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ABSTRACT 

With the rapid growth of traffic on the internet, further development of the web 

technology upon which it is based becomes extremely important. For the evolvement of 

Web 2.0, web services are essential. Web services are programs that allow different 

computer platforms to communicate interactively across the web, without the need for 

extra data for interfaces and formats, such as webpage structures. Since web services 

are a future trend for the growth of the internet, the tools used for their development are 

also important. Although there are many choices of web service frameworks to choose 

from, developers should choose the framework that best fits their applications, based on 

performance, time, and effort. For this project, we compared the qualitative and 

quantitative metrics of four common frameworks. The four frameworks were Apache 

Axis, JBossWS, Codehaus XFire, and Resin Hessian. After testing, the results were 

statistically analyzed using the Statistical Analysis System (SAS). 
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Chapter 1 

INTRODUCTION 

When going on a trip to another state or country, a person usually must buy airplane 

tickets, rent a car, and make hotel reservations. When dealing with airplane tickets, a 

person may even have to buy several tickets, due to not having a direct flight available 

to take the person directly to his or her final destination. Looking up arrival and 

departure times for connecting flights that will not require a long wait at the airport 

could be time consuming and frustrating. Therefore, people often seek out travel agents 

to make arrangements for them. But, what if the agent was actually a virtual agent 

online [Hendler01]? What if the person just entered into the computer the location he 

wanted to start from, the destination, the desired time for departure or arrival, and all 

the information required; and, the computer showed all the results the person could 

choose from to purchase the tickets? Even better, such virtual agents could provide 

information on car rentals and hotels near a person's destination and reserve them. A 

virtual agent could save much effort and time and could also be more accurate than 

human agents. This kind of agent has already been implemented, although not 

necessarily using web services, and represents the types ofteclmology that stand to 

benefit from the development of web services. Figure 1 shows a comparison of travel 

planning with and without a virtual agent. 
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Hours of searching and planning 
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Car Rental 

requirements 
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Hotel Reservation 

Figure 1: Comparison of Planning Travel With and Without Virtual Agent 

Instead of creating a system that browses airline websites to look up flight schedules 

and then integrates the information, a system requesting the same information through 

web services is much better for several reasons, one of which would be easier 

maintenance [Yang02]. The format of websites' pages may change from time to time. 

For example, ifNorthwest Airlines wants to add more services to its website once in a 

while, the format of the webpage would definitely change, making it more difficult for 

an agent system to retrieve data from it, unless the system had a high degree of artificial 

intelligence, which is an unnecessary feature. Another reason for web services would be 

efficiency [McllraithOl]. Even for a webpage that never changes format at all, a travel 

agency system would have to download all the hypertext pages with much unnecessary 

data, such as the markups, instead of just retrieving the information needed in a few 

strings. Web services avoid this problem, since the required information can be easily 
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called up and only the information requested would be sent back, without the markups. 

Figure 2 compares the information size ofHTML webpages and simple object access 

protocol (SOAP) envelopes used by web services. 

-<html> 
-<headl> 

~title>North~est Airlines -
Airline Tickets, Plane Tickets 
& Airfare</title> 
</head> 
<body hgeolor~"#ffffff" 
:ru.a.rginwidth= 11 0 11 

ma.rginheight="O'' topm.argin= 11 0" 
left:rna.rgin= 11 0" onLoad= 11 init(); 
checkinset{); readPrefCookie 
() ;u> 

The HTiv.1L source code of a airline 
webpage with nearly a thousand lines 
of code 

<SOAP-ENV:Envelope 
xmlns:SOAP

ENV~"http://example.soap.org/> 

<SOAP-ENV: Body> 
<m:GetFlightPriee 

Xllllns: Iil= '' So:rne-URI 11 >-
<symbol>DIS</symbol> 

</m:GetFlightPriee> 
</SOAP-EHV:Body> 

</SOAP-ENV:Envelope> 

An example of a web service message 
sending airline information in small 
amount of code 

Figure 2: Comparison ofinformation Between Webpages and Web Services 

Instead of developing a web service application from scratch, there are frameworks 

available, which are mostly free, that can be used to make development much easier. 

Which of these frameworks would be a better choice for web service application 

development? This study compares four popular open source frameworks, both 

qualitatively and quantitatively, by doing several tests and analyses. The four 

frameworks are Apache Axis, JBossWS, XFire, and Hessian. A more thorough 

introduction of web services is given in chapter 2. Chapter 3 describes the four 

frameworks used in this study. In chapter 4, the metrics used to measure the 

performance of the frameworks are explained in more detail. Chapter 5 introduces the 
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statistical methods used to analyze the results. In chapter 6, the test results are shown 

and analyzed. The conclusions are presented in chapter 7. 
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Chapter 2 

WEB SERVICES 

Web services are basically software systems designed to support interoperable 

machine-to-machine interaction over a network [Narayanan02]. In order to allow 

different computer platforms to communicate with each other, a language that all 

platforms can understand is needed. A platform-independent language, EAiensible 

Markup Language (XML) [DeckerOO], performs this role. XML envelopes specified in 

a SOAP format are passed between client and web services to enable communication. 

Web services are divided into three different areas- communication protocols, service 

descriptions, and service discovery. The specifications for each are currently being 

developed. The most common specifications for each area are SOAP, the Web Services 

Description Language (WSDL), and the Universal Description, Discovery, and 

Integration (UDDI) directory [Curbera02]. Figure 3 shows the architecture of web 

services based on the three areas .. 
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Figure 3: Web Service Architecture 

2.1 SOAP 

The SOAP protocol specifies communication among web services. Since the Web's 

nature is actually both distributed and heterogeneous, communication methods for web 

services has to be platform-independent, international, secure, and as lightweight as 

possible. XML meets such qualifications effectively, and thus, at present is the best 

solution for a web service's communication protocol. 

The web service's XML-based protocol is used for messaging and remote procedure 

calls (RPC). Instead of defining a new transport protocol, SOAP works on existing 

transports such as HTTP, SMTP, and MQSeries. The structure of SOAP messages is 

quite trivial. It is an XML element with two child elements- one of them containing the 
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header and the other containing the body [Curbera02]. Both the header contents and 

body are arbitrary XML elements. Figure 4 shows the structure of a SOAP envelope. 

<SOAP:Envelope xmlns:SOAP= "http:// 
schemas.xmlsoap.org/soap/envelope/"> 

<SOAP:Header> 
<!-- content of header goes here --> 

</SOAP:Header> 
<SOAP:Body> 

<!-- content of body goes here --> 
</SOAP:Body> 

</SOAP:Envelope> 

Figure 4: Structure of SOAP Envelope 

2.2 WSDL 

WSDL provides a formal, computer-readable description of web services. Although 

SOAP enables communication for web services, it does not provide the information 

about the messages exchanged for the interaction. This is where WSDL comes into play. 

It describes the interface of web services and provides users the infonnation needed for 

making SOAP messages. This description language is in XML format and was 

developed by IBM and Microsoft to describe web services. 

Two pieces of information are provided in a WSDL service description: an application-

level service description and specific protocol-dependent details [Curbera02]. Users 

must follow the details, so they can access the web services at their concrete end points. 

The purpose of separating the information provided by WSDL into the two levels is to 
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help show common functionality between different end points. This is intended to make 

development of web service applications easier to understand. 

2.3 UDDI 

Web services would not be very useful, if only limited services were available. UDDI 

solves this problem. It is a registry of web services' descriptions, like a phone book for 

web services in the digital world. The specification allows users to find service 

providers through a centralized registry of services. There are two basic types 

[Curbera03] of specifications that define a service registry's structure and operation. 

One is the definition of the information to provide about each service and the way to 

encode it; the other is the query and how to update the API for the registry that 

describes the way such information can be accessed and updated. 
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Chapter 3 

WEB SERVICE FRAMEWORKS 

Since web services are designed to transfer data in common ways. Several companies 

and groups developed web service frameworks for the convenience of web service 

developers, so they do not need to write a complete web service from scratch. Some of 

the popular frameworks are Apache Axis, JBossWS, Codehaus XFire, and Resin 

Hessian. This chapter introduces and discusses these frameworks. 

