
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2007

Performance Evaluation of Java Web Services: A Developer's Performance Evaluation of Java Web Services: A Developer's

Perspective Perspective

Je-Loon Yang
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Computer Engineering Commons

Suggested Citation Suggested Citation
Yang, Je-Loon, "Performance Evaluation of Java Web Services: A Developer's Perspective" (2007). UNF
Graduate Theses and Dissertations. 246.
https://digitalcommons.unf.edu/etd/246

This Master's Project is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2007 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unf.edu%2Fetd%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/246?utm_source=digitalcommons.unf.edu%2Fetd%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

PERFORMANCE EVALUATION OF JAVA WEB SERVICES:
A DEVELOPER'S PERSPECTIVE

by

Je-Loon Yang

A project submitted to the
School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

December, 2007

The project "Performance Evaluation of Java Web Services: A Developer's
Perspective" submitted by J e-Loon Yang in partial fulfillment of the requirements for
the degree of Master of Science in Computer and Information Sciences has been

Approved by:

Sanjay Ahuja
Project Director

Charles N. Winton
Graduate Director of the School of Computing

ii

Date

/2-&/07
I

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGEMENT

This paper is a tribute to the helpful and thoughtful guidance of my adviser Dr. San jay

Ahuja. I further express my gratitude to my family for unwavering support and

understanding, during the many hours I dedicated to achieving this milestone in my life

and career.

111

CONTENTS

List of Figures ... vii

List of Tables .. viii

Abstract .. ix

Chapter 1: Introduction 1

Chapter 2: Web Services ... 5

2.1 SOAP .. 6

2.2 WSDL ... 7

2.3 UDDI ... 8

Chapter 3: Web Service Frameworks ... 9

3.1 Apache Axis 9

3.2 JBossWS .. 10

3.3 Codehaus XFire ... 10

3.4 Resin Hessian ... 11

Chapter 4: Evaluation Metrics .. 12

4.1 Latency .. 12

4.2 Throughput .. 13

4.3 Men1ory Usage .. 13

4.4 CPUUsage .. 14

4.5 Source Lines of Code .. 16

Chapter 5: Statistical Analysis Methods ... 17

lV

5.1 The SAS System ... 17

5.2 The GLM Model ... 18

Chapter 6: Results and Analyses ... 21

6.1 Results .. 21

6.1.1 Client Scenarios .. 21

6.1.2 Data Size Scenarios .. 23

6.2 Analyses ... 25

6.2.1 Client Scenarios .. 26

6.2.2 Data Size Scenarios .. 29

6.2.3 Others .. 31

Chapter 7: Conclusion .. 34

References .. , .. 35

Appendix A: Apache Axis Server Code: SendMB ... 37

Appendix B: Apache Axis Server Code: CPUmem .. 38

Appendix C: Apache Axis Client Code: Client .. 40

Appendix D: Resin Hessian Server Code: SendMB ... 44

Appendix E: Resin Hessian Server Code: CPUmem .. 45

Appendix F: Resin Hessian Client Code: Client ... 47

Appendix G: JBossWS Server Code: SendMBBean .. 50

Appendix H: JBossWS Server Code: CPUmemBean ... 51

Appendix I: JBossWS Client Code: Client ... 53

Appendix J: XFire Server Code: SendMBimpl .. 56

v

Appendix K: XFire Server Code: CPUmemlmpl ... 57

Appendix L: XFire Client Code: Client .. 59

Vita .. 64

Vl

LIST OF FIGURES

Figure 1: Comparison of Planning Travel With and Without Virtual Agent oooooooooo·oo 2

Figure 2: Comparison oflnformation Between Webpages and Web Services oooooooooo· 3

Figure 3: Web Service Architecture oo· 6

Figure 4: Structure of SOAP Envelope oooooooooooooooooooooooooooooooo 000000 000000 000000 000000 000000 oooooooo· 7

Figure 5: Network Latency oooo.oooooooooooooooooooooooooooooooooooooo•oo· 13

Figure 6: Memory Usage in Windows XP ooooooooooooooooooooooooooooooOOoooooo oo .. oooooooooooooooo .. 14

Figure 7: CPU Usage in Windows XP 000000 000000 000000000000 ooooooooooooOOooOOOOooOOoooooooooooooo oo .. 15

Figure 8: Plot of Two-Variable Example 00 oo 000000 000000 oooooooooooooooooooooooooo oo .. oooooooooo .. 18

Figure 9: Plot of Two-Variable Example with Straight Line oooooooooooooooooooooooooooooooooo. 19

Figure 10: Plot of Two-Variable Example with Straight Line and Variables 0000000000 20

Figure 11: Latency in Client Scenarios 00 00 .. 00 00 .. 00 00 .. 00 00 .. 00 00 00 00 00 00 00 00 .. 00 00 .. 00 00 00 00 00 00 00 00 00 ... 22

Figure 12: Throughput in Client Scenarios oo. 23

Figure 13: Latency in Data Size Scenarios 00 00 .. 00 000000 00 00 00 00 0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. 24

Figure 14: Throughput in Data Size Scenarios 00 00 .. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. 00 00 00 00 .. 00 00 00 00 ... 25

Figure 15: Factor Significance SAS in Client Scenarios oo 26

Figure 16: Pair-Wise Comparison Results from SAS in Client Scenarios 00 000000 000000 00 27

Figure 17: Factor Significance in Data Size Scenarios 00 00 000000 000000 000000 000000 000000 000000. 29

Figure 18: Pair-Wise Comparison Results from SAS in Data Size Scenarios 0000000000 30

Vll

LIST OF TABLES

Table 1: Response Time Comparison for Client Scenarios 28

Table 2: Response Time Comparison for Data Size Scenarios 31

Table 3: Memory and CPU Usage of Four Frameworks .. 32

Table 4: SLOC of Application of Four Frameworks .. 32

V111

ABSTRACT

With the rapid growth of traffic on the internet, further development of the web

technology upon which it is based becomes extremely important. For the evolvement of

Web 2.0, web services are essential. Web services are programs that allow different

computer platforms to communicate interactively across the web, without the need for

extra data for interfaces and formats, such as webpage structures. Since web services

are a future trend for the growth of the internet, the tools used for their development are

also important. Although there are many choices of web service frameworks to choose

from, developers should choose the framework that best fits their applications, based on

performance, time, and effort. For this project, we compared the qualitative and

quantitative metrics of four common frameworks. The four frameworks were Apache

Axis, JBossWS, Codehaus XFire, and Resin Hessian. After testing, the results were

statistically analyzed using the Statistical Analysis System (SAS).

lX

Chapter 1

INTRODUCTION

When going on a trip to another state or country, a person usually must buy airplane

tickets, rent a car, and make hotel reservations. When dealing with airplane tickets, a

person may even have to buy several tickets, due to not having a direct flight available

to take the person directly to his or her final destination. Looking up arrival and

departure times for connecting flights that will not require a long wait at the airport

could be time consuming and frustrating. Therefore, people often seek out travel agents

to make arrangements for them. But, what if the agent was actually a virtual agent

online [Hendler01]? What if the person just entered into the computer the location he

wanted to start from, the destination, the desired time for departure or arrival, and all

the information required; and, the computer showed all the results the person could

choose from to purchase the tickets? Even better, such virtual agents could provide

information on car rentals and hotels near a person's destination and reserve them. A

virtual agent could save much effort and time and could also be more accurate than

human agents. This kind of agent has already been implemented, although not

necessarily using web services, and represents the types ofteclmology that stand to

benefit from the development of web services. Figure 1 shows a comparison of travel

planning with and without a virtual agent.

- 1 -

Hours of searching and planning

Flight Booking

Traveler

Mi""') msertm~ of ~
Car Rental

requirements

Agent

Hotel Reservation

Figure 1: Comparison of Planning Travel With and Without Virtual Agent

Instead of creating a system that browses airline websites to look up flight schedules

and then integrates the information, a system requesting the same information through

web services is much better for several reasons, one of which would be easier

maintenance [Yang02]. The format of websites' pages may change from time to time.

For example, ifNorthwest Airlines wants to add more services to its website once in a

while, the format of the webpage would definitely change, making it more difficult for

an agent system to retrieve data from it, unless the system had a high degree of artificial

intelligence, which is an unnecessary feature. Another reason for web services would be

efficiency [McllraithOl]. Even for a webpage that never changes format at all, a travel

agency system would have to download all the hypertext pages with much unnecessary

data, such as the markups, instead of just retrieving the information needed in a few

strings. Web services avoid this problem, since the required information can be easily

- 2 -

called up and only the information requested would be sent back, without the markups.

