
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2007

Predicting Class Life Cycle Maintenance Effort Based on Class Predicting Class Life Cycle Maintenance Effort Based on Class

Complexity Complexity

Lindsey B. Hays
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Suggested Citation Suggested Citation
Hays, Lindsey B., "Predicting Class Life Cycle Maintenance Effort Based on Class Complexity" (2007). UNF
Graduate Theses and Dissertations. 247.
https://digitalcommons.unf.edu/etd/247

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2007 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unf.edu%2Fetd%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unf.edu%2Fetd%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/247?utm_source=digitalcommons.unf.edu%2Fetd%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

PREDICTING CLASS LIFE CYCLE MAINTENANCE EFFORT BASED ON
CLASS COMPLEXITY

by

Lindsey B. Hays

A thesis submitted to the
School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

December 2007

The thesis "Predicting Class Life Cycle Maintenance ~ffort Based on Class Complexity"
submitted by Lindsey Hays in partial fulfillment of the requirements for the degree of
Master of Science in Computer and Information Sciences has been

Approved by the thesis committee: Date

Dr. Robert Roggio
Thesis Advisor and Committee Chairperson

Dr. Neal Coulter

Accepted for the School of Computing:

Accepted for the College of Computing, Engineering, and Constmction:

Dr. Neal Coulter
Dean of the College

Accepted for the University:

enner
Dean of the Graduate School

ii

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGEMENT

First, I wish to thank my family for their support, encouragement and understanding

the past few years. I truly appreciate it. Thank you very much. I would also like to

thank my friends for their help and understanding. I would especially like to thank Dr.

Behrooz Seyed-Abbassi and Dr. Neal Coulter for working with me on this project and

giving me direction and support. I would also like to give a special thanks to a special

friend, Albert Ritzhaupt. Thank you so much for all of your help and guidance.

Lastly, I would like to thank Dr. Robert Roggio. I appreciate all of your hard work,

guidance, support and encouragement. It has been a pleasure working with you as

both an undergraduate and graduate student. I have learned so much through this

process and I appreciate all you have done for me.

1ll

TABLE OF CONTENTS

Figures ... vi

Abstract ... vii

Chapter 1: Introduction ... 1

Chapter 2: Review of Literature .. .4

2.1 Java Objects and Software Measures .. .4

2.2 Class Con1plexity .. 5

2.3 Measures of Class Complexity .. 6

2.3.1 Function Point Analysis .. ?

2.3.2 Lines of Code .. 8

2.3.3 McCabe's Cyclomatic Complexity ... 9

2.3 .4 Weighted Methods per Class .. 1 0

2.3.5 Inheritance Measures .. 11

2.3.6 Other Complexity Measurements ... 12

2.4 Traditional Complexity Metrics vs. Object-Oriented Code 13

Chapter 3: Data Collected .. 14

3.1 Java Class Test Bed .. 14

3.2 Measurement Calculation Tools ... 16

3.2.1 Version Control Software .. 18

3 .2.2 Eclipse Metric Plugin: Metrics 1.3 .6 ... 18

3 .2.3 Resource Standard Metrics ... 18

lV

3.3 Measures Collected using the Aforementioned Tools 19

3.3.1 Measures Collected from Version Control Software 20

3.3.2 Measures Collected from the Eclipse Metric Plugin: Metrics 1.3.6 21

3.3.3 Measure Collected from Resource Standard Metrics 22

Chapter 4: Methodology .. 24

4.1 Multiple Regression Analysis Overview ... 24

4.2 Independent Variables: Java Class Measures 25

4.3 Dependent Variable: Maintenance Effort Measurement. 27

4.4 Metric Correlations ... 30

4.4.1 Correlation with the Dependent Variable: Number of Modifications 30

4.4.2 Bivariate Correlations .. 32

4.5 Regression Analysis of Java Class Measures 39

Chapter 5: Analysis and Results ... 43

5.1 Maintenance Effort Model.43

5.2 Analysis of Other Measures .. 47

5.3 Future Work .. 48

References .. 49

Appendix A ... 53

Appendix B ... 54

Vita .. 67

v

FIGURES

Figure 1: A Program Control Graph ... 10

Figure 2: Java Class Test Bed .. 16

Figure 3: Measurement Calculation Tools ... 17

Figure 4: Java Class Measurements Collected .. .20

Figure 5: LOC Definitions in RSM .. 23

Figure 6: Descriptive Statistics ... 26

Figure 7: Maintenance Effort Measurement and Metrics 29

Figure 8: Pearson Correlation for Modification Number 31

Figure 9: Bivariate Correlations .. 33

Figure 10: Pearson Correlation for Age .. 34

Figure 11: Pearson Correlation for File Size ... 36

Figure 12: Measures Studied in Regression .. 38

Figure 13: Backward Elimination .. .40

Figure 14: Best Predictors44

Figure 15: Unstandardized Coefficients for Sample Test Bed46

Vl

ABSTRACT

In the software industry today many programmers spend countless hours maintaining

existing Java programs. The cost of code maintenance affects a company in many

ways such as the budget, time management and resources. Making management

decisions regarding these issues could be assisted, if maintenance cost of Java classes

could be predicted.

The goal of this thesis was to create a new model predicting the maintenance effort

based on the Java class complexity. It seems clear the complexity of a Java class can

directly relate to the amount of time it will take to perform maintenance on the class.

To develop the new maintenance effort model, a test bed of Java classes was

assembled representing a sample of Java classes from the workplace. Then a variety

of Java class metrics were calculated using these classes. Using the backward

elimination process of regression analysis in SPSS, a new model was created

predicting maintenance effort. The metrics that best predicted maintenance effort

were the depth of an inheritance tree, the number of times a class has been deployed to

the customer and the lines of code. Together, these metrics together were able to

predict 85% of the maintenance effort on the set of Java classes tested.

Vll

Chapter 1

INTRODUCTION

The Institute of Electrical and Electronics Engineers (IEEE) defines software

complexity as, "the degree to which a system or component has a design or

implementation that is difficult to understand and verify" [Kushwaha06). Complexity,

in this context, refers to the human understanding of code and the components it

contains. It focuses on the size of the class and the relationships between parts and a

whole. Complexity of software can also refer to the coding language, the algorithms

and strategies used to develop the software. Understanding the code directly relates to

how long it will take a programmer to maintain and test existing code. It seems clear

that the more complex the code, the longer it will take a programmer to understand

and accurately be able to maintain and test it, thus increasing the total maintenance

effort.

In today's development market, time spent on maintaining Java classes can directly

affect a company's bottom line. Code with higher complexity will likely take more

time to maintain and therefore cost more. It seems clear that the greater the

complexity of these Java classes, the greater the effort required for maintaining them.

But, what measures really impact complexity and hence effort is open to debate

among many researchers.

- 1 -

While much has been done to measure complexity, many techniques are not applicable

to today's object-oriented environments. Yet maintenance costs continue to soar, and

applications become more and more complex. The ability to estimate maintenance

efforts of software built largely on Java classes is essential in today's bottom-line

economy. Planning the use of a company's personnel resources based on the

complexity of Java classes that must be extended and reused to meet growing

customer demands forms a critical part of modem software project management. In

today's workplace, countless hours are spent modifying existing Java code to make it

meet new requirements and fix existing errors in the code. Modifying existing code,

whether it's a trivial or complex change, can increase the complexity, as it changes the

original logic; therefore, it can introduce new errors and make it more complicated for

programmers to understand. By computing an accurate estimation of the complexity

of Java classes, managers are able to estimate the effort they will need to invest in

successfully maintaining and testing the existing code. Being able to accurately

predict the effort needed for maintaining Java classes through precise complexity

metrics will help in estimating cost, which will in tum assist managers in making

better financial and managerial decisions. Thus, the ability to measure class

complexity will enhance project development.

The goal of the thesis was to create a new model predicting the maintenance effort as a

function of the complexity of Java classes. By using a variety of existing complexity

and Java class measurements by themselves and in various combinations

supplemented with new additional measures, a new model was developed that will

- 2 -

better correlate maintenance effort to complexity. Maintenance effort was calculated

based on the number of times a Java class had been modified. The measurements that

made a significant contribution to the modeling effort, as well as level of significance

were determined. Given a lengthy list of metrics and an impressive array of available

complexity tools several of which are found in modem programming environments, it

was anticipated that the results of this research will provide insight into the

maintenance effort required for maintaining Java classes in modem development

environments, based on measurable class complexity.

- 3 -

Chapter 2

REVIEW OF LITERATURE

2.1 Java Objects and Software Measures

Java is an object-oriented programming language founded on the concept of a class. A

class is made up of methods, variables and nested classes. A Java object is the

instantiation of a Java class.

Over the years many techniques have been used to study classes to measure metrics,

such as reusability, complexity, maintainability and testability. Software metrics are

used to measure the quality of the code and to assist in making management decisions,

such as giving estimates about the time it will take to develop new enhancements or

perform code maintenance. The quality of code refers to how difficult it is for

software developers to understand also to, the "ease of comprehension"

[Kushwaha06]. A variety of measurements are used to compute statistics and

estimates, when analyzing code to quantify what makes software difficult to

understand. Without such measurements, planning and controlling non-trivial

software development and maintenance tends to be unorganized and unpredictable.

- 4-

2.2 Class Complexity

As mentioned previously, class complexity refers to the extent to which specific code

is understandable to the developer modifying or testing it. Software complexity

measures a way to observe progress, get a more accurate estimation of milestones, and

to develop software having minimal errors. Complexity focuses on the size of the

class and the relationships between parts and between the parts and a whole.

