
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2007

Dual Constraint Problem Optimization Using A Natural Approach: Dual Constraint Problem Optimization Using A Natural Approach:

Genetic Algorithm and Simulated Annealing Genetic Algorithm and Simulated Annealing

James P. Sweeney
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Theory and Algorithms Commons

Suggested Citation Suggested Citation
Sweeney, James P., "Dual Constraint Problem Optimization Using A Natural Approach: Genetic Algorithm
and Simulated Annealing" (2007). UNF Graduate Theses and Dissertations. 283.
https://digitalcommons.unf.edu/etd/283

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2007 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.unf.edu%2Fetd%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/283?utm_source=digitalcommons.unf.edu%2Fetd%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

DUAL CONSTRAINT PROBLEM OPTIMIZATION USING
A NATURAL APPROACH:

GENETIC ALGORITHM AND SIMULATED ANNEALING

by

James P. Sweeney

A thesis submitted to the
School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

June 8, 2007

Copyright(©) 2007 by James P. Sweeney

All rights reserved. Reproduction in whole or in part in any form requires the prior
written permission of James P. Sweeney or designated representative.

11

The thesis "Dual Constraint Problem Optimization Using a Natural Approach: Genetic
Algorithm and Simulated Annealing" submitted by James P. Sweeney in partial
fulfillment of the requirements for the degree of Master of Science in Computer and
Information Sciences has been

Approved by the thesis committee: Date

Sanjay P. Ahuja, Ph.D.
Thesis Advisor and Committee Chairperson

~z I

72-/~7
Yap Chua, Ph.D.

Accepted for the School of Computing:

1/"& frz

Accepted for the College of Computing, Engineering, and Construction:

Neal S. Coulter, Ph.D.
Dean of the College

A cepted for the University:

 Dav enne;::J>h.o
Dean of the Graduate School

111

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

ACKNOWLEDGEMENT

I want to thank my advisor, Dr. Sanjay Ahuja, for his direction, feedback, and

encouragement during my research. Gratitude also goes to my thesis committee, Dr.

Roger Eggen and Dr. Yap Chua, who have brought a fresh outlook and inspired new

challenges during the construction of this body of work. Most importantly, I owe the

opportunity to pursue this next level of education to my wife, who has graciously shared

time and leant unconditional support during this lengthy endeavor.

lV

CONTENTS

L. fF" .. 1st o 1gures ... vn

Abstract .. ix

Chapter 1: Introduction ... 1

1.1 The Dual Constraint Optimization Problem: Grid Resource Allocation 1

1.2 Grid Computing and Its Variants ... 3

1.3 Utility Computing: The Grids Economic Approach .. 6

Chapter 2: Survey of Related Work. ... 8

2.1 The Resource Allocation Problem: How to Optimize? 8

2.2 Stochastic Algorithmic Solutions .. 10

2.3 Focus of Thesis .. 13

Chapter 3: Genetic Algorithms: Survival of the Fittest.. .. 16

3.1 Reproduction-.. 18

3.2 Crossover ... 19

3.3 Mutation ... 22

Chapter 4: Simulated A1111ealing: Cooling Hot Metal .. 25

Chapter 5: Testing and Evaluation of the Stochastic Algorithms 30

5.1 The Optimal Solution ... 31

5.2 The Genetic Algorithm .. 34

5.2.1 Algorithmic Functionality .. 35

5.2.2 Variable Values .. 38

5.3 The Simulated A1111ealing ... 44

v

5.3 .1 Algorithmic Functionality .. 44

5.3.2 Variable Values .. 48

Chapter 6: Conclusions and Future Work .. 58

6.1 Conclusions .. 58

6.2 Future Work ... 59

References ... 61

Appendix A: Optimal Solution Code Listings .. 64

Appendix B: Genetic Algorithm Code Listings ... 73

Appendix C: Simulated Annealing Code Listings .. 97

Vita ... 115

Vl

LIST OF FIGURES

Figure 1: Computational Jobs are Split to Run on the Grid .. 5

Figure 2: The Grid Resource Broker is a Part of the User-Level Middleware 7

Figure 3: Equations for the Total Cycles, Time Constraint, and Cost Constraint.. 9

Figure 4: Genetic Algorithm Flowchart ... 17

Figure 5: Weighted Roulette Wheel Representing Four Chromosomes. Chromosome
#2 has the Best Fitness Value and thus the Highest Probability of Being Chosen .. 19

Figure 6: Crossover Example ... 20

Figure 7: Genetic Algorithm Propagation Pseudo Code .. 21

Figure 8: Wright's Adaptive Surface .. 23

Figure 9: Examples of Mutation Methods .. 24

Figure 10: Probability Function .. 26

Figure 11: Flowchart of a Standard Simulated Annealing Algorithm 27

Figure 12: Resource Scenarios and Their Associated Speed and Cost 32

Figure 13: Optimal Solutions for Problem Constraints #1 ... 32

Figure 14: Optimal Solutions for Problem Constraints #2 ... 33

Figure 15: Ten Available Resources and Their Associated Speed and Cost.. 34

Figure 16: Solution for Optimization Problem Using Ten Available Resources 34

Figure 17: Sample Population Size vs. Fitness Value GA Test Run 40

Figure 18: Sample Genetic Algorithm Runtime vs. Population Size GA Test Run 41

Figure 19: Sample Job Execution Time vs. Population Size GA Test Run 42

Figure 20: Sample Percentage of Optimum vs. Population Size GA Test Run 43

Figure 21: Sample Energy Value vs. Tweak Factor SA Test Run 45

Figure 22: Simulated Am1ealing Runtime vs. Tweak Factor Test Run 46

Vll

Figure 23: Sample Job Execution Time vs. Tweak Factor SA Test Run 47

Figure 24: Sample Percentage of Optimum vs. Tweak Factor SA Test Run 47

Figure 25: Sample Energy Value vs. Number of Iterations SA Test Run 50

Figure 26: Sample Simulated Am1ealing Runtime vs. Number oflterations Test Run. 51

Figure 27: Sample Percentage of Optimum vs. Number of Iterations Test Run 51

Figure 28: Sample Energy Value vs. Alpha SA Test Run .. 52

Figure 29: Sample Simulated Am1ealing Runtime vs. Alpha Test Run 53

Figure 30: Sample Percentage of Optimum vs. Alpha Test Run 54

Figure 31: Sample Energy Value vs. Final Temperature SA Test Run 55

Figure 32: Sample Simulated Annealing vs. Final Temperature Test Run 56

Figure 33: Sample Percentage of Optimum vs. Final Temperature SA Test Run 56

Figure 34: Results and Comparison of the GA and SA Rest Runs 58

V111

ABSTRACT

Constraint optimization problems with multiple constraints and a large solution domain

are NP hard and span almost all industries in a variety of applications. One such

application is the optimization of resource scheduling in a "pay per use" grid

enviromnent. Charging for these resources based on demand is often referr-ed to as

Utility Computing, where resource providers lease computing power with varying costs

based on processing speed. Consumers using this resource have time and cost

constraints associated with each job they submit. Determining the optimal way to

divide the job among the available resources with regard to the time and cost constraints

is tasked to the Grid Resource Broker (GRB). The GRB must use an optimization

algorithm that returns an accurate result in a timely mam1er. The Genetic Algorithm and

the Simulated Annealing algorithm can both be used to achieve this goal, although

Simulated Annealing outperforms the Genetic Algorithm for use by the GRB.

Determining optimal values for the variables used in each algorithm is often achieved

through trial and error, and success depends upon the solution domain of the problem.

Although this work outlines a specific grid resource allocation application, the results

can be applied to any optimization problem based on dual constraints.

ix

Chapter 1

INTRODUCTION

Constraint Optimization Problem's (COP) are found in many fields and span across a

wide variety of industries. Examples extend from the evaluation of a business based on

assets, expenses, and annual turnover, to the optimization of transportation routes.

COPs can be found in chemical processing, energy systems, airlines, raih·oad, trucking,

insurance, and all other forms of business and research.

This thesis will evaluate a COP that has two constraints and is associated with splitting

a large computational job into smaller tasks to be processed on concunent available

resources running on a grid. Finding a solution using an exhaustive search algorithm

would take longer to complete than the usefullifecycle of the result, or depending on

the size of the solution space, could take years to calculate. We will compare the

performance of two stochastic algorithms and then contrast their results to an optimal

search within small solution spaces. The best performing algorithm will be

recommended for use in our grid computing resource allocation COP.

1.1 The Dual Constraint Optimization Problem: Grid Resource Allocation

Grid computing is being used in a wide variety of ways throughout the educational,

research, and commercial communities. There are many types of grid computing

paradigms. Some of these include cluster computing, data grids, and computational

- 1 -

grids. The ability to pull together the power of many disparate computer systems in a

heterogeneous environment makes computational grids the most dynamic use of the

grid architecture. This conglomerate of computing power can be used to power High

Perfom1ance Computing (HPC) applications in almost all industries, such as Aerospace,

Life Sciences, Financial Services, and Automotive and Electronics. As this demand for

more computing power grows, so does the commercialization of this computing power.

The leasing of computer time is not a new concept; it was how the early computer users

gained time to run their programs on mainframe systems. This practice ofleasing time,

or processing power, is once again being implemented and will only continue to grow in

popularity due to the cost of purchasing equipment to run HPC applications. The

business model of leasing computer resources as an on demand resource is commonly

referred to as Utility Computing [Buyya02].

Guaranteeing Quality of Service (QoS) for each application is especially difficult. The

resource Service Level Agreements (SLA) offered by the service providers must be

mapped to the application level SLAs [Menasce04], which denote the terms required by

the application. The SLAs detail quantifiable metrics that have to be met between a

user application and a service provider. The availability of many different service

provider options creates a very complex scheduling and optimization problem.

Attempting to find an optimal solution would require an exhaustive search, which

would require more time and money than our SLA would allow. The amount of time

needed to find an optimal solution climbs exponentially as the number of available

- 2-

resources mcrease. Each resource could have allocated anywhere from 0% to 100%

share of the job, as long as the sum of the shares allocated to all resources equallOO%.

An optimal solution for this problem is NP hard (Non-deterministic Polynomial-time

hard) and requires heuristic solutions [Menasce04A]. This optimization process

becomes more complex when the constraints are added. Even though we have chosen

time and cost as our constraints, the results of this thesis can be applied to any dual­

constraint-based, NP-hard problem.

This research compares two stochastic algorithms as possible solutions to this

optimization problem-Genetic Algorithm and Simulated A1mealing. These two

algorithms were created to mimic nature and the way it uses a stochastic approach to

biological reproduction and the cooling of metals. Chapter 3 will further explain

Genetic Algorithms and Chapter 4 will provide an overview of Simulated Annealing.

1.2 Grid Computing and Its Variants

The architecture of Grid Computing is the next advance in distributed computing

[Feniera03]. Grid computing uses many different heterogeneous resources to simulate

a single computing machine that, when united with a large number of donor resources,

can be extremely powerful. There are many types of grid computing architectures, and

each offers redundancy, dynamic expansion, and improved performance to each

respective application.

- 3 -

Cluster computing is a very close relation to grid computing, where resources are

typically linked together by a fast Local Area Network (LAN). Cluster computing is

not normally viewed as grid computing in the traditional sense, due to the way the

resources are tightly coupled in a homogeneous manor. Grid computing is normally

thought of as many types of heterogeneous resources, loosely coupled together across

administrative domains. Clusters, on the other hand, are on a single domain with

identical hardware and software configurations used across all resources. Computing

clusters may be used as one of the available resources in a grid, but a grid would not be

viewed as an available resource in cluster computing.

A data grid is the second most common type of grid computing [Fe1Tiera03] and can

have several uses associated with the storage of data. Data grids normally utilize space

on almost any type of donor resource, although typically this space is scavenged from

individual user workstations. A data grid can act as a resource for transitory data, such

as what might be used by researchers who run applications that need large amounts of

storage (terabytes, petabytes) to run complex computations. Researchers could also use

this area as a virtual workspace, where a large amount of temporal storage is needed to

study results from a test run. When data are stored on the grid using striping, then data

can be accessed faster with more efficiency. Striping stores the same data at multiple

locations, enabling parallel searches. A data grid also provides the ability to have data

redundancy, with data at many different resources, thus eliminating a single point of

contention, or failure.

- 4-

In this research we concentrate on the most popular form of grid computing

[Ferriera03], the computational grid. This type of grid reduces a large job to many

different small sub-tasks and sends each sub-task to a different resource to process.

When the resource has completed its sub-task, the result is returned to the controller,

which pieces all of these sub-results together to fom1 the answer. Figure 1 illustrates

the Grid Resource Broker splitting the sub-tasks, sending them to an available resource,

and then collecting the results.

Jooo and subiobl; to run

11\ppllcaUon]

Figure 1: Computational Jobs are Split
to Run on the Grid [Ferriera03]

The Grid Resource Broker (GRB) [Buyya02] has the job of dividing the job among the

available resources. The GRB also has other responsibilities, including resource

discovery, resource selection, and job division, as well as task-resource matching and

optimization.

- 5 -

1.3 Utility Computing: The Grids Economic Approach

Utility computing is fashioned after other on-demand services, such as electricity,

water, and gas. The service, in our case of computing power, is offered by service

providers with various levels of computing speed at different costs. No matter which

industry employs utility computing, all users would like for their jobs to be completed

as quickly as possible. Moreover, there are many products that manage scheduling and

optimization for grid applications, such as GrADS, DAGMan, Askalon, ICENI, APST,

and Pegasus [Buyya02]. These products are based on minimizing execution time, but

they do not evaluate cost constraints associated with utility computing. Both cost and

execution time must be considered when purchasing computing power from a service

provider. Some users may need job results quickly and are able to absorb the premium

cost associated with such a service, while others may wish to wait for results, as long as

the job is executed within a specific time frame.

Rajkumar Buyya gave a tutorial session at the 2005 International MultiConference in

Computer Science and Computer Engineering, "Grid Computing: Making the Global

Cyberinfrastructure for eScience and eBusiness a Reality." He outlined many

challenges of implementing a utility grid, one of the most important being how to map

jobs to resources to meet QoS requirements [Buyya05]. Buyya used Figure 2 to

illustrate Gridbus and its associated technologies. It shows how the GRB fits into the

User-Level Middleware layer of the grid architecture.

- 6 -

>
E
0
c:
0
u
w
"0 ·c
~

Gridbus a11d Cotnple111e11tary
Technologies - realizi11g Utility Grid

Science f f Commerce f f Engineering f f Collaboratories f .::· f Portals f

~I PI f.::· '-------'

Grid Resource
Brokers:

I ExceiiGrid I I Gtidscape I I V/orkflow I I x~Pal*ameter S\veep Lang.