Figure 2 compares the information size ofHTML webpages and simple object access

protocol (SOAP) envelopes used by web services.

-<html>
-<headl>

~title>North~est Airlines -
Airline Tickets, Plane Tickets
& Airfare</title>
</head>
<body hgeolor~"#ffffff"
:ru.a.rginwidth= 11 0 11

ma.rginheight="O'' topm.argin= 11 0"
left:rna.rgin= 11 0" onLoad= 11 init();
checkinset{); readPrefCookie
() ;u>

The HTiv.1L source code of a airline
webpage with nearly a thousand lines
of code

<SOAP-ENV:Envelope
xmlns:SOAP

ENV~"http://example.soap.org/>

<SOAP-ENV: Body>
<m:GetFlightPriee

Xllllns: Iil= '' So:rne-URI 11 >-
<symbol>DIS</symbol>

</m:GetFlightPriee>
</SOAP-EHV:Body>

</SOAP-ENV:Envelope>

An example of a web service message
sending airline information in small
amount of code

Figure 2: Comparison ofinformation Between Webpages and Web Services

Instead of developing a web service application from scratch, there are frameworks

available, which are mostly free, that can be used to make development much easier.

Which of these frameworks would be a better choice for web service application

development? This study compares four popular open source frameworks, both

qualitatively and quantitatively, by doing several tests and analyses. The four

frameworks are Apache Axis, JBossWS, XFire, and Hessian. A more thorough

introduction of web services is given in chapter 2. Chapter 3 describes the four

frameworks used in this study. In chapter 4, the metrics used to measure the

performance of the frameworks are explained in more detail. Chapter 5 introduces the

- 3 -

statistical methods used to analyze the results. In chapter 6, the test results are shown

and analyzed. The conclusions are presented in chapter 7.

-4-

Chapter 2

WEB SERVICES

Web services are basically software systems designed to support interoperable

machine-to-machine interaction over a network [Narayanan02]. In order to allow

different computer platforms to communicate with each other, a language that all

platforms can understand is needed. A platform-independent language, EAiensible

Markup Language (XML) [DeckerOO], performs this role. XML envelopes specified in

a SOAP format are passed between client and web services to enable communication.

Web services are divided into three different areas- communication protocols, service

descriptions, and service discovery. The specifications for each are currently being

developed. The most common specifications for each area are SOAP, the Web Services

Description Language (WSDL), and the Universal Description, Discovery, and

Integration (UDDI) directory [Curbera02]. Figure 3 shows the architecture of web

services based on the three areas ..

-5-

___ __t~~
Service
Broker

-..,
' ' ,-' ' ' '

I WSDL I I WSDL I . .
' ' ' ' ' ' ' '

' ' ' ' , , ' ' •" ' ' '

X I SOAP I ..
1:01

~ I SOAP I r -~
IIi;

Service Service
Requester Provider

Figure 3: Web Service Architecture

2.1 SOAP

The SOAP protocol specifies communication among web services. Since the Web's

nature is actually both distributed and heterogeneous, communication methods for web

services has to be platform-independent, international, secure, and as lightweight as

possible. XML meets such qualifications effectively, and thus, at present is the best

solution for a web service's communication protocol.

The web service's XML-based protocol is used for messaging and remote procedure

calls (RPC). Instead of defining a new transport protocol, SOAP works on existing

transports such as HTTP, SMTP, and MQSeries. The structure of SOAP messages is

quite trivial. It is an XML element with two child elements- one of them containing the

- 6 -

header and the other containing the body [Curbera02]. Both the header contents and

body are arbitrary XML elements. Figure 4 shows the structure of a SOAP envelope.

<SOAP:Envelope xmlns:SOAP= "http://
schemas.xmlsoap.org/soap/envelope/">

<SOAP:Header>
<!-- content of header goes here -->

</SOAP:Header>
<SOAP:Body>

<!-- content of body goes here -->
</SOAP:Body>

</SOAP:Envelope>

Figure 4: Structure of SOAP Envelope

2.2 WSDL

WSDL provides a formal, computer-readable description of web services. Although

SOAP enables communication for web services, it does not provide the information

about the messages exchanged for the interaction. This is where WSDL comes into play.

It describes the interface of web services and provides users the infonnation needed for

making SOAP messages. This description language is in XML format and was

developed by IBM and Microsoft to describe web services.

Two pieces of information are provided in a WSDL service description: an application-

level service description and specific protocol-dependent details [Curbera02]. Users

must follow the details, so they can access the web services at their concrete end points.

The purpose of separating the information provided by WSDL into the two levels is to

- 7-

help show common functionality between different end points. This is intended to make

development of web service applications easier to understand.

2.3 UDDI

Web services would not be very useful, if only limited services were available. UDDI

solves this problem. It is a registry of web services' descriptions, like a phone book for

web services in the digital world. The specification allows users to find service

providers through a centralized registry of services. There are two basic types

[Curbera03] of specifications that define a service registry's structure and operation.

One is the definition of the information to provide about each service and the way to

encode it; the other is the query and how to update the API for the registry that

describes the way such information can be accessed and updated.

- 8 -

Chapter 3

WEB SERVICE FRAMEWORKS

Since web services are designed to transfer data in common ways. Several companies

and groups developed web service frameworks for the convenience of web service

developers, so they do not need to write a complete web service from scratch. Some of

the popular frameworks are Apache Axis, JBossWS, Codehaus XFire, and Resin

Hessian. This chapter introduces and discusses these frameworks.

3.1 Apache Axis

Apache Axis (Axis stands for Apache EXtensible Interaction System) is an open source,

Java and XML based web service framework created by the Apache Software

Foundation (ASF). The foundation is a non-profit corporation that mainly produces

software for network use, such as servers and frameworks for servers. Their projects are

known to be collaborative, consensus based development processes and free or open

source software. The Apache Axis package has an implementation of a SOAP server

and application programming interfaces (API) for generating and deploying web

service applications [WSA06]. The SOAP engine constructs SOAP processors like

clients, servers, and gateways. This allows the servers and clients to communicate

through SOAP messages. The API supports a variety of languages. Besides the Java

version, a C++ implementation is also available. It allows developers to construct their

applications in a variety of ways. The easiest method only requires changing the file

- 9 -

name extension from ".java" to ".jws". The downside of such a method is that it lacks

flexibility for further configuration.

3.2 JBossWS

JBossWS is JBoss' implementation of Java 2 Enterprise Edition (J2EE) compatible web

services. The framework is designed to fit better in the overall JBoss architecture and is

generally more suitable for the specific J2EE requirements for web services. Instead of

using the traditional Apache server for this framework, JBoss has a server of its own

and suggests using a framework on this server to get the best performance. Similar to

ASF, JBoss serves people who focus on open source projects. Their projects emphasize

the development of Java Enterprise Middleware [JBossWS07], which are software

programs that act like bridges between applications, operating systems, or both.

3.3 Codehaus XFire

Codehaus XFire is a next-generation java SOAP framework It is a free and open source

SOAP framework that allows a user to implement web services with great ease and

simplicity. It also provides many features identified in web service specifications,

which are not yet available in most commercial or open source tools. It is claimed that

Codehaus XFire has higher perfonnance, since it is built on a low memory StAX

(Streaming API for XML) based model, but no data confrrms this claim [XFire07].

- 10-

3.4 Resin Hessian

The Hessian binary web service protocol makes developing web services simple and

usable without requiring a large framework; thus, developers do not need to spend more

time and effort to learn a wide variety of protocols. Since it is a binary protocol, it

works well on sending binary data, without any need to extend the protocol with

attachments. Java 2 Micro Edition (J2ME) devices like cell-phones and PDAs can use

Hessian to connect to web services with better performance, because it is a small

protocol [HBWSP06]. Hessian was named after the Hessian cloth, which is the British

term for Burlap. Burlap is simple, practical, and useful, but extremely ordinary

material - similar to the characteristics of the Hessian protocol. Resin is an open source

application server also offered by Caucho that integrates with Hessian.

- 11-

Chapter 4

EVALUATION METRICS

This chapter examines different factors to be considered when comparing the four

frameworks in this project. Some metrics are to determine the performance and

efficiency; some are to show the transparency and abstraction.