According to some researchers, measures of class complexity are needed for many

different reasons. The first reason is complexity can suggest the amount of effort and

time needed to accomplish a given task, such as adding a new enhancement or

changing existing functionality. Complexity may also be used to estimate the number

of potential errors that may be potentially introduced, and finally understanding class

complexity assists in quality assurance. Knowing the complexity of a class can also

assist in estimating the level of testing needed.

Many studies have been undertaken to understand what factors make a class complex.

According to some researchers, there is a strong correlation between class complexity

and the number of errors found in testing a class. Many researchers hope that by

computing accurate complexity metrics, objects may be designed to be less complex,

which results in reduced maintenance costs.

- 5 -

2.3 Measures of Class Complexity

There are a number of methods that may be used to identify the complexity of an

object. Some of the techniques include the size (volume) of the object, the number of

operations (methods), the number of classes it inherits and other characteristics, such

as the age of the class and the number of times it has been released to the customer for

production.

Studies have been conducted that address different techniques to compute class

complexity. Although many methods have been established, they all have their

strengths and weaknesses. One researcher suggests calculating class complexity by

measuring the structure of object-oriented code [Bellin94]. These measures examine

the relationships between the methods, classes and variables. They also look at how

these values can infer characteristics about a class. Some of these class metrics

include number of methods, number of classes, and the number of messages a class

sends. For example, Bellin suggested the relationships between a class and the

number of methods are defined by the assumption that the more methods a class

contains, the more complex the class. He also proposes the number of messages a

class sends can infer the communication among classes, which can conclude a

relationship with class coupling [Bellin94]. Sunohara believes there are specific

techniques for calculating class complexity. Some ofthese include, step count,

McCabe's Cyclomatic Complexity and Weighted Statement Count and Process V(G)

[Sunohara81]. Through calculations, metrics can be determined to infer complexity.

- 6-

There are many measurements used to compute the complexity of a class. Each

method is different and has both advantages and disadvantages for different coding

styles and languages.

2.3.1 Function Point Analysis

Function points are described as "a standard software measure for the quantification of

the functionalities that a program offers to the user" [Fratemali06]. Function points

provide a teclmique to measure the functionality of code, based on the logical design

and functional specifications. The concept of a function point was developed in the

late 1970's by Allan Abrecht.

Function points can be determined from a variety of sources, such as requirements

documents, design artifacts, or program code. The International Function Point Users

Group (IFPUG), founded in the 1980's, described a counting technique based on

recognizing the functions a system is supposed to accomplish and then allocating a

complexity level for each of these functions. IFPUG described five types of

functional elements:

• External Input (EI), which is a logical transaction where data enters the

application;

• External Output (EO), which is a logical transaction where data exits the

application;

- 7-

• External Inquiry (EQ), which is a logical transaction where an input requests a

response from the application;

• Internal Logical File (ILF), which is a logical group of data maintained by the

application, and

• External Interface Files (ElF), which is a logical group of data referenced by

the application but maintained by a separate application [Ceddia04].

Over the years, different variations of Allan Abrecht' s method of counting function

points have been used to compute function point metrics. One of the benefits of

counting function points is they are independent of the implementing computer

language, as well as the development methodology.

2.3.2 Lines of Code

Lines of Code is one of the oldest ways to measure class complexity. It is a count of

how many lines of code are in a class or method. Counting lines of code is an

approach to measure productivity and effort, based on the size of the class. There are

different variations to this metric, such as whether to include comments or data

definitions in the count. The original theory is the more lines of code, the more

complex the class may be and more time will be needed to maintain the code. While

inherently suspect, it remains a measure of complexity.

- 8-

2.3.3 McCabe's Cyclomatic Complexity

McCabe's Cyclomatic Complexity uses a program's flow graph's cyclomatic number

to measure the program's complexity. This complexity measure shows not only the

number of basic paths in a program and the segments of a program. McCabe

describes the flow graph as an indicator of program complexity. A program or snippet

of code is represented by a graph with one entry point and one exit point. Each node

of the graph represents a section of code and the edges represent the different branches

within the sections of code. The Cyclomatic Complexity of the flow graph can be

calculated by using the following formula,

V(G) =number of edges (e) -number of nodes (n) + 2.

The graph in Figure 1 represents a program's control. Node a signifies the entry point

and node f represents the exit point. All other nodes correspond to other code

segments in the program. Edges 1 through 9 represent branches in the code. Edge 10

is used to illustrate that the graph is strongly connected; it is not a branch in the

program. A strongly connected graph means there is a directed path for every pair of

vertices within the graph. Using the formula above, V(G) =e-n+ 2, the cyclomatic

complexity is V(G) = (9- 6) + 2, which is 5 [Vincent88].

- 9 -

---~·(~--'
9 m,~

el_s /'--. _,.,
____ , -~~~}- ---

/
/

Figure 1: A Program Control Graph

I

For Java classes, the overall cyclomatic complexity is the sum of each method's

cyclomatic complexity. It has been proposed that there is a direct correlation between

the cyclomatic complexity of a program and complexity of the code. Elshoff

suggested a goal for the cyclomatic complexity of a method to be under ten, because a

cyclomatic complexity over ten tends to render a method unreliable [Elshoff78].

2.3.4 Weighted Methods per Class

Weighted Methods per Class (WMC) is similar to cyclomatic complexity, as it is a

metric that also calculates the complexity of control flow. The metric was introduced

by Chidamber and Kemerer [Chidamber91]. WMC is defined as "a sum ofthe

complexities of all the methods of a class except the inherited methods but including

overloaded methods" [SystaOO]. Inherited methods are methods available to the class

through the inheritance of another class, but not locally defined. Overloaded methods

- 10-

are multiple methods with the same method name. Weighted Methods per Class takes

in to account both the number of methods and the complexity ofthe logical

organization of each method when computed. When computing the Weighted

Methods per Class metric, there is no specific method to measure class complexity;

however, most researchers use the cyclomatic complexity as a standard complexity

measure. Systa made the assumption that if a class has a large WMC metric, the class

will also be more difficult to comprehend and maintain [SystaOO].

2.3.5 Inheritance Measurements

Inheritance measurements are measures derived from the Java single inheritance tree

theory and the principle that every class inherits cetiain abilities from the Object class

provided from,java.lang.Object. These types ofmeasures are often used while

studying design complexity.

There are two common measures used to measure inheritance measurements: Depth of

Inheritance Tree (DIT) and Number of Children (NOC). Systa described the Depth of

Inheritance Tree as, "simply the number of its ancestor classes or interfaces, that is,

the number of classes or interfaces along the path from the single root class or

interface" [SystaOO]. The measure provides the number of ancestor classes that could

influence the class under investigation. The notion is the higher the Depth of

Inheritance Tree; the more complex the class in question, because the number of

methods inherited will be greater. The Number of Children is defined as, "the

- 11 -

number of classes that extend this class" [SystaOO]. This is a good measure when

looking to see what other components are affected, when a class is modified. Systa

believed that both the Depth of Inheritance and Number of Children measure are good

gauges to use when estimating design complexity of a system [SystaOO].

2.3.6 Other Complexity Measurements

The characteristics that contribute to making a class complex are many and varied and

may have little to do with edges and nodes. Other general class characteristics can

play a significant role in determining the complexity of a class. Characteristics such

as the age of a class, the number of methods in the class, packages the class imports

and the number of variables a class itself has can be significant factors in determining

complexity. Further, consideration may be given to the number of classes a class

inherits and the number of times a class has been deployed to customers. These

measures may all be important and imply the complexity of a class. The age of a class

might well indicate complexity, because the older it is, more changes have been made.

The original design is likely to be weakened by the number of changes thus rendering

the class more complex for programmers to understand. As class complexity rises,

additional maintenance efforts might become more costly.

- 12-

2.4 Traditional Complexity Metrics vs. Object-Oriented Code

There are issues in computing class complexity by traditional metrics, such as

cyclomatic complexity and computing lines of code. These techniques do not address

the reality of a poorly designed class or that nested control structures are more

complex than sequential control structures. Traditional metrics were also developed

based on the simplicity of the procedural languages popular at the time, several of

which are not used as often today and in many instances do not represent the future of

program design in many application domains. Many of these metrics were focused on

the lexical and syntactic characteristics of the code and not on semantic and structural

relationships. These are characteristics of many oftoday's applications using the

object-oriented paradigm.

- 13 -

3.1 Java Class Test Bed

Chapter 3

DATA COLLECTED

To provide an environment for investigation, a test bed was assembled. The test bed

was made up of Java classes from one application available in the workplace. The

selected application is a web based application used tlu·oughout the world by

Department ofDefense employees and their customers. The functionality of the

application is for submitting documents for printing electronically. The application

selected also provides an online workflow to track these documents while being

processed. The application is currently maintained by four programmers. The

programmers level of experience of maintaining the selected application range from 1-

7 years.

The goal of the information gathering was to establish a test bed of diverse Java

classes that present a good representation of Java classes used in the workplace. The

classes were selected based on a number of class characteristics, such as size, age and

structure. Structure, in this context, referred to the way in which the class was

implemented in the application. Some of the classes were implemented with Java

Server Pages (JSP) while others use the Java Server Faces (JSF) framework. The

classes utilized through JSF, in the selected application tend to be more structured

- 14-

around specific functionality, which tends to make the files easier to understand and

follow from a programmers view, where as the classes used with the JSPs have less

organization. These classes tend to be harder to follow because the methods are less

organized.

