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ABSTRACT 

Adaptive Histogram Equalization (AHE) has been recognized as a valid method of 

contrast enhancement. The main advantage of AHE is that it can provide better 

contrast in local areas than that achievable utilizing traditional histogram 

equalization methods. Whereas traditional methods consider the entire image, AHE 

utilizes a local contextual region. 

However, AHE is computationally expensive, and therefore time-consuming. In this 

work two areas of computer science, image processing and parallel processing, are 

combined to produce an efficient algorithm. In particular, the AHE algorithm is 

implemented with a Multiple-Instruction-Multiple-Data (MIMD) parallel architecture. 

It is proposed that, as MIMD machines become more powerful and prevalent, this 

methodology can be applied to not only this particular algorithm, but also to many 

others in its class. 
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Chapter 1 

INTRODUCTION 

Digital image processing has aided in the enhancement and restoration of images for 

over a quarter of a century. This work focuses on one particular algorithm among 

the many available. In particular, it will be proposed that the algorithm in question 

can be improved with the application of knowledge from a separate branch of 

computer science. To enable the reader to better understand the algorithm, relevant 

background information will be presented. 

1.1 Digital Image Processing Historical Overview 

Digital image processing techniques had their significant inception in the 1960s with 

the space program. The requirement to enhance the quality of the photographs 

returned by the early space probes motivated research in this area. Originally this 

technology was applied to space imagery, however it was soon realized that other 

areas could also benefit. Consequently, the needs of the medical field attracted the 

attention of researchers. The methods utilized by the space industry were applied. 

With the advent of the X-ray and later Nuclear Magnetic Resonance Imaging 

(NMRI or MRI), Positron Emission Tomography (PET Scans), Computerized 

Assisted Tomography (CAT Scans), and Ultra-sound Imaging, the quantity of 

medical data increased dramatically. Simultaneously researchers sought better 

methods to enhance these images. 
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The test data utilized for this work originated from three different types of data 

collection methods. The chest image is one slice of a CAT scan (see Figure 14 on 

page 31). The left facing head is slice number 50 of a 109-slice MRI scan (see 

Figure 1 on page 4). The right facing head labeled 'brain' is a portal image taken 

during Radiotherapy Treatment (see Figure 16 on page 32). Each file arrives for 

enhancement in a raw image format. In raw image format the intensity values are 

contained in a file in row major order, with multiple planes being stored 

consecutively from front to back. 

1.2 Histogram Equalization 

One of the most basic and simple, yet powerful tools in image enhancement is the 

histogram. This tool is simply a frequency count of the intensity levels of each 

digitized point, or pixel, contained in the image. Utilizing the information contained 

in a histogram allows us to improve the contrast of an image. This information 

may be hidden from the human eye; however it is readily acquired by use of a 

computer. Whereas the Human Visual System (HVS) can only distinguish 

approximately 100 levels of gray shades, the computer can detect an almost infinite 

number of levels. The practical limiting factor for the computer is the number of 

various intensity levels recognizable by the digitizing equipment. 

For example, using the histogram, under-developed or over-developed photographs 

can be restored or enhanced to produce an image usable by the HVS. Assuming 

the histogram reveals a number of intensity levels all located in the low intensity 

range, each current value can be mapped to a new level so that the new histogram 
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is scaled to cover the entire range of available intensity levels. Note the images 

and their accompanying histograms in Figures 1 and 2 on page 4. 

1.3 Adaptive Histogram Equalization 

The Histogram Equalization method of contrast enhancement functions extremely 

well for images that are underexposed or overexposed, i.e. images with very little 

overall contrast. However, there exist images whose histograms cover the entire 

spectrum of intensity values but reveal little contrast in localized areas (see Figures 

3 and 4 on page 5). In this case a variation of histogram equalization can be 

applied. Developed independently by Hummel [Hummel75, Hummel77], Ketcham 

[Ketcham76], and Pizer [Pizer8la, Pizer8lb], Adaptive Histogram Equalization 

(AHE) has been successfully applied to images obtained from numerous sources. 

Although this thesis concentrates on medical imagery, the success of the method 

used depends on the characteristics of the image, not the content. The identical 

methodology can be applied to other areas of interest. 

The technique is quite simple. The algorithm is included in Figure 5 on page 6. 

Each pixel is ranked by its intensity level as compared to its neighboring pixels' 

intensity values. The pixel is then assigned a new value in the available intensity 

range proportionate to its rank. For example, if a pixel's rank is #8 of 64 and the 

available intensity range of the display device is 0-255, its new value would be one

eighth of 255 or 32. This new value is assigned to a second image (an output 

image) so as to not disturb the original ranking of each of the pixels. 
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DISPLAY· Image Processing Software by Charles Kurak ·Sop 23 1990 • Univershy of North Florida 

MRI Scan - Original Image. 

0 255 

Figure 1: MRI Scan - Original Image. 

DISPLAY -Image Processing Software by Charles Kurak ·Sop 231990 • Univershy of North Florida 

MRI Scan - after Contrast Stretching. 

0 255 

Figure 2: MRI Scan - after Contrast Stretching. 
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DISPLAY -Image Processing Software by Charles Kurak- Sep 23 1990- Univers~y of North Florida 

Brain: original image. 

0 255 

Figure 3: Brain - Original Image. 

DISPLAY -Image Processing Software by Charles Kurak- Sep 23 1990- Univers~y of North Florida 

Brain: after contrast stretching. 

0 255 

Figure 4: Brain - after Contrast Stretching. 
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AHE Algorithm 

for each (x,y) in image do 
{ 

rank= 0 

for each (i,j) in contextual region of (x,y) do 
{ 

if image[x,y] > image[i,j] then 

rank = rank + 1 

output[x,y] = rank * max_intensity I (# of pixels in contextual region) 

Figure 5: The AHE Algorithm. 

This method enhances the contrast based on the local area or contextual region 

rather than the entire image. AHE is currently being utilized in both research at the 

University of North Carolina at Chapel Hill, and in production systems such as 

Mayo Clinic's "Analyze" software. 

1.4 AHE Limitations 

While Adaptive Histogram has the advantage of being able to enhance contrast in 

local areas, there is a price to pay. Three areas of concern surfaced during the 

initial investigation: time, border considerations,. and excessive computations. These 

are discussed below. 
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Image~ 
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+- Contextual 
Region 

Pixel 
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Number of comparisons required for AHE is m
2
x n

2
, 

where m is the size of the contextual region and 

n is the size of the image. 

Figure 6: Number of required comparisons. 

1.4.1 Time Performance 

Unfortunately, applying AHE to an image is computationally expensive. Each 

image requires m2 x n2 comparisons where m is the size of the contextual region 

and n is the size of the image. (See Figure 6 above.) For this to be a truly valid 

tool for a radiologist or a medical doctor, the processing must be completed in a 

reasonable amount of time. Initial studies by the author determined that in excess 

of one hour on a 4 MIPS Sequent Symmetry machine was required to process a 

512 x 512 8-bit image with a 64 x 64 contextual region. Consultation with Dr. 

Pizer and Mr. Robert Cromartie at UNC-CH indicated that lowering the processing 

times would be extremely beneficial. 
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Three approaches were considered. First, simply wait until faster hardware is 

available. Second, one could build specialized hardware. MAHEM [Austin87] is 

one such research effort that utilizes a parallel processing architecture. Third, search 

for an alternative. In this work the author proposes one alternative: parallelism on 

commercially available hardware. The majority of the remainder of this work 

addresses this approach. 

1.4.2 Border Considerations 

An issue that surfaced during the investigation of the AHE algorithm is that of 

handling pixels whose contextual regions overlapped the borders. Current literature 

[Ericksen90] suggests that for convenience, the contextual region indices simply 

utilize a wrap-around technique. As suggested by the author to Dr. Pizer during a 

personal meeting in May 1990, this technique is invalid. For example, if the area 

near the border under consideration is relatively dark (low intensity values are 

present), and the values on the opposite edge are relatively light (high intensity 

values are present), the resulting rank calculation would be unsatisfactorily biased. 

A mirroring technique has been suggested by the author. This technique has been 

implemented in this work and is explained in Section 3.4. 

1.4.3 Excessive Computations 

In addition to the number of comparisons required by the AHE algorithm, an 

additional issue surfaced during the implementation. This is the number of 
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excessive computations required to calculate each new intensity value. In the ABE 

algorithm in Figure 5, on page 6, note the calculation for the new intensity value, 

output[x,y]. This requires one multiplication operation and one division operation 

for each pixel. For example, in a 256 x 256 image there would be 65,536 (25&-) 

integer multiplications and 65,536 (2562
) integer divisions required. 