4.1 Latency

In terms of networks, latency is an expression of how much time it takes for data to be

sent back in response to a request [Chin gO 1]. This includes the time for the request to

be sent to the server, the time the server spends on processing the task, and the time for

the results to be sent back. Figure 5 depicts what this would look like. Network latency

is contributed to by many factors, such as propagation, transmission, modem and router

processing, and storage delays. Propagation is the time it takes for objects, such as data,

to transfer from one location to another at the speed of light. Transmission is the delay

from the medium, like optical fiber or wireless networks. Modems and routers take time

to check the headers of a packet. The storage delay is the time it takes for the actual

hardware, such as hard drives, to store the received data. In this project, the latency was

tested with different scenarios, such as requesting 1, 2, 3, 4, and 5 MB of data, and

having 1, 5, 10, 15, and 20 clients simultaneously (within the limits of the environment

utilized) requesting data. From the results of such testing, trends can be found and

compared for each framework.

- 12-

Client

4.2 Throughput

the time used to send a request

the time spent for the server to
send back the results

Figure 5: Network Latency

Server

the server
spends time
to process the
task

Throughput is the amount of clients or data processed within a certain unit of time

[ChingO 1]. It has an inverse relationship with latency, since scenarios with high latency

would result in low throughput, and scenarios with low latency would result in high

throughput. By viewing the latency graph, we can only tell the trends of response time,

while we can determine the most efficient scenario for a framework through viewing a

throughput graph.

4.3 Memory Usage

In computing, the purpose of memory is to temporarily store data for computer

calculations. There are a number of memory types, such as cache memory, flash

memory, random access memory (RAM), virtual memory, etc., but they are all limited

on servers, due to cost and space considerations. A framework that uses less memory

- 13-

would have the advantage by allowing higher capacity for the server. Figure 6 shows

where the memory usage can be viewed in Windows XP.

Applications\Wf?.~6.:S.~6.~]\ Performance ! Networkin_g Users

Image Name User Name c ... MemUsage

utorrent.exe vagnlphor 00 20,676 K
mspaint.exe vagniphor 00 14,280 K
tasl<mgr.exe vagniphor 00 6,056 K
Opera.exe vagnlphor 00 116,484 K
wlnamp.exe vagnlphor 00 19,416 K
uedit32.exe vagniphor 00 3,720 K
explorer.exe vagniphor 00 18,584 K
IEXPLORE.EXE vagnlphor 00 57,644 K
CLI.exe vagniphor 00 6,332 K
svchost.exe SYSTEM 00 2,744 K
usnsvc.exe SYSTEM 00 1,556 K
svchost. exe SYSTEM 00 728 K
NMBgMonltor. exe vagnlphor 00 4,864 K
jusched.exe vagnlphor 00 420 K
CLI.exe vagniphor 00 13,860 K
svchost.exe LOCAL SERVICE 00 3,900 K
atiptaxx.exe vagniphor 00 3,032 K

' ... --=-L.
>:

0 :2,how processes from all users !;.nd Process

Processes: 44 CPU :2% Commit Charge: 796M I 2459M

Figure 6: Memory Usage in Windows XP

4.4 CPU Usage

A central processing unit (CPU), also known simply as a processor, is a component in a

computer used to interpret program instructions and process data. The CPU is only able

to process one task at a time. When there are multiple tas~s, instead of finishing a task

(potentially waiting for I/0 or other system operations) and then going to another, the

- 14-

CPU is designed to switch to other tasks, if necessary, thus behaving as if it is executing

multiple tasks at the same time. However, large tasks might consume a lot of CPU time,

which decreases the time scheduled for other tasks. A framework that uses less CPU

capacity would allow the server to have more time to execute other tasks. Figure 7

shows where the CPU usage can be viewed in Windows XP.

Eile Qptions ~iew Shy_tDown t!elp

Application~ l[~f.?~i..S.S.e.~JI Performance ! NetworWng i u~er~

Image Name User Name c ... MemUsage

utorrent. exe vagnlphor 00 20,676 K
mspaint.exe vagniphor 00 14,280 K
taskmgr. exe vagniphor 00 6,056 K
Opera.exe vagniphor 00 116,484 K
winamp.exe vagniphor 00 19,416K
uedlt32.exe vagnlphor 00 3,720 K
explorer. exe vagniphor 00 18,584 K
IEXPLORE.EXE vagniphor 00 57,644 K
CLI.exe vagnlphor 00 6,332 K
svchost. exe SYSTEM 00 2,744 K
usnsvc.exe SYSTEM 00 1,556 K
svchost.exe SYSTEM 00 728 K
NMBgMonltor. exe vagnlphor 00 4,864 K
jusched.exe vagnlphor 00 420 K
CLI.exe vagniphor 00 13,860 K
svchost.exe LOCAL SERVICE 00 3,900 K
atiptaxx. exe vagnlphor 00 3,032 K

, ,. --1-L _,

0 :2_how processes from all users t;.nd Process

Commit Charge: 796M /2459M

Figure 7: CPU Usage in Windows XP

- 15-

4.5 Source Lines of Code

The source lines of code (SLOC) used in a framework can indicate the transparency and

abstraction of the framework. The main goal of a framework is to save the developer's

time and effort, by not requiring the entire code be written from scratch. Thus, the

fewer the lines of code required for a framework, the more time and effort it saves.

However, lines of code as a metric have evident limitations, since some lines might be

long while some lines are short. So, other measures, such as the number and size of files,

must also be considered.

- 16-

Chapter 5

STATISTICAL ANALYSIS METHODS

A method is required for analysis of the test data produced to compare performances.

Simply calculating the average response times and graphing them is insufficient; for

instance, in looking at average response times of 1.5 and 1.6 seconds, this statistic in

isolation doesn't indicate whether there is a significant difference or not. Therefore,

statistical analysis methods were required to tell whether or not the difference was

significant. In this project, the general linear model (GLM) and two-way analysis of

variance (two-way AN OVA) were used for statistical analyses. Furthermore, the

Statistical Analysis System (SAS) was used as a tool for generating the calculations for

the statistical analyses required.

5.1 The SAS System

The SAS system is statistical analysis software that has a wide variety of statistical

modules and procedures. The system uses a fourth-generation programming language

(4GL) for code and the programs are composed using three main components

[SAS07] -the data step, the procedure step, and the macro language. The data step is

for entering data, like inserting the data in the code or reading data in data files. The

procedure step is the use of statistical methods and models to analyze the data read in

the data step. The macro language is for decreasing the redundancy of functions used

again and again throughout the program.

- 17-

5.2 The GLM Model

The GLM model is a statistical linear model used in general cases. It is the foundation

of many statistical analyses, such as t-test, ANOV A, Analysis of Covariance

(ANCOVA), etc. To understand how the GLM model works it is easiest to look at the

two-variable case [GLM06]. The goal of this analysis is to fmd a way to accurately

describe the information in the plot in Figure 8.

~~

• •
• • • •

• • • •
• • • • • • •

• • •

....

Figure 8: Plot of Two-Variable Example

Using the GLM model, we try to find a straight line closest to all the dots in the plot.

Figure 9 shows the corresponding line for this example.

- 18 -

_ __..--·····

--~/./
/

__ --·

•
/

• •

.""..---'"-"'

• •

• / ··
• . _ ... ---··"'"···

• . .. //// .. / .
/

•

.-··
~"'"--

•
• •

Figure 9: Plot of Two-Variable Example with Straight Line

.... -

This line would be written like this: y = bo + b1x + e, where y is they-axis

variable, xis the x-axis variable, b 0 is the intercept (the value ofy when x equals 0), b1

is the slope of the straight line, and e is the error. Figure 10 shows the variables in the

plot

- 19-

.. ~
y

bo

•

• •
• •/' . _,./"_/

. ./_/'" .
. :/~l~ . .

•
6y

6x

_ .. --·
/

....
X-

Figure 10: Plot of Two-Variable Example with Straight Line and Variables

By solving for bo and b1, we can get information about this linear approximation for the

dots in the plot. In other cases with more than two variables, the formula can be

extended like this: y = bo + b1x1 + b 2x 2 + b 3x 3 + . . . + bnXn + e,

where n is the number of variables for the situation. The mechanism for solving such

problems is the same as for solving with two variables.

-20-

Chapter 6

RESULTS AND ANALYSES

In order to get the best results from SAS, each case was tested 20 times. Since four

frameworks were tested by measuring response time for each, when five different

numbers of clients (1, 5, 10, 15, and 20) requested data simultaneously, there were 20

different cases. The 20 test times for the 20 different cases resulted in 400 data sets to

be calculated by SAS. Besides the number of clients, the amount of data was also

considered, so with five different file sizes of data sent (1, 2, 3, 4, and 5MB) for each

of the four frameworks, there were 20 cases with a total of 400 data sets. Response time

was measured by recording the time right before invoking the web service and

recording the time right after the data requested was received, then subtracting the time

difference.