Another characteristic on which the test bed was selected was the number of methods

within each class. To get a variety, the number of methods contained in each class

range from very high to very low. Another difference is several classes had a

considerable number of instance variables, whereas others had a minimal number of

instance variables.

The test bed consisted of26 Java classes. The size of the each class, in kilobytes,

ranged from 2K to 377K. The average class size was about 81K and the median was

51K. The Java classes gathered also vary in their creation date. Often times,

maintenance occurs on older classes, so both older classes, as well as newer classes,

were selected in the test bed. The dates of creation ranged from November 21, 2002

through May 9, 2007. The date of creation was measured in the number of days the

Java class had been stored in the version control software. Figure 2 displays the Java

classes constituting the test bed in graphical form. The classes are represented on the

x axis with the values for days in version control and lines of code along the y axis.

- 15-

Java Class Test Bed

8000.00

7000.00

6000.00

5000.00

4000.00
oDays in Version Control

• Lines of Code

3000.00

2000.00

1000.00 1--

~
r--

ij
- -

0 00
i~ I~ Ill lrl r ~

1 3 5 7 9 11 13 15 17 19 21 23 25

Class

Figure 2: Java Class Test Bed

3.2 Measurement Calculation Tools

Once the test bed was assembled the next step was to gather the tools used to calculate

the Java class measures. Java class measurement collection has become a popular area

of study and many organizations provide tools to be used to calculate metrics on Java

code. After investigating a long list of potential Java class measures that might impact

maintenance effort, a list was formulated. Tools to calculate these measures were

available through open source websites and software organizations that provide free

trial versions of their metric calculation software. Figure 3 displays the measure

calculation tools used in this research.

- 16 -

Measur.ment Calculation Tools

Visual Source Safe (VSS)

Subversion

Metrics 1.3.6

Resource Standard Metrics (RS:M)

Figure 3: Measurement Calculation Tools

Measures associated with class characteristics, such as age of each class (measured in

years since creation) and file size (measured in kilobytes), were assembled using

version control software associated with the production Java classes constituting the

test bed. Using software available from the workplace, Visual SourceSafe, and an

open source tool, Subversion, the complete list of class characteristic metrics were

gathered.

For the remaining measures two open source tools were used. The two tools were an

Eclipse IDE plugin, Metrics 1.3.6, and Resource Standard Metrics. Metrics 1.3.6 was

used to calculate Java class measures, such as lines of code, number of methods in a

Java class, cyclomatic complexity, weighted methods per class, which is a summation

of the cyclomatic complexity of all methods within a specified class, and the depth of

an inheritance tree. Resource Standard Metrics was used to collect the function point

count for each Java class in the test bed. In addition to these measurements gathered

- 17-

from the literature review, additional measurements available from the Eclipse plug-in

and the RSM were added to the list of Java class measures used in this research.

3.2.1 Version Control Software

Two different sources of version control software were used in collecting Java class

measurements for this experiment. They included Visual SourceSafe 6.0 (VSS) by

Microsoft and Subversion (SVN), which is open source software provided by

CollabNet [CollabNet05]. Both Visual SourceSafe and Subversion can track changes

made to existing code.

3.2.2 Eclipse Metric Plugin: Metrics 1.3.6

The Eclipse Metric plugin, Metrics 1.3.6, was downloaded from SourceForge

[SourceForge05]. SourceForge is an open source repository that allows users to

develop and download applications and plugins as needed. Metrics 1.3.6 is a plugin

available from this website and has the ability to compute many Java class metrics for

applications using an Eclipse IDE.

3 .2.3 Resource Standard Metrics

Resource Standard Metrics (RSM), developed by M Squared Technologies, is a tool

used to compute source code metrics and assist in quality analysis for Java code [M

- 18 -

Squared Technologies07]. The metric calculation software offers users a uniform way

to calculate the quality of source code by computing specific metrics, such as function

point count on Java code. M Squared Technologies presents a free trail version of

their product available for download from their website [M Squared Technologies07].

3.3 Measures Collected using the Aforementioned Tools

All measures were collected at the class level. Figure 4 presents a summary of all

measures collected for the study.

- 19-

Java Class Measures Description

File Size Measures the size of the class in KB

Age The number of days the class has been in the version control
software up to adding it to the test bed

Number ofReleases Number of times the class was deployed to the customer

Lines of Code Number of lines of code in the class, excluding comments and
blank lines

Number of Instance Variables Number of instance variables in a class

Method Lines of Code Number of lines of code in the method declarations, excluding
comments and blank lines

Mean Nested Block Depth The average of the nested blocks of code

Number of Methods Number of methods in a class

Mean Cyclomatic Complexity Mean value of all the methods' cyclomatic complexity within
each class

Mean Number of Parameters Mean value of the number of parameters of each method in each
class

Depth oflnheritance Tree Distance from the Object class in the inheritance hierarchy

Weighted Methods per Class Summation of cyclomatic complexity of each method in the
class

Estimated Function Point Count Estimate of the number of function points within a class, based
on the Backfire method

Figure 4: Java Class Measurements Collected

All measurement values for each Java class produced from the measurement collection

tools can be found in Appendix A.

3.3.1 Measures Collected from Version Control Software

Version control software was used to collect these measures:

• File Size- a measure that was measured in kilobytes and was collected by

examining the size of each Java class.

- 20-

• Age of the class- a measure that referred to the number of days a Java class had

been in the version control software, Visual SourceSafe or Subversion, until

the day it was added to the test bed for this study. This measure was manually

determined by searching the history of all the actions taken on each class.

• Number of Releases- a measure collected by totaling the number of times a

Java class was deployed to the customer in a patch or build. As with previous

measures, a release count was determined by viewing the history of each class

within the test bed.

3.3.2 Measures Collected from the Eclipse Metric Plugin: Metrics 1.3.6

The Eclipse Metric Plugin, Metrics 1.3.6, was used to collect nine measures:

• Lines of Code - the number of lines in the source file, excluding the lines that

only contain comments or are blank.

• Number of Instance Variables - a metric that referred to the total number of

instance variables within each class. This did not include local variables

within each method.

• Total Method Lines of Code - the number of lines of code in a method

declaration. This did not include comments or blank lines.

• Mean Nested Block Depth- the average depth of nested blocks of code.

• Number of Methods - referred to the total number of methods contained in

each class.

- 21 -

• Mean Cyclomatic Complexity- the mean value of all the methods' cyclomatic

complexity within each class. The cyclomatic complexity was computed by

counting each time a branch occurs throughout each method.

• Mean Number of Parameters - refened to the mean of all the parameters of

each method in a class.

• Depth of an Inheritance Tree - defined the distance from class Object in the

inheritance hierarchy to the class undergoing metric computation.

• Weighted Methods per Class- a summation ofthe cyclomatic complexity from

each method within the class.

3.3.3 Measure Collected from Resource Standard Metrics

Function Point Count was measured using Resource Standard Metrics (RSM), which

derives an estimated function point count based on a formula from Jones' Applied

Software Measurement that states there is an estimate of one function point per 53

lines of Java code [M Squared Technologies07]. This value was derived from the

Backfire method of calculating function points. The Backfire method provides a way

to estimate function points given, the source code size, code complexity and source

language. To calculate the function point the source code size was divided by the

specified function point expansion factor, which is the estimated value of how many

lines of code produces one function point [Jones96]. While RSM uses tlu·ee

calculations for lines of code, the definition of lines selected for this research was the

"effective lines of code" (eLOC) [M Squared Techno logies07]. This consists of all

- 22-

lines of code statements, excluding blank lines, comments or lines consisting of just

scope terminators such as { or } . This was the lines of code definition that best fit for

this research, because it only counts the lines of code that produce functionality. An

example of the definitions oflines of code in RSM is displayed in Figure 5.

Source Code Line LOC eLOC JLOC Comment Blank

If(x<10) //test range X X X

(X

//update y coordinate X

X

y=x+ 1; X X X

} X

Figure 5: LOC Definitions in RSM

The number of effective lines of code in Figure 5 is two. The next step of the Backfire

method is to calculate an estimated count of function points. Based on research found

in a previous study by M Squared Technologies, the estimated number is 53 lines of

code per function point. Therefore, the estimated function point count would be

eLOC/53 = FP. For the example above the estimated function point count would be

2/53 = .03 [M Squared Technologies07].

- 23-

Chapter 4

METHODOLOGY

4.1 Multiple Regression Analysis Overview

The tool used to examine the Java class measures was SPSS 16 Evaluation Version for

Windows. The goal of this study was to create a new model where maintenance effort

is a function of the Java class measures collected. The new model was produced by

analyzing the Java class measures described in Chapter 3, and displayed in Appendix

A, and their association with maintenance effort measured by the number of times the

Java classes were modified for maintenance.

SPSS was used to perform three specific test steps on the Java class measures, in the

process of finding which measures best predict the maintenance effort. First,

descriptive statistics were produced to get a better understanding of the versatility of

the test bed. The second test step was to generate correlations among all the Java class

measures and with the dependent variable of maintenance effort measured by the

number of times the classes had been modified for maintenance. This was to identify

the Java class measures that have a relationship with the maintenance effort, as

demonstrated by the value ofp. If the p value was less than .001, then the relationship

was deemed significant. It also was to calculate the correlations among all the Java

class measurements. This was important, because all the Java class metrics used as in

- 24-

regression analysis should be relatively independent of each other. The final step in

SPSS was to analyze the relationships between the maintenance effort measured in

maintenance modifications and the Java class measures collected. The method

selected for study was backward elimination of multiple regression analysis.

