
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2006

P2PCompute - A Peer-to-Peer Computing Model P2PCompute - A Peer-to-Peer Computing Model

Jayant Mishra
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Computer Sciences Commons

Suggested Citation Suggested Citation
Mishra, Jayant, "P2PCompute - A Peer-to-Peer Computing Model" (2006). UNF Graduate Theses and
Dissertations. 244.
https://digitalcommons.unf.edu/etd/244

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2006 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fetd%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/244?utm_source=digitalcommons.unf.edu%2Fetd%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

P2PCOMPUTE- A PEER-TO-PEER COMPUTING MODEL

by

Jayant Mishra

A thesis submitted to the
Department of Computer and Information Sciences

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

December, 2006

Copyright(©) 2006 by Jayant Misbra

All rights reserved. Reproduction in whole or in part in any form requires the prior
written permission of Jayant Mishra or designated representative.

-11-

The thesis "P2PCompute- A Peer-to-Peer Computing Model" submitted by Jayant
Mishra in partial fulfillment of the requirements for the degree of Master of Science in
Computer and Information Sciences has been

Approved by the thesis committee: Date

Sanjay Ahuja- I I
Thesis Advisor and Committee Chairperson

RogerE gen I I

Accepted for the Department of Computer and Information Sciences:

l (

Accepted for the College of Computing Sciences and Engineering:

Neal Coulter
Dean of the College

Accepted for the University:

Dav1d Fe
Dean of the Graduate School

lll

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGEMENT

I wish to specially thank my spouse, Rinku, for her unwavering support and

understanding during the many hours I dedicated to achieving this milestone. I also wish

to thank my wonderful children, Milind and Tanisha, for bearing with me while I worked

on this research. Thanks are also due to my parents and family who encouraged me to

always dream higher and motivated me to get this degree.

This thesis would not have been conceptualized and completed without the direction

provided by the thesis adviser, Dr. Sanjay Ahuja. His guidance and help are much

appreciated. I would also like to thank Drs. Eggen and Roggio for agreeing to be on the

thesis committee and providing tips and encouragement. It has been my privilege to work

under these three distinguished UNF faculty members. I also wish to thank Jeff Bowen,

UNF CIS Computer Applications Coordinator, for installing and maintaining the Tomcat

servers used for the testing.

-IV-

CONTENTS

L. fF' ... 1st o 1gures .. v1n

List of Tables ... ix

Abstract ... x

Chapter 1 : Introduction ... 1

Chapter 2: Peer-to-peer Systems ... 5

2.1 File Sharing Applications ... 7

2.2 Computational Power-Sharing Applications .. 10

2.3 Instant Messaging Applications .. 11

Chapter 3: Power Server Model. ... 13

3.1 Introduction ... 13

3 .2 Drawbacks of the P2P Computing Model .. 13

3.3 How the Power Server Model Works ... 15

3 .4 Advantages of the Power Server Model ... 17

3.5 Issues with the Power Server Model.. ... 18

Chapter 4: P2PCompute .. 21

4.1 Introduction ... 21

4.2 P2PCompute Design ... 22

4.2.1 P2PCompute Infrastructure .. 25

4.2.1.1 UDDI Registry .. 25

4.2.1.2 SuperNode .. : 26

4.2.2 P2PCompute Server ... 27

-v-

4.2.3 P2PCompute Client .. 30

4.3 Proposed Approaches To Find Servers ... 31

4.3.1 Using the UDDI Registry Directly ... 31

4.3.2 Using the UDDI Registry and Supemodes .. 32

4.4 Features ... 33

4.4.1 Load Balancing .. 33

4.4.2 Scalability .. 34

4.4.3 Redundancy and Error Handling ... 35

4.4.4 Platform Independence .. 36

4.4.5 Incentives ... 36

Chapter 5: Implementation ~ .. 38

5.1 Server Implementation .. 38

5.2 P2PCompute Infrastructure Implementation .. 39

5.3 Client Implementation .. 40

Chapter 6: Results and Analysis ... 41

6.1 Test Configuration .. 41

6.2 Comparison with the Power Server Model.. ... 42

6.2.1 Performance Comparison ... 42

6.2.2 Scalability Comparison .. 45

6.3 Standard Algorithmic Tests .. 48

6.3.1 Sequential Search- O(n) .. 48

6.3.2 Quick Sort- O(n log n) .. 51

6.3 .3 Bubble Sort- O(n2
) .. 54

vi

6.4 Load Balancing ... 56

6.5 Supemode Validation ... 59

Chapter 7: Conclusions and Future Research ... 61

7.1 Conclusions .. : .. 61

7.2 Future Research .. 62

7.2.1 Security and Privacy Issues .. 62

7.2.2 Redundancy and Error Handling Issues ... 63

7 .2.3 Remuneration I Financial Aspect.. ... 64

References ... 65

Appendix A: P2PCompute Code Listings .. 69

Vita .. 87

Vll

FIGURES

Figure 1: Power Server Model .. 16

Figure 2: P2PCompute Architecture ... 22

Figure 3: The P2PCompute Model ... 24

Figure 4: Performance Comparison ofP2PCompute and the Power Server Model.. 43

Figure 5: Scalability Comparison ofP2PCompute and the Power Server Model 47

Figure 6: Sequential Search Algorithm Results .. 50

Figure 7: Quick Sort Algorithm Results ... 53

Figure 8: Bubble Sort Algorithm Results ... 55

Figure 9: Load Balancing Results ... 58

Figure 10: Supemode Validation Results ... 60

-vm-

TABLES

Table 1: Status Information Fields in the P2PCompute Server Rdponse Message 29

Table 2: Test Configuration ... -................................. 41

-IX-

ABSTRACT

Peer-to-peer (P2P) networks consist of nodes which have both client and server

capabilities and on which communication and data sharing is carried on directly between

nodes, rather than being arbitrated by an intermediary node. The P2P architecture was

popularized by file-sharing, one of the widely-used applications of the Internet. Many

applications that are based on this architecture have been developed. It also provides an

efficient platform to harness the computing power of a network of desktop computers.

P2P computing power can help solve computationally complex problems that require

powerful supercomputers. However, it has not been as widely used as the file-sharing

P2P applications. Almost all of the current P2P computing applications are non

commercial endeavors. Users make their computing power available for these endeavors

because they believe in the applications' objectives, for example, the SETI project

analyzes radio telescope data in the quest for life in other parts of the universe.

This thesis proposes P2PCompute - a viable commercial model in the P2P computing

field. It harnesses existing technologies- P2P, Java, the Internet and the UDDI registry,

to enable distributed processing of tasks on multiple servers. It is well-suited to the

heterogeneous environment on the Internet and has the potential to provide the spark that

would lead to the development of more commercial P2P computing applications.

-x-

Chapter 1

INTRODUCTION

There has been an inexorable march in the computing world toward a more decentralized

architectural approach. The earliest computer systems used centralized mainframe

systems as the source of computational resources. These systems provided dummy client

terminals for user interaction. Slowly, the trend moved toward providing more power to

client terminals~ This started the era of the client-server architecture and culminated in the

advent of the Internet. The Internet itself spawned a host of changes in the computing

world, one of them being the birth and widespread adoption of the peer-to-peer network

architecture. This architecture takes the idea of distributed computing one step ahead and

does away with the concept of specialized clients and servers. In an era of

generalizations, this revolutionary architecture enables any node in the network to

function as either a client or a server and, more importantly, change its role at will.

In the mainframe approach, almost everything is done by the central mainframe computer

[Loo03]. This is a highly centralized approach with the mainframe system being the

facilitator as well as the bottleneck for all tasks. In order to keep pace with technology

and to constantly get better performance in the wake of changing processing

requirements, the system needs to be upgraded periodically. This architecture is not well

suited for scalability and has a single point-of-failure. Most early computer systems

followed this model.

-1-

In·the client-server computing paradigm, one or more clients and one or more servers,

along with the underlying operating system and interprocess communication systems,

form a composite system allowing distributed computation, analysis and presentation

[Sinha92]. This architecture features one or more clients requesting services from a

central server. The introduction of this architecture shifted some of the processing tasks

to the client. It also enabled a move toward specializations with a server dedicated to a

certain task. Clients were able to mix-and-match servers in order to complete a complex

series of tasks, thus creating a richer set offunctionality by daisy-chaining services.

Through workload sharing, client/server systems can improve overall efficiency while

reducing the budget for computing resources [Loo03]. Most of the existing systems

follow this model.

A distributed system is one that looks to its users like an ordinary centralized system but

runs on multiple, independent systems [Tanenbaum85]. The use of multiple systems to

serve client requests is transparent to the user. Replication is used to achieve fault

tolerance as well as provide better performance [Mullender96]. Both data and processes

can be replicated thereby achieving greater performance through parallelism, increased

reliability and availability, and higher fault tolerance [Soares92]. The use of distributed

systems also allows incremental system growth by adding or replacing individual

components [Schroeder93]. This enables the system to be more scalable.

Peer-to-peer (P2P) systems are distributed systems without any centralized control or

hierarchical organization, where the software running at each node is equivalent in

-2-

functionality [Liben-Nowell02]. This architecture empowers the nodes joining such a

network to be both servers and clients. Using this architecture, we can harvest the

combined power of all the nodes in a network to perform a complex, computationally

intensive task much beyond the capability of a single server. It does not require any major

upgrade to the existing hardware resources of a network to bring this idea to fruition. In

fact, with just a software upgrade, the existing network with its nodes and resources can

be turned into a normal peer-to-peer system. File-sharing is a widely explored area of the

peer-to-peer architecture, with successful applications based on it. The peer-to-peer

architecture also provides an interesting solution for complex problems requiring

powerful supercomputers to be solved by a network of desktop computers.

Enhancing the concept of the P2P architecture, the Power Server Computing Model

empowers a client to use the computational power of many servers simultaneously

[Loo03]. The client divides the task in separate sub-tasks and requests servers across the

Internet to process each sub-task. The model uses Sun's Java 2 Platform Edition (J2EE)

application server to provide a platform-independent environment for the tasks to run.

This research takes the concept of the Power Server Model further by proposing the

P2PCompute model. It improves upon the Power Server Model by addressing the issues

preventing its widespread adoption and purposes solutions to resolve them. Chapter 2

analyzes different types of P2P systems in detail. Chapter 3 discusses the Power Server

Model and identifies its strong points that need to be carried forward in the proposed

model and flaws which need to be corrected. The P2PCompute model along with its

various components and features are described in detail in Chapter 4. The implementation

-3-

done to validate and test the model is described in Chapter 5, while the experimental

results are discussed in Chapter 6. Directions for futur~ research and analysis are detailed

in Chapter 7.

-4-

Chapter 2

PEER-TO-PEER SYSTEMS

Peer-to-Peer (P2P) systems are a type of distributed computing system designed for the

sharing of computer resources (content, storage, CPU cycles, etc.) by direct exchange,

rather than requiring the intermediation or support of a centralized server or authority

[Androutsellis-Theotokis04]. The P2P architecture has seen a lot of interest in the recent

past due to the popularity of file-sharing applications. Successful and widely-used

applications based on P2P, like Napster, Gnutella, Freenet, and Kazaa have brought the

P2P model out of the research field into the popular domain.

The P2P model is different from the traditional client-server model [Mishra04]. It has a

decentralized architecture, thus each node is potentially equal in status to any other node

in the network. This creates a lateral relationship among the nodes, rather than the

traditional vertical relationship which gives the whole peer group tremendous processing

power and storage space [Samtani02]. This architecture is more scalable since the

addition of nodes provides more nodes with server capabilities, which increases

performance and efficiency. However, the underlying architectural issues are much more

complex than a traditional client-server model. Some of the challenging issues include:

1. Managing a heterogeneous mixture of nodes having multiple operating system

platforms with different interfaces,

-5-

2. Managing the changing dynamics of the P2P network, with new nodes joining the

network and old nodes leaving the network continuously and randomly, and

3. Managing the security policies of such a network, which is not inside a closed

Local Area Network (LAN) within an organization, but on the public Internet.

Applications using the P2P model can broadly be divided into three categories - file

sharing, distributed processing and instant messaging [Damiani02]. Most of the P2P

applications belong to the file-sharing category. As the name implies, this category

enables users to share files, mostly MP3 and some shareware.

The computational power-sharing applications use the P2P model to share the

computational power of the nodes in the network. These applications can enable a

network of common workstations to perform tasks generally done by powerful

supercomputers. SETI@home (Search for Extraterrestrial Intelligence) is an example of a

well-known distributed processing P2P application. It uses millions of computers in

homes and offices around the world to analyze radio signals from space. This approach,

while complicated, delivers unprecedented computing power and has led to a unique

public involvement in science [Anderson02].

P2P instant messaging applications involve sharing simple messages (either text or voice)

or simple files using a messaging environment. Instant Messaging is no longer used

merely to send messages, but has also become a major medium to stay in touch with

-6-

friends and share information [Rovers04]. AOL Instant Messenger, Yahoo! Messenger

and MSN Messenger are some examples of instance messaging applications.

2.1 File Sharing Applications

Apart from the obvious use - sharing files - another use of these applications is content

distribution through the P2P network. In fact, some anti-virus software producers are

considering P2P networks as a convenient way to distribute virus signature updates. This

technique will exploit the resiliency and aggregate bandwidth of P2P networks and avoid

the overloading of central Web servers [Damiani02].

A typical P2P file-sharing client application works like this:

1. Search for nodes having the content needed by the user,

2. Make a peer-to-peer connection to that node,

3. Download the content, and

4. Disconnect.

The same node may also act as a server by spawning a daemon thread in the background

to serve any requests from other peer nodes for contents it hosts.