One method of reducing the number of calculations is to precalculate the 

max_intensity/(# of pixels in contextual region). This eliminates an integer division 

calculation, however it replaces the integer multiplication with a floating point 

multiplication, which may be more time consuming. 

Another method, which reduces the total number of calculations to the number of 

pixels in the contextual region, was devised utilizing a look-up table. The method 

is discussed in Section 3.5. 

1.5 Parallel Processing 

The concept of accomplishing more work in less time by employing additional 

resources is not original by any consideration. After studying the AHE algorithm it 

can be determined that one can take advantage of the positive aspects of parallel 

processing. The following is a brief discussion of the programming models 

available, the one selected for the implementation, and reasons for this choice. 
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1.5.1 Parallel Processing Programming Paradigms 

There are three well known programming models for parallel processing in an 

MIMD environment. These are the Askfor-Monitor, Message Passing, and 

Communicating Clusters [Boyle87]. The Askfor-Monitor requires a shared memory 

machine. That is, each processor must have access to a common memory area that 

is shared by all of the processors. The processes communicate through this 

common area. The monitor is a data structure that controls the activities of the 

processes. 

Message Passing can operate either across a network or on a shared memory 

machine. The processes communicate by passing messages. One process is 

designated as the master and controls the activities of the other processes, also 

known as slaves. The ability to operate across a network allows the use of non

multi-processing hardware to function together in a multi-processing fashion. 

The third model is Communicating Clusters. Essentially this is a combination of 

Askfor Monitors and Message Passing. A master process on one machine invokes 

processes on other machines that have shared memories. One process on each of 

these machines is designated by the master to be a cluster master. They in turn 

designate the other processes on their machine to be local slaves. Each cluster 

coordinates its work via an Askfor-Monitor in shared memory. The master 

coordinates the work among the clusters via Message Passing. Thus, the 

Communicating Clusters model can be custom-built depending on the available 

hardware. 
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1.5.2 Message Passing Paradigm 

The model selected for this work was Message Passing. This decision was based 

on portability across several different architectures. A brief example is presented 

here to acquaint the reader with the Message Passing model. 

Suppose we were given the task of finding all of the prime numbers within a given 

range. With a large enough range this becomes non-trivial. Also, suppose we were 

given multiple processors whose processes could communicate via messages. We 

could then take advantage of a parallel algorithm for solving the problem. 

One process is designated as the initiating process (master). Its function is to read 

the problem, decompose the problem into sub-problems, activate processes on other 

processors (slaves), hand out the work, collect the answers, and report a solution. 

The remaining processes perform the actual work, under the control of the master. 

The master is the first to be invoked. It in tum invokes the proper number of slave 

processes as indicated in a user-defined parameter setup file. The master then 

divides the work into a series of sub-problems and places a representation for each 

in a problem queue for dispatching to the slaves. As each slave is initiated, it 

sends a message to the master requesting work. The master places a representation 

for each slave in a slave queue indicating that it is available to perform work. The 

master then proceeds to the main control loop of the program. If the problem 

queue is not empty, the master in tum dispatches the sub-problems to the 
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appropriate slaves. Each slave computes its sub-problem, sends its solution back to 

the master, and requests additional work. When the problem queue is empty and 

the slave queue contains all of the invoked slaves, the problem is declared complete, 

and the master leaves the main control loop. The master sends a control message 

to each slave to terminate. The complete solution is reported to the user, normally 

as an output file. The master then terminates. 

1.5.3 Model Selection 

The Message Passing model was selected for this work due to its ability to operate 

both in a shared memory environment and across a network. The parallel 

programming package utilized for the implementation was designed for a shared 

memory machine. However, there is a compatible package that can be substituted 

without any requirement for source code modification. The desire to utilize this 

code as an ongoing research tool influenced the selection of the most portable 

model. 
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Chapter 2 

HYPOTHESIS 

There are parallel processing techniques which will substantially improve the time 

performance of Adaptive Histogram Equalization. 

Given the large amount of similar computation necessary to complete the AHE 

algorithm, the premise is that applying parallel processing techniques will greatly 

reduce the amount of overall time required to process an image. Assuming that one 

image requires amount k time, then dividing the work among n processors would 

yield an ideal completion time of k/n. Another way of saying this, is that one 

could obtain a speed-up of factor n. 

The ideal speed-up of factor n is not realistic. There is necessary overhead relating 

to the coordination of the n processes, problem distribution, and solution reporting. 

The remaining question is then, how closely can one approach the ideal? 
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Chapter 3 

IMPLEMENTATION 

3.1 'C' Language and Unix Operating System 

The programming language 'C' was selected for this implementation. Other 

languages could have been utilized. However the parallel programming package 

supplied by Dr. Ralph Butler [Butler90] is implemented in the language 'C'. For 

reasons of ease and compatibility the choice was obvious. Also, future work 

interfacing this software with the 'X Windows' software system will need to be in 

'C'. The Unix operating system was selected, as Dr. Butler's package is 

implemented to run under Unix. 

3.2 Message Passing Paradigm 

This particular model was selected from [Boyle87] mainly due to its portability. As 

mentioned in 1.5.1, Message Passing was selected for its portability across a variety 

of platforms. The source code for this work is included in Appendices A & B. 

The majority of the code is related to the coordination of the work between the 

master and the slaves. 

The master's responsibilities are to determine the problem and number of slaves to 

be used, invoke the slaves, coordinate the work, gather the solution, terminate the 
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slaves' existence, and output the solution. The master source code is included in 

pmaster.c in Appendix A. 

Each slave's responsibility is to load the image into its local memory, compute 

sections of the image as requested by the master, and pass the completed problem 

solutions to the master. The slave source code is included in pslave.c in 

Appendix B. 

3.3 Multiple Image Copies 

During the design phase it was determined that passing a problem from the master 

to a slave can be handled in three different methods. First the master can send a 

copy of the sub-image to be processed to a slave. Given a sub-problem size of 64 

x 64, this would be 4096 bytes. Also, given that the algorithm requires the values 

of pixels in neighboring areas, and given a typical 64 x 64 contextual region size, 

the overall sub-image size that needs to be transmitted is 128 x 128 or 16,384 

bytes. This would have to be sent for each sub-problem. Given a 256 x 256 

image, and a sub-problem size of 64 x 64, this would yield 16 sub-problems. Thus, 

a total of 262,144 bytes (16,384 x 16) would need to be transmitted. 

A second method would be to send the entire image at once. Then only a 

representation of each sub-problem would need to be transmitted for each piece of 

work. This would involve transmitting 65,536 bytes. This is still a large amount 

of overhead. 
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A third method, where only the file name be sent once, then a representation of 

each sub-image need be transmitted, can be handled with 8 bytes for each sub

problem. The original image file would be located on a network file server. Two 

byte integers for each of the following are required: the horizontal and vertical 

positions of the upper left corner of the sub-problem in the original image, the 

problem size (given a square problem), and the contextual region size (a contextual 

region is by definition square). If a requirement is later added for non-square 

problems, one additional integer would be required. Given the same 16 sub

problems as above, this would result in a transmission of only 128 bytes (16 x 8). 

In this work, the third method was utilized. This resulted in the savings of 262,106 

transmitted bytes over the first method, and a savings of 65,536 bytes over the 

second method. The trade-off is that each slave must load a copy of the original 

image from secondary storage. 

3.4 Image Border 

As mentioned in 1.4.2, current literature suggestions for handling the border are not 

valid. It is the opinion of the author that a user of a processed image would expect 

that the AHE algorithm technique should perform equally well in all areas of the 

image. It is widely known that most measuring devices are more accurate in their 

central regions than either end of their scales. However, that should not preclude 

every attempt to provide as much accuracy as possible throughout. The obvious 

solution for handling the inaccuracies of the image edges is to collect more data. 

This, besides being infeasible given existing images and the limitations of the data 
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.._ Contextual 
Region 

Pixel 
under consideration 

Image_. 

One possible method of handling borders: 

Hold the contextual region in place as the point under 

consideration approaches the image edge. 

Figure 7: One possible method of handling borders. 

collection devices, only delays the problem. There would then exist new edges with 

which to contend. The user would then expect accuracy near these edges as well. 

One possible technique would be to hold the contextual region in place at the edge 

as the point under consideration approaches the edge (see Figure 7 above). This 

adds special cases to the algorithm. As the contextual region overlaps the edge, it 

must be 'backed up' to remain on the image. This must be considered in both the 

horizontal and vertical directions. There are special cases of left, right, top, bottom, 

upper-left, upper-right, lower-left, and lower-right. This introduces additional 

comparisons and referencing requirements into the algorithm implementation. Each 

additional computation requires time. Time is a precious commodity not freely 

available here. 
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Also, as the point of consideration moves off the center of the contextual region, 

values that are now more than half a width of a region away are being utilized in 

its computation. This also yields a bias. 