Multiple regression analysis was chosen because it analyzes the relationships among

many independent variables and a single dependent variable. Once the relationships

were analyzed, a new model was created, using SPSS, which predicts maintenance

effort based on the independent variables, the Java class measures. As previously

stated, the dependent variable was the maintenance effort measured by the number of

times each Java class was modified. The independent variables were the Java class

measures collected on the Java classes. Multiple regression attempts to determine if

one (or more) independent variables can account (correlate) for the variability in the

dependent variable. One of the calculations of interest was the squared multiple

correlation (R2
). This represents the relationship between the independent variables

and the dependent variable. It is "the proportion of variance accounted for by the

independent variable[s]" [Pedhazur97].

4.2 Independent Variables: Java Class Measures

The independent variables for this research were the Java class metrics described in

the previous chapter. Each metric was measured on the same scale that is, based on

the Java class as a whole. All metrics were calculated on each class in the test bed.

- 25-

The Java classes were chosen to represent the broad variety of classes subjected to the

maintenance effort. These classes are a representation of the kind of classes in the

workplace. Figure 6 shows selected descriptive statistics on the metrics collected

from the test bed of Java classes.

Measures Variable Measurement Range Min. Max. Mean Std.

TYJie Deviation

Depth of Independent Ratio 2 1 3 1.27 .604
Inheritance

Mean Number Independent Ratio 4.810 .333 5.143 1.532 1.209
of Parameters

Mean Nested Independent Ratio 2.899 1.101 4.000 2.048 .746
Block Depth

Mean Independent Ratio 30.055 1.612 31.667 8.734 7.841
Cyclomatic
Complexity

Number of Independent Ratio 15 0 15 9.000 4.783
Releases

Estimated Independent Ratio 100.2 .6 100.8 22.350 22.624
Function Point
Count

Number of Independent Ratio 123 0 123 33.50 36.082
Instance
Variables

Number of Independent Ratio 273 3 276 61.15 72.871
Methods

File Size Independent Ratio 375 2 377 78.35 81.894

Weighted Independent Ratio 1654 8 1662 353.65 370.242
Methods per
Class

Method Lines Independent Ratio 6507 24 6531 1360.27 1428.672
of Code

Lines of Code Independent Ratio 6946 39 6985 1576.85 1574.727

Age Independent Ratio 1630 26 1656 1133.65 589.385

Modification Dependent Ratio 238 2 240 62.92 63.673
Number

N 26

Figure 6: Descriptive Statistics

- 26-

Figure 6 provides a visual representation of the distribution of all the metric values

within the Java class test bed. The test bed selected was a very diverse set of Java

classes, exhibiting a broad range of values for each metric. Care was exercised in

gathering the test bed, to gain an accurate representation of Java classes typically

subject to frequent maintenance modifications. The measurement column shows the

measurement value of the metric. All of the metric values collected fall within the

ratio category, as all metrics collected had a true zero. The range value represents the

spread of the data and, thus, illustrates the distance between the highest and lowest

metric values computed on the test bed of Java classes. The mean is also an important

statistic, as it shows the average value. The standard error of the mean, Std.

Deviation, represents the deviation from the mean and the frequency of this difference

with attention to the size of the data set. The standard deviation is the square root of

the variance of the metric value. This takes into account the spread of the metric

tested for each Java class within the data set.

4.3 Dependent Variable: Maintenance Effort Measurement

As previously stated, the goal of this research was to generate a new model designed

to predict maintenance effort, as a function of complexity and other management

metrics relating to the development and maintenance (history) of a Java class.

Predicting maintenance effort will enable managers to better estimate the time and

resources needed for maintaining I enhancing I redesigning existing code-based

functionality.

- 27-

Maintenance effort can be described in many ways. It can be expressed as the amount

of time, resources and effort spent maintaining code. It can also be portrayed through

many tasks such as requirements gathering, analysis, development and testing. As a

limitation of this research, the amount oftime spent on maintenance measured in man

hours was not available. Therefore, to measure maintenance effort the metric selected

was the number of times maintenance had been performed on each given class. Any

modification to a class file, whether the change was complex or trivial, counted as a

single modification (maintenance) effort. For this research, it was assumed there was

an underlying effort for every change, whether the change was near trivial or

significant. The maintenance effort included all activities, extending from

requirements gathering, initial analysis, design, development, and testing. It was

assumed for every maintenance modification on a Java class, the effort required for

maintaining the file increased.

Figure 7 illustrates the maintenance effort measurement and the metrics to be

investigated to create the new model.

- 28-

Maintenance Effort
Measured by
Modification

Number

8~/
Number of

Figure 7: Maintenance Effort Measurement and Metrics

The maintenance effort which was the dependent variable in the research was the

value to be predicted by the new model. This was measured by the number of

maintenance modifications on the Java classes in the test bed. All the smaller circles

pointing to the maintenance effort were the independent variables used to determine

the new model through regression analysis.

- 29-

4.4 Metric Correlations

4.4.1 Correlation with the Dependent Variable: Number of Modifications

The first correlations were to determine if any of the metrics collected had a linear

relationship with the number of times the Java classes were modified during the

maintenance effort. The relationships presented in this step were used to predict

metrics most likely to favorably impact the new model. SPSS applied the Pearson

product moment correlation equation to find relationships between two values. Once

the Pearson correlation was determined, the p value was studied to determine if the

relationship was significant at the . 01 level. If the p value was less than . 001 the

relationship was considered strong. A strong relationship is when two measures are

closely related. Figure 8 illustrates the correlation between the number oftimes a Java

class had been modified and each Java class metric studied.

- 30-

Java Class Measures Pearson Con·elation to
Modification Number

Age .541

p< .001*

File Size .801

p< .001*

Number ofReleases .683

p < .001*

Lines of Code .766

p< .001*

Number of Instance Variables .218

p = .285

Method Lines of Code .778

p< .001*

Mean Nested Block Depth .145

p= .481

Number of Methods .381

p= .055

Mean Cyclomatic Complexity .225

p= .269

Weighted Methods per Class .818

p< .001*

Mean Number of Parameters .174

p= .396

Depth of Inheritance Tree -.249

p= .220

Estimated Function Point Count .771

p < .001 *

Figure 8: Pearson Correlation for Modification Number

Based on the Pearson correlation, the metric that correlated the highest with the

maintenance effort, represented by the number of times a Java class had been modified

for maintenance, was the weighted methods per class, which is a summation of the

cyclomatic complexity of every method in a Java class. Following closely behind the

weighted methods per class metric was the file size. Other metrics with a strong

- 31 -

correlation included the age of a class, lines of code, method lines of code, number of

releases and the estimated function point count. This simply showed Java class

metrics that were related to the dependent variable, number of modifications on a Java

class. The p value of the metrics that were strongly correlated was less than . 001,

which means the relationship was significant. The negative correlations implied the

variables had an inverse relationship. So, based on the results, depth of an inheritance

tree was an independent variable with an inverse relationship with the modification

number.

4.4.2 Bivariate Correlations

The next step was to investigate correlations among the independent variables (Figure

9). This essential step ensured that independent variables were truly independent of

each other. Having multiple independent variables dependent on each other might call

into question the final result predictions.

- 32-

w
w

"'''l
~-
(il
'-0

ttl
~-
~-
.......
(I)

n
0

~ -~ -· 0

~

Age

File Size

Num ofRe!eases

LOC

Num of Instance
Variables
MethodLOC

Mean Nested
B1ockDepth
Num ofMethods

Mean Cyclomatic.
Complexity
'W'MC

MeanNumof
Params
DIT

Est Function Point
Count

Age

1

.271
p =.180
.~.e
p < 001.
.206
p=J13
.186
p=J64
.202
p =.323
.067
TJ =.746
.126
p =.540
.406
p =.039
.289
p =.152
.347
p = .082
.532
p =.005
.241
TJ = .236

File Size Numof LOC
Releases

1

.353 1
p=077
1)81 .293 1
r·· om• p=.l47
.331 .156 .412
p= .099 p= .448 p =.037
1)86 .295 ~1
p· 001' p=.l43 p . .001.

1:6 .084 .167
]) . om• p=.684 p = .414
.550 .140 640
p=.004 p=.497 p. 001'
.059 .436 ·.013
p=.776 p = .026 IP = 949
!)~~ .391 1)83

]) . 001' p= .048 IP · .. 001·
.133 .332 .087
p=.516 p=.098 p=.671
·.342 ·.388 ·.358
p=.088 p= .050 p =.073
ooo .326 ~~~

P · om· p= .105 p · . .001'

Numof Method Mean Num Mean WMC Numof DIT Est Function
Instance LOC Nested Of Cyclomatic Patams Point CoUIJt

Variables Block Methods Complexity
Depth

1

.303 1
p =.132
·.484 .241 1
p =.012 p =.235
81)1) .537 ·.349 1
p. 001' p=.005 p =.080
·.430 .046 1.~ -.354 1
p :;028 p =.825 p. 001 + p=076
.409 .o~.t .108 641 .026 1
p =.038]) . 001' p =.600]) . 001' p =.898
·.419 .146 "'.t ·.297 g.;.::. .082 1
p=033 p = .476 pOOl' p=.l41 p oo1· p =.689
·.265 ·.351 ·.348 ·.237 -.312 ·.322 -.385 1
p =.190 p = .079 p :;082 p =.243 p =.120 p =.109 p= .052
.402 1)00 152 .621 .007 ~81 .098 ·.352 1
p = .042 p. 001' p =.460 p<.001* TJ =.973]) . 001' p=.633 TJ =.078

Based on the analysis of each independent variable's correlation with each other, some

additional measures were eliminated from the research. The objective in this exercise

was simply the removal of measures very strongly related to each other.