3.1 Apache Axis 

Apache Axis (Axis stands for Apache EXtensible Interaction System) is an open source, 

Java and XML based web service framework created by the Apache Software 

Foundation (ASF). The foundation is a non-profit corporation that mainly produces 

software for network use, such as servers and frameworks for servers. Their projects are 

known to be collaborative, consensus based development processes and free or open 

source software. The Apache Axis package has an implementation of a SOAP server 

and application programming interfaces (API) for generating and deploying web 

service applications [WSA06]. The SOAP engine constructs SOAP processors like 

clients, servers, and gateways. This allows the servers and clients to communicate 

through SOAP messages. The API supports a variety of languages. Besides the Java 

version, a C++ implementation is also available. It allows developers to construct their 

applications in a variety of ways. The easiest method only requires changing the file 
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name extension from ".java" to ".jws". The downside of such a method is that it lacks 

flexibility for further configuration. 

3.2 JBossWS 

JBossWS is JBoss' implementation of Java 2 Enterprise Edition (J2EE) compatible web 

services. The framework is designed to fit better in the overall JBoss architecture and is 

generally more suitable for the specific J2EE requirements for web services. Instead of 

using the traditional Apache server for this framework, JBoss has a server of its own 

and suggests using a framework on this server to get the best performance. Similar to 

ASF, JBoss serves people who focus on open source projects. Their projects emphasize 

the development of Java Enterprise Middleware [JBossWS07], which are software 

programs that act like bridges between applications, operating systems, or both. 

3.3 Codehaus XFire 

Codehaus XFire is a next-generation java SOAP framework It is a free and open source 

SOAP framework that allows a user to implement web services with great ease and 

simplicity. It also provides many features identified in web service specifications, 

which are not yet available in most commercial or open source tools. It is claimed that 

Codehaus XFire has higher perfonnance, since it is built on a low memory StAX 

(Streaming API for XML) based model, but no data confrrms this claim [XFire07]. 
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3.4 Resin Hessian 

The Hessian binary web service protocol makes developing web services simple and 

usable without requiring a large framework; thus, developers do not need to spend more 

time and effort to learn a wide variety of protocols. Since it is a binary protocol, it 

works well on sending binary data, without any need to extend the protocol with 

attachments. Java 2 Micro Edition (J2ME) devices like cell-phones and PDAs can use 

Hessian to connect to web services with better performance, because it is a small 

protocol [HBWSP06]. Hessian was named after the Hessian cloth, which is the British 

term for Burlap. Burlap is simple, practical, and useful, but extremely ordinary 

material - similar to the characteristics of the Hessian protocol. Resin is an open source 

application server also offered by Caucho that integrates with Hessian. 
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Chapter 4 

EVALUATION METRICS 

This chapter examines different factors to be considered when comparing the four 

frameworks in this project. Some metrics are to determine the performance and 

efficiency; some are to show the transparency and abstraction. 

4.1 Latency 

In terms of networks, latency is an expression of how much time it takes for data to be 

sent back in response to a request [Chin gO 1]. This includes the time for the request to 

be sent to the server, the time the server spends on processing the task, and the time for 

the results to be sent back. Figure 5 depicts what this would look like. Network latency 

is contributed to by many factors, such as propagation, transmission, modem and router 

processing, and storage delays. Propagation is the time it takes for objects, such as data, 

to transfer from one location to another at the speed of light. Transmission is the delay 

from the medium, like optical fiber or wireless networks. Modems and routers take time 

to check the headers of a packet. The storage delay is the time it takes for the actual 

hardware, such as hard drives, to store the received data. In this project, the latency was 

tested with different scenarios, such as requesting 1, 2, 3, 4, and 5 MB of data, and 

having 1, 5, 10, 15, and 20 clients simultaneously (within the limits of the environment 

utilized) requesting data. From the results of such testing, trends can be found and 

compared for each framework. 
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Client 

4.2 Throughput 

the time used to send a request 

the time spent for the server to 
send back the results 

Figure 5: Network Latency 

Server 

the server 
spends time 
to process the 
task 

Throughput is the amount of clients or data processed within a certain unit of time 

[ChingO 1]. It has an inverse relationship with latency, since scenarios with high latency 

would result in low throughput, and scenarios with low latency would result in high 

throughput. By viewing the latency graph, we can only tell the trends of response time, 

while we can determine the most efficient scenario for a framework through viewing a 

throughput graph. 

4.3 Memory Usage 

In computing, the purpose of memory is to temporarily store data for computer 

calculations. There are a number of memory types, such as cache memory, flash 

memory, random access memory (RAM), virtual memory, etc., but they are all limited 

on servers, due to cost and space considerations. A framework that uses less memory 
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would have the advantage by allowing higher capacity for the server. Figure 6 shows 

where the memory usage can be viewed in Windows XP.

Applications\Wf?.~6.:S.~6.~]\ Performance ! Networkin_g Users 

Image Name User Name c ... MemUsage 

utorrent.exe vagnlphor 00 20,676 K 
mspaint.exe vagniphor 00 14,280 K 
tasl<mgr.exe vagniphor 00 6,056 K 
Opera.exe vagnlphor 00 116,484 K 
wlnamp.exe vagnlphor 00 19,416 K 
uedit32.exe vagniphor 00 3,720 K 
explorer.exe vagniphor 00 18,584 K 
IEXPLORE.EXE vagnlphor 00 57,644 K 
CLI.exe vagniphor 00 6,332 K 
svchost.exe SYSTEM 00 2,744 K 
usnsvc.exe SYSTEM 00 1,556 K 
svchost. exe SYSTEM 00 728 K 
NMBgMonltor. exe vagnlphor 00 4,864 K 
jusched.exe vagnlphor 00 420 K 
CLI.exe vagniphor 00 13,860 K 
svchost.exe LOCAL SERVICE 00 3,900 K 
atiptaxx.exe vagniphor 00 3,032 K 

' ... --=-L. .... 
>: 

0 :2,how processes from all users !;.nd Process 

Processes: 44 CPU :2% Commit Charge: 796M I 2459M 

Figure 6: Memory Usage in Windows XP 

4.4 CPU Usage 

A central processing unit (CPU), also known simply as a processor, is a component in a 

computer used to interpret program instructions and process data. The CPU is only able 

to process one task at a time. When there are multiple tas~s, instead of finishing a task 

(potentially waiting for I/0 or other system operations) and then going to another, the 
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CPU is designed to switch to other tasks, if necessary, thus behaving as if it is executing 

multiple tasks at the same time. However, large tasks might consume a lot of CPU time, 

which decreases the time scheduled for other tasks. A framework that uses less CPU 

capacity would allow the server to have more time to execute other tasks. Figure 7 

shows where the CPU usage can be viewed in Windows XP. 

Eile Qptions ~iew Shy_tDown t!elp 

Application~ l[~f.?~i..S.S.e.~JI Performance ! NetworWng i u~er~ 

Image Name User Name c ... MemUsage 

utorrent. exe vagnlphor 00 20,676 K 
mspaint.exe vagniphor 00 14,280 K 
taskmgr. exe vagniphor 00 6,056 K 
Opera.exe vagniphor 00 116,484 K 
winamp.exe vagniphor 00 19,416K 
uedlt32.exe vagnlphor 00 3,720 K 
explorer. exe vagniphor 00 18,584 K 
IEXPLORE.EXE vagniphor 00 57,644 K 
CLI.exe vagnlphor 00 6,332 K 
svchost. exe SYSTEM 00 2,744 K 
usnsvc.exe SYSTEM 00 1,556 K 
svchost.exe SYSTEM 00 728 K 
NMBgMonltor. exe vagnlphor 00 4,864 K 
jusched.exe vagnlphor 00 420 K 
CLI.exe vagniphor 00 13,860 K 
svchost.exe LOCAL SERVICE 00 3,900 K 
atiptaxx. exe vagnlphor 00 3,032 K 

, ,. --1-L _, 

0 :2_how processes from all users t;.nd Process 

Commit Charge: 796M /2459M 

Figure 7: CPU Usage in Windows XP 
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4.5 Source Lines of Code 

The source lines of code (SLOC) used in a framework can indicate the transparency and 

abstraction of the framework. The main goal of a framework is to save the developer's 

time and effort, by not requiring the entire code be written from scratch. Thus, the 

fewer the lines of code required for a framework, the more time and effort it saves. 

