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ABSTRACT 

In the software industry today many programmers spend countless hours maintaining 

existing Java programs. The cost of code maintenance affects a company in many 

ways such as the budget, time management and resources. Making management 

decisions regarding these issues could be assisted, if maintenance cost of Java classes 

could be predicted. 

The goal of this thesis was to create a new model predicting the maintenance effort 

based on the Java class complexity. It seems clear the complexity of a Java class can 

directly relate to the amount of time it will take to perform maintenance on the class. 

To develop the new maintenance effort model, a test bed of Java classes was 

assembled representing a sample of Java classes from the workplace. Then a variety 

of Java class metrics were calculated using these classes. Using the backward 

elimination process of regression analysis in SPSS, a new model was created 

predicting maintenance effort. The metrics that best predicted maintenance effort 

were the depth of an inheritance tree, the number of times a class has been deployed to 

the customer and the lines of code. Together, these metrics together were able to 

predict 85% of the maintenance effort on the set of Java classes tested. 
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Chapter 1 

INTRODUCTION 

The Institute of Electrical and Electronics Engineers (IEEE) defines software 

complexity as, "the degree to which a system or component has a design or 

implementation that is difficult to understand and verify" [Kushwaha06). Complexity, 

in this context, refers to the human understanding of code and the components it 

contains. It focuses on the size of the class and the relationships between parts and a 

whole. Complexity of software can also refer to the coding language, the algorithms 

and strategies used to develop the software. Understanding the code directly relates to 

how long it will take a programmer to maintain and test existing code. It seems clear 

that the more complex the code, the longer it will take a programmer to understand 

and accurately be able to maintain and test it, thus increasing the total maintenance 

effort. 

In today's development market, time spent on maintaining Java classes can directly 

affect a company's bottom line. Code with higher complexity will likely take more 

time to maintain and therefore cost more. It seems clear that the greater the 

complexity of these Java classes, the greater the effort required for maintaining them. 

But, what measures really impact complexity and hence effort is open to debate 

among many researchers. 
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While much has been done to measure complexity, many techniques are not applicable 

to today's object-oriented environments. Yet maintenance costs continue to soar, and 

applications become more and more complex. The ability to estimate maintenance 

efforts of software built largely on Java classes is essential in today's bottom-line 

economy. Planning the use of a company's personnel resources based on the 

complexity of Java classes that must be extended and reused to meet growing 

customer demands forms a critical part of modem software project management. In 

today's workplace, countless hours are spent modifying existing Java code to make it 

meet new requirements and fix existing errors in the code. Modifying existing code, 

whether it's a trivial or complex change, can increase the complexity, as it changes the 

original logic; therefore, it can introduce new errors and make it more complicated for 

programmers to understand. By computing an accurate estimation of the complexity 

of Java classes, managers are able to estimate the effort they will need to invest in 

successfully maintaining and testing the existing code. Being able to accurately 

predict the effort needed for maintaining Java classes through precise complexity 

metrics will help in estimating cost, which will in tum assist managers in making 

better financial and managerial decisions. Thus, the ability to measure class 

complexity will enhance project development. 

The goal of the thesis was to create a new model predicting the maintenance effort as a 

function of the complexity of Java classes. By using a variety of existing complexity 

and Java class measurements by themselves and in various combinations 

supplemented with new additional measures, a new model was developed that will 
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better correlate maintenance effort to complexity. Maintenance effort was calculated 

based on the number of times a Java class had been modified. The measurements that 

made a significant contribution to the modeling effort, as well as level of significance 

were determined. Given a lengthy list of metrics and an impressive array of available 

complexity tools several of which are found in modem programming environments, it 

was anticipated that the results of this research will provide insight into the 

maintenance effort required for maintaining Java classes in modem development 

environments, based on measurable class complexity. 
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Chapter 2 

REVIEW OF LITERATURE 

2.1 Java Objects and Software Measures 

Java is an object-oriented programming language founded on the concept of a class. A 

class is made up of methods, variables and nested classes. A Java object is the 

instantiation of a Java class. 

Over the years many techniques have been used to study classes to measure metrics, 

such as reusability, complexity, maintainability and testability. Software metrics are 

used to measure the quality of the code and to assist in making management decisions, 

such as giving estimates about the time it will take to develop new enhancements or 

perform code maintenance. The quality of code refers to how difficult it is for 

software developers to understand also to, the "ease of comprehension" 

[Kushwaha06]. A variety of measurements are used to compute statistics and 

estimates, when analyzing code to quantify what makes software difficult to 

understand. Without such measurements, planning and controlling non-trivial 

software development and maintenance tends to be unorganized and unpredictable. 
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2.2 Class Complexity 

As mentioned previously, class complexity refers to the extent to which specific code 

is understandable to the developer modifying or testing it. Software complexity 

measures a way to observe progress, get a more accurate estimation of milestones, and 

to develop software having minimal errors. Complexity focuses on the size of the 

class and the relationships between parts and between the parts and a whole. 

According to some researchers, measures of class complexity are needed for many 

different reasons. The first reason is complexity can suggest the amount of effort and 

time needed to accomplish a given task, such as adding a new enhancement or 

changing existing functionality. Complexity may also be used to estimate the number 

of potential errors that may be potentially introduced, and finally understanding class 

complexity assists in quality assurance. Knowing the complexity of a class can also 

assist in estimating the level of testing needed. 

Many studies have been undertaken to understand what factors make a class complex. 

According to some researchers, there is a strong correlation between class complexity 

and the number of errors found in testing a class. Many researchers hope that by 

computing accurate complexity metrics, objects may be designed to be less complex, 

which results in reduced maintenance costs. 
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2.3 Measures of Class Complexity 

There are a number of methods that may be used to identify the complexity of an 

object. Some of the techniques include the size (volume) of the object, the number of 

operations (methods), the number of classes it inherits and other characteristics, such 

as the age of the class and the number of times it has been released to the customer for 

production. 

Studies have been conducted that address different techniques to compute class 

complexity. Although many methods have been established, they all have their 

strengths and weaknesses. One researcher suggests calculating class complexity by 

measuring the structure of object-oriented code [Bellin94]. These measures examine 

the relationships between the methods, classes and variables. They also look at how 

these values can infer characteristics about a class. Some of these class metrics 

include number of methods, number of classes, and the number of messages a class 

sends. For example, Bellin suggested the relationships between a class and the 

number of methods are defined by the assumption that the more methods a class 

contains, the more complex the class. He also proposes the number of messages a 

class sends can infer the communication among classes, which can conclude a 

relationship with class coupling [Bellin94]. Sunohara believes there are specific 

techniques for calculating class complexity. Some ofthese include, step count, 

McCabe's Cyclomatic Complexity and Weighted Statement Count and Process V(G) 

[Sunohara81]. Through calculations, metrics can be determined to infer complexity. 
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There are many measurements used to compute the complexity of a class. Each 

method is different and has both advantages and disadvantages for different coding 

styles and languages. 

