
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

1990

The Linear Least Squares Problem of Bundle Adjustment The Linear Least Squares Problem of Bundle Adjustment

Joseph Walker Woodard
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Mathematics Commons

Suggested Citation Suggested Citation
Woodard, Joseph Walker, "The Linear Least Squares Problem of Bundle Adjustment" (1990). UNF
Graduate Theses and Dissertations. 227.
https://digitalcommons.unf.edu/etd/227

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 1990 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.unf.edu%2Fetd%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/227?utm_source=digitalcommons.unf.edu%2Fetd%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

THE LINEAR LEAST SQUARES PROBLEM
OF BUNDLE ADJUSTMENT

by

Joseph Walker Woodard

A thesis submitted to the Department of Mathematics and
Statistics in partial fulfillment of the requirements for
the degree of Master of Arts in Mathematical Sciences

UNIVERSITY OF NORTH FLORIDA

COLLEGE OF ARTS AND SCIENCES

AUGUST, 1990

Unpublished work Copyright 1990 by
Joseph Walker Woodard.

Copyright is not claimed in Appendices A-C.

The thesis of Joseph Walker Woodard is approved:

coIT(~e Chalrperson

Accepted for the Department:

Chairperson

Accepted for the College of Arts and Sciences:

Accepted for the University:

Vice-President for Academic Affairs

(date)

P /(:n "
j / / I v

?1l/~o

~/1(CrO

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Acknowledgements

This work would not have been possible without the

support and encouragement of Palmer Kinser, Director of the

Wetland Mapping Project, John Griffith, Director of the Data

Systems Division, and Adel Boules, my Major Professor. I

also wish to express my gratitude to Nick Eckhardt, who

typed this document and assisted with many of the figures,

and to Wayne King, for his help and support in ways too

numerous to mention.

iii

Section

1

2

3

4

5

6

7

Table of Contents

List of Figures

Abstract

Introduction

Bundle Adjustment

The Structure of the Coefficient Matrix

The Linear Least Squares Problem

Givens Rotations and the GIVENS2 Library

Predicting the Fill-in

Conclusion

Page

v

vii

1

4

14

21

26

41

67

Appendix A - Dense Givens Routine 73

Appendix B - GIVENS2 Sparse Matrix Library 75

Appendix C - LEAST Subroutine 89

References 92

Vita 94

iv

Figure

1

2

3

4

5

List of Figures

Vertical Aerial Photograph

Oblique Aerial Photograph of Same Area

Fiducial Marks and Photo Coordinates

Projection of Photo Points onto Map

Bundle of Four Photographs showing

Control and Tie Points

Page

5

6

8

10

13

6 Initial Pattern of the Coefficient Matrix. 17

7

8

9

10

11

12

for The Bundle of Four Photos

Two Row/pivot Disjoint Submatricies

Fill-in For a Single Photo

Using Photo Element Pivots

Fill-in After All Photo Element Pivots

Are Processed for the Four-photo Bundle

Fill-in for the Coefficient Matrix

for the Four-photo Bundle

Fill-in for the Coefficient Matrix for the

Four-photo Bundle with Improved Row Ordering

Fill-in for the Coefficient Matrix

for the 33 Photo Bundle

v

45

48

51

54

58

63

13 Fi ll-in for the Coefficient Matrix for the 64

33 Photo Bundle with Clarifying Lines Added

14 Fill-in for the Coefficient Matrix for the 65

33 Photo Bundle as Predicted A Priori

15 Table of Timings of Test Runs 67

16 Table of Populations of Test Runs 68

vi

Abstract

A method is described for finding the least squares

solution of the overdetermined linear system that arises in

the photogrammetric problem of bundle adjustment of aerial

photographs. Because of the sparse, blocked structure of

the coefficient matrix of the linear system, the proposed

method is based on sparse QR factorization using Givens

rotations. A reordering of the rows and columns of the

matrix greatly reduces the fill-in during the factorization.

Rules which predict the fill-in for this ordering are proven

based upon the block structure of the matrix. These rules

eliminate the need for the usual symbolic factorization in

most cases. A subroutine library that implements the

proposed method is listed. Timings and populations of a

range of test problems are given.

vii

Section 1 - Introduction

This paper describes a method for finding the least

squares solution of a large} sparse} overdetermined system

of linear equations that arise while performing bundle

adjustment on a set of aerial photographs. This method

takes advantage of the sparsity and block structure of the

system of equations to reduce the computer time and memory

requirements for the solution. The method stores and

calculates only with those elements of the matrix that are

potentially non-zero at some point during the calculations.

The block structure of the matrix allows the locations of

those non-zero elements that arise in the matrix

calculations ("fill-in elements") to be predicted a priori.

The data structure used during the solution provides storage

locations for these fill-in elements as well as the non-zero

elements of the original matrix. The ordering of the rows

of the matrix is carefully chosen to minimize the number of

these fill-in elements} reducing both the storage

requirements and the number of calculations to be performed.

Photogrammetry is the science of obtaining reliable

measurements from photographs or other imagery of the real

world. Bundle adjustment is a mathematical technique

developed by photogrammetrists for accurately projecting

1

information from multiple aerial photographs onto an

existing map. It involves setting up a large system of

nonlinear equations and solving this system iteratively

using Newton's method. The large, sparse, overdetermined

system of linear equations that is the subject of this paper

arises as the linearized system of equations that must be

solved at each iteration of the Newton's method solution.

Aerial photographs, measurements made on them, and

bundle adjustment are described in Section 2. Particular

attention is given to certain measured points called control

points and tie points that are used to locate the

photographs in space. The interrelationships of the photos,

control points, and tie points give a block structure to the

system of linear equations to be solved. These

interrelationships and the resulting sparse block matrix

structure are explored in Section 3.

The least squares solution of an overdetermined linear

system is reviewed briefly in Section 4. The normal

equations and QR factorization approaches to solving this

linear least squares problem (LLSP) are described. QR

factorization using Givens rotations is the technique used

to solve the linear system in this paper. Section 5

describes Givens rotations and explains their beneficial

properties in preserving the sparsity of a matrix during

factorization. The subroutine library GIVENS2 that

implements these ideas in FORTRAN is also described in

2

Section 5 with the data structures that allow these

subroutines to store and calculate only with the non-zero

entries of the matrix.

Section 6 applies the properties of Givens rotations to

factorization of the bundle adjustment matrix to predict

where fill-in will occur and prescribe a row ordering that

will reduce this fill-in. Section 7 contains some

concluding remarks and timings of test runs of the software.

The method developed in this paper is briefly compared with

other methods from the recent literature.

3

Section 2 - Bundle Adjustment

Figure 1 shows an aerial photograph that is typical of

those taken for many natural resource mapping purposes such

as wetland mapping. This photo is a "vertical" photograph,

i.e., one whose axis is intended to be vertical and is

usually not tilted more than three degrees. Figure 2 shows

the same area in an oblique photograph. Features of

interest are delineated on such a photo (or on a sheet of

mylar overlaying the photo) by a skilled photo interpreter

who examines overlapping pairs of photos on a stereoscopic

viewing instrument. The delineated features are then

digitized into a computer as a series of x-y coordinates

using a digitizing table. These measurements are in an

essentially arbitrary two-dimensioned coordinate system.

The mathematical challenge of photogrammetry lies in

projecting these measurements accurately onto a map.

The position of a feature on a map may be specified in

terms of its State Plane coordinates and its elevation above

sea level. State Plane coordinates are a set of cartesian

coordinates that are defined for a region of a state that is

small enough that the error in the location of a given point

due to the curvature.Df the earth is less than one part in

ten thousand. Florida, for example, is divided

4

Figure 1 - Vertical Aerial Photograph

5

Figure 2 - Oblique Aerial Photograph -
Includes Area of Figure 1

6

into three state Plane zones. separated along county

boundaries. The state plane coordinates and elevation above

sea level provide a three-dimensional, real-world cartesian

coordinate system for such purposes as resource mapping or

specifying the location of an aircraft at the moment an

aerial photograph was taken.

Each aerial photograph includes a set of fiducial marks

that allow points in the photo to be referenced to a set of

axes fixed in the camera that took the photo. In figures 1

and 2 these fiducial marks are the small crosses on the

points that project into the center of each edge of the

photo. These fiducial marks define a set of x-y

"photo coordinates" with their origin at the center of the

photo and coordinate axes passing through the fiducial marks

as in Figure 3. The origin of the photo coordinate system

represents the principal point, the point at the center of

the photo where the axis of the camera intersects the focal

plane. The focal point of the camera lies on the camera

axis a precisely known distance above the principal point.

The fiducial marks allow measurements made on an aerial

photo to be transformed to the photo coordinate system,

which is fixed with respect to the focal point, axis, and

focal plane of the camera. The equations of perspective

projection then allow measured points on the photo to be

projected onto a map based on six coordinates that fix the

location and orientation of the camera at the moment the

7

y

+

-----------~4+~_1~--------O----------~I~---------- x I

o Principal point

~edge of
photo

+ Fiducial Marks

Figure 3 Diagram of Fiducial Marks and Photo
Coordinates

8

photograph was taken4 These six coordinates are called the

"elements of exterior orientation}" or "photo elements}" and

consist of the three real world x-y-z coordinates of the

focal point of the camera and three angles that specify the

orientation of the camera axis with respect to the

real-world coordinate system. The perspective equations

that project from photo coordinates to real coordinates are

called the equations of col linearity. There are two

collinearity equations for each photo point projected.

Their derivation is based on the fact that the image point

and the real-world object point are collinear with the focal

point. They are developed} for example, in Wolf} 1983}

Appendix C. They are} of course} nonlinear equations.

The col linearity equations can be used to project photo

data onto a map provided the six photo elements are known

for the photo. These unknown elements are found using

several points on the photo whose locations are accurately

known on both the photo and the existing map. These points

are called control points, and are usually road

intersections that show clearly in the photo and are plotted

accurately on the map. Figure 4 shows the geometry of

control points. The system of col linearity equations for

the control points is formed and solved for the unknown

elements of exterior orientation. This method of finding

the photo elements is called "space resection by

collinearity."

9

f

plane of photograph

f - focal point
a - principal point
Q _ object on ground
q _ image on photo

Figure 4 Diagram of Projection of Photo points onto Map

10

Since there are six unknown elements of exterior

orientation for each photo, at least three control points

are required for each photo, giving a system of six

nonlinear equations in six unknowns. Usually four or more

control points are used, resulting in an overdetermined

system of equations in which inaccurate control points can

be detected by the increased residuals. As the equations

are nonlinear, they are solved iteratively using Newton's

method. The linearized system of equations that must be

solved at each iteration of the Newton's method solution is

solved in the least squares sense as explained in Section 4.

See Wolf, 1983, or Burnside, 1985, for a derivation of the

linearized equations.

An aerial photography mission usually involves several

closely-spaced, parallel flight lines with photos taken at

short distances along each flight line. This produces a

large block of overlapping photos. Each photo overlaps its

neighbor by sixty percent or more. This overlap allows

stereoscopic viewing of adjacent photos for greatly enhanced

accuracy of photo interpretation. (Features are delineated

on only one of each stereo pair of photographs - usually

every other photo along the flight path.) The overlap of

adjacent photos also improves the geometric control of the

projection process by allowing tie points. Tie points are

points whosa locations are known accurately on two or more

overlapping photos but not on the existing map. They allow

11

the computer program that finds the unknown elements of

exterior orientation to bring the adjacent photos into

better alignment with one another by minimizing the

displacement of tie points on adjacent photos.

The generalization of space resection by col linearity

to multiple photos using tie points is called bundle

adjustment. It is the process by which the computer can

bring multiple photos into optimal alignment with the

existing map (using control points) and with one another

(using tie points). The unknown x and y map coordinates for

each tie point are additional unknowns of the "bundled"

problem. Each tie point results in two additional

col linearity equations for each photo in which it appears,

the same as for control points. Figure 5 shows a small

bundle of four photos with a typical distribution of control

and tie points. This bundle of four photos and its

coefficient matrix will be used as an example throughout

this paper.

12

+

+

+
x

2

4
+ +

+ x + x
x x

+

1
3

x
+

+ control points x tie points

Figure 5 Bundle of Four Photographs Showing
Control} Tie Points

13

+

+

Section 3 - The Structure of the Coefficient Matrix

As explained in the previous section, the unknown photo

elements and tie point coordinates for a bundle of photos

are found by solving a system of nonlinear equations (Wolf,

1983; Burnside, 1985). This system has two nonlinearity

equations for each occurrence of a tie point or control

point in a photo. This system of nonlinear equations is

solved iteratively using Newton's method. At each iteration

of the Newton's method solution, a system of linear

("linearized") equations must be solved. The solution to

this linear system is the vector of corrections to the

solution found during the previous iteration.

This linearized system will in general have different

values for the elements of its coefficient matrix (and right

hand side vector) at each iteration, but the zero-nonzero

structure of the coefficient matrix will remain the same

through all iterations. The interrelationships of the

photos, control points, and tie points cause the coefficient

matrix to take on a regular block structure. For large

bundles of photos, the coefficient matrix is quite sparse,

that is, it has a very low percentage of nonzero elements.