However, lines of code as a metric have evident limitations, since some lines might be 

long while some lines are short. So, other measures, such as the number and size of files, 

must also be considered. 
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Chapter 5 

STATISTICAL ANALYSIS METHODS 

A method is required for analysis of the test data produced to compare performances. 

Simply calculating the average response times and graphing them is insufficient; for 

instance, in looking at average response times of 1.5 and 1.6 seconds, this statistic in 

isolation doesn't indicate whether there is a significant difference or not. Therefore, 

statistical analysis methods were required to tell whether or not the difference was 

significant. In this project, the general linear model (GLM) and two-way analysis of 

variance (two-way AN OVA) were used for statistical analyses. Furthermore, the 

Statistical Analysis System (SAS) was used as a tool for generating the calculations for 

the statistical analyses required. 

5.1 The SAS System 

The SAS system is statistical analysis software that has a wide variety of statistical 

modules and procedures. The system uses a fourth-generation programming language 

( 4GL) for code and the programs are composed using three main components 

[SAS07] -the data step, the procedure step, and the macro language. The data step is 

for entering data, like inserting the data in the code or reading data in data files. The 

procedure step is the use of statistical methods and models to analyze the data read in 

the data step. The macro language is for decreasing the redundancy of functions used 

again and again throughout the program. 

- 17-



5.2 The GLM Model 

The GLM model is a statistical linear model used in general cases. It is the foundation 

of many statistical analyses, such as t-test, ANOV A, Analysis of Covariance 

(ANCOVA), etc. To understand how the GLM model works it is easiest to look at the 

two-variable case [GLM06]. The goal of this analysis is to fmd a way to accurately 

describe the information in the plot in Figure 8. 

~~ 

• • 
• • • • 

• • • • 
• • • • • • • 

• • • 

.... 

Figure 8: Plot of Two-Variable Example 

Using the GLM model, we try to find a straight line closest to all the dots in the plot. 

Figure 9 shows the corresponding line for this example. 
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Figure 9: Plot of Two-Variable Example with Straight Line 

.... -

This line would be written like this: y = bo + b1x + e, where y is they-axis 

variable, xis the x-axis variable, b 0 is the intercept (the value ofy when x equals 0), b1 

is the slope of the straight line, and e is the error. Figure 10 shows the variables in the 

plot 
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Figure 10: Plot of Two-Variable Example with Straight Line and Variables 

By solving for bo and b1, we can get information about this linear approximation for the 

dots in the plot. In other cases with more than two variables, the formula can be 

extended like this: y = bo + b1x1 + b 2x 2 + b 3x 3 + . . . + bnXn + e, 

where n is the number of variables for the situation. The mechanism for solving such 

problems is the same as for solving with two variables. 
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Chapter 6 

RESULTS AND ANALYSES 

In order to get the best results from SAS, each case was tested 20 times. Since four 

frameworks were tested by measuring response time for each, when five different 

numbers of clients (1, 5, 10, 15, and 20) requested data simultaneously, there were 20 

different cases. The 20 test times for the 20 different cases resulted in 400 data sets to 

be calculated by SAS. Besides the number of clients, the amount of data was also 

considered, so with five different file sizes of data sent (1, 2, 3, 4, and 5MB) for each 

of the four frameworks, there were 20 cases with a total of 400 data sets. Response time 

was measured by recording the time right before invoking the web service and 

recording the time right after the data requested was received, then subtracting the time 

difference. 

6.1 Results 

6.1.1 Client Scenarios 

For testing the four different frameworks in different scenarios, web service 

applications to send out the data were created. To test the performance of the four 

frameworks based on the number of clients requesting data simultaneously, five 

scenarios were run (1 client, 5 clients, 10 clients, 15 clients, and 20 clients). Each client 
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retrieved 1 MB of data. The average response time for each scenario and each 

framework was recorded for analysis. The results are as shown in Figure 11. 

Time vs Client 

25000 .---------------------------, 

~ 
~ 15000 f--:'~~,..----'-~~~~~~~--,c.....--,c.........-.4-~-..,._,F--~,c,-----l ,-------, 
§ ~~~ 

6 _,._ Resin Hessian 

J JBossWS 
" '* Codehaus Xfire § 10000f--:'-~~~~~~~--,-~~~~--~--~~-----l 

! 

1 Client 5 Clients 10 Clients 15 Clients 20Clients 

Figure 11: Latency in Client Scenarios 

For throughput, Figure 12 shows the average number of clients serviced per second for 

each scenario and framework, and in particular, the most efficient client scenario for 

each framework. Apache Axis could deal with 4.993 clients per second, after reaching 

the scenarios with 10 clients or more. Resin Hessian could deal with 4.807 clients per 

second in those same scenarios. JBossWS dealt with 0.943 clients per second in every 

scenario. Codehaus XFire seemed to work most efficiently around the scenario of 5 

clients, dealing about 2.892 clients per second. 
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Figure 12: Throughput in Client Scenarios 

6.1.2 Data Size Scenarios 

--+---Apache Axis 
_,._Resin Hessian 

JBossWS 
1. Codehaus Xfue 

The average response time for the five scenarios based on different data sizes is shown 

in Figure 13. 
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Figure 13: Latency in Data Size Scenarios 

Figure 14 shows the most efficient data size scenario for each framework. All 

frameworks reached their best performance when data files of 2 MB or more were sent. 

Apache Axis processed an average of 3.617 MB/s, JBossWS an average of 1.287 MB/s, 

Codehaus XFire an average of 1. 240 MB/s, and Resin Hessian an average of 1. 017 

MB/s. 
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Figure 14: Throughput in Data Size Scenarios 

From the graphs, it appears that Apache Axis had the best performance in all scenarios. 

To confirm this, further analysis was done. 

6.2 Analyses 

Obviously, response time depends on the choice of framework, the quantity of data 

transferred, and the number of clients invoking tasks from the web service. Thus, these 

three factors might significantly impact response times. We used the GLM model to 

determine if the interactions of the three factors were also significant. For interactions 

that were not significant, we determined we would use Tukey's method to do multiple 
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comparisons to see which framework had better performances in all cases and which 

had worse. For interactions that were significant, we would analyze the results case by 

case. 

6.2.1 Client Scenarios 

First, analyzing the results from the client scenarios, we used the SAS system to 

determine the significance of each factor. Figure 15 shows the results. 

oJ.ients 
framework 
oJ.ients*framework 

<.0001 
<.0001 
<.0001 

Figure 15: Factor Significance SAS in Client Scenarios 

The "Pr > F" value, in Figure 15, shows whether the results were significant. If the 

value was lower than 0.05, that meant the factor was significant; if the value was 

greater than or equal to 0.05, then the factor would not be considered significant. In this 

case, not only were the number of clients and choice of framework significant factors, 

but the interaction between them was also significant. This means if one of the 

frameworks was significantly faster in some scenarios, it would not necessarily be 

faster in other scenarios. So, SAS cannot directly compare all frameworks in all 

scenarios. 
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A pair-wise comparison from the GLM procedure was used to compare the frameworks 

in different scenarios. The first framework was compared to the second in the first 

scenario, then the first to third, first to fourth, second to third, second to fourth, and 

third to fourth. So, there were six comparisons in each scenario. Figure 16 shows the 

results of these comparisons. 