Another technique would be to reduce the size of the contextual region. However 

as the size of the contextual region diminishes, the number of possible outcomes 

decreases. This results in an over-enhanced image near the edges. This would not 

be compatible with the remainder of the image. An example of varying the 

contextual region size is depicted in Figures 8 and 9 on page 19. This method also 

results in excessive comparisons and computations due to the necessity of detecting 

and handling special cases, thus resulting in a reduction of time performance. 

The author has developed a method for mirroring the image across the border. 

Several benefits are derived from this technique. First, it eliminates special cases 

during the execution of the algorithm. An oversized image structure is built in 

primary storage with the original image placed in the center. The remainder of the 

structure is 'filled in' by mirroring the values across the image boundary. (See 

Figure 10 on page 20.) This eliminates numerous calculations. Second, each new 

pixel's value is computed by considering only values in its contextual region. That 

is, no compared pixel is more than half a region away in either the horizontal or 

vertical direction. Third, this eliminates the bias that occurs with a wrap-around 

technique. 
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Figure 8: Chest - after AHE with contextual region of 16 x 16. 

Figure 9: Chest - after AHE with contextual region of 32 x 32. 
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Original Image is located in center square. 
Array in primary storage includes mirrored border values. 

1 27 26 25 25 26 27 28 29 30 31 32 32 31 30 8 

20 1 18 17 17 18 19 20 21 22 23 24 24 23 8 21 

12 11 1 9 9 10 11 12 13 14 15 16 16 8 14 13 

4 3 2 1 1 2 3 4 5 6 7 8 8 7 6 5 

4 3 2 1 1 2 3 4 5 6 7 8 8 7 6 5 

12 11 10 9 9 10 11 12 13 14 15 16 16 15 14 13 

20 19 18 17 17 18 19 20 21 22 23 24 24 23 22 21 

28 27 26 25 25 26 27 28 29 30 31 32 32 31 30 29 

36 35 34 33 33 34 35 36 37 38 39 40 40 39 38 37 

44 43 42 41 41 42 43 44 45 46 47 48 48 47 46 45 

52 51 50 49 49 50 51 52 53 54 55 56 56 55 54 53 

60 59 58 57 57 58 59 60 61 62 63 64 64 63 62 61 

60 59 58 57 57 58 59 60 61 62 63 64 64 63 62 61 

52 51 57 49 49 50 51 52 53 54 55 56 56 64 54 53 

44 57 42 41 41 42 43 44 45 46 47 48 48 47 64 45 

57 35 34 33 33 34 35 36 37 38 39 40 40 39 38 64 

Figure 10: Mirroring across the image boundaries. 

3.5 Value Look-up Table (LUT) 

As mentioned in Section 1.4.3, an issue that surfaced during the implementation of 

this work is the excessive number of computations in determining the new intensity 

values. Given an m x m contextual region, there are only m2 possibilities for each 

new pixel intensity. Given an n x n image, this requires n2 calculations to 

determine all of the new values. Since n2 is much greater than m2
, many of the 

calculations are repetitive. A Look-up Table has been employed to avoid the 
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redundant calculations. Since the new intensity values are required by each slave 

process, each slave builds its own LUT. 

Another possibility was considered that would eliminate the need for a Look-up 

Table and the excessive multiplications and divisions. However, there needs to be 

some restrictions on the problem parameters. If we require the size of the 

contextual region to be a power of 2, and the number of intensities available on the 

display device also to be a power of 2, we can then reduce the calculations to 

register shifting. This may in fact be more expedient than a table look-up, 

however, for the purpose of the thesis and for general applicability, this method was 

not pursued. 

This implementation under discussion takes a more general approach and does not 

limit the parameters to a specific set of values. The rationale behind this decision 

is that the size of the contextual region should be left to the user. Since the user 

needs to vary the region size to produce the best results as necessary, it would be 

overly restrictive to limit the available region sizes. 

Whereas this discussion of excessive computations is not a feature of the parallel 

implementation, it is sound computing practice to streamline the sequential section 

of the code where possible. Thus it is mentioned here. 
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3.6 Coordination between Master and Slaves 

The Message Passing Paradigm was outlined in Section 1.5.2. The followjrig 

description depicts the actions of the master and slaves as applied to the  
algorithm. A graphic representation is included in Figure 11 on page 23. The 

accompanying pseudo-code is included in Figures 12 and 13 on page 25. 

The master is the first process to be invoked. It determines the number of slaves to 

be utilized by reading a file in secondary storage. This is done in accordance with 

the parallel processing program package [BUTLER90]. The size of the contextual 

region, the size of the problem pieces, and the names of the input and output files 

are read from the command line. 

As the master invokes each slave, it establishes the lines of communication between 

itself and each slave. The master also sends the name of the input file to each 

slave process. The slaves perform their start-up work, i.e. loading the image and 

building the mirrored borders. The master by this time has divided the original 

problem into sub-problems as determined by the input parameters. A representation 

of each problem is placed in a linked list structure, referred to as the problem 

queue. The master then enters its main control loop. Each slave, upon completion 

of its initialization tasks, transmits a request for work to the master. 

During the main control loop, the master checks to see if the condition exists that 

the slave queue is non-empty and the problem queue is non-empty. If these 

conditions are met, the master then dispatches a sub-problem to a slave represented 
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Message Passing Model 
Problem Queue 

Enhanced Image 

Original Image Original Image Original Image 

Figure 11: Message Passing Model. 

on the slave queue. The appropriate piece of work and the slave are removed from 

their respective queues. As the master receives each request for work, it places a 

representation of the calling slave on a linked list slave queue. 

The slave then receives the work, processes the sub-problem, and returns the 

resulting sub-image to the master. The master, upon receiving a message, 

determines the type of message, stores a copy of the sub-image in primary storage, 

then awaits the next message. This pattern continues until the master determines 

that all of the slaves are represented in the slave queue and the problem queue is 

empty. The problem has been completed at this point. 
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The master completes its functions by sending the completed image to secondary 

storage, issuing a command for the slaves to terminate, waiting for the slaves to 

terminate, and outputting any statistics gathered for testing purposes. 
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Master Process Pseudo-code 

Create slaves 
Read in parameters 
Transmit control messages to slaves including image filename 
Initialize solution data structure 
Initialize slave queue 
Initialize problem queue 
Divide job into problems and place in problem queue 
done= FALSE 
While (NOT done) 
{ 

} 

While (slave queue is NOT empty) and (problem queue is NOT empty) 
Send a problem to a slave 

Receive any message 
If message type is REQUEST_ WORK then 

Add slave to slave queue 
If message type is SOLUTION then 

Update solution data structure 
If (ALL slaves are in slave queue) AND (problem queue is empty) then 

done= TRUE 

Output solution to secondary storage 
Send ENDSIGNAL message to slaves to terminate 
Wait for all slaves to terminate 

Figure 12: Master Process - Pseudo-Code. 

Slave Process Pseudo-code 

Receive message including image filename 
Read image from secondary storage 
Build mirrored borders 
Send REQUEST_ WORK message to master 
while (received message type is NOT ENDSIGNAL) 
{ 

Receive a message 
If message type is DATA then 

Perform ABE on sub-problem described in message 
else 

Send ENDSIGNAL to next slave in loop 
} 

Figure 13: Slave Process - Pseudo-Code. 
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Chapter 4 

TOOLS 

Numerous software tools were utilized during the course of this work. Each of 

these were required to support the overall project. Their uses included presentation 

production, data conversion, and image viewing. These were in addition to the 

tools one would normally expect such as compilers, linkers, editors, etc. Several of 

these tools were developed by the author. These software endeavors were in 

addition to the main project implementation. Their description is included here to 

illustrate some of the additional research and development required by the author to 

complete this endeavor. 

4.1 DISPLAY for the PC 

One of the early research tools developed by the author was an interactive image 

processing program, DISPLAY. This was developed under MS-DOS for an IBM

PC clone with EGA graphics capabilities. Its original development was in Pascal. 

Later the software was converted to C. DISPLAY will load a 256 x 256 x 8 image 

from secondary storage into main memory. The image is then displayed in 16 color 

pseudo-color along with a histogram of the image. 

DISPLAY is a menu-driven system that allows the user to perform point and area 

functions on the image. It will also allow several different output formats. The 

point operations include contrast enhancement, histogram stretching, and color 

- 26 -



inversion. The area operations include neighborhood averaging (8 or 9 elements), 

neighborhood median (3 x 3 or 5 x 5), edge detection, Adaptive Histogram 

Equalization with choice of contextual region size, and several other filters. The 

output functions include formatting the currently displayed image as a raw image 

file (256 x 256 x 8), or in Postscript format, with or without accompanying 

histogram. 