Figure 2: The Grid Resource Broker is a Part
of the User-Level Middleware [Buyya05]

Grid
Fabric
Hard~Nare

The GRB communicates with the Core Grid Middleware services to find out what

resources are available, how much they cost, and the processing offered by each. It uses

this information to find the best solution for the jobs being submitted at the application

leveL The submitted jobs may have QoS requirements that have to be met, such as

ensuring a job is completed in a certain time frame and ensuring it will cost no more

than a certain amount. These requirements must be met for the solution to be valid and

in the domain of possible solutions.

- 7 -

Chapter 2

SURVEY OF RELATED WORK

2.1 The Resource Allocation Problem: How to Optimize?

Daniel Menasce and Emiliano Casalicchio published an article, "QoS in Grid

Computing" [Menasce04], in which they discuss a mathematical model for optimizing

the selection of services and service providers to obtain a solution within the bounds of

the global Service Level Agreement (SLA). The authors' mathematical model includes

provisions to take into account optimization problems that have cost and time

constraints. This mathematical framework is the basis for this thesis and for the grid

optimization problem being explored.

Menasce and Casalicchio have written several papers discussing the QoS issue

associated with grid computing resource allocation, where global SLAs must depend on

local SLAs [Menasce04, Menasce04A, Menasce04B, Menasce04C]. In these papers,

the authors talk at length about the factors involved when trying to select services from

a service provider, so the global SLA is satisfied with a minimum of cost

[Menasce04B]. Although the cost is minimized, the execution time must also fit within

the guidelines of the SLA.

The main factors are as follows: the job requires NC millions of CPU cycles to finish, it

has to be finished in at most Tmax time units, and it must not cost more than Cmax dollars

- 8 -

to run [Menasce04B]. For this optimization to take place, the Grid Resource Broker

requires a priori lmowledge of each resource available, along with its speed and cost.

Once all of the available resources are !mown, the chosen algorithm must produce a

near optimal solution.

The following three equations, in Figure 3, show the constraints associated with

resource allocation. Equation 1 shows all of the cycles needed to complete the job, NC,

are applied to the available computing resources, N. Equation 2 is the constraint

associated with the maximum execution time. Since all the tasks, N, run in parallel, the

total execution time is the task taking the longest to run. Equation 3 is the cost

constraint equation.

N

~NCi=NC (1)
i=l

(2)

(3)

NC = Total number of cycles needed to complete the job
N = Number of computing resources
T = Execution time
Tmax =Maximum allowed time to finish job
Si = Speed of the resource i
C= Cost
Ci = Cost of resource i
Cmax =Maximum allowed cost of job

Figure 3: Equations for the Total Cycles, Time Constraint,
and Cost Constraint [Menasce04B]

- 9 -

2.2 Stochastic Algorithmic Solutions

An article published in the International Journal ofNetwork Management discussed the

use of a Genetic Algorithm (GA) for allocating network resources in a competitive

electronic commerce marketplace [YeO 1]. The authors, Jian Y e and Symeon

Papavassiliou, use the GA to find the optimal network route, when given the ability to

use multiple network providers. During their experimentation they used the following

values for the GA parameters:

• Population size: 71

• Crossover rate: 0.6 (or 60%)

• Mutation rate: 0.1 (or 10%)

These researchers did not initially apply any stopping conditions and the algorithm

would always run until it converged on a single solution. The results of multiple runs

showed the GA would find the optimal solution in approximately 130 steps, although

some runs could take more than 250 or as few as 40. The authors next applied some

stopping conditions. One of these conditions halts the GA when the algorithm has not

made an improvement after a certain period of time. This would give a near optimal

solution, but not necessarily the very best solution. The optimization of network

routing does not always require the optimal solution, but it does require a quick near­

optimal solution every time. The authors concluded a GA could be used effectively

when tailored to the domain associated with the optimization problem. This algorithm's

goal was to find the best possible solution without any constraints, such as cost or time.

- 10-

Other related work has dealt with using Simulated Annealing for scheduling distributed

applications on a computational grid. YarKhan and Dongarra have compared Simulated

Annealing and an Ad-Hoc Greedy scheduler as the scheduling mechanisms for a

ScaLAP ACK LU solver on a grid [YarKhan02]. The goal of this project was to

minimize execution time, without regard to any cost or time constraints. The authors

concluded the Simulated Annealing scheduler generates schedules that have better

estimated execution times than those generated by the Ad-Hoc greedy scheduler.

Seonho Kim and Jon B. Weissman presented a paper at the 2004 Intemational

Conference on Parallel Processing titled, "A GA-based Approach for Scheduling

Decomposable Data Grid Applications." This paper compared a GA-based algorithm

with algorithms based on Divisible Load Theory (DLT), Constrained DLT (CDLT), and

Tasks on Data Present (TDP). As with other reviewed works, the authors were trying to

minimize optimization time, but they did not use any constraints. They found their

proposed GA-based approach generally out-performed the other algorithms.

One of the authorities on grid computing, Rajkumar Buyya, has written much on

scheduling jobs on a computational grid. Buyya was one of the first to use the term

"utility grid." This term describes the concept of grid computing being a "pay as you

go" resource, much like electricity, water, or other utilities. Teaming with Ajith

Abraham and Baikunth Nath, he wrote a paper on job scheduling comparing three

different heuristics; Genetic Algorithm, Simulated Annealing (SA), and Tabu Search

- 11-

(TS). Also included in the comparisons were approaches using GA-SA and GA-TS

hybridized algorithms [AbrahamOO].

The authors concluded a GA-SA hybridized solution had better convergence than a

standard GA implementation [AbrahamOO]. A GA-TS hybrid was also tested and

showed improvement in efficiency when compared to a GA solution. Although the

paper stated these findings, no empirical data were given to support these conclusions.

This shortcoming is most likely due to the complexity of resource allocation and the

way in which the solution's efficiency is altered by the many variables associated with

each instance of the problem. The authors focused on minimizing the completion time

of the job, so there was no mention of cost constraints associated with a utility grid.

In 2006 Buyya co-authored a paper with Jia Yu titled, "A Budget Constrained

Scheduling of Workflow Applications on Utility Grids using Genetic Algorithms"

[Yu06]. Once again, the researchers explored various aspects of a "pay-per-use" grid

paradigm. The work compares a slightly altered GA, with a Greedy Time (GT)

scheduler. The GA uses a dual fitness function evaluation, which is divided into two

parts: cost-fitness and time-fitness. Another alteration of their GA is the use ofMarkov

decision processes to improve the convergence of the GA when given a very low

budget. The authors took an approach similar to ours and tested in several areas.

• Use ofvarying the budget (cost) as the constraint for multiple problems.

• Use of Million Instructions (MI) to represent the length of the jobs and

associated sub-tasks.

- 12-

• Use of Million Instructions Per Second (MIPS) to depict the processing

capabilities of available resources.

• Use of multiple testing runs and averaging the results. This method is used due

to the stochastic nature of the GA (They used 10 runs, but we used 100 for our

averages.)

Although there were some similarities, there were also several key differences. Buyya

and Yu used cost as their only constraint and chose to only minimize time. During our

testing, we compared our approach against another stochastic algorithm, Simulated

Annealing, and to the optimal solution. Buyya and Yu compared their GA against a

Greedy Time scheduler. The outcome of their work was displayed in a series of graphs

that showed how the GA outperformed the Greedy Time scheduler for execution cost

and execution time.

2.3 Focus ofThesis

The focus of this thesis was the creation of algorithms based on Menasce's

mathematical model shown in Figure 3 and on the evaluation of the performance of

each algorithm in relation to each other, as well as to an optimal solution. There were

many steps to creating, testing, and evaluating the results for each algorithm. The main

steps, goals, and contributions of this thesis are outlined below.

• Genetic Algorithm

o The mathematical model was mapped to a Genetic Algorithm. The

mapping of a Genetic Algorithm onto a string (chromosome), which is

the object processed by Genetic Algorithms, is completely unique to

- 13-

every problem. Once the problem description was mapped to a string,

the next step was to determine how to evaluate the fitness value of that

string.

o After reproduction took place the Genetic Algorithm, the next two steps

were crossover and mutation. These two steps alter the value of the

string, and sometimes the resulting string no longer satisfies the

constraints of the model. If the new string is no longer a valid solution,

then adjustments needed to be made to alter the values within the string.

That required the creation of an Adjustment Operator for crossover and

mutation. These Adjustment Operators were unique to this problem.

• Simulated Atmealing

o The mathematical model were then mapped to a Simulated Annealing

algorithm. The mapping into a solution set for Simulated Annealing was

unique, as it was with the Genetic Algorithm. The solution was then

evaluated based on its energy value, which corresponds to the fitness

value in a Genetic Algorithm.

• Comparison

o Both the Genetic Algorithm and the Simulated Annealing algorithm

were compared to the optimal solution. A limited set of resources was

used to create a relatively small solution space, so an optimal solution

might found.

- 14-

o Multiple variables were adjusted in each algorithm to find the best

possible combination for the Genetic Algorithm and the Simulated

A1mealing algorithm.

- 15-

Chapter 3

GENETIC ALGORITHMS: SURVIVAL OF THE FITTEST

The Genetic Algorithm (GA) is based on the principles of natural selection and the

genetic processes associated with biological organisms. Charles Darwin discussed this

progression in his book, The Origin of Species by Means of Natural Selection, and

Herbert Spencer used the term "survival of the fittest" in his books about evolutionary

philosophy to explain how a species evolves over time. These same basic principles are

mimicked in software development when creating a GA.

The GA processes solutions represented by a string of value parameters. This solution

string represents a chromosome and each value parameter symbolizes a gene. Each

chromosome has a conespondingfitness value and this value represents the degree to

which this chromosome is "good." The chromosomes with the better fitness values

have a greater probability of being chosen for propagation to the next generation. GAs

start with a randomly generated population pool. This pool houses chromosomes used

to create the subsequent generation. Through genetic evolution, the chromosomes with

the better fitness values yield better offspring and eventually converge on a near optimal

solution.

Finding a stopping point for the GA is another area where a decision has to be made. In

our experimentation, we chose to stop when all the chromosomes converged on a single

solution. Other possible stopping conditions include (a) reaching a preset limit on the

- 16-

total number of iterations processed and (b) determining the fitness value of the best

chromosome has changed only slightly for a number of generations [Kim04]. All of

these stopping conditions could have been used separately or in combination.

Figure 4 depicts the flow of a basic GA, which starts with the randomly generated initial

population pool. The population size used has a direct impact on the perfonnance of the

GA and tends to be unique to each problem. If the population size chosen is too small,

the population may lose genetic diversity, causing the GA performance to decline.

Some studies suggest a good guideline to use is between 30 and 200 chromosomes

[Krishnakumar89]. The next steps are reproduction, crossover, and mutation

[Goldberg89]. The algorithm stops when all the chromosome values in a population are

identical and the GA has converged to a single solution.

Initial Pofulation

~ Reproduction
l

Crossover
l

Mutation
l

L__ Convergence?
l

Figure 4: Genetic Algorithm Flowchart

- 17-

3.1 Reproduction

During reproduction, chromosomes are evaluated and then copied based on their fitness

value. The better the fitness value, the higher the probability of that chromosome

contributing one or more offspring to the next generation [Goldberg89]. This process

continues until a new generation is created to take the place of the current one. The

reproduction selection algorithm may be implemented in many different ways. A few

implementations are as follows: [Haupt04]

1. Random pairing: This process randomly chooses two parents. This method

does not mimic natural selection, because the selection of mates is not

uniformly random in nature.

2. Top to bottom pairing: Chromosomes are paired two at a time, beginning

from the first and ending with the last. This method does not model nature,

but it is easy to implement.

3. Tournament selection: This method randomly selects a small subset of

chromosomes, usually between three and four. From this subset, the

chromosome with the best fitness value is chosen to become a parent. The

process is repeated for the next parent. This method mimics mating

competition in nature.

4. Weighted roulette wheel or weighted random pairing: Using a biased

roulette wheel, this method selects chromosomes using a probability

weighted toward choosing those with better fitness values. In our GA, we

chose the weighted roulette wheel method of selecting parent chromosomes.

This method is depicted in Figure 5.

- 18-

No. String Fitness % ofTotal

1 01101 169 14.4

2 11000 576 49.2

(2) 49.2% 3 01000 64 5.5

4 10011 361 30.9

Total 1170 100.00

Figure 5: Weighted Roulette Wheel Representing Four Chromosomes.

3.2 Crossover

Chromosome #2 has the Best Fitness Value and thus the
Highest Probability of Being Chosen [Goldberg89].

Crossover is used to create two new children chromosomes, derived from the two

chosen parent chromosomes. The crossover function occurs between two parents

depending on the value associated with the crossover probability, Pc, which usually falls

in the range between 50% and 100% [Eiben03]. Other work [Man99] suggests thatpc

has a typical value between 60% and 90%, but normal values found in nature are around

60% [Kim04, Man99, Ye01]. The setting ofpc depends on the traits ofthe optimization

problem and is critical to the performance of the GA. There is no single value for all

problems, but some guidelines have been provided [Man99]:

• For smaller populations (30),pc = 90%

• For larger populations (lOO),pc = 60%

- 19-

As with reproduction, there are several different ways to perform a crossover operation.

The method most true to biological processes, and the one used in this work, is the

single point crossover. A random crossover point is selected and then the last half of

each parent chromosome is swapped to yield two new children chromosome strings.

This is demonstrated in Figure 6.

Example of crossover:

Sl = 0 111 01

S2 = 1 1 0 I 0 0

Yields two new strings:

S1'=01100

S2' = 1 1 0 0 1

Figure 6: Crossover Example

Once a new set of chromosomes is created, rules for propagation to the next generation

need to be implemented. Figure 7 displays pseudo code of the algorithm we created to

determine propagation.

-20-

S1, S2 =Parent Chromosomes
S 1 ', S2' = Children Chromosomes

II*** Step 1 ***
II Find the fittest child chromosome (BestChild)
IfS1' Fitness Value= S2' Fitness Value

If S 1' Cost < S2' Cost
BestChild = S 1'

Else
BestChild = S2'

Else If S 1' Fitness Value > S2' Fitness Value
BestChild = S 1'

Else
BestChild = S2'

II*** Step 2 ***
II Find the fittest parent chromosome (BestParent)
IfS1 Fitness Value= S2 Fitness Value

If S 1 Cost < S2 Cost
BestParent = S 1

Else
BestParent = S2

Else If S 1 Fitness Value > S2 Fitness Value
BestParent = S 1

Else
BestParent = S2

II *** Step 3 ***
II Evaluate BestChild and BestParent
IfBestChild Fitness Value= BestParent Fitness Value

If BestChild Cost < BestParent Cost
Propagate BestChild

Else
Propagate Random(BestChild, BestParent)

Else IfBestChild Fitness Value> BestParent Fitness Value
Propagate BestChild

Else
Propagate Random(BestChild, BestParent)

Figure 7: Genetic Algorithm Propagation Pseudo Code

- 21-

3.3 Mutation

Although mutation is considered a secondmy operator in a GA, it helps to keep the

algorithm from converging on a single solution and failing to test new areas of the

search space. This premature convergence can lead to the process of becoming stuck in

a local minimum (or maximum) and not finding the global minimum (or maximum).