Standard 
Parametel' Estimate Errol' t Value Pr > It I 

f1-f2 at c1 -742.0000 601.720767 -1. 23 0.2183 
f1-f3 at o1 -633.8500 601.720767 -1.05 0.2928 
f1-f4 at o1 -538.1500 601.720767 -0.89 0. 3717 
f2-f3 at c1 108.1500 601.720767 0.18 0.8575 
f2-f4 at o1 203.8500 601.720767 0.34 0.7350 
f3-f4 at o1 95.7000 601.720767 0.16 0.8737 
f1-f3 at c2 -4053.2000 601.720767 -6.74 <.0001 
f1-f4 at o2 -642.0500 601.720767 -1.07 0.2866 
f2-f3 at o2 -3737.1500 601.720767 -6.21 <.0001 
f2-f4 at o2 -326.0000 601.720767 -0.54 0.5883 
f3-f4 at o2 3411 . 1500 601.720767 5.67 <.0001 
f1-f2 at c3 -148.4500 601.720767 -0.25 0.8053 
f1-f3 at o3 -9738.4500 601.720767 -16.18 <.0001 
f1-f4 at o3 -2727.7500 601.720767 -4.53 <.0001 
f2-f3 at c3 -9590.0000 601.720767 -15.94 <.0001 
f2-f4 at c3 -2579.3000 601.720767 -4.29 <.0001 
f3-f4 at c3 7010.7000 601.720767 11.65 <.0001 
f1-f2 at c4 -223.7500 601.720767 -0.37 0.7102 
f1-f3 at c4 -12565.7000 601.720767 -20.88 <.0001 
f1-f4 at o4 -10305.2000 601.720767 -17.13 <.0001 
f2-f3 at o4 -12341.9500 601.720767 -20. 51 <.0001 
f2-f4 at o4 -10081.4500 601.720767 -16.75 <.0001 
f3-f4 at o4 2260.5000 601.720767 3.76 0.0002 
f1-f2 at o5 110.4000 601.720767 0.18 0.8545 
f1-f3 at o5 -17435.2500 601.720767 -28.98 <.0001 
f1-f4 at c5 -18729.2500 601.720767 -31.13 <.0001 
f2-f3 at c5 -17545.6500 601.720767 -29. 16 <.0001 
f2-f4 at o5 -18839. 6500 601.720767 -31.31 <.0001 
f3-f4 at c5 -1294.0000 601.720767 -2. 15 0.0321 

Figure 16: Pair-Wise Comparison Results from SAS in Client Scenarios 
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Looking at the "estimate" in the first row, which is the comparison between the first 

framework (fl) and the second framework (f2), f1 is faster than f2 by -742 milliseconds. 

But the "Pr > I t I" value shows this difference is not significant, because the value is 

higher than 0.05. By integrating all the "Pr > It I" values together, to see which 

frameworks were significantly faster, a better view of the performances was created. 

Table 1 shows the integration results by separating the frameworks into groups. 

1 Client 5 Clients 10 Clients 15 Clients 20 Clients 

Apache Axis A A A A A 

Resin Hessian A A A A A 

JBossWS A B c c c 

Codehaus XFire A A B B B 

Table 1: Response Time Comparison for Client Scenarios 

Table 1 should be read one scenario at a time, i.e., when looking at the 1 client scenario, 

ignore the data in the 5 client, 10 client, 15 client, and 20 client scenarios. Groups 

labeled with lower alphabetic characters had lower response times, which meant better 

performance. In the 1 client scenario, all frameworks were in group A, meaning they all 

had approximately the same performance in this scenario. In the 5 client scenario, 

JBossWS was in group B while the others were in group A. This means, in this scenario, 

JBossWS had worse performance than the others, and the difference was significant, 
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while the others performed about the same. In the last three scenarios, Apache Axis and 

Resin Hessian were faster than Codehaus XFire, and Codehaus XFire was faster than 

JBossWS. 

Although from the SAS analysis results, the better performance of frameworks is a case 

by case matter, as the number of clients increase to 10 or more, Apache Axis and Resin 

Hessian performed better than Codehaus XFire, and Codehaus XFire better than 

JBossWS. 

6.2.2 Data Size Scenarios 

The process of analyzing performance based on data size was the same as the process 

used for analyzing it based on client amount. First, the interaction between data size and 

choice of framework was determined. The results are as shown in Figure 17. 

Source 

mb 
fl~amework 

mb*fl-amewol-k 

<.0001 
<.0001 
<.0001 

Figure 17: Factor Significance in Data Size Scenarios 

It turned out that the interaction between data size and choice of framework was also 

significant. Therefore, the same pair-wise comparison procedure was used. The results 

are given in Figure 18. 
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Parameter Estimate Ei'I'OI' t Value Pr > Jt I 

f1-f2 at o1 -742.00000 30.8873620 -24.02 <.0001 
f1-f3 at o1 -633.85000 30.8873620 -20.52 <.0001 
f1-f4 at o1 -538.15000 30.8873620 -17.42 <.0001 
f2-f3 at o1 108. 15000 30.8873620 3.50 0.0005 
f2-f4 at o1 203.85000 30.8873620 6.60 <.0001 
f3-f4 at o1 95.70000 30.8873620 3.10 0.0021 
f1-f2 at o2 -1435.75000 30.8873620 -46.48 <.0001 
f1-f3 at o2 -1108.20000 30.8873620 -35.88 <.0001 
f1-f4 at o2 -1099.95000 30.8873620 -35.61 <.0001 
f2-f3 at o2 327.55000 30.8873620 10.60 <.0001 
f2-f4 at o2 335.80000 30.8873620 10.87 <.0001 
f3-f4 at o2 8.25000 30.8873620 0.27 0.7895 
f1-f2 at o3 - 2163 . 1 0000 30.8873620 -70.03 <.0001 
f1-f3 at o3 -1501.85000 30.8873620 -48.62 <.0001 
f1-f4 at o3 -1638.90000 30.8873620 -53.06 <.0001 
f2-f3 at 03 661.25000 30.8873620 21.41 <.0001 
f2-f4 at o3 524.20000 30.8873620 16.97 <.0001 
f3-f4 at 03 -137.05000 30.8873620 -4.44 <.0001 
f1-f2 at o4 -2780.05000 30.8873620 -90.01 <.0001 
f1-f3 at o4 -1937.70000 30.8873620 -62.73 <.0001 
f1-f4 at 04 -2075.20000 30.8873620 -67. 19 <.0001 
f2-f3 at o4 842.35000 30.8873620 27.27 <.0001 
f2-f4 at o4 704.85000 30.8873620 22.82 <.0001 
f3-f4 at o4 -137.50000 30.8873620 -4.45 <.0001 
f1-f2 at o5 -3473.55000 30.8873620 -112.46 < .. 0001 
f1-f3 at o5 -2341.00000 30.8873620 -75.79 <.0001 
f1-f4 at o5 -2537.55000 30.8873620 -82.15 <.0001 
f2-f3 at 05 1132.55000 30.8873620 36.67 <.0001 
f2-f4 at 05 936.00000 30.8873620 30.30 <.0001 
f3-f4 at o5 -196.55000 30.8873620 -6.36 <.0001 

Figure 18: Pair-Wise Comparison Results from SAS in Data Size Scenarios 

Table 2 shows frameworks separated into groups based on the integration of their 

performance results. 
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I MB 2MB 3MB 4MB 5MB 

Apache Axis A A A A A 

Resin Hessian D c D D D 

JBossWS c B B B B 

Codehaus XFire B B c c c 

Table 2: Response Time Comparison for Data Size Scenarios 

When sending 1 MB of data, Apache Axis was better than Codehaus XFire, which was 

better than JBoss WS, which was in turn better than Resin Hessian. Although each 

scenario was a different case, as the data size increased, Apache Axis was the best, and 

Resin Hessian was the worst. The only differences were, in the second scenario, the 

performances of Codehaus XFire and JBossWS were equivalent, and, in the last three 

scenarios, JBossWS was faster than Codehaus XFire. 