The DISPLAY software has been extremely beneficial in producing both hardcopy 

images as well as overhead slides for several presentations during the course of this 

work. The majority of the images included in this presentation were produced by 

DISPLAY. 

4.2 'disp' for the Sun workstation with X Windows 

During the project it was necessary to view the images being processed without the 

expense and time required to produce a hard copy. The author developed 'disp', a 

display program built in 'C' on the Sun workstation utilizing X Windows. It 

provided quick feedback during the development of the parallel AHE software. It 

was also beneficial to view the output images as the input parameters were varied. 

4.3 Image and Histogram Production for Postscript 

Some of the functions included in DISPLAY (See Section 4.1) were ported to the 

Unix environment. These included functions to produce Postscript files of images 

for presentation usage. These Postscript files were then 'viewed' either with 
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Ghostscript 1.3, the NeXT's Preview facility, or sent to a Postscript capable printer 

for hardcopy production. As Postscript is a language unto itself, it was necessary 

for the author to learn a subset of the language to facilitate Postscript file 

generation. 

4.4 'usr/image' from UNC-CH 

The medical images included as test data for this work were supplied by the UNC 

Medical Image Display Research Group. This research organization is located at 

the University of North Carolina at Chapel Hill. The format of some of the images 

is unique to UNC-CH. The data was converted to raw image files with the 

utilization of a suite of software tools known to UNC-CH as 'usr/image' running 

under X Windows. This software proved quite worthy in converting images 

between formats so as to enable the transfer of images between the author and 

members of the UNC-CH community. 

4.5 Thesis publication software 

In addition to the image production software mentioned above, the balance of this 

publication was produced with Harvard Graphics, Quattro-Pro, and Wordperfect. 
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Chapter 5 

TESTING AND RESULTS 

Program testing was conducted in a controlled manner allowing the varying of only 

one independent variable at a time. The variables that were controlled included 

number of slaves, size of the contextual region, and size of a sub-problem. A 

sequential version of the algorithm was extracted from the parallel slave code for a 

benchmark. 

The sequential and parallel versions were executed on the same machine to 

eliminate disparities due to machine capabilities and performance tuning. 

The software includes statistical data collection in the code for determining the 

elapsed time for each execution of the program. In addition, the Unix 'time' 

command was utilized to gather the same statistics. 

Numerous timings were obtained at off-peak operating times. Testing was normally 

conducted at night after determining that system usage was at a minimum. The 

first series of 10 timings were taken on an 8-node Sequent Symmetry at the 

University of North Florida. A second series of 3 timings were taken on a 26-node 

Sequent Symmetry at Argonne National Laboratory in Chicago, IL. 

The testing results have been compiled and are included in Appendix C. 
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Chapter 6 

DISCUSSION OF RESULTS 

The graphic results from the AHE algorithm were quite impressive. Both the chest 

image (see Figures 14 and 15 on page 31) and the brain image (see Figures 16 and 

17 on page 32) benefitted greatly from the processing. However, the purpose of 

this work is not to verify the results of the image processing, but to improve the 

time performance. 

As mentioned in Chapter 5, three independent variables were tested. These were 

the number of slave processes, the size of the contextual region, and the size of the 

sub-problem. The brain image was used for all testing. However, it should be 

noted that the choice of the image does not affect the performance of the algorithm. 

The numerical results are included in Appendix C. A graphic representation of 

these results are shown in Figures 18 through 22. Note that the sequential 

benchmark is indicated by the upright bar on the left of the graph, while the 

parallel timings are indicated by the lines on the chart. Each graph represents a 

single contextual region size. A separate line is included for each sub-problem size. 

The number of slaves utilized is indicated on the X-axis. The time in seconds is 

indicated on the Y -axis. 

The results from the first set of timings, where the contextual region was set at 

8 x 8, proved to be less than inviting. The amount of improvement hardly seemed 

worth the effort (see Figure 18 on page 33). The best case, for this contextual 
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Figure 14: Chest - Original Image. 

Figure 15: Chest - after AHE with contextual region of 64 x 64. 
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Figure 16: Brain - Original Image. 

Figure 17: Brain - after AHE with contextual region of 64 x 64. 
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Parallel AHE - 8-node Seguent Symmetry 
8 x 8 Contextual Region 

Number of Slaves 

Problem Size 

4x 4 

---8X 8 

Figure 18: ABE Results - Contextual Region of 8 x 8. 

Parallel AHE - 8-node Seauent Symmetry 
16 x 16 Contextual Region 

Number of Slaves 

Problem Size 

4x 4 

---8X 8 --16x 16 

---32X32 .... 
64x64 
Ill 

Figure 19: AHE Results - Contextual Region of 16 x 16. 
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Parallel AHE • 8-node Seauent Symmetry 
32 x 32 Contextual Region Problem Size 

Number of Slaves 

Figure 20: AHE Results - Contextual Region of 32 x 32. 
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Parallel AHE · 8-node Seauent Symmetry 
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4x 4 
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S uantlal 

Number of Slaves 

Figure 21: AHE Results - Contextual Region of 64 x 64. 
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region size, was where the sub-problem size was 64 x 64. The sequential 

benchmark was 23.8 seconds, while the parallel version with seven CPUs (a master 

and six slaves) completed the identical task in 17.3 seconds. 

It is also noted that for extremely small sub-problems sizes, the performance was 

over an order of magnitude greater in some cases than for larger sub-problem sizes 

(see Figure 18 on page 33). Both of the above performances are due to the effect 

of granularity with respect to parallelism. Simply stated, if the problem is too 

small, any speed-up contributed by the parallelism will be more than offset by the 

coordination overhead. As the size of the contextual region is increased, the effect 

of parallelism slowly begins to show. With a contextual region of 32 x 32, a more 

desirable comparison with the sequential benchmark is obtained (see Figure 20 on 

page 34). 

Increasing the contextual region size to 64 x 64 yields the best results with a speed

up of approximately 6.5:1 (see Figure 21 on page 34). According to Mr. Cromartie 

of UNC-CH, the largest popular contextual region size is one-sixteenth of the image 

size. Thus, the contextual region variable was limited to 64 x 64. 

An interesting phenomena occurred as the number of slaves was increased. At first 

the results appear to approximate the function 1/n where n is the number of slaves. 

Whereas perfect speed-up can not be realized due to communication and 

coordination overhead, the curve is close. However, as the number of slaves 

surpassed 7 on the first set of timings, the execution time increased. Note that this 
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occurred at n-1 slaves where n is the number of available processors in the 

machine. 

The maximum benefit is realized when each process has its own processor. As the 

number of slaves increases beyond n-1, there is more than one process sharing one 

or more of the processors. Multiple processes sharing a single processor increase 

overhead resulting in performance degradation. 

The relationship between the number of processes and processors, however 

straightforward, seemed to beckon further support. With the assistance of Dr. 

Butler, the computing services at Argonne National Laboratory were obtained for 

additional testing. Due to the high amount of system usage at Argonne, the testing 

variables were limited. A contextual region of 64 x 64 was utilized, only varying 

the sub-problem size and the number of slaves. Also, testing for each possible 

slave count was bypassed in favor of sampling for the theorized trend. The 

resulting graph is included in Figure 22 on page 37. 

It was estimated that the maximum performance would be at n-1 slaves where n 

was 26 for the 26-node Sequent Symmetry at Argonne. With the very small sub

problem size of 4 x 4, the speed-up reversed at 18 slaves. Evidently the overhead 

was too great. 

For the remaining cases, the trend reverses at about 22 to 24 slaves. This is lower 

than expected. However, it was noted that system usage was not minimal during 

any of the testing periods. Thus, some of the slaves spent time waiting for 
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Parallel AHE - 26-node Seauent Symmetry 
64 x 64 Contextual Region 

Figure 22: AHE Results - 26-node machine. 

Problem Size 

4X4 

unrelated processes to relinquish processor control. This resulted in an overall 

increase in execution time. 

Note however, that even though all 26 nodes were not available solely for the 

execution of this program, a worthwhile speedup was still realized. Where the 

8-node machine yielded a best speed-up of approximately 6.5:1, the 26-node 

machine yielded a maximum speed-up of 16.5:1. 
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Chapter 7 

CONCLUSIONS 

The hypothesis of this work is restated here: 

There are parallel processing techniques which will substantially improve the time 

performance of Adaptive Histogram Equalization. 

The implementation and testing conducted supports the hypothesis. 

In addition, a method for handling border regions was developed and implemented. 