2.3.1 Function Point Analysis 

Function points are described as "a standard software measure for the quantification of 

the functionalities that a program offers to the user" [Fratemali06]. Function points 

provide a teclmique to measure the functionality of code, based on the logical design 

and functional specifications. The concept of a function point was developed in the 

late 1970's by Allan Abrecht. 

Function points can be determined from a variety of sources, such as requirements 

documents, design artifacts, or program code. The International Function Point Users 

Group (IFPUG), founded in the 1980's, described a counting technique based on 

recognizing the functions a system is supposed to accomplish and then allocating a 

complexity level for each of these functions. IFPUG described five types of 

functional elements: 

• External Input (EI), which is a logical transaction where data enters the 

application; 

• External Output (EO), which is a logical transaction where data exits the 

application; 
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• External Inquiry (EQ), which is a logical transaction where an input requests a 

response from the application; 

• Internal Logical File (ILF), which is a logical group of data maintained by the 

application, and 

• External Interface Files (ElF), which is a logical group of data referenced by 

the application but maintained by a separate application [Ceddia04]. 

Over the years, different variations of Allan Abrecht' s method of counting function 

points have been used to compute function point metrics. One of the benefits of 

counting function points is they are independent of the implementing computer 

language, as well as the development methodology. 

2.3.2 Lines of Code 

Lines of Code is one of the oldest ways to measure class complexity. It is a count of 

how many lines of code are in a class or method. Counting lines of code is an 

approach to measure productivity and effort, based on the size of the class. There are 

different variations to this metric, such as whether to include comments or data 

definitions in the count. The original theory is the more lines of code, the more 

complex the class may be and more time will be needed to maintain the code. While 

inherently suspect, it remains a measure of complexity. 
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2.3.3 McCabe's Cyclomatic Complexity 

McCabe's Cyclomatic Complexity uses a program's flow graph's cyclomatic number 

to measure the program's complexity. This complexity measure shows not only the 

number of basic paths in a program and the segments of a program. McCabe 

describes the flow graph as an indicator of program complexity. A program or snippet 

of code is represented by a graph with one entry point and one exit point. Each node 

of the graph represents a section of code and the edges represent the different branches 

within the sections of code. The Cyclomatic Complexity of the flow graph can be 

calculated by using the following formula, 

V(G) =number of edges (e) -number of nodes (n) + 2. 

The graph in Figure 1 represents a program's control. Node a signifies the entry point 

and node f represents the exit point. All other nodes correspond to other code 

segments in the program. Edges 1 through 9 represent branches in the code. Edge 10 

is used to illustrate that the graph is strongly connected; it is not a branch in the 

program. A strongly connected graph means there is a directed path for every pair of 

vertices within the graph. Using the formula above, V(G) =e-n+ 2, the cyclomatic 

complexity is V(G) = (9- 6) + 2, which is 5 [Vincent88]. 

- 9 -



---~·(~--' 
9 m,~ 

el_s /'--. _,., 
____ , -~~~}- ---

/ 
/ 

Figure 1: A Program Control Graph 
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For Java classes, the overall cyclomatic complexity is the sum of each method's 

cyclomatic complexity. It has been proposed that there is a direct correlation between 

the cyclomatic complexity of a program and complexity of the code. Elshoff 

suggested a goal for the cyclomatic complexity of a method to be under ten, because a 

cyclomatic complexity over ten tends to render a method unreliable [Elshoff78]. 

2.3.4 Weighted Methods per Class 

Weighted Methods per Class (WMC) is similar to cyclomatic complexity, as it is a 

metric that also calculates the complexity of control flow. The metric was introduced 

by Chidamber and Kemerer [Chidamber91]. WMC is defined as "a sum ofthe 

complexities of all the methods of a class except the inherited methods but including 

overloaded methods" [SystaOO]. Inherited methods are methods available to the class 

through the inheritance of another class, but not locally defined. Overloaded methods 
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are multiple methods with the same method name. Weighted Methods per Class takes 

in to account both the number of methods and the complexity ofthe logical 

organization of each method when computed. When computing the Weighted 

Methods per Class metric, there is no specific method to measure class complexity; 

however, most researchers use the cyclomatic complexity as a standard complexity 

measure. Systa made the assumption that if a class has a large WMC metric, the class 

will also be more difficult to comprehend and maintain [SystaOO]. 

2.3.5 Inheritance Measurements 

Inheritance measurements are measures derived from the Java single inheritance tree 

theory and the principle that every class inherits cetiain abilities from the Object class 

provided from,java.lang.Object. These types ofmeasures are often used while 

studying design complexity. 

There are two common measures used to measure inheritance measurements: Depth of 

Inheritance Tree (DIT) and Number of Children (NOC). Systa described the Depth of 

Inheritance Tree as, "simply the number of its ancestor classes or interfaces, that is, 

the number of classes or interfaces along the path from the single root class or 

interface" [SystaOO]. The measure provides the number of ancestor classes that could 

influence the class under investigation. The notion is the higher the Depth of 

Inheritance Tree; the more complex the class in question, because the number of 

methods inherited will be greater. The Number of Children is defined as, "the 
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number of classes that extend this class" [SystaOO]. This is a good measure when 

looking to see what other components are affected, when a class is modified. Systa 

believed that both the Depth of Inheritance and Number of Children measure are good 

gauges to use when estimating design complexity of a system [SystaOO]. 

2.3.6 Other Complexity Measurements 

The characteristics that contribute to making a class complex are many and varied and 

may have little to do with edges and nodes. Other general class characteristics can 

play a significant role in determining the complexity of a class. Characteristics such 

as the age of a class, the number of methods in the class, packages the class imports 

and the number of variables a class itself has can be significant factors in determining 

complexity. Further, consideration may be given to the number of classes a class 

inherits and the number of times a class has been deployed to customers. These 

measures may all be important and imply the complexity of a class. The age of a class 

might well indicate complexity, because the older it is, more changes have been made. 