One of the major challenges for the P2P file-sharing applications is to get the list of peer

nodes having a particular content. The proposed solutions fall broadly under two major

classifications - the "pure" P2P architecture, which does not have any central server; and

-7-

the "server-mediated" P2P architecture, which has a central server that maintain a

registry of shared information and responds to queries for that information [Lui07]

The early version ofNapster used a centralized directory server which maintained basic

addressability and availability information about the user nodes and the meta-information

about the shared files [Kant02]. This provided a simpler and faster search for the

requested content. However, it had a single point-of-failure, thus enabling an easier

shutdown when the courts decreed that Napster should stop operations due to copyright

and piracy concerns.

In order to resolve this issue, some of the other P2P applications use a decentralized,

"pure" P2P approach. Each node has a separate list of nodes with their addresses and

available content. When a node joins the network for the first time, it should know the

well-known address of at least one of the nodes already connected to the network. Once

it connects to the network, it gets information from the already known node about all the

nodes of which the latter is aware. It builds a list of such nodes. To get a file, it queries

these nodes to find out which node has that file. Then it makes a direct TCP connection to

the node that has the file. This way the file is transferred from one node to another. This

approach is used by Gnutella and Freenet. Each node in the network also specifies a set

of shared local storage areas that other nodes can search based on partial or full matches.

Once the address of the node which has the requested content is determined, most of the

file-sharing applications connect to that address and retrieve the content. However,

-8-

Freenet introduced an innovative approach to take advantage of the current search. It

caches the result so any subsequent requests for that content would be faster [ClarkeOl].

The requested content is returned back along the search route. Thus, each node in the

request path caches the content. This technique improves performance and allows popular

results to be cached at multiple nodes, enhancing redundancy.

Freenet also introduced other innovations to position itself as the application closest to

the ideal distributed P2P application. It places emphasis on anonymity and makes it

almost impossible to identify the source of content available on its network. Files are

referred to in a location-independent manner, and are dynamically replicated in locations

near requestors and deleted from locations where there is no request [ClarkeOl]. This has

a kind of bubbling-up effect where files searched the most are available at multiple

nodes, thus providing automatic replication for them. Files searched the least are rarely

available at multiple nodes.

A major security challenge for such applications is to ensure that malicious data is not

propagated through the network, masquerading as good data. The P2P architecture itself

does not provide any protection against this issue. However, there are a number of

solutions that can help in reducing malicious data [OramOl]. Restricting access using

micropayments is one such solution. It envisages the peers having to offer something of

value (money, CPU cycles, content, etc.) in order to be considered a part ofthe network.

Another solution is to use reputation systems to rate popular or trustworthy resources and

-9-

nodes. Such systems are described in the literature [Kamvar03] [Damiani02]

[Mengshu05] [Gupta03] [Walsh05].

2.2 Computational Power-Sharing Applications

Computational power-sharing applications are also known as distributed processing

applications or P2P computing applications. Nodes that are part of this type of network

make their idle CPU cycles available for use by others. This is mostly suited for a set of

parallel computations known as "embarrassingly parallel" problems whose computational

graph is disconnected [Fox94]. It is easier to decompose such problems into tasks which

do not have any interdependency. Thus, each such task can be processed independently

by any node in the network. Once the sub-tasks are completed, the results are returned

back to the requestor node.

Most of the computational power-sharing applications require the users to download a

small program to their computers. This enables communication with the client computer

which needs the tasks performed. The tasks are automatically downloaded to the

computer, performed and results communicated back to the requestor. This usually is

done when the workstation is idle. Allowing these applications to run on one's

workstation is voluntary. Participants believe in the cause supported by the application,

e.g., SETI@home, so they allow it to run on their workstation. This simple model

aggregates the power of common workstations to rival that of a supercomputer. In fact,

-10-

SETI@home can be considered to be the largest supercomputer in existence, having

completed the largest computation ever performed [KorpelaOl].

2.3 Instant Messaging Applications

Instant messaging is a popular Internet technology that enables two or more users to

communicate with each other using a client program. The key issues in architecting such

applications are how to implement the user lookup and the message exchange

mechanisms.

Most such applications, like Yahoo and MSN, use the centralized server approach, where

user registration, lookup and message exchange are all done using dedicated servers. This

approach is really a centralized one and not a true peer-to-peer model.

Other applications, like ICQ, enable message exchange using a peer-to-peer model,

however, the user registration and lookup functionalities still use a central server. This

improves the performance, since users do not want too much delay between writing and

display of a line. These concerns are critical with the video conferencing and Voice over

IP (V oiP) features being offered by a few of the instant messaging applications.

However, this approach still suffers from a single point of failure where a malfunction

will close the service, either by making it impossible to find clients or deliver messages.

-11-

Recently, there has been progress towards a true peer-to-peer system. [Lundgren03]

describes the first fully distributed instant messaging system, named DIMA. The DIMA

application runs on top of the Pastry peer-to-peer routing substrate [RowstromOl]. It

performs all necessary operations Goin/leave, lookup, message exchange) without any

centralized servers. Other applications take a different approach by using distributed hash

tables to store the information. Lookups for keys are performed by routing queries

through a series of nodes. Each node uses a local routing table to forward the query

towards the node that is ultimately responsible for the key.

-12-

Chapter 3

POWER SERVER MODEL

3.1 Introduction

The P2P architecture enables file sharing, as well as computing power sharing. The

Power Server Model introduced a new concept - a single client computer using the

computing power of many servers on the Internet simultaneously [Loo03]. This model

defines "power servers" to be computers connected to the Internet that provide CPU

power to clients. Any computer on the Internet can be a power server by installing and

running a J2EE application server. This model has the potential to extend the P2P

computing model beyond the confines of selected projects to a wide variety of projects

with possible business and financial implications. It utilizes existing tools and

technologies, so minimal time and effort are required for deployment. It builds upon the

computational power-sharing, or P2P computing model, and resolves key issues

discouraging the widespread usage of P2P. In order to understand and critique the Power

Server Model, it is important to analyze the issues surrounding the P2P computing model.

This analysis is provided in the following section.

3.2 Drawbacks of the P2P Computing Model

The P2P computing model expands the processing power of a computer to encompass the

collective power of the whole network. It has the potential to help a network do tasks

-13-

which previously were done only by expensive supercomputers. However, this model has

some drawbacks preventing widespread commercial application to resolve different types

of problems. The following are some ofthose issues [Loo03] :

• Security- Users sharing their computing power in the P2P computing model need

to download a client program that runs on their computer. That program enables

the use of their idle computing power to run the task for the client computer.

However, downloading and running the client program on the Internet increases

security risks to the computer where it runs. Any malicious code in such a

program may be able to access local files and execute programs outside the

control of the user. There is no security inherent in the P2P model to prevent such

a program from doing this. This may make a lot of users apprehensive of running

any client program from even a well-known organization, let alone provide

unused CPU cycles for any organization on the Internet.

• Benefits- The users in such a model become part of the network only because

they believe in and support the cause. There is no monetary or otherwise tangible

benefit to the participants. The only benefit is to the cause and, of course, to the

organizer. This prevents a lot of other organizations, especially commercial ones

from donating their unused CPU cycles.

• Startup and upgrade issues- Typically, startup and upgrades are time-consuming,

difficult and non-uniform for each such project There is no automated process by

-14-

which a computer can announce its intention of donating CPU cycles for any

client. It needs a manual effort to connect to the client computer and download the

program with instructions on how to install and run it. It varies for each task and

operating system. Similar work is performed for project upgrades. The client

program needs to be downloaded again to get the upgrades. For users having

multiple computers, the installation and maintenance require an inordinate amount

of man hours, discouraging willing participants.

• Compatibility - The client programs that take advantage of the computing power

of other computers are platform-specific. From the organizer's perspective, this

represents a maintenance headache. Different versions need to be tracked and

maintained to provide support and upgrades. It increases the maintenance cost as

well as the complexity of the system. It also prohibits some power-sharing

computers from joining a project that may not support their operating system.

Maintenance also becomes a major issue for organizations having machines that

run on different platforms.

3.3 How the Power Server Model Works

The Power Server Model was introduced to address the above issues and make the P2P

computing model more acceptable. This model uses the Java 2 Enterprise Edition (J2EE)

platform to resolve the issues. Since Java is platform independent, has a strong security

-15-

model (with security managers) and can be made to run tasks triggered from across the

web, it is an ideal toolkit with which to start the next wave in the P2P arena.

The term "power server" in this model refers to the feature of providing CPU power to

other users or client computers. As shown in Figure 1, a client computer divides a single,

computation-intensive task into multiple small sub-tasks. Then it invokes a servlet on the

power server, passing it the sub-task to be executed. The servlet in tum executes the sub

task and communicates the results to the client. The client aggregates all the results to get

the consolidated result for the whole task.

Figure 1: Power Server Model

-16-

3.4 . Advantages of the Power Server Model

The power server model resolves the issues that are inherent in the P2P computing

architecture.

• Security- This proposed model is more secure since it uses Java's well-known

sandbox feature. It consists of security managers, which ensure the sub-tasks

running on the server nodes do not impact any part of the server not exposed to

the outside world. Since security is a part of Java and is automatically enforced,

there is no additional package to be installed, or add-on cost that needs to be

incurred. The simple Hyper Text Transfer Protocol (HTTP) is used to transfer the

sub-tasks, as well as results back-and-forth between the clients and the servers.

• Business Benefits - There is a financial motivation as well for the organizations

involved in this model, since any organization can host servers and provide such

services for a fee. Clients also have the flexibility of choosing the most cost

effective server for running their tasks. This may be a viable business model that

can be used by companies to earn profits.

• Startup and upgrade issues - Startup is easy since it just involves installing any

J2EE-compliant server. Many good server software packages are available and

most ofthem are freeware or shareware [HunterOl]. The software is used to run a

standard servlet which has the capability of executing tasks requested by other

-17-

clients. The other advantage is the same servlet can be used for multiple projects.

The bytecodes for the task are downloaded on the fly from the client site. Thus,

there is no need for any server-side upgrade, if the task itself changes. The client

should transmit the latest task when it connects to the server.

• Compatibility- The software can be executed on any J2EE-compliant application

server. Due to the platform-independence of Java, the project is not tied to any

particular platform. In fact, if a client has transmitted its tasks to more than one

server, it may be possible for one task to be processed on a Sun server, whereas

another could be processed on a Linux server, yet another on the Windows

platform and so on. The client is only concerned about the results it receives. The

cost of maintenance and the complexity is minimized for the clients since they do

not need to maintain different versions of the code for different platforms.

3.5 Issues with the Power Server Model

There are a four primary issues associated with the Power Server Model :

• Finding Power Servers - One problem of this model is the difficulty in finding the

power servers. A client has to know the IP address of any server before a

connection is made. To resolve this issue, a separate infrastructure needs to be

created and used to facilitate discovery of the power servers. A centralized

coordinator server used to store the IP addresses of all power servers willing to

-18-

provide computing power can be added to the system [Loo03]. Any computer

owner who wants to donate computer power to the network must register with the

coordinator and provide some basic information. However, the clients have to

know the IP address of the coordinator, in order to query it to get the list of power

servers. Also, in case the primary coordinator is down, they need to have a backup

coordinator in place and know its IP address, in order to get the list of power

servers. This solution has the drawback of relying on the coordinator to store the

IP addresses of all the nodes. However, once a node has the address information

of other nodes in the network, it does not need the coordinator. From then on, all

communication is between the peer nodes.

• Static Allocation of Tasks- The clients do not have any way of querying and

getting the list of power servers. So, tasks are allocated statically to the same set

of servers every time. The clients need to be informed about any changes to the

servers. Changes may include a new server being added or a server going out of

commission. There is no provision for such tasks in the Power Server Model.

• Power Server Failure- This model does not take into account the failure ofthe

power servers. So, the clients have no way of finding out how many power

servers from the static list it has are active. Thus, a client is forced to send its

tasks to the servers it has in the static list and then wait for it to either timeout or

get an error back. In case of an error, it has to repeat this with another server, until

it gets an active server that responds successfully and processes its tasks.

-19-

• No Power Server Classification Mechanism- This is particularly significant for

clients that have tasks with specific processing requirements. Such clients do not

have any way of knowing which servers support the task requirements. For

example, a client may need all its tasks to be processed within a particular time

frame on a fast processing server with no cost constraint. Alternatively, for

another client the cost may be of paramount consideration. The Power Server

Model does not provide any way to determine such information.

-20-

4.1 Introduction

Chapter 4

P2PCOMPUTE

This thesis proposes P2PCompute- a peer-to-peer computing model. The proposed

model builds upon the Power Server Model, by enhancing it and resolving the issues

associated with it. It takes advantage of the peer-to-peer architectural model to enable

workstations on the Internet to share computing power. It uses the well-known concept of

a Universal Description, Discovery, and Integration (UDDI) registry to set up a new peer

to-peer infrastructure. Using this infrastructure, clients can reach out to server

organizations that provide computing power services. The model provides features to

keep track of the loads on different servers dynamically and makes it easier for clients to

access this information on demand. The information provided to the clients details the

capabilities of each server and how much load the servers are handling currently. This

enables the clients to choose servers on the fly, discarding any inactive servers, as well as

those which do not match the requirements for the task at hand. These features have the

potential to utilize the hitherto untapped power of the P2P computing architecture.

-21-

4.2 P2PCompute Design

The P2PCompute model uses existing Java technology and the Internet to create a

powerful peer-to-peer mechanism for sharing computing power with the world. Figure 2

shows the architecture of the model proposed in this research.