For example, for a bundle of thirty three photos, the matrix

has only about 2~% of its elements nonzero.

14

The sparsity of the coefficient matrix is the feature

that, more than any other, determines the choices made in

designing the software to solve the bundle adjustment

problem. This is because of the great potential for

speeding up the solution process by using software that

stores and calculates only with the small percentage of

matrix elements that are nonzero. Not only is sparse

software much faster for a given size of matrix, its

asymptotic behavior as the size of the matrix increases is

much better. Dense QR factorization has asymptotic behavior

proportional to the n 3 (stewart, 1973, p237). While no such

simple limit is known for sparse QR factorization, it tends

to be not much worse than proportional to n for large

problems.

In addition to those elements of the matrix that are

originally nonzero, other elements will become nonzero

during the process of the calculations. These are called

fill-in elements. The number of fill-in elements that

occurs depends critically upon the design of the software

used and upon the order in which the rows and columns of the

coefficient matrix are processed. The total number of

original elements plus fill-in elements is called the

population of the matrix. For a large bundle, efficient

software and a carefully chosen ordering of the rows of the

matrix can hold the population to less than six percent.

Less efficient software or a poor row ordering can cause so

15

much fill-in as to convert the matrix to a dense matrix -

one in which there are too few zero elements to be

exploited.

Figure 6 shows the zero-nonzero structure of the

coefficient matrix for the bundle of four photos in Figure

5. This matrix will be used as a continuing example in this

and the following sections.

The system of linear equations for one iteration has

the form:

Ax = b

where A is the m x n coefficient matrix, x is the n-vector

of unknown photo elements and tie point coordinates, and b

is the right-hand-side (RHS) n-vector. This system will

include two equations for each occurrence of a control point

in a photo, and two equations for each occurrence of a tie

point in a photo. The control point equations and the tie

point equations will have a different structure. In Figure

6 the control point equations are above the horizontal line,

the tie point equations are below. The x-vector includes

two different types of variables, photo elements and tie

point coordinates, whose coefficients in the equations have

different structures. In Figure 6 the coefficients of the

photo elements are to the left of the vertical line, the

coefficients of the tie point coordinates are to the right.

16

Bl

~
~
~ mB 3

B2 ~B4

~B5
~

X)< ~
m

)<
I> ~ I)-

~ ~
~
~

Non-zero Element

Figure 6 - Initial Pattern of the Coefficient Matrix
for the Bundle of Four Photos

17

Each photo must include a minimum of four control/tie

points unless it includes only tie points, in which case it

must have at least five. So each photo generates a minimum

of eight or ten lines of matrix A. In addition there is a

minimum requirement of at least four control points per

bundle. For example our bundle of four photos could have

been done using only one control point for each outside

corner of the entire bundle. This is one reason for

requiring more points when only tie points are used.

The col linearity equations express the relationship

between the photo coordinates of a point and the real-world

coordinates of that point. The relationship depends on the

six orientation elements of the photo in which the point

appears, but it does not depend on the orientation elements

of any other photo. Consequently the photo elements for a

particular photo appear with nonzero coefficients only in

the equations of points that appear in that particular

photo. The photo elements for that photo appear with zero

coefficients in all other equations. Thus the coefficient

matrix will have a block of nonzero coefficients six

elements wide for each photo. The block appears in each

pair of rows corresponding to a control or tie point in that

photo. In Figure 6, the six wide block for the control

points of the second photo in the bundle is labeled B 1 • The

six wide block for the tie points of the second photo is

labelled B 2• In all the other rows the matrix has zero

18

values in these six columns since the photo elements for the

second photo do not enter into the equations for points in

any other photo.

For the tie points} the collinearity equations involve

not only the six unknown photo elements} but also the two

x-y coordinates of the tie point. These two tie point

coordinates appear as unknowns in two col linearity equations

in each photo in which the tie point appears. (The photo

coordinates of the point also appear in the linearity

equations for each control point) but they are known values

and are included in the constant on the right-hand-side.)

Thus each tie point requires two equations that include a

two element by two element block of coefficients for the

unknown tie point coordinates. These 2x2 tie point blocks

appear to the right of the vertical line and below the

horizontal line in Figure 6. The three 2x2 blocks for the

second photo in the bundle are labelled B3 } B4 } and Bs. Note

that each 2x2 block also appears in at least one other photo

since each tie point must necessarily appear in at least two

photos. These two columns are zero in all other rows that

do not involve this tie point.

The vertical line in Figure 6 that separates the photo

element blocks from the tie point blocks divides the matrix

into two regions that differ not only in the size and shape

of their blocks but also in the way these blocks relate to

one another. To the left of the line} the photo element

19

blocks for each photo are all disjoint from one other in the

sense that not one of them intrudes into the rows or columns

used by the blocks for another photo. To the right of this

line each tie point block is guaranteed to have a

corresponding block in the same columns of the rows used by

at least one other photo. This dichotomy of structure will

have a profound effect upon the factorization process in the

least squares solution of the system of linearized

equations. The fill-in elements that appear when the

elements to the left of the vertical line are processed will

take on a surprisingly simple and regular block structure.

To the right of this line we shall be reduced to proving

min-max rules that merely put bounds on the fill-in in each

row, without specifying its structure between these limits.

20

Section 4 - The Linear Least Squares Problem

The system of equations for one iteration of the

Newton's method solution has the form:

A x = b

where A is the m x n block structured coefficient matrix

described in Section 3, x is the n-vector of unknown photo

elements and tie point coordinates, and b is the m-element

constant RHS vector. Since m is in general larger than n,

this system has more equations than unknowns and there will

in general be no vector x that satisfies all the equations.

Thus we must seek a best-fit solution in the least squares

sense, that is we seek the vector x for which the square of

the two norm of the residual:

II A x - b 1122

is a minimum. That an overdetermined linear system has such

a solution and that it is unique when the matrix A is of

full rank is shown, for example, in Stewart, 1973, Chapter

5, or Hager, 1988, Chapter 5. These texts (and Ortega,

1987) are good references on the matrix theory described

briefly in the following paragraphs.

Various methods exist for finding the least squares

solution of an overdetermined linear system. One method

that is of great theoretical importance is the use of

21

Cholesky decomposition on the system of normal equations.

The normal equations are formed by multiplying the original

system by the transpose of its coefficient matrix:

ATAx = ATb

This produces an n x n square system of equations that will

have a unique solution whenever A is of full rank. This

solution is in fact the least squares solution of the

original overdetermined system.

The coefficient matrix ATA of the system of normal

equations is square, symmetric, and positive definite, and

can be expressed in the form:

ATA = LLT

where L is a unique n x n lower triangular matrix with

positive diagonal elements. This factorization can be found

using the Cholesky decomposition, a specialized form of

Gaussian elimination for symmetric matrices. The upper

triangular matrix LT, which is unique for a fixed ordering

of the columns of A, will be called the unique Cholesky

factor in this paper.

This factorization allows the overdetermined linear

system to be solved by successively solving two triangular

systems. We have

A TAx = LL TX = A Tb = b"

or, letting y = L-1b"

L'Sc = L-1b" = y.

The second equality is equivalent to

22

Ly = b*

This is a lower triangular system which can be solved by

forward substitution. Then the upper triangular system

LTx = y

can be solved by backsubstitution.

The normal equations method is unfortunately unstable,

resulting in an inaccurate solution vector x unless the

coefficient matrix is extremely well conditioned (G.W.

stewart, 1973, pp 225-230). It usually requires auxiliary

calculations to detect an ill-conditioned matrix and

iteratively refine the solution vector. Nevertheless, it

has been used extensively in the sparse matrix setting. See

Duff, Erisman, and Reid, 1986 and George and Liu, 1981 for

an overview.

The method used to find the least squares solution in

this paper involves the QR factorization of the matrix A

itself. This method is extremely stable, resulting in an

accurate solution vector even when the coefficient matrix is

quite ill-conditioned (G.W.Stewart, 1973, p237). This is

true regardless of the order of the rows or columns of the

matrix. This fact will allow us to reorder the rows and

columns of the coefficient matrix to preserve the sparsity

of the matrix during factorization. (George and Heath,

1980.) QR factorization involves expressing A as:

A = QR

23

where Q is an m x n matrix having orthogonal columns and R

is an n x n upper triangular matrix. In fact, except for

the possible multiplication of some rows by -1, R is the

unique Cholesky factor of ATA.

The orthogonal matrix Q is not found explicitly in

performing the QR factorization of A. Instead, a sequence

of orthogonal matrices Ql' Q2' , Q p such that

Q p
T = Q Q/Q/

is found, so that

Qp Qp-l' •• Ql A = Q-IQR = R

This sequence of orthogonal matrices is chosen to

introduce zero elements below the diagonal of A, and applied

to the coefficient matrix A where it is stored in the

computers memory} so that A is gradually replaced by R.

This sequence of orthogonal matrices is applied

simultaneously to the RHS vector b to give

The Qi matrices are not stored , but are simply

discarded after being applied to both sides of the matrix

equation.

The triangular system

R x = y

that results can be quickly solved by back substitution.

The residual vector

r = Ax - b

24

can then be calculated provided a copy of the original

matrix A has been retained. If only the 2-norm of the

residual is needed, it can be found from

II y" 2 = "Ax - b II 2

and A need not be stored.

The orthogonal matrices Qi are chosen to introduce

zeroes below the diagonal of the matrix A. Two popular

choices for these orthogonal matrices are Householder

reflections and Givens rotations. A Householder reflection

replaces all the subdiagonal elements of a particular column

of A with zeroes at once. A Givens rotation replaces a

single subdiagonal element with zero. Householder

reflections are inherently much faster than Givens rotations

(Bjorck, 1976, Hager, 1988) and are the appropriate method

when the coefficient matrix A is dense. But, for sparse

matrices, the Householder reflections produce an

unacceptable amount of fill-in (George and Heath, 1980).

Givens rotations, on the other hand, are well suited for use

with sparse matrices because they can be used to zero out

individual elements selectively and they cause only a

moderate amount of fill-in while doing so (Duff, 1974i Gill

and Murray, 1976). This ability to preserve sparsity more

than overcomes the difference in speed for large matrices.

25

Section 5 - Givens Rotations and the GIVENS2 Library

A Givens rotation is a sparse matrix that differs from

the identity matrix by the addition of a matrix of rank 2

and has this form:

1
1

1
k c s

1

1
i -s c

1

1
1

k i

where c 2 + S2 = 1 (Hager, 1988). A Givens rotation is an

orthogonal matrix which, when it multiplies a vector x,

rotates the kthand ithcomponents of x through the angle

e = sin- 1 (s) = cos- 1 (c)

26

and leaves the remaining components of x unchanged. A

Givens rotation can be chosen to reduce the subdiagonal

element a ik of the matrix A to zero by taking

c = a kk /(ak~ + ai~)~ and s = aik /(akk2 + aik2)~ where a kk is

the diagonal element of A in the same column as a ik . The

usual scheme for transforming A to upper triangular form

using Givens rotations is to work down each column in turn,

starting with the first column, using the diagonal element

in that column as the pivot element in zeroing out each

subdiagonal target element.

Zeroing out all the subdiagonal elements in a single

column is referred to as a major step; zeroing out a single

subdiagonal element using a single Givens rotation is

referred to as a minor step. Other variations are possible.

For example, one can zero out all the elements of a single

row that lie to the left of the diagonal as the major step,

using the diagonal element in a different column as the

pivot at each minor step. Or one can do variable row

pivoting, i.e. interchange the pivot row with the sparsest

row having a leading nonzero before each minor step (Duff,

1974). Incidentally, some authors define the Givens

rotation with the submatrix:

so that it is symmetrical and G- 1 = GT = G (Gill and Murray,

1976). There is also a "fast" Givens rotation that doesn't

27

require taking a square root, but it is much more

complicated and not much faster (Hager, 1988; Gentleman,

1973; George and Heath, 1980, p78).

When a Givens rotation Gik multiplies a matrix A it

leaves all the rows except the kthand ithrows unchanged.

These two rows are replaced by a linear combination of their

previous values where the coefficients of the linear

combination are c and s. That is:

and

a i j = sa k j + c a i j •

So each element in the pivot row is replaced by a linear

combination of itself and the corresponding element in the

target row; each element in the target row is replaced by a

linear combination of itself and the corresponding element

in the pivot row. This is the secret of the Givens

rotations I ability to preserve sparsity. For at each minor

step in the factorization each element of A is replaced with

a linear combination of only two elements of A. So if both

of these elements are zero, they will remain zero. Since A

is sparse, this will be the usual case, and vast areas of A

will remain zero.

This also explains why the pivot element is always the

diagonal element and all elements to the left of the target

element in the two rows involved are zeroed-out before a

particular element is selected as the target. With this

28

convention, there will be no fill-in.to the left of the

target element in either row and the previously annihilated

elements will remain annihilated.

Unfortunately, if either a kj or a ij is nonzero before

the multiplication, both will be nonzero after the

multiplication and there will be some fill-in. In fact the

target row and pivot row both become nonzero wherever either

was nonzero. This is called the "local Givens rule" for

fill-in (Coleman, Edenbrandt, and Gilbert, 1983). It is

usually expressed by saying that the set of subscripts of

nonzero elements of the target row and pivot row become the

union of their former sets at each minor step.