6.2.3 Others 

Other metrics such as memory usage, CPU usage, and SLOC were also tested in this 

project. Table 3 shows memory and CPU used on the web service application created, 

using each framework. 
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Memory Usage CPU Usage 

Apache Axis 13% 0% 

Resin Hessian 8.7% 0% 

JBossWS 16% 0% 

Codehaus XFire 13% 0% 

Table 3: Memory and CPU Usage of Four Frameworks 

Since the web service applications created, using the four frameworks, barely used any 

CPU at all, CPU usage was not a useful factor. Comparing the memory usages, Resin 

Hessian used the least, approximately half of that was used by JBossWS. Apache Axis 

and Codehaus XFire used an intermediate amount of memory. 

The SLOC of web services created, using each framework, are as shown in Table 4. 

SLOC Server Side Client Side Total 

Apache Axis 64 120 184 

Resin Hessian 70 85 155 

JBossWS 94 127 221 

Codehaus XFire 48 128 176 

Table 4: SLOC of Application of Four Frameworks 
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JBossWS required the most lines of code and Resin Hessian required the least. The web 

service application used to test the frameworks had only one trivial function, so it 

required few lines of code. But, if these frameworks were to be used to create large 

real-world applications, the 42% difference of SLOC between JBossWS and Hessian 

could mean many, many more lines, which would greatly increase the effort, time, and 

errors for an application development. 
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Chapter 7 

CONCLUSION 

For web applications that require communication through the network between 

different computer platforms, web service would be a good choice, since it is designed 

based on a platform-independent language - XML. Instead of developing web services 

from scratch, using existing frameworks can greatly increase productivity and lessen 

the time and effort that developers spend on learning the details of web services. 

From the test results of this project, Apache Axis had the best performance overall. 

When processing with small amounts of data, Hessian performed just as well as Apache 

Axis. In contrast, it had the poorest performance of the four frameworks when 

processing larger amounts of data. However, Hessian required the least amount of code 

and used the least memory and CPU capacity. Thus, for developing a small application 

with small amounts of data being processed, such as is the case with mobile devices, 

Hessian would be a viable choice, due to its high performance and low price. If 

developing a big application that processes a large amount of data, Apache Axis 

appears to be a better solution. The benefit of JBossWS is it is more compatible with 

other JBoss projects or applications using JBoss Application Server. 
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APPENDIX A 

APACHE AXIS SERVER CODE: SENDMB 

* * * * * * * * * * * * * * * * * * * * * * * 
* 
* Program name: sendMB.java 

package mine; 

public class sendMB 
{ 

public String request(int num) 
{ 

byte[] oneMB =new byte[1048576]; 
for (int i = 0; i<oneMB.length; i++) 

oneMB[i]=(byte) '1'; 
String theString =new String(oneMB); 
for (int i = 0; i<num-1; i++) 

theString +=new String(oneMB); 
return theString; 
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APPENDIXB 

APACHE AXIS SERVER CODE: CPUMEM 

* * * * * * * * * * * * * * * * * * * * * * * 

* 
* Program name: CPUmem.java 

package mine; 

import java.lang.*; 
import java.io.*; 
import java.util.*; 

public class CPUmem 
{ 

public String percentage() 
{ 

String memUsage 
String cpuUsage 

try 
{ 

null; 
null; 

Runtime rt = Runtime.getRuntime(); 
Process proc = rt.exec("ps u -e"); 

InputStream inputstream = proc.getinputStream(); 
InputStreamReader inputstreamreader = new 

InputStreamReader(inputstream); 
BufferedReader bufferedreader = new 

BufferedReader(inputstreamreader); 

String line; 

* 
* 

for (int i=O; (line bufferedreader.readLine()) != 
null;i++) 

String spliting[) = line.split(" "); 
if (spliting[O) .equals ("tomcat")) 
{ 

int counter = 0; 
for (int j=O; j<spliting.length; j++) 
{ 

if (!spliting[j] .equals("")) 
{ 

-38-

counter++; 
if (counter==3) 

cpuUsage=spliting[j); 
else if (counter==4) 

memUsage=spliting[j]; 



break; 

break; 

//System. out. println ("CPU Usage: "+cpuUsage) ; 
//System. out .println ("Memory Usage: "+memUsage); 
return cpuUsage+" "+memUsage; 

} 
catch(Exception e) 
{ 

e.printStackTrace(); 

return cpuUsage+" "+memUsage; 
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APPENDIXC 

APACHE AXIS CLIENT CODE: CLIENT 

* ~ * * * * * * * * * * * * * * * * * * * * * 

* 
* Program name: client.java 

import org.apache.axis.client.Call; 
import org.apache.axis.client.Service; 
import org.apache.axis.encoding.XMLType; 
import org.apache.axis.utils.Options; 

import javax.xml.namespace.QName; 
import javax.xml.rpc.ParameterMode; 
import java.text.DecimalFormat; 

import java.io.*; 
import java.util.*; 

public class client 
{ 

static DecimalFormat decimal= new DecimalFormat(".OOO"); 

public static void main(String [] args) 
{ 

try 
{ 

Options options= new Options(args); 

String endpointURL = options.getURL(); 
String MBToSend; 
String numOfClients; 

args = options.getRemainingArgs(); 
if ( (args == null) II (args.length < 2)) 
{ 

.MBToSend = "1"; 
numOfClients = "1"; 

else 

MBToSend = args[O]; 
numOfClients = args[1]; 

int MB = Integer.parseint(MBToSend); 
int num = Integer.parseint(numOfClients); 

simClients sim =new simClients(MB,endpointURL); 
//threading to simulate multiple users 
for (int i=O; i<num; i++) 
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try 
{ 

new simClients(MB,endpointURL) .start(); 

while (simClients.counter<num) 
{ 

Thread.sleep(lOOO); 

catch(Exception e) 
{ 

e.printStackTrace(); 

long response_time = simClients.total_time/num; 
float usageCPU = simClients.total_CPU/num; 
float usageMem = simClients.total_mem/num; 
System.out.println("Average Response Time = 

"+response_time+" milliseconds"); 
System.out.println("Average CPU Usage = "+usageCPU+" 

% ") ; 
System. out .println ("Average Memory Usage 

"+usageMem+" %"); 
System.out.println("Total CPU change = 

"+simClients.total CPU change+" %"); 
Syst;m.out.println("Average Memory Change 

"+simClients.total_mem_change+" %"); 
} 

catch (Exception e) 

e.printStackTrace(); 

class simClients extends Thread 

int MB = 0; 
String endpointURL new String(); 

long start_time = 0; 
long end_time = 0; 
long process time = 0; 
static long total_time 0; 
static float total CPU 0; 
static float total mem 0; 
static float total CPU change 0; 
static float total_mem_change 0; 
static int counter = 0; 
static ArrayList each_time =new ArrayList(); 

public simClients(int rob, String url) 
{ 

MB = rob; 
endpointURL url; 
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public void run() 
{ 

try 
{ 

start time System.currentTimeMillis(); 

Service service= new Service(); 
Call call = (Call) service.createCall(); 

call.setTargetEndpointAddress( new 
java.net.URL(endpointURL+"CPUmem") ) ; 

call. setOperationName ( new QName ("http: I /CPUmem", 
"percentage") ) ; 

call.setReturnType( org.apache.axis.encoding.XMLType.XSD_STRING 
) ; 

String startUsage = (String) call.invoke( new 
Object [] {) ) ; 

String splitStartUsage[] = startUsage.split(" "); 

service= new Service(); 
call= (Call) service.createCall(); 

call.setTargetEndpointAddress( new 
java.net.URL(endpointURL+"sendMB") ); 

call.setOperationName( new QName("http://sendMB", 
"request") ) ; 

call.addParameter( "argl", XMLType.XSD_INT, 
ParameterMode.IN); 

call.setReturnType( org.apache.axis.encoding.XMLType.XSD_STRING 
) ; 