6.1 Results

6.1.1 Client Scenarios

For testing the four different frameworks in different scenarios, web service

applications to send out the data were created. To test the performance of the four

frameworks based on the number of clients requesting data simultaneously, five

scenarios were run (1 client, 5 clients, 10 clients, 15 clients, and 20 clients). Each client

- 21-

retrieved 1 MB of data. The average response time for each scenario and each

framework was recorded for analysis. The results are as shown in Figure 11.

Time vs Client

25000 .---------------------------,

~
~ 15000 f--:'~~,..----'-~~~~~~~--,c.....--,c.........-.4-~-..,._,F--~,c,-----l ,-------,
§ ~~~

6 _,._ Resin Hessian

J JBossWS
" '* Codehaus Xfire § 10000f--:'-~~~~~~~--,-~~~~--~--~~-----l

!

1 Client 5 Clients 10 Clients 15 Clients 20Clients

Figure 11: Latency in Client Scenarios

For throughput, Figure 12 shows the average number of clients serviced per second for

each scenario and framework, and in particular, the most efficient client scenario for

each framework. Apache Axis could deal with 4.993 clients per second, after reaching

the scenarios with 10 clients or more. Resin Hessian could deal with 4.807 clients per

second in those same scenarios. JBossWS dealt with 0.943 clients per second in every

scenario. Codehaus XFire seemed to work most efficiently around the scenario of 5

clients, dealing about 2.892 clients per second.

-22-

Client per Second

6.000

5.000

4.000

<0

~ .,
~ 3.000

11
"" u

2.000

1.000

0.000
1 Client 5 Clients 10 Clients 15 Clients 20 Clients

Figure 12: Throughput in Client Scenarios

6.1.2 Data Size Scenarios

--+---Apache Axis
_,._Resin Hessian

JBossWS
1. Codehaus Xfue

The average response time for the five scenarios based on different data sizes is shown

in Figure 13.

-23-

Time vsMB

6000

5000

j 4000

i -+- Apache Axis
_.,_Resin Hessian

" 3000
~ JBossWS

!l x Codehaus X fire
§

! 2000

1000

0
2

MB Sent

Figure 13: Latency in Data Size Scenarios

Figure 14 shows the most efficient data size scenario for each framework. All

frameworks reached their best performance when data files of 2 MB or more were sent.

Apache Axis processed an average of 3.617 MB/s, JBossWS an average of 1.287 MB/s,

Codehaus XFire an average of 1. 240 MB/s, and Resin Hessian an average of 1. 017

MB/s.

-24-

MB per Seconds

4

--/
3.5

/
2.5

-+- Apach Axis
,. Resin Hessian

JBossWS

~
"' 2 1l.

·~ Codehaus XFire
1.5

~ ...
0.5

2 4

MBSent

Figure 14: Throughput in Data Size Scenarios

From the graphs, it appears that Apache Axis had the best performance in all scenarios.

To confirm this, further analysis was done.

6.2 Analyses

Obviously, response time depends on the choice of framework, the quantity of data

transferred, and the number of clients invoking tasks from the web service. Thus, these

three factors might significantly impact response times. We used the GLM model to

determine if the interactions of the three factors were also significant. For interactions

that were not significant, we determined we would use Tukey's method to do multiple

-25-

comparisons to see which framework had better performances in all cases and which

had worse. For interactions that were significant, we would analyze the results case by

case.

6.2.1 Client Scenarios

First, analyzing the results from the client scenarios, we used the SAS system to

determine the significance of each factor. Figure 15 shows the results.

oJ.ients
framework
oJ.ients*framework

<.0001
<.0001
<.0001

Figure 15: Factor Significance SAS in Client Scenarios

The "Pr > F" value, in Figure 15, shows whether the results were significant. If the

value was lower than 0.05, that meant the factor was significant; if the value was

greater than or equal to 0.05, then the factor would not be considered significant. In this

case, not only were the number of clients and choice of framework significant factors,

but the interaction between them was also significant. This means if one of the

frameworks was significantly faster in some scenarios, it would not necessarily be

faster in other scenarios. So, SAS cannot directly compare all frameworks in all

scenarios.

-26-

A pair-wise comparison from the GLM procedure was used to compare the frameworks

in different scenarios. The first framework was compared to the second in the first

scenario, then the first to third, first to fourth, second to third, second to fourth, and

third to fourth. So, there were six comparisons in each scenario. Figure 16 shows the

results of these comparisons.

Standard
Parametel' Estimate Errol' t Value Pr > It I

f1-f2 at c1 -742.0000 601.720767 -1. 23 0.2183
f1-f3 at o1 -633.8500 601.720767 -1.05 0.2928
f1-f4 at o1 -538.1500 601.720767 -0.89 0. 3717
f2-f3 at c1 108.1500 601.720767 0.18 0.8575
f2-f4 at o1 203.8500 601.720767 0.34 0.7350
f3-f4 at o1 95.7000 601.720767 0.16 0.8737
f1-f3 at c2 -4053.2000 601.720767 -6.74 <.0001
f1-f4 at o2 -642.0500 601.720767 -1.07 0.2866
f2-f3 at o2 -3737.1500 601.720767 -6.21 <.0001
f2-f4 at o2 -326.0000 601.720767 -0.54 0.5883
f3-f4 at o2 3411 . 1500 601.720767 5.67 <.0001
f1-f2 at c3 -148.4500 601.720767 -0.25 0.8053
f1-f3 at o3 -9738.4500 601.720767 -16.18 <.0001
f1-f4 at o3 -2727.7500 601.720767 -4.53 <.0001
f2-f3 at c3 -9590.0000 601.720767 -15.94 <.0001
f2-f4 at c3 -2579.3000 601.720767 -4.29 <.0001
f3-f4 at c3 7010.7000 601.720767 11.65 <.0001
f1-f2 at c4 -223.7500 601.720767 -0.37 0.7102
f1-f3 at c4 -12565.7000 601.720767 -20.88 <.0001
f1-f4 at o4 -10305.2000 601.720767 -17.13 <.0001
f2-f3 at o4 -12341.9500 601.720767 -20. 51 <.0001
f2-f4 at o4 -10081.4500 601.720767 -16.75 <.0001
f3-f4 at o4 2260.5000 601.720767 3.76 0.0002
f1-f2 at o5 110.4000 601.720767 0.18 0.8545
f1-f3 at o5 -17435.2500 601.720767 -28.98 <.0001
f1-f4 at c5 -18729.2500 601.720767 -31.13 <.0001
f2-f3 at c5 -17545.6500 601.720767 -29. 16 <.0001
f2-f4 at o5 -18839. 6500 601.720767 -31.31 <.0001
f3-f4 at c5 -1294.0000 601.720767 -2. 15 0.0321

Figure 16: Pair-Wise Comparison Results from SAS in Client Scenarios

-27-

Looking at the "estimate" in the first row, which is the comparison between the first

framework (fl) and the second framework (f2), f1 is faster than f2 by -742 milliseconds.

But the "Pr > I t I" value shows this difference is not significant, because the value is

higher than 0.05. By integrating all the "Pr > It I" values together, to see which

frameworks were significantly faster, a better view of the performances was created.

Table 1 shows the integration results by separating the frameworks into groups.

1 Client 5 Clients 10 Clients 15 Clients 20 Clients

Apache Axis A A A A A

Resin Hessian A A A A A

JBossWS A B c c c

Codehaus XFire A A B B B

Table 1: Response Time Comparison for Client Scenarios

Table 1 should be read one scenario at a time, i.e., when looking at the 1 client scenario,

ignore the data in the 5 client, 10 client, 15 client, and 20 client scenarios. Groups

labeled with lower alphabetic characters had lower response times, which meant better

performance. In the 1 client scenario, all frameworks were in group A, meaning they all

had approximately the same performance in this scenario. In the 5 client scenario,

JBossWS was in group B while the others were in group A. This means, in this scenario,

JBossWS had worse performance than the others, and the difference was significant,

-28-

while the others performed about the same. In the last three scenarios, Apache Axis and

Resin Hessian were faster than Codehaus XFire, and Codehaus XFire was faster than

JBossWS.

Although from the SAS analysis results, the better performance of frameworks is a case

by case matter, as the number of clients increase to 10 or more, Apache Axis and Resin

Hessian performed better than Codehaus XFire, and Codehaus XFire better than

JBossWS.

6.2.2 Data Size Scenarios

The process of analyzing performance based on data size was the same as the process

used for analyzing it based on client amount. First, the interaction between data size and

choice of framework was determined. The results are as shown in Figure 17.