Age of the class was the first Java class measure removed from the research. Figure

10 shows the results of the Pearson Correlation test on the age metric with the other

Java class measures.

Java Class Measures Pearson Correlation for Age

File Size .271

p= .180

Number of Releases .942

p< .001*

Modification Number .541

p= .004

Lines of Code .206

p= .313

Number of Instance Variables .186

p= .364

Method Unes of Code .202

p= .323

Mean Nested Block Depth .067

p= .746

Nmnber of Methods .126

p= .540

Mean Cyclomatic Complexity .406

p= .039

Weighted Methods per Class .289

p= .152

Mean Number of Parameters .347

p= .082

Depth of Inheritance Tree -.532

p= .005

Estimated Function Point Count .241

p= .236

Figure 10: Pearson Correlation for Age

- 34-

As Figure 10 shows the age measure had a strong correlation with number of releases.

It also seemed clear, as a class gets older, a number of the other measures would also

increase such as lines of code, file size and number of methods. For these reasons, the

age of the class measure was removed from the study.

File Size was another measure deleted from the list of independent variables. It

possessed a strong relationship to other measures, such as lines of code, estimated

function point count and the weighted methods per class. Figure 11 presents the

correlation for file size and the other Java class measures.

- 35-

Java Class Measmes Pearson Correlation for File Size

Nmnber ofReleases .353

p= .077

Modification Nmnber .801

p < .001*

Lines of Code .981

p < .001 *

Nmnber of Instance Variables .331

p= .099

Method Lines of Code .986

p < .001*

Mean Nested Block Depth .176

p= .389

Nmnber ofMethods .550

p= .004

Mean Cyclomatic Complexity .059

p = .776

Weighted Methods per Class .979

p < .001*

Mean Number of Parameters .133

p = .516

Depth of Inheritance Tree -.342

p= .088

Estimated Function Point Count .990

p< .001*

Figure 11: Pearson Correlation for File Size

Looking at Figure 11, it was clear that file size had a strong relationship to other Java

class measures such as lines of code, method lines of code, weighted methods per

class and the estimated function point count. It was decided that, of these measures,

file size was least valuable. · Other measures, such as lines of code, estimated function

point and weighted methods per class, are more useful measures and cover the size of

- 36-

the Java class, as well. Therefore, lines of code and estimated function point count

were kept in the study and file size was discarded.

Method lines of code was removed from the array of independent variables for the

same reasons as file size was discarded. As it had strong correlations with other Java

class measures, such as estimated function point count and lines of code. The final

metric removed from the research was weighted methods per class. This metric was

removed because it had strong relationships with many of the other metrics, sucl),as
t;;;1

file size, lines of code and number of methods. It also represented the same value as

the mean cyclomatic complexity, only in a summation form instead of an average.

Figure 12 illustrates the independent variables that were studied in the regression

analysis.

- 37-

Java Class Measures

Number ofReleases

Lines of Code

Number of Instance Variables

Mean Nested Block Depth

Number ofMethods

Mean Cyclomatic Complexity

Mean Number of Parameters

Depth of Inheritance Tree

Estimated Function Point Count

Figure 12: Measures Studied in Regression

Based on the Pearson Correlations generated using SPSS, the Java class measures in

Figure 12 were all reasonably independent of each other. It should be noted that not

all strong relationships were removed from the study. Most measures with multiple

strong relationships were removed. While it was clear some of the Java class

measures had relationships among them, it was the goal of this process to remove

some metrics with strong overlap ..

- 38-

4.5 Regression Analysis of Java Class Measures

After the Java class measures were selected for regression, SPSS was used to analyze

these measures, using multiple regression analysis. Backward Elimination was used

during the regression process. Backward elimination is especially useful when there is

a large set of predictors. One advantage of using the backward elimination method

was that it started with all predictors and eliminated predictors one at a time. This

enabled careful analysis through the complete process. Backward elimination initially

began with studying the squared multiple con-elation (R2
) with all remaining

independent variables as predictors, this was the maximum model. Then each test

reduced the number of predictors by one, by removing the predictor that led to the

smallest decrease of the squared multiple correlation. This process was repeated until

all predictors contribute meaningfully to the prediction of the dependent variable. In

other words, deleting measures was terminated, when a deleted predictor would reduce

the R2 by too much.

For this research, the modification number was entered as the dependent variable and

the remaining nine Java class measures were selected as the predictors. SPSS

performed the backward elimination test seven times, beginning with nine predictors

and finally reducing the predictors to three. Figure 13 shows the order in which the

predictors were eliminated from the test.

- 39-

Test Java Class Measures Included Java Class Measure R2 Adjusted
Eliminated from Test R2

1 Estimated Function Point Count, Mean None .897 .838
Cyclomatic Complexity, DIT, Number of
Releases, Number of Instance Variables,
Mean Nested Block Depth, Mean Number of
Parameters, Number of Methods, Lines of
Code

2 Estimated Function Point Count, Mean Number of Instance .897 .848
Cyclomatic Complexity, DIT, Number of Variables
Releases, Mean Nested Block Depth, Mean p= .932
Number ofParameters, Number of Methods,
Lines of Code

3 Estimated Function Point Count, Mean Mean Nested Block .893 .852
Cyclomatic Complexity, DIT, Number of Depth
Releases, Mean Number of Parameters, p= .490
Number of Methods, Lines of Code

4 Estimated Function Point Count, DIT, Mean Cyclomatic .886 .850
Number of Releases, Mean Number of Complexity
Parameters, Number of Methods, Lines of p= .274
Code

5 Estimated Function Point Count, DIT, Mean Number of .883 .853
.Number of Releases, Number of Methods, Parameters
Lines of Code p= .472

6 Estimated Function Point Count, DIT, Number of Methods .866 .840
Number of Releases, Lines of Code p = .106

7 DIT, Number of Releases, Lines of Code Estimated Function Point .852 .832
Count

p = .156

Figure 13: Backward Elimination

As shown in Figure 13, the first test consisted of the remaining nine independent

variables as predictors; from there, the predictors progressively less meaningful to the

model were removed from the test one by one. After each test run, the predictor with

the largest p value greater than .1 0 was removed from the test. With nine independent

variables the R2 was .897 and the adjusted R2 was .838. The R2 value means an

- 40-

estimate of 89% of the maintenance effort measured in modifications to Java classes

can be predicted with the remaining nine independent variables included in this study.

Using the backward elimination method, six predictors were removed to create the

new model. The first predictor eliminated was the number of instance variables. Then

slowly, with the removal of the remaining predictors, the R2 was reduced. The next

predictor to be discarded was the mean nested block depth. Removing this predictor

brought R2 to .893. After removing the mean cyclomatic complexity and the mean

number of parameters, the squared multiple correlation was decreased to .883. The

adjusted R2 was brought down to .853. Throughout the backward elimination process

there was a steady decrease of the R2 value. The largest reduction came after number

of methods was removed from the model. The squared multiple correlation was

reduced to .866. The final Java class metric removed from the model was the

estimated function point count. The removal of this metric caused the R2 to drop to

.852, which is where the backward elimination process was terminated. The

termination of the process was because by removing any of the measures left would

decrease the R2 to a value that would not be valuable in the study.

After removing the independent variables in the order presented in Figure 13, the

predictors with the most significance to the maintenance effort model were the depth

of an inheritance tree, number of releases and lines of code. Using the depth of an

inheritance tree, number of releases and lines of code 85% of the maintenance effort

- 41 -

measured in maintenance modification count can be determined. Using the backward

elimination method decreased the squared multiple correlation from .897 to .852.

-42-

Chapter 5

ANALYSIS AND RESULTS

5.1 Maintenance Effort Model

After analyzing the independent variables, using the backward elimination method of

multiple regression, it became clear the depth of an inheritance tree, number of

releases and lines of code were the best predictors of maintenance effort. With the

remaining nine Java class measures 89% of the maintenance effort could be predicted;

however, by reducing the Java class measures to the depth of an inheritance tree,

number of releases and lines of code 85% of the maintenance effort could be

estimated. This method identified the most useful Java class measures for estimating

maintenance effort. This enables an accurate prediction of maintenance effort, with

the fewest predictors. Figure 14 illustrates the Java class measures that are best used

to predict maintenance effort.

- 43-

Number of
Releases

Lines of Code

Maintenance Effort
Measured by
Modification

Number

Figure 14: Best Predictors

As Figure 14 illustrates the size of the Java class measured in lines of code appears to

assist in predicting the maintenance effort of a Java class. It was interesting that lines

of code was one of the final predictors in predicting maintenance effort. Lines of code

is simply the number of coding lines within a class. It does not include the level of

complexity of the code in the class. Therefore, the amount of code in a large file could

be relatively straight forward, thus easier to maintain, and while, code in a small class

might be complex, making it more difficult to maintain. One the other hand, large

files may be more difficult to follow, due to the large quantity of code, thus requiring

more time to analyze and, as a byproduct, increasing the maintenance effort. Smaller

classes may be easier to follow, as there may not be as much code to analyze and thus,

may not require as much time. Lines of code alone as a predictor of maintenance

effort did not appear to give an accurate representation of maintenance effort, as it

- 44-

does not show the complexity of the code however, with other predictors added to the

model, lines of code seemed to add a benefit in the prediction process.