{MB} ) ; 

start time 
String ret 

System.currentTimeMillis(); 
(String) call.invoke( new Object[] 

end time= System.currentTimeMillis(); 

service= new Service(); 
call= (Call) service.createCall(); 

call.setTargetEndpointAddress( new 
java.net.URL(endpointURL+"CPUmem") ) ; 

call.setOperationName( new QName("http://CPUmem", 
"percentage") ) ; 

call.setReturnType( org.apache.axis.encoding.XMLType.XSD_STRING 
) ; 

String usage= (String) call.invoke( new Object[] 
{ } ) ; 

String splitUsage[] = usage.split(" "); 
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total_CPU_change += Float.parseFloat(splitUsage[O])
Float.parseFloat(splitStartUsage[O]); 

total_CPU += Float.parseFloat(splitUsage[O]); 
total_mem_change += Float.parseFloat(splitUsage[l])

Float.parseFloat(splitStartUsage[l]); 
total mem += Float.parseFloat(splitUsage[l]); 

process time = end_time - start_time; 
total time += process_time; 
counter++; 

catch(Exception e) 
{ 

e.printStackTrace(); 
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APPENDIXD 

RESIN HESSIAN SERVER CODE: SENDMB 

* * * * * * * * * * * * * * * * * * * * * * * 
* 
* Program name: sendMB.java 

package resinProject; 

public class sendMB implements sendAPI 
{ 

public String request(int num) 
{ 

byte[] oneMB =new byte[1048576]; 
for (int i = 0; i<oneMB.length; i++) 

oneMB[i]=(byte) '1'; 
String theString =new String(oneMB); 
for (int i = 0; i<num-1; i++) 

theString +=new String(oneMB); 
return theString; 
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APPENDIXE 

RESIN HESSIAN SERVER CODE: CPUMEM 

* * * * * * * * * * * * * * * * * * * * * * * 

* 
* Program name: CPUmem.java 

package resinProject; 

import java.lang.*; 
import java.io.*; 
import java.util.*; 

public class CPUmem 
{ 

public String percentage() 
{ 

String memUsage 
String cpuUsage 

try 
{ 

null; 
null; 

Runtime rt = Runtime.getRuntime(); 
Process proc = rt.exec("ps u -e"); 

InputStream inputstream = proc.getinputStream(); 
InputStreamReader inputstreamreader = new 

InputStreamReader(inputstream); 
BufferedReader bufferedreader = new 

BufferedReader(inputstreamreader); 

String line; 

* 
* 

for (int i=O; (line bufferedreader.readLine()) != 
null;i++) 

String spliting[) = line.split(" "); 
if (spliting[O) .equals ("resin")) 
{ 

int counter = 0; 
for (int j=O; j<spliting.length; j++) 
{ 

if (!spliting[j) .equals("")) 
{ 
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counter++; 
if (counter==3) 

cpuUsage=spliting[j); 
else if (counter==4) 
{ 

memUsage=spliting[j); 



break; 

return cpuUsage+" "+memUsage; 
} 

catch(Exception e) 
{ 

e.printStackTrace(); 

return cpuUsage+" "+memUsage; 
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break; 



APPENDIXF 

RESIN HESSIAN CLIENT CODE: CLIENT 

* * * * * * * * * * * * * * * * * * * * * * * 

* 
* Program name: client.java 

package resinProject; 

import com.caucho.hessian.client.HessianProxyFactory; 

import java.text.DecimalFormat; 

import java.io.*; 
import java.util.*; 

public class client 
( 

static DecimalFormat decimal= new DecimalFormat(".OOO"); 

public static void main(String [] args) 
{ 

try 
{ 

String endpointURL; 
String MBToSend; 
String numOfClients; 

if ((args ==null) I I (args.length < 3)) 
{ 

MBToSend = "1"; 
numOfClients = "1"; 
endpointURL = 

"http://callisto.ccec.unf.edu:8088/n00168553"; 
} 

else 

endpointURL = args[O]; 
MBToSend = args[l]; 
numOfClients = args[2]; 

int MB = Integer.parseint(MBToSend); 
int num = Integer.parseint(numOfClients); 

simClients sim =new simClients(MB,endpointURL); 
//threading to simulate multiple users 
for (int i=O; i<num; i++) 

try 
{ 

new simClients(MB,endpointURL) .start(); 
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* 
* 



while (simClients.counter<num) 
{ 

Thread.sleep(lOOO); 

catch(Exception e) 
{ 

e.printStackTrace(); 

long response time = simClients.total time/num; 
float usageCPU = simClients.total CPU/num; 
float usageMem = simClients.total=mem/num; 
System.out.println("Average Response Time = 

"+response_time+" milliseconds"); 
System.out.println("Average CPU Usage = "+usageCPU+" 

% ") ;. 
System. out. println ("Average Memory Usage 

"+usageMem+" %"); 
System.out.println("Total CPU change = 

"+simClients.total_CPU_change+" %"); 
System. out. println ("Average Memory Change 

"+simClients.total_mem_change+" %"); 
} 

catch (Exception e) 

e.printStackTrace(); 

class simClients extends Thread 

int MB = 0; 
String endpointURL new String(); 

long start_time = 0; 
long end_time = 0; 
long process time = 0; 
static long total_time 0; 
static float total CPU 0; 
static float total mem 0; 
static float total CPU change 0; 
static float total_mem_change 0; 
static int counter = 0; 
static ArrayList each_time =new ArrayList(); 

public simClients(int mb, String url) 
{ 

MB = mb; 
endpointURL 

public void run() 
{ 

try 

url; 
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HessianProxyFactory factory = new 
HessianProxyFactory(); 

HessianProxyFactory factory2 = new 
HessianProxyFactory(); 

CPUmemAPI CPUmem = (CPUmemAPI) factory.create(CPUmemAPI.class, 
endpointURL+"/CPUmem"); 

sendAPI send= (sendAPI) factory2.create(sendAPI.class, 
endpointURL+"/sendMB"); 

String startUsage = CPUmem.percentage(); 
String splitStartUsage[] = startUsage.split(" "); 

start time= System.currentTimeMillis(); 
String ret= send.request(MB); 
end time= System.currentTimeMillis(); 

String usage= CPUmem.percentage(); 
String splitUsage[] = usage.split(" "); 

total_CPU_change += Float.parseFloat(splitUsage[O])
Float.parseFloat(splitStartUsage[O]); 

total_CPU += Float.parseFloat(splitUsage[O]); 
total mem change+= Float.parseFloat(splitUsage[l])

Float.parseFloat(splitStartUsage[l]); 
total mem += Float.parseFloat(splitUsage[l]); 

process_time = end_time - start_time; 
total time += process_time; 
counter++; 

catch(Exception e) 
{ 

e.printStackTrace(); 
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APPENDIXG 

JBOSSWS SERVER CODE: SENDMBBEAN 

* * * * * * * * * * * * * * * * * * * * * * * 
* 
* Program name: sendMBBean.java 

package jboss.project; 

import javax.ejb.Remote; 
import javax.ejb.Stateless; 
import javax.jws.WebService; 

@Stateless 
@WebService(endpointinterface "jboss.project.sendMB") 
@Remote(sendMB.class) 
public class sendMBBean { 

public String request(int num) 
byte[] oneMB =new byte[1048576]; 
for (int i = 0; i<oneMB.length; i++) 

oneMB[i]=(byte) '1'; 
String theString =new String(oneMB); 
for (int i = 0; i<num-1; i++) 

theString +=new String(oneMB); 
return theString; 
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* 
* 



APPENDIXH 

JBOSSWS SERVER CODE: CPUMEMBEAN 

* * * * * * * * * * * * * * * * * * * * * * * 

* 
* Program name: CPUmemBean,java 

package jboss.project; 

import java.lang.*; 
import java.io.*; 
import java.util.*; 

import javax.ejb.Remote; 
import javax.ejb.Stateless; 
import javax.jws.WebService; 

