtFlags: OxOOOI 
Script: <MOVED TO SCRIPT FILE> 

(PBut.Compile 
Name: "ttCse. winMain.btn YouGoFirst" 
Version: 8 
Label: "You Go First" 
FgColor: "TBut.DetFgColor" 
BgColor: "TBut.DefBgColor" 
Font: "TBut.DetFont" 
Pen: "Wgt.DetPen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.DefArrow" 
Index: 2 
X: 331 
Y: 47 
W: 91 
H: 34 
WgtFlags: OxOOOl 
Script: <MOVED TO SCRIPT FILE> 

(Panel.Compile 
Name: "ttCse.winMain.pnlBoard" 
Version: 8 
KeysNext: 
KeysPrev: 
KeysNextlnGrp: 
KeysPrev InGrp: 
LabelJustif: 
FgColor: 
BgColor: 

"Panel. KeysNextW gt" 
"Panel.KeysPrevW gt" 
"Panel.KeysNextRadio" 
"Panel.KeysPrevRadio" 
OxOOOI 
"Panel.DetFgColor" 
"Panel.DefB gColor" 

- 193 -



Font: "W gt.DetFont" 
Pen: "Win.DefPen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.DefArrow" 
Index: 3 
X: 81 
Y: 42 
W: 136 
H: 136 
WgtFlags: OxOOOl 

(IArea.Compile 
Name: "ttt_se. winMain.pnIBoard.imgBoard" 
Version: 8 
Icon: "IArea.Deflcon" 
FgColor: "IArea.DetFgColor" 
BgColor: "IArea.DefBgColor" 
Font: "W gt.DetFont" 
Pen: "Win.DefPen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.DefArrow" 
W: 311 
H: 186 
WgtFlags: Ox0001 

(LBox.Compile 
Name: "ttCse. winMain.pnIBoard.lbCell1 " 
Version: 8 
StartCol: OxOOOl 
StartRow: OxOOO 1 
ColWidth: Ox0032 
RowHeight: Ox0014 
ColNum: 1 
RowNum: 
LbKeys: "LBox.KeysDef' 
CellPen: "Win.DefPen" 
TextEditor: "NMsgEd.EditTEd" 
SbSepW: 4 
SbSepH:4 
KeysNext: "Panel.KeysNextW gt" 
KeysPrev: "Panel. KeysPrevW gt" 
KeysNextInGrp: "Panel.KeysNextRadio" 
KeysPrevInGrp: "PaneI.KeysPrevRadio" 
FgColor: "LBox.DetFgColor" 
BgColor: "LBox.DefBgColor" 
Font: "ttCse.Font2" 
Pen: "Win.DefPen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.Cross" 
Index: 1 
X: 5 

- 194 -



Y: 13 
W: 26 
H: 31 
WgtFlags: OxOOOI 
Script: <MOVED TO SCRIPT FILE> 

(LBox.Compile 
Name: "ttCse. winMain.pnlBoard.lbCeIl2" 
Version: 8 
StartCol: OxOOOI 
StartRow: OxOOOI 
ColWidth: Ox0032 
RowHeight: OxOO14 
ColNum: 1 
RowNum: 1 
LbKeys: "LBox.KeysDef' 
CeIlPen: "Win.DeWen" 
TextEditor: "NMsgEd.EditTEd" 
SbSepW: 4 
SbSepH:4 
KeysNext: "Panel.KeysNextW gt" 
KeysPrev: "Panel. KeysPrevW gt" 
KeysNextInGrp: "Panel.KeysNextRadio" 
KeysPrevInGrp: "Panel.KeysPrevRadio" 
FgColor: "LBox.DetFgColor" 
BgColor: "LBox.DefBgColor" 
Font: "ttCse.Font2" 
Pen: "Win.DeWen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.Cross" 
Index: 2 
X: 50 
Y: 13 
W: 26 
H: 31 
WgtFlags: OxOOOl 
Script: <MOVED TO SCRIPT FILE> 

(LBox.Compile 
Name: "ttCse. winMain.pnlBoard.lbCell3" 
Version: 8 
StartCol: OxOOOI 
StartRow: OxOOOl 
ColWidth: Ox0032 
RowHeight: Ox0014 
ColNum: 1 
RowNum: 
LbKeys: "LBox.KeysDef' 
CeIlPen: "Win.DeWen" 
TextEditor: "NMsgEd.EditTEd" 
SbSepW: 4 

- 195 -



SbSepH:4 
KeysNext: "Panel.KeysNextW gt" 
KeysPrev: "Panel.KeysPrevW gt" 
KeysNextlnGrp: "Panel.KeysNextRadio" 
KeysPrevInGrp: "Panel.KeysPrevRadio" 
FgColor: "LBox.DefFgColor" 
B gColor: "LBox.Deffi gColor" 
Font: "ttcse.Font2" 
Pen: "Win.DefPen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.Cross" 
Index: 3 
X: 95 
Y: 13 
W: 26 
H: 31 
WgtFlags: Ox0001 
Script: <MOVED TO SCRIPT FILE> 

(LBox.Compile 
Name: "ttCse. winMain.pnlBoard.lbCe1l4" 
Version: 8 
Starteol: Ox0001 
StartRow: OxOOO 1 
ColWidth: Ox0032 
RowHeight: Ox0014 
ColNum: 1 
RowNum: 
LbKeys: "LBox.KeysDef' 
CellPen: "Win.DefPen" 
TextEditor: "NMsgEd.EditTEd" 
SbSepW: 4 
SbSepH:4 
KeysNext: 
KeysPrev: 
KeysNextInGrp: 
KeysPrev InGrp: 
FgColor: 

"Panel.KeysNextW gt" 
"Panel.KeysPrevW gt" 
"Panel.KeysNextRadio" 
"Panel.KeysPrevRadio" 
"LBox.DefFgColor" 

B gColor: "LBox.Deffi gColor" 
Font: "ttCse.Font2" 
Pen: "Win.DefPen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.Cross" 
Index: 4 
X: 5 
Y: 48 
W: 26 
H: 31 
WgtFlags: Ox0001 
Script: <MOVED TO SCRIPT FILE> 

- 196 -



(LBox.Compile 
Name: "ttCse. winMain.pnIBoard.lbCe1l5" 
Version: 8 
StartCol: OxOOOl 
StartRow: OxOOOl 
ColWidth: Ox0032 
RowHeight: OxOO14 
ColNum: 1 
RowNum: 
LbKeys: "LBox.KeysDef' 
CellPen: "Win.DefPen" 
TextEditor: "NMsgEd.EditTEd" 
SbSepW: 4 
SbSepH:4 
KeysNext: 
KeysPrev: 
KeysNextInGrp: 
KeysPrevInGrp: 
FgColor: 
BgColor: 

"Panel.KeysNextW gt" 
"Panel.KeysPrevW gt" 
"Panel.KeysNextRadio" 
"Panel.KeysPrevRadio" 
"LBox.DefFgColor" 
"LBox.DefB gColor" 

Font: "ttt_se.Font2" 
Pen: "Win.DefPen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.Cross" 
Index: 5 
X: 50 
Y: 48 
W: 26 
H: 31 
WgtFlags: OxOOOl 
Script: <MOVED TO SCRIPT FILE> 

(LBox.Compile 
Name: "ttCse. winMain.pnIBoard.lbCe1l6" 
Version: 8 
StartCol: OxOOOI 
StartRow: OxOOOl 
ColWidth: Ox0032 
RowHeight: OxOO 14 
ColNum: 1 
RowNum: 
LbKeys: "LBox.KeysDef' 
CellPen: "Win.DefPen" 
TextEditor: "NMsgEd.EditTEd" 
SbSepW: 4 
SbSepH:4 
KeysNext: 
KeysPrev: 
KeysNextInGrp: 
KeysPrevInGrp: 
FgColor: 
BgColor: 

"Panel.KeysNextW gt" 
"Panel.KeysPrevW gt" 
"Panel.KeysN extRadio" 
"Panel.KeysPrevRadio" 
"LBox.DefFgColor" 
"LBox.DefB gColor" 

- 197 -



Font: "ttcse.Font2" 
Pen: "Win.DetPen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.Cross" 
Index: 6 
X: 95 
Y: 48 
W: 26 
H: 31 
WgtFlags: Ox0001 
Script: <MOVED TO SCRIPT FILE> 

(LBox.Compile 
Name: "ttCse. winMain.pnlBoard.lbCell7" 
Version: 8 
StartCol: Ox0001 
StartRow: Ox0001 
ColWidth: Ox0032 
RowHeight: OxOO14 
ColNum: 1 
RowNum: 1 
LbKeys: "LBox.KeysDef' 
CeIlPen: "Win.DetPen" 
TextEditor: "NMsgEd.EditTEd" 
SbSepW: 4 
SbSepH:4 
KeysNext: "Panel.KeysNextW gt" 
KeysPrev: "Panel.KeysPrevW gt" 
KeysN extInGrp: "PaneI.KeysNextRadio" 
KeysPrevInGrp: "PaneI.KeysPrevRadio" 
FgColor: "LBox.DefFgColor" 
BgColor: "LBox.DefBgColor" 
Font: "ttcse.Font2" 
Pen: "Win.DetPen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.Cross" 
Index: 7 
X: 5 
Y: 83 
W: 26 
H: 31 
WgtFlags: Ox0001 
Script: <MOVED TO SCRIPT FILE> 

(LBox.Compile 
Name: "ttCse. winMain. pnlBoard.lbCeIl8" 
Version: 8 
StartCol: Ox0001 
StartRow: Ox0001 
ColWidth: Ox0032 
RowHeight: Ox0014 

- 198 -



ColNum: 
RowNum: 1 
LbKeys: "LBox.KeysDef' 
CellPen: "Win.Detpen" 
TextEditor: "NMsgEd.EditTEd" 
SbSepW: 4 
SbSepH:4 
KeysNext: "Panel. KeysNextW gt" 
KeysPrev: "Panel.KeysPrevW gt" 
KeysNextInGrp: "Panel.KeysNextRadio" 
KeysPrevInGrp: "Panel.KeysPrevRadio" 
FgColor: "LBox.DetFgColor" 
B gColor: "LBox.DefB gColor" 
Font: "ttcse.Font2" 
Pen: "Win.Detpen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.Cross" 
Index: 8 
X: 50 
Y: 83 
W: 26 
H: 31 
WgtFlags: OxOOOI 
Script: <MOVED TO SCRIPT FILE> 

(LBox.Compile 
Name: "ttCse. winMain. pnlBoard.lbCe1l9" 
Version: 8 
StartCol: OxOOOI 
StartRow: OxOOOI 
ColWidth: Ox0032 
RowHeight: Ox0014 
ColNum: 1 
RowNum: 
LbKeys: "LBox.KeysDef' 
CellPen: "Win.Detpen" 
TextEditor: "NMsgEd.EditTEd" 
SbSepW: 4 
SbSepH:4 
KeysNext: "Panel.KeysNextW gt" 
KeysPrev: "Panel.KeysPrevW gt" 
KeysNextInGrp: "Panel.KeysNextRadio" 
KeysPrev InGrp: "Panel.KeysPrevRadio" 
FgColor: "LBox.DetFgColor" 
B gColor: "LBox.DefB gColor" 
Font: "ttt_se.Font2" 
Pen: "Win.Detpen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.Cross" 
Index: 9 
X: 95 
Y: 83 

- 199 -



W: 26 
H: 31 
WgtFlags: OxOOOl 
Script: <MOVED TO SCRIPT FILE> 

) 

(MTEd.Compile 
Name: "ttcse.winMain.txtMsgBox" 
Version: 8 
Justif: OxOOll 
OptFlags: 
LeftMargin: 

Ox0002 
4 

RightMargin: 4 
LabelFont: "TEd.DefFont" 
LabelPen: 
LabelPattern: 
LabelFgColor: 
LabelB gColor: 
InitialText: 
SbSepW: 
SbSepH:4 
KeysNext: 
KeysPrev: 
KeysNextInGrp: 
KeysPrevInGrp: 
LabelIustif: 

"Pen.Solid" 
"Patt.Empty" 
"TEd.DefFgColor" 
"Color. Transparent" 
"Click on <New Game> to begin." 
4 

"Panel. KeysNextW gt" 
"Panel.KeysPrevW gt" 
"Panel.KeysNextRadio" 
"PaneI.KeysPrevRadio" 
Ox0041 