Figure 8 illustrates Wright's adaptive surface [Wright32]. The z plane represents the

fitness value, while x andy represent values for different trait combinations. In this

multimodal problem, the many peaks represent higher fitness values, where there exist

many solutions better than those neighboring. Each of the smaller peaks is known as a

local maximum and the highest overall peak is known as the global maximum, which is

the optimum solution. This outcome differs from a unimodal problem, where there

would only be a single peak that would be the optimum solution.

-22-

55

50

45

40 g

0
4

3 trait 1
2

0

Figure 8: Wright's Adaptive Surface [Wright32]

To help avoid getting stuck in searching around a local maximum, mutation occurs

using a specified probability, p 111 • The probability of mutation in nature is normally low,

usually on the order of one mutation per thousand position transfers [Goldberg89].

Generally, a value somewhere between 1% and 10% is used for p 111 • Other work has

suggested a much higher probability of mutation, around 50% [Kim04], which does not

closely follow the rate represented in nature. As with the value of crossover probability

and the initial number of generations, the mutation probability must be chosen with

respect to the domain of the optimization problem.

- 23-

Once the mutation probability is selected, the next step is to determine how to mutate

the chromosome. As with the other variables associated with a GA, this process is also

unique to the optimization problem. An example would be chromosomes composed of

binary digits for genes. One common form of mutation would be to invert a randomly

selected gene value. Figure 9 depicts three different variations of the mutation

operation, Bit Flip Mutation, Swap Mutation, and Inverse Mutation.

Example Mutations

• Bit Flip (or Bitwise) Mutation:
S1 = 1 0 0 0 1
S1'=10011

• Swap Mutation
S1 = 1 0 0 0 1
S1'=11000

• Inverse Mutation
S1 =123456
S1'=143256

Figure 9: Examples of Mutation Methods

-24-

Chapter 4

SIMULATED ANNEALING: COOLING HOT METAL

The physical process of slowly cooling a material until it has a strong crystalline

structure is known as "allllealing" in metallurgy. The material is heated, giving the

atoms lots of energy, and then it is slowly cooled so the atoms align and leave the

material with little or no imperfections. In 1982 Kirkpatrick used the term "Simulated

Allllealing" (SA) to describe how to use a virtual physical process to search out

solutions to optimization problems [Kirpatrick83].

Unlike a Genetic Algorithm, which maintains a pool of candidate solutions, Simulated

Allllealing only evaluates one candidate at a time. SA starts with a random solution and

then perturbs that solution slightly, creating a new solution for comparison purposes.

Since this new solution is only slightly perturbed, it is considered a neighbor and is

located near the first solution in the solution space. If the new solution has a better

energy value, meaning a better solution, then it is kept. If the newly created solution

does not have a better energy value, then it is accepted solely on the basis of probability.

The probability function is displayed in Figure 10.

- 25-

p = e (-oEff)

Where,

8E =Change in energy, E, between two solutions

T = Current temperature

Figure 10: Probability Function

A random number, r, is generated with a value between 0 and 1. This number is then

compared to the probability, P, and is kept if it is less than r. Initially the new solutions

are selected, but as the temperature Tis reduced, so is the probability of accepting

solutions with worse energy values. However, as with mutations in the Genetic

Algorithm, periodically accepting an inferior solution is necessary to avoid becoming

trapped in a local maximum without searching other areas of the solution space.

The flowchart of a standard Simulated A1111ealing algorithm is shown in Figure 11.

-26-

Generate a new solution
No~ , Change

+---------'
tperatur •

No

Figure 11: Flowchart of a Standard Simulated
Annealing Algorithm [PhamOO]

-27-

When an SA algorithm is implemented, many decisions need to be made. As with the

Genetic Algorithm, the solution representation is unique to every problem. Also unique

is the evaluation function, which begets an energy value. The energy value is analogous

to the fitness value found in the Genetic Algorithm. This value represents the

"goodness" of the solution. As the algorithm iterates, the solution must be perturbed

slightly to create the new comparison solution. This perturbation is also unique to each

problem and is usually adjusted through experimentation to determine how much of a

perturbation is needed to achieve the desired results. The main algorithm functionality

issues that must be solved are listed below:

• How to represent the solution

• How to determine the energy value, E

• How to perturb the solution in order to create a neighbor solution

• How to construct a temperature function, T(t), to determine how the temperature

is to be changed

• How to determine the stopping criterion to terminate the algorithm

Other choices that need to be made deal more specifically with the cooling schedule

[Eglese90]. Each of the variables associated with the algorithm functionality has to be

adjusted, usually through experimentation, to obtain the best possible results for the

given solution domain. Although the best possible solution is desired, this solution

must be arrived at in a timely manner and meet both the time and cost constraints of the

problem. Some of these critical choices that deal with the cooling schedule are listed

below:

- 28-

• The initial value of the temperature, T

• The number of iterations, N(t), to be perfom1ed at each temperature

• The value used to update to a new, lower temperature at each level, a

• The final temperature value

Cooling schedules can vary, but most remain close to those based on the physical

annealing process. Kirkpatrick eta!. started with an initial temperature high enough to

ensure most of the initial solutions are accepted [Kirkpatrick83]. This approach would

simulate the heating of the material until it is a liquid and all of the atoms are moving

around rapidly. A temperature function is then used to decrement the current

temperature in small amounts, T(t + 1) = aT(t). In this equation, a is a constant that

usually has a value between 0.80 and 0.99 [Eglese90]. At each temperature level, a

number of iterations are performed, N(t). The number of iterations could be deduced by

several methods, but one of the simplest is to set the value in proportion to the size of

the solution space. The stopping criterion is usually that the new solution has not been

altered for a specified number of temperature changes. This condition is analogous to a

physical frozen state [Eglese90]. More cooling schedules are available, but they tend to

stray from the original physical analogy on which the algorithm was based.

-29-

Chapter 5

TESTING AND EVALUATION OF THE STOCHASTIC ALGORITHMS

To evaluate the results of our GA and SA algorithms, we had to establish a baseline,

which meant an optimal solution had to be found for a given problem with a defined set

of constraints. Finding the optimal solution requires an exhaustive search and can only

be achieved for a small solution space. As a result, the number of available resources

would have to be limited for our optimization problem. Through some informal testing,

we found five available resources would give us a manageable solution space over

which to perform an exhaustive search.

All of the testing for this research was perfmmed on a workstation with an Intel Zeon 3-

GHz CPU and 2GB of RAM. To find the optimal solution for five available resources,

the run completed over 1.9 billion comparisons and took approximately 112 hours. To

run comparisons using more available resources, we adapted our algorithms to solve for

10 resources. Although it would be impossible for us to run an exhaustive search for

such a large search space, we ran the GA and SA algorithms several hundred times

using 10 available resources. From these runs, we found both algorithms consistently

derived the same near-optimal solution. We used this solution as the baseline for our

testing with 10 available resources.

- 30-

There are many different variables associated with the implementation of a GA or SA

algorithm. The value of each variable can be adjusted to alter the performance of the

algorithm, depending on the parameters associated with the problem itself. With such a

large amount of changeability associated with each of the algorithm's variables, the

creation of true empirical data is very difficult. Other researchers in the area of job

scheduling on a grid usually make broad statements in their conclusions when

comparing different algorithms. The conclusion typically states one algorithm has

better convergence over another or one improves the efficiency when compared to a

similar algorithm [AbrahamOO].

5.1 The Optimal Solution

To find the true optimal solution against which to compare the GA and SA performance

would require an exhaustive search through the entire solution space. We ran an

exhaustive search to find the optimal solution for five available resources, offering five

different computational rates, at five different costs. The exhaustive search ran for over

112 hours and completed over 1.92 billion comparisons to anive at the optimal solution

for each of the test scenarios. Considering the parallelism of grid computing, the total

execution time of a specific job would be the maximum execution time among the set of

sub-tasks.

To fully exercise each algorithm, we created three different available resource

scenarios. We then ran two different problems on each scenario, varying the cost

constraint. We used the values listed in Figure 12 for our scenarios.

- 31 -

Available Resources Speed (Millions cycles/second) Cost ($/second)
Rl (Scenario- I) 1 $ 1
R2(Scenario-1) 2 $3
R3(Scenario-l) 3 $5
R4(Scenario-1) 4 $6
R5(Scenario-l) 5 $7
R1 (Scenario-2) 1 $ 1
R2(Scenario-2) 3 $3
R3(Scenario-2) 5 $5
R4(Scenario-2) 7 $6
R5(Scenario-2) 9 $7
R1 (Scenario-3) 1 $ 1
R2(Scenario-3) 3 $2
R3(Scenario-3) 5 $3

__ R4(Scenario-3) 7 $4
R5(Scenario-3) 9 $5

Figure 12: Resource Scenarios and Their Associated Speed and Cost

We used the problem constraints listed below and ran each on the three different

resource scenarios. Figures 13 and 14 reveal the optimal solution for each resource

scenario, using each set of the problem constraints.

• Problem Constraints #1

o Total cycles required to complete job: 20 million cycles

o Maximumjob execution time: 10 seconds

o Maximumjob cost: $25.50

Scenario
%job allocated to each resource

Time to complete job Job Cost
R1: :R2: :R3: :R4: :R5

S1 32%::0%::0%::0%::68% 6.4 seconds $ 25.44
S2 4%::12%::20%::28%::36% 0.8 seconds $ 17.60
S3 4%::12%::20%::28%::36% 0.8 seconds $ 12.00

Figure 13: Optimal Solutions for Problem Constraints #1

- 32-

• Problem Constraints #2

o Total cycles required to complete job: 20 million cycles

o Maximum job execution time: 10 seconds

o Maximumjob cost: $25.00

Scenario
%job allocated to each resource

Time to complete job Job Cost
Rl::R2::R3::R4::R5

Sl 38%::0%::0%::0%::62% 7.6 seconds $24.96
S2 4%::12%::20%::28%::36% 0.8 seconds $ 17.60
S3 4%::12%::20%::28%::36% 0.8 seconds $ 12.00

Figure 14: Optimal Solutions for Problem Constraints #2

Once the optimal solutions were found for the five-resource problems, we needed to

find the optimal solution for the ten-resource problem. To ensure the entire job could

not be entirely allocated to the fastest resource, we chose constraints that would force

the job to be distributed throughout the available resources. Using informal testing, we

chose the following constraints:

• Total cycles required to complete job: 20 million cycles

• Maximumjob execution time: 10 seconds

• Maximumjob cost: $25.00

We used the values listed in Figure 15 for our ten available resources.

- 33-

Available Resources Speed (Millions cycles/second) Cost ($/second)

Rl 1 $ 1
R2 2 $3
R3 3 $5
R4 4 $6
R5 5 $7
R6 6 $8
R7 7 $9
R8 8 $ 10
R9 9 $11

RIO 10 $ 12

Figure 15: Ten Available Resources and Their Associated Speed and Cost

Through the hundreds of test runs performed using our GA and SA algorithms, we

found the optimal solution given in Figure 16:

%job allocated to each resource Time to
Job Cost

Rl::R2::R3::R4::R5::R6::R7::R8::R9::R10 complete job
2%::0%::0%::0%::2%::14%:: 17%:: 19%::22%::24% 0.49 seconds $24.95

Figure 16: Solution for Optimization Problem Using Ten Available Resources

We used this solution as our baseline for testing the accuracy of our GA and SA

solutions for ten available resources.

5.2 The Genetic Algorithm

There are many choices to be made when creating a GA solution. Each solution is

unique to the particular problem of interest. We chose to mimic nature as closely as

possible and concentrate on the pure GA solution, rather than trying to atiificially tweak

- 34-

the GA operations. GA creation involves choices that fell into two main categories:

functionality of the algorithm and variable values to be used during execution.

5 .2.1 Algorithmic Functionality

The first choice made dealt with the creation of the initial population to be used for the

GA, so it fell into the category of algorithm functionality. A GA's initial population

can be created in several ways, so we chose to begin with a randomly generated

population of chromosomes that fit within our time and cost constraints. Another

approach would have been to use a seeded population, where a certain percentage of the

chromosomes with the best fitness values are used for the initial population, for

example the top 50%. Depending on the population size and the size of the solution

domain, seeding the initial population may cause the GA to converge rapidly on a local

maximum. In order to better cover the solution landscape and more closely resemble

nature, we did not seed our initial population.

Unique to every GA is the fitness function, which is used to determine the "goodness"

or "worth" of the particular chromosome. Once programmed, the fitness function will

provide a way to compare the chromosome solutions to each other. Historically, GAs

have been minimizing algorithms, which are algorithms that depict the chromosomes

with smaller fitness values as being more desirable. We chose to make a maximizing

algorithm out of our GA and place precedence on larger fitness values. To do this, we

subtracted the chromosome solution time from the time constraint for the job and

assigned that result to the fitness value. This approach would ensure the chromosome

- 35-

with the fastest completion time would have the highest fitness value. The side benefit

is any solution resulting in a fitness value of less than zero can immediately be

discounted as a valid solution, since it would take longer to run than our time constraint

would allow.

The next choice in functionality was the selection of a reproduction method. In section

3.1 several of the different ways to program the reproduction method were discussed.

We chose the weighted roulette wheel, sometimes called "weighted random pairing."

This method selects pairs of chromosomes based on a biased roulette wheel, which uses

a probability weighted toward choosing chromosomes with better fitness values. This

method seems to more closely match biological reproduction.

As with the other GA functions, crossover between two parent chromosomes can be

performed in several ways. Crossover can be done from a single point, from multiple

points, or using a randomly generated crossover mask. Each method has strengths and

weaknesses, depending on the type of optimization problem. We chose the simplest

and the one inspired by biological processes, single point crossover.

The pseudo code we used to propagate chromosomes to the next generation after

crossover was presented in Section 3.2 (Figure 7). To avoid rapid convergence to a

local maximum, we did not always propagate the chromosomes with the best fitness

values. We chose the more fit value between the two children and propagated that child

who had a better fitness value than both parents. If the child chromosome did not have

- 36-

a better fitness value than both parents, then the propagation was based on

randomization. Allowing a less fit chromosome to sometimes propagate facilitated our

coverage of more solution space and helped prevent the run from becoming stuck in a

local maximum.

Mutation is considered a secondary operator in a GA, but it also helps to guard against

becoming stuck in a local maximum. Usually a low occunence operation, mutation

makes a minor random change to one of the genes in the chromosome. In Section 3.3

we discussed how mutation takes place during a GA generation. We chose to reduce a

random gene in the selected chromosome by 5% ofthe assigned job and then to add that

5% to another randomly selected gene in the chromosome.