P2PCompute
Client Layer

Infrastructure
Layer

P2PCompute
Server Layer

Figure 2: P2PCompute Architecture

As shown in Figure 2, there are essentially three layers a node in the P2PCompute

network may have - Client, Infrastructure and Server. The client needs to go through the

infrastructure layer to get to the server layer. Thus, the infrastructure layer is really a

connectivity layer. Generally, a node may only have one layer, but it is conceivable to

-22-

have a node playing more than one role since it is a peer-to-peer architecture. A layer is

chosen keeping in mind the specific task the node needs to do. For example, a node used

just as a client needs just the client layer, whereas a node that functions both as a client

and server has both the client and server layers. Each layer needs specific software

packages to be installed on the nodes. The model provides enough flexibility that any

node can be transformed from one type to another withjust the addition of the new layer

on that node.

Figure 3 shows a detailed view of the P2PCompute model. All interactions between the

three architecture layers are through well-defined interfaces on the Internet. The client

side nodes get the list of servers from the infrastructure components of this model. Then

they connect to the ~erver-side nodes and transmit the bytecodes comprising the task to

be processed. The server nodes execute the task and transmit the results back to the

client. The following sub-sections analyze the functions and roles of each component of

this model.

-23-

t:J
List of SuperNodes/Power
Servers

Task Queue

Client Computer

UDDI
Registry

List of
Servers

List of Active
Servers

Task & Task
Results

Server Registration Information

Figure 3: The P2PCompute Model

-24-

4.2.1 P2PCompute Infrastructure

The primary purpose of the P2PCompute Infrastructure layer is to provide a computing

infrastructure to support the P2PCompute model. It matches clients needing computing

power with servers willing to share computing power over the Internet. From a client's

perspective, the function of the P2PCompute Infrastructure layer is to provide a uniform

mechanism for any client on the Internet to find P2PCompute servers matching its

requirements. From a server's perspective, its function is to keep track of active servers

and have accurate and up-to-date information on them to feed to clients. In order to do

that, this model uses UDDI registries and introduces the concept of supernodes. The

following sections discuss both in detail.

4.2.1.1 UDDI Registry

UDDI provides a public registry to discover businesses and their services [Dogac02]. The

UDDI registry servers function as both a white pages business directory as well as a

technical specifications library. This enables clients to find organizations offering

computing power over the Internet. The technical specifications library feature helps

clients obtain details about the services offered. These details may include the technical

capabilities of those servers, as well as other non-technical information like the financial

costs of utilizing the servers. Some of these specifications are mostly static data that

rarely change during the course of the life of a server, like the number of CPUs on the

server. Some other specifications can change due to software or hardware upgrades, like

-25-

the maximum number of servlet threads may be increased due to an increase in the

memory of the servers. In case of such upgrades, the servers may need to update their

registration information in the registry. Following are some of the technical specifications

recommended in this model:

• The URL to connect to

• The processor speed

• The number of CPU s on the server

• The maximum memory on the server

• The server's operating system platform

• The maximum number of servlet threads allowed on the server

4.2.1.2 Supemode

A supemode acts as a conduit between the registry and the servers. It first queries the

registry to get a list of all registered servers which offer computing power on the Internet.

Then it queries each server continuously to get their updated status. Any server which

does not respond is marked inactive. Each active server returns current information about

the server and updated status information, including the current load on the server and the

current utilization of CPU and memory. It also reduces the number of idle servlet threads

in the applicatio11 server that are available for processing more tasks. Since this

information is dynamic and subject to change, the supemodes query the servers

frequently. The frequency should be determined by the supemode administrator, but it

-26-

should be finely balanced so it does not put extra load on the servers, as they have to

respond to each such query in addition to executing the client task. Querying should be

frequent enough, however, so the supemode does not have stale, outdated information

about the server. Not having the correct information defeats the very purpose of

supemodes. These capabilities enable the clients to make an informed decision on which

servers to mix-and-match for their specific needs, thus enabling customization of the

servers by the clients.

4.2.2 P2PCompute Server

The P2PCompute Server layer is essentially comprised of P2P nodes capable of running

as servers. In order for them to be considered part of the P2PCompute model, they need

to register with the P2PCompute Infrastructure layer as computing power providers. This

will enable the supemodes and the clients to find them easily and connect to them to

transmit the bytecodes to execute. The servers should run any Java 2 Enterprise Edition

(J2EE) application server. These application servers provide the ability to do the tasks

expected of them as part of the P2PCompute Server layer. From the client's perspective,

the servers in this layer listen to and accept any connection requests from the clients.

Once connected, they receive the Java bytecodes sent by the client on the Internet. These

bytecodes are instantiated into a class and loaded into the application server's NM. The

servers then execute the task and transmit the results back to the client.

-27-

From the P2PCompute Infrastructure layer's perspective, first and foremost, the servers

in the Server layer need to register with the Infrastructure layer. The registration

information must include the URL(s) which can be used to connect to the servers, as well

as useful static information. The servers should also be able to respond to status requests

from the supernode to indicate if they are active and convey status information about

themselves. Such status information enables the P2PCompute Infrastructure layer to

provide a better overview of servers that may meet the needs of the tasks must be

executed at a particular point in time. Table 1 describes the fields a server is expected to

pass back to the supernode, in the status response.

-28-

Information Description Possible Values
Status code This field provides information about the BUSY,

current status of the server. The server may be ACTIVE,
busy, active or inactive. For example, it may INACTIVE
send an inactive code even though it is up and
on the network, when it is not taking any task
requests, or it is undergoing maintenance.

CPU Usage The current CPU usage, in percent From0%to
100%

Memory Usage The current memory utilization, in percent From0%to
100%

Threads Actively The current number of threads actively From0%to
Used working on tasks, in percent 100%

Application Server The name of the J2EE application server that Tomcat, JBoss,
Name is used by the server Websphere,

Weblogic, etc.

Application Server The J2EE application server version number
Version

Maximum Memory The maximum memory size that the
Allocated application server is allowed to use

Maximum Threads The maximum number of request processing
threads that can be used by the server.
This determines the maximum number of
simultaneous requests that can be handled.

Table 1: Status Information Fields in the P2PCompute Server Response Message

-29-

4.2.3 P2PCompute Client

The P2PCompute Client layer of the P2PCompute model is comprised of any workstation

on the Internet which is capable of transmitting its tasks as bytecodes to another

workstation or server on the Internet. The client may have a list of tasks to be performed

in either its database or on the client itself. It examines each task one-by-one, dividing

them further into smaller tasks, if necessary. Using the P2PCompute Infrastructure layer,

it finds the appropriate servers on which to execute each task. It is recommended that a

task not be allocated to any server with capacity utilization above 90%. The tasks are then

uploaded to the servers as bytecodes. Once the tasks are finished, the client gets the

results back and does any post-processing, if needed. Thus, the P2PCompute model

simulates having multiple processors even though the client may have a single, common

local processor.

The challenge in this layer is to find the server on which a task is to be executed. This is

accomplished using the P2PCompute Infrastructure layer, more specifically the UDDI

registry and the supernodes. The P2PCompute model proposes two alternative

approaches. The first approach using just the UDDI registry servers is simpler; however,

it does not provide dynamic up-to-date information about the servers, so the client may

not necessarily choose the appropriate server for its needs. The second approach uses

both the UDDI registry servers and the supernodes. It is more complex, however, it has

the advantage of providing current server status to enable the client to make a more

informed decision. The following section discusses both approaches.

-30-

4.3 Proposed Approaches to Find Servers

4.3.1 Using the UDDI Registry Directly

This is a simple method for getting a list of servers. The client sends a request to any

well-known UDDI registry server. This request queries the UDDI registry for any servers

which offer computing power services. The registry responds with the information it has

on such servers, such as the server URL, which can be used to connect directly to the

server to get the task executed. The P2PCompute model also proposes having other

attributes I specifications of the server in the registry. This may include the maximum

number of threads the server's servlet pool has available, the hardware specifications, and

the amount of memory the server has. Such information will be of immense help in

enabling the client to choose servers according to its needs. For example, a client whose

task may need a lot of memory will discard those servers which have less memory,

instead of trying to execute the task on those servers and then running out of memory

later on.

The disadvantage of using the UDDI registry is that the registry does not include up-to

date information on the server, e.g., the current load, or the current CPU and memory

utilization. Such factors are important if the client has time or memory constraints. This

lack of information also prevents this approach from providing for automatic load

balancing. As a consequence, servers with excellent speCifications may get overloaded

-31-

with too many requests and have a hard time catching up. On the other hand, other less

powerful servers may sit idle with few tasks coming their way.

4.3.2 Using the UDDI Registry and Supemodes

This approach enables clients to examine the changing dynamics of servers and helps

them choose servers better suited for executing their tasks. The client still queries the

UDDI registry, but this time to get the list of supemodes. Supemodes provide the client

with dynamic information on the servers. Upon querying the supemode, the client gets

the list of all active power servers, which in itself is an improvement over just using the

UDDI registry. This approach also provides an updated information on the active servers.

This includes information on factors such as the number of servlet threads currently

executing tasks for other clients, the amount of memory being consumed, and the CPU

utilization. To compile this information, each supemode queries all the servers that are in

the UDDI registry at specified intervals to find out how busy they are at a particular point

in time. The responses back from the servers are stored in the updated list the supemode

maintains on the active servers. This provides a valuable service to the clients by giving

them the data to choose the best possible list of servers for their needs. It also provides an

automatic load balancing feature, since it prevents over loading a single server.

The disadvantage of this approach is its complexity and the extra call to the supemode. In

cases where the client does not have any time, performance, or memory constraints, it

adds an unnecessary step. However, in other cases, it is worth the effort, since it ensures

-32-

the client will not waste its time waiting on a server that is not responding, or that does

not currently have resources needed for executing the task.

4:4 Features

4.4.1 Load Balancing

Load balancing is one of the key features of the P2PCompute model. It is accomplished

using the supernodes in the P2PCompute infrastructure layer. The supernodes

continuously poll all the servers in the UDDI registry to get their current status. The

status information includes the server's updated usage statistics on the CPU, memory,

and thread usage. These statistics are expressed in percentages instead of absolute terms.

Percentages give a better idea of the current server capacity utilization in relation to its

total capacity. Since the supernodes continuously poll the servers, this information is

subject to change at any given time. When a client queries the supernodes, it gets back

the list of active servers with the updated status information. Then the client divides its

task equally among these active servers, skipping any servers with capacity utilization

over 90%. For example, if a task involves processing 1GB of data and there are 16 active

servers, all under 90% utilization, each would be tasked with processing 64MB of data.

-33-

4.4.2 Scalability

Scalability, in its most general form, is defined as the ability of a solution to a problem to

work when the size of the problem increases [RanaOO]. The following three dimensions

need to be analyzed in order to discuss scalability in the context of this research:

• An increase in the number of servers,

• An increase in the number of clients requesting their individual tasks to be

processed, and

• An increase in the size of the data that is part of the tasks the servers are

processmg.

Increasing the number of servers makes more processing power available on the network.

Each resulting task becomes simpler to process, because it can be distributed among more

servers and, therefore, becomes less intensive computationally and have a smaller data

size. Adding new servers does, however, add a little more load to the supernodes, which

need to add these additional servers to their polling list.

Increasing the number of clients or the amount of data to be processed in the

P2PCompute model does put a strain on the existing resources in the network. It

increases the number oftasks the servers need to process, as well as increasing requests

to the UDDI registry and the supernode. The existing clients also are impacted; since they

need to compete with the new clients for servers. It may also cause delays in processing

-34-

the tasks, if, for example, the clients have more tasks than the servers can handle. This

would result in most of the servers being at more than 90% capacity and cause the clients

to wait for the servers to come back to normal capacity levels.

However, with the P2PCompute model, the increase in clients and data is spread out

across all the servers, so the performance deteriorates at a much slower rate than if the

task were done on the client side itself. In fact, the deterioration rate is minimal with an

increase in the number of servers. So, if this model is widely used with many available

servers, theoretically the increase in data or clients may not be significant. Also, from a

business perspective, this represents an opportunity for organizations to increase their

business by increasing the number of servers they make available.

4.4.3 Redundancy and Error Handling

From the server's perspective, the P2PCompute model provides for redundancy, by

having multiple servers available for clients. In case of failure of a server, there are other

servers that can be used by the clients. The supernodes periodically query each server to

get their updated status. If no response is received, the server is flagged as inactive. If a

server fails in the middle of processing a task, the client connection times out waiting for

results, allowing the client to use another server. P2PCompute does not provide any

commit functionality to save intermediate states while a server is processing a task.

Therefore, the incomplete task needs to be processed again on another server.

-35-

The design ofthe P2PCompute infrastructure layer ensures both the UDDI registry and

the supernodes are redundant systems. There are multiple well-known UDDI registry

servers on the internet. For example, both IBM and Microsoft provide free access to their

public UDDI registry servers. As far as the supernodes are concerned, the UDDI registry

contains a list of supernodes. When a client queries the registry to get the list of

supernodes, all the supernodes in the list are returned. This ensures that, if the first

supernode is not available, the client can try accessing other supernodes in the list.

4.4.4 Platfmm Independence

The model's use of Java and the J2EE application server promotes platform

independence. The clients, supernodes, UDDI registry and servers can run on any

platform, as long as they can communicate with each other via TCP. In fact, the UDDI

registry and the supernodes do not even need to run Java. UDDI registries already exist

which use diverse technologies, like J2EE or .NET to serve requests. The supernodes just

need to run any application server (e.g., J2EE, .NET, Coldfusion). The only dependency

in the P2PCompute model is that the task the client needs to run should be compiled. to

Java bytecodes. This promotes platform-independence, but not language-independence.