FgColor: "TEd.DefFgColor" 
BgColor: "TEd.DefBgColor" 
Font: "TEd.DefFont" 
Pen: "TEd.DefPen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.DefArrow" 
Index: 4 
X: 11 
Y: 212 
W: 311 
H: 81 
RzFlags: OxOlOO 
WgtFlags: OxOOOl 

(STEd.Compile 
Name: "ttcse. winMain. txtGameState" 
Version: 8 
Justif: OxOOll 
OptFlags: 
LeftMargin: 
RightMargin: 
LabelFont: 
LabelPen: 
LabelPattern: 
LabelFgColor: 

Ox0003 
4 
4 
"TEd.DefFont" 
"Pen. Solid" 
"Patt.Empty" 
"TEd.DefFgColor" 

- 200 -



LabelBgColor: "Color.Transparent" 
HSepH: 20 
SbSepVV: 4 
SbSepH:4 
KeysNext: "Panel.KeysNextVV gt" 
KeysPrev: "Panel.KeysPrevVV gt" 
KeysNextInGrp: "Panel.KeysNextRadio" 
KeysPrevInGrp: "Panel.KeysPrevRadio" 
Label: "Game State:" 
Label1ustif: Ox0041 
FgColor: "TEd.DefFgColor" 
BgColor: "TEd.DefBgColor" 
Font: "TEd. DefFont " 
Pen: "TEd.DeWen" 
Pattern: "Patt.Empty" 
Cursor: "Curs.DefArrow" 
Index: 5 
X: 331 
Y: 137 
VV: 96 
H: 26 
RzFlags: OxOlOO 
VVgtFlags: OxOOOl 
Script: <MOVED TO SCRIPT FILE> 

- 201 -



Open Interface Script File for Tic Tac Toe 

On "winMain" object: 

on event WIN_OPENED 

//Collect some useful pointers 
winMainptr = WGT_GetWin(SELF); 

txtGameStateptr = WIN_GetNamedW gt(winMainptr, "txtGameState"); 

txtMsgBoxptr = WIN_ GetNamedW gt( winMainptr, "txtMsgBox "); 

//Initialize text areas 
TED _SetStr(txtGameStateptr, "SYSTEM"); 

TED _SetStr(txtMsgBoxptr, "Processing ... "); 

//Initialize Nexpert 
NOIR_RestartSessionO; 

/!Initialize Cells 
IbCellptr = WIN_GetNamedWgt(winMainptr,"lbCelll "); 
LBOX_SetCellString(lbCellptr, 1,1," "); 

IbCellptr = WIN_ GetN amedW gt( winMainptr, "lbCe1l2 "); 
LBOX_SetCellString(lbCellptr,I,I," "); 

IbCellptr = WIN_ GetN amedW gt( winMainptr, "1 bCe1l3 "); 
LBOX_SetCellString(lbCellptr, 1,1," "); 

IbCellptr = WIN_GetNamedWgt(winMainptr,"lbCe1l4"); 
LBOX_SetCellString(lbCellptr, 1, 1," "); 

IbCellptr = WIN_GetNamedW gt(winMainptr, "lbCe1l5"); 
LBOX_SetCellString(lbCellptr, 1,1," "); 

IbCellptr = WIN_GetNamedWgt(winMainptr,"lbCe1l6"); 
LBOX_SetCellString(lbCellptr,I,I," "); 

IbCellptr = WIN_GetNamedW gt(winMainptr, "lbCe1l7"); 
LBOX_SetCellString(lbCellptr,l, 1," "); 

IbCellptr = WIN_GetNamedWgt(winMainptr,"lbCe1l8"); 
LBOX_SetCellString(lbCellptr,I,I," "); 

IbCellptr = WIN_GetNamedW gt(winMainptr, "lbCe1l9"); 
LBOX_SetCellString(lbCellptr, 1,1," "); 

II Enable <You Go First> Button 
WGT_Enable(WIN_GetNamedW gt(winMainptr, "btn YouGoFirst"»; 

- 202 -



IISet text areas for play 
TED_SetStr(txtMsgBoxptr, "Click on any cell to make your first move, or ... Click on the 

<You Go First> button if you want me to go first. "); 

TED_SetStr(txtGameStateptr, "PLAY"); 

end event I/WIN_OPENED 

On "lbCell" object: 

on event LBOX_CELLCLICKED 
//Collect some useful pointers 
winMainptr = WGT_GetWin(SELF); 

txtGameStateptr = WIN_ GetN amedW gt( winMainptr, " txtGameS tate "); 

txtMsgBoxptr = WIN_GetNamedW gt(winMainptr, "txtMsgBox "); 

IIJust in case the User is faster than the system 
while(TED_GetStr(txtGameStateptr) == "SYSTEM") 
{ 

LBOX_ U nselectCell(SELF, 1,1); 
return; 

II Grayout <You Go First> Button 
WGT _Disable(WIN_ GetNamedW gt( winMainptr, "btn You Go First") ); 

IlMake sure the game is still in progress 
while(TED_GetStr(txtGameStateptr) != "PLAY") 
{ 

TED_SetStr(txtMsgBoxptr,"Get over it ... because the game is. Click on <NewGame> 
to play again. "); 

LBOX_ UnselectCell(SELF, 1,1); 
return; 

INalidate User Move 
currVal = LBOX_GetCellString(SELF,l,l); 
if(currVal != " "){ 

TED_SetStr(txtMsgBoxptr, "Sorry, that cell is already in use ... please try again. "); 

else{ 
IITake Control and process User's move 

TED_SetStr(txtGameStateptr, "SYSTEM"); 

TED _SetStr(txtMsgBoxptr, "Processing ... "); 

llUpdate board with User's move 
LBOX_SetCellString(SELF,l,l,"X"); 

- 203 -



IIUpdate and run the NEXPERT game engine 
NOIR_ Volunteer(NOIR_GetAtomId("Ce1l1,Val", NXP _ATYPE_SLOT), NXP _DESC_INT, 1, 

NXP _ VSTRAT_ VOLFWRD); 

NOIR_SendMessage("mthdUpdate", NOIR_GetAtomId("Sums", NXP _A TYPE_CLASS), ""); 

NOIR_Suggest(NOIR_GetAtomId("hypMakeAMove", NXP _A TYPE_HYPO), 
NXP _SPRIO_SUG); 

NOIR_KnowcessO; 

NOIR_ProcessForm(winMainptr); 

IIHandle Game State 
NOIR_UpdateWgt(txtGameStateptr); 

if (TED_GetStr(txtGameStateptr) == "PLAY") 

TED _SetStr(txtMsgBoxptr, "Your move,"); 

else { 
if (TED_GetStr(txtGameStateptr) == "GAME WINS") 

TED_SetStr(txtMsgBoxptr, "Tic Tac Toe, Three in a Row .. , You lose, I win! You will have to 
try again (click on <New Game»,"); 

else { 
if (TED_GetStr(txtGameStateptr) == "DRAW") 

TED_SetStr(txtMsgBoxptr, "I guess the cat got this one .. , Click on <New Game> 
to play again,"); 

else { 
if (TED_GetStr(txtGameStateptr) == "USER WINS") 

TED_SetStr(txtMsgBoxptr, "I don't believe it, YOU WONl 1 l...Quick, click on 
<New Game>,"); 

Ilend else process the User's move 

LBOX_UnselectCell(SELF, 1, 1); 

end event I/LBOX_CELLCLICKED 

on event NOIR_PROCESSFORM 

IITest to see if the NEXPERT game engine placed an 0 in this cell 

- 204 -



currVal = LBOX_GetCellString(SELF,l,l); 
if(currVal == II "){ 

nxpCellVal = NOIR_GetIntVal(NOIR_GetAtomId("Celll.Val", NXP _ATYPE_SLOT»; 

if(nxpCeliVal == -1) 

LBOX_SetCellString(SELF,l,l, "0"); 

end event II NOIR_PROCESSFORM 

On "btnNewGame" Object: 

on event TBUT_HIT 
IICollect some useful pointers 
winMainptr = WGT_GetWin(SELF); 

txtGameStateptr = WIN_GetNamedW gt(winMainptr, "txtGameState"); 

txtMsgBoxptr = WIN_GetNamedWgt(winMainptr,"txtMsgBox"); 

//Initialize text areas 
TED_SetStr(txtGameStateptr, "SYSTEM"); 

TED _SetStr(txtMsgBoxptr, "Processing ... "); 

//Initialize Nexpert 
NOIR_RestartSessionO; 

//Initialize Cells 
IbCellptr = WIN_GetNamedWgt(winMainptr,"lbCelll "); 
LBOX_SetCellString(lbCellptr, 1,1, II "); 

IbCellptr = WIN_GetNamedWgt(winMainptr,"lbCe1l2"); 
LBOX_SetCellString(lbCellptr, 1 , 1, II "); 

IbCellptr = WIN_GetNamedW gt(winMainptr, "lbCell3 "); 
LBOX_SetCellString(lbCellptr, 1,1, II "); 

IbCellptr = WIN_GetNamedWgt(winMainptr,"lbCe1l4"); 
LBOX_SetCellString(lbCellptr,l ,1 ," "); 

IbCellptr = WIN_GetNamedWgt(winMainptr,"lbCe1l5"); 
LBOX_SetCellString(lbCeIlptr, 1,1, II "); 

IbCeIlptr = WIN_GetNamedW gt(winMainptr, "lbCe1l6"); 
LBOX_SetCeIlString(lbCellptr, 1 ,1, II "); 

IbCeIlptr = WIN_GetNamedW gt(winMainptr, "lbCell7"); 
LBOX_SetCeIIString(lbCellptr, 1 , 1, II "); 

- 205 -



IbCellptr = WIN_GetNamedW gt(winMainptr, "lbCeIl8"); 
LBOX_SetCellString(lbCellptr,l, 1," "); 

IbCellptr = WIN_GetNamedWgt(winMainptr,"lbCe1l9"); 
LBOX_SetCellString(lbCellptr,l,l," "); 

II Enable <You Go First> Button 
WGT_Enable(WIN_GetNamedW gt(winMainptr, "btn YouGoFirst")); 

IISet text areas for play 
TED_SetStr(txtMsgBoxptr, "Click on any cell to make your first move, or ... Click on the 

<You Go First> button if you want me to go first. "); 

TED_SetStr(txtGameStateptr, "PLAY"); 

end event I/TBUT_HIT 

On "btnQuit" Object: 

on event TBUT_HIT 

WIN_Terminate(WGT_GetWin(SELF)); 

end event I/TBUT_HIT 

On "btn Y ouGoFirst" Object: 

on event TBUT_HIT 

IICollect some useful pointers 
winMainptr = WGT_GetWin(SELF); 

txtGameStateptr = WIN_ GetN amedW gt( winMainptr, "txtGameState "); 

txtMsgBoxptr = WIN_GetNamedWgt(winMainptr, "txtMsgBox"); 

II Grayout <You Go First> Button 
WGT _Disable(WIN_ GetN amedW gt( winMainptr, "btn Y ouGoFirst")); 

l!Take Control and process User's move 
TED_SetStr(txtGameStateptr, "SYSTEM"); 

TED_SetStr(txtMsgBoxptr, "Processing ... "); 

IIUpdate and run the NEXPERT game engine 
NOIR_SendMessage("mthdUpdate", NOIR_GetAtomld("Sums", NXP_ATYPE_CLASS), ""); 

NOIR_Suggest(NOIR_GetAtomId("hypMakeAMove", NXP _A TYPE_HYPO), NXP _SPRIO_SUG); 

NOIR_KnowcessO; 

- 206 -



NOIR_ProcessForm(winMainptr); 

IlHandle Game State 
NOIR_ Update W gt(txtGameStateptr); 

TED _SetStr(txtMsgBoxptr, "Your move. "); 

end event IrrBUT_HIT 

On "txtGameState" Object: 

on event INITIALIZE 

NOIR_LinkTextEdit(SELF, NOIR_GetAtomId("Game.State", NXP _ATYPE_SLOT), 1); 

end event II INITIALIZE 

- 207 -



Nexpert Object Graphs and File Excerpts for Tic Tac Toe (TTT.KB) 