Also, the application of a Look-Up Table served well to reduce the number of 

required computations. Whereas this probably did not affect the outcome of the 

testing, as both the sequential and parallel versions utilized this method, it did serve 

as an improvement to the overall implementation. 
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Chapter 8 

FUTURE WORK 

There are numerous avenues that can be pursued to enhance this work. The 

research is by no means complete. One ultimate goal is to provide a real-time 

interactive system that would enable the user to manipulate the image as desired. 

Other goals are to enhance the algorithm to provide improved results. Several of 

these thoughts are included in the sections below. They are by no means a 

complete enumeration of the possibilities. 

8.1 SIMD architecture 

The parallel implementation of AHE in this thesis was performed on a Multiple 

Instruction Multiple Data (MIMD) machine. In this type of architecture, each 

processor can work on a problem independently or in coordination with other 

processors on the same machine. A different type of architecture is Single 

Instruction Multiple Data (SIMD). In this scenario each processor is executing the 

identical instruction in lock step on different data. 

The SIMD machine requires a different design process during algorithm 

development and implementation. Different constraints are placed on the software. 

Current SIMD machines typically have less local memory per processing element 

than an MIMD machine. Accessing non-local memory is expensive. However, in 
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spite of some of these limitations, there may still be major advantages for utilizing 

this type of hardware. 

8.2 Interactive viewing of image during processing 

Due to the length of time required to process an image, it may be desirable to 

display partial results as the job is in progress. The user could invoke a process 

that would first display the original image. The user could then specify a 

contextual region size for the ABE processing. As the image is processed, the 

partial solutions could be super-imposed over the original image. The user would 

have the option of interrupting the process by specifying a new contextual region 

size, or terminating the process, or allowing the process to complete normally. 

The method of problem subdivision included in this implementation is to utilize a 

checkerboard type pattern. The original image is simply divided into small squares 

and handed out for processing. Clearly this would not be an acceptable visual 

display as portions of the image were completed. A different method that would be 

easy to implement would be to have each problem contain every nth pixel. Then, 

as sub-problems are solved, the effect would be a more gradual and smooth 

transition of the image. This method is depicted in Figure 23 on page 41. Here 

the original image is divided into 16 sub-problems. Each pixel is labeled by its 

sub-problem number. 
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Dividing the image into interlaced sub-problems: 

Each slave processes the set of pixels identified with a particular process 
number. As the results are returned and displayed, the effect is a gradual 
change vice a checkerboard effect depicted by the boxes. 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 

9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 

13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 

9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 

13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 

9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 

13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 

9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 

13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16 

Figure 23: Dividing the image into interlaced sub-problems. 

8.3 The AHE Family of Algorithms 

Research at the University of North Carolina at Chapel Hill has produced other 

members of the ARE family of algorithms [Pizer87][Zimmerman89]. Among them 

are Weighted Adaptive Histogram Equalization (WARE) and Clipped Adaptive 

Histogram Equalization (CLARE). Current work by Mr. Cromartie is being 

conducted on Adaptive Histogram Equalization using Edge Detection. Certainly, 

each of these may benefit from the application of parallelism. This is a field that 

needs further exploration. 
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8.4 Three-dimensional AHE 

The advent of three-dimensional non-invasive imaging suggests the application of 

AHE in three dimensions. The concept of areas of low contrast in two dimensions 

can be expanded into the third dimension. As with two-dimensional AHE, this 

would be a pre-processing step prior to image display. The author has witnessed 

three-dimensional visualization tool development at UNC-CH and believes that 3-D 

AHE may be of benefit. 
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APPENDIX A 

I* pmaster.c - source code *I 

I* Charles Kurak *I 
I* Master's THESIS - December, 1990 - University of North Florida *I 
I* Adaptive Histogram Equalization: A Parallel Implementation *I 

I* Thesis Committee: 
I* Dr. Yap Chua - University of North Florida *I 
I* Dr. Ralph Butler - University of North Florida *I 
I* Dr. Charles Winton - University of North Florida *I 

#include <stdio.h> 
#include "p4.h" 
#include "p4_compat.h" 

#define FALSE 0 
#define TRUE 1 
#define MAXV ALUE 255 
#define IMAGE_SIZE 256 
#define SUBIMAGE_SIZE 64 

I* message types *I 
#define CNTL 0 
#define DATA 1 
#define ENDSIGNAL 2 

I* slave message types *I 
#define REQUEST_ WORK 3 
#define PROBLEM 4 
#defme SOLUTION 5 

typedef struct procnode *PROCPTR; 
struct procnode 
{ 

int procid; 
PROCPTR next; 

} ; 

struct data_msg_type { 
int type; 
int msg_type; 
int beg_x; 
int beg_y; 
int region_size; 
int x_size; 
int y_size; 
int max_value; 
unsigned char subimage[SUBIMAGE_SIZE][SUBIMAGE_SIZE]; 

} ; 

typedef struct prob_node *PROBNODEPTR; 

struct prob_node 
{ 

int beg_x; 
int beg_y; 
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}; 

int region_size; 
int x_size; 
int y_size; 
int max_value; 
PROBNODEPTR next; 

struct cntl_msg_type 
int type; 
int prev; 
int next; 
char infilename[50]; 

} ; 

struct endsignal_msg_type 
int msg_type; 

} ; 

union d_e_msg { 

} ; 

struct data_msg_type dmsg; 
struct endsignal_msg_type emsg; 

int pbdone; 
int nprocs; 
int region_size; 
int max_ value = MAXV ALUE; 
int number_of_slaves; 
PROBNODEPTR plist; 
PROBNODEPTR freelist; 
PROCPTR proclist; 
PROCPTR freeproclist; 

int gridsize; 
int problem_size; 
char infilename[50]; 
char outfilename[50]; 

unsigned char Master_Image[IMAGE_SIZE] [IMAGE_SIZE]; 

/*************************************************************************** 
** getprob() 
****************************************************************************/ 
getprob(prob) 
union { 

struct data_msg_type dmsg; 
struct endsignal_msg_type emsg; 

} *prob; 
{ 

int rc=l; 
int ctr; 
if ( (proclist_length() == number_of_slaves) && (plist == NULL)) 
{ 

rc=l; /* over by exhaustion */ 
} 
else if (plist !=NULL) 
{ 

/* make up problem message, taken from problem queue */ 
(*prob).dmsg.type = DATA; 
(*prob).dmsg.msg_type =PROBLEM; 
(*prob).dmsg.beg_x = plist->beg_x; 
(*prob).dmsg.beg_y = plist->beg_y; 
(*prob).dmsg.region_size = plist->region_size; 
(*prob).dmsg.x_size = plist->x_size; 
(*prob).dmsg.y_size = plist->y_size; 
(*prob).dmsg.max_value = plist->max_value; 
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} 

} 

plist=plist->next; 
re=O; 

return (rc ); 

/*************************************************************************** 
** rnake_node() 
****************************************************************************/ 
PROBNODEPTR rnake_node() 
{ 

} 

PROBNODEPTR newptr; 
if((freelist) == NULL) 

newptr = (PROBNODEPTR) g_rnalloc(sizeof(struct prob_node)); 
else 
{ 

newptr = freelist; 
(freelist) = (freelist)->next; 

} 
if(newptr == NULL) 

printf("Out of Dynamic Mernory!\n"); 
else 
{ 

} 

int i; 
newptr->beg_x 
newptr->beg_y 
newptr ->region_size 
newptr->x_size 
newptr->y _size 
newptr ->max_ value 
newptr->next 

return newptr; 

= 0; 
= 0; 

= 0; 
= 0; 
= 0; 

= max_ value; 
= NULL; /* set pointer to next node to NULL */ 

/**************************************************************************** 
** probstart() 
****************************************************************************/ 
void probstart() 
{ 

PROBNODEPTR c; 
int i,j; 

for(j=O ;j < IMAGE_SIZE ; j = j + problem_size) 
{ 

for(i= 0 ; i < IMAGE_SIZE ; i = i + problem_size) 
{ 

c = make_node(); 
c->beg_x = i; 
c->beg_y = j; 
c->region_size = region_size; 
c->x_size = problem_size; 
c->y_size = problem_size; 
c->max_value = max_value; 
c->next = plist; 
plist = c; 

} 

/**************************************************************************** 
** make_proc_node() 
******************************* ***************************************/ 
PROCPTR rnake_proc_node() 
{ 

PROCPTR newptr; 
if((freeproclist) == NULL) 
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} 

newptr = (PROCJYI'R) g_malloc(sizeof(struct procnode)); 
else 
( 

} 

newptr = freeproclist; 
freeproclist = freeproclist->next; 

if(newptr == NULL) 
printf("Out of Dynamic Memoryl\n"); 

else 
( 

} 

newptr->procid = 0; 
newptr->next = NULL; 

return newptr; 