4.4.5 Incentives

When a server registers with the UDDI registry, the registration information provided

may include the financial remuneration expected for executing a task. Servers may use

-36-

different types of pricing structures. For example, servers may post on the registry their

computing power rental charges based on CPU time required, or CPU cycles or memory

size used. This introduces an additional burden on the server to keep track of the cost

determining factor (e.g., the CPU time required) when running the task for a client. Once

the task is processed, the task results are sent to the client, along with a report detailing

the cost of processing the task. For audit purposes, the cost should also be logged on the

server side.

There may be two ways in which payments can be handled. Upon establishing the

connection with a client, the server should ask for the client's account number with the

server. If the client responds with a valid account number, then the server should process

the task, return the task results to the client along with an invoice for executing the task,

and add the charge to the client's account number. The client should have the option of

paying a monthly consolidated invoice. This approach may be used for trusted clients that

have an on-going business relationship with the server. Accounts should be set up for

such clients on the server. A different way may be used for one-time or unknown clients.

If a client does not have an account with the server, it may respond with a credit card

number. Upon completion of the task, the credit card should be charged the amount

invoiced to the client.

-37-

5.1 Server Implementation

Chapter 5

IMPLEMENTATION

The server implementation runs on Tomcat, a J2EE application server. It uses a servlet

TaskHandler to service all the tasks. This class listens to any connect requests from the

clients and accepts it. The client connects using the URL connection mechanism;

however, other connection mechanisms, like SOAP or Web Services may be used. Once

the connection is established, the servlet downloads the bytecodes of the task to be

executed from the client. It then loads the bytecodes as a class in the servlet' s JVM to

execute. A custom class loader that extends the ClassLoader class was developed during

this implementation to load the bytecodes coming from the wire into the JVM. It first

loads an object deserializer, which is used to unmarshall bytecodes into an object. The

task defined is executed and the results serialized back onto the output stream that is

connected to the client.

The task itself implements a well-known interface named Task with a single method

process() that has to be defined by the class that implements this interface. The Task class

is available on both the server and the client side. This way the server knows which

method to call to execute the task. Clients implement the process() method in the Task

class. This method contains the task the server needs to execute. Once the server

deserializes and loads the object it got from the client, it proceeds to execute the process()

-38-

method. This in tum runs all the processing the client needed. Once the task is processed,

the results are communicated to the client via the URL connection mechanism.

5.2 P2PCompute Infrastructure Implementation

The supemode implementation runs as a daemon thread on a Tomcat application server.

However, it may as well be implemented as a standalone Java daemon class. It is

implemented as two separate classes. The first one, ServerMonitor interfaces with the

UDDI registry and the servers, while the second one, SuperNode responds to client

requests. The ServerMonitor first queries the UDDI registry, which is set up on a

Tomcat-jwsdp server to get a list of all servers and their static information. That

information contains the URL of the servers. It then connects to that URL and issues a

status request to the server. The server responds with the status information, including the

current server utilization (e.g., CPU, memory and thread utilization). All this information

is recorded on the supemode. When the clients request active servers from the supemode,

the SuperNode class works to get the list from the ServerMonitor class which is given to

the client. The client chooses the servers that are the best fit for the tasks to be processed.

A class to manage the UDDI registry entries is also implemented to ensure the full

P2PCompute model is given a thorough test. This class can add, delete and query UDDI

registry entries on the jwsdp server. It is also implemented as a servlet thread on the

application server running the UDDI registry. The supemodes and also some clients that

-39-

do not use supernodes may call this servlet thread to get details on the servers available

for processing their tasks.

5.3 Client Implementation

The client implementation consists of a few classes. The main class, TaskRequestor, is

used to spawn multiple threads, depending on the parameters passed. Each thread is an

instance of the RequestHandler class and does all the work to get the task processed. The

TaskRequestor class connects to the UDDI registry to get the list of supernodes. Then it

chooses one of the supernodes to get the list of all active servers, their URLs, and the

maximum number of threads it can support. Based on the number of threads, it divides its

big task, especially one requiring a lot of data-crunching, into multiple tasks among all

the threads. The task to be processed is defined in the Tasklmpl class, which implements

the Task interface, thus the process method has all the details needed by the server to

execute the task.

Each RequestHandler thread connects to the server it is assigned to and uploads the task.

Once the task is processed, the results are returned to the thread. The thread may then

return the results to the TaskRequestor to do any post-processing, such as aggregating the

results.

-40-

Chapter 6

RESULTS AND ANALYSIS

6.1 Test Configuration

The configuration for the two machines used in this research is described in Table 2. To

test the P2PCompute functionality, a total of 6 clients were used to simulate multiple

requests to the servers. For the servers, 4 machines were used to test functionality like

load balancing and dynamic task allocation. To ensure reliability on the supemode side, 2

supemodes - a primary and a secondary one - were used in the test case. Both the servers

and supemodes were multithreading capable.

Configuration of Supernodes and Servers

Processor Dual-CPU Pentium III Quad-CPU Hyper threaded (emulates

450MHz 8-CPU) Pentium 4 Xeon 1.5GHz

Memory 256MB 8GB

Hard Disk 18GB RAID-5 Array 263GB RAID-5 Array

Operating System Linux SMP Linux SMP

Software Tomcat J2EE Application Tom cat J2EE Application Server,

Server, Oracle Client, PHP Oracle Client, PHP

Services Apache, Tomcat, MySQL Beowulf cluster manager, Apache,

Tomcat, MySQL, Oracle

Table 2: Test Configuration

-41-

6.2 Comparison with the Power Server Model

Since the P2PCompute model is closely tied to the Power Server model, a detailed test

and analysis was done to see how it compares to that model. The following sections

discuss the results of the comparison.

6.2.1 Performance Comparison

A performance comparison test was performed to demonstrate the benefits of the

P2PCompute model. Two servers were used for this test, with one of them having a total

of 2 threads active and the other 150 threads active at the point in time the clients were

trying to connect to them. The test involved comparing the processing times taken by the

Power Server Model and two implementations of the P2PCompute model. The first

implementation used the UDDI registry to get the server information and then connect to

the servers. The second implementation gets the list of supernodes from the UDDI

registry and then queries the supemodes to get the list of active servers with status and

other information. As discussed in the previous chapters, the second approach is the

recommended approach. The task data size was steadily increased to get more readings

and to analyze performance deterioration when the data size is increased from 64 KB to

256 KB. The resulting chart in Figure 4 sheds some light on the advantages realized by

the supernode concept in this model and the division of the task into multiple threads in

the same server.

-42-

-0
Cl)
t/) -Cl)

E
j::
C)
c ·-t/)
~
0
0 ...
a.
C)

~

500

400

300

200

64 KB

Data Size

128 KB 192 KB 256 KB

--+-- P2PCompute using Supernode

P2PCompute using UDDI

Power Server

Figure 4: Performance Comparison ofP2PCompute and the Power Server Model

-43-

The results show the following:

• Comparison ofP2PCompute and the Power Server Model: Both the P2PCompute

models performed better than the Power Server Model. The P2PCompute model

using the UDDI registry directly resulted in a decrease in processing time by an

average of 76.32%, whereas the other P2PCompute model decreased the

processing time by an average of93.04%. These substantial performance gains

may be explained by the fact that both the P2PCompute models take advantage of

multiple P2PCompute servers. The Power Server Model does not have a way to

determine how many power servers are active on the Internet at a particular time.

The number of power servers has to be configured in advance on the Power

Server side. The Power Server had knowledge of a single server before the test, so

it used that. The P2PCompute model which queried the UDDI registry knew both

the servers, since an extra server registered during this time. The P2PCompute

model which uses the supemode is even more intelligent, since it knew there was

more than one available thread on each server. Hence, the performance gain with

the P2PCompute model using supemodes was more than that of the P2PCompute

UDDimodel.

• Comparison of both the P2PCompute implementations: The P2PCompute

implementation with the supemode lookup performed better by an average of

70.5% than the implementation with the direct UDDI lookup. The details from the

supemode helped the client, since it showed the server's number of active threads.

-44-

Thus, the client could use multiple server threads on both the servers to process its

request. However, the direct UDDI lookup implementation could not know the

number of active threads and hence used just a single thread of both the servers.

• Performance of P2PCompute implementation with data size increase: With the

P2PCompute implementation, the processing time increases at a much slower rate

than with the Power Server Model implementation. This is due to the fact that the

increase in data size is divided equally among all the server threads. Thus, the

increase in the processing time of each individual thread is not as much for the

P2PCompute implementation. This accounts for a lower performance

deterioration rate. The average performance deterioration was calculated from the

increase in processing time, when the data size is increased from 64KB to 256KB.

Experimental data showed the deterioration to be 134% for the P2PCompute

Supernode implementation, and 131% for the P2PCompute UDDI

implementation, whereas for the Power Server Model it was 140%.

6.2.2 Scalability Comparison

A scalability comparison was done to determine how well the P2PCompute model scales

in comparison with the Power Server model. Increasing the number of P2PCompute

servers improved the performance in the P2PCompute model. However, increasing the

number of servers with the Power Server model does not improve performance. This is

explained by the fact that the Power Server model does not determine the power servers

-45-

dynamically and requires code or configuration changes on the client side to use the new

servers. In comparison, the P2PCompute model can adapt to the changing dynamics of

the P2PCompute servers, due to constant polling and querying being performed by the

supernodes. Also, when any server is brought down or opts to go out ofthe network, it

would not get any more connection requests. In comparison, in the Power Server model,

inactive servers would still get connection requests, since the clients do not have any way

of knowing the servers are no longer in service.

To perform this test, data was divided into equal, constant size units to be processed by

each server. The number of servers was increased from 2 to 8 in increments of 2. Figure 5

shows the processing time decreases in the P2PCompute model as the number of servers

are increased, since there are more servers available to distribute the tasks. In contrast,

the Power Server model did not realize the addition of more servers, hence continued

using the same single server it started with. Therefore, the processing time remained the

same with the Power Server model.

-46-

-u
C1)
en -C1)

E
t=
C)
c
en
~ u
0 ...
0..
C)

~

1600

1400

1200

1000

800

600

400

200

0

\
-

\
\
\
\
\
\
~

2 4 6

Number of Servers

-.

8

-+- P2PCompute

Power Server

Figure 5: Scalability Comparison of P2PCompute and the Power Server Model

-47-

6.3 Standard Algorithmic Tests

A detailed test was carried out to benchmark the P2PCompute model vis-a-vis standard

algorithms. Three algorithms were chosen to simulate the complexities corresponding to

0 (n), 0 (n log n) and 0 (n2
).

The client implemented the task interface by defining the task to be one of the standard

algorithms. The processing time taken by the P2PCompute model was calculated from

the time the client transmitted the data to the time it received the processed results back

from the server. For comparison purposes, the actual times taken, by a stand-alone Java

program, to run these standard algorithms were also recorded. The amount of data to be

sorted by each algorithm was varied from 512KB to 1024 KB. To ensure a fair

comparison, only one server was used in the P2PCompute model. Of course, the

P2PCompute model took some more time due to the network part of the model. Time is

required for the client to transmit the data to the server, and then receive the processed

data back. However, the graphs resulting from these tests provided a good idea of how

this model compares with graphs resulting from just running standard algorithms.

6.3.1 Sequential Search- O(n)

The sequential search algorithm O(n) was the simplest algorithm used to test the behavior

of the P2PCompute model. This algorithm iterates over a list of data elements, comparing

each such element to the desired element. The result is a count of the times the desired

-48-

element occurs in the list. As a corollary, from this count, it can be inferred whether the

desired element occurs in the list.

Figure 6 shows the results from running the sequential search algorithm in the

P2PCompute environment compared with results from running the algorithm in a stand

alone environment. The processing time for the P2PCompute model increases steadily as

the size of the input data increases. The P2PCompute model took more time compared to

the standard stand-alone implementation due to the network overhead. The rate of

increase of the processing time with the P2PCompute model approximates a linear line,

which is the expected behavior for O(n) algorithms.

Compared to the stand-alone environment, the P2PCompute model does not do as well as

the stand-alone process on two counts. First, the processing time itself is more in the

P2PCompute environment. Second, the rate of increase in the processing time is more in

this environment compared to the stand-alone environment. These issues can be

explained by the extra time taken in the P2PCompute model to transmit the increasing

amount of data (from 512KB to 1MB) from the client to the server and to get the

processed results back from the server. This shows the P2PCompute model is not well

suited for algorithms with an O(n) complexity.

-49-

-()
Q)
II) -
~ 1.5
j::
C)

.5
II)

~ e
a.
~ 1 +---~ e
~

512KB 640KB 768KB

Data Size (KB)

896KB 1024KB

--+--- P2PCompute

Normal

Figure 6: Sequential Search Algorithm Results

-50-

6.3.2 Quick Sort- O(n log n)

The quick sort is one of the more sophisticated sort algorithms which are quicker, yet

more difficult to code, due its use of the divide~and-conquer concept and a massively

recursive mechanism. The algorithm itself is similar to a merge sort, however, it differs in

the way the input list is split into multiple sub-lists. Each sub-list is sorted recursively and

merged to get the sorted list. Based on the inverted sorting taxonomy proposed

[Merritt85], quick sort uses the hard split/easy join technique, instead of the easy

split/hard join technique used by a merge sort.

The following four steps comprise the heart ofthis recursive algorithm [NguyenOl]:

1. If there is one or less element in the array to be sorted, return immediately.

2. Choose any of the elements from the array to serve as a "pivot" point. The first

elenient in the array was used in this test. This is what is generally used.

3. Split the array into two parts- one with elements larger than the pivot and the

other with elements smaller than the pivot. This would rearrange the array in such

a way that all elements to the left of the pivot are less than it and all elements to

the right of the pivot are greater or equal to it.