After crossover or mutation, the chromosome may violate the job constraints and

become invalid. As with a cell's DNA repair system, we created a repair mechanism

[Man99]. This mechanism is also sometimes referred to as "constraint handling"

[Eiben03] or an "adjustment operator." Our repair mechanisms ensure the chromosome

adheres to these main restrictions:

• 100% of the job is allocated among the genes for that particular chromosome.

• The newly created chromosome is not in violation of the job constraints.

The last decision to make about the functionality of a GA is when should it stop? There

are many schemes that can be used separately or in conjunction with one other. A GA

can be stopped when a certain number of generations have been reached, when there is

- 37-

no change in the fittest chromosome over a certain number of generations, when the

percentage of change is very slight over a certain number of generations, or when all

chromosomes converge to be the same. We chose to stop when all chromosomes

converged, so we would be able to compare the absolute final outcome of the GA.

5.2.2 Variable Values

The main variables that compose a GA are mutation rate, crossover rate, and initial

population. The rate of mutation and crossover are normally selected by trial and error,

but there are some guidelines. Goldberg quotes a study of Genetic Algorithms in

function optimization completed in 1975 by DeJong, which states," ... good GA

performance requires the choice of a high crossover probability, a low mutation

probability (inversely proportional to the population size), and a moderated population

size" [Goldberg89]. In many of Goldberg's examples, he chooses to use a crossover

probability of 60% and a mutation probability of 3%. Sections 3.2 and 3.4 supply

further information about crossover and mutation from our literature survey.

To determine values for the three different variables in our GA, we performed a series

of test runs. For the probability of mutation, we found 2-5% yielded the best results for

our test problems. The crossover probability performed best between 60-80% for our

tests. We needed to find a balance between excess processing, which increases

calculation time, and finding a near-optimal solution.

- 38-

Using our selected values for the probability of mutation and crossover, we ran similar

tests in which the population size was varied. We stmied with a population size of 1 0

and increased by 10 until we had a population size of 100. We ran the GA ten times at

each population size and took the average. This process was completed for both five

and ten available resources.

Figure 17 shows the fitness value of the GAin relation to the population size. This

graph depicts how the population size has a direct effect on the fitness value of the

solution. The optimum solution has a fitness value of3.6 for five available resources

and 9.51 for ten resources. Figures 17-20 are examples of the GA's behavior using one

of the resource scenarios and a single set of variable values while varying the

population size.

- 39-

10.00

9.00

8.()]

7.00

~
';6.()]
=
~
~500
s
Ll:

400

3.00

2.00

1.00

0.00
10 20

Fitness Value (FV) vs. Population Size

3D 40 50 60 70 80
Po mlation Size

-+--1 0 RESOURCES: Pc=65% ,Pm=2% ,MaxJobCost=25 ,MaxJob Time=1 0 ,TotJobCycles=20

~5 RESOURCES: Pc=65% ,Pm=2% ,MaxJobCost=25.5 ,MaxJob Time=10 ,TotJobCycles=20

90

Figure 17: Sample Population Size vs. Fitness Value GA Test Run

100

Figure 18 shows the time it takes for the GA to run in relation to the population size.

From this graph we can see that as the population size grows, so does runtime of the

GA, but the runtime does not increase at the same rate. The more resources involved,

the faster the rate of increase in time for subsequently larger populations. For five

resources, the GA runtime increased 3650% from using an initial population of 10,

compared to using a population pool of 100. The GA runtime increased 4035% for the

same test when we used 10 available resources.

-40-

GA Runtime vs. Population Size

-+-10 RESOURCES: Pc=65% ,Pm=2% ,Ma xJobCost=25 ,MaxJob 1ime=1 0 ,TotJobCycles=20

-IIF·5 RESOURCES: Pc=65%,Pm=2o/o,MaxJobCost=25.5,MaxJob1ime=10,TotJobCycles=20

Figure 18: Sample Genetic Algorithm Runtime vs. Population Size GA Test Run

Figure 19 shows the calculated execution time of the job found by the GAin relation to

the population size. Since the fitness value of a solution is computed by subtracting the

GA calculated job execution time from the job time constraint, this graph is inversely

proportional to the fitness value graph.

- 41-

9.00

8.00

7.00

[fsoo
" i!
55.00

1=
" ·il4.00
B
" X

UJ
... 3.00
0 ..,

2.00

1.00

0.00
10 20

Job Execution Time (Min FV) vs. Population Size

30 40 50 60 70 80 90 100
Population Size

--10 RESOURCES: Pc=65% ,Pm=2% ,MaxJobCost=25 ,MaxJob Time=10 ,TotJobCycles=20

--1!1- 5 RESOURCES: Pc=65% ,Pm=2% ,MaxJobCost=25.5 ,MaxJobTime=10 ,TotJobCycles=20

Figure 19: Sample Job Execution Time vs. Population Size GA Test Run

Figure 20 shows the percentage of optimum for the solution found by the GA in relation

to the population size. This graph illustrates the accuracy of the solutions created by the

GA. As the number of available resources decreases, the population size must be

increased to find a near-optimal solution. We wanted our GA to create solutions that

were at least 95% of the optimum. To achieve this goal for five resources would

require a population of 80 or more chromosomes for this example. For ten resources,

our GA was able to achieve our 95% goal with a population of 20 for this test scenario.

-42-

110.00%

100.00%

90.00%

E s ·a
0 80.00%
'e
;!'.

7000%

60.00%

50.00%
10

% of Optimum vs. Population Size

~ ~ ~ m oo m oo oo 100
Population Size

-+-1 0 RESOURCES: Pc=65% ,Pm=2% ,MaxJobCost=25 ,MaxJobTime=1 0 ,TotJobCycles=~

--5 RESOURCES: Pc=G5%,Pm=2%,MaxJobCost=25.5,MaxJobTime=10,TotJobCycles=20

Figure 20: Sample Percentage of Optimum vs. Population Size GA Test Run

We found the value ranges listed below worked best with our solution domain and

problem characteristics for the GA:

• Probability of Crossover: 60-80%

• Probability ofMutation: 2-5%

• Mutation Amount: 5%

These results are inline with values we found during our Survey of Related Work

[Eiben03, Goldberg89, Kim04, Man99, YeOl].

- 43-

5.3 The Simulated Am1ealing Algorithm

As with the creation of a GA, the SA algorithm is also a unique solution for each new

problem. The SA algorithm also requires the determination of key variable values, as

well as determining the functionality of several areas within the algorithm.

5.3 .1 Algorithmic Functionality

The GA and SA algorithms are similar in many ways. We attempted to have the two

algorithms use the same structure and functionality whenever possible to facilitate more

accurate comparisons between the solutions.

Each solution in an SA algorithm has the same structure as a chromosome in a GA. The

solutions created by the SA algorithm contain the number of available resources and the

percentage of the job assigned to each. This structure is equivalent to the chromosome­

gene structure used by our GA. We also used the same "goodness" evaluation methods

used for a chromosome's fitness value as the energy value in our SA algorithm. This

method subtracts the solution job execution time from the time constraint associated

with that particular job. By being able to transfer the same evaluation methods and

structure from our GA to our SA algorithm, we were able to better evaluate the basic

algorithmic functions of each optimization method.

An SA algorithm compares a single solution with one of its neighbors. To find this

neighboring solution, we tweak the current solution slightly and then make a

comparison. The tweaking of the solution requires reducing the percentage assigned to

-44-

one resource and adding to another to create a new solution. To find the best

percentage to use for the tweak factor, we ran a series of tests. We started with a tweak

factor of 1%, ran ten tests, and then took the average. We increased the tweak factor by

1% after each series of tests until we reached 10%. Figures 21-24 are examples of the

SA algorithm's behavior using one of the resource scenarios and a single set ofvariable

values while the tweak factor is being varied.

Figure 21 shows the results of our tests for a varying tweak factor and the resultant

energy value. Figure 22 shows how long it took for the SA took to find a solution.

Energy Value (EV} vs. Tweak Factor

3.70

3.60

3.50

5' w
';;' 3.40

~
>
>.
E'
1il 3.30
w

3.20

3.10

3.00
2 3 5 6 7 8 9 10

Tweak Factor(%)

I-+-Start_ Temp=20 ,Final_ Temp=.01 ,lterations=1 0 ,Aipha=.99 ,MaxJobCost=25.50,MaxJobTime=10 ,TotJobCycles=20 I

Figure 21: Sample Energy Value vs. Tweak Factor SA Test Run

- 45-

SA Runtime vs. Tweak Factor

"' .§
~ 30.00 f-.'-..::..:.......::..:......~

~

2 3 4 5 6 7 8 9 10

Tweak Factor(%)

1--+-Start_ Temp=20 ,Final_ Temp=.01 ,Jterations=10 ,Alpha= .99 ,MaxJobCost=25.50 ,MaxJob Time=1 0 ,TotJobCycles=20 I

Figure 22: Sample Simulated Annealing Runtime vs. Tweak Factor Test Run

Figures 23 and 24 show the execution time of the SA created solution and the

percentage of optimum for each solution, respectively.

- 46-

Job Execution Time (Min EV) vs. Tweak Factor

5 6 7 8 9 10

Tweak Factor(%)

I-+-Start_Temp=20,Finai_Temp=.01 ,lterations=10,Aipha=.99,MaxJobCost=25.50,MaxJobTime=10,TotJobCycles=20 I

Figure 23: Sample Job Execution Time vs. Tweak Factor SA Test Run

%of Optimum vs. Tweak Factor

5 6 7 8 9 10

Tweak Factor(%)

1-+-Start_ Temp=20 ,Final_ Temp=.01 ,lterations=1 0 ,Aipha=.99 ,MaxJobCost=25.50,MaxJob1ime=1 0 ,TotJobCycles=20 I

Figure 24: Sample Percentage of Optimum vs. Tweak Factor SA Test Run

-47-

Through a series of tests, we found 1% to be the best value for our tweak factor, so we

used this value for the rest of our testing of the SA algorithm.

The SA algorithm performs a number of iterations at varying temperature levels. The

temperature is reduced, a number of iterations are performed, and the temperature is

dropped again. Decrementing the temperature to the next lower level is accomplished

by multiplying the current temperature by a constant. Through our literature survey, we

found this constant varies between 0.80 and 0.99 [BraunOl, Eglese90].

Unless other stopping criteria are put into place, the SA algorithm will complete when

the cmrent temperature reaches zero. We chose to have the algorithm run until the

current temperature reaches zero, without introducing extra measures for early

termination. In this regard, as with the GA algorithm, the SA algorithm closely follows

the laws of nature.

5.3 .2 Variable Values

There are four main cooling schedule variables associated with an SA algorithm: the

initial temperature value, the number of iterations performed at each temperature level,

the a constant, and the final temperature value used to determine the stopping point. To

find the best value for each of these variables, we performed a series of test runs.

The value for the initial temperature is based on the size of the solution space for each

specific problem. The value must be large enough to allow the algorithm to search

- 48-

other parts of the solution space and not be trapped locally. However, if the value is too

large, then no better solution is derived, and the algorithm is inefficient because of long

processing time. We found a value in the range of 5-30 for the initial temperature gave

us the best balance between processing time and solution quality.

The number of iterations performed at each temperature level is another variable that

needs to be fine tuned for each problem. As with the other variables, the number of

iterations is determined by the size of the solution space. When the process first begins

and has a higher temperature, the SA algorithm searches more of the solution landscape

for the global optimum. As the algorithm progresses and the temperature cools, the

solution search space is nanowed while it searches for the local optimum. Many

researchers suggest manually performing experiments with the number of iterations to

find the best values [Jones03]. To determine this value, we used the average often test

runs at each of the following iteration values: 1, 5, 10, 15, 20, 25, 30, 35, 40, and 45.

We performed the iteration value testing for both five and ten available resources.

Figure 25 shows the energy value for each iteration value. Figures 25-27 depict some

of the test runs we performed with the SA algorithm using one of the resource scenarios

while varying the number of iterations.

-49-

5'
10>

" "

Energy Value (EV) vs. Iterations

8.00 +:-"C'-tt"C'-~-'+,..,.-~~-r--..........:"C'--"f+,_.,.-~-f::"~"C'-=,..p+::.,-c...:..r::.,-c::.,-c....,_+:-,_,_;,.::.,-c-+-'--"-,..,...~*~

~ 7.00 +:-..,.-tt,_,_;,..,..,--'...:..r::.,-c::.,-c::.,-c+-....,_--"+,_,_;,.+::.,-c-t;:"~--"-::.,-cp::.,-c::.,-c...:..r::.,-c+,_,_;,.+-"C'-::.,-c-+,_,_;,.::.,-c::.,-c-t;:"~

~
c:

w 6.00 -b~f--,-"C'-~7f-~..,......,"C'--b~~~~ ~-+--~"C'-.;;,=f--,-~~,.,._~~....,..,.f,-,'~~~"C'-.;;,=~-+--~

5 10 15 20 25 30 35 40 45
Iterations

-+-1 0 RESOURCES: Initial_ Temp=30 ,Final_ Temp=.01 ,Aipha=.99 ,Tweak_F actor=.01 ,MaxJobCost=25 ,MaxJobTime=1 0 ,TotJobCycles=20

·~- 5 RESOURCES: Initial_ Temp=30 ,Final_ Temp=.01 ,Aipha=.99 ,Tweak_F actor=.01 ,MaxJobCost=25.5,MaxJob Time=1 0 ,TotJobCycles=20

Figure 25: Sample Energy Value vs. Number oflterations SA Test Run

Figure 26 shows SA algorithm runtime for each iteration value and Figure 27 gives the

percentage of the optimum solution.

-50-

·.,
E
'E

SA Runtime vs. Iterations

~ 60.00 +--~-'--"-:.....;..:.....;..~__;,..-:--:-~~~~:.....;..-r::-:::-:t-?A~~.....,.~

<5I

20 25
Iterations

-+--10 RESOURCES: Initial_ Temp=30 ,Final_ Temp=.01 ,Aipha=.99 ,Tweak_F actor=.01 ,MaxJobCost=25 ,MaxJobTime=1 0 ,TotJobCycles=20

~5 RESOURCES: Initial_ Temp=30 ,Final_ Temp=.01 ,Aipha=.99 ,Tweak_Factor=.01 ,MaxJobCost=25.5 ,MaxJobTime=1 0 ,TotJobCycles=20

Figure 26: Sample Simulated Annealing Runtime vs. Number of Iterations Test Run

% of Optimum vs. Iterations

5 10 15 20 25 30 35 40 45
Iterations

-+--10 RESOURCES: Initial_ Temp=30 ,Final_ Temp=.01 ,Aipha=.99 ,Tweak_F actor=.01 ,MaxJobCost=25 ,MaxJobTime=1 0 ,TotJobCycles=20

-w-5 RESOURCES: Initial_ Temp=30 ,Final_ Temp=.01 ,Aipha=.99 ,Tweak_F actor=.01 ,MaxJobCost=25.5 ,MaxJobTime=1 0 ,TotJobCycles=20

Figure 27: Sample Percentage of Optimum vs. Number of Iterations Test Run

-51 -

From our testing, we found using 10 iterations at each temperature level seemed to be a

good balance between the produced energy value and the time needed for the SA

algorithm to find a solution.