Any fill-in elements which appear below the diagonal

will be zeroed out by some later pivot element before the

factorization is complete. For this reason, fill-in

elements below the diagonal are sometimes called transient

or intermediate fill-in.

The local Givens rule allows the location of fill-in

elements to be predicted, but usually only by a very

laborious process. Say there was a nonzero element, aij'

When some earlier element in row i is annihilated, aij will

cause fill-in in column j of the pivot row. That fill-in

element will then cause fill-in in some other target row,

which will cause fill-in in some later pivot row, etc., etc.

The usual method of locating the fill-in is to do a

symbolic factorization. This is a process in which one goes

29

through an entire .. factorization, keeping track of wher

every nonzero element appears, but disregarding the actual

values 'of the elements. The object of the symbolic

factorization is to set up a data structure with a storage

location for every nonzero element a ij that will appear

during the factorization. This data structure can then be

used to store the matrix elements during the real

factorization that follows. Since each iteration uses a

coefficient matrix with the same sparsity pattern, this data

structure can be used repeatedly, saving time.

It is the fact that the data structure can be used

repeatedly that justifies separating the symbolic

factorization from the real factorization. The symbolic

factorization must set up a large data structure that must

necessarily allow new elements to be added at random. It

typically takes longer than a single iteration of the real

factorization, and doing it only once results in significant

time saving.

In this paper, we do even better. We shall show that,

with some rare exceptions, most bundle adjustment problems

produce a coefficient matrix whose rows can be reordered so

that the fill-in can be predicted a priori. This allows the

fill-in elements to be added without going through the

laborious copy-up, copy-down process of the symbolic

factorization. In the following section, we show how that

can be done.

30

The GIVENS2 subroutine library implements in FORTRAN

the algorithms described so far in this paper. It includes

subroutines for performing the symbolic and real QR

factorizations on a sparse matrix using Givens rotations.

It also includes subroutines for solving the resulting

triangular system by backsubstitution and for calculating

the residual vector using a copy of the original matrix.

The subroutine SROTG which calculates the constants of the

required Givens rotation is a standard LINPACK routine.

(Dongarra, Bunch, Moler, and stewart, 1979.)

Since the data structure used to store the nonzero

elements of the coefficient matrix is not a simple array,

the GIVENS2 library also provides subroutines for storing,

retrieving, and modifying elements of the matrix. Other

subroutines efficiently locate the next item in a particular

row or column of the matrix.

Two different data structures are used in the GIVENS2

library. The equation building and symbolic factorization

phases use a linked list data structure (Duff, Erisman, and

Reid, 1986; Schendel, 1989). The linked list is then read

into a static sequential list for the real factorization and

backsubstitution phases (George and Heath, 1980; Gill and

Murray, 1976). The linked list is used again in the

calculation of the residual since it retains a copy of the

original matrix.

31

The linked list data structure is used during the

symbolic factorization because it allows new elements to be

added to the matrix at random. This results in a data

structure that includes every nonzero element of the matrix,

but stores them in a very disorderly manner in memory. This

linked list is then used to set up a sequential list that

allows the data to be accessed very efficiently during

subsequent calculations. The linked list can accept rows of

a matrix in any order, while the sequential list necessarily

puts the rows into their proper order.

The linked list data structure consists of the

following variables:

W - a real array that contains the list of values of

the elements of the matrix A

JW - an integer array that contains the column number J

of each entry in W

ISTART - an integer array whose Ithentry contains the

array subscript in W of the first nonzero element of

row i of A

NEXT - an integer array that contains the array

subscript in W of the next element of A in row order

LAST - an integer variable that contains the integer

subscript in W of the final element in A

For example, suppose for a particular small matrix A,

the fifth row of A contained the three nonzero elements

a s ,2=37.65, a s ,s=10.21, a s ,9=O.765

32

these might be stored in the linked list as follows:

W(75)=37.65, JW(75)=2, NEXT(75)=81

W(81)=10.21, JW(81)=5, NEXT(81)=99

W(99)=O.765, JW(9)=9, NEXT(99)=O

ISTART(5)=75, LAST=376

To locate the elements of row 5 of A we would proceed

as follows. The fifth element in the array ISTART is 75,

which indicates that the first nonzero element of the fifth

row of A is stored as W(75), the seventy fifth element of W.

The value of W(75) is 37.65 and that of JW(75) is 2, so we

know the first nonzero element in this row is a s ,2=36.75.

NEXT(75) is 81 so we know the second nonzero element in the

row is stored as W(81). W(81) is 10.21 and JW(81) is 5 so

we know that the next nonzero element is a s ,s=10.21.

Similarly, the third element, a s ,9=O.765, is stored at

W(99). Now NEXT(99) is zero so we know there are no further

nonzero elements in row 5 of matrix A.

Suppose a fourth nonzero element is to be added to row

5 of this matrix, say

a s ,7=18.03.

The data structure allows us to add the new element at the

end of the list and still follow the "thread" of NEXT

pointers to reconstruct the row from the beginning when

needed. In our example, LAST=376 so we know that 376

elements of Wand JW have been used and that the 377th entry

is available for use. To install the new element, we set

33

LAST=LAST+l=377/ W(LAST)=lB.03 AND JW(LAST)=7. The seventh

element in the row must logically follow the fifth entry/

which is stored as W(Bl) and precedes the ninth entry/ which

is stored as W(99). So to fix the pointers/ we must now set

NEXT(Bl)=377/ NEXT(LAST)=NEXT(377)=99. The entire row is now

stored as:

W(7S)=37.6S/ JW(7S)=2/

W(81)=10.21/ JW(Bl)=5/

W(99)=O.76S/ JW(9)=9/

NEXT(7S)=Bl

NEXT(Bl)=377

NEXT(99)=O

W(377)=lB.03/ JW(377)=7/ NEXT(377)=99

ISTART(S)=7S/ LAST=377

and the thread of the next pOinters can again be followed to

recreate the entire row.

Suppose we need to locate a particular element aij of

the matrix A. There is only one way to do it - start at

ISTART(I) and follow the thread. The subroutine FINDITEM

below illustrates how to do this. (This listing is not a

complete subroutine. The dimension statements are not shown

in this illustration. See Appendix B for the complete

listing.)

34

SUBROUTINE FINDITEl1 (I, J, ELEI1ENT,FOUND, LOC)
C
C THIS SUBROUTINE LOCATES AN ELEl1ENT A(I,J) OF A MATRIX A
C THAT IS STORED IN A ROW-ORIENTED LINKED LIST.
C

C

FOUND = . FALSE.
ELEHENT = O. 0
IF (LOC .GE. 0) THEN

L = ISTART(I)
IF (LOC .GT. 0) L = LOC
LPREV = 0

1000 IF (JW(L) .EQ. J) THEN
FOUND = • TRUE.
ELEHENT = W(L)
LOC = L
GO TO 9999

ENDIF
IF (JW(L) .GT. J) THEN

LOC = LPREV
GO TO 9999

ENDIF
LPREV = L
IF (NEXT(L) .NE. 0) THEN

L = NEXT(L)
GO TO 1000

ENDIF
LOC = -L

ENDIF

C RETURN TO CALLER
C

9999 RETURN
END

35

Notice that FINDITEM returns the logical variable FOUND

to tell the caller whether the needed element existed. It

also returns the location (in Wand JW) where the element

was found as the value of the variable LOC. If the element

was not found, LOC is set to the location of the item that

would precede it in row order. This is so the item can be

quickly added if need be without following the thread again.

The following listing of subroutine ADDITEM illustrates this

use of LOC. (Again, this is not a complete listing of the

subroutine. See Appendix B for the complete listing.) If

ADDITEM is called with LOC=O, ADDITEM follows the thread for

the row to find the correct location to insert a ij . If a

nonzero value of LOC is provided, ADDITEM inserts a ij after

that location.

Note that another piece of information is returned in

LOC. If the last existing nonzero element in the row has

been passed in the search for aij' LOC is set negative to

signal that the end of the row has been reached.

36

SUBROUTINE ADDITEH (I, J, ELEHENT, LOC)

C
C THIS SUBROUTINE ADDS AN ELEMENT A(I,J) TO A MATRIX A
C THAT IS STORED IN A ROW-ORIENTED LINKED LIST.
C
C START SEARCH AT BEGINNING OF THIS ROW
C OR LATER IF A LATER LOCATION IS PROVIDED
C

L = ISTART(I)
IF (LOC .NE. 0) L = ABS(LOC)

C
C DONE IF ITEH ALREADY EXISTS
C

1000 IF (JW(L) .EQ. J) GO TO 9999
C
C ADD ITEH IF A LATER ELEHENT IN THE ROW IS REACHED
C

C

IF (JW(L) .GT. J) THEN
LAST = LAST + 1
JW(LAST) = J
W(LAST) = ELEHENT
NEXT(LAST) = L

ENDIF

LOC = LAST
NEXT(LPREV) = LAST
GO TO 9999

C FOLLOW THE THREAD IF THIS IS NOT THE END OF THE ROW
C

C

LPREV = L
IF (NEXT(L) .NE. 0) THEN

L = NEXT(L)
GO TO 1000

ENDIF

C ADD ITEH TO END OF ROW IF END IS REACHED
C

C

LAST = LAST + 1
JW(LAST) = J
W(LAST) = ELEHENT
NEXT(LAST) = 0
NEXT(LPREV) = LAST
LOC = -LAST
GO TO 9999

C RETURN TO CALLER
C

9999 RETURN
END

37

The sequential list is similar to the linked list, but

simpler.

V - a real array that contains the list of values of

the elements of A

JV - an integer array that contains the column number J

of each entry on V

LOCI - an integer array whose Ith entry contains the

array subscript in V of the first nonzero element in

row i of A

Elements of the matrix A are stored sequentially, in

row order, within V. LOCI(I) tells the starting location of

the ithrow of A, so LOCI(I+l)-l is the ending location of

the ithrow. An (M+l)st element of LOCI is provided so this

trick will work for the mthor last row of A. No LAST

variable is needed.

Notice that the sequential list includes all those

matrix elements that appear at some point during the

symbolic factorization, with no indication which should be

used with what pivot row or target row. This is inferred

from the following simple rule. At each minor step during

the real factorization, process all those columns which have

an entry in both the target and pivot rows. Since the

target row and pivot row took on the structure of their

union after each minor step of the symbolic factorization,

this will include all the elements changed during,:this minor

step. Any pivot row elements or target row elements that

38

are skipped over in this process appeared later in the

symbolic factorization and shouldn't be changed during this

minor step.

It may happen that the target row and pivot row have

later acquired an entry in the same column, but if so they

will be zero initially. So, processing them at this minor

step will leave them zero and no error occurs.

The pivot row will generally start at a later column

than the target row. So the search for corresponding

elements is most efficient if done by scanning the pivot row

sequentially from left to right and checking the target row

to see if the corresponding element exists. Since the pivot

row contains the union of all its target rows, a pivot row

will in general go further to the right than the target row.

Thus it is important for the software to end the minor step

immediately when the end of the target row is reached. This

is why the subroutines flag the end of a row by setting LOC

negative.

The simplicity of performing QR factorization using

Givens rotations can be appreciated by glancing over the

subroutine GIVENS in Appendix A. This is a dense matrix

implementation of QR factorization using Givens rotations.

The listing of the factorization subroutine takes less than

a page. The much larger GIVENS2 subroutine library in

Appendix B performs the same calculations in the sparse

matrix setting. Appendix Cis a listing of the subroutine

39

LEAST that organizes the QR factorization by calling the

subroutines of the GIVENS2 library.

The major subroutines of the GIVENS2 library are

SYMBOL, which performs the symbolic factorization using the

linked list data structure, and FACTOR, which performs the

real factorization using the sequential list. Subroutine

BACKSOLVE solves the resulting triangular system using

backsubstitution. Subroutine RESIDUAL calculates the

residual vector using the copy of the original matrix that

is retained in the linked list. The library also includes

various subroutines to add, locate, or modify matrix

elements in each data structure. The functions of these are

explained in the numerous comments included in their

listings.

40

Section 6 - Predicting the Fill-in

In this section we look at the fill-in caused by Givens

rotations in detail, describing several rules about how this

fill-in happens and how it can be minimized and predicted.

We then apply these rules to the QR factorization of the

bun4le adjustment problem. We derive a set of rules for

ordering the rows of the matrix so as to minimize the

fill-in. We then show how this ordering of the rows allows

the fill-in to be predicted a-priori, eliminating the need

for the time-consuming symbolic factorization.

The most fundamental rule in performing QR

factorization using Givens rotations is to process the most

complex rows and columns last (Bjorck, 1976; Duff, 1974).

The pivot and target rows take on the union of one another

many times during the symbolic factorization. If fill-in

starts too early in the process it will grow explosively

before the factorization is complete. So the most complex

rows must be held out until the end, keeping the fill-in to

a minimum as much as possible.

As for reordering the columns, the order in figure 6

where the photo element blocks are to the left, the tie

point blocks to the right, is already a workable solution.