-51-

4. Recursively repeat the algorithm for both halves of the original array till the first

step returns the element. This would sort the list.

The efficiency of the algorithm is impacted by which element is chosen as the pivot

point. Ifthe list is already sorted, it yields the worst performance of the quick sort, with

the complexity being O(n2
). Otherwise, the quick sort should have an algorithmic

complexity of O(n log n).

Figure 7 shows the processing times taken when using the quick sort in the P2PCompute

model environment and when run stand-alone.

-52-

2.5 +---~

G) 2 +----------------------.,£-----------------!
E
i=
C)
c
'ii)
en
G) g 1.5 +-------~'----------------------~ ...

D..
G)
C)

~
G)

~ 1 +------------------------------------!

0 -·~------~------~-------~------~------~
512KB 640KB 768KB

Data Size

896KB

Figure 7: Quick Sort Algorithm Results

-53-

1024KB

-+- P2PCompute

Normal

Again, similar to the results from the O(n) comparison, the processing time increases

when running under the P2PCompute model, due to the extra network time taken to

transmit data back and forth. The rate of increase in processing time with the increase in

the data size conforms for the most part to the standard quick sort rate of processing time

increase. Therefore, even this comparison also shows the P2PCompute model is not a

performance efficient model for running tasks having O(n log n) complexities.

6.3.3 Bubble Sort- O(n2
)

The bubble sort is one of the oldest sorting techniques in use, though it is one of the

slowest. It is a comparative sort, because it determines which interchanges to make by

comparing two elements at a time [Martin71]. The bubble sort works by comparing each

item in the list with the item next to it and swapping them, if required. The algorithm

repeats this process until it makes a pass all the way through the list wi~hout swapping

any items. This causes larger values to "sink" to the end of the list, while smaller values

"bubble" towards the beginning of the list, hence the name.

This sorting algorithm is generally considered to be the most inefficient sorting

algorithm. It is almost never used except for cases where there are a small number of

elements in the list and coding simplicity is preferred over perfotmance. Figure 8 shows

the results from tests done to compare this algorithm running under the P2PCompute

model as compared to running it as a stand-alone process.

-54-

-(.)
Q)

~ 500 +---------------------------------~----------~
Q)

E
t=
C)
s:::

m 400 +-------------------------------+------~~----~
(.)

e
a.
Q)
C)

~ 300 +-------------------------~----~~----------~
~

64 128 192 256

Data Size (KB) -+- P2PCompute
-Normal

Figure 8: Bubble Sort Algorithm Results

-55-

The graph looks similar in terms of the gradient and shape of the graph for both

implementations. Also the difference in both these implementations is not that as much in

the case of O(n) and O(n log n) complexity implementations. This is due to the fact that

the total CPU time is significantly much more than the network time. This shows how it

would be better for clients not having enough computing power for such complex tasks as

those with O(n2
) complexity, to use the P2PCompute model. It should be noted that in

these tests, the algorithm was run as a single process and on two servers with the

P2PCompute model. In reality, the clients may connect to more than 2 servers, divide the

task into subtasks and then assign the subtasks to the multiple servers. This would create

opportunities for performance gains, since it would simulate running the tasks on

multiple processors. In such a situation it is expected the performance gain would be

greater in the P2PCompute model for algorithms with O(n2
) complexity, as compared to

the stand-alone server.

6.4 Load Balancing

The P2PCompute architecture provides the ability to balance the client requests among

multiple servers. This feature was tested by comparing two P2PCompute

implementations - one of which had the load balancing feature turned off and the other

had the feature turned on. The number of registered and active servers on the

P2PCompute network was kept constant at 4 servers, whereas the client load was

increased steadily from 64KB to 256KB in increments of 64KB. For each data size, four

readings of the processing time were recorded to get a fair average. This was repeated

-56-

twice, once with the load balancing feature turned on and then turned off. Figure 9 shows

the exponential rise in processing time with an increase in the client data size for the

implementation with no load balancing. In contrast, the other implementation does much

better and also scales nicely with increase in the client data size. This shows the benefit

offered by the load balancing feature of the P2PCompute model. However, the model

itself does not force the clients to use this feature. They may choose not to use the

supernodes and instead use any of the servers registered in the UDDI registry. This shows

the flexibility and the customization feature offered by this model.

-57-

600 +------------------------------------+----~

500 ~--------------------------------~~------~ -0
Cl)

.!!?..
Cl)

E
~ 400 +---------------~------------~------------~
C)
c ·-m
Cl)
0

£ 300 -I---------------------------F-----------------4
Cl)
C)

l!
Cl)

>
~ 200+-------------------+---------------------~

64 128 192 256

Data Size (KB)
-+-With Load Balancing

--11- Without Load Balancing

Figure 9: Load Balancing Results

-58-

6.5 Supernode Validation

The addition of the supernode concept in the P2PCompute model introduces an additional

layer to the model. It enables clients to realize performance gains by taking advantage of

the dynamic structure of the Internet, where new servers are continuously being added. It

also enhances the productivity of the servers by not overloading them with multiple

requests. The clients benefit by being directed to servers that are not busy. In order to

validate the gains realized by the addition of the supernode concept to the P2PCompute

model, a performance analysis was done to compare the performance with and without

the supernodes. The P2PCompute model took advantage of the supernode to determine 2

servers on the Internet, whereas the Power Server model just used the single server that

was statically allocated to it. Figure 10 shows the processing time for the P2PCompute

model was much less than the Power Server model. The increase in processing time with

increase in data size was also less for the P2PCompute model than for the Power Server

model.

-59-

500 +----------------------------------+-------~ -0
G)

.!!1
G)

E
~ 400+------------------------------?----------~
C)
s::: ·-U)

m
0

~ 300 +-----------------------------~--------------~
G)
C)

I!
G)

>
~ 200 ~---------------------7--------------------~

64

Data Size (KB)

128 192 256

---+- P2PCompute Model With SuperNode

Power Server Model

Figure 10: Supemode Validation Results

-60-

Chapter 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

The P2PCompute model provides a solid framework that can be used for commercial

implementations. It provides an elegant way to use the idle power of countless computers

on the Internet, without the use of any new hardware infrastructure. This untapped

computing power could be utilized to perform tasks that are currently performed only by

supercomputers. This model uses existing technologies like the UDDI registry, Java,

J2EE application server and the Internet. The P2PCompute model enables users to focus

on defining the task they need to do, instead of worrying about having the computing

power to support it. It also has the potential to create a new business model of

organizations selling computing power on the Internet.

Based on experimental results, the P2PCompute model is well-suited for large,

computationally intensive tasks, which can be divided into subtasks to be processed in

parallel. For example, this research demonstrated that tasks which have the complexity of

O(n2
) perform well in the P2PCompute model, especially when they run on multiple

servers. However, tasks which are simpler and smaller do not perform as well. Examples

of such tasks are the sequential search and the quick sort which have the respective

complexities of O(n) and O(n logn). Their processing time is overshadowed by the

additional time added by the P2PCompute model. This additional time includes the time

-61-

it takes to get the list of supernodes from the UDDI registry, get the list of servers from

the supernodes, split the task and connect to each server to get the task processed.

The P2PCompute model also encourages load balancing by dividing the client tasks,

distributing them to multiple servers, and keeping track of the current utilization of the

servers. Experimental results also demonstrated the scalability of this model as addition

of more servers adds more computing power to this model, as referred in Section 6.2.2.

The performance gains from this model are also notable. As it keeps track of the servers,

the model enables clients to take advantage of the addition of more servers. This is in

addition to the perfmmance gain it already gives due to the parallel processing paradigm

it embraces.

7.2 Future Research

7 .2.1 Security and Privacy Issues

This research used Java, which provides a secure sandbox security mechanism for the

tasks to run. So, from a technical and micro level, the security is tight. However, security

issues still merit consideration on the macro level. For example, to get financial

remuneration, a P2PCompute server needs to prove it did the work for a particular client.

It is imperative servers be able to authenticate and authorize clients. This is necessary to

ensure clients do not masquerade as another client that already has a valid account and

dupe the server into executing their tasks.

-62-

The server should also have a mechanism to unload the client task classes once the task

has finished. This would provide reassurance to the clients their copyrighted task classes

would not be reverse-engineered by dubious servers and their intellectual property stolen.

Even though the P2PCompute implementation in this work was done using the HTTP

protocol, there is no protocol-specific setting in the P2PCompute model itself. Thus,

other protocols may be used in the communication between clients and servers. For

example, some servers may try to distinguish themselves from the others by offering a

more secure, but higher priced HTTPS I SSL connection. This is worthy of further

research and analysis, since it potentially would provide more security to client tasks, the

input data, and the results.

7 .2.2 Redundancy and Error Handling Issues

Redundancy and error handling are implemented in the P2PCompute model. However, if

a server crashes while executing a task, the client would get a timeout. Should the client

try another server to process the interrupted task, the next server would have to start over,

thus losing any progress made by the original server. Future research to enhance the

model is recommended so the next server can start from the point of the crash of the first

server. This may involve having multiple commits on the server side into the supemodes,

to ensure the next server can pick up from where the first one left.

-63-

7.2.3 Remuneration I Financial Aspect

A log I audit mechanism should be devised to enable both the supemodes and

P2PCompute servers to share the financial rewards. Presently, the P2PCompute model

has a proposed a mechanism to compensate the servers, however, it does not provide for

compensation of the supemodes. The supemodes provide valuable service to the clients

and servers. They act as intermediaries between them and need some financial incentive

for their work. One approach for compensating the supemodes might involve the servers

giving a small percentage of their earnings from the tasks they are performing to the

supernode that referred the client to them. For this, the P2PCompute model needs to be

changed to ensure the clients pass the referral node name to the server when they are

connected. A second approach might involve the clients compensating the supemodes for

each query they request. These two approaches represent possible future research.

-64-

REFERENCES

[Anderson02]
Anderson, D. et al., "SETI@home: An Experiment in Public-Resource Computing,"

Communications ofthe ACM, Volume 45, Issue 11, November 2002, pp. 56-61.

[Androutsellis-Theotokis04]
Androutsellis-Theotokis, S. and D. Spinellis, "A Survey ofPeer-to-Peer Content

Distribution Technologies," ACM Computing Surveys, Vol. 36, No. 4, December
2004, pp. 335-371.

[ClarkeOl]
Clarke, I. et al., "Freenet: A Distributed Anonymous Information Storage and Retrieval

System," International Workshop on Designing Privacy Enhancing Technologies:
Design Issues in Anonymity and Unobservability, Berkeley, CA, USA, January 2001,
pp. 46-66.

[Damiani02]
Damiani, E. et al., "A Reputation Based Approach for Choosing Reliable Resources in

Peer-to-Peer Networks," Proceedings of the 9th ACM Conference on Computer and·
Communications Security, 2002, pp. 207-216.

[Dogac02]
Dogac, A. et al., "An ebXML Infrastructure Implementation Through UDDI Registries

and RosettaNet PIPs," International Conference on Management of Data Archive,
Proceedings of the 2002 ACM SIGMOD International Conference on Management of
Data, 2002, pp. 512-523.

[Fox94]
Fox, G., R. Williams, and P. Messina, "Parallel Computing Works," Morgan Kaufmann

Publishers, 1994.

[Gupta03]
Gupta, M., P. Judge, and M. Ammar, "A Reputation System for Peer-to-Peer Networks,"

International Workshop on Network and Operating System Support for Digital Audio
and Video Archive, Proceedings of the 13th International Workshop on Network and
Operating Systems Support for Digital Audio and Video, Monterey, CA, USA, 2003,
pp. 144-152.

[Hunter01]
Hunter, J. and W. Crawford, "Java Servlet Programming," O'Reilly, Sebastopol, CA,

2001.

-65-

[Kamvar03]
Kamvar, S., M. Schlosser, and H. Garcia-Molina, "The EigenTrust Algorithm for

Reputation Management in P2P Networks," Proceedings of the Twelfth International
Conference on World Wide Web, 2003, pp. 640-651.

[Kant02]
Kant, K., R. Iyer, and V. Tewari, "A Framework for Classifying Peer-to-Peer

Technologies," Proceedings ofthe 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID'02), May 2002, pp. 368-375.

[KorpelaO 1]
Korpela, E. et al., "SETI@home: Massively Distributed Computing for SETI,"

Computing in Science and Engineering, Volume 3, Issue 1, January 2001, pp. 78-83.

[Liben-Nowell02]
Liben-Nowell, D., H. Balakrishnan, and D. Karger, "Analysis of the Evolution ofPeer

to-Peer Systems," Proceedings of the Twenty-first Annual Symposium on Principles
of Distributed Computing, July 2002, pp. 233-242.

[Loo03]
Loo, A., "The Future of Peer-to-Peer Computing," Communications of the ACM,

Volume 46, Issue 9, September 2003, pp. 57-61.

[Lui02]
Lui, S. and S. Kwok, "Interoperability of Peer-to-Peer File Sharing Protocols," ACM

SIGecom Exchanges, Volume 3, Issue 3, 2002, pp. 25-33.

[Lundgren03]
Lundgren, H., R. Gold, E. Nordstrom, and M. Wiggberg, "A Distributed Instant

Messaging Architecture based on the Pastry PeerToPeer Routing Substrate," Swedish
National Computer Networking Workshop (SNCNW2003), September 2003.

[Martin71]
Martin, W. A., "Sorting," ACM Computing Surveys (CSUR), Volume 3, Issue 4,

December 1971, pp. 147-174.

[Mengshu05]
Mengshu, H. et al., "A Trust Model ofP2P System Based on Confirmation Theory,"

ACM SIGOPS Operating Systems Review Archive, Volume 39, Issue 1, January
2005, pp. 56-62.