Class-Object Hierarchy for the "Cells" Class 

- 208 -



-~ 
--~---~ 

~r..Well~ 

----i!m 
~ 

_-------E=----~ 

~ 
------~ 

~ 
___ E----_~ 

~ 
-----~ 

~~ 
,.~~t:1 

------~ 

~-~ 

~---------- ~ ~ ~- ~~ -----I!miI 
-~ 

~~~--~ 

~~

------C§]'ffi

-~
~~===------~

~~

------I!mill
-~

~~:=----~

~~

------~

~---~~------------~~um

Class-Object Hierarchy for the "Sums" Class

- 209 -

Class-Object Hierarchy for the "Game" Object

- 210 -

L--________________ ----lI~ ;~':]~I

Object I Game KB I m,KB I <:,~?';I

IW ,i~i;,'1

:~ :1-_==-_==-_==-_==-_==-_==-_==-_==-_==-_==-_==-_==-_==-_==-_==-_==-_==-_:l.,;l;.aJ ~~jl

1;");UVi<1
f-------------------.,..0 ;j: ~ f--------: ~

~~-~~ ~M=o=ve=s=============5=============(I=)=====~~~~ li~1
~S~ta~te~-----~D~RA~W~---~~(S~)--~~~1 ~qi01

SubObjects

~,1~in',·,
,-etm'-,.-""..,-ff)-----.. -CIl=!Th'!W---,;' L-______ --'-_____ -----l ___ ~+ l}U~¥il
lIMNte . 0 .. S'Ff ;iWi~n mthdCheckDraw Moves Pub '¥

ji:

Typical Object Dialog in Nexpert Object

- 211 -

Rule Graph

Rules Listing:

(@RULE= R_hypUserWins

)

@INFCAT=30;
(@LHS=

(= «ISumsl>.Sum) (3))
)
(@HYPO= hypMakeAMove)
(@RHS=

(Assign ("USER WINS") (Game.State))

(@RULE= R_hypGameWins
@INFCAT=20;
(@LHS=

(= «ISumsl>.Sum) «0-2)))
)
(@HYPO= hypMakeAMove)
(@RHS=

(SendMessage ("mthdPickLastCeIl ")

- 212 -

(@TO=ICellsI,Val;@ARGl=<ISumsl>;))

(Assign ("GAME WINS ") (Game.State))

)
(@RULE= R_hypBlockUser

)

@INFCAT=lO;
(@LHS=

(= «ISumsl>.Sum) (2))
)
(@HYPO=
(@RHS=

hypMakeAMove)

(SendMessage
(SendMessage

(" mthdPickLas tCell ")
("mthdCheckDraw")

(@RULE= R_hypBustAWedgelA

)

@INFCAT=6;
(@LHS=

(=
(=

)
(@HYPO=
(@RHS=

(SUM(Diag 1.Sum,Diag2.Sum))
(CellS.Val) (0))

hypMakeAMove)

(Assign «0-1))
(SendMessage

(CellS.Val))
("mthdCheckDraw")

(@RULE= R_hypBustA WedgelB

)

@INFCAT=S;
(@LHS=

(=
(=

)
(@HYPO=
(@RHS=

(SUM(Diagl.Sum,Diag2.Sum))
(Ce1l2.Val) (0))

hypMakeAMove)

(Assign «0-1))
(SendMessage

(Ce1l2.Val))
("mthdCheckDraw")

)

(@RULE= R_hypBustAWedge4

)

@INFCAT=2;
(@LHS=

(=
(=

)
(@HYPO=
(@RHS=

(SUM(Row3.Sum,Coll.Sum))
(Ce1l7.Val) (0))

hypMakeAMove)

(Assign «0-1))
(SendMessage

(Cell7.Val))
("mthdCheckDraw")

(@RULE= R_hypBustA WedgeS
(@LHS=

(= (SUM(Row3.Sum,CoI3.Sum))

- 213 -

(@TO=ICellsI.Val;@ARGl=<ISumsl>;))
(@TO=Game.Moves;))

(0))

(@TO=Game.Moves;))

(0))

(@TO=Game.Moves;))

(2))

(@TO=Game.Moves;))

(2))

(= (Ce1l9.Val) (0))
)
(@HYPO=
(@RHS=

hypMakeAMove)

(Assign «0-1))
(SendMessage

)
(@EHS=

(CeIl9.Val))
("mthdCheckDraw")

(SendMessage ("mthdPickCeIl5")

- 214 -

(@TO==Game.Moves;))

(@TO==CeIl5.Val;))

I~ L-__ ~

Method L! ~Upt::..d:::.:a:::.:t_=:e.:::.:Su~m_'_'_ __ ___'1 KB ! m. KB

A ttac hed To L! ..:::.Su::::m..:...=s . ..:::.Su::::m-'..:.-______ ---l1 Type ! B Sio t

Local
Arguments

Name Nature Data Type Def Value List

I
~

*-
t-

..

Comments L! ______________________ ___'

Public
Why

Typical Method Dialog in Nexpert Object

Methods Listing:

(@METHOD= If Change
(@ATOMID=Cells.Val;@TYPE=SLOT;)
(@FLAGS=PUBLIC;)
(@RHS=

(SendMessage ("UpdateSum") (@TO=<ISumsl>.Sum;»

)
(@METHOD= mthdCheckDraw

(@ATOMID=Game.Moves;@TYPE=SLOT;)
(@FLAGS=PUBLIC;)
(@LHS=

(= (Game.Moves) (5»
)
(@RHS=

(Assign ("DRA W") (Game. State»

- 215 -

(@EHS=
(Assign ("PLAY") (Game. State»

)
(@METHOD= mthdPickCelll

(@ATOMID=CeIls.Val;@TYPE=SLOT;)
(@FLAGS=PUBLlC;)
(@LHS=

(= (CeIll.Val) (0»
)
(@RHS=

)

(Assign «0-1))
(SendMessage

(@EHS=
(SendMessage

)

(Ceil l.Val»
("mthdCheckDraw")

("mthdPickCell3 ")

)
(@METHOD= mthdPickCeil2

(@ATOMID=Ceils.Val;@TYPE=SLOT;)
(@FLAGS=PUBLlC;)

)

(@LHS=
(= (CeIl2.Val) (0»

)
(@RHS=

)

(Assign «0-1))
(SendMessage

(@EHS=
(SendMessage

)

(Ce1l2.Val»
("mthdCheckDraw")

("mthdPickCe1l4")

(@METHOD= mthdPickCell3
(@ATOMID=CeIls.Val;@TYPE=SLOT;)
(@FLAGS=PUBLlC;)

)

(@LHS=
(= (Ce1l3.Val) (0»

)
(@RHS=

)

(Assign «0-1»
(SendMessage

(@EHS=
(SendMessage

(Ce1l3.Val»
("mthdCheckDraw")

("mthdPickCell7")

(@METHOD= mthdPickCe1l4
(@ATOMID=Celis.Val;@TYPE=SLOT;)
(@FLAGS=PUBLlC;)
(@LHS=

(= (Ceil4.Val) (0»
)
(@RHS=

- 216 -

(@TO=Game.Moves;»

(@TO=Cell3.Val;»

(@TO=Game.Moves;»

(@TO=Ceil4.Val;»

(@TO=Game.Moves;»

(@TO=Cell7.Val;»

)

(Assign «0-1)) (Ce1l4.Val))
(SendMessage ("mthdCheckDraw")

)
(@EHS=

(SendMessage ("mthdPickCe1l6")

(@METHOD= mthdPickCe1l5
(@ATOMID=Cells.Val; @TYPE=SLOT;)
(@FLAGS=PUBLIC;)
(@LHS=

(= (Ce1l5.Val) (0))
)
(@RHS=

)

(Assign «0-1))
(SendMessage

(@EHS=
(SendMessage

(Ce1l5.Val))
("mthdCheckDraw")

("mthdPickCelll ")

)
(@METHOD= mthdPickCe1l6

(@ATOMID=Cells.Val;@TYPE=SLOT;)
(@FLAGS=PUBLIC;)

)

(@LHS=
(= (Ce1l6.Val) (0))

)
(@RHS=

(Assign «0-1))
(SendMessage

)
(@EHS=

(Ce1l6.Val))
("mthdCheckDraw")

(SendMessage ("mthdPickCeIl8")

(@METHOD= mthdPickCe1l7
(@ATOMID=Cells.Val;@TYPE=SLOT;)
(@FLAGS=PUBLIC;)

)

(@LHS=
(= (Ce1l7.Val) (0))

)
(@RHS=

(Assign «0-1))
(SendMessage

)
(@EHS=

(Ce1l7.Val))
("mthdCheckDraw")

(SendMessage ("mthdPickCeIl9")

(@METHOD= mthdPickCe1l8
(@ATOMID=Cells.Val;@TYPE=SLOT;)
(@FLAGS=PUBLIC;)
(@LHS=

- 217 -

(@TO=Game.Moves;))

(@TO=Ce1l6.Val;))

(@TO=Game.Moves;))

(@TO=Celll.Val;))

(@TO=Game.Moves;))

(@TO=Ce1l8.Val;))

(@TO=Game.Moves;))

(@TO=CeIl9.Val;))

)

(= (CeIl8.Val) (0»
)
(@RHS=

(Assign ((0-1))
(SendMessage

)
(@EHS=

(CeIl8.Val»
("mthdCheckDraw")

(Assign ("DRA W") (Game. State»

(@METHOD= mthdPickCell9
(@ATOMID=Cells.Val;@TYPE=SLOT;)
(@FLAGS=PUBLIC;)

)

(@LHS=
(= (CeIl9.Val) (0»

)
(@RHS=

)

(Assign ((0-1)
(SendMessage

(@EHS=
(SendMessage

)

(CeIl9.Val»
("mthdCheckDraw")

("mthdPickCeIl2 ")

(@METHOD= mthdPickLastCell
(@ATOMID=Cells.Val;@TYPE=SLOT;)
(@ARGl=_CurSum;@NATURE=Object;@LIST;)
(@FLAGS=PUBLIC;)
(@LHS=

(@TO=Game.Moves;»

(@TO=Game.Moves;»

(@TO=CeIl2.Val;»

(Member «/Cells/» «_ CurSum> »

)

(= «/Cells/>.Val) (0»
)
(@RHS=

(Assign ((0-1) «/Cells/>.Val»

(@METHOD= mthdUpdate
(@ATOMID=Sums;@TYPE=CLASS;)
(@FLAGS=PUBLIC;)
(@RHS=

(SendMessage ("UpdateSum") (@TO=</Sums/>.Sum;»
(Assign ((Game.Moves+l) (Game. Moves»
(Reset (hypMakeAMove»

)
)
(@METHOD= UpdateSum

(@ATOMID=Sums.Sum; @TYPE=SLOT;)
(@FLAGS=PUBLIC;)
(@RHS=

(Assign (SUM«SELF>.Val» (SELF.Sum»

- 218 -

APPENDIX G

SA2VB.EXE Bridge Listings and Sample Results

#include <stdio.h>
#include <ctype.h>
#include "SA-VB.h"
I*#include <strings.h>*1

1* global variables *1

Source Code for SA2VB.C

FILE *infile; 1* to point to the input file *1
FILE *outfile; 1* to point to the output file *1
int COUNTER = 1;

II doControl (recursively) processes CONTROL statements
int doControl(FILE *infile,FILE *outfile){

char nextword[256];
char caption[256];
char name[256];
char type[256];
char style[256];
char count[4];
int datum, len, flag = 0;

II Scan for CONTROL to process or END to bail
while (fscanf(infile, "%s", &nextword) != EOF) {

if(! strcmp(nextword, "CONTROL"))

else{
break;

if(!strcmp(nextword, "END "))
return 0;

II Pull out the CaptioniText, based on ", as the delimiter
strcpy(caption, "");
while(fscanf(infile, "%s", &nextword) != EOF){

if(strstr(nextword, "\", ") == NVLL){
strcat(caption,nextword); II keep parsing the caption
strcat(caption," ");

- 219 -

else{
len = strIen(nextword); II lose the comma and break
strncat(caption,nextword,len-1);
break;

II Grab the object name, checking for illegal names
strcpy(name,"");
fscanf(infiIe, "%S", &nextword);
len = strIen(nextword);
strncat(name,nextword,len-l);

II set flag if name begins with a non-alpha, so we can create a good name later
if(lisalpha(name[O]){

flag = 1;

II Grab the type of the object
strcpy(type, II ");
fscanf(infiIe, "%S", &nextword);
len = strIen(nextword);
strncat(type,nextword,len-1);

IICheck the flag and generate a unique name, if appropriate
if(flag){

itoa(CO UNTER,&count, 1 0);
strcpy(name,ISA2VB_");
strcat(name,type);
strcat(name,count);
flag = 0;

II Grab the style info
strcpy(style,"");

fscanfOnfiIe, "%S", &nextword);
len = strIen(nextword);
strncat(style,nextword,l en-I);

II Set up a COMMAND_BUITON
if(! s trcmp (type , liB UITON") && strstr(style, "PUSHB UITON"» {

fprintf(outfiIe," Begin CommandButton %s\n",name);
fprintf(outfiIe, II Caption \t=\t%s\n II ,caption);
lmANDLE STYLE OPTIONS
if(strstr(style, "DEFPUSHB UITON"» {

fprintf(outfiIe, II Default\t=\t -1 'True\n ");

}
else{

II Set up a TEXT_EDIT_BOX
if(!strcmp(type,IEDlT"»{

- 220 -

else{

II Set up a LABEL

fprintf(outfile," Begin TextBox %s\n",name);
fprintf(outfile, II Text\t=\t%s\n" ,caption);
/!HANDLE STYLE OPTIONS
if(strstr(style,"VSCROLL") && strstr(style,"HSCROLL")){

fprintf(outfile, II ScrollBars\t=\t3 'Both\n ");
}
else (

if(strstr(style, "HSCROLL")) (
fprintf(outfile, II ScrollBars\t=\t1 'Horizontal\n ");