The second predictor in the maintenance effort model was the number of releases.

This metric measured the number of times the Java class had been deployed to clients.

The number of releases gave an indication on how much maintenance had been

performed on the class. With each maintenance modification, the original logic of the

class was changed. Changing the original logic can make the code more complex, by

adding more conditions and coding statements not originally in the initial logic. This

can be true, if the maintenance change was either complex or trivial. Even if the code

modification is trivial, it could affect other parts of the system and all of this must be

accounted for in the maintenance process, to include considerable regression testing.

The final predictor adding to the maintenance effort model was the depth of an

inheritance tree. This Java class measure was a fascinating metric to have as a

predictor of the maintenance effort. It seems reasonable to expect that the farther the

class is away from class Object in an inheritance hierarchy, the more maintenance

effort it will require. The class Object is the root of the Java class hierarchy. When

extending a Java class there are more classes involved, which include more methods

and more instance variables; so likely, the programmers would be required to research

other classes and methods, in order to accurately maintain a specified class. Likewise,

if a class does not inherit from other classes, then the effort in maintaining the class

intuitively might not require as much effort, as there is not as much code and analysis

- 45-

involved. It was interesting to find some of the benefits of object oriented code, such

as inheritance and encapsulation, may be slowing down a programmer's productivity.

While inheritance and encapsulation are very beneficial to managing object oriented

code, these may not be ideal in the maintenance environment, as the learning curve in

analyzing and understanding may cost more than what is budgeted.

Multiple regression analysis illustrated that using the three identified Java class

measures can help to predict 85% of the maintenance effort on Java classes. This

study was completed based on a sample test bed from one web based application.

Therefore, this was not an accurate representation of all maintenance efforts for every

workplace. Figure 15 shows the Unstandardized Coefficients to describe the

regression coefficient in the sample test bed.

Java Class Measures Unstandardized Std
Coefficients En or

Constant -76.620 20.775

Number ofReleases 7.552 1.204

Lines of Code .027 .004

Depth of Inheritance Tree 22.432 9.763

Figure 15: Unstandardized Coefficients for Sample Test Bed

-46-

Figure 15 illustrates the difference in the response per unit for each predictor. As

shown, in the environment tested, holding all variables constant, one change in the

number of releases could possibly contribute to 7.5 modifications to the code, one

change in the lines of code adds .027 to the modification number and one change to

the average depth of an inheritance tree can result in 22.43 changes to the Java classes.

This shows the measures contributing most to the prediction maintenance effort of the

tested Java classes was the depth of an inheritance tree. The other two measures in the

model did not contribute as much to the prediction of maintenance effort.

5.2 Analysis of Other Measures

One measure that did not contribute to the model to predict maintenance effort was the

mean cyclomatic complexity measure. This measure calculates an estimate of the

overall complexity of the class, so it was surprising it did not appear as a leading

predictor in the model. Still another measure contributing little to the maintenance

effort model was the mean nested block depth. This measure represents the average

number of blocks of nested code are in the Java class. This also is a measure of the

overall complexity of the logic in the class and would be expected to be a predictor. It

was no surprise, the size of a Java class contributed to the model as shown in the

measure lines of code. However, it was surprising that the size measure, lines of code,

had such a minimal role in the model. The contribution, however, was small. It was

predicted that this metric would play a bigger role in the model.

- 47-

5.3 Future Work

A way to enhance the research already started on predicting maintenance effort is to

increase the size of the Java class test bed. The current test bed consisted of26 Java

classes. A larger test bed would give a better representation of the Java classes found

in a diverse workplace. The current test bed was assembled from a web based printing

application. It would be interesting to increase the size and scope of the Java test bed,

to include other types of applications from different business domains.

Another area for future work is to increase the number of Java class measures. More

measures would enhance the study to predict the maintenance effort. This study

initially collected 13 measures. After review of those 13, only nine were tested

through regression analysis. Other measurement collection tools could be used to find

additional measures.

- 48-

REFERENCES

Print Publications:

[Bellin94]
Bellin, David, Manish Tyagi, Maurice Tyler, "Object-Oriented Metrics: An
Overview," Proceedings of the 1994 conference of the Centre for Advanced Studies
on Collaborative Research CASCON '94 (October, 1994), pp. 1-9.

[Jones96]
Jones, Capers, Applied Software Measurement, McGraw Hill, New York, 1997.

[Ceddia04]
Ceddia, Jason, Martin Dick, "Automating the Estimation of Project Size from
Software Design Tools Using Modified Function Points," Proceedings of the sixth
conference on Australasian computing education- Volume 30 ACE '04 (January,
2004), pp. 33-39.

[Chidamber91]
Chidamber, Shyam R., Chris F. Kemerer, "Towards A Metrics Suite for Object
Oriented Design," OOPSLA '91 (1991), pp. 197-211.

[Coppick92]
Coppick, J. Chris, Thomas Cheatham, "Software Metrics for Object Oriented
Systems," Proceedings of the 1992 ACM annual conference on Communications CSC
'92 (April, 1992), pp. 317-322.

[Crutchfield94]
Crutchfield, Richard, David Workman, "Quality Guidelines= Designer Metrics,"
Proceedings ofthe conference on TRI-Ada '94 TRI-Ada '94 (November, 1994), pp.
29-40.

[De Kerf81]
De Kerf, Joseph L. F, "APL and Halstead's Theory of Software Metrics," ACM
SIGAPL APL Quote Quad, Proceedings of the international conference on APL APL
~ 12, !_(September, 1981), pp. 89-93.

[Elshoff78]
Bishoff, James L., Michael Marcotty, "On The Use of the Cyclomatic Number to
Measure Program Complexity," ACM SIGPLAN Notices,13, 12 (December, 1978),
pp. 29-40.

-49-

[F eghali94]
Feghali, Issa, Arthur H. Watson, B. Henderson-Sellers, David Tegarden, "Clarification
Concerning Modularization and McCabe's Cyclomatic Complexity," Communications
ofthe ACM 37, 4 (April, 1994), pp. 91-94.

[Fitzsirnmons78]
Fitzsimmons, Ann, Torn Love, "A Review and Evaluation of Software Science,"
ACM Computing Surveys (CSUR) 10, 1 (March, 1978), pp. 4-18.

[Fraternali06]
Fraternali, Piero, Massimo Tisi, Aldo Bongio, "Automating Function Point Analysis
with Model Driven Development," Proceedings of the 2006 conference of the Center
for Advanced Studies on Collaborative Research CASCON '06 (October, 2006), pp. 1-
15.

[FentonOO]
Fenton, Norman, Martin Neil, "Software Metrics: Roadrnap," Proceedings of the
Conference on The Future of Software Engineering ICSE '00 (May, 2000), pp. 359-
370.

[Harner82]
Harner, Peter G., Gillian D. Frewin, "M. H. Halstead's Software Science- A Critical
Examination," Proceedings of the 6th international conference on Software
Engineering ICSE '82 (September, 1982), pp. 197-206.

[Kafura85]
Kafura, Dennis, "A Survey of Software Metrics," Proceedings of the 1985 ACM
annual conference on the range of computing: mid-80's perspective: mid-80's
perspective ACM '85 (October, 1985), pp. 502-506.

[Kearney85]
Kearney, Joseph K., Robert L. Sedlrneyer, William B. Thompson, "Problems with
Software Complexity Measurement," Proceedings of the 1985 ACM thirteenth annual
conference on Computer Science CSC '85 (March, 1985), pp. 340-347.

[Kearney86]
Kearney, Joseph K., Robert L. Sedlrneyer, William B. Thompson, Michael A. Gray,
Michael A. Adler, "Software Complexity Measurement," Communications of the
ACM 29, 11 (November, 1986), pp. 1044-1050.

[Kernerer93]
Kemerer, Chris F., "Reliability of Function Point Measurement," Communications of
the ACM 36, 2 (February, 1993), pp. 85-97.

-50-

[Kushwaha06]
Kushwaha, Dharrnender Singh, A. K. Misra, "Improved Cognitive Information
Complexity Measure: A Metric that Establishes Program Comprehension Effort,"
ACM SIGSOFT Software Engineering Notes 31, 5 (September, 2006), pp. 1-7.

[Kusumoto02]
Kusumoto, Shinji, Masahiro Imagawa, Katsuro Inoue, Shuuma Morimoto, Kouji
Matsusita, Michio Tsuda, "Function Point Measurement from Java Programs,"
Proceedings of the 24th International Conference on Software Engineering ICSE '02
(May, 2002), pp. 576-582.

[LeeOO]
Lee, Young, Kai H. Chang, "Reusability and Maintainability Metrics for Object
Oriented Software," ACM Southeast Regional Conference: Proceedings of the 38th
Annual Southeast Regional Conference (April, 2000), pp. 88-94.

[Mathias99]
Mathias, KarlS., James H. Cross II, T. Dean Hendrix, Larry A. Barowski, "The Role
of Software Measures and Metrics in Studies of Program Comprehension," ACM
Southeast Regional Conference: Proceedings of the 3 ih Annual Southeast Regional
Conference (April, 1999), pp. 1-7.

[McCabe89]
McCabe, Thomas J., Charles W. Butler, "Design Complexity Measurement and
Testing," Communications of the ACM 32, 12 (December, 1989), pp. 1415-1425.