The problem of choosing an optimal ordering for the columns

41

to make the bandwidth of the tie point blocks as narrow as

possible is well known to be NP-complete (Duff, Erisman, and

Reid, 1986, p127.) Except for putting the tie point blocks

to the right, we shall take the order in which the columns

occur for granted and look for a row ordering that reduces

the fill-in as much as possible for that column order.

Another fundamental observation is that} since any

nonzero elements initially present in a pivot row will be

reproduced in every target row it processes} it is very

helpful to provide pivot rows that are all zero initially.

Another} more subtle idea, that takes this a big step

further is to provide pivot rows that include some nonzero

elements they would otherwise process as target elements.

This reduces the population even further by moving some

initial nonzero elements into locations where fill-in would

inevitably occur anyway.

We have already observed that fill-in never occurs to

the left of the target element. This implies that if} at a

certain stage of the factorization, row i has its first

nonzero subdiagonal element in column j} then during the

rest of the factorization no fill-in will ever appear in row

i before column j. This is because no earlier pivot element

than aij will be used on row i since it has no nonzero

elements before column j to be annihilated} and row j will

be zero to the left of a ij when that pivot is used. This

places an earliest-column bound on the fill-in in row i.

42

A similar rule can be proven for the latest-column

bound on the fill-in in a row i provided that the pivot row

is initially all zero. If the pivot row is initially all

zero} then the latest column that can be filled-in in row i

is just the maximum of the latest column of any nonzero

element in the target rows up to and including row i. This

is because a nonzero element could only occur in column j of

row i if it was there initially or was in the pivot row when

row i was processed. It could only be in the pivot row if

it appeared during the processing of some earlier target

row} since the pivot row was initially zero.

Our final observation requires some new terminology.

It is the statement that Givens rotations preserve row/pivot

disjoint submatrices.

Recall that a submatrix of a matrix A is a matrix made

up of those elements of A that lie in the intersections of a

specified subset of the rows and columns of A. One can

think of creating the submatrix by deleting all but certain

rows and columns of A. The submatrix is what's left. Two

submatrices, Al and A2 are said to be disjoint if they have

no element in the same row or column of A. In other words,

when deleting rows or columns of A to find Al , all of A2 is

deleted, and vice versa. We observed in Section 3 that the

photo element blocks in the matrix of Figure 6 are disjoint

in this sense, while the tie point blocks are not.

43

Two submatric.es Al and A2 of A are row disjoint if they

have no element in the same row of A. They might have

elements in the same column or columns of A. Two

submatrices are pivot disjoint with respect to a certain

pivot if that pivot column contains only elements of Al or

A2 but not both.

Two submatrices Al and A2 are row/pivot disjoint with

respect to a certain pivot akkif the two submatrices are

row disjoint} they are pivot disjoint with respect to a kk }

and if a kk can annihilate elements of Al (say) then there are

no elements of A2 in the pivot row k (or vice versa).

Figure 7 shows two submatrices that are row/pivot disjoint.

The original elements of these two matrices have solid

outlines, the areas with dashed outlines are regions where

fill-in for each might occur. Note that being row/pivot

disjoint is more than being pivot disjoint and row disjoint

since it requires that the elements of each submatrix not

intrude into the pivot row(s) of the other submatrix.

The reason we are interested in row/pivot disjoint

submatrices is that if a submatrix is row/pivot disjoint

with respect to a certain set of pivot elements from the

rest of A} then processing with those pivots will leave it

that way. That is, processing elements of a submatrix Al

will only produce fill-in among the elements of AI'

44

G
II

0
'- .-.--J

I
000

o 01
o

000 0
000

o 0 0 0

0 000
000

o 0 0 0
000

000 0

- - - 1
+ + +

+ +1
+

+ + + +
+ + +

+ + + +

+ + + +
+ + +

+ + + +

1

Submatrix 1

Fill-in for
Submatrix 1

r--- I fl
o 0 000

o 0 0 01 01
10 0 0 0 10

o 0 0 01 01

'-rrt-L-L + + + + +
1 + 1 + + + +
+ 1 + + + +
L~ L+~~+

+
+

+

0 0 0 0
o 0 o 0

0 0 0 0 0
o 0 o 0 0

0 o 0 0 0

8 Submatrix 2

II Fill-in for +
'- .-.--J Submatrix 2

Figure 7 - Two Row/pivot Disjoint Submatrices

45

If we ~an order the rows. of A so that the rows for each

photo form a submatrix that is row/pivot disjoint from the

rows of all other photos (And we can.), then we can predict

very closely where the fill-in will occur for each photo.

To see that Givens rotations preserve a row/pivot

disjoint submatrix, consider a four-element submatrix A1

consisting of a pivot element a kk , a target element a ik '

and two elements in the same column j of the pivot and

target rows, akjand a ij Suppose this four-element

submatrix Al is row/pivot disjoint from all other

submatrices of A. From this we know that the pivot row k,

the target row i, and the pivot column k contain no nonzero

elements outside of the four elements of AI' So when a kk is

used as a pivot to annihilate a ik , no fill-in will occur

outside of the four elements of Al since both the pivot row

and target row are all zero outside of AI' The pivot element

akkwill not be used to annihilate any target element

outside of A1 since the pivot column is all zero outside of

AI' So any fill-in caused by the pivot element of Al is

confined to the four elements of A1 • Now consider a

submatrix A2 of A which is row/pivot disjoint from the rest

of A with respect to a certain set of pivot elements. A2

and its pivot rowCs) consist of the union of all such four-

element submatrices for that set of pivots. So any fill-in

caused by these pivots is confined to the row/pivot disjoint

46

submatrix A2 and the intersection of the columns of A2 with

its pivot row(s).

The remainder of this section of the paper will

describe in detail where the fill-in occurs during the QR

factorization of the bundle adjustment matrix. There are

two distinct phases to the factorization that produce quite

different patterns of fill-in. The use of the photo element

pivot rows that annihilate the Bl and B2 blocks (see Figure

6) for each photo produce fill-in in neat, orderly blocks.

The use of the tie point pivots is less orderly. After we

have seen where the fill-in occurs, we shall list some rules

for reducing the size of these regions and for combining

some of them with the initial blocks.

Figure 8 shows the nonzero blocks for a typical aerial

photo. We shall use this diagram to examine the fill-in

that will result from the action of the photo element pivots

for this photo. These pivots are the diagonal elements in

the rows kl through k2 that will be used to annihilate the

photo element coefficients in blocks Bl and B 2. Let us

suppose that no initial elements for any other photo lie in

these pivot rows, so the blocks for this photo are row/pivot

disjoint from the initial blocks for all other photos in

this bundle.

47

kl

k2
0 0 0
j 1 j 2 j3 j 4 js j 6

o 0 0 0
000

o 000 DDD

Original
Blocks

D Fill-in D
Figure 8 - Fill-in For a Single Photo

Using Photo Element Pivots

48

Not
Filled-in

We can see immediately that the fill-in that we1re

looking for can only happen within the pivot rows and the

rows and columns that contain the initial blocks Bl thru Bs'

By considering the order in which the pivot rows process the

target rows, we can refine this further. We can show that

the regions outlined but not shaded in Figure 8 will not be

filled in.

The pivot rows kl through k2 are initially all zero, so

when the first pivot row kv processes the Bl block it will

get filled-in in columns kl through k2' but will be entirely

zero outside these columns. This will remain true as this

pivot row processes each target row in block B1 • So the

dotted regions to the right of block Bl will not be

filled-in by pivot row k 1 • When pivot row kl processes row

i 3 , the first row of blocks B2 and B3 , this pivot row will be

filled-in in columns js through j6 by the nonzero elements

in block B3 • When this pivot row processes target row i4 it

will be filled-in in columns jl through j2 by the nonzero

elements in block B4. The pivot row has already been

filled-in in the columns of block B3 , so these columns will

be filled-in in each target row until there are no more

target elements for pivot row kl to process. This is the

copy-up, copy-down phenomenon at work. Each tie point block

will cause a "tail" of filled-in elements that continues

downward from the tie point block to the last row of this

49

photo where there are·no more.nonzero eLements in column kl

to be processed by pivot row k 1 •

The next major step begins with pivot row k 1+l} still

all zero} processing target rows of B1 • The action of this

pivot row is similar to that of pivot row kl1 except that it

will not be fill-in to the left of column k 1+l since column

kl is already annihilated. This pivot row also will be

filled-in by the tie point blocks when it reaches them.

Similarly for the remaining pivot rows k 1+2 through k 2.

So the only fill-in that occurs in annihilating blocks

Bl and B2 is of three types. A triangular block consisting

of elements k through k2 in each pivot row k results from

the nonzero elements of blocks Bl and B2 themselves. A

rectangular block where the pivot rows intersect the columns

of the tie point blocks results from the nonzero elements of

the tie point blocks. And a rectangular "tail" below each

tie point block to the end of the photo results from the

marking of the pivot rows by the tie point blocks.

The situation after all Bl and B2 blocks have been

annihilated is shown in Figure 9 for the four-photo bundle.

The regions above the diagonal marked region 1 and region 3

contain fill-in blocks. Regions 2 and 4 are entirely zero.

Region 5 contains original tie point blocks with fill-in

"tails" below each block to the end of its photo. The

nonzero elements in this region, original or fill-in} must

50

Region 1 ~ on 3
~I f-N f-

" " f-
f-)<

)c f-f-

,I
N

1'\
::--"Sf-

r;;;;:
NI

N

" ~
S

1'\

Re gion 2 Region 4

~~ xx
XX

lXIX
lXIX

~x

~~
~~
f-

XIX f-

XIX f-

~~
Region IXX

IXX
~~ XX xx

XX
IXIXl
lXlX

XX
~Z

~X

~Z
lXIX
lXIX

o

Original Block Element Fi ll-in EI ement

Figure 9 - Fill-in After All Photo Element Pivots
are Processed for the Bundle of Four Photos

51

now be zeroed out using .the all-zero rows of. region 4 as

pivot rows.

Let k* be the column number of the first tie point

coordinate. Then row k* is the first pivot row in region 4.

Bounds on the fill-in in each row in regions 4 and 5

due to annihilating the nonzero elements in region 5 can now

be inferred from the distribution of these nonzero elements

and our knowledge of the behavior of Givens rotations.

For each row in region 5, we know that no fill-in will

occur to the left of the earliest column that is already

nonzero in row i. Further, since the pivot rows are

initially all zero, we know that no fill-in will occur to

the right of the latest column that is nonzero in any target

row up to and including row i.

Let fi be the column number of the first nonzero entry

in each row i of region 5. Let Ii be the maximum of the

column number of the last nonzero entry in each row for rows

k* through i.

Then the fill-in in row i is confined to the columns fi

through Ii for each row i in region 5. The nonzero elements

that are already present in region 5 that determine the

starting and ending column numbers fi and Ii will be either

the original 2 x 2 tie point blocks or the two-column

"tails" of fill-in below them that appeared earlier during

the annihilation of photo element blocks. The fill-in that

appears during the use of the tie point pivots will tend to

52

be horizontal rows of nonzero elements .. that connect the

vertical columns of earlier fill-in. Note that these rows

are not necessarily all filled-in. We have shown that

fill-in cannot occur outside Ii and fil not that it must

occur everywhere between these limits.

These bounds on the fill-in in each target row place

bounds on the fill-in in each pivot row in region 4. For

each pivot row k, let tk = max {Ii! fi ~ k ~ Ii J iLk}.

Then the fill-in in pivot row k will be confined to columns

k through tkl since the fill-in cannot occur to the left of

the pivot, and pivot a kk will not be used to operate on any

row for which Ii is greater than t k.

Having explained in detail the effects of both photo

element pivots and tie point pivots, we can now understand

how the fill-in occurs during the entire factorization.

This will enable us to include the fill-in in the data

structure for the coefficient matrix without having to do

the laborious symbolic factorization. We can also use this

knowledge to reorder the rows of the coefficient matrix to

reduce the fill-in.

Figure 10 shows the coefficient matrix for the

four-photo bundle of Figure 5, complete with all fill-in

elements that occur during the complete factorization.

Figure 10 can be compared with Figure 6, which shows the

coefficient matrix for this bundle ,before any fill-in

occurs. A careful examination of this figure confirms that

53

I ~~ I
I f--f--

f--f--
~~

f--~

I I
I I

I
L- f--

f-

I

I
I

~~
L-~~

L-f--
L-

~x
~x

XIX
xx

~~
><>< X)< ~~

~rx
!XIX
!XIX

QQ
~~
~rx

1><1><
1><1><

[)<[)<
1><1><
I><rx

~15<
1><15<

1><1><
rxl><

IX IX
1><1><

o

Original Block Element Fill-in Element

Figure 10 - Fill-in for the Coefficient Matrix
for the Bundle of Four Photos

54

the fill-in locations for the entire. matrix-can be inferred

a priori from the locations of the initial nonzero blocks.