@Stateless 
@WebS ervice (endpoint Inter£ ace "j boss . project. CPUmem") 
@Remote(CPUmem.class) 
public class CPUmemBean { 

public String percentage() 
String memUsage null; 
String cpuUsage = null; 

try 
{ 

Runtime rt = Runtime.getRuntime(); 
Process proc = rt.exec("ps u -e"); 

InputStream inputstream = proc.getinputStream(); 
InputStreamReader inputstreamreader = new 

InputStreamReader(inputstream); 
BufferedReader bufferedreader = new 

BufferedReader(inputstreamreader); 

String line; 

* 
* 

for (int i=O; (line bufferedreader.readLine()) != 
null;i++) 

String spliting[] = line. split(" "); 
if (spliting[O].equals("jboss")) 
{ 

int counter = 0; 
for (int j=O; j<spliting.length; j++) 
{ 

if (!spliting[j] .equals("")) 
{ 

counter++; 
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break; 

return cpuUsage+" "+memUsage; 
} 

catch(Exception e) 
{ 

e.printStackTrace(); 

return cpuUsage+" "+memUsage; 
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if (counter==3) 
cpuUsage=spliting[j]; 

else if (counter==4) 

memUsage=spliting[j]; 
break; 



APPENDIX I 

JBOSSWS CLIENT CODE: CLIENT 

* * * * * * * * * * * * * * * * * * * * * * * 

* 
* Program name: Client.java 

package jboss.project; 

import java.io.*; 
import java.util.*; 

import java.net.URL; 

import javax.xml.namespace.QName; 
import javax.xml.rpc.Service; 
import javax.xml.rpc.ServiceFactory; 

public class Client 
public static void main(String[] args) throws Exception 
{ 

try 
{ 

String endpointURL; 
String MBToSend; 
String numOfClients; 

if ((args ==null) I I (args.length < 3)) 
{ 

MBToSend = "1"; 
numOfClients = "1"; 
endpointURL = 

"http://callisto.ccec.unf.edu:18080"; 
} 

else 

endpointURL = args[O]; 
MBToSend = args[1]; 
numOfClients = args[2]; 

int MB = Integer.parseint(MBToSend); 
int num = Integer.parseint(numOfClients); 

simClients sim =new simClients(MB,endpointURL); 
//threading to simulate multiple users 
for (int i=O; i<num; i++) 

new simClients(MB,endpointURL) .start(); 

while (simClients.counter<num) 
{ 
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* 
* 



Thread.sleep(lOOO); 

long response_time = simClients.total_time/num; 
float usageCPU = simClients.total_CPU/num; 
float usageMem = simClients.total_mem/num; 
System. out. println ("Average Response Time = 

"+response_time+" milliseconds"); 
System.out.println("Average CPU Usage = "+usageCPU+" 

%"); 

System. out. println ("Average Memory Us age 
"+usageMem+" %"); 

System.out.println("Total CPU change = 
"+simClients.total_CPU_change+" %"); 

System. out. println ("Average Memory Change 
"+simClients.total_mem_change+" %"); 

catch (Exception e) 
{ 

e.printStackTrace(); 

class simClients extends Thread 

int MB = 0; 
String endpointURL new String(); 

long start_time = 0; 
long end_time = 0; 
long process time = 0; 
static long total_time 0; 
static float total CPU 0; 
static float total mem 0; 
static float total CPU change 0; 
static float total_mem_change 0; 
static int counter = 0; 
static ArrayList each_time =new ArrayList(); 

public simClients(int mb, String url) 
{ 

MB = mb; 
endpointURL 

public void run() 
{ 

try 
{ 

url; 

URL url = new 
URL(endpointURL+"/sendMBBeanService/sendMBBean?wsdl"); 

URL url2 = new 
URL(endpointURL+"/CPUmemBeanService/CPUmemBean?wsdl"); 
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QName qname = new 
QName("http://project.jboss/","sendMBBeanService"); 

QName qname2 = new 
QName ("http: I /project. jboss/", "CPUmemBeanService") ; 

ServiceFactory factory = 
ServiceFactory.newinstance(); 

ServiceFactory factory2 = 
ServiceFactory.newinstance(); 

qname2); 

Service remote= factory.createService(url, qname); 
Service remote2 = factory2.createService(url2, 

sendMB proxy= (sendMB) remote.getPort(sendMB.class); 
CPUmem proxy2 = (CPUmem) 

remote2.getPort(CPUmem.class); 

String startUsage = proxy2.percentage(); 
String splitStartUsage[] = startUsage.split(" "); 

start time= System.currentTimeMillis(); 
String ret= proxy.request(MB); 
end time= System.currentTimeMillis(); 

String usage = proxy2.percentage(); 
String splitUsage[] = usage.split(" "); 

total_CPU_change += Float.parseFloat(splitUsage[O])
Float.parseFloat(splitStartUsage[O]); 

total_CPU += Float.parseFloat(splitUsage[O]); 
total mem change+= Float.parseFloat(splitUsage[l])

Float.parseFloat(splitStartUsage[l]); 
total mem += Float.parseFloat(splitUsage[l]); 

process time = end_time - start_time; 
total time += process_time; 
counter++; 

catch(Exception e) 
{ 

e.printStackTrace(); 
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APPENDIXJ 

XFIRE SERVER CODE: SENDMBIMPL 

* * * * * * * * * * * * * * * * * * * * * * * 
* 
* Program name: sendMBimpl.java 

package xfire.project; 

/** XFire WebServices implementation class. 
*I 

public class SendMBimpl implements SendMB 
{ 

public String request(int num) 
{ 

byte[] oneMB =new byte[1048576]; 
for (int i = 0; i<oneMB.length; i++) 

oneMB[i]=(byte) '1'; 
String theString =new String(oneMB); 
for (int i = 0; i<num-1; i++) 

theString +=new String(oneMB); 
return theString; 
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* 
* 



APPENDIXK 

XFIRE SERVER CODE: CPUMEMIMPL 

* * * * * * * * * * * * * * * * * * * * * * * 

* 
* Program name: CPUmemimpl.java 

package xfire.project; 

import java.lang.*; 
import java.io.*; 
import java.util.*; 

/** XFire WebServices implementation class. 
*I 

public class CPUmemimpl implements CPUmem 
{ 

public String percentage() 
{ 

String memUsage 
String cpuUsage 

try 
{ 

null; 
null; 

Runtime rt = Runtime.getRuntime(); 
Process proc = rt.exec( 0 ps u -e 0

); 

InputStream inputstream = proc.getinputStream(); 
InputStreamReader inputstreamreader = new 

InputStreamReader(inputstream); 
BufferedReader bufferedreader = new 

BufferedReader(inputstreamreader); 

String line; 

* 
* 

for (int i=O; (line bufferedreader.readLine()) != 
null; i++) 

String spliting[] = line.split(n °); 
if (spliting[O].equals ( 0 tomcat 0

)) 

{ 
int counter = 0; 
for (int j=O; j<spliting.length; j++) 
{ 

if (!spliting[j] .equalS( 00
)) 

{ 
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counter++; 
if (counter==3) 

cpuUsage=spliting[j]; 
else if (counter==4) 



break; 

return cpuUsage+" "+memUsage; 
} 

catch(Exception e) 
{ 

e.printStackTrace(); 

return cpuUsage+" "+memUsage; 
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memUsage=spliting[j]; 
break; 



APPENDIXL 

XFIRE CLIENT CODE: CLIENT 

* * * * * * * * * * * * * * * * * * * * * * * 

* 
* Program name: Client.java 

import xfire.project.*; 

import java.net.MalformedURLException; 
import java.text.DecimalFormat; 
import java.text.NumberFormat; 

import org.codehaus.xfire.client.XFireProxyFactory; 
import org.codehaus.xfire.service.Service; 
import org.codehaus.xfire.service.binding.ObjectServiceFactory; 
import org.codehaus.xfire.XFire; 
import org.codehaus.xfire.XFireFactory; 
import org.apache.log4j.Logger; 

import java.io.*; 
import java.util.*; 

public class Client 
{ 

public static void main(String args[)) 
{ 

try { 
String endpointURL; 
String MBToSend; 
String numOfClients; 

if ((args ==null) I I (args.length < 3)) 
{ 

MBToSend = "1"; 
numOfClients = "1"; 
endpointURL = 

"http://callisto.ccec.unf.edu:8080/n00168553/services"; 
} 

else 
{ 

endpointURL = args[O]; 
MBToSend = args[1); 
numOfClients = args[2]; 

int MB = Integer.parseint(MBToSend); 
int num = Integer.parseint(numOfClients); 

simClients sim =new simClients(MB,endpointURL); 
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* 
* 