[Nagappan05]
Nagappan, Nachiappan, Laurie Williams, Mladen Vouk, Jason Osborne, "Early
Estimation of Software Quality Using In-Process Testing Metrics: A Controlled Case
Study," ACM SIGSOFT Software Engineering Notes, Proceedings of the third
workshop on Software Quality 3-WoSQ 30,4 (May, 2005), pp. 1-7.

[Pedhazur97]
Pedhazur, Elazar, Multiple Regression in Behavioral Research, Thomas Learning,
Inc., 1997.

[Piwowarski82]
Piwowarski, Paul, "A Nesting Level Complexity Measure," ACM SIGPLAN Notices
17, 9 (September, 1982), pp. 44-50.

[Salt82]
Salt, Norman F, "Defining Software Science Counting Strategies," ACM SIGPLAN
Notices 17, 3 (March, 1982) pp. 58-67.

- 51 -

[Scotto04]
Scotto, Marco, Alberto Sillitti, Giancarlo Succi, Tullio Vernazza, "A Relative
Approach to Software Metrics," Proceedings of the 2004 ACM Symposium on
Applied Computing SAC '04 (March, 2004), pp. 1536- 1540.

[Scotto05]
Scotto, Marco, Alberto Sillitti, Giancarlo Succi, Tullio Vernazza, "Non-Invasive
Product Metrics Collection: Architecture," Proceedings of the 2004 Workshop on
Quantitative Techniques for Software Agile Process QUTE-SW AP '04 (November,
2005), pp. 76-78.

[Sunohara81]
Sunohara, Takeshi, Akira Takano, Kenji Uehara, Tsutoma Ohkawa, "Program
Complexity Measure for Software Development Management," Proceedings of the 5th
international conference on Software Engineering ICSE '81 (March, 1981), pp. 100-
106.

[SystaOO]
Systa, Tarja, Ping Yu, Hausi Muller, "Analyzing Java Software by Combining Metrics
and Program Visualization," Proceedings ofthe Conference on Software Maintenance
and Reengineering (2000), pp. 1-10.

[Yang06]
Yang, Qian, J. Jenny Li, David Weiss, "A Survey of Coverage Based Testing Tools,"
Proceedings ofthe 2006 international workshop on Automation of software test AST
'06 (May, 2006), pp. 99-103.

[Vincent88]
Vincent, James, Albert Waters, John Sinclair, Software Quality Assurance, Prentice­
Hall, Inc., New Jersey, 1988.

Electronic Sources:

[CollabNet05]
CollabNet, "CollabNet: Where Subversion Meets Enterprise" http://www.collab.net/,
2005, last accessed September 29, 2007.

[M Squared Technologies07]
M Squared Technologies, "Resource Standard Metrics"
http://msquaredtechnologies.com/, July 23, 2007, last accessed September 23, 2007.

[SourceForge05]
"SourceForge.net", http://sourceforge.net/projects/metrics, July 7, 2005, last accessed
September 23, 2007.

-52-

Vl
UJ

Java File Narne

Autoprice

ChangeP asswordBean

CommonMethods

CompleteNotAetua!i:z,dReportBean

Customei>Bean

CustRepSpeeialOrderBean

DAPS_Fund Bean

EditProf!leBean

E1podBean

eTOPS

FundBean

JobReportBean

LoadOrderData

LoeationBean

LogonBean

Nei'\.CustForm

NewFormData

NewPlantForm

PasswordReeovexyBean

PlantAdnrinDPGBean

PlantJobBean

PlantJobQuexy

S peeia!Order

Todpg

UserRegistrationBean

View JobsBean
-

Dan.
Creail!d

112512003

211612006

112112003

21412005

121912002

312112003

11612003

312412006

51912007

5/412004

11612003

811012004

112312003

211112003

211612006

112112003

112512003

112412003

311612006

1211412006

1112112002

21612003

112012003

113112007

212112006

412912003

File No. of
Size Release•

70KB 12

5KB 5

377KB 15

38KB 4

69KB 12

51KB 13

82KB 13

33KB 5

30KB 0

162 KB 7

204KB 15

35KB 6

23KB 11

41KB 8

13KB 5

40KB 13

46KB 12

61KB 13

2KB 5

88K 1

65KB 15

84KB 13

192KB 13

159KB 1

20KB 5

47KB g

No. of
Nmnber Instuu:e Method
of Mods LOC Variable LOC

40 1487 47 1344

10 95 4 65

240 6985 12 6531

16 549 19 469

76 1130 27 1007

71 1058 80 789

80 1551 44 1349

41 672 24 532

28 1332 12 1182

45 2991 86 2480

229 4496 70 3974

9 663 25 584

42 439 0 417

21 818 24 666

20 289 11 219

71 594 5 570

40 1778 123 834

97 923 8 884

5 39 1 24

2 2058 0 1982

79 1353 19 1257

76 1370 0 1317

188 3407 94 2828

20 3572 103 2916

42 383 13 289

48 966 20 858
-- .

Nesil!d
Block Cyclo. No. of F'UJlC.
Depth No. of Comp. Params Point
(Mean) Methods (Mean) W!!IC (Mean) DIT Count

2.774 31 8.742 271 2.032 1 21.7

1.22 9 2.44 24 0.444 2 1.4

2.872 121 11.837 1662 2376 1 100.8

1.579 18 3.263 62 0.474 1 8.3

1903 31 9.097 282 1903 1 17.5 "--<
1.389 71 3.486 251 0.75 1 15.3 ~
1.84 50 6.3 311 0.92 1 21.9

1.523 43 4.295 190 0.636 3 9.4

~

n
~

2.949 38 6.051 243 1.564 I 9
(/) >-(/)

1.555 155 4.852 752 0.858 1 43.3

2.06 150 6.627 994 1.153 I 61.5

1.625 15 5.25 84 0.5 1 9.3

2.5 4 14.5 58 3.5 1 7.6

1.7 40 4.075 163 1.45 1 12.1

1.368 19 3.316 70 0.368 2 4.2

~ '"t::l
'"t::l

CD tr:l ,......
z ::::!.

(") u
0
~ ><
-8 >-~ ,......

3.4 5 24.8 124 3 1 8.6 <
1.101 276 1.612 445 0.572 1 21.6 ~

~
3 9 31.667 285 3.111 1 14.2 CD

(/)

1.667 3 2 8 0333 2 0.6

4 22 12.364 272 3.182 1 28.9

1.966 29 14.483 425 1.621 1 21.5

2.786 14 25.5 356 5.143 1 19.8

1.475 183 4.344 830 0.847 1 50.3

1.514 202 3.125 688 0.88 1 52.2

1.56 25 3.92 98 0.64 3 5.7

1.926 27 9.148 247 1.593 1 14.4
-··-

Descriptives

Output Created

Comments

Input

Missing Value

Handling

APPENDIXB

SPSS Output

Notes

Data

Active Dataset

Filter

Weight

Split File

N of Rows in

Working Data File

Definition of

Missing

Cases Used

-54-

03-Nov-2007 18:44:05

C:\Users\Ashley\Desktop\Li

ndseySPSS\MetricValues.sav

DataSetl

<none>

<none>

<none>

User defined missing

values are treated as

missing.

All non-missing data are

used.

26

Syntax

Resources Processor Time

Elapsed Time

-55-

DESCRIPTIVES VARIABLES=Age

FileSize NumberOfReleases

LinesOfCode

NumberOfinstanceVariables

MethodLinesOfCode

MeanNestedBlockDepth

NumberOfMethods

MeanCyclomaticComplexity

WeightedMethodsPerClass

MeanNumberOfParameters

DepthOfinheritanceTree

EstimatedFunctionPointCoun

t

/STATISTICS=MEAN STDDEV

VARIANCE RANGE MIN MAX

KURTOSIS SKEWNESS

/ SORT=MEAN (A) .

00:00:00.031

00:00:00.014

Correlations

Output Created

Comments

Input

Missing Value

Handling

Syntax

Notes

Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working

Data File

Definition of

Missing

Cases Used

-56-

03-Nov-2007 18:46:07

C:\Users\Ashley\Desktop\Lin

dseySPSS\MetricValues.sav

DataSetl

<none>

<none>

<none>

26

User-defined missing values

are treated as missing.

Statistics for each pair of

variables are based on all

the cases with valid data

for that pair.

CORRELATIONS

/VARIABLES=Age FileSize

NumberOfReleases

ModificationNumber

LinesOfCode

NumberOfinstanceVariables

MethodLinesOfCode

MeanNestedBlockDepth

NumberOfMethods

MeanCyclomaticComplexity

WeightedMethodsPerClass

MeanNumberOfParameters

DepthOfinheritanceTree

EstimatedFunctionPointCount

/PRINT=TWOTAIL NOSIG

/MISSING=PAIRWISE.

Regression

Output Created

Comments

Input

Missing Value

Handling

Notes

Data

Active Dataset

Filter

Weight

Split File

N of Rows in

Working Data File

Definition of

Missing

Cases Used

-57-

03-Nov-2007 19:13:39

C:\Users\Ashley\Desktop\Li

ndseySPSS\MetricValues.sav

DataSetl

<none>

<none>

<none>

User-defined missing

values are treated as

missing.

Statistics are based on

cases with no missing

values for any variable

used.