[Merritt85]
Merritt, S., "An Inverted Taxonomy of Sorting Algorithms," Communications of the

ACM, Volume 28, Issue 1, January 1985, pp. 96-99.

-66-

[Mishra04]
Mishra, J. and S. Ahuja, "A Survey of the State of the Art in Peer-to-Peer Computing,"

3rd International Conference on Comm"\ffiications, Internet and Information
Technology (CIIT 04), November 2004.

[Mullender96]
Mullender, S., "Distributed Operating Systems," ACM Computing Surveys, Volume 28,

Issue 1, March 1996, pp. 225-227.

[Nguyen01]
Nguyen, D. and S. Wong, "Design Patterns for Sorting," Proceedings of the Thirty

Second SIGCSE Technical Symposium on Computer Science Education, 2001, pp.
263-267.

[Oram01]
Oram, A. et al., "Peer-to-Peer: Harnessing the Power of Disruptive Technologies,"

O'Reilly & Associates, March 2001, Chapter 16.

[RanaOO]
Rana, 0. and K. Stout, "What is Scalability in Multi-Agent Systems," International

Conference on Autonomous Agents, Proceedings of the Fourth International
Conference on Autonomous Agents, 2000, pp. 56-63.

[Rovers04]
Rovers, A. and H. Van Essen, "HIM: A Framework for Haptic Instant Messaging,"

Conference 'on Human Factors in Computing Systems, CHI '04 Extended Abstracts
on Human Factors in Computing Systems, 2004, pp. 1313-1316.

[Rowstrom01] .
Rowstrom, A. and P. Druschel, "Pastry: Scalable, distributed object location and routing

for large-scale peer-to-peer systems," Proceedings ofMiddleware'01, November
2001.

[Samtani02]
Samtani, G. and D. Sadhwani, "Web Services and Peer-to-Peer Computing," Teet Ltd.,

July 2002.

[Sinha92]
Sinha, A., "Client-Server Computing," Communications of the ACM, Volume 35, Issue

7, 1992, pp. 77-98.

[Schroeder93]
Schroeder, M.D., "A State-of-the-Art Distributed System: Computing with BOB," In

Distributed Systems, 2nd ed. S. J. Mullender, Ed. ACM Press, New York, pp. 1-16.

-67-

[Soares92]
Soares, P.G., "Distributed Systems~ Programming and Management: On Remote

Procedure Call," Proceedings of the 1992 Conference of the Centre for Advanced
Studies on Collaborative Research, Volume 2, pp. 215-267.

[Tanenbaum85]
Tanenbaum, A. and R. Renesse, "Distributed Operating Systems," ACM Computing

Surveys (CSUR), Volume 17, Issue 4, December 1985, pp. 419-470.

[Walsh05]
Walsh, K. and E. Sirer, "Fighting Peer-to-Peer SPAM and Decoys with Object

Reputation," Proceeding of the 2005 ACM SIGCOMM Workshop on Economics of
Peer-to-Peer Systems, 2005, pp. 138-143.

-68-

APPENDIX A: P2PCOMPUTE CODE LISTINGS

/********************************Begin Task class **************************************/
package edu.unf.p2p.common;

public interface Task {

}

public void processO;
public void postProcessO;

/********************************End Task class **/

/*********"'**********************Begin RequestHandler class*****************************/
package edu.unf.p2p.client;

importjava.io.*;
import java. uti!.*;
import java.net. *;

import javax.xml.registry. *;
import javax.xml.registry. info model.*;

import edu.unf.p2p.common.Task;
import edu. unf.p2p.utii.Log;

/**
* This class requests the server to run the task
*I
public class RequestHandler extends Thread {

private String serverURL;
private int dataLen;
private int id;
private boolean done = false;
private long timeTaken = OL;
private static fmal String MY_NAME = "RequestHandler";

public RequestHandler(String serverURL, int dataLen, int id) {
this.serverURL = serverURL;
this.dataLen = dataLen;
this.id = id;

public void runO {
Log.logDebug(MY_NAME, getld() +"processing req, URL: "+ serverURL);
long startTime = -I ;

try{
URL uri= new URL(serverURL + "?cmd=");
URLConnection con= url.openConnectionO;
con.setDolnput(true);
con.setDoOutput(true);
con.setRequestProperty("Content-Type", "application/ octet -stream;");

int numBytes = -1;
byte[] byteArr =new byte[30 * I 024];

OutputStream out= con.getOutputStrearnO;

Task task= new Tasklmpl(dataLen);
Class taskClass = task.getC!assO;
ClassLoader loader= taskC!ass.getClassLoaderO;
InputStrearn inStream = loader

.getResourceAsStrearn("edu/unf/p2p/client/Tasklmpl.class");

-69-

}

numBytes = inStream.available();
startTime = System.currentTimeMillisO;

ObjectOutputStream numOut =new ObjectOutputStream(out);
numOut.writelnt(numBytes);
numOut.flush();

BufferedlnputStream taskln =new BufferedinputStream(inStream);
BufferedOutputStream bufDut =new BufferedOutputStream(out);
while ((numBytes = taskln.read(byteArr, 0, 30 * 1024)) != -1)

bufDut.write(byteArr, 0, numBytes);
bufDut.flush();

II Write object with ObjectOutputStream
ObjectOutputStream objOut =new ObjectOutputStream(out);
objOut.writeObject(task);

objOut.flush();
objOut.closeO;
bufDut.closeO;
out.close();
taskln.closeO;
il;IStream. close();

InputStream in= con.getlnputStream();
ObjectlnputStream objln =new ObjectinputStream(in);
task= (Tasklrnpl) objln,readObject();
Log.logDebug(MY_NAME, getidO +"Got task back from server");

objln.close();
numOut.closeO;
in. close();

} catch (Exception e) {
e.printStackTrace();
System.out.println("got exception: " + e.getMessage());
return;

done =true;
long endTime = System.currentTimeMillis();
timeTaken = endTime - startTime;
Log.logDebug(MY _NAME, getldO + " Processed request in " +time Taken

+ 11 msec");

public boolean isDone() {
return done;

public String getld() {
return "Thread#"+ id;

public long getTimeTakenO {
return timeTaken;

!•****"'********"'****"'************ End RequestHandler class *******************************/

!********************************Begin Tasklmpl class **********************u***********/
package edu.unf.p2p.client;

import java. io. *;

import edu.unf.p2p.common.Task;
import edu.unf.p2p.utii.Log;

-70-

/*
* This class implements the Task to be performed at the server

*
*I

public class Tasklmpl implements Task, Serializable {
public static final boolean DEBUG= false;
public static final int RANDOM_MULTIPLY_FACTOR = 100000;
public static final int ARRAY_ LEN = 8000;

private intO numArr;

public static void main(StringO args) {
int dataLen = Integer.parselnt(args[O]);
Tasklmpl task= new Tasklmpl(dataLen);
long startTime = System.currentTimeMillis();
task. process();
long endTime = System.currentTimeMillis();
System.out.println("Time to service the request: "

+ (endTime- startTime) +" msec");

public Tasklmpl(int len) {
numArr = createArr(len);

public static intO createArr(int len) {
intO retArr =new int[len];
if(DEBUG)

System.out.print("Array: ");
for (int i = 0; i < len; ++i) {

retArr[i] = (int) (Math.random() * RANDOM_MULTIPLY_FACTOR);
if (DEBUG)

System.out.print(retArr[i] + " ");
}
if (DEBUG)

System.out.println();
return retArr;

public void process() {
bubbleSort(numArr, numArr.length);
//q_sort(numArr, 0, numArr.length-1);
//search(numArr, (int) (Math.random() * RANDOM_MULTIPL Y _FACTOR));

public void postProcess() {
System.out.println("Sorted Array: ");
for (inti= 0; i < numArr.length; ++i) {

System.out.print(numArr[i] + " ");
}
·system.out.println();

public static void bubbleSort(intO numbers, int array_size) {
int i,j;

for (i"' (array_size- 1); i >= 0; i--) {
for (j = l;j <= i;j++) {

if (numbers[j - I] > nurnbers[j]) {
int temp= numbers[j - 1];
numbers[j - 1] = numbers[j];
numbers[j] = temp;

public static void q_sort(intO numbers, int left, int right) {
int pivot, !_hold, r_hold;

-71-

}

!_hold-= left;
r _hold = right;
pivot= numbers[left];
while (left <right) {

while ((numbers[right] >=pivot) && (left< right))
right--;

if (left != right) {

}

numbers[left] =numbers[right];
left++;

while ((numbers[left] <=pivot) && (left< right))
left++;

if (left !=right) {

}
numbers[left] =pivot;
pivot= left;
left"' I hold;
right= r_hold;
if (left< pivot)

numbers[right] = numbers[left];
right--;

q_sort(numbers, left, pivot- 1);
if (right> pivot)

q_sort(numbers, pivot+ I, right);

public static int search(intO numbers, int searchNum) {
int count= 0;
for (int i = 0; i <numbers. length; ++i) {

if (numbers[i] = searchNum)
count++;

return count;

/********************************End Tasklmpl class ************************************/

!******************************** Start TaskRequestor class *******************************/
package edu.unf.p2p.client;

import java.io. *;
import java. uti!.*;
import java.net. *;

import javax.xml.registry. *;
import javax.xml.registry.infomodel. *;

import edu.unf.p2p.common.Task;
import edu.unf.p2p.util.Log;
import edu.unf.p2p.util.RegistryUtil;

!**
* This class is the main client program that spawns off threads to process the tasks
*I

public class TaskRequestor {
private static String MY_NAME = "TaskRequestor";

public static void main(StringO args) {
if (args.length I= 1 && args.length I= 2) {

System.err.println("Usage: "+ MY_NAME
+ " <total-data-len> <indiv-data-len>");

System.err.println("The total-data-len is the total length"

return;

+"of the data in KB to be processed by server threads"
+ "with each thread processing indiv-data-len KB data");

-72-

String arg2 = args.length = 2 ? args[l] : null;
//processMain(args[O], arg2);
processMultiCllents(args[O), arg2)~
1/processPerfComp(args[O], arg2);

public static long processMain(String arg1, String arg2) {
int dataLen = lnteger.parselnt(arg1) * 1 024;
int indivDataLen = Integer.parselnt(arg2) * 1024;

try {
List serverList = getListFromSuperNodesO;
//indivDataLen"" dataLen I serverList.sizeO;
/lint numThreads = serverList.sizeO;
int numThreads = dataLen I indlvDataLen;
return process(indivDataLen, numThreads, serverList);

} catch (IOException e) {
System.err.println("Got IOException: "+ e.getMessageO);

}
return -1;

public static long processMultiClients(String arg1, String arg2) {
int dataLen = Integer.parselnt(argl) * 1024;
int indivDataLen = Integer.parselnt(arg2) * 1 024;

try{
for (inti= 0; i < 4; ++i) {

}

List serverList = getListFromSuperNodesO;
int numThreads = dataLen I indivDataLen;
process(indivDataLen, numThreads, serverList);
System.out.println("·------Completed "+ (i + 1)

+ n iteration ------•--");

} catch (IOException e) {
System.err.println("Got IOException: " + e.getMessageO);

}
return -I;

public static long processPerfComp(String arg1, String arg2) {
int dataLen = lnteger.parselnt(argl) * 1024;
int indivDataLen = 128 * 1024;

try{
List serverList = getListFromSuperNodes();
//indivDataLen = dataLen I serverList.sizeO;
int numThreads = dataLen I indivDataLen;
return process(indivDataLen, numThreads, serverList);

} catch (IOException e) {
System.err.println("Got IOException: "+ e.getMessageO);

}
return -1;

public static long process(int indivDataLen, int numThreads, List serverList) {
Log.logDebug(MY _NAME, "Data divided into " + numThreads

+ " threads having data of size " + indivDataLen + " each");
List notDoneThreads = new ArrayListO;

long startTime = System.currentTimeMil!lsO;
//long tota!Time = 0;
Map threadMap =new HashMap();
Iterator i = null;
for (int curThread = 0; curThread < numThreads;) {

i = serverList.iterator();
while (i.hasNext()) {

Map map = (Map) i.next();
String uri= (String) map.get("URl");
String serverThreads =(String) map.get("MAXTHREADS");

-73-

}
do {

}

if (CllrThread = numThreads
II Integer.parseint(serverThreads) = 0)

continue;
Log.logDebug(MY_NAME, "Using map:"+ map);
RequestHandler req =new RequestHandler(uri, indivDataLen,

++curThread);
req.startO;
notDoneThreads.add(req);
map, put("MAXTHREADS", String.valueOf(Integer

.parseint(serverThreads}- 1));
threadMap.put(req, map);

i = notDoneThreads.iteratorO;
while (i.hasNextO) {

RequestHandler req = (RequestHandler) i.next();
if (req.isDoneO) {

i.removeO;
//totalTime += req.getTimeTakenO;
Map map= (Map) threadMap.get(req);
Log. logDebug(MY _NAME, "Freeing map: " + map);
String serverThreads =(String) map.get("MAXTHREADS");
m!\p.put("MAXTHREADS", String. valueOf(lnteger

. parselnt(serverThreads) + 1));

i = notDoneThreads.iteratorO;
while (i.h!ISNextO) {

}

RequestHandler req = (RequestHandler) i.nextO;
if (req. isDoneO) {

i.remove();
//totalTime += req.getTimeTaken();

} while (notDoneThreads.size() > 0);

long endTime = System.currentTimeMillis();
1/System.out.println("TOT AL Processing Time to service the request: " +
II totalTime + " msec");
System.out.println("GRAND TOTAL Time to service the request: "