Source

mb
fl~amework

mb*fl-amewol-k

<.0001
<.0001
<.0001

Figure 17: Factor Significance in Data Size Scenarios

It turned out that the interaction between data size and choice of framework was also

significant. Therefore, the same pair-wise comparison procedure was used. The results

are given in Figure 18.

- 29-

Parameter Estimate Ei'I'OI' t Value Pr > Jt I

f1-f2 at o1 -742.00000 30.8873620 -24.02 <.0001
f1-f3 at o1 -633.85000 30.8873620 -20.52 <.0001
f1-f4 at o1 -538.15000 30.8873620 -17.42 <.0001
f2-f3 at o1 108. 15000 30.8873620 3.50 0.0005
f2-f4 at o1 203.85000 30.8873620 6.60 <.0001
f3-f4 at o1 95.70000 30.8873620 3.10 0.0021
f1-f2 at o2 -1435.75000 30.8873620 -46.48 <.0001
f1-f3 at o2 -1108.20000 30.8873620 -35.88 <.0001
f1-f4 at o2 -1099.95000 30.8873620 -35.61 <.0001
f2-f3 at o2 327.55000 30.8873620 10.60 <.0001
f2-f4 at o2 335.80000 30.8873620 10.87 <.0001
f3-f4 at o2 8.25000 30.8873620 0.27 0.7895
f1-f2 at o3 - 2163 . 1 0000 30.8873620 -70.03 <.0001
f1-f3 at o3 -1501.85000 30.8873620 -48.62 <.0001
f1-f4 at o3 -1638.90000 30.8873620 -53.06 <.0001
f2-f3 at 03 661.25000 30.8873620 21.41 <.0001
f2-f4 at o3 524.20000 30.8873620 16.97 <.0001
f3-f4 at 03 -137.05000 30.8873620 -4.44 <.0001
f1-f2 at o4 -2780.05000 30.8873620 -90.01 <.0001
f1-f3 at o4 -1937.70000 30.8873620 -62.73 <.0001
f1-f4 at 04 -2075.20000 30.8873620 -67. 19 <.0001
f2-f3 at o4 842.35000 30.8873620 27.27 <.0001
f2-f4 at o4 704.85000 30.8873620 22.82 <.0001
f3-f4 at o4 -137.50000 30.8873620 -4.45 <.0001
f1-f2 at o5 -3473.55000 30.8873620 -112.46 < .. 0001
f1-f3 at o5 -2341.00000 30.8873620 -75.79 <.0001
f1-f4 at o5 -2537.55000 30.8873620 -82.15 <.0001
f2-f3 at 05 1132.55000 30.8873620 36.67 <.0001
f2-f4 at 05 936.00000 30.8873620 30.30 <.0001
f3-f4 at o5 -196.55000 30.8873620 -6.36 <.0001

Figure 18: Pair-Wise Comparison Results from SAS in Data Size Scenarios

Table 2 shows frameworks separated into groups based on the integration of their

performance results.

- 30-

I MB 2MB 3MB 4MB 5MB

Apache Axis A A A A A

Resin Hessian D c D D D

JBossWS c B B B B

Codehaus XFire B B c c c

Table 2: Response Time Comparison for Data Size Scenarios

When sending 1 MB of data, Apache Axis was better than Codehaus XFire, which was

better than JBoss WS, which was in turn better than Resin Hessian. Although each

scenario was a different case, as the data size increased, Apache Axis was the best, and

Resin Hessian was the worst. The only differences were, in the second scenario, the

performances of Codehaus XFire and JBossWS were equivalent, and, in the last three

scenarios, JBossWS was faster than Codehaus XFire.

6.2.3 Others

Other metrics such as memory usage, CPU usage, and SLOC were also tested in this

project. Table 3 shows memory and CPU used on the web service application created,

using each framework.

- 31 -

Memory Usage CPU Usage

Apache Axis 13% 0%

Resin Hessian 8.7% 0%

JBossWS 16% 0%

Codehaus XFire 13% 0%

Table 3: Memory and CPU Usage of Four Frameworks

Since the web service applications created, using the four frameworks, barely used any

CPU at all, CPU usage was not a useful factor. Comparing the memory usages, Resin

Hessian used the least, approximately half of that was used by JBossWS. Apache Axis

and Codehaus XFire used an intermediate amount of memory.

The SLOC of web services created, using each framework, are as shown in Table 4.

SLOC Server Side Client Side Total

Apache Axis 64 120 184

Resin Hessian 70 85 155

JBossWS 94 127 221

Codehaus XFire 48 128 176

Table 4: SLOC of Application of Four Frameworks

- 32-

JBossWS required the most lines of code and Resin Hessian required the least. The web

service application used to test the frameworks had only one trivial function, so it

required few lines of code. But, if these frameworks were to be used to create large

real-world applications, the 42% difference of SLOC between JBossWS and Hessian

could mean many, many more lines, which would greatly increase the effort, time, and

errors for an application development.

-33-

Chapter 7

CONCLUSION

For web applications that require communication through the network between

different computer platforms, web service would be a good choice, since it is designed

based on a platform-independent language - XML. Instead of developing web services

from scratch, using existing frameworks can greatly increase productivity and lessen

the time and effort that developers spend on learning the details of web services.

From the test results of this project, Apache Axis had the best performance overall.

When processing with small amounts of data, Hessian performed just as well as Apache

Axis. In contrast, it had the poorest performance of the four frameworks when

processing larger amounts of data. However, Hessian required the least amount of code

and used the least memory and CPU capacity. Thus, for developing a small application

with small amounts of data being processed, such as is the case with mobile devices,

Hessian would be a viable choice, due to its high performance and low price. If

developing a big application that processes a large amount of data, Apache Axis

appears to be a better solution. The benefit of JBossWS is it is more compatible with

other JBoss projects or applications using JBoss Application Server.

- 34-

REFERENCES

Print Publications:

[Ching01]
Ching, A., and A. Wagner, ''Understanding Performance Testing," Technical Report,

Microsoft Developer Network, (February, 2001), pp. 52-55.

[Curbera02]
Curbera, F., M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana,

"Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and
UDDI," IEEE Internet Computin~, (March, 2002), pp. 86-93.

[Curbera03]
Curbera F., R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, "The Next Step in Web

Services," Communications of the ACM, (October, 2003), pp. 29-34.

[DeckerOO]
Decker, S., S. Melnik, F. van Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Erdmann,

and I. Horrocks, "The Semantic Web: The Roles ofXML and RDF," IEEE Internet
Computing, (September-October, 2000), pp. 63-73.

[HendlerO 1]
Hendler, l; "Agents and the Semantic Web," IEEE Intelligent Systems, (March-April,

2001), pp. 30-37.

[Mcllraith01]
Sheila A. Mcllraith, T. C. Son, and H. Zeng, "Semantic Web Services," IEEE

Intelligent Systems, (March-April, 2001), pp. 46-53.

[N arayanan02]
Narayanan, S., and S. A. Mcllraith, "Simulation, Verification and Automated

Composition of Web Services," International World Wide Web Conference, (2002),
pp. 77-88.

[Yang02]
Yang, J., and M.P. Papazoglou, "Web Component: A Substrate for Web Service Reuse

and Composition," Lecture Notes in Computer Science, 2348 (2002), pp. 21-36.

- 35-

Electronic Sources:

[GLM06]
General Linear Model, http://www.socialresearchmethods.net/kb/genlin.php, last

revision October 10, 2006, last accessed November 20, 2007.

[HBWSP06]
Hessian Binary Web Service Protocol, http://hessian.caucho.com/, last revision 2006,

last accessed November 20, 2007.

[JBossWS07]
JBossWS, http://jbws.dyndns.org/mediawiki/index.php ?title= JBoss WS, last revision

November 10,2007, last accessed November 20, 2007.

[SAS07]
SAS, http://www.sas.com/, last revision 2007, last accessed November 20, 2007.

[WSA06]
Web Services- Axis, http://ws.apache.org/axis/, last revision April22, 2006, last

accessed November 20, 2007.

[XFire07]
Codehaus XFire, http://xfrre.codehaus.org/, last revision May 3, 2007, last accessed

November 20,2007.