In region 1, above the diagonal in the photo element

region, the only fill-in is the 6 x 6 upper triangular block

that includes the pivot elements. In region 2, below the

diagonal in the photo element region, there is no fill-in at

all. In region 3, to the right of region 1, the only

fill-in is the 6 x 2 rectangular block where the pivot rows

for each of the four photos intersect the columns of the tie

point blocks for that same photo. The triangular Region 4,

initially all zero, that provides the pivot rows for

annihilating the tie point blocks is entirely filled-in in

this small bundle. In reality this fill-in is of finite

bandwidth and, for much larger bundles, will form a band to

the right of the diagonal in region 4, with a jagged right

hand edge. In region 5 the fill-in is the vertical "tails"

of fill-in below each tie point block and the horizontal

rows of fill-in between them. These "rows" are rather

abbreviated for this small bundle. In larger bundles the

two types of fill-in in region 5 show quite distinctly. We

now list some rules which will help to reduce the fill-in

described here.

The way the equations are set up for bundle adjustment

assures that the Bl and B2 blocks for a particular photo are

in separate rows and columns from those blocks for any other

photo. Thus the pivot elements for that photo are in

55

separate rows and columns from the pivot elements for any

other photo. But it can happen that some elements of the Bl

block for a particular photo fall in the pivot rows of the

previous photo and the photos will not be row/pivot

disjoint. This might happen, for example, if the first

photo in the bundle lacked control points. Then the control

point equations for the second photo would begin in row one,

which is a pivot row for the B2 block of the first photo.

A judicious choice of the six rows of th~ matrix that

make up the photo element pivot rows for each photo can

guarantee that the photos are all mutually row/pivot

disjoint. The required rule is simple: choose each group of

six rows to be the first six control point equations for

that photo; if a photo has less than three control points,

use as many of its tie point equations as needed instead.

This rule cannot fail since the rules of bundle adjustment

require each photo to have at least four control/tie points

so each photo will have at least eight equations.

This rule also results in a reduction of the population

of the matrix since six rows of the Bl and/or B2 blocks will

be combined with the 6 x 6 triangular fill-in block on the

diagonal in the pivot rows. If tie point equations must be

used the saving is even better since some 2 x 2 tie point

blocks will be combined with the 6 x 2 fill-in blocks they

cause in the pivot rows. Note that tie point equations must

not be used before the available control point ~quations for

56

the photo are exhausted to get this effect artificially.

This would cause unnecessary fill-in in the remaining

control point equations for that photo.

The remaining control point equations for the entire

bundle should be placed together in the rows immediately

below the photo element pivot rows described above. These

rows are the first of the tie point pivot rows and putting

control points first here will help to push the remaining

tie point blocks below the diagonal~ This is necessary to

insure that the tie point pivot rows are initially all zero

as in the derivation above.

Figure 11 illustrates this improved row ordering for

the four-photo bundle. The horizontal lines in Figure 11

divide the matrix into the three regions described above.

In the upper region are the photo element pivot rows. These

are formed by using first the control point equations for

the photo and then, if there are not enough of these, using

the tie point equations for the same photo. The middle

region contains all the remaining control point equations.

Notice that, for this bundle, this causes region 4 to be

initially all zero. The lower region contains all the

remaining tie point equation~~

57

t-
t-
l-

X X ~ I-
t-t-

I I
I

IXI)(IYIXIXIY

I>< X ~~ ~t-1><1>< ~

I><lX
1><1><

!XI><
lXD<

~~
l2<l2<
1><1><

I><lX
I><lX

~l2<
1><1><

X:X1>1> 1><1><
I> l2<l2<

XX
XX

IX)<
IX

lXlX
XIX

~~
~~

~X
IXX

IXlX
~

o

Original Block Element Fill-in Element

Figure 11 - Fill-in for the Coefficient Matrix
for the Bundle of Four Photos with Improved Row Ordering

58

It may not ,be possible to keep the tie point blocks

below the diagonal and out of region 4. Recall that a

bundle can be done with as few as four control points and

many tie points. This is the source of those rare

exceptions where the fill-in may not be so nice, although

even this case may not be too bad. Each tie point block

would cause a two-element-wide streak of fill-in down

through region 5 until cut off by the fi limit. Generally,

when three or more control points are used in each photo

this case will not happen. Our software does not try to add

this type of fill-in a priori, but simply stops adding a

priori fill-in and sets the flag for the symbolic

factorization instead.

After the remaining control point equations come all

the remaining tie point equations. These should be placed

in order according to the following rules to reduce the

fill-in prescribed by the fi to Ii limits described above:

1) put the photos in increasing order by their last

(furthest to the right) tie point number

2) within each photo, put the tie point equations for

"new" tie points in increasing order by the tie point

number, followed by

3) the tie point equations for the "old" tie points in

decreasing order according to the tie point number.

59

Here a "new" tie point is one that hasn't appeared in a

photo before, and an "old" tie point is one that has. This

ordering of the tie point equations is used in Figure 11.

These rules will give the filled-in blocks for each

photo a stair step appearance with the "new" tie point

blocks going down and to the right followed by the "old" tie

point blocks going down and to the left. Each photo will be

offset a little to the right by the number of "new" tie

point blocks it has. These rules will insure that the

filled-in rows within each photo strictly increase in length

and that the rows that go further to the right are later

(further down) in the matrix. In strict accordance with the

principle of saving the worst for last, this ordering of the

tie point equations will insure that the lengths of the

filled-in rows increase as slowly as possible for this

ordering of the columns.

These rules also simplify predicting the fill-in in the

tie point pivot rows in region 4. We described earlier how

the right-hand limit of the fill-in in each pivot row can be

found as the maximum Ii for all those rows on which the

pivot row is used. With the target rows ordered according

to our rules, the fill-in in each target row is a subset of

the fill-in in the last row of each photo. That row is

nonzero from the first tie point block for that photo to the

last tie point block for that photo. Thus the fill-in in

each pivot row can be found by examining the list of tie

60

point numbers for each photo. This can be done as each

pivot row is formed, regardless of whether the complete set

of target rows has yet been formed.

The working of these rules can be observed in Figure 12

that shows the original blocks and fill-in for a thirty

three photo bundle. Figure 13 shows the same matrix with

lines drawn between the different regions of the matrix for

clarity. Figure 14 shows this matrix with the fill-in as

predicted a priori. Notice that in Figure 14 the software

has marked all nonzero elements as original, not fill-in,

since they are provided by the calling program.

61

Below are titles of figures on following pages:

Figure 12 - Fill-in for the Coefficient Matrix
for 33 Photo Bundle

Figure 13 - Fill-in for the Coefficient Matrix
for 33 Photo Bundle With Clarifying Lines Added

Figure 14 - Fill-in for the Coefficient Matrix
for 33 Photo Bundle as Predicted A Priori

Note: Solid Squares Represent Original Block Elements.
Open Squares Represent Fill-in Elements.

62

\.--...-

-. -.. \

\..- -

-. -.....

\.- -

•• • .. \

Section 7 - Conclusion

To review briefly, the method of solving the LLSP of

bundle adjustment developed in this paper is based upon

sparse QR factorization using Givens rotations. The GIVENS2

subroutine library performs the required factorization. A

row ordering for the bundle adjustment matrix is prescribed

that significantly reduces the amount of fill-in and the

time required for the factorization. Based upon this

improved row ordering, a set of rules are provided for

predicting where the fill-in will occur. For most bundle

adjustment problems, these rules allow the time-consuming

symbolic factorization step to be eliminated.

Figure 15 is a table showing the CPU times for bundle

adjustment problems of various sizes. The column headed

"dense factorization" lists timings using the LINPACK

routines SQRDC and SQRSL. (Dongarra, Bunch, Moler, and

Stewart, 1979; Coleman and Van Loan, 1988.) Figure 16 shows

the populations for these test problems.

In the following paragraphs, the method developed in

this paper is briefly contrasted with other LLSP solution

methods from the recent literature. Opportunities for

future research are noted where appropriate.

66

Factorization Timings in CPU Seconds

Dense Symbolic Sparse Sparse wi
Problem After Estimated

Size Symbolic Fi ll-in
Done

One Only One One
Iteration Once Iteration Iteration

4 Photos 0.15 0.16 0.15 0.17
62x36

15 photos 5.47 1. 09 0.89 0.91
260x124

33 Photos 59.85 5.68 4.16 4.39
576x304

73 Photos 311.15 7.29 6.22 7.73
974x554

113 Photos 1163.89 16.16 14.33 15.61
1478x870

Figure 15 - Table of Timings of Test Runs

67

Number of Non-zero Elements

Problem
Size Original Fill-in Total Estimated

4 Photos 428 342 770 770
62x36 (19.18%) (15.32%) (34.50%) (34.50%)
=2236

15 photos 1748 1522 3270 3331
260x124 (5.42%) (4.72%) (10.14%) (10.33%)
=32240

33 Photos 4008 6223 10231 11007
576x304 (2.29%) (3.55%) (5.84%) (6.28%)
=175104

73 Photos 6480 3966 10446 13334
974x554 (1.20%) (0.73%) (1. 94%) (2.47%)
=539596

•

113 Photos 9916 6688 16604 19932
1478x870 (0.77%) (0.52%) (1. 29%) (1. 55%)
=1285860

Figure 16 - Table of Populations of Test Runs

68

The method of solving the LLSP of bundle adjustment

which is favored by photogrammetrists is recursive

partitioning of the normal equations (Slama, 1980; Burnside,

1985; and Mikhail, 1976). In this method, the normal

equations are formed and their coefficient matrix is

partitioned into submatrices based upon the structure of the

bundle, i.e. what control and tie points appear in what

photographs. These submatrices are then partitioned based

upon their structure and the process is repeated until most

of the nonzeroes of the original matrix have been isolated

in many small submatrices. The resulting small matrix

equations are solved by dense Gaussian elimination. A

direct comparison of recursive partitioning with the method

of this paper is an important avenue of further research.

A method which is much-discussed in the recent

literature of numerical analysis (see Schreiber and Van

Loan, 1989, and Bischof and Van Loan, 1987, for example) is

called the WY representation. This is a QR factorization

using Householder reflections in which the product of

Householder reflections Q is expressed as Q = I + WyT where

Wand Yare each m x n. This method is rich in matrix

matrix multiplications and so is of interest mainly in the

parallel architecture realm where these operations are

performed very quickly.

69

A block reflector is a generalization of a Householder

reflection which can zero out elements of multiple columns

of a matrix at once. Each block reflector differs from the

identity matrix by a matrix of rank more than one. Block

reflectors were first proposed by Br¢nlund and Johnsen in

1974 and have recently been rediscovered by the numerical

analysis community in the search for efficient QR

factorization algorithms for parallel computers. (Schreiber

and Parlett, 1988.) Although at least one author has tried

to apply block reflectors to sparse factorization (Kaufman,

1987) the algorithm proposed is limited to very

well-conditioned matrices. The technology of block

reflectors can be expected to improve rapidly in the next

few years.

In the past decade several authors have looked at

minimizing the fill-in in orthogonal factorization of a

general, sparse matrix. The paper "Predicting the Fi 11 for

Sparse Orthogonal Factorization" by Coleman, Edenbrant, and

Gilbert, (1983), is of fundamental importance. The authors

use the theory of bipartite graphs and the local Givens rule

to draw some important conclusions about fill-in. The

bipartite graph of an m x n matrix A consists of two sets of

vertices V = {Vl' .•• , v m} and W ={w l ' ••• , wn} with an edge

connecting Vi and Wj whenever a ij is not equal to zero. The

major difficulty in the LLSP is that while the Cholesky

factor is unique regardless of the row ordering, the amount

70

of intermediate fill-in can vary tremendously for. different

orderings of the rows. The paper, "Row Ordering Schemes for

Sparse Givens Transformations: I. Bipartite Graph Model" by

George, Liu, and Ng (1984), looks at this question in

detail.

Growing out of the effort to predict fill-in for QR

factorization have been a series of papers which propose

algorithms based on the knowledge of where the fill-in will

occur. In 1980, George and Heath proposed using the methods

for predicting the structure of the Cholesky factor when it

is formed by Gaussian elimination on the normal equations to

set up a data structure which would then be used during QR

factorization using Givens rotations. They avoided the

problem of predicting the intermediate fill-in by working

with only one row at a time, storing that row in a dense

vector and zeroing out the row as the major step. In 1986,

Liu proposed a generalization of the George and Heath method

to variable pivoting. Liu not only chooses the target and

pivot rows dynamically, but maintains several upper

triangular matrices into which rows can be merged. The

final Cholesky factor results from merging these smaller

triangular matrices. He calls this method the "general row

merging scheme."

In a later paper with Alan George entitled "Householder

Reflections .Versus Givens Rotations in Sparse Orthogonal

Decomposition" (George and Liu, 1987) he describes how his

71

general row merging scheme results in small, essentially

dense submatrices upon which Householder reflections can be

used effectively. This allows the superior speed of

Householder reflections to be applied to a sparse matrix

problem. A detailed comparison of the method of George and

Liu with that developed in this paper is another promising

area for further research.