The original design is likely to be weakened by the number of changes thus rendering 

the class more complex for programmers to understand. As class complexity rises, 

additional maintenance efforts might become more costly. 
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2.4 Traditional Complexity Metrics vs. Object-Oriented Code 

There are issues in computing class complexity by traditional metrics, such as 

cyclomatic complexity and computing lines of code. These techniques do not address 

the reality of a poorly designed class or that nested control structures are more 

complex than sequential control structures. Traditional metrics were also developed 

based on the simplicity of the procedural languages popular at the time, several of 

which are not used as often today and in many instances do not represent the future of 

program design in many application domains. Many of these metrics were focused on 

the lexical and syntactic characteristics of the code and not on semantic and structural 

relationships. These are characteristics of many oftoday's applications using the 

object-oriented paradigm. 
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3.1 Java Class Test Bed 

Chapter 3 

DATA COLLECTED 

To provide an environment for investigation, a test bed was assembled. The test bed 

was made up of Java classes from one application available in the workplace. The 

selected application is a web based application used tlu·oughout the world by 

Department ofDefense employees and their customers. The functionality of the 

application is for submitting documents for printing electronically. The application 

selected also provides an online workflow to track these documents while being 

processed. The application is currently maintained by four programmers. The 

programmers level of experience of maintaining the selected application range from 1-

7 years. 

The goal of the information gathering was to establish a test bed of diverse Java 

classes that present a good representation of Java classes used in the workplace. The 

classes were selected based on a number of class characteristics, such as size, age and 

structure. Structure, in this context, referred to the way in which the class was 

implemented in the application. Some of the classes were implemented with Java 

Server Pages (JSP) while others use the Java Server Faces (JSF) framework. The 

classes utilized through JSF, in the selected application tend to be more structured 
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around specific functionality, which tends to make the files easier to understand and 

follow from a programmers view, where as the classes used with the JSPs have less 

organization. These classes tend to be harder to follow because the methods are less 

organized. 

Another characteristic on which the test bed was selected was the number of methods 

within each class. To get a variety, the number of methods contained in each class 

range from very high to very low. Another difference is several classes had a 

considerable number of instance variables, whereas others had a minimal number of 

instance variables. 

The test bed consisted of26 Java classes. The size of the each class, in kilobytes, 

ranged from 2K to 377K. The average class size was about 81K and the median was 

51K. The Java classes gathered also vary in their creation date. Often times, 

maintenance occurs on older classes, so both older classes, as well as newer classes, 

were selected in the test bed. The dates of creation ranged from November 21, 2002 

through May 9, 2007. The date of creation was measured in the number of days the 

Java class had been stored in the version control software. Figure 2 displays the Java 

classes constituting the test bed in graphical form. The classes are represented on the 

x axis with the values for days in version control and lines of code along the y axis. 
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Figure 2: Java Class Test Bed 

3.2 Measurement Calculation Tools 

Once the test bed was assembled the next step was to gather the tools used to calculate 

the Java class measures. Java class measurement collection has become a popular area 

of study and many organizations provide tools to be used to calculate metrics on Java 

code. After investigating a long list of potential Java class measures that might impact 

maintenance effort, a list was formulated. Tools to calculate these measures were 

available through open source websites and software organizations that provide free 

trial versions of their metric calculation software. Figure 3 displays the measure 

calculation tools used in this research. 
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Measur.ment Calculation Tools 

Visual Source Safe (VSS) 

Subversion 

Metrics 1.3.6 

Resource Standard Metrics (RS:M) 

Figure 3: Measurement Calculation Tools 

Measures associated with class characteristics, such as age of each class (measured in 

years since creation) and file size (measured in kilobytes), were assembled using 

version control software associated with the production Java classes constituting the 

test bed. Using software available from the workplace, Visual SourceSafe, and an 

open source tool, Subversion, the complete list of class characteristic metrics were 

gathered. 

For the remaining measures two open source tools were used. The two tools were an 

Eclipse IDE plugin, Metrics 1.3.6, and Resource Standard Metrics. Metrics 1.3.6 was 

used to calculate Java class measures, such as lines of code, number of methods in a 

Java class, cyclomatic complexity, weighted methods per class, which is a summation 

of the cyclomatic complexity of all methods within a specified class, and the depth of 

an inheritance tree. Resource Standard Metrics was used to collect the function point 

count for each Java class in the test bed. In addition to these measurements gathered 
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from the literature review, additional measurements available from the Eclipse plug-in 

and the RSM were added to the list of Java class measures used in this research. 

3.2.1 Version Control Software 

Two different sources of version control software were used in collecting Java class 

measurements for this experiment. They included Visual SourceSafe 6.0 (VSS) by 

Microsoft and Subversion (SVN), which is open source software provided by 

CollabNet [CollabNet05]. Both Visual SourceSafe and Subversion can track changes 

made to existing code. 

3.2.2 Eclipse Metric Plugin: Metrics 1.3.6 

The Eclipse Metric plugin, Metrics 1.3.6, was downloaded from SourceForge 

[SourceForge05]. SourceForge is an open source repository that allows users to 

develop and download applications and plugins as needed. Metrics 1.3.6 is a plugin 

available from this website and has the ability to compute many Java class metrics for 

applications using an Eclipse IDE. 

3 .2.3 Resource Standard Metrics 

Resource Standard Metrics (RSM), developed by M Squared Technologies, is a tool 

used to compute source code metrics and assist in quality analysis for Java code [M 
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Squared Technologies07]. The metric calculation software offers users a uniform way 

to calculate the quality of source code by computing specific metrics, such as function 

point count on Java code. M Squared Technologies presents a free trail version of 

their product available for download from their website [M Squared Technologies07]. 

3.3 Measures Collected using the Aforementioned Tools 

All measures were collected at the class level. Figure 4 presents a summary of all 

measures collected for the study. 
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Java Class Measures Description 

File Size Measures the size of the class in KB 

Age The number of days the class has been in the version control 
software up to adding it to the test bed 

Number ofReleases Number of times the class was deployed to the customer 

Lines of Code Number of lines of code in the class, excluding comments and 
blank lines 

Number of Instance Variables Number of instance variables in a class 

Method Lines of Code Number of lines of code in the method declarations, excluding 
comments and blank lines 

Mean Nested Block Depth The average of the nested blocks of code 

Number of Methods Number of methods in a class 

Mean Cyclomatic Complexity Mean value of all the methods' cyclomatic complexity within 
each class 

Mean Number of Parameters Mean value of the number of parameters of each method in each 
class 

Depth oflnheritance Tree Distance from the Object class in the inheritance hierarchy 

Weighted Methods per Class Summation of cyclomatic complexity of each method in the 
class 

Estimated Function Point Count Estimate of the number of function points within a class, based 
on the Backfire method 

Figure 4: Java Class Measurements Collected 

All measurement values for each Java class produced from the measurement collection 

tools can be found in Appendix A. 