- 36-

APPENDIX A

APACHE AXIS SERVER CODE: SENDMB

*
*
* Program name: sendMB.java

package mine;

public class sendMB
{

public String request(int num)
{

byte[] oneMB =new byte[1048576];
for (int i = 0; i<oneMB.length; i++)

oneMB[i]=(byte) '1';
String theString =new String(oneMB);
for (int i = 0; i<num-1; i++)

theString +=new String(oneMB);
return theString;

- 37-

*
*

APPENDIXB

APACHE AXIS SERVER CODE: CPUMEM

*

*
* Program name: CPUmem.java

package mine;

import java.lang.*;
import java.io.*;
import java.util.*;

public class CPUmem
{

public String percentage()
{

String memUsage
String cpuUsage

try
{

null;
null;

Runtime rt = Runtime.getRuntime();
Process proc = rt.exec("ps u -e");

InputStream inputstream = proc.getinputStream();
InputStreamReader inputstreamreader = new

InputStreamReader(inputstream);
BufferedReader bufferedreader = new

BufferedReader(inputstreamreader);

String line;

*
*

for (int i=O; (line bufferedreader.readLine()) !=
null;i++)

String spliting[) = line.split(" ");
if (spliting[O) .equals ("tomcat"))
{

int counter = 0;
for (int j=O; j<spliting.length; j++)
{

if (!spliting[j] .equals(""))
{

-38-

counter++;
if (counter==3)

cpuUsage=spliting[j);
else if (counter==4)

memUsage=spliting[j];

break;

break;

//System. out. println ("CPU Usage: "+cpuUsage) ;
//System. out .println ("Memory Usage: "+memUsage);
return cpuUsage+" "+memUsage;

}
catch(Exception e)
{

e.printStackTrace();

return cpuUsage+" "+memUsage;

-39-

APPENDIXC

APACHE AXIS CLIENT CODE: CLIENT

* ~ *

*
* Program name: client.java

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import org.apache.axis.encoding.XMLType;
import org.apache.axis.utils.Options;

import javax.xml.namespace.QName;
import javax.xml.rpc.ParameterMode;
import java.text.DecimalFormat;

import java.io.*;
import java.util.*;

public class client
{

static DecimalFormat decimal= new DecimalFormat(".OOO");

public static void main(String [] args)
{

try
{

Options options= new Options(args);

String endpointURL = options.getURL();
String MBToSend;
String numOfClients;

args = options.getRemainingArgs();
if ((args == null) II (args.length < 2))
{

.MBToSend = "1";
numOfClients = "1";

else

MBToSend = args[O];
numOfClients = args[1];

int MB = Integer.parseint(MBToSend);
int num = Integer.parseint(numOfClients);

simClients sim =new simClients(MB,endpointURL);
//threading to simulate multiple users
for (int i=O; i<num; i++)

-40-

*
*

try
{

new simClients(MB,endpointURL) .start();

while (simClients.counter<num)
{

Thread.sleep(lOOO);

catch(Exception e)
{

e.printStackTrace();

long response_time = simClients.total_time/num;
float usageCPU = simClients.total_CPU/num;
float usageMem = simClients.total_mem/num;
System.out.println("Average Response Time =

"+response_time+" milliseconds");
System.out.println("Average CPU Usage = "+usageCPU+"

% ") ;
System. out .println ("Average Memory Usage

"+usageMem+" %");
System.out.println("Total CPU change =

"+simClients.total CPU change+" %");
Syst;m.out.println("Average Memory Change

"+simClients.total_mem_change+" %");
}

catch (Exception e)

e.printStackTrace();

class simClients extends Thread

int MB = 0;
String endpointURL new String();

long start_time = 0;
long end_time = 0;
long process time = 0;
static long total_time 0;
static float total CPU 0;
static float total mem 0;
static float total CPU change 0;
static float total_mem_change 0;
static int counter = 0;
static ArrayList each_time =new ArrayList();

public simClients(int rob, String url)
{

MB = rob;
endpointURL url;

- 41-

public void run()
{

try
{

start time System.currentTimeMillis();

Service service= new Service();
Call call = (Call) service.createCall();

call.setTargetEndpointAddress(new
java.net.URL(endpointURL+"CPUmem")) ;

call. setOperationName (new QName ("http: I /CPUmem",
"percentage")) ;

call.setReturnType(org.apache.axis.encoding.XMLType.XSD_STRING
) ;

String startUsage = (String) call.invoke(new
Object [] {)) ;

String splitStartUsage[] = startUsage.split(" ");

service= new Service();
call= (Call) service.createCall();

call.setTargetEndpointAddress(new
java.net.URL(endpointURL+"sendMB"));

call.setOperationName(new QName("http://sendMB",
"request")) ;

call.addParameter("argl", XMLType.XSD_INT,
ParameterMode.IN);

call.setReturnType(org.apache.axis.encoding.XMLType.XSD_STRING
) ;

{MB}) ;

start time
String ret

System.currentTimeMillis();
(String) call.invoke(new Object[]

end time= System.currentTimeMillis();

service= new Service();
call= (Call) service.createCall();

call.setTargetEndpointAddress(new
java.net.URL(endpointURL+"CPUmem")) ;

call.setOperationName(new QName("http://CPUmem",
"percentage")) ;

call.setReturnType(org.apache.axis.encoding.XMLType.XSD_STRING
) ;

String usage= (String) call.invoke(new Object[]
{ }) ;

String splitUsage[] = usage.split(" ");

-42-

total_CPU_change += Float.parseFloat(splitUsage[O])
Float.parseFloat(splitStartUsage[O]);

total_CPU += Float.parseFloat(splitUsage[O]);
total_mem_change += Float.parseFloat(splitUsage[l])

Float.parseFloat(splitStartUsage[l]);
total mem += Float.parseFloat(splitUsage[l]);

process time = end_time - start_time;
total time += process_time;
counter++;

catch(Exception e)
{

e.printStackTrace();

-~-

APPENDIXD

RESIN HESSIAN SERVER CODE: SENDMB

*
*
* Program name: sendMB.java

package resinProject;

public class sendMB implements sendAPI
{

public String request(int num)
{

byte[] oneMB =new byte[1048576];
for (int i = 0; i<oneMB.length; i++)

oneMB[i]=(byte) '1';
String theString =new String(oneMB);
for (int i = 0; i<num-1; i++)

theString +=new String(oneMB);
return theString;

-44-

*
*

APPENDIXE

RESIN HESSIAN SERVER CODE: CPUMEM

*

*
* Program name: CPUmem.java

package resinProject;

import java.lang.*;
import java.io.*;
import java.util.*;

public class CPUmem
{

public String percentage()
{

String memUsage
String cpuUsage

try
{

null;
null;

Runtime rt = Runtime.getRuntime();
Process proc = rt.exec("ps u -e");

InputStream inputstream = proc.getinputStream();
InputStreamReader inputstreamreader = new

InputStreamReader(inputstream);
BufferedReader bufferedreader = new

BufferedReader(inputstreamreader);

String line;

*
*

for (int i=O; (line bufferedreader.readLine()) !=
null;i++)

String spliting[) = line.split(" ");
if (spliting[O) .equals ("resin"))
{

int counter = 0;
for (int j=O; j<spliting.length; j++)
{

if (!spliting[j) .equals(""))
{

-45-

counter++;
if (counter==3)

cpuUsage=spliting[j);
else if (counter==4)
{

memUsage=spliting[j);

break;

return cpuUsage+" "+memUsage;
}

catch(Exception e)
{

e.printStackTrace();

return cpuUsage+" "+memUsage;

-46-

break;

APPENDIXF

RESIN HESSIAN CLIENT CODE: CLIENT

*

*
* Program name: client.java

package resinProject;

import com.caucho.hessian.client.HessianProxyFactory;

import java.text.DecimalFormat;

import java.io.*;
import java.util.*;

public class client
(

static DecimalFormat decimal= new DecimalFormat(".OOO");

public static void main(String [] args)
{

try
{

String endpointURL;
String MBToSend;
String numOfClients;

if ((args ==null) I I (args.length < 3))
{

MBToSend = "1";
numOfClients = "1";
endpointURL =

"http://callisto.ccec.unf.edu:8088/n00168553";
}

else

endpointURL = args[O];
MBToSend = args[l];
numOfClients = args[2];

int MB = Integer.parseint(MBToSend);
int num = Integer.parseint(numOfClients);

simClients sim =new simClients(MB,endpointURL);
//threading to simulate multiple users
for (int i=O; i<num; i++)

try
{

new simClients(MB,endpointURL) .start();

-47-

*
*

while (simClients.counter<num)
{

Thread.sleep(lOOO);

catch(Exception e)
{

e.printStackTrace();

long response time = simClients.total time/num;
float usageCPU = simClients.total CPU/num;
float usageMem = simClients.total=mem/num;
System.out.println("Average Response Time =

"+response_time+" milliseconds");
System.out.println("Average CPU Usage = "+usageCPU+"

% ") ;.
System. out. println ("Average Memory Usage

"+usageMem+" %");
System.out.println("Total CPU change =

"+simClients.total_CPU_change+" %");
System. out. println ("Average Memory Change