else (
if(strstr(style, "VSCROLL")) (

fprintf(outfile, II ScrollBars\t=\t2 'Vertical\n ");

}
if(strstr(style,"MULTILINE")){

fprintf(outfile, II MultiLine\t=\t -1 'True\n ");
}
if(strstr(style, "RIGHT")) (

fprintf(outfile, II Alignment\t=\t1 'Right Justify\n");
}
if(strstr(style, "CENTER")) (

fprintf(outfile, II Alignment\t=\t2 'Center\n ");
}
if(!strstr(style, "BORDER")) (

fprintf(outfile, II BorderStyle\t=\tO 'None\n ");

if(!strcmp(type,"STATIC")) {

else{

fprintf(outfile, II Begin Label %s\n II ,name);
fprintf(outfile, II Caption\t=\t%s\n" ,caption);
/!HANDLE STYLE OPTIONS
if(strstr(style, "RIGHT")) (

fprintf(outfile, II Alignment\t=\tl 'Right J ustify\n ");
}
if(strstr(style,"CENTER")){

fprintf(outfile," Alignment\t=\t2 'Center\n ");

II Relinquish processing to the next object
COUNTER++;
doControl(infile,outfile);
return 0;

- 221 -

II If we're still here, that means it's time to do the coordinates
fscanf(infile, "%S", &nextword);
datum = FACTOR * atoi(nextword);
fprintf(outfile, II Left\t=\t%d\n II ,datum);

fscanf(infile, "%S", &nextword);
datum = FACTOR * atoi(nextword);
fprintf(outfile, II Top\t\t=\t%d\n" ,datum);

fscanf(infile, "%S", &nextword);
datum = FACTOR * atoi(nextword);
fprintf(outfile, II Width\t=\t%d\n II ,datum);

fscanf(infile, "%S", &nextword);
datum = FACTOR * atoi(nextword);
fprintf(outfile, II Height\t=\t%d\n II ,datum);

II Close out this object
fprintf(outfile, II End\n ");

COUNTER++;

II Process the next object
doControl(infile,outfile);

return 0;

} Ilend doControlO

void main(int argc, char *argv[]) {

char nextword[256];
char caption[256];
int datum;

if(argc != 2){ 1* verify something was entered as a command line argument *1

}

printf("You must enter an input filename as a command line argument ... exiting.\n");
exit(O);

infile = fopen(argv[l],"r");

if(infile == NULL){ 1* error-check to confirm successful file opening *1
printf("Can't open input file ... exiting.\n");
exit(O);

outfile = fopen("out.frm", "W");

if(outfile == NULL) { 1* error-check to confirm successful file opening *1
printf("Can't open output file ... exiting.\n");
fclose(infile);
exit(O);

II Opening Header and Object Name

- 222 -

fscanf(infile, "%s", &nextword);
fprintf(outfile, "VERSION 2.00\nBegin Form %s\n" ,nextword);

II Verify DIALOG, then scan, calc and output window dimensions
fscanf(infile, "%s", &nextword);
if(strcmp(nextword, "DIALOG"»{

printf("Couldn't find DIALOG in input file ... exiting.\n");
fcIose(infile);
fcIose(outfile);
exit(O);

fscanf(infile, "%s", &nextword);
datum = FACTOR * atoi(nextword);
fprintf(outfile," Left\t\t=\t%d\n" ,datum);

fscanf(infile, "%s", &nextword);
datum = FACTOR * atoi(nextword);
fprintf(outfile," Top\t\t=\t%d\n" ,datum);

fscanf(infile, "%s", &nextword);
datum = (FACTOR * atoi(nextword» + 60;
fprintf(outfile," Width\t\t=\t%d\n" ,datum);

fscanf(infile, "%s", &nextword);
datum = (FACTOR * atoi(nextword» + 360;
fprintf(outfile," Height\t=\t%d\n" ,datum);

II Verify STYLE information is present
fscanf(infile, "%s", &nextword);
if(! strcmp(nextword," STYLE"»{

/I Handle STYLE information
fscanf(infile, "%s", &nextword);
if(!strstr(nextword,"BORDER") && !strstr(nextword,"THICKFRAME"»(

fprintf(outfile," BorderStyle\t=\tO 'None\n ");

if(strstr(nextword,"BORDER") && !strstr(nextword,"THICKFRAME"»(
fprintf(outfile," BorderStyle\t=\t1 'Fixed Single\n");

J
if(!strstr(nextword,"SYSMENU"»(

fprintf(outfile," ControIBox\t=\tO 'False\n");
J
if(!strstr(nextword,"MAXIMIZEBOX"»{

fprintf(outfile," MaxB utton\t=\tO 'False\n");
J
if(!strstr(nextword,"MINIMIZEBOX"»(

fprintf(outfile," MinButton\t=\tO 'False\n");

II Verify CAPTION is present
fscanf(infile, "%s", &nextword);
if(!strcmp(nextword, "CAPTION"»{

- 223 -

II Handle CAPTION
strcpy(caption, 1111);
fscanf(infile, "%S", &nextword);
strcat(caption,nextword);
while (fscanf(infile, "%S", &nextword) != EOF){

if(strcmp(nextword,IBEGIN")){
strcat(caption, II ");

strcat(caption,nextword);

else
break;

fprintf(outfile, II Caption\t=\t%s\n II ,caption);

doControl(infile,outfile);

fprintf(outfile, II End\n ");
fclose(infile);

fc1ose(outfile);

} 1* end main *1

- 224 -

"TestForm" Screen Designs

Labell

Label2

"TEST.DLG" from System Architect

TestForm DIALOO 48,51,192,117
STYLE WS_TABSTOPIWS_OROUPIWS_BORDERIWS_BORDERIWS_DLOFRAMEI

WS_MINIMIZEBOXIWS_MAXIMIZEBOXIWS_THICKFRAME
CAPTION "TestForm"
BEGIN

END

CONTROL "Labell ", IDO_LABELl, STATIC, SS_LEFT, 56,16,25,9
CONTROL "LabeI2", IDO_LABEL2, STATIC, SS_LEFT, 58,44,25,9
CONTROL "", IDO_TEXTl, EDIT,

WS_TABSTOPIWS_BORDERIWS_BORDERIWS_ VSCROLLlWS_HSCROLLI
ES_MULTILINEIES_CENTER, 102, 11,68,23

CONTROL "", IDO_TEXTI, EDIT, WS_TABSTOPIWS_BORDERIWS_BORDERIES_LEFT.
102,40,69,13

CONTROL "Commandl", IDO_COMMANDl, BUTTON,
WS_TABSTOPIBS_DEFPUSHBUTTON, 22, 76, 43, 25

CONTROL "Quit", IDO_COMMAND2, BUTTON, WS_TABSTOPIBS_PUSHBUTTON, 106,
77,20,24

- 225 -

·

·························1 I····· : : : : : : : : : : : : : Labell ::::: ' .' · -' '., · . ~+. : : : : :
·•............. '---______ Jii~
·

"TEST.FRM" from Visual Basic

VERSION 2.00
Begin Form TestForm
Left =
Top =
Width =
Height =
ControlBox =

1440
1530
5820
3870
o 'False

Caption = "TestForm"
Begin Label IDO_LABELl

Caption = "Labell"
Left = 1680
Top = 480
Width = 750
Height = 270

End
Begin Label IDO_LABEL2

Caption = "LabeI2"
Left = 1740
Top = 1320
Width = 750
Height

End
= 270

Begin TextBox IDO_TEXT1
Text =
ScrollBars =
MultiLine =
Alignment =

3 'Both
-1 'True
2 'Center

- 226 -

Left = 3060
Top = 330
Width = 2040
Height = 690

End
Begin TextBox IDG_TEXT2

Text = ""
Left = 3060
Top = 1200
Width = 2070
Height = 390

End
Begin CommandButton IDG_COMMAND1

Caption = "Command 1 "
Default = -1 'True
Left = 660
Top
Width
Height

End

=
=
=

2280
1290
750

Begin CommandButton IDG_COMMAND2
Caption = "Quit"
Left = 3180
Top
Width
Height

End
End

=
=
=

2310
600
720

- 227 -

"Difficult Test" Screen Designs

Enter Your Memo in the Box Below

"TEST4.DLG" from System Architect

hardtest DIALOG 14,17,227,140
STYLE WS_BORDERIWS_BORDERIWS_DLGFRAMEIWS_ VSCROLLlWS_HSCROLLI

WS_SYSMENUIWS_THICKFRAME
CAPTION "Difficult Test"
BEGIN

END

CONTROL "&OK", IDG_BUTTON1, BUTTON, WS_TABSTOPIBS_DEFPUSHBUTTON,
78, 115, 29, 15

CONTROL "&Clear", IDG_BUTTON2, BUTTON, WS_TABSTOPIBS]USHBUTTON, 134,
115,28, 15

CONTROL "Enter Your Memo in the Box Below", IDG_TITLE, STATIC,
SS_NOPREFIXISS_CENTER, 63,8,117,9

CONTROL "", IDG_MEMO, EDIT,
WS_TABSTOPIWS_BORDERIWS_BORDERIES_AUTOVSCROLLlES_MULTILINE
IES_LEFT, 63, 29,117,79

- 228 -

Enter Your Memo in the BOK Below

............... ~~~~~~~~~~~~~~~

.............. . ~~~~~~~~~~~----~~

. r===::1I' ====-

"TEST4.FRM" from Visual Basic

VERSION 2.00
Begin Form hardtest
Left = 420
Top = 510
Width = 6870
Height = 4560
MaxButton = o 'False
MinButton = o 'False
Caption = "Difficult Test"
Begin CommandButton IDG_BUTTONI

Caption = "&OK"
Default = -1 'True
Left = 2340
Top = 3450
Width = 870
Height = 450

End
Begin CommandButton IDG_BUTTON2

Caption = "&Clear"
Left = 4020
Top =
Width =
Height =

End
Begin Label IDG_TITLE

3450
840
450

Caption = "Enter Your Memo in the Box Below"
Alignment = 2 'Center

- 229 -

Left = 1890
Top = 240
Width = 3510
Height = 270

End
Begin TextBox IDG_MEMO

Text =
ScrollBars = 2 'Vertical
MultiLine = -1 'True
Left = 1890
Top = 870
Width = 3510
Height = 2370

End
End

- 230 -

APPENDIX H

Test Bed (Self) Observation Data Sheets

- 231 -

Software Engineering Methods versus Visual Programming ToolslLanguages
Synergy/Conflict Observations

Ob •• rvation Type. Projects Categoxy: Date Initially Ob •• rvedt
I8)c,,",,11 .. Ocu.tOlMr syc p. 0 •• 1' 1.'r LAyout 3/ll'" ll.Ol

O~ O~lc 'fae Toe

"iiUiiiber l8)ootb of Time_ Ob.erved, ,
SJ: Application. SS Methoo. Tool/Language t
0 o G&na • Sa.noo
18) on OCood/YourdoG C8J vbu&! Baa Ie [8JObjKtV.hioa
0./ .. I8)lOotb

cg)vi.-ual CH ®s.art: al-...nta

z:>.acriptioDI
Wb4a QI)e li ••• t.he acr.-A layout. facility of the CA$X' tool to ~dgD t" V •• r '1/." tU W'Or)c: ~.t ~ duplicat.4 in the. vhua.l l'rogr-.-ing
tool/laDgUaga.

CirCWDJItanc •••
'th1. probl_ coly .urIa.c.' loIhe.n ud~g- the CA.9'S tool 1 •• er..u layout bcUlty, l:t 'WOUld al.o -.pply to the u .. of dr."ing aDd c:harti.JlQ: tool ••

auidance Idea. t
Look. for a...s. tooh that CIUl .ut~t.ica11y o~.t. tu V •• r x/r ·c()de- 1.J::L tM uti.,... tCSlgUa of tM Vhual tool/langu&g., tbu. r...-dyi.t1g t.h.1a
e<:G.fllct. ()fota. t don"t ktww oJ: &QY yet OIl tb.- .arbt.)

.-

Software Engineering Methods versus Visual Programming ToolslLanguages
Synergy/Conflict Observations