72

APPENDIX A - Dense Givens Routine

SUBROUTINE GIVENS (A,nA,H,N,B)
C THIS SUBROUTINE REPLACES THE H BY N nATRIX A
C WITH ITS UPPER TRIANGULAR QR FACTOR USING GIVENS ROTATIONS.
C

REAL A(nA,l),B(l)
C
C CHOOSE THE COLUHN TO BE ZEROED OUT
C

C

DO 5000 K = 1,N
KPl = K + 1

C CHOOSE THE ELEHENT TO BE ZEROED OUT
C

C

DO 4000 I = KPl,H
Rl = A(K,K)
R2 = A(I,K)

C CALCULATE THE GIVENS ROTATION NEEDED AND APPLY
C

C

CALL SROTG (Rl,R2,C,S)
A(K,K) = Rl
A(CK) = 0.0

C APPLY THIS ROTATION TO REHAINING COLUHNS
C

DO 3000 J = KPl,N
TEMP = C * A(K,J) + S * A(I,J)
A(I,J) = C * A(I,J) - S * A(K,J)
A(K,J) = TEl1P

3000 CONTINUE
C
C APPLY THIS ROTATION TO THE RHS VECTOR
C

C

TEMP = C * B(K) + S * B(I)
B(I) = C * B(I) - S * B(K)
B(K) = TEMP

C GO BACK FOR NEXT ELEHENT IN THIS COLUHN
C
4000 CONTINUE

C
C GO BACK FOR NEXT COLUHN
C

73

5000 CONTINUE
C RETURN TO CALLER
C

C

C

RETURN
END

C THIS SUBROUTINE SOLVES A TRIANGULAR SYSTEH OF LINEAR EQUATIONS
C BY ROW-oRIENTED BACKSUBSTITUTION
C

C

C

C

C

REAL A(HA,l),B(l),X(l)

X(N) = B(N) / A(N,N)
Nl'l1=N-1

DO 2000 IB = l,NH1
I = N - IB
IP1 = I + 1
TEl'IP = B(I)

DO 1000 J = IP1,N
TEl'IP = TEl'IP - A(I/J) * X(J)

1000 CONTINUE

XCI) = TEMP / A(I,I)
2000 CONTINUE

C
C RETURN TO CALLER
C

C

C

RETURN
END

C THIS SUBROUTINE CALCULATES THE RESIDUAL VECTOR OF A LINEAR SYSTEH.
C

C

C

C

DO 2000 I = 1/H
R(I) = B(I)

DO 1000 J = 1, N
R(I) = R(I) - A(I,J) * X(J)

1000 CONTINUE

2000 CONTINUE
C
C RETURN TO CALLER
C

RETURN
END

74

APPENDIX B - GIVENS2 Sparse Hatrix Library

C GIVENS2 - THE SJRWHD SPARSE HATRIX PACKAGE
C
C THIS PACKAGE OF SUBROUTINES CALCULATES THE LEAST SQUARES SOLUTION
C OF AN OVERDETERHINED SYSTEH OF LINEAR EQUATIONS BY ORTHOGONAL
C TRIANGULARIZATION USING GIVENS ROTATIONS.
C
C ONLY THOSE ELEMENTS OF THE HATRIX WHICH ARE NONZERO(OR POTENTIALLY
C NONZERO) ARE STORED. TWO DIFFERENT DATA STRUCTURES ARE USED. THE
C EQUATION BUILDING AND SYHBOLIC FACTORIZATION PHASES USE A LINKED
C LIST DATA STRUCTURE. THE LINKED LIST IS THEN READ INTO A
C SEQUENTIAL LIST FOR USE IN THE FACTORIZATION AND BACKSUBSTITUTION
C PHASES.
C
C PROGRAH AUTHOR:
C JOSEPH W. WOODARD PROGRAtlHERjANALYST
C ST. JOHNS RIVER WATER HANAGEHENT DISTRICT
C PALATKA, FL 32178 904-329-4280
C

SUBROUTINE ADDROW (I,JLIST,VLIST,NVALS,HARK,LAST1)
C
C THIS SUBROUTINE ADDS THE NONZERO ELEMENTS OF A SINGLE ROW OF
C HATRIX A TO A ROW-ORIENTED LINKED LIST OF NONZERO ELEHENTS.
C THE DATA STRUCTURE CREATED IS AS FOLLOWS:
C
C W CONTAINS THE LIST OF VALUES OF A
C JW CONTAINS THE COLUHN NUI1BER J FOR EACH ENTRY IN W
C ISTART CONTAINS THE ARRAY SUBSCRIPT IN W OF THE FIRST
C NONZERO ELEMENT OF ROW I OF A
C NEXT CONTAINS THE ARRAY SUBSCRIPT OF THE NEXT
C ELEMENT IN ROW ORDER
C LAST CONTAINS THE ARRAY SUBSCRIPT OF THE FINAL ELEMENT
C (LAST HOST BE SET TO ZERO BY THE CALLER BEFORE
C THE INITIAL CALL TO ADDROW FOR THE LIST)
C
C THE ROW TO BE ADDED I S DEFINED BY:
C
C I I S THE ROW NUHBER. ROWS NEED NOT BE ADDED IN SEQUENCE.
C JLIST IS THE LIST OF COLUHN SUBSCRIPTS FOR THIS ROW.
C THESE SUBSCRIPTS HOST (!) BE IN ASCENDING ORDER.
C VLIST IS THE LIST OF VALUES A(I,J) CORRESPONDING TO JLIST.
C NVALS IS THE NUHBER OF VALUES IN VLIST.
C HARK IS A LOGICAL VARIABLE WHICH CONTROLS UPDATING OF
C THE COLUHN NUHBERS IN THE LINKED LIST.
C HARK = . TRUE. USE JLIST TO SET COLUHN NUHBERS.

75

C
C
C

C

C

HARK = • FALSE. DON'T. COLUHN NUl1BERS FROH A
PREVIOUS CALL WILL BE USED.

REAL VLIST(l)
INTEGER JLIST(l)
LOGICAL HARK
INCLUDE 'INCLUDE1.F77'

IF (NVALS .GT. 0) THEN
LAST = LAST1
ISTART(I) = LAST + 1
K = NVALS - 1
DO 1000 J = 1,K
LAST = LAST + 1
W(LAST) = VLIST(J)
IF (HARK) THEN

JW(LAST) = JLIST(J)
NEXT(LAST) = LAST + 1

ENDIF
1000 CONTINUE

LAST = LAST + 1
W(LAST) = VLIST(NVALS)
IF (HARK) THEN

ENDIF

JW(LAST) = JLIST(NVALS)
NEXT (LAST) = 0

LASTl = LAST
ENDIF

C RETURN TO CALLER
C

C

C

RETURN
END

SUBROUTINE SYHBOL (Hl,Nl,LAST1)

C THIS SUBROUTINE PERFORHS A SYHBOLIC FACTORIZATION ON A
C HATRIX A WHICH IS STORED IN A ROW-oRIENTED LINKED LIST.
C

C
C

LOGICAL FOUNDAKK,FOUNDAIK,FOUNDAKJ,FOUNDAIJ
INCLUDE 'INCLUDE1.F77'

C SET ARRAY SIZE IN COHHON BLOCK
C

C

H = Hl
N = Nl
LAST = LAST1

C CHOOSE THE COLUHN TO BE ZEROED OUT
C

DO 5000 K = 1,N

76

C
C HARK THE DIAGONAL ELEMENT
C

LOCAKK = 0
CALL FINDITEl1 (K, K, AKK, FOUNDAKK, LOCAKK)
IF (. NOT. FOUNDAKK) THEN

AKK = 0
CALL ADDITEl1 (K, K, AKK, LOCAKK)

ENDIF
C
C CHOOSE THE ELEl1ENT TO BE ZEROED OUT
C

C

I = K
1000 CALL LINKI (I,K,ITARGET,AIK,FOUNDAIK,LOCAIK)

IF (FOUNDAIK) THEN
I :: ITARGET

C APPLY THIS ROTATION TO REl1AINING COLUMNS
C

C

J = K
LOCAKJ = 0
LOCAIJ = 0

2000 CALL LINKJ (K,J,JPIVOT,AKJ,FOUNDAKJ,LOCAKJ)
IF (FOUNDAKJ) THEN

J = JPIVOT
CALL FINDITEl1 (I,J,AIJ,FOUNDAIJ,LOCAIJ)
IF (.NOT. FOUNDAIJ) THEN

AIJ = 0.0
CALL ADDITEl1 (I,J,AIJ,LOCAIJ)

END IF
GO TO 2000

END IF
J = K
LOCAKJ = 0
LOCAIJ = a

3000 CALL LINKJ (I,J,JTARGET,AIJ,FOUNDAIJ,LOCAIJ)
IF (FOUNDAIJ) THEN

J = JTARGET
CALL FINDITEl1 (K, J, AKJ, FOUNDAKJ, LOCAKJ)
IF (.NOT. FOUNDAKJ) THEN

AKJ = 0.0
CALL ADDITEl1 (K, J, AKJ, LOCAKJ)

END IF
GO TO 3000

ENDIF

C GO BACK FOR NEXT ELEHENT IN THI S COLUHN
C

C

GO TO 1000
ENDIF

C GO BACK FOR NEXT COLUHN

77

C
5000 CONTINUE

C
C RETURN TO CALLER
C

C

C

LASTl = LAST
RETURN
END

SUBROUTINE FINDITEH (I I J I ELEMENT I FOUND I LOC)

C THIS SUBROUTINE LOCATES AN ELEMENT A(I/J) OF A MATRIX A
C WHICH IS STORED IN A ROW-ORIENTED LINKED LIST.
C
C THE LOCATION WHERE A(CJ) WAS FOUND IS RETURNED IN LOC.
C IF A(I/J) IS NOT FOUND I LOC IS SET TO EITHER ZERO OR,
C THE LOCATION OF THE LAST NONZERO ELEHENT WHOSE COLUMN NUHBER
C IS LESS THAN J I IF ANY SUCH ELEMENT EXISTS.
C IF J IS GREATER THAN THE COLUMN NUHBER OF ALL NONZERO
C ENTRIES IN ROW I OF AI LOC IS SET TO THE NEGATIVE OF THE
C LAST STORAGE LOCATION FOR ROW I.
C
C THE VALUE OF LOC IS USED TO Il1PROVE THE SPEED OF LOCATING
C THE NEXT NONZERO ELEMENT IN THE ROW ON THE NEXT CALL TO THIS
C SUBROUTINE. THE USER HUST BE CAREFUL TO SET LOC TO ZERO HII1SELF
C BEFORE ANY CALL TO THIS ROUTINE WHICH IS NOT INTENDED TO
C LOCATE A SUCCEEDING ELEMENT IN THE SAI1E ROW.
C

C

LOG I CAL FOUND
INCLUDE 'INCLUDE1.F77'

FOUND = • FALSE.
ELEMENT = 0.0
IF (LOC .GE. 0) THEN

L = I START (I)
IF (LOC .GT. 0) L = LOC
LPREV = 0

1000 IF (JW(L) .EQ. J) THEN
FOUND = . TRUE.
ELEMENT = W(L)
LOC = L
GO TO 9999

END IF
IF (JW(L) .GT. J) THEN

LOC = LPREV
GO TO 9999

END IF
LPREV = L
IF (NEXT(L) .NE. 0) THEN

L = NEXT(L)
GO TO 1000

ENDIF

78

C

LOC = -L
ENDIF

C RETURN TO CALLER
C

C

C

9999 RETURN
END

C THIS SUBROUTINE CALCULATES THE RESIDUAL R = B - A * X
C OF THE OVERDETERHINED LINEAR SYSTEH A * X = B WHERE THE
C MATRIX A IS STORED IN A ROW-ORIENTED LINKED LIST.
C
C THE LINKED LIST DATA STRUCTURE IS USED BECAUSE IT RETAINS
C A COPY OF THE ORIGINAL INPUT MATRIX. ONLY THOSE ELEMENTS
C WHICH ARE STORED SEQUENTIALLY ARE USED IN THE CALCULATION,
C SINCE THE FILL-IN ELEMENTS ARE ALL ZERO.
C
C NSEQ MUST CONTAIN THE NU11BER OF ELEMENTS OF W WHICH ARE
C STORED SEQUENTIALLY, I.E. THE NUHBER OF ELEMENTS W CONTAINED
C BEFORE SYl1BOL WAS CALLED TO ADD THE FILL-IN ELEMENTS.
C

C
C

REAL B(l),X(l),R(l)
LOG I CAL FOUND
INCLUDE 'INCLUDE1.F77'

DO 2000 I = 1,11
R(I) = B(I)
J = 0
LOC = 0

1000 CALL LINKJ (I,J,JELEHENT,ELEHENT,FOUND,LOC)
IF (FOUND) THEN

END IF

IF (LOC .LE. NSEQ) THEN
R (I) = R (I) - ELEl1ENT * X (JELEl1ENT)

ENDIF
J = JELEl1ENT
GO TO 1000

2000 CONTINUE
C
C . RETURN TO CALLER
C

C

C

9999 RETURN
END

C THIS SUBROUTINE ADDS AN ELEl1ENT A(I,J) TO A MATRIX A
C WHICH IS STORED IN A ROW-ORIENTED LINKED LIST.
C THE LOCATION WHERE A(CJ) WAS STORED IS RETURNED IN LOC.