The temperature function is used to decrement the current temperature by a small

amount and produce the temperature for the next level. We did this by using the

equation T(t + 1) = aT(t), where a represents a constant value, normally between 0.90

and 0.99. To find the best value to use for this constant, we perfmmed a series of tests.

As with our iteration testing, we took the average often test runs, varying the a value

by 0.01, starting at 0.90 and ending at 0.99. We ran tests for five and ten available

resources. Figures 28-30 show the energy value for each a value for one series of tests.

Energy Value {EV) vs. Alpha

10.00

9.00

8.00

5' 7.00

\!:!.
!!!

~ 6.00
>.
!!'
Q)
c
w

5.00

4.00

3.00
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

AI ha
--10 RESOURCES: Initial_ Temp=30 ,Final_ Temp=.01 ,lterations=1 0 ,Tweak_F act01=.01 ,MaxJobCost=25 ,MaxJob Time=1 0 ,TotJobCycles=20

--5 RESOURCES: Initial_ Temp=30 ,Final_ Temp=.01 ,lterations=10 ,Tweak_F actor=.01 ,MaxJobCost=25.5 ,MaxJob Time=1 0 ,T otJobCycles=20

Figure 28: Sample Energy Value vs. Alpha SA Test Run

-52-

Figure 29 shows the amount of time it took for the SA algorithm to find the solution and

Figure 30 gives the percentage of optimum for each value of a.

SA Runtime vs. Alpha

-+-1 0 RESOURCES: Initial_ Temp;3Q ,Final_ Temp;.01 ,lterations;1 0 ,Tweak_F acloF.01 ,MaxJobCost;25 ,MaxJob Time;1 0 ,TotJobCycles;2Q

-lll!-5 RESOURCES: Initial_ Temp;3Q ,Final_ Temp;.Q1 ,lterations;1 0 ,Tweak_F actoF.01 ,MaxJobCost;25.5 ,MaxJobTime;1 0 ,TotJobCycles;2Q

Figure 29: Sample Simulated Annealing Runtime vs. Alpha Test Run

-53-

% of Optimum vs. Alpha

102.00%

100.00%

98.00%

96.00%

E
§
'E. 94.00%
0
"
"' 92.00%

90.00%

88.00%

86.00%
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Alflha

-+-1 0 RESOURCES: Initial_ Temp=30,Final_ Temp=.01 ,Iterations=! 0 ,Tweak_F actoi=.01 ,MaxJobCost=25 ,MaxJob Time=10 ,T otJobCycles=20

-lll-5 RESOURCES: Initial_ Temp=30 ,Final_ Temp=.01 ,lterations=10 ,Tweak_F acto1= .01 ,MaxJobCost=25.5 ,MaxJobTime=1 0 ,TotJobCycles=20

Figure 30: Sample Percentage of Optimum vs. Alpha Test Run

The final temperature value was the last of the cooling schedule variables we needed to

determine. This value is the one used to stop the SA algorithm and cause the run to

present the solution. We performed tests using the same format as used in the iteration

and a experiments. Although the tests showed a higher value could have been used for

the final temperature, we chose to use 0.0 1. This value would give us a more accurate

solution and still keep us within the time range observed during our GA experiments.

This choice was also made with regard to the fact the solution space was smaller than

would be likely in a real world solution. If this were a real world problem, then our SA

algorithm could run longer than would be practically useful, and the value would have

to be raised to reflect the size of the solution space. According to published research,

the usual value for the final temperature is near 0.5 degrees [Jones03].

-54-

The following graphs, Figures 31-33, show the energy value, SA algorithm runtime,

and percentage of optimum for differing values used for the final temperature. Once

again, these graphs represent one series of testing.

Energy Value (EV) vs. Final Temperature

O.Dl 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Final Temperature

-+-10 RESOURCES: Initial_ Temp=30 ,Alpha= 99 ,lterations=10 ,Tweak_F actor=.01 ,MaxJobCost=25 ,MaxJob Time=1 O,TotJobCycles=20

--5 RESOURCES: lnitiai_Temp=30,Aipha=.99,1terations=10,Tweak_Factor=.01 ,MaxJobCost=25.5,MaxJobTime=10,TotJobCycles=20

Figure 31: Sample Energy Value vs. Final Temperature SA Test Run

-55-

SA Runtime vs. Final Temperature

20.00

" E
E
~ 15.00

~

E s ·a
0
" <I'

1000

5.00

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Final Temperature

-+-10 RESOURCES: Initial_ Temp=30 ,Aipha=.99 ,lterations=1 0 ,Tweak_F act01=.01 ,MaxJobCost=25 ,MaxJobTime=10 ,TotJobCycles=20

-llF5 RESOURCES: lnitiai_Temp=30,Aipha=.99,1terations=10,Tweak_Factor=.01 ,MaxJobCost=25.5,MaxJobTime=10,TotJobCycles=20

Figure 32: Sample Simulated Am1ealing vs. Final Temperature Test Run

% of Optimum vs. Final Temperature

90.00%

85.00%

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Final Temperature

-+-10 RESOURCES: lnitiai_Temp=30,Aipha=.99,1terations=10,Tweak_Factor=.01 ,MaxJobCost=25,MaxJobTime=10,TotJobCycles=20

.,. 5 RESOURCES: Initial Temp=30)l,lpha=.99 ,lterations=1 0 ,Tweak_F actor-.01 ,MaxJobCost=25.5 ,MaxJob Time=10 ,TotJobCycles=20

Figure 33: Sample Percentage of Optimum vs. Final Temperature SA Test Run

-56-

We found the value ranges listed below to work best with our solution domain and

problem characteristics for the SA algorithm:

• Initial Temperature: 5-30

• Tweak Factor: 0.01 (1 %)

• Alpha: 0.94-0.99 (94-99%)

• Iterations: 10

-57-

Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The SA algorithm outperforms the GA in all of our test scenarios. When the solution

domain was small, the SA algorithm achieved our near-optimal threshold much faster

than the GA. We made the solution domain small by limiting the number of available

resources to five. As we increased the size of the solution domain, the GA performed

slightly better but was still outperformed by the SA algorithm, as Figure 34 shows.

~-- __ 1!_(;_~ \Average of all runs 1100 each) ---t- I _ _ ~~ ~- _
1

! _ _ __ 1
1

__ _

-5 ~ Max I I Avg Fitness I Avg Exec
1

Avg # of l Avg Time to Avg % of Optimum
Resources Cost Speed/Cost Value Time Generations Find Solution Optimum Optimum Solution Fitness Value

~- 2~0_o_ 12345/13567 231 7.69 32.87 34.30 96.25% 38101010162 2.4
13579/13567 9.19 0.81 44.7 8.90 99.89% 4112120128136 92
135191.12345. 9:18 QJl2 34.54 6.91 99:61% 4112!20)28136 92

---:--- I I 1- I -----1--~ --
12345113567 3.42 6.58 30.30 9.24 95 00% 32101010168 3.6
13579/13567 9.19 0.61 37.34 7.27 99.90% 4112120128136 92
13579112345 I s.1~ 1 34.o3

1

ltss 99.85%
1

4112120!28136 9.2

fo- Max Avg Fitness Avg Exec Avg II of Avg Time to Avg '!. of Optimum
Resources Cost Speed/Cost Value Time Generations Find Solution Optimum Optimum Solution Fitness Value
--- - I 112345678910 I I 'I I I I ' I

_ ~ -~-:==l~!78?~~~---9-~~-=-~c= ___ 4~7~~~---===~r _ 9~~1411711~~2=F51
_ __ ~~~ _ ~Average of all']"s (100 eachl} ~ ___ ---j-- -~----1 _____ -I --~~----

5 Max Avg Energy Avg Exec fl of Avg Time to Avg '!. of Optimum
Resources Cost Speed/Cost Value Time Iterations Find Solution Optimum Optimum Solution Energy Value -- --~---=~ $ 25.00 12345/13567 2.32 7.68 10 12.23 96.75% 38101010162 2.4

--: -- 13579/13567 9.13 0.87 10 0.32 99.25% 4112120128136 92
: : 13579!123,45 9:13.. OJI7 10 0.31 9919% 4112/20)23136 9.2

____ } - _j-~. 1---+ __ · t----+-
I

-~---~ $ 2550
-~----_[__

' - I

10 Max

12345113567
13579/13567
1357911<!34!i

3.46

I I

6.54
0~86

o:aa

Avg Energy Avg Exec
Value Time Resources : Cost Speed/Cost --- -~1 112345678910 I I

-- ~ 25.00 13567891011_12 937! 0.63!

II of

10
10
10

l

2.58
0.31
0.31

AvgTimeto
Iterations Find Solution

I

1oool 2311

96 00%
99.30%

I
-~--~--

32101010168
4112120123136
4!12120128136

3.6
9.2
9.2

Avg % of Optimum
Optimum Optimum Solution Energy Value

9856"fol21010101211411711fll22j241 9.51

Figure 34: Results and Comparison of the GA and SA Test Runs.

-58-

Although both algorithms could be used to find a near-optimal solution, the SA

algorithm is the better choice for a Grid Resource Broker and any dual constraint

optimization problem. The SA algorithm reached our near-optimal threshold much

quicker than our GA based solution. The GA had slightly better performance as the

number of available resources increased, but it still lagged behind the SA algorithm.

With the SA algorithm's variables set to their optimal values, the SA algorithm

performed vety well. To identify the optimal values for the variables requires trial and

error, or even possibly the use of some other kind of optimization algorithm or program.

To implement a stochastic algorithm-based GRB effectively requires a priori

knowledge ofthe size ofthe solution domain, the attributes ofthejob to run on the grid,

and the characteristics of the available resources.

6.2 Future Work

The current resource allocation solutions do not account for the duties of a GRB

communicating with a Utility Grid, which would implement a "pay-per-use" model.

This model would offer many desirable features not available in cutTent grid offerings,

but it would also introduce a host of problems to overcome before implementation.

A real world implementation of a GRB would have to take into account many more

variables than have been addressed in this thesis. Resource failure during execution

would have to be addressed, along with how to recognize new resources during job

execution. Another issue would be etTor handling associated with the inability to find a

valid solution. This issue could be handled by providing an alternative solution, or

-59-

several best effort scenarios. Also to be resolved is the possibility of intra task

communication within a single job and dynamically collocating these tasks to minimize

latency.

Further evaluation is needed on other stochastic and non-stochastic algorithms to

determine which ones perfonned better under which scenarios. These algorithms could

then be hybridized and have their performance compared to the "pure" versions of each

algorithm. Also, with more testing resource availability, these solutions could be tested

on larger solution domains, which would give a better picture of their overall

performance potential.

- 60-

REFERENCES

[AbrahamOO]
Abraham, A., R. Buyya, and B. Nath, "Nature's Heuristics for Scheduling Jobs on

Computation Grids," Proceedings of the 8.!h IEEE International Conference on
Advanced Computing and Communications (2000), pp. 45-52.

[BraunOl]
Braun, T.D., et al., "A Comparison of Eleven Static Heuristics for Mapping a Class of

Independent Tasks onto Heterogeneous Distributed Computing Systems," Journal of
Parallel and Distributed Computing 61 (2001), pp. 810-837.

[Buyya02]
Buyya, R., "Economic-based Distributed Resource Management and Scheduling for

Grid Computing," Ph.D. dissertation, Department of Computer Science and
Software Engineering, Monash University, Melbourne, Australia, April12, 2002.

[Buyya05]
Buyya, R., "Grid Computing: Making the Global Cyberinfrastructure for eScience and

eBusiness a Reality", International MultiConference in Computer Science and
Computer Engineering, Las Vegas, June 28, 2005.

[Eiben03]
Eiben, A.E. and J.E. Smith, Introduction to Evolutionary Computing, Springer-Verlag

Berlin Heidelberg, Germany, 2003.

[Eglese90]
Eglese, R.W., "Simulated A1111ealing: A Tool for Operational Research," European

Journal of Operational Research 46, 3 (1990), pp. 271-281.

[Ferriera03]
Fierriera, L., et al., "Introduction to Grid Computing With Globus," IBM Redbooks,

(2003).

- 61 -

[Goldberg89]
Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley Publishing Company, Inc., 1989.

[Haupt04]
Haupt, R.L. and S.E. Haupt, Practical Genetic Algorithms, John Wiley & Sons, Inc.,

New Jersey, 2004.

[Jones03]
Jones, T., AI Application Programming, Hingham, Massachusetts, Charles River

Media, 2003.

[Kim04]
Kim, S. and J.B. Weissman, "A GA-based Approach for Scheduling Decomposable

Data Grid Applications," Proceedings of the International Conference on Parallel
Processing (ICPP'04) (2004), pp. 406-413.

[Kirkpa trick83]
Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, "Optimization by Simulated Annealing,"

Science 220, 4598 (1983), pp. 671-680.

[Krishnakumar89]
Krishnakumar, K., "Micro-genetic Algorithms for Stationary and Non-Stationary

Function Optimization," SPIE 1196 (1989), pp. 289-296.

[Man99]
Man, K.F., K.S. Tang and S. Kwong, Genetic Algorithms, Springer-Verlag London

Limited, London, 1999.

[Menasce04]
Menasce, D.A. and E. Casalicchio, "QoS in Grid Computing," IEEE Internet

Computing 8, 4 (2004), pp. 85-87.

[Menasce04A]
Menasce, D.A. and E. Casalicchio, "A Framework for Resource Allocation in Grid

Computing," Proceedings of The IEEE Computer Society's 12!!! Annual
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS '04), (October, 2004).

- 62-

[Menasce04B]
Menasce, D.A. and E. Casalicchio, "Quality of Service Aspects and Metrics in Grid

Computing," Proceedings of The Computer Measurement Group Conference
(December, 2004).

[Menasce04C]
Menasce, D.A., "Mapping Service-Level Agreements in Distributed Applications,"

IEEE Internet Computing 8, 5 (2004), pp. 100-102.

[PhamOO]
Pham, D.T. and D. Karaboga, Intelligent Optimisation Techniques: Genetic Algorithms,

Tabu Search, Simulated Atmealing, and Neural Networks, Springer-Verlag London
Limited, London, 2000.

[Wright32]
Wright, S., "The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in

Evolution," Proceedings of 611! International Congress on Genetics 1, 1 (1932),
Ithaca, NY, pp. 356-366.

[YarKhan02]
YarKhan, A. and J.J. Dongana, "Experiments with Scheduling Using Simulated

A1mealing in a Grid Environment," Lecture Notes in Computer Science:
Proceedings of the Third International Workshop on Grid Computing 2563 (2002),
pp. 232-242.