3.3.1 Measures Collected from Version Control Software 

Version control software was used to collect these measures: 

• File Size- a measure that was measured in kilobytes and was collected by 

examining the size of each Java class. 
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• Age of the class- a measure that referred to the number of days a Java class had 

been in the version control software, Visual SourceSafe or Subversion, until 

the day it was added to the test bed for this study. This measure was manually 

determined by searching the history of all the actions taken on each class. 

• Number of Releases- a measure collected by totaling the number of times a 

Java class was deployed to the customer in a patch or build. As with previous 

measures, a release count was determined by viewing the history of each class 

within the test bed. 

3.3.2 Measures Collected from the Eclipse Metric Plugin: Metrics 1.3.6 

The Eclipse Metric Plugin, Metrics 1.3.6, was used to collect nine measures: 

• Lines of Code - the number of lines in the source file, excluding the lines that 

only contain comments or are blank. 

• Number of Instance Variables - a metric that referred to the total number of 

instance variables within each class. This did not include local variables 

within each method. 

• Total Method Lines of Code - the number of lines of code in a method 

declaration. This did not include comments or blank lines. 

• Mean Nested Block Depth- the average depth of nested blocks of code. 

• Number of Methods - referred to the total number of methods contained in 

each class. 
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• Mean Cyclomatic Complexity- the mean value of all the methods' cyclomatic 

complexity within each class. The cyclomatic complexity was computed by 

counting each time a branch occurs throughout each method. 

• Mean Number of Parameters - refened to the mean of all the parameters of 

each method in a class. 

• Depth of an Inheritance Tree - defined the distance from class Object in the 

inheritance hierarchy to the class undergoing metric computation. 

• Weighted Methods per Class- a summation ofthe cyclomatic complexity from 

each method within the class. 

3.3.3 Measure Collected from Resource Standard Metrics 

Function Point Count was measured using Resource Standard Metrics (RSM), which 

derives an estimated function point count based on a formula from Jones' Applied 

Software Measurement that states there is an estimate of one function point per 53 

lines of Java code [M Squared Technologies07]. This value was derived from the 

Backfire method of calculating function points. The Backfire method provides a way 

to estimate function points given, the source code size, code complexity and source 

language. To calculate the function point the source code size was divided by the 

specified function point expansion factor, which is the estimated value of how many 

lines of code produces one function point [Jones96]. While RSM uses tlu·ee 

calculations for lines of code, the definition of lines selected for this research was the 

"effective lines of code" ( eLOC) [M Squared Techno logies07]. This consists of all 
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lines of code statements, excluding blank lines, comments or lines consisting of just 

scope terminators such as { or } . This was the lines of code definition that best fit for 

this research, because it only counts the lines of code that produce functionality. An 

example of the definitions oflines of code in RSM is displayed in Figure 5. 

Source Code Line LOC eLOC JLOC Comment Blank 

If(x<10) //test range X X X 

( X 

//update y coordinate X 

X 

y=x+ 1; X X X 

} X 

Figure 5: LOC Definitions in RSM 

The number of effective lines of code in Figure 5 is two. The next step of the Backfire 

method is to calculate an estimated count of function points. Based on research found 

in a previous study by M Squared Technologies, the estimated number is 53 lines of 

code per function point. Therefore, the estimated function point count would be 

eLOC/53 = FP. For the example above the estimated function point count would be 

2/53 = .03 [M Squared Technologies07]. 
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Chapter 4 

METHODOLOGY 

4.1 Multiple Regression Analysis Overview 

The tool used to examine the Java class measures was SPSS 16 Evaluation Version for 

Windows. The goal of this study was to create a new model where maintenance effort 

is a function of the Java class measures collected. The new model was produced by 

analyzing the Java class measures described in Chapter 3, and displayed in Appendix 

A, and their association with maintenance effort measured by the number of times the 

Java classes were modified for maintenance. 

SPSS was used to perform three specific test steps on the Java class measures, in the 

process of finding which measures best predict the maintenance effort. First, 

descriptive statistics were produced to get a better understanding of the versatility of 

the test bed. The second test step was to generate correlations among all the Java class 

measures and with the dependent variable of maintenance effort measured by the 

number of times the classes had been modified for maintenance. This was to identify 

the Java class measures that have a relationship with the maintenance effort, as 

demonstrated by the value ofp. If the p value was less than .001, then the relationship 

was deemed significant. It also was to calculate the correlations among all the Java 

class measurements. This was important, because all the Java class metrics used as in 
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regression analysis should be relatively independent of each other. The final step in 

SPSS was to analyze the relationships between the maintenance effort measured in 

maintenance modifications and the Java class measures collected. The method 

selected for study was backward elimination of multiple regression analysis. 

Multiple regression analysis was chosen because it analyzes the relationships among 

many independent variables and a single dependent variable. Once the relationships 

were analyzed, a new model was created, using SPSS, which predicts maintenance 

effort based on the independent variables, the Java class measures. As previously 

stated, the dependent variable was the maintenance effort measured by the number of 

times each Java class was modified. The independent variables were the Java class 

measures collected on the Java classes. Multiple regression attempts to determine if 

one (or more) independent variables can account (correlate) for the variability in the 

dependent variable. One of the calculations of interest was the squared multiple 

correlation (R2
). This represents the relationship between the independent variables 

and the dependent variable. It is "the proportion of variance accounted for by the 

independent variable[ s ]" [Pedhazur97]. 

4.2 Independent Variables: Java Class Measures 

The independent variables for this research were the Java class metrics described in 

the previous chapter. Each metric was measured on the same scale that is, based on 

the Java class as a whole. All metrics were calculated on each class in the test bed. 
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The Java classes were chosen to represent the broad variety of classes subjected to the 

maintenance effort. These classes are a representation of the kind of classes in the 

workplace. Figure 6 shows selected descriptive statistics on the metrics collected 

from the test bed of Java classes. 

Measures Variable Measurement Range Min. Max. Mean Std. 