Ob •• rvation Type. projectl Categoryl Date Initially Observed,
!8Jcca.tlict o cuna..r BYe DB av.tnt-k • .s l)~ .. 1gn 'I'J'JU 16,33
0..-- C8J'f1e 'rae 'fo.

O_b Number of Times Obaerved,
1

SIt Application. BE Methoo. TOol/Language.
o Kamal o can. • Ba.r.otl.
OCUlI ®Coad/You.rdon @Vhual hde DObj.otv1aion
18)./1. Olloth

DVhual c++ o SJu.rt al-..ntil

J>e8cription:
v. OIlly prO'Yi4e. -whaJLeha.Qg.a- ent proc ••• ing on the pdAa.ry attribute of an object
oto.X' properti •• , ncb ... the -'fag- propeJ:ty, go unnot1ced.

(a. &'t.:raine4 at. th -facto:ry-) I thi • ..ana tMt. eb£ng •• 1n

c:Lrct.lZUtance.,
In tha TM' g ... , tba de.igb. clLll-.4 for traeJc.lDo' of both th41 text value (-X-, -0·, or - .) and 1ta ~r1e.l eoquiTalcmt (1, -1, or 0) for ... eb e.ll.
'lbe original tS..ign h-.4 tba V.ar eaualn.g the teat ..,&1u. (Jid ry) to elJ,ange to ·x· a.nd ua1.ng .. Wan_changed .. \:h04 to update tb. ttUaerleal. 'J'&.lua
(".'1) foll~ by a toman_change4, .. thod. on the n~rie .. l ... &1u. to update the atxat-oy ..,alu •• (.-u. of r~, colu.a and 4i.gona.h) I thi. approa.cb had.
to b. altu'ed to let t.M tint ehan~ drl both update ••

ouidance Idea.,
~ v» h lI::DoIrm to be the ~l....at.tiOl1 language, tM Maign al:wuld be gaa.r1Mi to ~ only o:oe p%'Op4Jrty ~r objfKlt ca.ua.tng ~t-bu~ ~·Yior. to
.x-.cuta.

232

Software Engineering Methods versus Visual Programming ToolslLanguages
Synergy/Conflict Observations

Ob •• rvation Type I project I Category I Dat. Initially Ob.arvada
t8ICClnflict Ocun~r a.c oa ~t-k.tM1 0..11JD. "U/g, la.51

D~fT7 /:8J'1"lc 'fac ~
D_b Number of Time. Ob •• rveda

1

BE Application. BE Method. Tool/Language.
D>IIaDuAl o Gone • Sanon
Don Ci3J Coad/yourdon t8)VilNal Bade o objectVhioc 183-,,, Olk>tb

OVbual c++ o --.art .1~t.

=c!;t:!i!n~:I.ct .. oriellte4 ApPro..ch, it i. C~ to abstract all qat_ pax ... tera a. obj.at., ~r, va col.y u ••• obj.cta to r.pr •• .nt ac.-..u
Antltlae (80-0&11-.:2 controls). Thu., Ilntiti •• that would DQnMlly be r-»r •• ent-.1 .. objecta, other than tho •• Ti.ibl. to t.M 0 •• 1', -.:let b-.
~.ent~ u variabl •• at .084 t~.

ClrctllUtanc •••
xn tlMt va 'f"r2' g ... , tbere 1_ .. atratagy arH. kept .behJ.Ad the SCaDe.- tor u •• by the progr .. to datar:atn. ita n6Xt JKJTe (the .-ua of tha c.ll .,..1u ••
by ~, col~ anA J)iago:D&l.). orha originAl &tdQll called tor creatloa of .. atrat.,gy object to ... lntain 81.1ch lnforaatiotl.
alt~ to u •• global Tulahl •• in.te&d.

'!'be cS.algn ha4 to be

GUidance Idea8'
~ VJI h known to be tU ~l--.nt.atiOft language, 0M0 .hould .TOid th41 u .. of objecu ~ tba.D tho .. ~.t.iD*1 for the U •• r ZJ:lt.rfaea. Anot.ur
~ch (not t..necS) h to er .. te a Virtual J'ona to hold obj~t. which will b4t u.~ inh%114lly but ~ act.ually dt-plaY*! to tbAo U •• r, this would
in ".al)C. -trick- VB into haTing a collectiOl1 of obje>Ct. for u •• -behind tM acanea.-

Software Engineering Methods versus Visual Programming ToolslLanguages
Synergy/Conflict Observations

Observation 'l'YPe • project' Categoryt Date 'nitially Ob.ervad.
0""""110' o CU.t..-r 8Tc DB -..nt-aa..cs. n.dgn 'lUI" 11121.
18JByne<vr [g)'fic 'fae 'foe

O_b Number of Time. Ob •• rved t
1

BE Application. BE Method. 'l'ool/Lanll1lage.
O.....w o oan.. , Bar.on
OCUlI (8JC0a4/Yaurdon [8JVbua.l'&Uic OObjectVhioa
183-'" O_b

DVhua.l CH o saart JU..-nt.

oescription I
ODe. t.h4 object.-orianta4 nuane •• of VB wer. wsdaratoocS an4 factored !.nto thll 4adQ'D,
".. ahh to COJUitruct tM prog-r ... iAcr--.n.tdly witbout any note1fOrthy difficulti •••

tM illpl...a!lt.tiOQ of tM 'l"T'r 0'" in va wa:ot "t'Y .-oothly. I

CirC1lD18tances,
~ crt .. thod.ology pr • .uM. a cartllla l.-v.l of .uppt)rt of both object-od-.nt~ c~truct. and ev&b.t-driTUl b&haTiora, whJ,la V» CXlly partially
.fI'11PPOrt. t~ (a .. relu4ld -cOllf1icta-).

OUidance Idea8.
ODe. VB baa b4te.n cbo .. .n .. tha ~l--.nt.tioo. language, .TOid fhhting tha lanQ'Uaga, it b batter to adapt
objact-or1&1lt.c1/....-.nt-dri.-.c featur •• IlUpported by va &D4 u •• prOC4tdural apPr~cbe. for the; b&lllnCa.

(l:t..it) the ~dpn .. tbodology to tho ••

i

233

Software Engineering Methods versus Visual Programming ToolslLanguages
Synergy/Conflict Observations

Ob •• rvation Type. project I Category I oate Initially Ob.erved,
(8IcOI1flict o cunc-r BYe DB KYant-BUle4 o.dgn 7/27/" 2015'

D~ /8J'fid Tae:: ~
DlIOth Number of. Time. Ob.erved,

1

811: Application. BE Method. Tool/Language.
0_1 Oean. .. ,araoa
Dan [8lCO&A1/Yourdoo Oviaual BaJlia DOb:t~tVbiOll 18)-, .. o Both o viaual. c++ [8Ja.art. Kl-...nt.

Deacriptionl
c~catiOll of eTeDt. ('Yia SandMe ... ga) fn. t.ha v •• r Int.rfaca (Opau Interface) to t..be S:oQiJW (~ Obj.ct) b li.ait~ to .. dngle target
object. Vp4ating ot tM IIu.. of tha Tuioua a.ov.t, colu.nJI a.nd Diagon&l.. r.quir4t4 tM g. to bel broa.dcan to al.l childr~ of.lUaa. TO gat II.rOU.Qd
thb lialtat.ioo, two x.tboda .. ra ~l-.nte41 cme att&.che4 to the pa%eut .u.. cl ... which a.110w.4 the %ntu!ace to interact at .. -.ingle point of
ccmtact-, and .. .ora cOiiiPlox OIlS which in tUrD .cti ted. by the dJIIP1. ooe OOC& COIIltrol _. ~.e4 lrca the I.ntarb.ca to the S:ngJ.ne.

Circumatanc •••
'!'hi. ..,.... .. aiDOl: incODTitmCa, i~ fact, cm.ca the 8.c0Dd, .ora c~l&X *tbod ".. in p1"., I foo.m4 .ora way. to taka at1Tantall. of it,

GUidance Ideaal
It .. y a.ctually be pr.f.rable to ban c~c .. tion linb bet-..n ... jor ay.t_ -.odul .. be dlllPle {lib .. -pincb point-) , A .ingl., .hlpl 0'.
f~ aMI .odu.l. to the other i • ... y to follov eJld ~g it probl 40 ari •• , ftut targ.t .. th04 can t.batl .p&lf'D ~r cc.pl.x t of proc •••••
.. ax. requirad,

Software Engineering Methods versus Visual Programming ToolslLanguages
Synergy/Conflict Observations

Obaervation Type. Projectl Category 1 oat. InitiallY ob.erved.
~CcDtHct o cu.t~r 8VC DB v •• r xl" 1A.yout 7",7196 211U

Drm>orgy I8J 'fie 'tad oro.
Daoth Number of Timea Obaervedl

1

811: Application. BE Method. Tool/Language.
D.....w. Ooana , Bar.on
Don t8I coad/yourdon OVhual ea-ic OObj.ctVidon 18)-, .. o Both

OVbu&l c++ (8J BaUt sl-..nt.

oeacription I
'l'ba 4eaign caU.s for Il .i.llllple "rezt Mit &ex ... the .. chanJ. .. for building the Dina call. of the Tic 'lac 'roe Board, JIO'oNTer, the BI&&rt sl-..nte 1'.xt
&cUt obj.ct prO'Yi~ a ye:ry ll.a1tad of .utcaaatic n.nte, in particular, it did NOT pra9'ida .. Nou • .cl1ck ...-nt •• ca.lltK1 for in the daa!gn. lutaad,
I bad to ue. the JlQr. cQIIII;)lu Li.t BOll: obj.ct (wtUch h .iallar to ... pr •• "'~t in nature), lialtinO' it to a .ingl. row and •• ingl. colu.u. '!'hi.
proTidAtd a.cc ... to tho Nou • .click ",.nt,

CirC'UlUtanceal
aa.are .1IlMllt. doe. IWpport the creation ot: au.tea widg.t., .0 x could han g~ out aida ot: th -built in- widg.t. and addad t.M Mou • .cllek ...-nt to
the huic 'hXt Edit object, I!!OtNTar, .. goal of a.lna va. to u .. the -off the .h.lf- widgat. and .criptlng langUage to 1apl..allt the c1a.lgn.

auidance Ide.a,
LoOlc beyODd the obYioua in atntching the f .. true. of the tool. A 1s1 aprNda~t loo~ ax.&ctly like .. 'rtuct Sdit objact and behane ju.t the dadgn
~ it to,

234

Software Engineering Methods versus Visual Programming ToolslLanguages
Synergy/Conflict Observations

Ob.ervation Type I projectt Category, Dat. Initially Obaerved,
~Coo.fu.ct Ocuatc..r 8Tc DB .KY-.nt-aa • .d fHlalgn 7/21/" 11,21

0-.0 [8J'fio 'faa 'r'OeI

Oaotb Number ot Time. Oba.rv.d,
1

SII Application, BE Metbod, Tool/Language 1
0"""""'-1 Daa.n.. , Sarson
OCUlI cg;J CoadfYourdou OVlll\lal aulo Dobj.ctVhlOft
~a/" Ollotb

OViJrual c++ [8l s.ut Sl-..nt.

Description I
IaA.rt sl-.uta .so.. lJ.Ot prO'Yldto 1& .. ~ for the Eng'in. (~rt Object) to sand g •• back. to the %ntarfa.ca (~ tDtufa.ca). 'l'o work a.rou»d thL., each t.v.. cOIltrol h ratruD&4 to the Interfaca t had to baT •• acb call in the .ra.tar!aca query it. lat •• t .. &1u. in t~ corr.~nQ object 1D
Us4 aztgine aDd update ita QW1l. curront ...,.alU& accor4!ngly.

CirC'Um.ltanceal
b&rt: al.-.nta .so.. prodc.t. • .-chanJ. .. rafarra4 to .. -object llhldng- Which cau ••• AD old.ct in tM U •• r %ntartac. to " coatimloualy up4ated with
the, 't'&l.ua of • corraapo:n41ng object in th. angina,. th1fortUDataly, this approach wa.tI Jk)t ueabl_ in this in.tanea Neau •• tM JtDQintI object u • .s
.QUIW.J:'!c "1ll" (.. 1,0,+1), 'Mhtle the " •• r :tntedace object xaquirad: aylibolic ",&lu •• (0, , " X).

GUidance Ide.at
'fbe, worlt&nND4 ua~ in thi. c cau •• a a ~ ... t ~ of extra work, aiSle ry int.rfac. ol);tftCt -.l.t bel ·PIlla~- after Nch call to the 'l::D.gi~. III