[Ye01]
Ye, J. and S. Papavassiliou, "Dynamic Market-driven Allocation of Network Resources

Using Genetic Algorithms in a Competitive Electronic Commerce Marketplace,"
International Journal ofNetwork Management 11 (2001), pp. 375-385.

[Yu06]
Yu, J. and R. Buyya, "A Budget Constrained Scheduling of Workflow Applications on

Utility Grids using Genetic Algorithms," Proceedings of 1511! IEEE International
Symposium on High Performance Distributed Computing (HPDC 2006) (June 19-
23, 2006).

- 63-

APPENDIX A

Appendix A: Optimal Solution Code Listings

import java.io.*;
import java.util.*;
import java.lang.Math;
import java.math.*;

I**
* @author James Sweeney
* March, 2007

*
* Main ExhaustiveSearch class
* This is used to perform an exhaustive optimal search.
* The components are the same as the GA, except the removal of
* uneeded functions, and the addition of the exhaustiveSearch routine.
*I
public class ExhaustiveOptimalSearch{

@SuppressWarnings ({"unchecked"})

II Probability of Crossover
int crossoverProbability;

II Probability of Mutation
int mutationProbability;

II Initial population in the pool
int initialPopulation;

II Number of generations
int numberOfGenerations;

II Dimension of the Chromosomes
int chromosomeDimension;

II Dicimal percision to use for each gene
int decimalPrecision;

II Total number of cycles needed to run the job
int totalJobCycles;

II Maximum time allowed for job execution
int maxJobExecutionTime;

I I Maximum cost all01ved for job execution
double maxJobCost;

II Current Chromosome pool
Chromosome currChromosomes;
Vector <Chromosome>currGenChromosomes;

II Next generation Chromosome pool
Chromosome nextChromosomes;
Vector <Chromosome>nextGenChromosomes;

static ExhaustiveOptimalSearch myExhaustiveOptimalSearch;

/***

* Constructor for ExhaustiveOptimalSearch class.

*
* @param initialPopulation, int value for number of chromosomes in each

population

- 64-

used)

**

* @param numberOfGenerations, int value for number of generations to run (if

* @param chromosomeDimension, int value for number of genes in each chromosome

*
**

*I
public ExhaustiveOptimalSearch(int initialPopulation,

int numberOfGenerations,
int chromosomeDimension)

this.initialPopulation
this.numberOfGenerations
this.chromosomeDimension
this.decimalPrecision
this.currChromosomes
this.currGenChromosomes

this.nextChromosomes
this.nextGenChromosomes

initialPopulation;
numberOfGenerations;
chromosomeDimension;
2;
new Chromosome(chromosomeDimension);
new Vector <Chromosome>();

new Chromosome(chromosomeDimension);
new Vector <Chromosome>();

for (int i=O;i < this.initialPopulation;i++)
this.currGenChromosomes.add(new Chromosome(chromosomeDimension));

for (int x=O;x < this.chromosomeDimension;x++)
if (x==O) {

II
Resource#,Speed,Cost,Job Share

---1
II \ I --

II v v v v
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,l,l,O);
else if (x==l) {

}
}

((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,3,2,0);
else if (x==2) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,5,3,0);
else if (x==3) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,7,4,0);

} else if (x==4) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,9,5,0);

//Probability of Crossover (ex: 60 => 60%)
this.crossoverProbability = 65;

//Probability of Mutation (ex: 5 => 5%)
this.mutationProbability = 2;

II Total number of cycles needed to run the job
this.totalJobCycles 20;

II Maximum time allowed for job execution
this.maxJobExecutionTime 10;

II Maximum cost allowed for job execution
this.maxJobCost 25.50;

} //End of CLASS CONSTRUCTOR: ExhaustiveOptimalSearch

/***
* . :: getScaled ::.
* Scale decimal number via the rounding mode BigDecimal.ROUND_HALF_UP.
* Method is used to make sure that the correct number of decimal
* places are used for each gene.

*
* @param value, double value to be scaled

- 65-

values

* @param scale, int value for number of decimals to scale to
* @return double representing the newly scaled number

*I
static public double getScaled(double value, int scale)

double result= value; //default: unsealed

//use BigDecimal String constructor as this is the only exact way for double

result= new BigDecimal(value) .setScale(scale,
BigDecimal.ROUND_HALF_UP) .doubleValue();

II Could also use:
II result= Math.round(value * 100.0) I 100.0;
return result;
//End of METHOD: getScaled

/***
* .:: exhaustiveSearch ::.
* Method used to perform an exhaustive search for the
* optimal solution using the global chromosome
*parameters: totalJobCycles, maxJobCost, maxJobExecutionTime

*

*/

public static void exhaustiveSearch()
double oldFitness = 0.00;
double newFitness = 0.00;
double oldCost = 0.00;
double newCost = 0.00;
Chromosome tempChrom;
int chromTotal 0;
int totalShare = 0;
int intRO 0;
int intR1 0;
int intR2 0;
int intR3 0;
int intR4 0;

System.out.println("\n*** Exhaustive Search started: " +new Date() .toString()
+ II ***") i

tempChrom new Chromosome(myExhaustiveOptimalSearch.chromosomeDimension);

try {
BufferedWri ter out = new BufferedWri ter (net~ FileWri ter ("Optimal result

S13579 C13567.txt"));
out.write("*** Exhaustive Search started: " +new Date() .toString() + "

out.newLine();
out. flush();

for (int RO = O;RO <= 100; RO++)
for (int R1 = O;R1 <= 100; R1++)

for (int R2 = O;R2 <= 100; R2++)
for (int R3 = O;R3 <= 100; R3++) {

for (int R4 = O;R4 <= 100; R4++)

II
II
II

Resource#,Speed,Cost,Job Share
\ I I I

v v v
tempChrom.setThisGene(0,1,1,
tempChrom.setThisGene(1,3,2,
tempChrom.setThisGene(2,5,3,
tempChrom.setThisGene(3,7,4,
tempChrom.setThisGene(4,9,5,

v
(RO*O. 01));
(R1*0.01));
(R2*0.01));
(R3 * 0 . 01)) ;
(R4*0.01));

newCost =
tempChrom.getChromosomeCost(myExhaustiveOptimalSearch.totalJobCycles);

newFitness tempChrom.getFitnessValue(myExhaustiveOptimalSearch);
totalShare = RO + R1 + R2 + R3 + R4;

- 66-

chromTotal++;

if ((totalShare 100) && (newFitness >= 0) && (newFitness >
oldFitness) &&

(tempChrom.getChromosomeCost(myExhaustiveOptimalSearch.totalJobCycles) <=
myExhaustiveOptimalSearch.maxJobCost)) {

": :" + R1 + ": :" + R2 +

newCost + "\n");

"· ·" + R2 + ": :" + R3 +

newCost + u\n");

oldFitness = newFitness;
oldCost = newCost;
intRO RO;
intR1 R1;
intR2 R2;
intR3 R3;
intR4 R4;
System.out.println("Chromosome(" + chromTotal

"· ·" + R3 + ": :" + R4 + ":: Tot Share=" +
totalShare + " FV=" + newFitness

out.write("Chromosome(" + chromTotal + ") ! !II

": :" + R4 + ":: Tot Share=" +
total Share

out. ne1vLine () ;
out.flush();

+ " FV=" + newFitness

+ ")

+ "

+ RO

+ "

: :" +

Cost="

+ "· ·"

Cost="

else if
(newFitness == oldFitness) &&

(totalShare 100) && (newFitness >= 0) &&

(tempChrom.getChromosomeCost(myExhaustiveOptimalSearch.totalJobCycles) <=
myExhaustiveOptimalSearch.maxJobCost) &&

(tempChrom.getChromosomeCost(myExhaustiveOptimalSearch.totalJobCycles) < oldCost)
oldFitness = newFitness;

"· ·" + R1 + ": :" + R2 +

newCost + "\n");

": :" + R2 + ": :'' + R3 +

neHCost + "\n");

oldCost = newCost;
intRO RO;
intR1 R1;
intR2 R2;
intR3 R3;
intR4 R4;
System.out.println("Chromosome(" + chromTotal
": :" + R3 + II! !II + R4 + ":: Tot Share=" +

total Share + " FV=" + newFitness

out.write("Chromosome(" + chromTotal + ") • 'II

"· ·" + R4 + IT!! Tot Share=" +
total Share

out.neHLine();
out. flush () ;

+ " FV=" + neHFitness

+ ") ! !II +

+ " Cost="

+ RO + ": :"

+ " Cost="

RO

+

+

+

RO

+

+

+

out.Hrite("Fittest Chromosome ... after searching through:"+ chromTotal);
out.neHLine();

+

R1 +

+

R1 +

out.Hrite("::" + intRO + ": :" + intR1 + "::" + intR2 + "··" + intR3 + "· ·" +
intR4 + " : : ") ;

out.neHLine();
out.Hrite("FV=" + oldFitness);
out.neHLine();
out.write("Cost=" + oldCost);
out.neHLine();
out.Hrite("\n*** Exhaustive Search ended: " + neiV Date() .toString() + "

***");
out. flush();
out. close();

System.out.println("Fittest Chromosome ... after searching through:"+
chromTotal) ;

- 67-

System.out.println("::" + intRO + "::" + intRl + "··" + intR2 + "::" + intR3
+ 11

•• n + intR4 + II: :II) ;
System.out.println("FV=" + oldFitness);
System.out.println("Cost=" + oldCost);
System.out.println("\n*** Exhaustive Search ended: " +new Date() .toString()

+ IT ***ll);

catch (IOException e) (}

/***

* Main method for ExhaustiveOptimalSearch class

*
* @param args, Passed in values for: InitialPopulation, NumberOfGenerations,

ChromosomeDimension

*

**

*I
public static void main(String[] args)

int population=O, generations=O, dimension=O;
int gen=O;
long timeBefore=O, timeAfter=O, timeDiff=O;
double totalDisplay = 0.00;
String popDescription = "";
Vector <Chromosome> tempVector=null;
boolean done = false;

try (
if (args.length < 3)

throw new ExhaustiveOptimalSearchException("Requires all 3 parameters:");

population
generations
dimension

Integer.parseint(args[O]);
Integer.parseint(args[l]);
Integer.parseint(args[2]);

if (population < 1)
throw new ExhaustiveOptimalSearchException("Initial Population must be

greater than 0");
} else if (generations < 1)

thrmv new Exhausti veOptimalSearchException ("Chromosome _Dimension must be
greater than 0");

}

if ((population % 2) J = 0)
throw new ExhaustiveOptimalSearchException("Initial Population must be an

even number") ;

catch (ExhaustiveOptimalSearchException e)
System.out.println("\n" +e);
System.out.println("USE: java ExhaustiveOptimalSearch 'Initial Population

Number of Generations Chromosome Dimension'");
- System.out.println("EXAMPLE: java ExhaustiveOptimalSearch 6 55");

System.out.println(" ... exiting, goodbye.");
System.exit(l);

myExhaustiveOptimalSearch = new
ExhaustiveOptimalSearch(population,generations,dimension);

I* Used when executing the exhaustive search funtion *I
myExhaustiveOptimalSearch.exhaustiveSearch();

II End of METHOD: main

} II End of CLASS: ExhaustiveOptimalSearch

- 68-

import java.io.*;

/**
* @author James Sweeney
* March, 2007

*
* Class that stores the gene information
*I

public class Gene implements Serializable

private static final long serialVersionUID 1;
protected int geneSpeed;
protected double geneCost;
protected double geneJobShare;

/*
* Constructor for the Gene class

*
* @param speed, representing speed of this resource (gene)
* @param cost, representing cost of this resource (gene)
* @param jobShare, representing percentage of the job that this resource (gene)

will process
*I

public Gene (int speed, double cost, double jobShare)
this.geneSpeed speed;
this.geneCost cost;
this.geneJobShare jobShare;

public int getGeneSpeed()
return (this.geneSpeed);

public void setGeneSpeed(int s)
this.geneSpeed = s;

public double getGeneCost()
return (this.geneCost);

public void setGeneCost(double c) {
this.geneCost = c;

public double getGeneJobShare()
return (this.geneJobShare);

public void setGeneJobShare(double js)
this.geneJobShare = js;

- 69-

import java.io.*;

I**
* @author James Sweeney
* March, 2007

*
* Class that stores the chromosome information
*I

public class Chromosome implements Serializable

private static final long serialVersionUID 1;

II Gene storage for each Chromosome
protected Gene [] genes;

I*
* Constructor for the Chromosome class
* @param numGenes
*I

public Chromosome (int numGenes)
genes= new Gene [numGenes];

/***
* .:: getGenes ::.

* @return Gene [] representing the chromosome

*I

public Gene [] getGenes()
return (genes);

/********~***

* .:: setThisGene ::.
* @param int representing the gene to set
* @param int representing the speed of the gene
* @param double representing the cost of the gene
* @param double representing the percentage of job assigned to that gene
**
*I

public void setThisGene(int thisGene, int geneSpeed, double geneCost, double
geneJobShare) {

genes[thisGene] =new Gene(geneSpeed,geneCost,geneJobShare);

/**
* .:: getGeneJobShareTotal ::.
* @return double representing % of job allocated
**
*I

public double getGeneJobShareTotal()
double geneTotal = 0;
for (int i=O;i < this.genes.length;i++)

geneTotal += genes[i] .getGeneJobShare();

return (ExhaustiveOptimalSearch.getScaled(geneTotal, 2));

/***

* .:: getFitnessValue ::.
* @param thisExhaustiveOptimalSearch, ExhaustiveOptimalSearch which contains

the chromosome about which you wold like to find the FV
* @return double representing the Fitness Value

**
**

*I
public double getFitnessValue(ExhaustiveOptimalSearch

thisExhaustiveOptimalSearch) {
double completionTime = 0;

- 70-

double tempCompletionTime = 0;

for (int i=O;i < this.genes.length;i++)
tempCompletionTime = (thisExhaustiveOptimalSearch.totalJobCycles *

genes[i] .getGeneJobShare()) I genes[i] .getGeneSpeed();
if (tempCompletionTime > completionTime) {

completionTime = tempCompletionTime;

return
thisExhaustiveOptimalSearch.getScaled((thisExhaustiveOptimalSearch.maxJobExecutionTime­
completionTime), 2));

}

/***

* . :: getChromosomeCompletionTime ::.
* @param thisExhaustiveOptimalSearch, ExhaustiveOptimalSearch which contains

the chromosome about which you wold like to find the completion time
* @return double representing the time in ms, that it will take for the

chromosome to run

**

*I
public double getChromosomeCompletionTime(ExhaustiveOptimalSearch

thisExhaustiveOptimalSearch) {
double completionTime = 0;

double tempCompletionTime = 0;

for (int i=O;i < this.genes.length;i++)
tempCompletionTime = (thisExhaustiveOptimalSearch.totalJobCycles *

genes[i] .getGeneJobShare()) I genes[i] .getGeneSpeed();
if (tempCompletionTime > completionTime) {

completionTime = tempCompletionTime;

return (thisExhaustiveOptimalSearch.getScaled((completionTime), 2));

/***
* .:: getChromosomeCost ::.
* @param totalJobCycles, Total job cycles required to run the job
* @return double representing the cost

*I

public double getChromosomeCost(int totalJobCycles)
double chromCost = 0;
for (int i=O;i < this.genes.length;i++)

chromCost += (((genes[i] .getGeneJobShare() * totalJobCycles) I
genes[i] .getGeneSpeed()) * genes[i] .getGeneCost());

}
return (ExhaustiveOptimalSearch.getScaled(chromCost, 2));

- 71-

/**
* @author James S\'leeney
* March, 2007

*
* ExhaustiveOptimalSearch exception class
*/

public class ExhaustiveOptimalSearchException extends Exception
{

private static final long serialVersionUID = 1;
/**
* ExhaustiveOptimalSearchException constructor
* @param msg, Error message
*I

ExhaustiveOptimalSearchException(String msg)
{

super (msg) ;

- 72-

APPENDIXB

Appendix B: Genetic Algorithm Code Listings

import java.io.*;
import java.util.*;
import java.lang.Math;
import java.math.*;

I**
* @author James Sweeney
* March, 2007

*
* Main GA class
* This the main class for the Genetic Algorithm.
*I

public class GA(

II Probability of Crossover
int crossoverProbability;

II Probability of Mutation
int mutationProbability;

II Initial population in the pool
int initialPopulation;

II Number of generations
int numberOfGenerations;

II Dimension of the Chromosomes
int chromosomeDimension;

II Dicimal percision to use for each gene
int decimalPrecision;

II Total number of cycles needed to run the job
int totalJobCycles;

II Maximum time allowed for job execution
int maxJobExecutionTime;

II Maximum cost allowed for job execution
double maxJobCost;

II Current Chromosome pool
Chromosome currChromosomes;
Vector <Chromosome>currGenChromosomes;

II Next generation Chromosome pool
Chromosome nextChromosomes;
Vector <Chromosome>nextGenChromosomes;

static GA myGA;

/***

* Constructor for GA class.