+ (eridTime- startTime) + "msec");
return endTime - startTime;

public static URLConnection getConnection(String urlToCormect)
throws Exception {

URL uri== new URL(uriToConnect);
URLConnection con== url.openConnection();
con.setDolnput(true);
con.setDoOutput(true);
con. setRequestProperty("Content-Type", "application/octet -stream;");
return con;

public static List getListFromSuperNodes() throws IOException {
List superNodes = RegistryUtil.getURLList("SuperNode");
Log.logDebug(MY_NAME, "SuperNodes got back:"+ super Nodes);
if (superNodes =null II superNodes.size() = 0)

throw new IOException("No superNodes available");

List serverList = new ArrayList();
Iterator i = superNodes.iteratorO;
while (i.hasNext()) {

Map map= (Map) i.next();
String superNodeURI =(String) map.get("URI");
if (superNodeURI =null)

continue;
try(

URLConnection con= getConnection(superNodeURI);

-74-

}

BufferedlnputStream in = new BufferedlnputStream(con
.getlnputStreamO);

byte[] byteArt =new byte[1024];
int numBytes = in.read(byteArr, 0, 1024);
String str =new String(byteArr, 0, numBytes);
Log.logDebug(MY _NAME, "Got str: "+ str);
if(str =null II "".equals(str))

continue;

StringTokenizer tokens= new StringTokenizer(str, "I");
while (tokens.hasMoreTokensO) {

}

String token= tokens.nextToken(); .
StringTokenizer toks =new StringTokenizer(token, ";");
Map newMap =new HashMap();
newMap.put("URI", new String(toks.nextTokenO));
newMap.put("MAXTHREADS", new String(toks.nextTokenO));
serverList.add(newMap);

} catch (Exception e) {
e. printStackTrace();
continue;

Log.logDebug(MY_NAME, "serverList: "+ serverList);
return serverList;

I*************U***************** End TaskRequestor class ********************************I

I***************"'**************** Start TaskHandler class *********************************I
package edu.unf.p2p.server;

importjava.io.*;
import java. uti!.*;
importjava.lang.retlect. *;

import javax.servlet.ServletException;
import javax.servlet.Servletconfig;
import javax.servlet.http.HttpServlet;
impOJtjavax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import edu.unf.p2p.utii.Log;
import edu.unf.p2p.utii.Constants;

I**
* This class handles all requests passed to the server
"'I

public class TaskHandler extends javax.servlet.http.HttpServlet {

public static final String PROPERTIES _FILE= "TaskHandler";
private static final int READ_BUF_8IZE = 1024;
private static final int BUF_SIZE = 30 * 1024;
private static final int FILE_ WRITE_SUCCESS = 1;
private static final int FILE_ WRITE_FAIL_IO = 2;

public void init(Servletconfig config) throws ServletException {
}

I**
* Respond to a GET request to the servlet.
* @param request The servlet request we are processing
* @param response The servlet response we are producing

*
• @exception IOException if an input/output error occurs
* @exception ServletException if a servlet error occurs
*I

-75~

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException {

doPost(request, response);

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException {

String crud= request.getParameter("crud");
if(crud =null) crud= "status";

if (cru~.equalslgnoreCase("status")) {
processStatus(request, response);

} else if(crud.equalslgnoreCase("")) {
processTask(request, response);

public void processStatus(HttpServletRequest request,
HttpServletResponse response) throws IOException, ServletException {

OutputStream out= response.getOutputStream();
out. write(Constants.STATUS _ACTIVE);
out. close();
//Log.logDebug(thls, "Sent status:"+ Constants.STATUS_ACTIVE);
return;

public void processTask(HttpServletRequest request,
HttpServletResponse response) throws IOException, ServletException {

byte[] bufArr =new byte[BUF _SIZE];
Log.logDebug(this, "Processing task");
try{

InputStream in = request.getlnputStream();

ObjectlnputStream nuruln =new ObjectlnputStrearu(in);
int nuruBytes = nuruln.readlnt();
int actua!Bytes = in.read(bufArr, 0, numBytes);
if (actua!Bytes I= nuruBytes) {

}

throw new IOException("Error reading class, got" + actua!Bytes
+ " instead of" + numBytes);

Log.logDebug(this, "Actual bytes:"+ actua!Bytes);

MyCiassLoader loader= new MyClassLoader();
loader.b = bufArr;
loader. offset= 0;
loader,len = nuruBytes;

loader.getObj(in, response.getOutputStrearu());
} catch (Exception e) {

e.printStackTrace();
Systeru.out.println("got exception (any): " + e.getMessage());
return;

public class MyCiassLoader extends ClassLoader {
public int offset, len;

public byte[] b;

private Hashtable classes =new Hashtable();

public Class loadClass(String name) throws ClassNotFoundException {
Systeru.out.println("carue inside loadclass");
return (loadCiass(narue, true});

public Object getObj(lnputStrearu in, OutputStrearu out)

-76-

I**

throws IOException, ClassNotFoundException, Exception {
Class c = loadClass("edu.unf.p2p.server.ObjDeserializer", true);
try{

ClassO pararneterTypes =new Class[] { InputStrearn.class,
OutputStrearn.class } ;

Object[] arguments = new Object[] { in, out } ;

pararneterTypes =new Class[] {};
arguments = new Object[] {};
Constructor con= c.getConstructor(parameterTypes);
Object obj_in = con.newlnstance(arguments);

pararneterTypes =new ClassO { InputStream.class,
OutputStream.class } ;

arguments= new Object[] { in, out};
Method readMethod = c.getMethod("deserialize", pararneterTypes);
Log.logDebug(this, "Invoking method");
readMethod.invoke(obj_in, arguments);
Log.)ogDebug(this, "Done");
return null;

} catch (NoSuchMethodException e) {
System.out.println(e + ": "+ e.getMessageO);

} catch (lllegalAccessException e) {
System.out.println(e + ": "+ e.getMessage());

} catch (lnvocationTargetException e) {

I*

String mesg = e.getTargetException().getMessage();
System.out.println(e + ": "+ mesg);
e. printStackTrace();

• Obj~ct obj_in =new java.io.ObjectlnputStrearn(in); Object task=
* obj_in.readObjectO;
*I
return null;

* This is the required version ofloadClass which is called both from
* loadClass above and from the internal function FindClassFromCiass.
*I

public synchronized Class loadClass(String classNarne, boolean resolvelt)
throws ClassNotFoundException {

Class result;
byte class Data[];

ClassLoader defaultLoader = this.getClass().getClassLoader();
System.out.ptintln(" >>>>>>Load class: "+ className);

I* Check our local cache of classes *I
result= (Class) classes.get(className);
if (result != null) {

System.out.println(" >>>>>>returning cached result: "
+ classNarne);

return result;

I* Check with the primordial class loader *I
try{

result= super.flndSystemClass(className);
System.out

.println("

return result;

>>>>>>returning system class (in CLASSPATH):"
+ classNarne);

} catch (ClassNotFoundException e) {
System.out.println(" >>>>>>Not a system class: "

+ classNarne);

try {

-77-

class.forname):"

I**

if (className.equals("edu.unf.p2p.server.ObjDeserializer")) {
result= Class.forName(className);
byte[] byteArr = loadFileBytes(className);
if (byteArr = null)

throw new ClassNotFoundException("class not found");
result= defineClass(byteArr, 0, byteArr.length);
System. out

.println(" >>>>>>returning--- class (from

return result;
}
result= defaultLoader.loadClass(className);
System. out

+ className);

.println(" >>>>>>returning other class (in CLASSPATH): "
+ className);

return result;
} catch (CiassNotFoundException e) {

System.out.println(" >>>>>>Not a system class: "
+ className);

System.out.println(" >>>>>>didn't find "+ className);

I* Try to load it from our repository *I
classData = b;
if(classData =null) {

throw new ClassNotFoundExceptionO;

System.out.println(" >>>>>> didn't find " + className
+"in n;pository.");

I* Define it (parse the class file) ""I
result= defineCiass(classData, offset, len);
if(result=null) {

throw new ClassFormatErrorO;

if (resolvelt) {
resolveClass(result);

classes.put(className, result);
System.out.println(" >>>>>>Returning newly loaded class: "

+ className);
return result;

* Search the zip file bytes, and return an array of bytes corresponding
* to the given class name
*I
private byte[] loadFileBytes(String className) {

try{
Class taskClass = this.getClassO;
ClassLoader loader= taskCiass.getCiassLoaderO;
InputStream inStream = loader

.getResourceAsStream("edu/unf/p2plserverl0bjDeserializer.class");
BufferedinputStrearn in= new BufferedlnputStream(inStream);

byte[) byteArr =new byte[BUF _J;IZE];
int numBytes = in.read(byteArr, 0, BUF _SIZE);
if(numBytes=-1) {

}

Log.logDebng(this, "ERROR: filesize >" + BUF _SIZE);
return null;

byte[) classBytes =new byte[numBytes];
for (inti= 0; i < nurnBytes; i++)

-78-

classBytes[i) = byteArr[i];
return classBytes;

} catch (IOException e) {
e.printStackTraceO;
return null;

} .
/******************u************ End TaskHandler class **********************************/

!********************************Start ObjDeserializer class **********h*******************/
package edu.unfp2p.server;

import java. io. *;
import java. uti!.*;
importjava.lang.reflect. *;

import edu.unf.p2p.common.Task;
impmt edu.unf.p2p.utii.Log;
import edu.unf.p2p.utii.Constants;

/**
* This class deserializes the object from client
*I

public class ObjDeserializer (
private static final String MY_ NAME = "ObjDeserialier";
private static final int READ _BUF _SIZE= l024;
private static final int BUF _SIZE= 30 * 1024;
private static final int FILE_ WRlTE _SUCCESS = 1;
private static final int FILE_ WRITE_FAIL_IO = 2;

public ObjDeserializerO (
Log.logDebug(MY_NAME, "inside constructor");

public static void deserialize(InputStream in, OutputStream out)
throws IOException {

byteO bufArr =new byte[BUF _SIZE];
int numBytes = ·l;
try{

ObjectlnputStream objln =new ObjectlnputStream(in);
Task task= (Task) objin.readObjectO;

task.processO;

LogJogDebug(MY _NAME, "Read from client");

ObjectOutputStream objOut =new ObjectOutputStream(out);
objOut.writeObject(task);

objOut.closeO;
in.closeO;
out.closeO;

) catch (Exception e) {
e. printStackTraceO;
System.out.println("got exception (any): "+ e.getMessageO);
return;

Log.logDebug(MY _NAME, "Finished servicing event ");

!********************************End ObjDeserializer class ********************************/

-79-

!******************************** Start ServerMonitor class************"'*******************/
package edu.unf.p2p.supemode;

import java. text. SimpleDateFormat;
import java. io. *;
import java.net. URL;
import java. net. URLConnection;
importjava.utii.ArrayList;
importjava.utii.Calendar;
import java.utii.Date;
import java.utii.HashMap;
importjava.utii.Iterator;
import java.util. List;
import java.util.Map;
import java.utii.Set;

import edu.unf.p2p.util.Log;
import edu.unf.p2p.utii.Constants;
import edu.unf.p2p.util.RegistryUtil;

!**
* Class to monitor server on the supemode side

* * @author Jayant Mishra

*
*I
public class ServerMonitor extends Thread {

private static final String MY_ NAME = "ServerMonitor";
private static long monitor Interval = 1 OL; If in minutes
private static List allURLs;
private static List activeURLs;

public static void main(String argsO) {
refreshActiveListO;

public ServerMonitorO {
Log.logDebug(this, "In constructor ofServerMonitor");

public void runO {
while (true) {

refreshActiveListO;

public static void refreshActiveListO {
try {

If get list ofURLs
List newActiveURLs =new ArrayListO;
!/Log.logDebug(MY_NAME, "Calling getURLList method of
II RegistryUtil");
allURLs = RegistryUtil.getURLList("Power server service");
Log.logDebug(MY _NAME, "Got back: "+ allURLs);
if(allURLs =null)

throw new IOException("No server URLs");

If get status from each URL
Iterator i ""allURLs.iteratorO;
while (i.hasNextO) {

Map map= (Map) i.next();
String URL = (String) map.get("URI");
String numThreads =(String) map.get("MAXTHREADS");
Log.logDebug(MY_NAME, "Getting status from URL: "+ URL);
URL uri"' new URL(URL + "?cmd=status");
URLConnection con= url.openConnectionO;
con.setUseCaches(false);
con.setDoinput(true);
con.setDoOutput(true);
con.setReques!Property("Content-Type",

-80-

}

"application! octet -stream;");
con.connect();

OutputStream out= con.getOutputStream();
InputStream in= con.getlnputStream();
int retCode = in.read();
Log.logDebug(MY _NAME, "Got back status code: "+ retCode

+ " from URL: " + URL);
if (rete ode= Constants.ST ATUS _ACTIVE) {

II add to list of active URLs
newActiveURLs.add(URL + ";" + numThreads);

activeURLs = newActiveURLs;

} catch (IOException e) {
Log.logDebug(MY _NAME, "No server URLs found");

} finally {

I**

try {
Thread.sleep(monitorlnterval * 60 * 1000);

} catch (InterruptedException e) {
Log.logWam(MY_NAME, "InterruptedException encountered;"

+ e.getMessage());

* Returns the monitorlnterval.