a ful.1 .tntngtb app1!catiOrd, ~ ~rfor-.ance C0'\114 be in ~~, a .are focu..ed ging lIY.t-. would ha to N erafta4 (•• g., a -black boak'd-
obiact octo which tha JtDgJA. could plac ... Iht of udatltd KngUut objoet. and whicb an IDudace .. thod could u.e to ud.a.t. jun tho .. Intedace
obj.ct. whoae mg.t.n. lu •• had changed. Al.t.rnati ly, tM U.J1JUng ...cb.&ni .. could ban ~ uead -.. h- an4 thNl ba~ an Int.rface .. t.hod cotl't"'ft't
the btmAdc lu. i.Dto ita QIIbolic equi",a.ltmt.

~

Software Engineering Methods versus Visual Programming ToolslLanguages I

I
Synergy/Conflict Observations

!Obaervation Type, project, category I Date Initially Observed,

I~C""Hl'" o CU.tc:--.r BvC DB " •• 1' l/r LayoUt 7/2"" :nln
O_<TY (8)'1'ie or.e 'fCMI

O""'b Number of Time. Obaerved,
I 1

BE Application, BE Mothod, Tool/Language,
0_1 o a..n. • suo.on
OCU1l (8J Coa.d I Yourclon Ovi.uU hld-c OObjeotVialon
I~·I" O_b

Dvhu&l c++ c:sIs:aa.rt. .l--.nt.

o.acriptionl
The 4a.ign call~ for &tI i~ •• t of nine Cella for th- "fie "faa 'roe kAr4. ?:b. Saart .l-.c,ta " •• r Interface widget. ue not dir.atly i~ (..
in viwd a .. lc). 'J'hh capu,l1ity ~r~. tM r.ferUlCing of the objecu 11 ... the -.bllity to -clOl)8l- the c.ll. lfithout W>difying the
un4ulying coda.

CirCUDUltancea,
wc,rliI:.iag uDUD4 tbie .hortcoaibg falrly .an&'jj'.abl. for thie .~le applicatioo., ~r, .. .or. cDIIIP1_ application wuuld INffer greatly.

I

I
Guidance Ide.a,
Jtaart .l--.nt. prO'Yidtil. the ability to cr"t •• o-ca11ttd cru.ta. widgat •• D(J.i..ag allcb 'W'OU14 prc:,dd41 the ability to incorpon,ta 1fhat~r ·g~ric·
attribut •• IIlld ~"'iora th4 object ahould ban (a aoaracall in thl. cu.) ~ thml cr ... t. iuta.bC •• of it in thtl ".ar :I.I:Ita.rfaca.

I

235

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Ob.ervation 'l'ype. project: Categoryl oat. Initially Observed,
Oc~lict o cunc-..r 8Y'c 1)3 :I'Yallt-.... ed De.dgn 1/21/" 211~'
011yDU"gy £8lorlc 'ra.c oro.

D_h Number of TilMI. Ob.erved, •
n Application! SE Method. Tool/Language,
DI<&DU&l Oa&n.. , Sa.uO#

DCASlI [g)CO&d/Youl:4on Ovbua.l aa..lc o ObjaatvidOll 0., .. D_h
Ovi.ud CH t8J &aut Kl-..nta

De8criptions
'I'ba .b&rt &1-.nta EDgin-. (v.xp.rt Obj.ct) fully an4 natura,lly aupport. the obj.ct hierarchy aDd inheritance call~ for in the 4 .. 1gn. btr ... ly
O'~lc .. thoda w.r. writtaD and applied at tM 01 1~1, ~rited doJm to the appropriate child. objecta &nd t~ applied. to gi .. t.M 4 .. ir.4
r .. u.1t.

cirCUIUtanC •• 1
M:r goa.! to DOt bav. to t..u the c~ ua'" in .. tho4a bu:e4 00. lrhar. tba coc.H VIla attachad. ~ ...-o1ut1011 of the applica.tiOll va. in.piring • ..
lIIU'eI a)tel.tOG of the g ... ".. uaed to c1aTelop the tbocb, 1dla.a the r •• t of ~ V'" objaata r. aMed, the fully ~l-.nted g ... board worJt.d. OIl
the nJlS1' BYI

auidance Ideaa,
:u you ar. going to u •• an object-or!anttM1 tool to bpl-.nt an application, 00 I'or 'fb4r, 0014 in the dodgn proca... craft Kethocbi that ara ..
g-..ric u po .. ibla. Apply tm. .. high in t.b4 hiararchy .. pouible. Take tull a4Yantaga ot: c1 .. dfication .tructuna UI4 let the b4an4;fiu of OOP
.bina through.

t Software Engineering Methods versus Visual Programming Tools/Languages
I Synergy/Conflict Observations I

!
Ob •• rvation 'l'ype. project, Category! Dat. :InitiallY Ob •• rvedt
OCanflict Ocuata-.r BVC DB 7'iUJetion ~dlJD 11/21/U 11130
011Y<>U1IY ~'fic 'fac 'foe

DlIoth Number of Time. Ob .. erved I
1

BE Application, sz Method, Tool/Language,
0 Da.an. , SAraon
DCABlI t8l coad/Your4oD Ovil\1&l Bade o Objectvidoo. 0., .. o Both

OVi.u&l c++ O~ Zl'-Nlta

oeacriptioD'
'!h. rul •• in Baart _l--.nt. are ily yiluall.ed in the rule. brOWller. '1'hi1 aa4fl it very to b!pl.-.nt the 4e.lred guUDg' .tr .. t~ in t.M infer~a
-.ngi.n.e. Although thi. progr .. 11 neither an expert ay.t_ nor perforaiDg' any r ••• on!ng or infarenclng, the rule-bu.c1 par&d1g:a pr~ to facilitata
the b!pl..antatica. proc

Circumatancea.
blpl~t.tioo of the coctrol loglc for d4cidlno the appropri.ta re.poJUa to • ua.r •• lectioo of a ~ca on t.ha playing board.

Guidance Idea8,
cCIII1IIi4er the ula of a tool that proTide. OHarl an explicit rula-ba.ed par&d1~, lTan if the application i. DDt an ~rt Q'lt_ or doel not ~ir.
inlarancing. The rul •• can be u.ed to axpadlta control atrat*OY/loglc or to ,pplicitly re-pr.a-.nt the bualna .. rul •• to be follow-.d.

236

Software Engineering Methods versus Visual Programming ToolsJLanguages
Synergy/Conflict Observations

Ob •• rvation Type: I project I Category" Date I.nitially Observed,
I8IO.,,<11ct ~cu .. tc-.r BTc ~ DlI.c~ 11/22/" 11153

o~ Dorio 'fae 'fc4
oaotb Number of Time. Ob.erv6d. •

SS Application. fIE Method. Tool/LanlJUage.
0-' ~G&.I:UI • I.non
181""" o Co..d/Yourdoo [8Jvbual aule [8J Obj.atvhlon D·' .. o_b

Dvhu&1 c++ o bart sl.-..at.

n.lcription I
tJb&bl. to dir~tly cra .. ta tba .c~ udJ1liJ thai CABS tool.

CirC'\lJUtanc •• ,
'!'ba ~rd<mJI of thai 48Tel~t toot. being \le..s 'Wre built to aupPOrt. le .. ~ dat xu partic:u1ar, &utc.at.s .c~ g~ratiOD ".. not
.yail!lhla for VB (Ace." 1.1) or ObjectVidClll (Pa.ra4cm :I.s or daa.aa).

Guidance Ideal'
WbeQ. uaing .. full .. f .. tur$l1 CASK tool, be .un to .. leet .. 4ata»&.-a ~g.tn. that b wwoxt..s by the CU. tool-. achtIIM. ~r .. tor. For 1dUlP1., V» now
nppoJ:t:. Idcroaoft ACe ••• 2.0 ILbd the .tyat_ Architect CAB. tool CaD ~rAt ... -.Ulill.- SQL that can be \lead with ainor ~tlng to .ut~tlca.11y
Cr.4ta tba datah&.. nxuctur.a.

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Ob •• rvation Type. project. Category, oate Initially Observed,
[8JCOttflie:t t8lcu.tc-..r Bvc: DB oa .e:~ 11/23'" 0107

o~ D'lio 'rae: oro.
01>Otb Number of Times Observed,

12

SI! Application. SS Mothod. Tool/Language,
0....""., t83 oan. " Sanon
181.,.... DCoad/Yourdon (8) Vhual Bado I8l ObjectVi.iou D.' .. o_b

OVbual c++ o Baa.rt .l-..n.ta

De.cription:
Difficult to Jrtet.p CAB. r~r •• lN1tatiOll of the application in .-ybCb witb chang •• whiob .-rol.-4 dUring th.a ~l~tatico proc:

Circumatances,
'I'be .. raiont of the c1e:Talos;-...nt toot. Ming u.e4 wer. built: to .uppert 1 ... open 4atabu ••• In partlcular, r r •• e.ngil:Wering .".. not a ... allable for
va (ACc ... 1.1) or Ob:leetVhioa ('ar&do:lc 2.s or dBa ••).

ouidance Idea.,
1. s.ttl. OD 4edgn coo.fonU.ty/len1&.bCY rul .. atw1 4edgn up4.ate fr.quenci .. ~ -...nually rryncuco.be the 4edgn iXi thtl cu. tool f~ tiAe to t~.
2. I.leet. t.he C18K t.ool -.n4 4atabaae .ueb t.hat r~ra. *1Oi.nMrlng ca.n M uae4 t.O COIl"V'eY cm.ng •• iapl...ute4 in the 4wr-el~t tool back t.o the
eAR: tool.

237

Software Engineering Methods versus Visual Programming ToolslLanguages
Synergy/Conflict Observations

Ob •• rvation Type, project I Category I Dat_ Initially Obaerved.
o CcG.tl1Ct [81 cunc:.ar lITe pa pa 8ca-a 11/23/U 0120 18)......-.,. Doric 'faa 'foe

Oaoth NUmber of Ti.:me. Ob •• rved,
l

SII Application. SII Method. Tool/Language I
O.......u [8Joano • , .. :non
OCUlI OCoad/Youclo«:t OVbu&l aule [8IObjKt.V!lIiOll
18)./,, Oaoth

OVbual c++ DBa&l:t &l-...nt.

oel=iption.
MaDu.a.l cr ... tioo of the 4&t& .c~ ,... axtr ... ly y (about !S J&iDut •• gi'Y'Ul that tbII V •• r IAtertaca alriU.dy ~ out.).

CirCUJUtanc •• ,
ObjectVidcc pr •• u... that the ,,-",los--nt prod ••• will call for cHatloo of the vaer XDt.rfaca (oalled J'~) prior to cr.-tiOQ of the 4ataba8.
tabl... 'thull, it u.. .. nry .opbJ..ticate4 .c~ creatioo englna that .. ~. that data 1t ... group..t OIl .. J'ora will l1uly be :LD the tabl.,
aD4 that tulr data type_ and d will confoPi with how tn.y ar. ~Uled on the J'ora U. It t~ cnat -.tr." --..n- data atructu. wblch
CaD. t.heD be edJ.te4 fOr tbo •• plac •• w.ra tM Ulr\UlPt!cc 408_ DOt hold.

ouida.nce Xdea. I
xa.ow ycu.r tool'. pJ:'alJUJlPt.ioa..- and go with tba flov. -r eb!ply ~rstan4ing tn. ~t.s saquaDCe of 4ftTelos-ent, 00.. can .trN»J,1Da tM 4eyal~t.
proc.... CCIQTU' .. ly, buclt1.no the ~t_ can .a.dly cripple an ot.urwi .. u .. ful tool.. 'l'bi. b not to aay that. 0ttA .hould u •• rbky or un..atUaotcr,r
4eTel~t practica.. ADd, of cour .. , n.n.r, never, navar would I IlUgg .. t that OD. chang. the probl_ to wit thai tool. ISoW'Wrer, if ODMII approach
11 abou.t tba another, ~ let tha ~t~ ~rgy with tha ~l~t tool -..Jt4, the 4eCidOll. TbJ." in tuna, ..an.I that .~ OQ the
~los-ant tu.t know (or be abl_ to U.nd. out) haw the tool expect. the p~l_ to be tackl.4.

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Ob.ervatioD Type. projectl Categorys oat_ Initially Ob •• rved,
[8ICOIlflict (8) custc..-r Bvc »> I'Unc:tiOll Peaign 11/23/" 0137

OBynor'" D'fic 'fac ~