*
* @param initialPopulation, int value for number of chromosomes in each

population
* @param numberOfGenerations, int value for number of generations to run (if

used)
* @param chromosomeDimension, int value for number of genes in each chromosome

- 73-

*

**
*/

public GA(int initialPopulation,
int numberOfGenerations,
int chromosomeDimension)

Share*//*

this.initialPopulation
this.numberOfGenerations
this.chromosomeDimension
this.decimalPrecision
this.currChromosomes
this.currGenChromosomes

initialPopulation;
numberOfGenerations;
chromosomeDimension;
2;
new Chromosome(chromosomeDimension);
new Vector <Chromosome>();

this.nextChromosomes
this.nextGenChromosomes

new Chromosome(chromosomeDimension);
new Vector <Chromosome>();

for (int i=O;i < this.initialPopulation;i++)
this.currGenChromosomes.add(new Chromosome(chromosomeDimension));

//ALSO MUST BE CHANGED IN CREATECHROMOSOME PROCEDURE
II If changing resource Speed/Cost values

II Use for 5 available resource testing
for (int x=O;x < this.chromosomeDimension;x++)
if (x==O) {

}
}

/* Gene-Resource #, Speed, Cost, Job Share*/
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,l,l,O);
else if (x==l) (
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,3,3,0);
else if (x==2) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,5,5,0);
else if (x==3) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,7,6,0);

} else if (x==4) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,9,7,0);

/* Use for 10 available resource testing
for (int x=O;x < this.chromosomeDimension;x++)
if (x==O) {

/* Gene-Resource #, Speed, Cost, Job

((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,l,l,O);
else if (x==l) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,2,3,0);
else if (x==2) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,3,5,0);
else if (x==3) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,4,6,0);

} else if (x==4) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,5,7,0);
else if (x==5) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,6,8,0);
else if (x==6) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,7,9,0);
else if (x==7) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,S,lO,O);
else if (x==B) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,9,11,0);
else {

((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,l0,12,0);
}

}

*/

- 74-

//Probability of Crossover (ex: 60 => 60%)
this.crossoverProbability = 80;

//Probability of Mutation (ex: 5 => 5%)
this.mutationProbability = 5;

II Total number of cycles needed to run the job
this.totalJobCycles 20;

II Maximum time allowed for job execution
this.maxJobExecutionTime 10;

II Maximum cost allowed for job execution
this.maxJobCost 25.50;

) //End of CLASS CONSTRUCTOR: GA

/***
* . : : getScaled : : .
* Scale decimal number via the rounding mode BigDecimal.ROUND_HALF_UP.
* Method is used to make sure that the correct number of decimal
* places are used for each gene.

*
* @param value, double value to be scaled
* @param scale, int value for number of decimals to scale to
* @return double representing the newly scaled number

*I

static public double getScaled(double value, int scale)
double result= value; //default: unsealed

//use BigDecimal String constructor as this is the only exact way for double
values

result= new BigDecimal(value) .setScale(scale,
BigDecimal.ROUND_HALF_UP) .doubleValue();

II Could also use:
II result= Math.round(value * 100.0) I 100.0;
return result;

//End of METHOD: getScaled

/**
* . :: getRandom (int) ...
* return a integer random number between 0 and upperBound
* @param upperBound of the range for randomization
* @return int, randomly generated number
**
*/

int getRandom(int upperBound)
int iRandom = (int) (Math.random() * upperBound);
return (iRandom);

//End of METHOD: getRandom (int)

/**
* . :: getRandom (double) ...
* return a double random number between 0 and upperBound
* @param upperBound of the range for randomization
* @return double, randomly generated number
**
*I

double getRandom(double upperBound)
II Gives a random number that is:
II 0.00 <= dRandom < upperBound
II This does exclude returning the maximum value
double dRandom = (Math.random() * upperBound);
return (dRandom);

II End of METHOD: getRandom (double)

/***
* . :: propogateThisChromosome ::.

- 75-

* @param chrom, Chromosome that will be propagated to the next generation

*

*I

public void propagateThisChromosome(Chromosome chrom)
nextGenChromosomes.add(chrom);

) II End of METHOD: propagateThisChromosome

/**
* . :: propogateFittestChromosome ...
* @param parentl, Chromsome representing parent 1
* @param parent2, Chromsome representing parent 2
* @param childl, Chromsome representing child 1
* @param child2, Chromsome representing child 2

*
**
*I

public void propagateFittestChromosome(Chromosome parentl, Chromosome parent2,
Chromosome childl, Chromosome child2) {

int propRandNumber=99;
Chromosome propChromosome = null;
Chromosome bestChild null;
Chromosome bestParent = null;

II Find the best child ...
if (childl.getFitnessValue(myGA) == child2.getFitnessValue(myGA)) {

if (childl.getChromosomeCost(myGA.totalJobCycles) <
child2.getChromosomeCost(myGA.totalJobCycles))

bestChild childl;
else

bestChild child2;
else if (childl.getFitnessValue(myGA) > child2.getFitnessValue(myGA))

bestChild childl;
else {

bestChild child2;

II ... now find the best parent ...
if (parentl.getFitnessValue(myGA) == parent2.getFitnessValue(myGA)

if (parentl.getChromosomeCost(myGA.totalJobCycles) <
parent2.getChromosomeCost(myGA.totalJobCycles))

bestParent parentl;
else

bestParent parent2;
else if (parentl.getFitnessValue(myGA) > parent2.getFitnessValue(myGA))

bestParent parentl;
else {

bestParent parent2;

II ... evaluate bestChild and the bestParent ...
if ((bestChild.getFitnessValue(myGA) == bestParent.getFitnessValue(myGA))

if (bestChild.getChromosomeCost(myGA.totalJobCycles) <
bestParent.getChromosomeCost(myGA.totalJobCycles)) {

II bestChild and bestParent have equal FV, but bestChild has lower
cost ... propagate bestChild

propChromosome bestChild;
} else {

II bestChild and bestParent have equal FV, but bestParent has lower
cost ... choose randomly to propagate

propRandNumber = getRandom(2);
if (propRandNumber == 1)

propChromosome bestChild;
else

propChromosome bestParent;

else if (bestChild.getFitnessValue(myGA) > bestParent.getFitnessValue(myGA)
II bestChild has a better FV than bestParent, so propagate bestChild
propChromosome = bestChild;

else {

- 76-

II bestParent has a better FV than bestParent ... choose randomly to propagate
propRandNumber = getRandom(2);
if (propRandNumber == 1)

propChromosome bestChild;
else

propChromosome bestParent;

propagateThisChromosome(propChromosome);

II End METHOD: propagateFittestChromosome

/***
* .:: propogateFittestParentChromosome ::.
* @param poolSize, number of chromosomes in this generation

*

*I

public void propagateFittestParentChromosome(int poolSize)
int chromosomel = getRandom(poolSize);
int chromosome2 = getRandom(poolSize);
Chromosome propChromosome = null;
Chromosome ~emp = null;

I* To ensure that this parent hasn't already been chosen *I
if currGenChromosomes.get(chromosomel) == currGenChromosomes.get(chromosome2)

do
chromosome2 = getRandom(poolSize);

) \vhile (currGenChromosomes. get (chromosomel)
currGenChromosornes. get (chromosome2)) ;

)

if ((Chromosome)currGenChromosomes.get(chromosomel)) .getFitnessValue(myGA)
((Chromosome)currGenChromosomes.get(chromosome2)) .getFitnessValue(myGA)

if(
((Chromosome)currGenChromosomes.get(chromosomel)) .getChromosomeCost(myGA.totalJobCycles)
<

((Chromosome)currGenChromosomes.get(chromosome2)) .getChromosomeCost(myGA.totalJobCycles)
) (

try (
propChromosome

(Chromosome) (ObjectCloner.deepCopy(currGenChromosomes.get(chromosomel)));
) catch (Exception e) (

System.out.println("ObjectCloner exception: "+e);

else (
try (

propChromosome
(Chromosome) (ObjectCloner.deepCopy(currGenChromosomes.get(chromosome2)));

) catch (Exception e) (
System.out.println("ObjectCloner exception: "+e);

else if
((Chromosome)currGenChromosomes.get(chromosomel)) .getFitnessValue(myGA) >

((Chromosome)currGenChromosomes.get(chromosome2)) .getFitnessValue(myGA)
try (

propChromosome =

(Chromosome) (ObjectCloner.deepCopy(currGenChromosomes.get(chromosomel)));
) catch (Exception e) (

System.out.println("ObjectCloner exception: "+e);

else (
try (

propChromosome
(Chromosome) (ObjectCloner.deepCopy(currGenChromosomes.get(chromosome2)));

) catch (Exception e) (
System.out.println("ObjectCloner exception: "+e);

- 77-

propagateThisChromosome(propChromosome);

II End of method propagateFittestParentChromosome

/**
* . : : checkForCrossover ...
* @return boolean, True to perform crossover, False to not perform crossover

*
**
*I

public boolean checkForCrossover ()
int crossoverCheckValue = getRandom(lOl);

I* If the random number chosen 'n', from 0 to 100, is less than or
equal to the crossoverProbability, then crossover *I

if (crossoverCheckValue <= this.crossoverProbability)
return true;

else
return false;

II End of METHOD: checkForCrossover

/**
* . :: checkForMutation ::.
* @return boolean, True to perform mutation, False to not perform mutation

*
**
*I

public boolean checkForMutation ()
int mutationCheckValue = getRandom(lOl);

I* If the random number chosen 'n', from 0 to 100, is less than or
equal to the mutationProbability, then mutate *I

if (mutationCheckValue <= this.mutationProbability)
return true;

else
return false;

II End of METHOD: checkForMutation

/**
* . :: getSumFitness ::.
* @param chromPopulation, Vector of chromosome population of which to sum the

fitness
* @return double representing the sum of all the FV's in this population

*
**
*I

public double getSumFitness(Vector chromPopulation)
double fvTotal 0.00;

for (int i=O;i < chromPopulation.size();i++)
fvTotal += ((Chromosome)chromPopulation.get(i)) .getFitnessValue(myGA);

return getScaled(fvTotal, this.decimalPrecision);
II End of METHOD: getSumFitness

/**
* . :: rouletteSelectChromosome ::.

*
* Method that takes a Vector of chromosomes, which represents
* a generation, and selects one using a biased roullete wheel
* method.
*
* @param chromPopulation, Vector representing the total population
* @return int representing the selected chromosome

- 78-

**
*I

public int rouletteSelectChromosome(Vector chromPopulation)
int i = -1;
double random 0;
double partsum 0;

random= getRandom(l.O) * getSumFitness(chromPopulation);

if (random != 0)
do {

else

i++;
part sum
while (

+= ((Chromosome)chromPopulation.get(i)) .getFitnessValue(myGA);
(i < (this.initialPopulation- 1)) && (partsum <random));

i = getRandom(chromPopulation.size());

return i;
II End of METHOD: rouletteSelectChromosome

/**
* . : : doMutation : : .

*
* Method that takes a given chromosome, and mutates it
* by subtracting 5% from a randomly selected genes job
* share, and then adding that 5% to another randomly
* selected gene's job share.

*
* @param mutationChromosome, Chromosome to mutate
**
*I

protected void doMutation(Chromosome mutationChromosome)
int mutationGeneMinus = 0;
int mutationGeneAdd = 0;
Chromosome tempChromosome = null;
double mutationAmount = 0.05;

do {

try
tempChromosome = (Chromosome) (ObjectCloner.deepCopy(mutationChromosome));
catch (Exception e)
System.out.println("ObjectCloner exception: "+e);

II Find a gene in the given chromosome, from which the mutationAmount (ex: .05 -
> 5%) can be subtracted without

II leaving a negative number.
do {

mutationGeneMinus = getRandom(chromosomeDimension);
} while (tempChromosome.genes[mutationGeneMinus] .getGeneJobShare() -

mutationAmount) < 0);

II Subtract the mutationAmount
tempChromosome.genes[mutationGeneMinus] .setGeneJobShare(

getScaled((tempChromosome.genes[mutationGeneMinus] .getGeneJobShare() -
mutationAmount), this.decimalPrecision));

II Find a gene to add the mutationAmount, but not the one just reduced by the
mutationAmount

do {
mutationGeneAdd = getRandom(chromosomeDimension);

} while (mutationGeneAdd == mutationGeneMinus);

II Add the mutationAmount
tempChromosome.genes[mutationGeneAdd] .setGeneJobShare(

getScaled((tempChromosome.genes[mutationGeneAdd] .getGeneJobShare() +
mutationAmount), this.decimalPrecision));

- 79-

II Adjust the new chromosome, to make sure the entire job is allocated
myGA.adjustGeneDistribution(tempChromosome);

II Repeat process if any of the following are true:
II -New Chromosome doesn't meet the Maximum Cost requiremets
II - New Chromosome doesn't account for 100% of the job
II -New Chromosome doesn't meet the Fitness Value requirments (within time

limits)
} while (

myGA.maxJobCost)
(tempChromosome.getChromosomeCost(myGA.totalJobCycles) >

II
(getScaled(tempChromosome.getGeneJobShareTotal(),this.decimalPrecision)

!= 1.00) II
(tempChromosome.getFitnessValue(myGA) < 0.00));

II Copy tempChromosome information over to mutationChromosome to complete the
mutation

for (int x=O;x < chromosomeDimension;x++)

mutationChromosome.genes[x] .setGeneJobShare(tempChromosome.genes[x] .getGeneJobShare());
}

//End of METHOD: doMutation

/***
* . :: doCrossover ::.
* Method to choose 2 random chromosomes, and then
* perform a crossover on them.