26

Syntax

Resources Processor Time

Elapsed Time

Memory Required

Additional Memory

Required for

Residual Plots

REGRESSION

/DESCRIPTIVES MEAN

STDDEV CORR SIG N

/MISSING LISTWISE

/STATISTICS COEFF OUTS R

AN OVA

/CRITERIA=PIN(.05)

POUT (.10)

/NOORIGIN

/DEPENDENT

ModificationNumber

/METHOD= BACKWARD

NumberOfReleases

LinesOfCode

NurnberOfinstanceVariables

MeanNestedBlockDepth

NumberOfMethods

MeanCyclomaticComplexity

MeanNurnberOfParameters

DepthOfinheritanceTree

EstimatedFunctionPointCoun

t.

00:00:00.063

00:00:00.058

5268 bytes

0 bytes

[DataSetl] C:\Users\Ashley\Desktop\LindseySPSS\MetricValues.sav

-58-

Descriptive Statistics

Std.

Mean Deviation

ModificationNumber 62.92 63.673

NumberOfReleases 9.00 4.783

LinesOfCode 1576.85 1574.727

NumberOfinstanceVariab
33.50 36.082

les

MeanNestedBlockDepth 2.04815 .745973

NumberOfMethods 61.15 72.871

MeanCyclomaticComplexi
8.73438 7.841289

ty

MeanNumberOfParameters 1.53269 1.209322

DepthOfinheritanceTree 1. 27 .604

EstimatedFunctionPoint
22.350 22.6242

Count

Variables Entered/Removedb

Model

Variables

Entered

Variables

Removed

-59-

Method

N

26

26

26

26

26

26

26

26

26

26

1

2

3

EstimatedFunc

tionPointCoun

t,

MeanCyc1omati

cComp1exity,

DepthOfinheri

tanceTree,

NumberOfRe1ea

ses,

NumberOfinsta

nceVariab1es,

MeanNestedBlo

ckDepth,

MeanNumberOfP

arameters,

NumberOfMetho

ds,

LinesOfCodea

. Enter

Backward

(criteri

on:

Probabil
NumberOfinsta

ity of
nceVariables

F-to-

remove

>=

.100)

Backward

(criteri

on:

Probabil
MeanNestedBlo

ckDepth
ity of

F-to-

remove

>=

. 100)

- 60-

4

5

6

7

Backward

(criteri

on:

Probabil
MeanCyclomati

ity of
cComplexity

F-to-

remove

>=

.100)

Backward

(criteri

on:

Probabil
MeanNumberOfP

arameters
ity of

F-to-

remove

>=

.100)

Backward

(criteri

on:

Probabil
NumberOfMetho

ity of
ds

F-to-

remove

>=

. 100)

Backward

(criteri

on:

EstimatedFunc Probabil

tionPointCoun i ty of

t F-to-

remove

>=

.100).

a. All requested variables

entered.

- 61 -

b. Dependent Variable: ModificationNumber

- 62-

Model Summary

Model Summary

Adjusted R Std. Error of

Model R R Square Square the Estimate

1 . 94 7a .897 .838 25.597

2 . 94 7b .897 .848 24.839

3 . 945c .893 .852 24.490

4 . 941 d .886 .850 24.666

5 . 940e .883 .853 24.379

6 . 931f .866 .840 25.438

7 . 923 9 .852 .832 26.105

a. Predictors: (Constant),

EstimatedFunctionPointCount,

MeanCyclomaticComplexity, DepthOfinheritanceTree,

NumberOfReleases, NumberOfinstanceVariables,

MeanNestedBlockDepth, MeanNumberOfParameters,

NumberOfMethods, LinesOfCode

b. Predictors: (Constant),

EstimatedFunctionPointCount,

MeanCyclomaticComplexity, DepthOfinheritanceTree,

NumberOfReleases, MeanNestedBlockDepth,

MeanNumberOfParameters, NumberOfMethods, LinesOfCode

c. Predictors: (Constant),

EstimatedFunctionPointCount,

MeanCyclomaticComplexity, DepthOfinheritanceTree,

NumberOfReleases, MeanNumberOfParameters,

NumberOfMethods, LinesOfCode

d. Predictors: (Constant),

EstimatedFunctionPointCount, DepthOfinheritanceTree,

NumberOfReleases, MeanNumberOfParameters,

NumberOfMethods, LinesOfCode

e. Predictors: (Constant),

EstimatedFunctionPointCount, DepthOfinheritanceTree,

NumberOfReleases, NumberOfMethods, LinesOfCode

- 63-

f. Predictors: (Constant),

EstimatedFunctionPointCount, DepthOfinheritanceTree,

NumberOfReleases, LinesOfCode

g. Predictors: (Constant), DepthOfinheri tanceTree,

NumberOfReleases, LinesOfCode

- 64-

AN OVA

ANOVAh

Sum of Mean

Model Squares df Square F Sig.

1 Regressio
90872.573 9 10096.953 15.410 . oooa

n

Residual 10483.273 16 655.205

Total 101355.846 25

2 Regressio . ooob 90867.677 8 11358.460 18.411
n

Residual 10488.169 17 616.951

Total 101355.846 25

3 Regressio
90559.936 7 12937.134 21.570 . oooc

n

Residual 10795.910 18 599.773

Total 101355.846 25

4 Regressio . oood 89796.435 6 14966.073 24.599
n

Residual 11559.411 19 608.390

Total 101355.846 25

5 Regressio
89468.684 5 17893.737 30.106 . oooe

n

Residual 11887.162 20 594.358

Total 101355.846 25

6 Regressio
87766.859 4 21941.715 33.908 . ooot

n

Residual 13588.987 21 647.095

Total 101355.846 25

7 Regressio
86364.053 3 28788.018 42.246 . ooo9

n

Residual 14991.793 22 681.445

Total 101355.846 25

- 65-

a. Predictors: (Constant), EstimatedFunctionPointCount,

MeanCyclomaticComplexity, DepthOfinheritanceTree,

NumberOfReleases, NumberOfinstanceVariables,

MeanNestedBlockDepth, MeanNumberOfParameters,

NumberOfMethods, LinesOfCode

b. Predictors: (Constant), EstimatedFunctionPointCount,

MeanCyclomaticComplexity, DepthOfinheritanceTree,

NumberOfReleases, MeanNestedBlockDepth,

MeanNumberOfParameters, NumberOfMethods, LinesOfCode

c. Predictors: (Constant), EstimatedFunctionPointCount,

MeanCyclomaticComplexity, DepthOfinheritanceTree,

NumberOfReleases, MeanNumberOfParameters, NumberOfMethods,

LinesOfCode

d. Predictors: (Constant), EstimatedFunctionPointCount,

DepthOfinheritanceTree, NumberOfReleases,

MeanNumberOfParameters, NumberOfMethods, LinesOfCode

e. Predictors: (Constant), EstimatedFunctionPointCount,

DepthOfinheritanceTree, NumberOfReleases, NumberOfMethods,

LinesOfCode

f. Predictors: (Constant), EstimatedFunctionPointCount,

DepthOfinheritanceTree, NumberOfReleases, LinesOfCode

g. Predictors: (Constant), DepthOfinheritanceTree,

NumberOfReleases, LinesOfCode

h. Dependent Variable:

ModificationNumber

- 66-

VITA

Lindsey Hays has a Bachelor of Science degree from the University of North Florida

in Computer and Infonnation Sciences, 2003 and expects to receiver a Master of

Science in Computer and Infom1ation Sciences from the University of North Florida,

December 2007. Dr. Robert Raggio of the University of North Florida is serving as

Lindsey's thesis advisor. Lindsey is currently employed as a Software Engineer II at

CACI, Inc. She has been with the company for over four years.

Lindsey has on-going interests in studying software code. Lindsey has programming

experience in Java, Java Servlets, JSP, JSF, JavaScript and has utilized Jakarta Struts.

Lindsey's academic work has also included COBOL and C.

- 67-

	Predicting Class Life Cycle Maintenance Effort Based on Class Complexity
	Suggested Citation

	Title Page

	Table of Contents

	Figures

	Abstract

	Chapter 1: Introduction

	Chapter 2: Review of Literature
	2.1 Java Objects and Software Measures
	2.2 Class Complexity
	2.3 Measures of Class Complexity
	2.3.1 Function Point Analysis
	2.3.2 Lines of Code
	2.3.3 McCabe's Cyclomatic Complexity
	2.3.4 Weighted Methods per Class
	2.3.5 Inheritance Measurements
	2.3.6 Other Complexity Measurements

	2.4 Traditional Complexity Metrics vs. Object-Oriented Code

	Chapter 3: Data Collected

	3.1 Java Class Test Bed
	3.2 Measurement Calculation Tools
	3.2.1 Version Control Software
	3.2.2 Eclipse Metric Plugin: Metrics 1.3.6
	3.2.3 Resource Standard Metrics

	3.3 Measures Collected using the Aforementioned Tools
	3.3.1 Measures Collected from Version Control Software
	3.3.2 Measures Collected from the Eclipse Metric Plugin: Metrics 1.3.6
	3.3.3 Measure Collected from Resource Standard Metrics

	Chapter 4: Methodology

	4.1 Multiple Regression Analysis Overview
	4.2 Independent Variables: Java Class Measures
	4.3 Dependent Variable: Maintenance Effort Measurement
	4.4 Metric Correlations
	4.4.1 Correlation with the Dependent Variable: Number of Modifications
	4.4.2 Bivariate Correlations

	4.5 Regression Analysis of Java Class Measures

	Chapter 5: Analysis and Results

	5.1 Maintenance Effort Model
	5.2 Analysis of Other Measures
	5.3 Future Work

	References

	Appendix A

	Appendix B