Oaoth NUmber of Ttm.. Ob •• rveds

2

Sx. Applicationa SE Method a Tool/Language I
0_1 [8J0&Da .. Sarsern
OOBJI OCoad/Yourdoll [8lV!aual ... 10 [8lobjectVbicrn
18).,1. o Both

Oviwal Cu o s.a.rt J,l-.nts

oe.criptioDI
I di4 not find the aan. • Sa.r'OQ proc ... Diagr..-ing technic;ru. to be -..pr .. ai eaough to taka directly to .b!pl-..ntaUOIl. I4e.ally, the da.i~
d.edon could be ~1l.4 to a fairly detailed. 1 1 without prior k:oowhodg. of the J...pl.-aJltatiOll tool, with perhap. a fin&l laye.r which takou into
account particula.r. of the tool.

CirCUIUtanc •• 1
kch of the iapl-.ntat!OQ toola turned out to r.,quir. c;ruit. 4ifhrant dadgnll in c.rtain key ar 'I'bfI proceodel b the deaion wtUI bl-..:w!,
laaTing -.ost of the 4etaila to be 'WOrked out during ~l-.ntati=. J,~ially trouble.c-. .. re the built-b -power- faatuns, .uch ... autc.&tioc of
reluential 1o.t~ity in av, but not in VB, or auta.&ud joiu b av, but DOt in VB. X look at the working applicatiOD, I .till poo4.er bow to
re.pr •• ent the (DOW prOYCl) 4a.ign 10. cane" .USOll. (1111 I ~ to look at th.is scae -.ore to..x.. nre tba probl_ hn't -r gr.azuMs. 1.n usiDO' 0lo.I
,;roc.s. Di.gr.... If .0, I will rlldirect thi. ora t~ bow to .a4el better. 1111

OUidanc. Id ••• I
'to accc:a:04ll.te nuanc •• .m/or u..nbowna of the ~l--.ntatiOD. tool, the ~aiQ'D .m.t be kept generic (tool-fr") 4otn:I to & point. ~, if the tool a.n4
it. apecial n.-da ax.)mown, a lay.r of ape.cialhation can be ad4ed. (JIote that the oan. ~ Bar.OD proc ... a>4alHng techDic;ru. u .. ' a 4rill-AowD
approacb to ~1fic1ty, thu. aaJtiJlg it suitable for thh appzoo&eh.)

238

APPENDIX I

Peer Observation Data Sheets

- 239 -

Software Engineering Methods versus Visual Programming ToolsfLanguages
Synergy/Conflict Observations

Ob •• rvation Type. Project! Category' Date of I.nterviewl
[8lCOl1flict 101M - ~X'ou. OUery 0..1"" 11/21/96 151'5
0_,"

Frequency of Obavarvationt
Oft~

/Ill: Application. BB Mathod. Viaual Tool.
0_' - -Don
18)_'A

o..criptioDI
~H b fr-.quontly .. di.::Ioint b.tw.en w..t h .pecUiad in ~ 4edgn of .. query aM tM Nha ... ior that h actually iapl-...a.ted.
in non-yi.uU toole, but with Tiaud toola the wrong bahayiora can M blpl--.ntcw:l -.reb f •• Ur.

Alao .. prahl ..

CirC'UJUtanc •• ,
W2:Ya .. quill:')" h apecUie4, the ..act 4ata.bula .c~ i. often nat fully •• t.abliahad. .c-.tl the SQL dia.le<:'t h a1ao UDk:nown. 'l'bua, the quasy
will libly " ~Ui~ in .. g.n.r&l. w.y, typically ud.ng the la..n.guaga of the &.aiD. (u oppoae4 to p.u-.do-c~ or d.plUieod SQL). ~ i.t
C~ t!a.a for tM application ~loper to hlpl--.nt t.M qUery, the ••• anca of 'that int~ad h lone 'tho query ~. not beha prtJpU'lY by
retu.rnJ..oo incotteet, .xc ••• iTtl, or i.bcCIIIIPlata infor.atiCll.

GUidance Ideal'
~ i~ (DOt. t .. t.d) 1_ to ~lu4e in tho 8pccUicatioa •rd ~l .. of what tu query .boul4 nt\U"P. A du-.y .et of table./reooo:e4a wou.14
ba.. tD be prOTld4td to ~trat. how thfI qU.ry -.igbt ~rate.

~ Tiaual qu.eJ:')" tool. IrTDl , pe:ebap. a CCIIIp&tihl ... tb.04 of &ag1:'..-.ing a qu.:cy at the ~dgn atage can b. propo.--S.

I
Software Engineering Methods versus Visual Programming Tools/Languages

Synergy/Conflict Observations
Observation Type I projects Category I DAte of Interview:
i8JCOl1t'l1ct J:HN' - »uaerau. p:eoj.ata O.er XI" Layout l1/23/U 16 I 00

01fYO<Or1lY
Frequency of Ob8vervationl
O.ually

BB Application. BB Method. Visual Tool:
0_' - -18) CUll
Ow, ..

o.scriptioDI
'!'be 11% Layout faeUlt1 •• prO'Yidad by .o.t ..,..ry CABS tool a:e. prO'Yi4e little or no ~fit ~:e paper or drawiDg tool .kateha ••

Circumatance., 'inc. CABK tool. do not gan.rat. I1&ti~ cod. for any of tM yiwal tooll in dc..oQ u •• , tlwt tn -.sn N r.i..lcIl....nted aanua.1ly. (.~ CASK tool.
40 gcwerat. C .ourc. c~ that will "i .. a look anCI f •• l liM that of the dalaign, but that .oure. cC>4e h not u .. .hl. by any of t~ typical Tinal
tool., .ucb .. Vhu&l kdc, 'aw.rBuild.r or SQlAdndmta.)

Guidance Idea8,
%:D geAaral, 40 not u •• tb.a cu-. tQOl to U •• h out. your GOl ~.igD.. I.utMd, u •• tha yiaua.1 Progr...u.llCl tool ita.lf to aketch it out, wt JuMp t.M
nault gz'oup64 with tha d.aaign package. Later, when ~l--.n.tation be-qiu, the QDX fUe can be copied. into the aauree &1'''' and u.td ... a atart,Us,g
POint for 4n'eloping t.ba application.

240

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Obaervation Type. Project. Category: oate of Interview.
OC:OOflict J30f - tfu-.rou. l'roj.ct. DB Bc~ 11/23". 16115
I8)ttynargy

Frequency of ObavervatioDI
Oft.n

SJ: Application. BE Method: visual Tool.
0........., G&ne , Ba.raon/DD viaual Baalc:/PowerBuil4er
I8)c:ASJI
D.'"

oeacriptioDJ
The .tructur~ data JIOdeling t.atur •• prOYide4 in today'. CAS'& tool. c:oupl~ with ~ auttaat~ .em-.. g~ratiOll f&CiUty praridaa aigniUcant
pro&.1ctiTity bwnefit ••

CirCUJD.ltancea,
CUll tooll typically prodda an (Xl-Un. data dictlon.uy and the .. tablbbaent of data ~. They alao prOTide ba.la.n.cing routine. which ~
that .ach 1.~J:' of incr.a.aing 4etail baa tM input and output atructura ... it. parCit. Autc.atic .c~ g-.neratora C~t. 8QL code in tu
Data o.fiDJ.tioo LangUage dia.1ect of the choaan nl.donal databa .. prochlct, typically carering the waterfront. (•• 0'., Bybu., Or.ch, Ingr.",
znto~, rm2, ate.). When the DDL aourca file b proc ... ed by the; target. databua engine, the desired tabl •• and col\lanll are cr ... ted with tM
proper t)'ptl and d.-.

GUidance Ideas.
ft:ruct.ur.cS cSata ~ling abould M appli~ wbanav.r po .. ibl.. ()IIW v.ry JJUcc ... ful cc-bination u.ed frequently by JODf h G&na • aaraOCl Data Flow
Di&gT a:od Jtntity Ul.tiOD.llh!p Di&gr.... AUtc-atic.~ genaratiOCl .hould be ~lolted wbeJ:wrer po .. ible. -.n.fita of thi. approach include.
an eDha.n.ced ability to craate tba initial prototype, anb&nced. ability to utW1.entand how object. ar. u.ed (cro .. -r.t.reucing ot Wlch
table./coluana are uaed. where), anhance4 ability to tind thinga aDd dbcu .. thing ••

i Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Ob.ervation Type. pro~.ctl Category I Date of Interviewl
(8lcoaflict JI3Df - »wMrolU oataha •• Project. ru.nctioa. oeodgn 11/23/94. 16.)0

OByDarIlY
Frequency of Ob.vervationl
ottell

BE Application I BE Method, Viaual 11'0011
DlCa.nual Gane • Bar.on viJJUa.l ie/l'CJ'tMrBuil~r

o CAn 18).,,,

I>e.cription,
It 1 ry difficult to de.cd.he de.bed functional. beha ... lor of .ad.m out 4ataba •• front en.rh u.ing the traditional proc ••• ~linl1 paradiga,8
oUered in .o.t. aoftwa.r. angiu.ring .. t.b0401gied, aa.n.e • Bar.on being tb c in point.

CirC'WllBtance.,
'I'be .,.iJJUu progr..-ing tooh are a..nywher. fr(a .lightly to cCIIIPl.t.ly object-oriented in their ~dQll and u •• "., a..nd .. 11 a.ra av.nt-ba.ed at l ... t.
tor thair r •• pona. to u •• r int.raction.l. oa.ne • Baraon, ~ &DIS the other .or. traditional ~ling tecbnqu..a pravid. little auppert for
axpr ... i.n.g object-od.nted or ..,.ant-baaed behavion. Thi. laadJI to wordy narrati,..a accCIIIP&Qylng each diagr .. , or l ing the progr..-er to their
own 44rTic •• to tranJllate a proca4ural 4eaign into ita object-od.ntad,-..nt-ba.ed count.rpar.

auidance Idea ••
u •• DTDII and DJ)a to .0&.1 the data at:ruetur.a OI1ly (not beh&'Yior). Ve. coad/YouZ'400 ItY'ent Modele?n or atat. Tranaitlon Dlagr ... to .odel
be.hA.,.ior.

!

241

Software Engineering Methods versus Visual Programming ToolslLanguages
Synergy/Conflict Observations

Ob.ervation Type. project' categorys DAte of Interviewl
C8Jeoa.t:llct JDtH' - ,rojecta with for.al utility Nodulea 11/23/U liaU

o~
Dhtributiowa

Frequency of Obavervationt
Ic.att.a.

BE Applicat ion I SIC Method1 Visual Tooll
0 My Any Cc;IIIIpOnallt-baa.cS

Deus
~./"

Description I
It h on", difficult to eataly and x.Uably pacltago .. dhtribution dhutte(.) wbaD 4tJploylog G application built in & CCllllipOll.ent-.b.u~ tool or
langUage (wb.J.cb incluMi • .o.t, it not dl, of the Thud one.). The probl_ inclu4 .. both cuatJ,on ill" .. 'e.g" ktwring wbJ,cb c~t. -.s.t ~
included) and ilUltal.lation/ .. tup luuoD (e.g., -nrdon cClllpAtibility -wh.a. two iDd~tly cr .. t~ applicatlOOll rely OIl the c~t).

cirC'UlUtanc •• ,
Tba cr ... tion ADd u" of JA\1uble Ca.pone.nt.. ill .. by ~Ut of t.o4aY" op.tl and .tan4a.rdJ. • .s .oftwar. J.uJ.Uativa.. Although .till in it.
Infucy, thh goal pradA gr.at de,al of potMlt!&! for l~r.ging the .oft.ara ~l~t anorgb. of the ctir. ID4unry, It intreduc •• a
ucrw •• t of cha.11en.g •• , bowwvar, co.pooa.nt. includ. J)LlA, v.x..., ODaC 4riTen &DIS the liu, ulJUally Ir\1pplied):,y tha -.ajar .oftwa.re tool ~,