"+simClients.total_mem_change+" %");
}

catch (Exception e)

e.printStackTrace();

class simClients extends Thread

int MB = 0;
String endpointURL new String();

long start_time = 0;
long end_time = 0;
long process time = 0;
static long total_time 0;
static float total CPU 0;
static float total mem 0;
static float total CPU change 0;
static float total_mem_change 0;
static int counter = 0;
static ArrayList each_time =new ArrayList();

public simClients(int mb, String url)
{

MB = mb;
endpointURL

public void run()
{

try

url;

- 48-

HessianProxyFactory factory = new
HessianProxyFactory();

HessianProxyFactory factory2 = new
HessianProxyFactory();

CPUmemAPI CPUmem = (CPUmemAPI) factory.create(CPUmemAPI.class,
endpointURL+"/CPUmem");

sendAPI send= (sendAPI) factory2.create(sendAPI.class,
endpointURL+"/sendMB");

String startUsage = CPUmem.percentage();
String splitStartUsage[] = startUsage.split(" ");

start time= System.currentTimeMillis();
String ret= send.request(MB);
end time= System.currentTimeMillis();

String usage= CPUmem.percentage();
String splitUsage[] = usage.split(" ");

total_CPU_change += Float.parseFloat(splitUsage[O])
Float.parseFloat(splitStartUsage[O]);

total_CPU += Float.parseFloat(splitUsage[O]);
total mem change+= Float.parseFloat(splitUsage[l])

Float.parseFloat(splitStartUsage[l]);
total mem += Float.parseFloat(splitUsage[l]);

process_time = end_time - start_time;
total time += process_time;
counter++;

catch(Exception e)
{

e.printStackTrace();

-49-

APPENDIXG

JBOSSWS SERVER CODE: SENDMBBEAN

*
*
* Program name: sendMBBean.java

package jboss.project;

import javax.ejb.Remote;
import javax.ejb.Stateless;
import javax.jws.WebService;

@Stateless
@WebService(endpointinterface "jboss.project.sendMB")
@Remote(sendMB.class)
public class sendMBBean {

public String request(int num)
byte[] oneMB =new byte[1048576];
for (int i = 0; i<oneMB.length; i++)

oneMB[i]=(byte) '1';
String theString =new String(oneMB);
for (int i = 0; i<num-1; i++)

theString +=new String(oneMB);
return theString;

-50-

*
*

APPENDIXH

JBOSSWS SERVER CODE: CPUMEMBEAN

*

*
* Program name: CPUmemBean,java

package jboss.project;

import java.lang.*;
import java.io.*;
import java.util.*;

import javax.ejb.Remote;
import javax.ejb.Stateless;
import javax.jws.WebService;

@Stateless
@WebS ervice (endpoint Inter£ ace "j boss . project. CPUmem")
@Remote(CPUmem.class)
public class CPUmemBean {

public String percentage()
String memUsage null;
String cpuUsage = null;

try
{

Runtime rt = Runtime.getRuntime();
Process proc = rt.exec("ps u -e");

InputStream inputstream = proc.getinputStream();
InputStreamReader inputstreamreader = new

InputStreamReader(inputstream);
BufferedReader bufferedreader = new

BufferedReader(inputstreamreader);

String line;

*
*

for (int i=O; (line bufferedreader.readLine()) !=
null;i++)

String spliting[] = line. split(" ");
if (spliting[O].equals("jboss"))
{

int counter = 0;
for (int j=O; j<spliting.length; j++)
{

if (!spliting[j] .equals(""))
{

counter++;

-51 -

break;

return cpuUsage+" "+memUsage;
}

catch(Exception e)
{

e.printStackTrace();

return cpuUsage+" "+memUsage;

-52-

if (counter==3)
cpuUsage=spliting[j];

else if (counter==4)

memUsage=spliting[j];
break;

APPENDIX I

JBOSSWS CLIENT CODE: CLIENT

*

*
* Program name: Client.java

package jboss.project;

import java.io.*;
import java.util.*;

import java.net.URL;

import javax.xml.namespace.QName;
import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceFactory;

public class Client
public static void main(String[] args) throws Exception
{

try
{

String endpointURL;
String MBToSend;
String numOfClients;

if ((args ==null) I I (args.length < 3))
{

MBToSend = "1";
numOfClients = "1";
endpointURL =

"http://callisto.ccec.unf.edu:18080";
}

else

endpointURL = args[O];
MBToSend = args[1];
numOfClients = args[2];

int MB = Integer.parseint(MBToSend);
int num = Integer.parseint(numOfClients);

simClients sim =new simClients(MB,endpointURL);
//threading to simulate multiple users
for (int i=O; i<num; i++)

new simClients(MB,endpointURL) .start();

while (simClients.counter<num)
{

-53-

*
*

Thread.sleep(lOOO);

long response_time = simClients.total_time/num;
float usageCPU = simClients.total_CPU/num;
float usageMem = simClients.total_mem/num;
System. out. println ("Average Response Time =

"+response_time+" milliseconds");
System.out.println("Average CPU Usage = "+usageCPU+"

%");

System. out. println ("Average Memory Us age
"+usageMem+" %");

System.out.println("Total CPU change =
"+simClients.total_CPU_change+" %");

System. out. println ("Average Memory Change
"+simClients.total_mem_change+" %");

catch (Exception e)
{

e.printStackTrace();

class simClients extends Thread

int MB = 0;
String endpointURL new String();

long start_time = 0;
long end_time = 0;
long process time = 0;
static long total_time 0;
static float total CPU 0;
static float total mem 0;
static float total CPU change 0;
static float total_mem_change 0;
static int counter = 0;
static ArrayList each_time =new ArrayList();

public simClients(int mb, String url)
{

MB = mb;
endpointURL

public void run()
{

try
{

url;

URL url = new
URL(endpointURL+"/sendMBBeanService/sendMBBean?wsdl");

URL url2 = new
URL(endpointURL+"/CPUmemBeanService/CPUmemBean?wsdl");

-54-

QName qname = new
QName("http://project.jboss/","sendMBBeanService");

QName qname2 = new
QName ("http: I /project. jboss/", "CPUmemBeanService") ;

ServiceFactory factory =
ServiceFactory.newinstance();

ServiceFactory factory2 =
ServiceFactory.newinstance();

qname2);

Service remote= factory.createService(url, qname);
Service remote2 = factory2.createService(url2,

sendMB proxy= (sendMB) remote.getPort(sendMB.class);
CPUmem proxy2 = (CPUmem)

remote2.getPort(CPUmem.class);

String startUsage = proxy2.percentage();
String splitStartUsage[] = startUsage.split(" ");

start time= System.currentTimeMillis();
String ret= proxy.request(MB);
end time= System.currentTimeMillis();

String usage = proxy2.percentage();
String splitUsage[] = usage.split(" ");

total_CPU_change += Float.parseFloat(splitUsage[O])
Float.parseFloat(splitStartUsage[O]);

total_CPU += Float.parseFloat(splitUsage[O]);
total mem change+= Float.parseFloat(splitUsage[l])

Float.parseFloat(splitStartUsage[l]);
total mem += Float.parseFloat(splitUsage[l]);

process time = end_time - start_time;
total time += process_time;
counter++;

catch(Exception e)
{

e.printStackTrace();

-55-

APPENDIXJ

XFIRE SERVER CODE: SENDMBIMPL

*
*
* Program name: sendMBimpl.java

package xfire.project;

/** XFire WebServices implementation class.
*I

public class SendMBimpl implements SendMB
{

public String request(int num)
{

byte[] oneMB =new byte[1048576];
for (int i = 0; i<oneMB.length; i++)

oneMB[i]=(byte) '1';
String theString =new String(oneMB);
for (int i = 0; i<num-1; i++)

theString +=new String(oneMB);
return theString;

-56-

*
*

APPENDIXK

XFIRE SERVER CODE: CPUMEMIMPL

*

*
* Program name: CPUmemimpl.java

package xfire.project;

import java.lang.*;
import java.io.*;
import java.util.*;

/** XFire WebServices implementation class.
*I

public class CPUmemimpl implements CPUmem
{

public String percentage()
{

String memUsage
String cpuUsage

try
{

null;
null;

Runtime rt = Runtime.getRuntime();
Process proc = rt.exec(0 ps u -e 0

);

InputStream inputstream = proc.getinputStream();
InputStreamReader inputstreamreader = new

InputStreamReader(inputstream);
BufferedReader bufferedreader = new

BufferedReader(inputstreamreader);

String line;

*
*

for (int i=O; (line bufferedreader.readLine()) !=
null; i++)