79

C IF ACI,J) IS THE LAST NONZERO ELEMENT IN ROW I, LOC IS SET
C TO THE NEGATIVE OF ITS LOCATION.
C
C THE VALUE OF LOC IS USED TO IHPROVE THE SPEED OF ADDING AN
C ITEl1 WHEN A PREVIOUS CALL TO FINDITEl1 HAS INDICATED THE ITEl1
CIS NOT PRESENT. THE USER MUST BE CAREFUL TO SET LOC TO ZERO
C BEFORE ANY CALL TO THIS ROUTINE WHERE THIS IS NOT THE CASE.
C

LOGICAL FOUND
INCLUDE 'INCLUDE1.F77'

C
C START SEARCH AT BEGINNING OF THIS ROW
C OR LATER IF A LATER LOCATION IS PROVIDED
C

L = I START (I)
IF (LOC .NE. 0) L = ABS(LOC)

C
C DONE IF ITEl'l ALREADY EXISTS
C

1000 IF (JW(L) .EQ. J) GO TO 9999
C
C ADD ITEl1 IF A LATER ELEI1ENT IN THE ROW IS REACHED
C

C

IF (JW(L) .GT. J) THEN
LAST = LAST + 1

ENDIF

IF (LAST .GT. NDATASIZE) GO TO 9000
JW(LAST) = J
W(LAST) = ELEl1ENT
NEXT (LAST) = L
LOC = LAST
NEXT(LPREV) = LAST
GO TO 9999

C FOLLOW THE THREAD IF THIS IS NOT THE END OF THE ROW
C

C

LPREV = L
IF (NEXT(L) .NE. 0) THEN

L = NEXT(L)
GO TO 1000

END IF

C ADD ITEl'l TO END OF ROW IF END IS REACHED
C

LAST = LAST + 1
IF (LAST .GT. NDATASIZE) GO TO 9000
.JW(LAST) = J
W(LAST) = ELEl1ENT
NEXT (LAST) ::: 0
NEXT(LPREV) = LAST
LOC = -LAST
GO TO 9999

80

C
C HANDLE OUT OF ROOH ERROR
C

9000 WRITE (1,9010)
WRITE (14,9010)

9010 FORHAT (//, 'STORAGE FOR LINKED LIST EXCEEDED',/,
& 'SEE YOUR PROGRAHHER TO INCREASE THIS (ADDITEH)')

C
C RETURN TO CALLER
C

C

C

9999 RETURN
END

C THIS SUBROUTINE RETURNS THAT ELEHENT A CIELEHENT , J) IN COLUHN J
C WHICH FOLLOWS ELEHENT A(I,J) IN COLUHN ORDER.
C HATRIX A IS STORED IN A ROW-ORIENTED LINKED LIST.
C THE LOCATION WHERE A(IELEHENT,J) WAS FOUND IS RETURNED IN LOC.
C IF A(IELEHENT,J) IS NOT FOUND, LOC IS SET TO ZERO.
C

C

LOG I CAL FOUND
INCLUDE 'INCLUDE1.F77'

FOUND = .FALSE.
IELEHENT = 0
ELEHENT = o. 0
LOC = 0
!P1 = I + 1
DO 2000 K = IP1,H
L = ISTART(K)

1000 IF (JW(L) .GT. J) GO TO 2000
IF (JW(L) .EQ. J) THEN

FOUND = • TRUE.
IELEHENT = K
ELEMENT = W(L)
LOC = L
GO TO 9999

ENDIF
IF (NEXT(L) .NE. 0) THEN

L = NEXT(L)
GO TO 1000

ENDIF
2000 CONTINUE

C
C RETURN TO CALLER
C

C

9999 RETURN
END

81

SUBROUTINE LINKJ (I,J,JELEl1ENT,ELEHENT,FOUND,LOC)
C
C THIS SUBROUTINE RETURNS THAT ELEl1ENT A(I, JELEHENT) IN ROW I
C WHICH FOLLOWS ELEl1ENT A(I,J) IN ROW ORDER.
C HATRIX A IS STORED AS A ROW-ORIENTED LINKED LIST.
C THE LoeAT ION WHERE A (I, JELEHENT) WAS FOUND I S RETURNED IN Loe.
C IF A(I,JELEl1ENT) IS NOT FOUND, LOC IS SET TO ZERO.
C
C THE VALUE OF LOC IS USED TO Il1PROVE THE SPEED OF LOCATING
C THE NEXT NONZERO ELEHENT IN THE ROW ON THE NEXT CALL TO THI S
C SUBROUTINE. THE USER HUST BE CAREFUL TO SET Loe TO ZERO HIHSELF
C BEFORE ANY CALL TO THIS ROUTINE WHICH IS NOT INTENDED TO
C LOCATE A SUCCEEDING ELEHENT IN THE SAHE ROW.
C

C

LOGICAL FOUND
INCLUDE 'INCLUDE1.F77'

FOUND = .FALSE.
JELEHENT = a
ELEl1ENT = o. a
IF (Loe .EQ. 0) THEN

L = I START (I)
1000 IF (JW(L) .GT. J) THEN

FOUND = . TRUE.
JELEHENT = JW (L)
ELEl1ENT = W(L)
LOC = L
GO TO 9999

ENDIF
IF (NEXT(L) .NE. 0) THEN

L = NEXT(L)
GO TO 1000

ENDIF
Loe = a
GO TO 9999

END IF
IF (Loe .GT. 0) THEN

L = Loe
IF (NEXT(L) .EQ. 0) THEN

Loe = 0

END IF

ELSE
GO TO 9999

L = NEXT(L)
FOUND = . TRUE.
JELEHENT = JW(L)
ELEHENT = W(L)
LOC = L
GO TO 9999

END IF

82

C
C RETURN TO CALLER
C

C

C

9999 RETURN
END

SUBROUTINE SEQUENCE (NSEQ)

C THIS SUBROUTINE SCANS THE LINKED LIST AND CREATES A SEQUENTIAL
C LIST.
C
C THE DATA STRUCTURE CREATED IS AS FOLLOWS:
C
C V CONTAINS THE LIST OF VALUES OF A
C JV CONTAINS THE COLUMN NUl'1BER J FOR EACH ENTRY IN V
C KV CONTAINS AN INTEGER WHICH INDICATES WHETHER THIS
C ELEl1ENT IS A FILL-IN ELEl1ENT:
C KV(L) = 1 IF LOCATION IS ORIGINAL
C KV(L) = 2 IF LOCATION IS FILL-IN
C LOCI CONTAINS THE LOCATION IN V OF THE FIRST
C NONZERO ELEMENT OF ROW I OF A
C
C NSEQ HUST CONTAIN THE NUl'1BER OF ELEMENTS OF W WHICH ARE
C STORED SEQUENTIALLY, I.E. THE NUl'1BER OF ELEMENTS W CONTAINED
C BEFORE SYMBOL WAS CALLED TO ADD THE FILL-IN ELEMENTS.
C

C
C

INCLUDE 'INCLUDE1.F77'

C CYCLE THROUGH ARRAY BY ROWS
C

ICURR = 0
DO 5000 I = l,H
LOCI (I) = ICURR + 1
L = ISTART(I)

1000 ICURR = ICURR + 1
V(ICURR) = W(L)
JV(ICURR) = JW(L)
KV(ICURR) = 1
IF (L .GT. NSEQ) KV(ICURR) = 2
IF (NEXT(L) .NE. 0) THEN

L = NEXT(L)
GO TO 1000

ENDIF
5000 CONTINUE

LOCI(H+l) = ICURR + 1
C
C RETURN TO CALLER
C

RETURN
END

83

C
SUBROUTINE FACTOR (B)

C
C THIS SUBROUTINE REPLACES THE H BY N HATRIX A
C WITH ITS UPPER TRIANGULAR QR FACTOR USING GIVENS ROTATIONS.
C THE MATRIX IS STORED AS A ROW-ORIENTED SEQUENTIAL LIST.
C

C
C

REAL B(l)
LOGICAL FOUND
INCLUDE 'INCLUDE1.F77'

C CHOOSE THE COLUMN TO BE ZEROED OUT
C

C

DO 5000 K = 1,N
LOCAKK = 0
CALL FIND (K,K,AKK,FOUND,LOCAKK)
IF (.NOT. FOUND) GO TO 9000

C CHOOSE THE ELEI1ENT TO BE ZEROED OUT
C

C

I = K
1000 CALL NEXTI (I,K,IELEI1ENT,AIK,FOUND,LOCAIK)

IF (FOUND) THEN
I = IELEHENT

C CALCULATE THE GIVENS ROTATION NEEDED AND APPLY
C

C

CALL SROTG (AKK,AIK,C,S)
V (LOCAKK) = AKK

C APPLY THIS ROTATION TO REMAINING COLUMNS
C

C

LOCAIJ = 0
I BEG IN = LOCAKK + 1
lEND = LOCI(K + 1) - 1
DO 2000 LOCAKJ = IBEGIN, lEND
J = JV(LOCAKJ)
CALL FIND (I,J,AIJ,FOUND,LOCAIJ)
IF (LOCAIJ .LT. 0) GO TO 3000
IF (FOUND) THEN

AKJ = V(LOCAKJ)
TEHP = C '" AKJ + S '" AIJ
AIJ = C '" AIJ - S '" AKJ
V(LOCAIJ) = AIJ
AKJ = TEHP
V (LOCAKJ) = AKJ

ENDIF
2000 CONTINUE

C APPLY THIS ROTATION TO THE RHS VECTOR

84

C
3000 TEnP = C * B(K) + S * B(I)

B(I) = C * B(I) - S * B(K)
B(K) = TEl1P

C
C GO BACK FOR NEXT ELEl1ENT IN THIS COLU11N
C

C

GO TO 1000
ENDIF

C GO BACK FOR NEXT COLU11N
C

5000 CONTINUE
C
C DONE
C

GO TO 9999
C
C UNEXPECTED STORAGE FAILURE IS A FATAL ERROR
C

9000 WRITE (1,9010) K,K
9010 FORHAT (II, 'UNEXPECTED STORAGE FAILURE (FACTOR)',/,

& 'FINDING PIVOT ELEl1ENT AT K = ',110,' K = ',110)
STOP

C
C RETURN TO CALLER
C

C

C

9999 RETURN
END

SUBROUTINE BACKSOLVE (B,X)

C THIS SUBROUTINE SOLVES A TRIANGULAR SYSTEl1 BY BACKSUBSTlTUTION.
C THE TRIANGULAR HATRIX IS STORED AS A ROW-ORIENTED SEQUENTIAL LIST.

C

C
C

C

REAL B(lL X(l)
LOG I CAL FOUND
INCLUDE 'INCLUDE1.F77'

LOC = a
CALL FIND (N,N,ANN,FOUND,LOC)
IF (ANN .EQ. 0.0) GO TO 9100
X(N) = B(N) / ANN

C CHOOSE NEXT ROW
C

Nl11 = N - 1
DO 2000 IB = l,NH1
I = N - IB
TEl1P = B(l)

85

LOC = 0
CALL FIND (I/I/AII/FOUND/LOC)
IF (All .EQ. 0.0) GO TO 9100
IBEGIN = LOC + 1
lEND = LOCI(I + 1) - 1
DO 1000 L = IBEGIN/IEND
J = JV(L)
TEMP = TEMP - Vel) * X(J)

1000 CONTINUE
XCI) = TEMP I All

2000 CONTINUE
C
C DONE
C

GO TO 9999
C
C FATAL ERROR
C

9100 WRITE (1 / 9110) I
9110 FORMAT ('ZERO DIAGONAL ELEHENT (BACKSOLVE), III

& 'I = '/110)
STOP

C
C RETURN TO CALLER
C

C

9999 RETURN
END

SUBROUT INE FIND (I I J I ELEHENT I FOUND I LOC)
C
C THIS SUBROUTINE RETURNS AN ELEMENT A(I/J) OF A MATRIX A
C WHICH IS STORED AS A ROW-ORIENTED SEQUENTIAL LIST.
C
C THE LOCATION WHERE A (I I J) WAS FOUND I S RETURNED IN LOC.
C IF A(I/J) IS NOT FOUND I LOC IS SET TO EITHER ZERO OR
C THE LOCATION OF THE LAST NONZERO ELEMENT WHOSE COLUMN NUMBER
C IS LESS THAN J 1 IF ANY SUCH ELEMENT EXISTS.
C IF J IS GREATER THAN THE COLUMN NUMBER OF ALL NONZERO
C ENTRIES IN ROW I OF AI LOC IS SET TO -1.
C
C THE VALUE OF LOC IS USED TO IMPROVE THE SPEED OF LOCATING
C THE NEXT NONZERO ELEl'IENT IN THE ROW ON THE NEXT CALL TO THIS
C SUBROUTINE. THE USER HUST BE CAREFUL TO SET LOC TO ZERO HIHSELF
C BEFORE ANY CALL TO THIS ROUTINE WHICH IS NOT INTENDED TO
C LOCATE A SUCCEEDING ELEMENT IN THE SAME ROW.
C

C

LOGI CAL FOUND
INCLUDE 'INCLUDE1.F77'

FOUND = . FALSE.
ELEl'IENT = 0.0
IF (LOC .GE. 0) THEN

86

C

IBEGIN = LOCI (I)
IF (LOC .GT. 0) IBEGIN = LOC
lEND = LOCI(I+1) - 1
LPREV = 0
DO 1000 L = IBEGIN,IEND
IF (JV(L) .EQ. J) THEN