lJUeb .. Kicro.oft, and their third-party cWv-aloper ••

OUidance Idea81
cr.-t. a library of c~U wblah ara clearly labeled aDd cl.arly tt.t1ne4/da.crilMd.
Cle.arly apaeify which c~u are to be u .. 4 in a proj.ct.
Do D01;. put literal capt.. of a .tandard c~t in the caltig 4!re<:tory for a proj.ct, bUt rather point to it.
Inabt that c~ant Tan40r • .-bed ver.ion a%Id dat. in the c~t (to .upPOrt progc--.tio ~don control prtrnll)tioo of cn.rwriting a ~
nnioo with an older ~).
tuht that cQllllPClMlnt T'aDdon proTi.,. forward oc:.patibility for ~r venic:.u: (.0 that if WI:! application auppU .. a nnoar verdon of a c~t,
.~ el.e'. appl1oatiao WI:)l)·t ~y qIlit lfOrking).

I Software Engineering Methods versus Visual Programming Tools/Languages I Synergy/Conflict Observations
Observation Type: projects Category I Date of Interviewt
~conf1ict u - CU.c:...r senic. Application 'O'a.r I/F LayoUt 3/2/95 lItOO

oBy>Urgy
Frequency of Ob.vervationl
Of tan

SlI Application. BE Method. Visual Tool.
oMan".l BEn ,..thodology Sr;Q - us
~CASI
OR/A

Deacriptionl
.xw..rent behaTior of ca.bo Bets object only aUatred the l!et boa to contain natic (pr.aUned) choic •• , intllr1l&l cu.tc:.er raquira4 dynaaio
ILM..1tiClrull to tM lht of choic ••• TbJa l.-d to eno~. axpen4.!tun of aUort to pro't'i4a the ~c bahaTior (i ••• , .oDtba, inoludJ.ng ~-00
IJUpport of tool T..udor).

I
Circumatancea:
tnt.rn.al C'\1n~r de.iree! ·c~rcial-gra4e· boaha.,.ior of cc.bo BOll (i ••• , tha purpo •• of a co.bo bolt h to aUow tha u •• r to .ithar piok frc:a a
lht of pZWTioudy ant.red choic •• or type in • n.w 0DeI). Moat"~ awl1c.itona autc:.a.tical1y Ild4 any newly typtld-in it ... to the lht for
u.. by futun u •• r ••

Guidance Ideaas
cut 10 •••• .arly in t.ba prOO.... 'fbi. could be accCIIIIIIPl1a~ by relaxing tha raquiraaanta (in this ca •• , by .acrificinG' the dyana1c-up4a.t.
behA.,.ior) • a.l.t.J:11.kti ly, the d8?alop.ant tool could boa Infitcbad to one)lOr. ODng1:"UOU. with au.tc-.r r~ir.-.nt. (probably OIlly -..ka •• ..n.-. if
th.u-e. are ~rou. iJutaDC •• of Id. ... tch, .ih.c • .o.t &"Yuy tool will haT. ac:.e liaitation.).

242

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

ob •• rvatioD. Type, Projectt Category! Date of Interviewl
~cOl1llict JlS - CUat,aar •• nic. Application F'Wlction Deaigu 312/95 18115

O-.,y
Frequency of ObaveX'Vationt
"aua11y

SJ: APPlication. BE Method. Visual '1'001,
Ol&anl>&l BK:U. Methodology StD .. BPS

I8lcuo
0.,1.

Deacriptionl
'l'b4I fun.ctiotl&l 4 .. 1gn puoadiga u .. ci by BXD. 414 hOt l-.nd it .. lf to ·world cla .. - look' f .. l and ~vlor .~Ull1d by inteJ:'J1Al CUatQMX'.

CirC'\l;lUtanc •• ,
tDOrIIOUa t1..e &J:ld an.rgy ~ trying to forc. fit Mdrld functionality Lnto tool not r.ally d.dgn.d to prOTide t~ 4aair~ 100): , f .. l or
Mba.,.lor.

Guidance Ideas,
.Uot • -good- inith.l .s.UTeX'&bb bued on tb. -flow· or il:lb.an4nt capabiliti •• of t:ha ~.-.a ~los-ant tooh, thaQ parfo~ a valuo/coat
... ..-.nt ba.td OIl f..shack OIl the pilot to ~teralna. lfhe,tur tu original. r.,quir-..nu wen ind4ed lid (.. ,. awitch tOClh for (o11ow-oo) or IIoOt.
t •• ,. proc-.d with odginal. tool to c~let. the final "raion).

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Ob.ervation Type' Project! Category. DAt. of Interviewl
I;8lconflict J.B - c,ut.M,r s.rvic. Applic .. tion DB Sen.... 312/95 11130
OltynUgy

Frequency of Obaverva.tionl
Ofte

BE APPlication. BE Method. Vi8ual Toolt
0_1 SKQ tMthodology sxn .. DS

I8lCAn
0.,0.

DeacriPtiont
'fba.r. b .. ·one-WIlY· path frOll. CAS. ~l to .c~, CMI .. 1.0 prO't'ic,\.,. autc:.atic nonulhation of 4ata and .. uta.&tic D.ILa1ng of table. and
attribut... Tb.- auto-ganerat.d ~. are ry cryptic in natur •• 'ther.for., the ~lop.r t)'Pically edit. the .ch to a<.- the na-. • .ar.
·~I~-frian4ly.·

--Circu:matance. t
Once ~ .ch ba. b4ten edited, the CASI r.pr •• entation h out of date, aM aa.t .ither bI aulually upd&t.d (i.e., all .uu and ... intenallCe of
~ .c~ ..".t be done tvie.), or .1 •• the CASK rapr ... ,nt .. tion -.:t.t M abandone!1.

Quidance Id ••• 1
Chang. to a tool that b.u: r ra. lUlgina.ring capability (.0 that ch&n.g •• to tNt .~ CaD be fe4 back into the -=>del). Changa to .. tool that
g.n.J:at ... ch-... that a.n .0 good that they 40 not ba to ~ .ut~, -.u int.nanca c~ .. in tha o..s. ~l aM regenerau .cb..a ... ch tu...
J\Ult u .. tba CAIn tool to ,,",alop tM initial rdon and tb.n ~ it.

243

Software Engineering Methods versus Visual Programming Tools/Languages
Synergy/Conflict Observations

Ob •• rvation Type I project I Category I Date of Interview I
Ocooflict U - CUabaer Serrie. Application ...-ent-..... ad De.l~ 1I2/tS 1I14d5

181~
Frequency of ObBvervatioDI
otten

SS Application, SE Mothod, Visual Tooll
0 1 BaD MIIthcdology BKn - D8

181 CUll

0-'"

De.cription,
The 8'Da pro4uct and .. thod ",..ra ~.loped with ~t-b&.-ad, cliant/ .. rrer cClIIIPUting applicaUCIIl deTel~t in aind.
proc ••• and ~l...nt.tiCID proc ••• tor applle.tiona tar-gat-.d, for neb &r1 architecture are .xcallant..

Thu., the 4eTel~t

CirCUlnlltanC •• 1
I'or t.U aubj.ct project, tM SBJl PrOOuct and Mthodology were choaan ~.\1 •• the target application va. alat:-.d for running aultlpl. data •• ~.
OIl allt!pl. pl.tfo~ (VJUII onJ.nLr ... , Da2 on .. infr , and Da2.2 CD OS/2 PC), and taking a.ctvantaga of ...-.nt-baaed progr--.ing.
of the flIWircm.ant ... tcn.d up ry .. 11 (the probl .. .-ntiDnlN1 in the other ob .. rvatJ.OWI not witbtanding).

The •• a.pecta

auidance Ide •• I
X&tch your tool'. capahiliti .. to the iJlpl..-nt.ation a.rehit.ctura.

244

VITA

Mr. Touchton received a Bachelor of Science in Engineering

(Nuclear Engineering) from the University of Florida in

1974 and a Master of Science in Nuclear Engineering from

Carnegie-Mellon University in 1977. He is a licensed

Professional Engineer in the state of Florida.

Mr. Touchton has 20 years experience including 10 years as

a nuclear engineer for Westinghouse and a small consulting

firm, and 10 years as a consultant in the application of

advanced computing technologies for PathTech Software

Solutions, Inc. Mr. Touchton is a co-founder and President

of PathTech. His areas of expertise include the design and

development of knowledge-based systems, client/server

applications, and relational data bases. He is a champion

of object-oriented programming and the incremental

development paradigm.

- 245 -

	Interaction and Interdependency of Software Engineering Methods and Visual Programming
	Suggested Citation

	Title Page

	Table of Contents

	Figures

	Tables

	Abstract

	Chapter 1: Introduction

	1.1 Statement of Problem
	1.2 Research Plan
	1.3 Literature Search
	1.4 Summary of Results

	Chapter 2: Conflict/Synergy Capture Mechanism
	2.1 Conflict/Synergy Classifications
	2.2 Conflict/Synergy Observation Data Forms

	Chapter 3: Software Engineering Methodologies and CASE Tools
	3.1 Synopsis of Software Engineering Methodologies andCASE Tools Evaluated
	3.2 Gane & Sarson Data Flow Diagrams and Entity Relationship Diagrams
	3.3 Coad/Yourdon
	3.4 System Architect CASE (Computer Aided SoftwareEngineering) Tool

	Chapter 4: Visual Programming Languages and Tools.
	4.1 Synopsis of Visual Languages and Tools Evaluated
	4.2 Visual Basic
	4.3 Object Vision
	4.4 Smart Elements
	4.5 Layout

	Chapter 5: Experimentation Test Bed
	5.1 Customer Support Tracking System
	5.1.1 CSTS Design
	5.1.2 CSTS Implementation in Visual Basic
	5.1.3 CSTS Implementation in ObjectVision

	5.2 Tic Tac Toe
	5.2.1 Tic Tac Toe Design
	5.2.2 Tic Tac Toe Implementation in Visual Basic
	5.2.3 Tic Tac Toe Implementation in Smart Elements

	Chapter 6: System Architect to Visual Basic Bridge Prototype
	6.1 SA2VB.EXE Design and Scope
	6.2 SA2VB.EXE Implementation and Testing
	6.3 SA2VB.EXE Application

	Chapter 7: Conclusions
	7.1 Observation Results
	7.2 Anticipated Trends and Developments
	7.3 Guidelines for Development
	7.3.1 User Interface
	7.3.2 DB Schema
	7.3.3 Event-Based and/or Object-Oriented Design
	7.3.4 Function Design

	7.4 Summary of Findings

	References

	Appendix A: Customer Support Tracking System Design Package

	Appendix B: Customer Support Tracking System Visual Basic Listings/Screens

	Appendix C: Customer Support Tracking System ObjectVision Listing/Screens
	Appendix D: Tic Tac Toe Design Package

	Appendix E: Tic Tac Toe Visual Basic Listings/Screens

	Appendix F: Tic Tac Toe Smart Elements Listings/Screens

	Appendix G: SA2VB.EXE Bridge Listings and Sample Results

	Appendix H: Test Bed (Self) Observation Data Sheets

	Appendix I: Peer Observation Data Sheets