I* set value to zero *I 
I* set pointer to next node to NULL *I 

I**************************************************************************** 
** add_procnode_to_freeproclist() 
****************************************************************************I 
void add_procnode_to_freeproclist(n) 
PROCJYI'R n; 
( 

n->procid=O; 
n->next = freeproclist; 
freeproclist = n; 

I**************************************************************************** 
** add_node_to_freelist() 
****************************************************************************I 
void add_node_to_freelist(n) 
PROBNODEJYI'R n; 
( 

} 

int ctr; 
n->beg_x 
n->beg_y 
n->region_size 
n->x_size 
n->y_size 
n->max_ value 
n->next 
free list 

= 0; 
= 0; 

= 0; 
= 0; 
= 0; 

= 0; 
= freelist; 

= n; 

I**************************************************************************** 
** add_list_to_freelist() 
****************************************************************************I 
void add_list_to_freelist(n) 
PROBNODEJYI'R n; 
( 

PROBNODEJYI'R cur; 
int ctr; 
if(n I= NULL) 
( 

cur = n; 
cur->beg_x = 0; 
cur->beg_y = 0; 
cur->region_size = 0; 
cur->x_size = 0; 
cur->y_size = 0; 
cur->max_value = 0; 
while(cur->next I= NULL)· 

cur = cur->next; 
cur->next = freelist; 
freelist = n; 
n=NULL; 
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/**************************************************************************** 
** dispose_freelist() 
****************************************************************************/ 
void dispose_freelist() 
{ 

) 

PROBNODEPTR prev,cur; 
cur = freelist; 
prev=cur; 
while(cur != NULL) 
{ 

) 

prev =cur; 
cur = cur->next; 
g_free(prev ); 

freelist = NULL; 

/**************************************************************************** 
** dispose_freeproclist() 
****************************************************************************/ 
void dispose_freeproclist() 
{ 

) 

PROCPTR prev,cur; 
cur = freeproclist; 
prev=cur; 
while(cur != NULL) 
{ 

) 

prev =cur; 
cur = cur->next; 
g_free(prev ); 

freeproclist = NULL; 

/**************************************************************************** 
**main() 
****************************************************************************/ 

main(argc,argv) 
int argc; 
char *argv[]; 
{ 

struct cntl_msg_type reel; 
struct data.Jllsg_type rec2; 
union d_e_msg echo_data; 
union d_e_msg data; 
int id, i, msg_type; 
long timestart, timeend; 

struct endsignal_msg_type endsignal_msg; 
int ln; 
int slave(); 

timestart=clock(); 

if(argc!=6) 
{ 

printf("Invalid number of input parameters. Program aborting.\n"); 
exit(l); 

) 

plist = NULL; 
initenv(argc,argv); 
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create_procgroup(); 
number_of_slaves=get_nslaves(); 

I* read in the contextual region size *I 
region_size=atoi(argv[1]); 

I* read in the problem_size *I 
problem_size=atoi(argv[2]); 

I* read in the max_value *I 
max_value=atoi(argv[3]); 

I* read in the input filename *I 
strcpy(infilename,argv [ 4] ); 

I* read in the output filename *I 
strcpy(outfilename,argv[S]); 

I* send control messages *I 
for (i=1; i < number_of_slaves+1; i++) 
{ 

} 

recl.type = CNTL; 
recl.prev = (i-1); 
recl.next = (i + 1) % (number_of_slaves+l); 
strcpy(rec1.infilename,infilename ); 
1n = sizeof(struct cntl_msg_type); 
g_sendr(i,&rec1,sizeof(rec1)); 

I* initialize problem queue *I 
probstart(); 

pbdone=FALSE; 
while ( !pbdone ) 
{ 

while( (proclist_length() != 0) && (problist_length() != 0)) 
{ 

} 

id=get_next_slave(); 
getprob(&rec2); 
g_sendr(id,&rec2,sizeof(rec2)); 

g_recv _any(&id,&data,&ln); 
msg_type=data.dmsg.msg_type; 
if (msg_type ==REQUEST_ WORK) 

add_slave_to_proclist(id); 

if (msg_type == SOLUTION) 
post_soln(&data); 

I* All the slaves are waiting for work && there is no more work *I 
if((proclist_length()==number_of_slaves) && (problist_length()==O)) 

pbdone=TRUE; 

output_soln( outfilename ); 

while(proclist_length()<number_of_slaves) 
{ 

g_recv _any( &id,&data,&ln); 
msg_type=data.dmsg.msg_type; 
if (msg_type == REQUEST_ WORK) 

add_slave_to_proclist(id); 

I* end of problems & program *I 
endsignal_msg.msg_type = ENDSIGNAL; 
g_sendr(1,&endsignal_msg,sizeof( endsignal_msg) ); 
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) 

g_recv _any( &id,&echo_data,&ln); 

dispose_freelist(); 
dispose_freeproclist(); 
add_list_to_freelist(plist); 
plist = NULL; 
wait_for_end(); 

timeend=clock(); 

printf("%2d %2d %2d %6.2f \n ", 
number_of_slaves,region_size,problem_size,((float)(timeend - timestart))/100); 

/**************************************************************************** 
** get_next_slave() 
****************************************************************************/ 
get_next_slave() 
( 

PROCPTR cur; 
int re=O; 
if(proclist != NULL) 
( 

cur=proclist; 
re=cur->procid; 
proclist=proclist->next; 
add_procnode_to _freeproclist( cur); 

return rc; 

/**************************************************************************** 
** add_slave_to_proclist() 
****************************************************************************/ 
add_slave_to_proclist(i) 
int i; 
( 

) 

PROCPTR sq; 
sq=make_proc_node(); 
sq->procid=i; 
sq->next=proclist; 
proclist=sq; 

/**************************************************************************** 
** proclist_length() 
****************************************************************************/ 
proclist_length() 
( 

int i=O; 
PROCPTR cur; 
cur = proclist; 
while (cur) 
( 

i++; 
cur=cur->next; 

return i; 

/**************************************************************************** 
** problist_length() 
****************************************************************************/ 
problist_length() 
( 

int i=O; 
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} 

PROBNODEPTR cur; 
cur = plist; 
while (cur) 
{ 

i++; 
cur=cur->next; 

return i; 

/**************************************************************************** 
** post_prob() 
****************************************************************************/ 
post_prob( c) 
union d_e_msg *c; 
{ 

PROBNODEPTR d; 
int ctr; 

d 
d->beg_x 
d->beg_y 
d->region_size 
d->x_size 
d->y_size 
d->max_ value 
d->next 
plist 

= mak:e_node(); 
= (*c).dmsg.beg_x; 
= (*c).dmsg.beg_y; 

= (*c).dmsg.region_size; 
= (*c).dmsg.x_size; 
= (*c).dmsg.y_size; 

= max_ value; 
= plist; 

= d; 

/**************************************************************************** 
** post_soln() 
****************************************************************************/ 
post_soln( c) 
union d_e_rnsg (*c); 
{ 

/* copy values from message into Master_Image[]; ** 
int x,y; 
int i,j; 
int beg_x; 
int beg_y; 
int x_size; 
int y_size; 
int max_x; 
int max_y; 

beg_x = (*c).dmsg.beg_x; 
beg_y = (*c).dmsg.beg_y; 
x_size = (*c).drnsg.x_size; 
y_size = (*c).dmsg.y_size; 

max_x = beg_x + x_size; 
max_y = beg_y + y_size; 

for(j=O,y=beg_y;y < max_y;y++,j++) 
for(x=beg_x,i=O;x < max_x;x++,i++) 

Master_Image[y][x] = (*c).dmsg.subimage[j][i]; 

/**************************************************************************** 
** output_soln() 
****************************************************************************/ 
output_soln( outfilename) 
char outfilename[]; 
{ 

int i,j; 
FILE *data; 
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data = fopen(outfilename,"wb"); 

for(j=O;j<IMAGE_SIZE;j++) 
for(i=O;i<IMAGE_SIZE;i++) 

fprintf(data,"%c",Master_Imagefj][i]); 

fclose(data); 
} 

/**************************************************************************** 
** EOF pmaster.c 
****************************************************************************/ 
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APPENDIX B 

I* pslave.c - source code *I 

I* Charles Kurak *I 
I* Master's THESIS - December, 1990 - University of North Florida *I 
I* Adaptive Histogram Equalization: A Parallel Implementation *I 

I* Thesis Committee: 
I* Dr. Yap Chua - University of North Florida *I 
I* Dr. Ralph Butler - University of North Florida *I 
I* Dr. Charles Winton - University of North Florida *I 