//threading to simulate multiple users 
for (int i=O; i<num; i++) 

try 
{ 

new simClients(MB,endpointURL) .start(); 

while (simClients.counter<num) 

Thread.sleep(lOOO); 

catch(Exception e) 
{ 

e.printStackTrace(); 

long response time = simClients.total time/num; 
float usageCPU = simClients.total CPU/num; 
float usageMem = simClients.total=mem/num; 
System.out.println("Average Response Time = 

"+response_time+" milliseconds"); 
System.out.println("Average CPU Usage = "+usageCPU+" 

%") i 

System. out. println ("Average Memory Usage 
"+usageMem+" %"); 

System.out.println("Total CPU change = 
"+simClients.total_CPU_change+" %"); 

System.out.println("Average Memory Change 
"+simClients.total_mem_change+" %"); 

} catch (Exception e) { 
System. out. println ("EXCEPTION: main () : " + 

e.toString()); 
} 

}

class simClients extends Thread 
{ 

private static Logger log Logger.getLogger(Client.class); 

int MB = 0; 
String endpointURL new String() ; 

long start_time = 0; 
long end_time = 0; 
long process time = 0; 
static long total_time 0; 
static float total CPU 0; 
static float total mem 0; 
static float total CPU change 0; 
static float total_mem_change 0; 
static int counter = 0; 
static ArrayList each_time =new ArrayList(); 

public simClients(int mb, String url) 
{ 
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MB = mb; 
endpointURL url; 

public void run() 
{ 

try 
{ 

String startUsage = getCPUmem(endpointURL); 
String splitStartUsage[) = startUsage.split(" "); 

start time= System.currentTimeMillis(); 
String ret= sendMB(MB,endpointURL); 
end time= System.currentTimeMillis(); 

String usage = getCPUmem(endpointURL); 
String splitUsage[] = usage.split(" "); 

total_CPU_change += Float.parseFloat(splitUsage[O])
Float.parseFloat(splitStartUsage[O]); 

total_CPU += Float.parseFloat(splitUsage[O]); 
total_mem_change += Float.parseFloat(splitUsage[l])

Float.parseFloat(splitStartUsage[l]); 
total mem += Float.parseFloat(splitUsage[l]); 

process time = end_time - start_time; 
total time += process_time; 
counter++; 

catch(Exception e) 
{ 

e.printStackTrace(); 

/* call the web service 

* 
*I 
public String sendMB(int MB,String endpointURL) 

throws MalformedURLException, Exception{ 

//create a metadata of the service 
Service serviceModel = new 

ObjectServiceFactory() .create(SendMB.class); 
//System.out.println("callSoapServiceLocal(): got service 

model." ) ; 

//create a proxy for the deployed service 
XFire xfire = XFireFactory.newinstance() .getXFire(); 

XFireProxyFactory factory = new XFireProxyFactory(xfire); 
//String serviceUrl = "xfire.local://Banking" 
String serviceUrl = endpointURL+"/SendMB"; 
SendMB client = null; 
try { 

client= (SendMB) factory.create(serviceModel, 
serviceUrl); 
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} catch (MalformedURLException e) 
log.error("simClients.sendMB() 

e.toString()); 
EXCEPTION: " + 

} 

//invoke the service 
String serviceResponse = ""; 
try { 

serviceResponse = client.request(MB); 
} catch (Exception e) { 

log.error("simClients.sendMB(): EXCEPTION: " + 
e. toString ()) ; 

serviceResponse = e.toString(); 

log.debug("simClients.sendMB(): status=" + 
serviceResponse) ; 

//return the response 
return serviceResponse; 

public String getCPUmem(String endpointURL) 
throws MalformedURLException, Exception{ 

//create a metadata of the service 
Service serviceModel = new 

ObjectServiceFactory() .create(CPUmem.class); 
I /System. out. println ( "callSoapServiceLocal () 

model." ); 

//create a proxy for the deployed service 

got service 

XFire xfire = XFireFactory.newinstance() .getXFire(); 
XFireProxyFactory factory= new XFireProxyFactory(xfire); 
//String serviceUrl = "xfire.local://Banking" 
String serviceUrl = endpointURL+"/CPUmem"; 
CPUmem client = null; 
try { 

client= (CPUmem) factory.create(serviceModel, 
serviceUrl); 

} catch (MalformedURLException e) 
log.error("simClients.getCPUmem(): EXCEPTION: " + 

e. toString ()) ; 
} 

//invoke the service 
String serviceResponse = ""; 
try { 

serviceResponse = client.percentage(); 
} catch (Exception e) { 

log. error (" simClients. getCPUmem () 
e. tostring ()) ; 

serviceResponse = e.toString(); 

EXCEPTION: " + 

log.debug("simClients.getCPUmem(): status=" + 
serviceResponse) ; 

//return the response 
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return serviceResponse; 

-63-



VITA 

Je-Loon Yang has a Bachelor of Engineering degree from Chung Yuan Christian 

University in Information and Computer Engineering, 2005, and expects to receive a 

Master of Science degree in Computer and Information Sciences from the University of 

North Florida, December 2007. Dr. Sanjay Ahuja of the University ofNorth Florida is 

serving as Je-Loon's project director. Je-Loon is currently employed as a teacher at the 

Jacksonville Chinese-American Cultural Association (JCCA) Chinese School in 

Jacksonville, Florida, and has been with the association for 9 months. 

Je-Loon has ongoing interests in database administration and web application 

development, and has extensive experience with MySQL and Apache web server. Je

Loon has extensive programming experience inC, Java, and Ruby. Je-Loon's academic 

work has also included the use of SQL, XML, and HTML. Je-Loon is fluent in 

Mandarin Chinese and enjoys playing basketball. 

-64-


	Performance Evaluation of Java Web Services: A Developer's Perspective
	Suggested Citation

	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1: Introduction
	Chapter 2: Web Services
	2.1 SOAP
	2.2 WSDL
	2.3 UDDI

	Chapter 3: Web Service Frameworks
	3.1 Apache Axis
	3.2 JBossWS
	3.3 Codehaus XFire
	3.4 Resin Hessian

	Chapter 4: Evaluation Metrics
	4.1 Latency
	4.2 Throughput
	4.3 Memory Usage
	4.4 CPU Usage
	4.5 Source Lines of Code

	Chapter 5: Statistical Analysis Methods 
	5.1 The SAS System
	5.2 The GLM Model

	Chapter 6: Results and Analyses
	6.1 Results
	6.1.1 Client Scenarios
	6.1.2 Data Size Scenarios

	6.2 Analyses
	6.2.1 Client Scenarios
	6.2.2 Data Size Scenarios
	6.2.3 Others


	Chapter 7: Conclusion
	References
	Appendix A: Apache Axis Server Code: SendMB
	Appendix B: Apache Axis Server Code: CPUmem
	Appendix C: Apache Axis Client Code: Client
	Appendix D: Resin Hessian Server Code: SendMB
	Appendix E: Resin Hessian Server Code: CPUmem
	Appendix F: Resin Hessian Client Code: Client
	Appendix G: JBossWS Server Code: SendMBBean
	Appendx H: JBossWS Server Code: CPUmemBean
	Appendix I: JBossWS Client Code: Client
	Appendix J: XFire Server Code: SendMBImpl
	Appendix K: XFire Server Code: CPUmemImpl
	Appendix L: XFire Client Code: Client