TYJie Deviation 

Depth of Independent Ratio 2 1 3 1.27 .604 
Inheritance 

Mean Number Independent Ratio 4.810 .333 5.143 1.532 1.209 
of Parameters 

Mean Nested Independent Ratio 2.899 1.101 4.000 2.048 .746 
Block Depth 

Mean Independent Ratio 30.055 1.612 31.667 8.734 7.841 
Cyclomatic 
Complexity 

Number of Independent Ratio 15 0 15 9.000 4.783 
Releases 

Estimated Independent Ratio 100.2 .6 100.8 22.350 22.624 
Function Point 
Count 

Number of Independent Ratio 123 0 123 33.50 36.082 
Instance 
Variables 

Number of Independent Ratio 273 3 276 61.15 72.871 
Methods 

File Size Independent Ratio 375 2 377 78.35 81.894 

Weighted Independent Ratio 1654 8 1662 353.65 370.242 
Methods per 
Class 

Method Lines Independent Ratio 6507 24 6531 1360.27 1428.672 
of Code 

Lines of Code Independent Ratio 6946 39 6985 1576.85 1574.727 

Age Independent Ratio 1630 26 1656 1133.65 589.385 

Modification Dependent Ratio 238 2 240 62.92 63.673 
Number 

N 26 

Figure 6: Descriptive Statistics 
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Figure 6 provides a visual representation of the distribution of all the metric values 

within the Java class test bed. The test bed selected was a very diverse set of Java 

classes, exhibiting a broad range of values for each metric. Care was exercised in 

gathering the test bed, to gain an accurate representation of Java classes typically 

subject to frequent maintenance modifications. The measurement column shows the 

measurement value of the metric. All of the metric values collected fall within the 

ratio category, as all metrics collected had a true zero. The range value represents the 

spread of the data and, thus, illustrates the distance between the highest and lowest 

metric values computed on the test bed of Java classes. The mean is also an important 

statistic, as it shows the average value. The standard error of the mean, Std. 

Deviation, represents the deviation from the mean and the frequency of this difference 

with attention to the size of the data set. The standard deviation is the square root of 

the variance of the metric value. This takes into account the spread of the metric 

tested for each Java class within the data set. 

4.3 Dependent Variable: Maintenance Effort Measurement 

As previously stated, the goal of this research was to generate a new model designed 

to predict maintenance effort, as a function of complexity and other management 

metrics relating to the development and maintenance (history) of a Java class. 

Predicting maintenance effort will enable managers to better estimate the time and 

resources needed for maintaining I enhancing I redesigning existing code-based 

functionality. 
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Maintenance effort can be described in many ways. It can be expressed as the amount 

of time, resources and effort spent maintaining code. It can also be portrayed through 

many tasks such as requirements gathering, analysis, development and testing. As a 

limitation of this research, the amount oftime spent on maintenance measured in man 

hours was not available. Therefore, to measure maintenance effort the metric selected 

was the number of times maintenance had been performed on each given class. Any 

modification to a class file, whether the change was complex or trivial, counted as a 

single modification (maintenance) effort. For this research, it was assumed there was 

an underlying effort for every change, whether the change was near trivial or 

significant. The maintenance effort included all activities, extending from 

requirements gathering, initial analysis, design, development, and testing. It was 

assumed for every maintenance modification on a Java class, the effort required for 

maintaining the file increased. 

Figure 7 illustrates the maintenance effort measurement and the metrics to be 

investigated to create the new model. 
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Maintenance Effort 
Measured by 
Modification 

Number 

8~/ 
Number of 

Figure 7: Maintenance Effort Measurement and Metrics 

The maintenance effort which was the dependent variable in the research was the 

value to be predicted by the new model. This was measured by the number of 

maintenance modifications on the Java classes in the test bed. All the smaller circles 

pointing to the maintenance effort were the independent variables used to determine 

the new model through regression analysis. 
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4.4 Metric Correlations 

4.4.1 Correlation with the Dependent Variable: Number of Modifications 

The first correlations were to determine if any of the metrics collected had a linear 

relationship with the number of times the Java classes were modified during the 

maintenance effort. The relationships presented in this step were used to predict 

metrics most likely to favorably impact the new model. SPSS applied the Pearson 

product moment correlation equation to find relationships between two values. Once 

the Pearson correlation was determined, the p value was studied to determine if the 

relationship was significant at the . 01 level. If the p value was less than . 001 the 

relationship was considered strong. A strong relationship is when two measures are 

closely related. Figure 8 illustrates the correlation between the number oftimes a Java 

class had been modified and each Java class metric studied. 

- 30-



Java Class Measures Pearson Con·elation to 
Modification Number 

Age .541 

p< .001* 

File Size .801 

p< .001* 

Number ofReleases .683 

p < .001* 

Lines of Code .766 

p< .001* 

Number of Instance Variables .218 

p = .285 

Method Lines of Code .778 

p< .001* 

Mean Nested Block Depth .145 

p= .481 

Number of Methods .381 

p= .055 

Mean Cyclomatic Complexity .225 

p= .269 

Weighted Methods per Class .818 

p< .001* 

Mean Number of Parameters .174 

p= .396 

Depth of Inheritance Tree -.249 

p= .220 

Estimated Function Point Count .771 

p < .001 * 

Figure 8: Pearson Correlation for Modification Number 

Based on the Pearson correlation, the metric that correlated the highest with the 

maintenance effort, represented by the number of times a Java class had been modified 

for maintenance, was the weighted methods per class, which is a summation of the 

cyclomatic complexity of every method in a Java class. Following closely behind the 

weighted methods per class metric was the file size. Other metrics with a strong 
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correlation included the age of a class, lines of code, method lines of code, number of 

releases and the estimated function point count. This simply showed Java class 

metrics that were related to the dependent variable, number of modifications on a Java 

class. The p value of the metrics that were strongly correlated was less than . 001, 

which means the relationship was significant. The negative correlations implied the 

variables had an inverse relationship. So, based on the results, depth of an inheritance 

tree was an independent variable with an inverse relationship with the modification 

number. 

4.4.2 Bivariate Correlations 

The next step was to investigate correlations among the independent variables (Figure 

9). This essential step ensured that independent variables were truly independent of 

each other. Having multiple independent variables dependent on each other might call 

into question the final result predictions. 

- 32-



w 
w 

"'''l 
~-
(il 
'-0 

ttl 
~-
~-
....... 
(I) 

n 
0 

~ -~ ....... -· 0 

~ 

Age 

File Size 

Num ofRe!eases 

LOC 

Num of Instance 
Variables 
MethodLOC 

Mean Nested 
B1ockDepth 
Num ofMethods 

Mean Cyclomatic. 
Complexity 
'W'MC 

MeanNumof 
Params 
DIT 

Est Function Point 
Count 

Age 

1 

.271 
p =.180 
.~.e 
p < 001. 
.206 
p=J13 
.186 
p=J64 
.202 
p =.323 
.067 
TJ =.746 
.126 
p =.540 
.406 
p =.039 
.289 
p =.152 
.347 
p = .082 
.532 
p =.005 
.241 
TJ = .236 

File Size Numof LOC 
Releases 

1 

.353 1 
p=077 
1)81 .293 1 
r·· om• p=.l47 
.331 .156 .412 
p= .099 p= .448 p =.037 
1)86 .295 ~1 
p· 001' p=.l43 p . .001. 