#include "p4.h" 
#include "p4_compat.h" 

#include <stdio.h> 

#defme FALSE 
#define TRUE 

#define BORDER 128 

0 
1 

256 #define IMAGE_SIZE 
#define ARRAY_SIZE (IMAGE_SIZE + (BORDER * 2)) 

#define SOLUTION_SIZE 64 

I* message types *I 
#define CNTL 0 
#define DATA 1 
#define ENDSIGNAL 2 

I* slave message types *I 
#define REQUEST_ WORK3 
#define SOLUTION 5 

struct cntl_msg_type { 
int type; 
int prev; 
int next; 
char infilename[ 50 ]; 

}; 

struct data_msg_type { 
int type; 
int msg_type; 
int beg_x; 
int beg_y; 
int region_size; 
int problem_size_x; 
int problem_size_y; 
int max_ value; 
unsigned char subimage[ SOLUTION_SIZE ][ SOLUTION_SIZE ]; 

}; 

struct endsignal_msg_type { 
int msg_type; 

} ; 
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union d_e_msg { 

} ; 

struct data_msg_type dmsg; 
struct endsignal_msg_type emsg; 

char infile[50]; 

unsigned char Array[ ARRAY_SIZE ][ ARRAY_SIZE ]; 
unsigned char LUT[ SOLUTION_SIZE * SOLUTION_SIZE ]; 

/**************************************************************************** 
** slave() 
****************************************************************************/ 
slave() 
{ 

int master_id; 
int msg_type; 
struct cntl_msg_type reel; 
union d_e_msg rec2; 
int ln; 
struct endsignal_msg_type endsignal_msg; 

/* Get successor's id */ 
g_recv_any( &master_id, &reel, &ln ); 
msg_type = recl.type; 
strcpy( infile, recl.infilename ); 

build_image( infile ); 

rec2.dmsg.msg_type = REQUEST_WORK; 
g_sendr( master_id, &rec2, sizeof( rec2 ) ); 

while (msg_type != ENDSIGNAL) 
{ 

g_recv_any( &master_id, &rec2, &ln ); 
msg_type = rec2.dmsg.type; 

if (msg_type == DATA) 
{ 

} 

work( &rec2 ); 

/* send work request to master */ 
rec2.dmsg.msg_type = REQUEST_WORK; 
g_sendr( master_id, &rec2, sizeof( rec2 ) ); 

else 
{ 

endsignal_rnsg.msg_type = ENDSIGNAL; 
g_sendr( recl.next, &endsignal_msg, sizeof( endsignal_msg ) ); 

} 

/**************************************************************************** 
** work() 
****************************************************************************/ 
work( rec ) 
union 
{ 

struct data_msg_type dmsg; 
struct endsignal_msg_type emsg; 

} *rec; 
{ 

int Image_beg_x; 
int Image_beg__y; 
int Array _beg_x; 
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int Array_beg_y; 
int region_size; 
int problem_size_x; 
int problem_size_y; 
int Array_end_x; 
int Array_end_y; 
int max_value; 
int half_region_size; 

struct ( 
int beg__x; 
int beg__y; 
int problem_size_x; 
int problem_size_y; 
unsigned char subimage[ SOLUTION_SIZE ][ SOLUTION_SIZE ]; 

) soln; 

register int i,j,x,y; 
int min_region_x; 
int max_region_x; 
int min_region_y; 
int max_region_y; 
long rank; 
unsigned char localvalue; 
long region_area; 

Image_beg_x 
Image_beg_y 
region_size 
problem_size_x 
problem_size_y 
max_ value 

= (*rec).dmsg.beg_x; 
= (*rec).dmsg.beg_y; 

= (*rec ).dmsg.region_size; 
= (*rec ).dmsg.problem_size_x; 
= (*rec ).dmsg.problem_size_y; 
= (*rec).dmsg.max_value; 

Array_beg_x = Image_beg__x +BORDER; 
Array_beg_y = Image_beg__y +BORDER; 
Array_end_x = Array_beg_x + problem_size_x; 
Array_end_y = Array_beg_y + problem_size_y; 
regwn_area = region_size * region_size; 
half_region_size = (region_size I 2); 

/* Build Look-up Table */ 
build_LUT( max_value, region_area ); 

for( y = Array_beg_y ; y < Array_end_y ; y++ ) 
( 

for( x = Array_beg_x ; x < Array_end_x ; x++ ) 
( 

localvalue = Array[ y ][ x ]; 
rank= 0; 
I* compute little histogram boundaries *I 
min_region_x = x - half_region_size; 
max_region_x = x + half_region_size; 
min_region_y = y - half_region_size; 
max_region_y = y + half_region_size; 

I* Calculate a pixel's rank *I 
for( j = min_region_y ; j < max_region_y ; j++ ) 

for( i = min_region_x ; i < max_region_x ; i++ ) 
if ( Array[ j ][ i ] < localvalue ) 

rank++; 

I* assign new value to pixel using Look-Up-Table *I 
soln.subimage[y-Array_beg_y][x-Array_beg_x] = LUT[ rank ]; 

) 
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} 

/* send solution to master */ 
soln.beg_x = (*rec).dmsg.beg_x; 
soln.beg_y = (*rec).dmsg.beg_y; 
soln.problem_size_x = problem_size_x; 
soln.problem_size_y = problem_size_y; 
send_soln(&soln); 

/**************************************************************************** 
** send_soln() 
****************************************************************************/ 
send_soln(soln) 
struct 
{ 

int beg_x; 
int beg_y; 
int problem_size_x; 
int problem_size_y; 
unsigned char subimage[ SOLUTION_SIZE ][ SOLUTION_SIZE ]; 

} *soln; 
{ 

union d_e_msg msg; 
inti; 
int j; 
int master_id=O; 

msg.dmsg.type = DATA; 
msg.dmsg.msg_type = SOLUTION; 
msg.dmsg.beg_x = soln->beg_x; 
msg.dmsg.beg_y = soln->beg_y; 
msg.dmsg.region_size = 0; 
msg.dmsg.problem_size_x = soln->problem_size_x; 
msg.dmsg.problem_size_y = soln->problem_size_y; 
msg.dmsg.max_value = 0; 
for( i = 0; i < SOLUTION_SIZE; i++ ) 

for( j = 0; j < SOLUTION_SIZE; j++ ) 
msg.dmsg.subimage[ i ][ j ] = (*soln).subimage[ i ][ j ]; 

/* send partial or complete solution to master */ 
g_sendr( master_id, &msg, sizeof( msg ) ); 

/**************************************************************************** 
** build_image() 
****************************************************************************/ 
build_image(infile) 
char *infile; 
{ 

FILE *data; 
int y=O; 
int x,i,j; 

/* Clear Array */ 
for( y = 0; y < ARRAY_SIZE; y++) 

for( x = 0; x < ARRAY_SIZE; x++ ) 
Array[ y ][ x ] = 0; 

data = fopen(infile,"r"); 
for( y = BORDER; y < BORDER + 256; y++ ) 

fread( Array[ y ] + BORDER, 256, 1, data ); 
fclose( data ); 

/* Build Border */ 
for( j = BORDER; j < IMAGE_SIZE + BORDER; j++ ) 
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for( i = 0; i < BORDER; i++ ) 
( 

I* Mirror left side *I 
Array[ j ][BORDER - i - 1 ] = Array[ j ][ BORDER + i ]; 

I* Mirror right side *I 
Array[ j ][ BORDER + IMAGE_SIZE + i ] = 

Array[ j ][ BORDER + IMAGE_SIZE - i - 1 ]; 

I* Mirror top side *I 
Array[ BORDER - i - 1 ][ j ] =Array[ BORDER + i ][ j ]; 

I* Mirror bottom side *I 
Array[ BORDER + IMAGE_SIZE + i ][ j ] = 

Array[ BORDER + IMAGE_SIZE - i - 1 ][ j ]; 

I* Lower upper left *I 
for( y = 0; y < BORDER - 1; y++ ) 

for( x = 0; x <BORDER- y- 1; x++) 
Array[ BORDER - y - 1 ][ x ] = Array[ BORDER + y ][ x ]; 

I* Lower upper right *I 
for( y = 0; y < BORDER - 1; y++ ) 

for( x = y + 1; x < BORDER; x++ ) 
Array[ BORDER - y - 1 ][ BORDER + IMAGE_SIZE + x ] = 

Array[ BORDER + y ][ BORDER + IMAGE_SIZE + x ]; 

I* upper lower left *I 
for( y = 0; y <BORDER- 1; y++) 

for( x = 0; x < BORDER - y - 1; x++ ) 
Array[ IMAGE_SIZE + BORDER + y ][ x ] = 

Array[ IMAGE_SIZE +BORDER - y - 1 ][ x ]; 