ENDIF

FOUND = . TRUE.
ELEMENT = VeL)
LOC = L
GO TO 9999

IF (JV(L) .GT. J) THEN
LOC = LPREV
GO TO 9999

ENDIF
LPREV = L

1000 CONTINUE
LOC = -1

END IF

C RETURN TO CALLER
C

C

C

9999 RETURN
END

SUBROUTINE NEXTI (I, J, IELEl'IENT, ELEl'IENT, FOUND, LOC)

C THIS SUBROUTINE RETURNS THAT ELEMENT A(IELEl'IENT,J) IN COLUMN J
C WHICH FOLLOWS ELEMENT A(I}J) IN COLUMN ORDER.
C nATRIX A IS STORED AS A ROW-ORIENTED SEQUENTIAL LIST.
C THE LOCATION WHERE A(IELEMENT,J) WAS FOUND IS RETURNED IN LOC.
C IF A(IELEMENT,J) IS NOT FOUND, LOC IS SET TO ZERO.
C

C

LOGICAL FOUND
INCLUDE 'INCLUDE1.F77'

FOUND = . FALSE.
IELEI1ENT = 0
ELEMENT = 0.0
LOC = 0
IP1 = I + 1
DO 2000 K = IP1,H
IBEGIN = LOCI(K)
lEND = LOCI(K+1) - 1
DO 1000 L = IBEGIN,IEND
IF (JV(L) .EQ. J) THEN

FOUND = . TRUE.
IELEHENT = K
ELEHENT = VeL)
LOC = L
GO TO 9999

END IF

87

C

IF (JV(L) .GT. J) GO TO 2000
1000 CONTINUE
2000 CONTINUE

C RETURN TO CALLER
C

9999 RETURN
END

THE FOLLOWING IS THE CONTENTS OF THE INCLUDE FILE INCLUDE1
THAT SETS THE DIHENSIONS OF THE ARRAYS FOR THE LINKED LIST
AND SEQUENTIAL LIST:

PARAMETER NROWSIZE = 10000
PARAMETER NDATASIZE = 400000
REAL V(NDATASIZE),W(NDATASIZE)
INTEGER JV(NDATASIZE),KV(NDATASIZE),LOCI(NROWSIZE)
INTEGER JW(NDATASIZE),ISTART(NROWSIZE),NEXT(NDATASIZE)
COnnON /Sn1COn/ n,N,V,JV,KV,LOCI,W,JW, ISTART,NEXT,LAST

88

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C

APPENDIX C - LEAST Subroutine

SUBROUTINE LEAST (IROW,JARRAY,ARRAY,NVALS,M,N,BI,X,R,DUMP,ISYM)

THIS SUBROUTINE CALLS GIVENS2 ROUTINES TO GET THE LEAST SQUARES
SOLUTION OF AN OVERDETERMINED SYSTEM OF LINEAR EQUATIONS.
EACH EQUATION OF THE SYSTEM IS PASSED TO THIS ROUTINE IN
A SEPARATE CALL. A FINAL CALL WITH IROW SET TO ZERO
GENERATES THE SOLUTION.

THE CHOICE OF DOING A SYMBOLIC FACTORIZATION IS CONTROLLED
BY THE PARAMETER I SYH AS FOLLOWS:

ISYM = 1

ISYM = 2

ISYH = 3

DO SYMBOLIC FACTORIZATION TO ADD THE NEEDED
FILL-IN LOCATIONS TO THE LINKED LIST AFTER
THE SEQUENTIAL DATA PROVIDED BY THE CALLER.

DO NOT PERFORM THE SYMBOLIC FACTORIZATION.
THE LINKED LIST ALREADY CONTAINS THE NEEDED
FILL-IN.

DO NOT PERFORM THE SYMBOLIC FACTORIZATION.
ALL FILL-IN ELEMENTS WHICH WILL BE NEEDED ARE
INCLUDED IN THE SEQUENTIAL DATA PROVIDED
BY THE CALLER.

THE PARAl1ETER l'IARK CONTROLS WHETHER THE ARRAYS JW AND NEXT
WHICH DESCRIBE THE NONZERO STRUCTURE OF THE ROW SHOULD BE
UPDATED. FOR A FIRST ITERATION, WITH OR WITHOUT THE
SYMBOLIC FACTOR I ZATION, THESE ARRAYS MUST BE SET. FOR A
SECOND OR LATER ITERATION THE STRUCTURE IS THE SAME AS THE
FIRST ITERATION SO THEIR PREVIOUS VALUES CAN BE USED.

HARK = . TRUE. JW AND NEXT ARRAYS ARE UPDATED

MARK = .FALSE. JW AND NEXT ARRAYS ARE LEFT AS IS

AUTHOR:
JOSEPH W. WOODARD PROGRAMMER/ANALYST
ST. JOHNS RIVER WATER HANAGEMENT DISTRICT
PALATKA, FL 32178 904-329-4280

SAVE
PARAl1ETER NROWSIZE = 10000
PARAl1ETER NDATASIZE = 800000
REAL ARRAY(l),X(l),R(l)

89

/* ALSO IN INCLUDE1
/* ALSO IN INCLUDEl

C

INTEGER JARRAY(l)
REAL B1(NROWSIZE)JB2(NROWSIZE)
LOGICAL DUHP,FOUND,HARK,FIRST
DATA LAST /0/
DATA FIRST /.TRUE./

C CHECK DIHENSIONS OF PROBLEM AGAINST ARRAY SIZE
C

IF (H .GT. NROWSIZE) GO TO 9200
IF (IROW .GT. ° . AND. LAST + NVALS .GT. NDATASIZE) GO TO 9200

C
C ADD NONZERO ENTRIES FOR THIS ROW TO LINKED LIST
C

C

IF (IROW .GT. 0) THEN

ENDIF

IF (ISYH .EQ. 1) HARK = .TRUE.
IF (ISYH .EQ. 2) HARK = . FALSE.
IF (ISYH .EQ. 3) HARK = . TRUE.
CALL ADDROW (IROW, JARRAY, ARRAY, NVALS, HARK) LAST)
B1(IROW) = BI
B2 (IROW) = BI
IER = °

C SOLVE SYSTEH
C

C
C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

IF (IROW .EQ. 0) THEN

PERFORM SYHBOLIC FACTORIZATION, IF REQUESTED,
TO ADD NEEDED STORAGE LOCATIONS TO LINKED LIST

NSEQ = LAST
IF (ISYH .EQ. 1) THEN

CALL SYHBOL (H,N,LAST)
END IF
IF (ISYH .EQ. 2) THEN

LAST = NPREV
END IF

COPY CONTENTS OF LINKED LIST TO SEQUENTIAL LIST

CALL SEQUENCE (NSEQ)

PERFORM QR FACTORIZATION

CALL FACTOR (B1)

BACKSOLVE

CALL BACK SOLVE (B1,X)

CALCULATE THE RESIDUAL OF THE SYSTEM

90

C
C
C

C

ENDIF

CALL RESIDUAL (NSEQ,X,B2,R)

REINITIALIZE FOR THE NEXT SOLUTION

FIRST = . FALSE.
NPREV = LAST
LAST = 0

GO TO 9999

C ERROR HANDLING SECTION
C

9200 WRITE (1,9210) M,N
9210 FORMAT ('DIMENSIONED ARRAY SIZE EXCEEDED (SUBROUTINE LEAST) ',I,

& 'SEE YOUR PROGRAHHER TO INCREASE THIS' ,I,
& 'M = ',110,' N = ',110)

STOP
C
C RETURN TO CALLER
C

9999 RETURN
END

91

REFERENCES

Bischof, C. and C Van Loan. (1987). "The WY Representation
for Products of Householder Matrices." SIAM Journal of
Scientific and Statistical Computation 8, 2-13.

Bjorck, Ake. (1976). "Methods for Sparse Linear Least
Squares Problems." In Sparse Matrix Computations, edited by
J.R. Bunch and D.J. Rose. New York: Academic Press, 177-199.

Br¢nlund, O.E. and Th. Lunde Johnsen. (1974). "QR
Factorization of Partitioned Matrices." Computer Methods in
applied Mechanics and Engineering 3, 153-172.

Burnside, C.D. (1985). Mapping From Aerial Photographs. New
York: John Wiley and Sons.

Coleman, T. and C. Van Loan. (1988). Handbook for Matrix
Computations. Philadelphia: Society for Industrial and
Applied Mathematics.

Coleman, Thomas F., Anders Edenbrandt, and John R Gilbert.
(1983). Predicting Fill for Sparse Orthogonal Factorization.
Ithaca, New York: Department of Computer Science, Cornell
University.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart.
(1979). LINPACK Users Guide. Philadelphia: Society for
Industrial and Applied Mathematics.

Duff, I.S. (1974). "Pivot Selection and row Ordering in
Givens Reduction On Sparse Matrices." Computing 13, 239-248.

Duff, I.S., A.M. Erisman, and J.K. Reid, (1986). Direct
Methods For Sparse Matrices. 2ed. Oxford: Oxford University
Press.

Gentleman, W. Morven. (1973). "Least Squares Computations by
Givens Rotations Without Square Roots." Journal of the
Institute for Mathematics and Its Applications. 12, 329-336.

George, Alan and Joseph W. H. Liu. (1987). "Householder
Reflections Versus Givens Rotations in Sparse Orthogonal
Decomposition." Linear Algebra and Its Applications 88/89,
223-238.

George, Alan and Michael T. Heath. (1980). "Solution of
Sparse Linear Least Squares Problems Using Givens
rotations"." Linear Algebra and Its Applications 34, 69-83.

92

George, Alan, Joseph Liu, and Esmond Ng. (1984). "Row
Ordering Schemes for Sparse Givens Transformations. I.
Bipartite Graph Model." Linear Algebra and Its Applications
61, 55-81.

Gill, Phillip E. and Walter Murray. (1976). "The Orthogonal
Factorization of a Large Sparse Matrix." In Sparse Matrix
Computations, edited by J.R. Bunch and D.J. Rose. New York:
Academic Press, 201-212.

Hager, William W. (1988). Applied Numerical Linear Algebra.
Englewood Cliffs, New Jersey: Prentice Hall.

Kaufman, Linda. (1987). liThe Generalized Householder
Transformation and Sparse Matrices." Linear Algebra and Its
Applications 90, 221-234.

Liu, Joseph W.H. liOn General Row Merging Schemes for Sparse
Givens Transformations." SIAM Journal of Scientific and
Statistical Computation 7, 1190-1211.

Mikhail, Edward M. (1976). Observations and Least Squares.
New York: Dun-Donnelley Publishers.

Ortega, James M. (1987). Matrix Theory, a Second Course. New
York: Plenum Press.

Schreiber, Robert and Beresford Parlett. (1988). "Block
Reflectors: Theory and Computation." SIAM Journal of
Numerical Analysis 25, 189-205.

Schreiber, Robert and Charles Van Loan. (1989). A
Storage-Efficient WY Representation for Products of
Householder Transformations. II SIAM Journal of Scientific and
Statistical Computation 10, 53-57.

Stewart, G.W. (1973). Introduction to Matrix Computations.
New York: Academic Press.

Schendel, U. (1989). Sparse Matrices: Numerical Aspects with
Applications for Scientists and Engineers. Chichester, West
Sussex, England: Ellis Horwood Limited.

Slama, C.C. (1980). Manual of Photogrammetry, 4ed. Falls
Church, Virginia: American Society of Photogrammetry.

Wolf, Paul R. (1983). Elements of Photogrammetry with Air
Photo Interpretation and Remote Sensing, 2ed. New York:
McGraw-Hill Book Company.

93

Vita

Name of Author: Joseph Walker Woodard

Place of Birth: Cincinnati, Ohio

Date of Birth:

Graduate and Undergraduate Schools Attended:

University of North Florida, Jacksonville FL

Florida State University, Tallahassee, FL

University of Arizona, Tucson, AZ

Degrees Awarded:

Master of Arts in Mathematical Sciences, 1990,
University of North Florida

Bachelor of Science in Physics, 1976,
University of Arizona

Areas of Interest:

Computer Graphics, Numerical Linear Algebra,
Theory of Least Squares

Professional Experience:

Research Assistant, Florida State University.

Computer Programmer and Analyst,
st. Johns River Water Management District

Memberships:

Society for Industrial and Applied Mathematics

Association for Computing Machinery, SIGNUM

Mathematical Association of America

Pi Mu Epsilon

94

	The Linear Least Squares Problem of Bundle Adjustment
	Suggested Citation

	Title Page
	Table of Contents
	List of Figures
	Abstract
	Section 1 - Introduction
	Section 2 - Bundle Adjustment
	Section 3 - The Structure of the Coefficient Matrix
	Section 4 - The Linear Least Squares Problem
	Section 5 - Givens Rotations and the GIVENS2 Library
	Section 6 - Predicting the Fill-in
	Section 7 - Conclusion
	APPENDIX A - Dense Givens Routine
	Appendix B - GIVENS2 Sparse Matrix Library
	Appendix C - LEAST Subroutine
	References