* * @return long
*I

public static long getMonitorlnterval() {
return monitorlnterval;

public static List getActiveURLs() {
return activeURLs;

I**
* @param I
*I
public static void setMonitorlnterval(long I) {

monitorlnterval = I;

I******************************** End ServerMonitor class *********************************I

I******************************** Start SuperNode class ***********************************I
package edu.unf.p2p.supernode;

import java. io. *;
importjava.util. *;
import java.lang.reflect. *;

import javax.servlet.ServletException;
importjavax.servlet.ServletConfig;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import edu.unf.p2p.utii.Log;
import edu.unf.p2p.utii.Constants;

I**
* This class handles all requests passed to the supemode
*I

-81-

public class SuperNode extends javax.servlet.http.HttpServlet {

}

private static final int READ _BUF _SIZE= 1024;
private static final int BUF _SIZE= 30 * 1024;
private static fmal int FILE_ WRITE_SUCCESS = 1;
private static final int FILE_WRITE_FAIL_IO = 2;

public void init(ServletConfig config) throws ServletException {
ServerMonitor monitor = new ServerMonitor();
monitor.start();
Log.logDebug(this, "Started monitor");

!**
* Respond to a GET request to this servlet.
* * @param request The servlet request we are processing
* @param response The servlet response we are producing
*
* @exception IOException if an inputloutput error occurs
* @exception ServletException if a servlet error occurs
*I
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException {
doPost(request, response);

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException {

String cmd = request.getParameter("cmd");
if(cmd =null)

cmd = "getActiveURLs";

if (cmd.equalsignoreCase("getActiveURLs")) {
processGetActiveURLs(request, response);

}
Log.logDebug(this, "Finished servicing event: " + cmd);

public void processGetActiveURLs(HttpServletRequest request,
HttpServletResponse response) throws IOException, ServletException {

List URLs = ServerMonitor.getActiveURLs();
StringBuffur URLStrBuff= new StringBuffer();
lterator i = URLs.iterator();
while (i.hasNext()) {

}

String URL = (String) i.next();
URLStrBuff.append(URL + "I");

OutputStream out= response.getOutputStream();
out.write((URLStrBuff.toString()).getBytes());
out.close();
return;

!********************************End SuperNode class ***********************************/

!********************************Start Constants class************************************/
package edu.unf.p2p.util;

/**
* @author Jayant Mishra
*I

public class Constants {

public static final int BUF _SIZE"" 8 * 1024;

public static final int STATUS_DEAD = -1;
public static final int STATUS_INACTIVE = 0;

-82-

}

public static final int STATUS_ACTIVE = 1;
public static final int STATUS_BUSY = 2;

/********************************End Constants class*************************************/
'

/******************************** Start Log class ********************"'*******************/
package edu.unf.p2p.util;

importjava.util. *;
importjava.io.*;
importjavatext.SimpleDateFonnat;
import javax.xml. parsers.*;
import org.w3c.dom.*;

/**
* @author Jayant Mlshra
*I
public class Log {

public static final String LOG4J_CAT_FATAL ="FATAL";
public static final String LOG4J_CAT_ERROR ="ERROR";
public static final String LOG4J _CAT_ WARN= "WARN";
public static final String LOG4J _CAT_ INFO = "INFO";
public static final String LOG4J_CAT_DEBUG ="DEBUG";
public static final String LOG4J_CATEGORY_STR = "log4j.rootCategory";

private static fmal String MY_ NAME = "Log";

private static fmal List LOG4J_CAT_ARRAY =new ArrayListO;
static {

};

LOG4J_CAT_ARRAY.add(LOG4J_CAT_DEBUG);
LOG4J _CAT _ARRA Y.add(LOG4J_CAT_INFO);
LOG4J_CAT_ARRA Y.add(LOG4J_CAT_ WARN);
LOG4J_ CAT_ARRA Y.add(LOG4J _CAT _ERROR);
LOG4J_CAT_ARRAY.add(LOG4J_CAT_FATAL);

private static int curLogLevel = LOG4J_CAT_ARRAY.index0f(LOG4J_CAT_DEBUG);

public static void log(String name, String mesg, int logLevel) {
if(curLogLevel <= logLevel) {

SimpleDateFonnat dateFormat =new SimpleDateFonnat(
"yyyy-MM-dd HH:mm:ss");

Date date = new DateO;
System.out.println(dateFonnat.format(date) +" :"+name+"-"

+mesg);

public static void logFatal(Object obj, String mesg) {
log((obj instanceof String ? (String) obj : obj.getClassQ.getNameO),

mesg, LOG4J_CAT_ARRAY.index0f(LOG4J_CAT_FATAL));

public static void logError(Object obj, String mesg) {
log((obj instanceof String? (String) obj : obj.getClassO.getNameO),

mesg, LOG4J_CAT_ARRAY.index0f(LOG4J_CAT_ERROR));

public static void logWarn(Object obj, String mesg) {
log((obj instanceof String? (String) obj : obj.getClassQ.getNameO),

mesg, LOG4J_CAT_ARRAY.index0f(LOG4J_CAT_WARN));

public static void loglnfo(Object obj, String mesg) {
log((obj instanceofString? (String) obj: obj.getCiassQ.getNameO),

mesg, LOG4J _CAT _ARRA Y.index0f(LOG4J _CAT_ INFO));

-83-

public static void logDebug(Object obj, String mesg) {
log((obj instanceofString? (String) obj: obj.getClassO.getNameO),

mesg, LOG4J_CAT_ARRAY.index0f(LOG4J_CAT_DEBUG));

}
/********************************End Log class ***/

/******************************** Start RegistryUtil class **********************************/
package edu.unf.p2p.util;

importjavax.xml.registry.*;
import javax.xml.registry.infomodel. *;

import java.io. *;
importjava.util. *;

public class RegistryUtil {
private static final String QUERY_URL = "query.url";
private static final String PUBLISH_URL ="publish. uri";
private static final String PROXY_ HOST = "http. proxy.host";
private static final String PROXY _PORT= "http. proxy. port";
public static final String PROPERTIES]ILE = "TaskHandler";

public static void main(String args[)) throws Exception {
List serverURL = RegistryUtil.getURLList("Power server service");
Log.logDebug('"', "Got back:"+ serverURL);

public static List getURLList(String svcName) throws IOException {
Properties props= new Properties();
ResourceBundle bundle"' ResourceBundle.getBundle(pROPERTIES FILE);
//String svcName ="Power server service"; -
List list = null;
try{

//props.load(new FilelnputStream(PROPERTIES _FILE));
list= RegistryUtil.executeQueryTest(bundle, svcName);
if (list =null)

throw new IOException("Got NO companies offering"+ svcName);
} catch (JAXRException e) {

System.err.println("Error during the test: " + e.getMessage());
throw new IOException(e. getMessageO);

} catch (IOException e) {

}
return list;

System.err.println("Can not open properties file: "
+ e.getMessageO);

throw e;

public static List executeQueryTest(ResourceBundle bundle, String svcName)
throws JAXRException {

List retList =new ArrayList();
try{

Properties connProps = setConnectionProperties(bundle);

ConnectionFactory factory= ConnectionFactory.newlnstance();
factory,setProperties(connProps);
Connection conn"' factory.createConnectionO;
RegistryService rs"' conn.getRegistryServiceO;
BusinessQueryManager bqm = rs.getBusinessQueryManagerO;
BusinessLifeCycleManager blcm = rs.getBusinessLifeCycleManagerO;

ClassificationScheme cScheme = bqm.findClassificationSchemeByName(
null, "ntis-gov:naics");

Classification classification= blcm.createClassification(cScheme,
"Other Computer Related Services", "541519");

Collection classifications= new ArrayListO;
classifications.add(classification);

~84-

II make JAXR request
BulkResponse response= bqm.findOrganizations(null, null,

classifications, null, null, null);
Collection orgs = response.getCollection();

Iterator orglter = orgs.iterator();
while (orglter.hasNextO) {

}

Organization otg =(Organization) orgiter.next();
/*
* System.out.println("Organization Name: "+ getName(org));
* System.out.println("Organization Key: "+
* org.getKey().getldO); System.out.println("Organization
* Description: "+ getDescription(org));
*I

Collection services = org.getServices();
Iterator svelter= services.iterator();
while (svclter.hasNext()) {

Service service= (Service) svclter.next();
String name= getName(service);
if(name I= null && lname.equals(svcName))

continue;
String desc = getDescription(service);
I*
* System.out.println("\tService Name: "+
* getName(service)); System.out.println("\tService Key: "+
* service.getKey().getld()); System.out.println("\tService
*Description: "+ getDescription(service));
*I

II Get a collection of ServiceBindings from a Service
Collection serviceBindings = service.getServiceBindings();
II Iterate through the collection to get an individual
II ServiceBinding
Iterator sblter = serviceBindings.iterator();
String uri="";
while (sbiter.hasNext()) {

}

ServiceBinding serviceBinding = (ServiceBinding) sblter
.next();

II Get UR1 ofthe service. You can access the service
II through this URI.
uri= serviceBinding.getAccessURI();

Map map =new HashMap();
map.put("URI", new String(uri));
map.put("MAXTHREADS", new String(desc));

retList.add(map);

} catch (JAXRException e) {
e.printStackTraceO;

}
return retList;

private static Properties setCo!lllectionProperties(ResourceBundle bundle) {
String httpProxyHost = "";
String httpProxyPort = "";
String regUrli = '"';
String regUrlp = "";

String temp;

//temp= ((String)props.getProperty(QUERY _ URL)).trim();
temp= (bundle.getString(QUERY_ URL)).trim();
if (temp !=null)

regUrli = temp;

I /temp = ((String)props.getProperty(PUBLISH _ URL)). trim();

-.85-

}

temp= (bupdle.getString(PUBLISH_URL)).trim();
if (temp I= null)

regUrlp =temp;

//temp= ((String)props.getProperty(PROXY_HOST)).trim();
temp = (bundle.getString(PROXY _HOST)).trim();
if (temp I= null)

httpProxyHost =temp;

//temp= ((String)props.getProperty(PROXY _PORT)).trim();
temp = (bundle.getString(PROXY _PORT)). trim();
if (temp !=null)

httpProxyPort =temp;

Properties connProps =new Properties();
connProps.setProperty("javax.xml.registry .queryManagerURL", regUrli);
connProps

.setProperty("javax.xml.registry.lifeCycleManagerURL", regUrlp);
connProps.setProperty("javax.xml.registry.factoryC!ass",

"com.sun.xml.registry.uddi.ConnectionFactorylmpl");
connProps.setProperty("com.sun.xml.registry.http.proxyHost",

httpProxyHost);
connProps. setProperty("com.sun.xml.registry.http.proxyPort",

httpProxyPort);
return connProps;

private static String getName(RegistryObject ro) throws JAXRException {
try {

return ro.getName().getValue();
} catch (Nul!PointerException npe) {

return"";

private static String getDescription(RegistryObject ro)
throws JAXRException {

try{
return ro.getDescription().getValue();

} catch (NuliPointerException npe) {
return 1111 ~

/********************************End RegistryUtil class ***********************************/

-86-

VITA

Jayant Mishra has a Bachelor of Science degree from the Regional Engineering College,

Bhopal, India, 1996, and expects to receive a Master of Science in Computer and

Information Sciences from the University of North Florida in 2006. Dr. Sanjay Ahuja of

the University ofNorth Florida served as Jayant's thesis adviser. Jayant is a Senior IT

Consultant, working for CSX, Inc. for the past three years. Prior to that, Jayant worked as

an IT Consultant for Citicards, N.A. for two years.

Jayant has on-going interests in distributed computing, peer-to-peer networks, and object

oriented software design. Jayant has extensive programming experience inC, C++ and

Java languages. Additionally, Jayant has strong knowledge of Java 2 Enterprise Edition

(J2EE), Model View Controller (MVC), Design Patterns, and Web Services application

development. Jayant is fluent in Hindi and enjoys tennis. Married for the past eight years,

Jayant has one son, age seven years and one daughter, age one year.

-87-

	P2PCompute - A Peer-to-Peer Computing Model
	Suggested Citation

	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1: Introduction
	Chapter 2: Peer-to-Peer Systems
	2.1 File Sharing Applications
	2.2 Computational Power-Sharing Applications
	2.3 Instant Messaging Applications

	Chapter 3: Power Server Model
	3.1 Introduction
	3.2 Drawbacks of the P2P Computing Model
	3.3 How the Power Server Model Works
	3.4 . Advantages of the Power Server Model
	3.5 Issues with the Power Server Model

	Chapter 4: P2PCompute
	4.1 Introduction
	4.2 P2PCompute Design
	4.2.1 P2PCompute Infrastructure
	4.2.1.1 UDDI Registry
	4.2.1.2 SuperNode

	4.2.2 P2PCompute Server
	4.2.3 P2PCompute Client

	4.3 Proposed Approaches to Find Servers
	4.3.1 Using the UDDI Registry Directly
	4.3.2 Using the UDDI Registry and Supernodes

	4.4 Features
	4.4.1 Load Balancing
	4.4.2 Scalability
	4.4.3 Redundancy and Error Handling
	4.4.4 Platform Independence
	4.4.5 Incentives

	Chapter 5: Implementation
	5.1 Server Implementation
	5.2 P2PCompute Infrastructure Implementation
	5.3 Client Implementation

	Chapter 6: Results and Analysis
	6.1 Test Configuration
	6.2 Comparison with the Power Server Model
	6.2.1 Performance Comparison
	6.2.2 Scalability Comparison

	6.3 Standard Algorithmic Tests
	6.3.1 Sequential Search- O(n)
	6.3.2 Quick Sort- O(n log n)
	6.3.3 Bubble Sort- O(n2)

	6.4 Load Balancing
	6.5 Supernode Validation

	Chapter 7: Conclusions and Future Research
	7.1 Conclusions
	7.2 Future Research
	7.2.1 Security and Privacy Issues
	7.2.2 Redundancy and Error Handling Issues
	7.2.3 Remuneration/Financial Aspect

	References
	Appendix A: P2PCompute Code Listings