1:6 .084 .167 
]) . om• p=.684 p = .414 
.550 .140 640 
p=.004 p=.497 p. 001' 
.059 .436 ·.013 
p=.776 p = .026 IP = 949 
!)~~ .391 1)83 

]) . 001' p= .048 IP · .. 001· 
.133 .332 .087 
p=.516 p=.098 p=.671 
·.342 ·.388 ·.358 
p=.088 p= .050 p =.073 
ooo .326 ~~~ 

P · om· p= .105 p · . .001' 

Numof Method Mean Num Mean WMC Numof DIT Est Function 
Instance LOC Nested Of Cyclomatic Patams Point CoUIJt 

Variables Block Methods Complexity 
Depth 

1 

.303 1 
p =.132 
·.484 .241 1 
p =.012 p =.235 
81)1) .537 ·.349 1 
p. 001' p=.005 p =.080 
·.430 .046 1.~ -.354 1 
p :;028 p =.825 p. 001 + p=076 
.409 .o~.t .108 641 .026 1 
p =.038 ]) . 001' p =.600 ]) . 001' p =.898 
·.419 .146 "'.t ·.297 g.;.::. .082 1 
p=033 p = .476 pOOl' p=.l41 p oo1· p =.689 
·.265 ·.351 ·.348 ·.237 -.312 ·.322 -.385 1 
p =.190 p = .079 p :;082 p =.243 p =.120 p =.109 p= .052 
.402 1)00 152 .621 .007 ~81 .098 ·.352 1 
p = .042 p. 001' p =.460 p<.001* TJ =.973 ]) . 001' p=.633 TJ =.078 



Based on the analysis of each independent variable's correlation with each other, some 

additional measures were eliminated from the research. The objective in this exercise 

was simply the removal of measures very strongly related to each other. 

Age of the class was the first Java class measure removed from the research. Figure 

10 shows the results of the Pearson Correlation test on the age metric with the other 

Java class measures. 

Java Class Measures Pearson Correlation for Age 

File Size .271 

p= .180 

Number of Releases .942 

p< .001* 

Modification Number .541 

p= .004 

Lines of Code .206 

p= .313 

Number of Instance Variables .186 

p= .364 

Method Unes of Code .202 

p= .323 

Mean Nested Block Depth .067 

p= .746 

Nmnber of Methods .126 

p= .540 

Mean Cyclomatic Complexity .406 

p= .039 

Weighted Methods per Class .289 

p= .152 

Mean Number of Parameters .347 

p= .082 

Depth of Inheritance Tree -.532 

p= .005 

Estimated Function Point Count .241 

p= .236 

Figure 10: Pearson Correlation for Age 
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As Figure 10 shows the age measure had a strong correlation with number of releases. 

It also seemed clear, as a class gets older, a number of the other measures would also 

increase such as lines of code, file size and number of methods. For these reasons, the 

age of the class measure was removed from the study. 

File Size was another measure deleted from the list of independent variables. It 

possessed a strong relationship to other measures, such as lines of code, estimated 

function point count and the weighted methods per class. Figure 11 presents the 

correlation for file size and the other Java class measures. 
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Java Class Measmes Pearson Correlation for File Size 

Nmnber ofReleases .353 

p= .077 

Modification Nmnber .801 

p < .001* 

Lines of Code .981 

p < .001 * 

Nmnber of Instance Variables .331 

p= .099 

Method Lines of Code .986 

p < .001* 

Mean Nested Block Depth .176 

p= .389 

Nmnber ofMethods .550 

p= .004 

Mean Cyclomatic Complexity .059 

p = .776 

Weighted Methods per Class .979 

p < .001* 

Mean Number of Parameters .133 

p = .516 

Depth of Inheritance Tree -.342 

p= .088 

Estimated Function Point Count .990 

p< .001* 

Figure 11: Pearson Correlation for File Size 

Looking at Figure 11, it was clear that file size had a strong relationship to other Java 

class measures such as lines of code, method lines of code, weighted methods per 

class and the estimated function point count. It was decided that, of these measures, 

file size was least valuable. · Other measures, such as lines of code, estimated function 

point and weighted methods per class, are more useful measures and cover the size of 
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the Java class, as well. Therefore, lines of code and estimated function point count 

were kept in the study and file size was discarded. 

Method lines of code was removed from the array of independent variables for the 

same reasons as file size was discarded. As it had strong correlations with other Java 

class measures, such as estimated function point count and lines of code. The final 

metric removed from the research was weighted methods per class. This metric was 

removed because it had strong relationships with many of the other metrics, sucl),as 
t;;;1 

file size, lines of code and number of methods. It also represented the same value as 

the mean cyclomatic complexity, only in a summation form instead of an average. 

Figure 12 illustrates the independent variables that were studied in the regression 

analysis. 
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Java Class Measures 

Number ofReleases 

Lines of Code 

Number of Instance Variables 

Mean Nested Block Depth 

Number ofMethods 

Mean Cyclomatic Complexity 

Mean Number of Parameters 

Depth of Inheritance Tree 

Estimated Function Point Count 

Figure 12: Measures Studied in Regression 

Based on the Pearson Correlations generated using SPSS, the Java class measures in 

Figure 12 were all reasonably independent of each other. It should be noted that not 

all strong relationships were removed from the study. Most measures with multiple 

strong relationships were removed. While it was clear some of the Java class 

measures had relationships among them, it was the goal of this process to remove 

some metrics with strong overlap .. 
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4.5 Regression Analysis of Java Class Measures 

After the Java class measures were selected for regression, SPSS was used to analyze 

these measures, using multiple regression analysis. Backward Elimination was used 

during the regression process. Backward elimination is especially useful when there is 

a large set of predictors. One advantage of using the backward elimination method 

was that it started with all predictors and eliminated predictors one at a time. This 

enabled careful analysis through the complete process. Backward elimination initially 

began with studying the squared multiple con-elation (R2
) with all remaining 

independent variables as predictors, this was the maximum model. Then each test 

reduced the number of predictors by one, by removing the predictor that led to the 

smallest decrease of the squared multiple correlation. This process was repeated until 

all predictors contribute meaningfully to the prediction of the dependent variable. In 

other words, deleting measures was terminated, when a deleted predictor would reduce 

the R2 by too much. 