I* upper lower right *I 
for( y = 0; y < BORDER - 1; y++ ) 

for( x = y + 1; x <BORDER; x++ ) 
Array[ IMAGE_SIZE + BORDER + y ][ BORDER + IMAGE_SIZE + x ] = 

Array[ IMAGE_SIZE +BORDER - y- 1 ][BORDER+ IMAGE_SIZE + x ]; 

I* Upper upper left *I 
for( y = 0; y < BORDER; y++ ) 

for( x = 0; x < y + 1; x++ ) 
Array[ BORDER- y -1 ][BORDER - x] = 

Array[ BORDER + y ][ BORDER - x ]; 

I* Lower lower left *I 
for( y = 0; y < BORDER; y++ ) 

for( x = 0; x < y + 1; x++ ) 
Array[ IMAGE_SIZE +BORDER+ y ][BORDER- x] = 

Array[ IMAGE_SIZE + BORDER - y - 1 ][ BORDER - x ]; 

I* Upper upper right *I 
for( y = 0; y < BORDER; y++ ) 

for( x = 0; x < y; x++ ) 
Array[ BORDER - y - 1 ][ IMAGE_SIZE + BORDER + x ] = 

Array[ BORDER+ y ][ IMAGE_SIZE +BORDER+ x ]; 

I* Lower lower right *I 
for( y = 0; y < BORDER; y++ ) 

for( x = 0; x < y; x++ ) 
Array[ IMAGE_SIZE +BORDER+ y ][ IMAGE_SIZE +BORDER+ x] = 

Array[ IMAGE_SIZE + BORDER - y - 1 )[ IMAGE_SIZE + BORDER + x ]; 

I* Upper left Diagonal *I 
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for( y = 0; y < BORDER; y++ ) 
Array[ y )[ y ] = Array[ BORDER )[ BORDER ]; 

I* Lower right Diagonal *I 
for( y = 0; y < BORDER; y++ ) 

Array[ IMAGE_SIZE +BORDER+ y ][BORDER+ IMAGE_SIZE + y] = 
Array[ IMAGE_SIZE +BORDER - 1 ][ IMAGE_SIZE +BORDER- 1 ]; 

I* Lower left Diagonal *I 
for( y = 0; y < BORDER; y++ ) 

Array[ IMAGE_SIZE + BORDER + BORDER - y - 1 ][ y ] = 
Array[ IMAGE_SIZE +BORDER][ BORDER]; 

I* Upper right Diagonal *I 
for( y = 0; y < BORDER; y++ ) 

Array[ BORDER - y - 1 ][ y + IMAGE_SIZE + BORDER ] = 
Array[ BORDER][ IMAGE_SIZE +BORDER]; 

I**************************************************************************** 
** build_LUT() 
****************************************************************************I 
build_LUT( max_value, region_area ) 
int max_ value; 
int region_area; 
( 

inti; 
static int j = 0; 
static int k = 0; 

I* A different max_value or region_area requires a different LUT *I 
I* Only build a new LUT if a change has been made requiring a new LUT *I 
if( (j != max_value) II ( k != region_area) ) 
( 

j = max_ value; 
k = region_area; 
for( i = 0; i < region_area; i++) 

LUT[ i ] = (unsigned char) (( i * max_value ) I ( region_area - 1 ) ); 

I**************************************************************************** 
** EOF pslave.c 
****************************************************************************I 
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APPENDIX C 

Test Results: Contextual Region of 8 x 8. 

Hardware: UNF Sequent Symmetry 
(8-node machine) 

Number Parallel Problem Size 
of 

Seguential Slaves 4x4 8x8 16x16 32x32 64x64 

23.8 1 214.5 66.2 39.5 33.0 31.7 
2 102.2 39.8 26.5 23.6 22.9 
3 80.5 31.2 22.5 20.6 20.2 
4 74.7 27.3 20.5 18.6 18.7 
5 70.9 24.8 18.9 18.1 18.6 
6 71.0 23.8 18.5 17.7 17.3 
7 70.9 23.4 17.9 17.4 17.5 
8 106.9 28.7 20.3 19.0 18.7 
9 165.7 35.4 23.4 21.0 20.2 

10 272.4 49.5 26.6 22.9 22.3 

All times in seconds. 

Table 1: 8-node Sequent Symmetry, 8 x 8 Contextual Region. 

Test Results: Contextual Region of 16 x 16. 

Hardware: UNF Sequent Symmetry 
(8-node machine) 

Number 
of 

Seguential Slaves 4x4 

69.9 1 262.3 
2 126.7 
3 89.8 
4 77.8 
5 73.4 
6 71.4 
7 71.4 
8 103.3 
9 149.3 

10 240.9 

All times in seconds. 

8x8 

112.2 
62.3 
47.3 
38.5 
33.8 
30.7 
28.6 
33.7 
39.5 
50.7 

Parallel Problem Size 

16x16 32x32 64x64 

84.9 79.0 77.5 
50.6 47.4 46.9 
39.1 36.3 38.1 
32.1 30.6 30.2 
28.8 27.9 30.3 
26.5 26.0 26.4 
24.9 24.4 26.6 
27.4 26.1 25.0 
30.1 27.8 27.6 
34.2 29.3 30.3 

Table 2: 8-node Sequent Symmetry, 16 x 16 Contextual Region. 
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Test Results: Contextual Region of 32 x 32. 

Hardware: UNF Sequent Symmetry 
(8-node machine) 

Number Parallel Problem Size 
of 

Seguential Slaves 4x4 8x8 16x16 32x32 64x64 

251.0 1 445.0 293.9 266.8 260.5 259.4 
2 217.2 153.6 139.6 136.8 135.5 
3 149.2 106.4 97.9 97.9 104.5 
4 115.1 83.0 76.4 74.8 74.4 
5 95.5 69.1 64.2 63.3 74.6 
6 85.2 59.8 55.7 55.6 60.6 
7 79.6 54.4 51.2 52.7 60.0 
8 103.0 58.2 52.9 52.3 51.6 
9 135.7 64.0 54.8 55.9 57.1 

10 184.5 71.0 56.8 56.7 62.3 

All times in seconds. 

Table 3: 8-node Sequent Symmetry, 32 x 32 Contextual Region. 

Test Results: Contextual Region of 64 x 64. 

Hardware: UNF Sequent Symmetry 
(8-node machine) 

Number Parallel Problem Size 
of 

Seguential Slaves 4x4 8x8 16x16 32x32 64x64 

974.5 1 1174.3 1024.7 997.2 989.1 987.5 
2 583.7 518.1 505.3 502.3 500.4 
3 394.1 349.3 341.5 347.3 376.6 
4 298.4 265.5 259.0 257.2 256.6 
5 241.7 214.7 211.9 210.5 255.0 
6 203.4 180.9 178.3 180.1 194.9 
7 177.0 157.4 154.8 164.8 195.3 
8 193.1 159.6 155.4 155.8 154.9 
9 217.7 162.1 156.7 166.1 173.0 

10 256.6 166.0 157.4 165.2 187.8 

All times in seconds. 

Table 4: 8-node Sequent Symmetry, 64 x 64 Contextual Region. 
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Test Results: Contextual Region: 64 x 64. 

Hardware: Argonne National Laboratory Sequent Symmetry 
(26-node machine) 

Number Parallel Problem Size 
of 

Seguential Slaves 4x4 8x8 16x16 32x32 64x64 

974.5 1 1159.8 882.7 794.3 915.4 979.2 
2 556.0 512.5 481.4 462.2 494.8 
3 386.5 335.7 318.1 341.2 371.1 
4 280.6 253.9 233.6 250.5 250.6 
6 190.1 172.8 165.0 173.9 189.4 
8 147.5 126.9 126.0 128.9 128.6 

10 118.4 101.2 102.9 105.1 128.3 
12 99.7 88.1 86.3 92.0 127.9 
14 89.5 77.8 76.7 83.5 121.8 
16 85.8 70.6 70.6 71.2 72.4 
18 83.0 66.5 66.4 71.3 72.2 
20 99.4 63.0 62.4 71.9 75.1 
22 134.4 61.6 60.0 60.8 77.7 
24 217.0 64.9 58.8 63.5 82.0 
25 249.4 67.5 59.8 68.3 87.0 
26 306.1 73.5 61.4 69.7 91.5 
27 389.5 73.8 62.8 71.2 92.4 
28 488.1 82.4 62.3 73.6 97.1 
29 561.2 87.1 65.4 76.8 98.3 
30 672.2 93.7 69.8 75.7 103.6 

All times in seconds. 

Table 5: 26-node Sequent Symmetry. 
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