String spliting[] = line.split(n °);
if (spliting[O].equals (0 tomcat 0

))

{
int counter = 0;
for (int j=O; j<spliting.length; j++)
{

if (!spliting[j] .equalS(00
))

{

-57-

counter++;
if (counter==3)

cpuUsage=spliting[j];
else if (counter==4)

break;

return cpuUsage+" "+memUsage;
}

catch(Exception e)
{

e.printStackTrace();

return cpuUsage+" "+memUsage;

-58-

memUsage=spliting[j];
break;

APPENDIXL

XFIRE CLIENT CODE: CLIENT

*

*
* Program name: Client.java

import xfire.project.*;

import java.net.MalformedURLException;
import java.text.DecimalFormat;
import java.text.NumberFormat;

import org.codehaus.xfire.client.XFireProxyFactory;
import org.codehaus.xfire.service.Service;
import org.codehaus.xfire.service.binding.ObjectServiceFactory;
import org.codehaus.xfire.XFire;
import org.codehaus.xfire.XFireFactory;
import org.apache.log4j.Logger;

import java.io.*;
import java.util.*;

public class Client
{

public static void main(String args[))
{

try {
String endpointURL;
String MBToSend;
String numOfClients;

if ((args ==null) I I (args.length < 3))
{

MBToSend = "1";
numOfClients = "1";
endpointURL =

"http://callisto.ccec.unf.edu:8080/n00168553/services";
}

else
{

endpointURL = args[O];
MBToSend = args[1);
numOfClients = args[2];

int MB = Integer.parseint(MBToSend);
int num = Integer.parseint(numOfClients);

simClients sim =new simClients(MB,endpointURL);

-59-

*
*

//threading to simulate multiple users
for (int i=O; i<num; i++)

try
{

new simClients(MB,endpointURL) .start();

while (simClients.counter<num)

Thread.sleep(lOOO);

catch(Exception e)
{

e.printStackTrace();

long response time = simClients.total time/num;
float usageCPU = simClients.total CPU/num;
float usageMem = simClients.total=mem/num;
System.out.println("Average Response Time =

"+response_time+" milliseconds");
System.out.println("Average CPU Usage = "+usageCPU+"

%") i

System. out. println ("Average Memory Usage
"+usageMem+" %");

System.out.println("Total CPU change =
"+simClients.total_CPU_change+" %");

System.out.println("Average Memory Change
"+simClients.total_mem_change+" %");

} catch (Exception e) {
System. out. println ("EXCEPTION: main () : " +

e.toString());
}

}

class simClients extends Thread
{

private static Logger log Logger.getLogger(Client.class);

int MB = 0;
String endpointURL new String() ;

long start_time = 0;
long end_time = 0;
long process time = 0;
static long total_time 0;
static float total CPU 0;
static float total mem 0;
static float total CPU change 0;
static float total_mem_change 0;
static int counter = 0;
static ArrayList each_time =new ArrayList();

public simClients(int mb, String url)
{

- 60-

MB = mb;
endpointURL url;

public void run()
{

try
{

String startUsage = getCPUmem(endpointURL);
String splitStartUsage[) = startUsage.split(" ");

start time= System.currentTimeMillis();
String ret= sendMB(MB,endpointURL);
end time= System.currentTimeMillis();

String usage = getCPUmem(endpointURL);
String splitUsage[] = usage.split(" ");

total_CPU_change += Float.parseFloat(splitUsage[O])
Float.parseFloat(splitStartUsage[O]);

total_CPU += Float.parseFloat(splitUsage[O]);
total_mem_change += Float.parseFloat(splitUsage[l])

Float.parseFloat(splitStartUsage[l]);
total mem += Float.parseFloat(splitUsage[l]);

process time = end_time - start_time;
total time += process_time;
counter++;

catch(Exception e)
{

e.printStackTrace();

/* call the web service

*
*I
public String sendMB(int MB,String endpointURL)

throws MalformedURLException, Exception{

//create a metadata of the service
Service serviceModel = new

ObjectServiceFactory() .create(SendMB.class);
//System.out.println("callSoapServiceLocal(): got service

model.") ;

//create a proxy for the deployed service
XFire xfire = XFireFactory.newinstance() .getXFire();

XFireProxyFactory factory = new XFireProxyFactory(xfire);
//String serviceUrl = "xfire.local://Banking"
String serviceUrl = endpointURL+"/SendMB";
SendMB client = null;
try {

client= (SendMB) factory.create(serviceModel,
serviceUrl);

- 61 -

} catch (MalformedURLException e)
log.error("simClients.sendMB()

e.toString());
EXCEPTION: " +

}

//invoke the service
String serviceResponse = "";
try {

serviceResponse = client.request(MB);
} catch (Exception e) {

log.error("simClients.sendMB(): EXCEPTION: " +
e. toString ()) ;

serviceResponse = e.toString();

log.debug("simClients.sendMB(): status=" +
serviceResponse) ;

//return the response
return serviceResponse;

public String getCPUmem(String endpointURL)
throws MalformedURLException, Exception{

//create a metadata of the service
Service serviceModel = new

ObjectServiceFactory() .create(CPUmem.class);
I /System. out. println ("callSoapServiceLocal ()

model.");

//create a proxy for the deployed service

got service

XFire xfire = XFireFactory.newinstance() .getXFire();
XFireProxyFactory factory= new XFireProxyFactory(xfire);
//String serviceUrl = "xfire.local://Banking"
String serviceUrl = endpointURL+"/CPUmem";
CPUmem client = null;
try {

client= (CPUmem) factory.create(serviceModel,
serviceUrl);

} catch (MalformedURLException e)
log.error("simClients.getCPUmem(): EXCEPTION: " +

e. toString ()) ;
}

//invoke the service
String serviceResponse = "";
try {

serviceResponse = client.percentage();
} catch (Exception e) {

log. error (" simClients. getCPUmem ()
e. tostring ()) ;

serviceResponse = e.toString();

EXCEPTION: " +

log.debug("simClients.getCPUmem(): status=" +
serviceResponse) ;

//return the response

- 62-

return serviceResponse;

-63-

VITA

Je-Loon Yang has a Bachelor of Engineering degree from Chung Yuan Christian

University in Information and Computer Engineering, 2005, and expects to receive a

Master of Science degree in Computer and Information Sciences from the University of

North Florida, December 2007. Dr. Sanjay Ahuja of the University ofNorth Florida is

serving as Je-Loon's project director. Je-Loon is currently employed as a teacher at the

Jacksonville Chinese-American Cultural Association (JCCA) Chinese School in

Jacksonville, Florida, and has been with the association for 9 months.

Je-Loon has ongoing interests in database administration and web application

development, and has extensive experience with MySQL and Apache web server. Je

Loon has extensive programming experience inC, Java, and Ruby. Je-Loon's academic

work has also included the use of SQL, XML, and HTML. Je-Loon is fluent in

Mandarin Chinese and enjoys playing basketball.

-64-

	Performance Evaluation of Java Web Services: A Developer's Perspective
	Suggested Citation

	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1: Introduction
	Chapter 2: Web Services
	2.1 SOAP
	2.2 WSDL
	2.3 UDDI

	Chapter 3: Web Service Frameworks
	3.1 Apache Axis
	3.2 JBossWS
	3.3 Codehaus XFire
	3.4 Resin Hessian

	Chapter 4: Evaluation Metrics
	4.1 Latency
	4.2 Throughput
	4.3 Memory Usage
	4.4 CPU Usage
	4.5 Source Lines of Code

	Chapter 5: Statistical Analysis Methods
	5.1 The SAS System
	5.2 The GLM Model

	Chapter 6: Results and Analyses
	6.1 Results
	6.1.1 Client Scenarios
	6.1.2 Data Size Scenarios

	6.2 Analyses
	6.2.1 Client Scenarios
	6.2.2 Data Size Scenarios
	6.2.3 Others

	Chapter 7: Conclusion
	References
	Appendix A: Apache Axis Server Code: SendMB
	Appendix B: Apache Axis Server Code: CPUmem
	Appendix C: Apache Axis Client Code: Client
	Appendix D: Resin Hessian Server Code: SendMB
	Appendix E: Resin Hessian Server Code: CPUmem
	Appendix F: Resin Hessian Client Code: Client
	Appendix G: JBossWS Server Code: SendMBBean
	Appendx H: JBossWS Server Code: CPUmemBean
	Appendix I: JBossWS Client Code: Client
	Appendix J: XFire Server Code: SendMBImpl
	Appendix K: XFire Server Code: CPUmemImpl
	Appendix L: XFire Client Code: Client