For this research, the modification number was entered as the dependent variable and 

the remaining nine Java class measures were selected as the predictors. SPSS 

performed the backward elimination test seven times, beginning with nine predictors 

and finally reducing the predictors to three. Figure 13 shows the order in which the 

predictors were eliminated from the test. 
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Test Java Class Measures Included Java Class Measure R2 Adjusted 
Eliminated from Test R2 

1 Estimated Function Point Count, Mean None .897 .838 
Cyclomatic Complexity, DIT, Number of 
Releases, Number of Instance Variables, 
Mean Nested Block Depth, Mean Number of 
Parameters, Number of Methods, Lines of 
Code 

2 Estimated Function Point Count, Mean Number of Instance .897 .848 
Cyclomatic Complexity, DIT, Number of Variables 
Releases, Mean Nested Block Depth, Mean p= .932 
Number ofParameters, Number of Methods, 
Lines of Code 

3 Estimated Function Point Count, Mean Mean Nested Block .893 .852 
Cyclomatic Complexity, DIT, Number of Depth 
Releases, Mean Number of Parameters, p= .490 
Number of Methods, Lines of Code 

4 Estimated Function Point Count, DIT, Mean Cyclomatic .886 .850 
Number of Releases, Mean Number of Complexity 
Parameters, Number of Methods, Lines of p= .274 
Code 

5 Estimated Function Point Count, DIT, Mean Number of .883 .853 
.Number of Releases, Number of Methods, Parameters 
Lines of Code p= .472 

6 Estimated Function Point Count, DIT, Number of Methods .866 .840 
Number of Releases, Lines of Code p = .106 

7 DIT, Number of Releases, Lines of Code Estimated Function Point .852 .832 
Count 

p = .156 

Figure 13: Backward Elimination 

As shown in Figure 13, the first test consisted of the remaining nine independent 

variables as predictors; from there, the predictors progressively less meaningful to the 

model were removed from the test one by one. After each test run, the predictor with 

the largest p value greater than .1 0 was removed from the test. With nine independent 

variables the R2 was .897 and the adjusted R2 was .838. The R2 value means an 
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estimate of 89% of the maintenance effort measured in modifications to Java classes 

can be predicted with the remaining nine independent variables included in this study. 

Using the backward elimination method, six predictors were removed to create the 

new model. The first predictor eliminated was the number of instance variables. Then 

slowly, with the removal of the remaining predictors, the R2 was reduced. The next 

predictor to be discarded was the mean nested block depth. Removing this predictor 

brought R2 to .893. After removing the mean cyclomatic complexity and the mean 

number of parameters, the squared multiple correlation was decreased to .883. The 

adjusted R2 was brought down to .853. Throughout the backward elimination process 

there was a steady decrease of the R2 value. The largest reduction came after number 

of methods was removed from the model. The squared multiple correlation was 

reduced to .866. The final Java class metric removed from the model was the 

estimated function point count. The removal of this metric caused the R2 to drop to 

.852, which is where the backward elimination process was terminated. The 

termination of the process was because by removing any of the measures left would 

decrease the R2 to a value that would not be valuable in the study. 

After removing the independent variables in the order presented in Figure 13, the 

predictors with the most significance to the maintenance effort model were the depth 

of an inheritance tree, number of releases and lines of code. Using the depth of an 

inheritance tree, number of releases and lines of code 85% of the maintenance effort 
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measured in maintenance modification count can be determined. Using the backward 

elimination method decreased the squared multiple correlation from .897 to .852. 
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Chapter 5 

ANALYSIS AND RESULTS 

5.1 Maintenance Effort Model 

After analyzing the independent variables, using the backward elimination method of 

multiple regression, it became clear the depth of an inheritance tree, number of 

releases and lines of code were the best predictors of maintenance effort. With the 

remaining nine Java class measures 89% of the maintenance effort could be predicted; 

however, by reducing the Java class measures to the depth of an inheritance tree, 

number of releases and lines of code 85% of the maintenance effort could be 

estimated. This method identified the most useful Java class measures for estimating 

maintenance effort. This enables an accurate prediction of maintenance effort, with 

the fewest predictors. Figure 14 illustrates the Java class measures that are best used 

to predict maintenance effort. 
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Maintenance Effort 
Measured by 
Modification 

Number 

Figure 14: Best Predictors 

As Figure 14 illustrates the size of the Java class measured in lines of code appears to 

assist in predicting the maintenance effort of a Java class. It was interesting that lines 

of code was one of the final predictors in predicting maintenance effort. Lines of code 

is simply the number of coding lines within a class. It does not include the level of 

complexity of the code in the class. Therefore, the amount of code in a large file could 

be relatively straight forward, thus easier to maintain, and while, code in a small class 

might be complex, making it more difficult to maintain. One the other hand, large 

files may be more difficult to follow, due to the large quantity of code, thus requiring 

more time to analyze and, as a byproduct, increasing the maintenance effort. Smaller 

classes may be easier to follow, as there may not be as much code to analyze and thus, 

may not require as much time. Lines of code alone as a predictor of maintenance 

effort did not appear to give an accurate representation of maintenance effort, as it 
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does not show the complexity of the code however, with other predictors added to the 

model, lines of code seemed to add a benefit in the prediction process. 

The second predictor in the maintenance effort model was the number of releases. 

This metric measured the number of times the Java class had been deployed to clients. 

The number of releases gave an indication on how much maintenance had been 

performed on the class. With each maintenance modification, the original logic of the 

class was changed. Changing the original logic can make the code more complex, by 

adding more conditions and coding statements not originally in the initial logic. This 

can be true, if the maintenance change was either complex or trivial. Even if the code 

modification is trivial, it could affect other parts of the system and all of this must be 

accounted for in the maintenance process, to include considerable regression testing. 

The final predictor adding to the maintenance effort model was the depth of an 

inheritance tree. This Java class measure was a fascinating metric to have as a 

predictor of the maintenance effort. It seems reasonable to expect that the farther the 

class is away from class Object in an inheritance hierarchy, the more maintenance 

effort it will require. The class Object is the root of the Java class hierarchy. When 

extending a Java class there are more classes involved, which include more methods 

and more instance variables; so likely, the programmers would be required to research 

other classes and methods, in order to accurately maintain a specified class. Likewise, 

if a class does not inherit from other classes, then the effort in maintaining the class 

intuitively might not require as much effort, as there is not as much code and analysis 
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involved. It was interesting to find some of the benefits of object oriented code, such 

as inheritance and encapsulation, may be slowing down a programmer's productivity. 

While inheritance and encapsulation are very beneficial to managing object oriented 

code, these may not be ideal in the maintenance environment, as the learning curve in 

analyzing and understanding may cost more than what is budgeted. 

Multiple regression analysis illustrated that using the three identified Java class 

measures can help to predict 85% of the maintenance effort on Java classes. This 

study was completed based on a sample test bed from one web based application. 

Therefore, this was not an accurate representation of all maintenance efforts for every 

workplace. Figure 15 shows the Unstandardized Coefficients to describe the 

regression coefficient in the sample test bed. 

Java Class Measures Unstandardized Std 
Coefficients En or 

Constant -76.620 20.775 

Number ofReleases 7.552 1.204 

Lines of Code .027 .004 

Depth of Inheritance Tree 22.432 9.763 

Figure 15: Unstandardized Coefficients for Sample Test Bed 
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Figure 15 illustrates the difference in the response per unit for each predictor. As 

shown, in the environment tested, holding all variables constant, one change in the 

number of releases could possibly contribute to 7.5 modifications to the code, one 

change in the lines of code adds .027 to the modification number and one change to 

the average depth of an inheritance tree can result in 22.43 changes to the Java classes. 

This shows the measures contributing most to the prediction maintenance effort of the 

tested Java classes was the depth of an inheritance tree. The other two measures in the 

model did not contribute as much to the prediction of maintenance effort. 

5.2 Analysis of Other Measures 

One measure that did not contribute to the model to predict maintenance effort was the 

mean cyclomatic complexity measure. This measure calculates an estimate of the 

overall complexity of the class, so it was surprising it did not appear as a leading 

predictor in the model. Still another measure contributing little to the maintenance 

effort model was the mean nested block depth. This measure represents the average 

number of blocks of nested code are in the Java class. This also is a measure of the 

overall complexity of the logic in the class and would be expected to be a predictor. It 

was no surprise, the size of a Java class contributed to the model as shown in the 

measure lines of code. However, it was surprising that the size measure, lines of code, 

had such a minimal role in the model. The contribution, however, was small. It was 

predicted that this metric would play a bigger role in the model. 
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5.3 Future Work 

A way to enhance the research already started on predicting maintenance effort is to 

increase the size of the Java class test bed. The current test bed consisted of26 Java 

classes. A larger test bed would give a better representation of the Java classes found 

in a diverse workplace. The current test bed was assembled from a web based printing 

application. It would be interesting to increase the size and scope of the Java test bed, 

to include other types of applications from different business domains. 

Another area for future work is to increase the number of Java class measures. More 

measures would enhance the study to predict the maintenance effort. This study 

initially collected 13 measures. After review of those 13, only nine were tested 

through regression analysis. Other measurement collection tools could be used to find 

additional measures. 
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b. Dependent Variable: ModificationNumber 
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Model Summary 

Model Summary 

Adjusted R Std. Error of 

Model R R Square Square the Estimate 

1 . 94 7a .897 .838 25.597 

2 . 94 7b .897 .848 24.839 

3 . 945c .893 .852 24.490 

4 . 941 d .886 .850 24.666 

5 . 940e .883 .853 24.379 

6 . 931f .866 .840 25.438 

7 . 923 9 .852 .832 26.105 

a. Predictors: (Constant), 

EstimatedFunctionPointCount, 

MeanCyclomaticComplexity, DepthOfinheritanceTree, 

NumberOfReleases, NumberOfinstanceVariables, 

MeanNestedBlockDepth, MeanNumberOfParameters, 

NumberOfMethods, LinesOfCode 

b. Predictors: (Constant), 

EstimatedFunctionPointCount, 

MeanCyclomaticComplexity, DepthOfinheritanceTree, 

NumberOfReleases, MeanNestedBlockDepth, 

MeanNumberOfParameters, NumberOfMethods, LinesOfCode 

c. Predictors: (Constant), 

EstimatedFunctionPointCount, 

MeanCyclomaticComplexity, DepthOfinheritanceTree, 

NumberOfReleases, MeanNumberOfParameters, 

NumberOfMethods, LinesOfCode 

d. Predictors: (Constant), 

EstimatedFunctionPointCount, DepthOfinheritanceTree, 

NumberOfReleases, MeanNumberOfParameters, 

NumberOfMethods, LinesOfCode 

e. Predictors: (Constant), 

EstimatedFunctionPointCount, DepthOfinheritanceTree, 

NumberOfReleases, NumberOfMethods, LinesOfCode 
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f. Predictors: (Constant), 

EstimatedFunctionPointCount, DepthOfinheritanceTree, 

NumberOfReleases, LinesOfCode 

g. Predictors: (Constant), DepthOfinheri tanceTree, 

NumberOfReleases, LinesOfCode 
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Model Squares df Square F Sig. 

1 Regressio 
90872.573 9 10096.953 15.410 . oooa 

n 

Residual 10483.273 16 655.205 

Total 101355.846 25 

2 Regressio . ooob 90867.677 8 11358.460 18.411 
n 

Residual 10488.169 17 616.951 

Total 101355.846 25 

3 Regressio 
90559.936 7 12937.134 21.570 . oooc 

n 

Residual 10795.910 18 599.773 

Total 101355.846 25 

4 Regressio . oood 89796.435 6 14966.073 24.599 
n 

Residual 11559.411 19 608.390 

Total 101355.846 25 

5 Regressio 
89468.684 5 17893.737 30.106 . oooe 

n 

Residual 11887.162 20 594.358 

Total 101355.846 25 

6 Regressio 
87766.859 4 21941.715 33.908 . ooot 

n 

Residual 13588.987 21 647.095 

Total 101355.846 25 

7 Regressio 
86364.053 3 28788.018 42.246 . ooo9 

n 

Residual 14991.793 22 681.445 

Total 101355.846 25 
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a. Predictors: (Constant), EstimatedFunctionPointCount, 

MeanCyclomaticComplexity, DepthOfinheritanceTree, 

NumberOfReleases, NumberOfinstanceVariables, 

MeanNestedBlockDepth, MeanNumberOfParameters, 

NumberOfMethods, LinesOfCode 

b. Predictors: (Constant), EstimatedFunctionPointCount, 

MeanCyclomaticComplexity, DepthOfinheritanceTree, 

NumberOfReleases, MeanNestedBlockDepth, 

MeanNumberOfParameters, NumberOfMethods, LinesOfCode 

c. Predictors: (Constant), EstimatedFunctionPointCount, 

MeanCyclomaticComplexity, DepthOfinheritanceTree, 

NumberOfReleases, MeanNumberOfParameters, NumberOfMethods, 

LinesOfCode 

d. Predictors: (Constant), EstimatedFunctionPointCount, 

DepthOfinheritanceTree, NumberOfReleases, 

MeanNumberOfParameters, NumberOfMethods, LinesOfCode 

e. Predictors: (Constant), EstimatedFunctionPointCount, 

DepthOfinheritanceTree, NumberOfReleases, NumberOfMethods, 

LinesOfCode 

f. Predictors: (Constant), EstimatedFunctionPointCount, 

DepthOfinheritanceTree, NumberOfReleases, LinesOfCode 

g. Predictors: (Constant), DepthOfinheritanceTree, 

NumberOfReleases, LinesOfCode 

h. Dependent Variable: 

ModificationNumber 
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