*
* @param int poolSize, int representing the chromosome pool

*/

protected void doCrossover(int poolSize)
int crossoverChromosomel = rouletteSelectChromosome(myGA.currGenChromosomes);
int crossoverChromosome2 = rouletteSelectChromosome(myGA.currGenChromosomes};
Chromosome childl null;
Chromosome child2 = null;

/* To ensure that this parent doesn't mate with itself (IB-P) */
if (Chromosome)myGA.currGenChromosomes.get(crossoverChromosomel)

(Chromosome)myGA.currGenChromosomes.get(crossoverChromosome2)
do {

crossoverChromosome2 = rouletteSelectChromosome(myGA.currGenChromosomes);
} while ((Chromosome)myGA.currGenChromosomes.get(crossoverChromosomel)

(Chromosome)myGA.currGenChromosomes.get(crossoverChromosome2});

try
childl

(Chromosome) (ObjectCloner.deepCopy(myGA.currGenChromosomes.get(crossoverChromosomel)));
child2 =

(Chromosome) (ObjectCloner.deepCopy(myGA.currGenChromosomes.get(crossoverChromosome2)));

crossoverTheseChromosomes(childl, child2);

adjustGeneDistribution(childl);

II Does the chromosome meet the Maximum Cost requirements ?
if (childl.getChromosomeCost(myGA.totalJobCycles) > myGA.maxJobCost)

II The Maximum Cost requirements were NOT met, so ...
do {

II Create a new chromosome to replace the rejected one
childl = (Chromosome) (ObjectCloner.deepCopy(myGA.createChromosome()));

//Adjust the new chromosome, to make sure the entire job is allocated
myGA.adjustGeneDistribution(childl);

//Repeat process if any of the following are true:
II -New Chromosome doesn't meet the Maximum Cost requiremets

- 80-

II - New Chromosome doesn't account for 100% of the job
II -New Chromosome doesn't meet the Fitness Value requirments (within

time limits)
} while (childl.getChromosomeCost(myGA.totalJobCycles) > myGA.maxJobCost)

II
(getScaled(childl.getGeneJobShareTotal(),this.decimalPrecision) !=

1. 00) I I
(childl.getFitnessValue(myGA) < 0.00)) ;

adjustGeneDistribution(child2);

II Does the chromosome meet the Maximum Cost requirements ?
if (child2.getChromosomeCost(myGA.totalJobCycles) > myGA.maxJobCost)

II The Maximum Cost requirements were NOT met, so ...
do {

II Create a new chromosome to replace the rejected one
child2 = (Chromosome) (ObjectCloner.deepCopy(myGA.createChromosome()));

II Adjust the new chromosome, to make sure the entire job is allocated
myGA.adjustGeneDistribution(child2);

II Repeat process if any of the following are true:
II - New Chromosome doesn't meet the Maximum Cost requiremets
II -New Chromosome doesn't account for 100% of the job
II -New Chromosome doesn't meet the Fitness Value requirments (within

time limits)
} while ((child2.getChromosomeCost(myGA.totalJobCycles) > myGA.maxJobCost)

II
(getScaled(child2.getGeneJobShareTotal(),this.decimalPrecision) !=

1. 00) I I
(child2.getFitnessValue(myGA) < 0.00));

catch (Exception e)
System.out.println("ObjectCloner exception: "+e);

propagateFittestChromosome(
((Chromosome)myGA.currGenChromosomes.get(crossoverChromosomel)), ((Chromosome)myGA.currGe
nChromosomes.get(crossoverChromosome2)),childl, child2);

} II End of METHOD: doCrossover

/**
* . :: crossoverTheseChromosomes ::.
* Crossover 2 chromosomes at a random point

*
* @param Chromosome cl, Chromosome to crossover
* @param Chromosome c2, Chromosome to crossover

*I

protected void crossoverTheseChromosomes(Chromosome cl, Chromosome c2)
int crossoverPoint = getRandom(this.chromosomeDimension+l);
Chromosome temp = null;

I* Creates a new separate copy of cl, which will be
use later to populate c2. Uses Java serialization
to do the "deep copy" *I

try {
temp= (Chromosome) (ObjectCloner.deepCopy(cl));
catch (Exception e)
System.out.println("ObjectCloner exception: "+e);

for (int i=O;i < crossoverPoint;i++)
cl.genes[i] .setGeneJobShare(c2.genes[i] .getGeneJobShare());

for (int i=O;i < crossoverPoint;i++)

- 81 -

1)

c2.genes[i] .setGeneJobShare(temp.genes[i] .getGeneJobShare());

II End of METHOD: crossoverTheseChromosomes

/***
* .:: adjustGeneDistribution ::.
* Used to adjust a chromosome, so that the sum of the
* genes job shares equal 1 (100%, entire job allocated)

*
* @param c1, Chromosome to adjust

*I

protected void adjustGeneDistribution(Chromosome c1)
boolean adjusting = false;

if (getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision) != 1) {
if (getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision) < 1) {

do {
int adjustGene = getRandom(this.chromosomeDimension);
if ((c1.getGenes() [adjustGene] .getGeneJobShare() +

(1- getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision))) <=

c1.getGenes() [adjustGene] .setGeneJobShare(
c1. getGenes () [adjustGene] . getGeneJobShare () + (l -
getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision)));

cl.getGenes() [adjustGene] .setGeneJobShare(
getScaled(c1.getGenes() [adjustGene] .getGeneJobShare(), this.decimalPrecision)) ;

adjusting = true;

0)

while (!adjusting);

else
if

do

(getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision) - 1) >=

int adjustGene = getRandom(this.chromosomeDimension);
if ((cl. getGenes () [adjustGene]. getGeneJobShare () -

(getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision) - 1))
>= 0)

c1.getGenes() [adjustGene] .setGeneJobShare(
c1. getGenes () [adjustGene] . getGeneJobShare () -
(getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision) - 1)

c1.getGenes() [adjustGene] .setGeneJobShare(
getSca1ed(c1.getGenes() [adjustGene] .getGeneJobShare(), this.decimalPrecision)) ;

adjusting = true;
else (
c1. getGenes () [adjustGene] . setGeneJobShare (0. 00);

while (!adjusting);

II End of METHOD: adjustGeneDistribution

/***
* , :: createChromosome ::.
* Used to create a new chromosome, and then insert it into a specific place in
* a Vector of chromosomes

*
* @param thisChromosome, Vector of chromosomes
* @param chromosomeindex, int representing the index of the chromosome to replace

*

*I

public void createChromosome(Vector thisChromosome,int chromosomeindex)
double geneSum = 0.00;

do {

- 82-

do {
for {int x=O;x < this.chromosomeDimension;x++)

((Chromosome)thisChromosome.get(chromosomeindex)) .genes[x] .setGeneJobShare(getRandom(lOO
)) ;

geneSum +=
((Chromosome)thisChromosome.get(chromosomeindex)) .genes[x] .getGeneJobShare();

}

} while (geneSum == 0); /* In the rare case the sum is 0 */

for (int z=O;z < this.chromosomeDimension;z++) {
((Chromosome)thisChromosome.get(chromosomeindex)) .genes[z] .setGeneJobShare(

((Chromosome}thisChromosome.get(chromosomeindex)) .genes[z] .getGeneJobShare() I geneSum
) ;

((Chromosome)thisChromosome.get(chromosomeindex)) .genes[z] .setGeneJobShare(
getScaled((((Chromosome)thisChromosome.get(chromosomeindex)) .genes[z] .getGeneJobShare())
, this. decimalPrecision)) ;

}

} while (
((Chromosome)thisChromosome.get(chromosomeindex)) .getFitnessValue(myGA) < 0.00);

geneSum = 0. 00;

II End of METHOD: createChromosome

/**
* . : : createChromosome : : .
* Used to create a new chromosome

*
* @return Chromosome, that was just created

*
**
*I

public Chromosome createChromosome()
double geneSum = 0.00;
Chromosome newChrom =new Chromosome(myGA.chromosomeDimension);

II Use for 5 available resources testing
for (int x=O;x < myGA.chromosomeDimension;x++)
if (x==O) {

Share*//*

/* Gene-Resource #, Speed, Cost, Job Share*/
newChrom.setThisGene(x,l,l,O);

else if (x==l) {
newChrom.setThisGene(x,3,3,0);

else if (x==2) {
newChrom.setThisGene(x,5,5,0);

else if (x==3) {
newChrom.setThisGene(x,7,6,0);

else {
newChrom.setThisGene(x,9,7,0);

/* Use for 10 available resources testing
for (int x=O;x < this.chromosomeDimension;x++)
if (x==O) {

/* Gene-Resource #, Speed, Cost, Job

((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,l,l,O);
else if (x==l) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,2,3,0);
else if (x==2) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,3,5,0);
else if (x==3) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,4,6,0);

} else if (x==4) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,5,7,0);
else if (x==S) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,6,8,0);
else if (x==6) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,7,9,0);

- 83-

else if (x==7)
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,B,lO,O);
else if (x==B) {
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,9,11,0);
else {

((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,10,12,0);
}

do
do

}

*I

for (int x=O;x < myGA.chromosomeDimension;x++)
newChrom.genes[x] .setGeneJobShare(getRandom(100));
geneSum += newChrom.genes[x] .getGeneJobShare();

while (geneSum == 0); I* In the rare case the sum is 0 *I

for (int z=O;z < myGA.chromosomeDimension;z++)
newChrom.genes[z] .setGeneJobShare(newChrom.genes[z] .getGeneJobShare() I

geneSum) ;
newChrom.genes[z] .setGeneJobShare(

getScaled((newChrom.genes[z] .getGeneJobShare()), myGA.decimalPrecision));
)

} tvhile
geneSum

newChrom.getFitnessValue(myGA) < 0.00);
0.00;

return netvChrom;

II End of METHOD: createChromosome

/**
* . :: initPopulationPool ...
* Used to create the initial pool of chromosomes

*
**
*I

protected void initPopulationPool()
double geneSum 0.00;
double total 0.00;
double totalDisplay 0.00;
double adjustment 0.00;
int adjustGene 0;

I* Create the initial population. Randomly select the percentage
of the job, that each gene(resource) will be assigned. *I

for (int i=O;i < this.initialPopulation;i++) {
myGA.createChromosome(this.currGenChromosomes,i);

I* Find the total percentage of the job being distributed amongst
the genes in a given chromosome, to make sure it equals 1 (100%).
If this is not true, then adjust accordingly. *I

for (int i=O;i < this.initia1Population;i++) {
do {

total= 0.00;
for (int x=O;x < this.chromosomeDimension;x++)

total +=
((Chromosome)myGA.currGenChromosomes.get(i)) .genes[x] .getGeneJobShare();

)

100%) *I
I* Adjust one of the genes in the chromosome, so that the total equals 1 (or

if getScaled((1 - total) ,this.decimalPrecision) != 0)

I* In case the gene selected is 0.00, and the adjustment amount
is less than O, we don't tvant to subtract from it,

- 84-

which would realize a negative number. */
if (getScaled((l- total),this.decimalPrecision) < 0)

do {
adjustGene = getRandom(this.chromosomeDimension);

} while (
((Chromosome)myGA.currGenChromosomes.get(i)) .genes[adjustGene] .getGeneJobShare() <

getScaled ((total -
l),this.decimalPrecision));

}

adjustment= getScaled((l- total), this.decimalPrecision);

/* Does an adjustment need to be made? */
if ((getScaled(adjustment, this.decimalPrecision)) != 0.00)

/* Add the "adjustment" to the randomly selected gene */

((Chromosome)myGA.currGenChromosomes.get(i)) .genes[adjustGene] .setGeneJobShare(

((Chromosome)myGA.currGenChromosomes.get(i)) .genes[adjustGene] .getGeneJobShare() +
adjustment);

/* Scale value to the decimal precision */

((Chromosome)myGA.currGenChromosomes.get(i)) .genes[adjustGene] .setGeneJobShare(

getScaled(((Chromosome)myGA.currGenChromosomes.get(i)) .genes[adjustGene] .getGeneJobShare
(), this.decimalPrecision)) ;

}

/* Does the adjusted chromosome meet the Fitness Value requirements (within
time limits)?*/

0.00)
if (((Chromosome)myGA.currGenChromosomes.get(i)) .getFitnessValue(myGA) <

/* Create a new chromosome to replace the rejected one */
myGA.createChromosome(myGA.currGenChromosomes,i);

/* Does the chromosome meet the Maximum Cost requirements ? */
if(

((Chromosome)myGA.currGenChromosomes.get(i)) .getChromosomeCost(myGA.totalJobCycles) >
myGA.maxJobCost) {

/*The Maximum Cost requirements were NOT met, so ... */
do {

/* Create a new chromosome to replace the rejected one */
myGA.createChromosome(myGA.currGenChromosomes,i);

/* Adjust the new chromosome, to make sure the entire job is allocated */
myGA.adjustGeneDistribution((Chromosome)myGA.currGenChromosomes.get(i));

/* Repeat process if any of the following are true:
-New Chromosome doesn't meet the Maximum Cost requiremets
-New Chromosome doesn't account for 100% of the job
- New Chromosome doesn't meet the Fitness Value requirments (1-1i thin

time limits) */
} while (

(((Chromosome)myGA.currGenChromosomes.get(i)) .getChromosomeCost(myGA.totalJobCycles) >
myGA.maxJobCost) I I

(get Scaled (
((Chromosome)myGA.currGenChromosomes.get(i)) .getGeneJobShareTotal(),this.decimalPrecisio
n) != 1.00) II

(((Chromosome)myGA.currGenChromosomes.get(i)) .getFitnessValue(myGA) < 0.00));
}

while ((Chromosome)myGA.currGenChromosomes.get(i)) .getFitnessValue(myGA) <
o.oo I I

(getScaled(total,this.decimalPrecision) != 1.00) II

(((Chromosome)myGA.currGenChromosomes.get(i)) .getChromosomeCost(myGA.totalJobCycles) >
myGA.maxJobCost));

}

- 85-

) II End of METHOD: initPopulationPool

/***
* . :: displayThisPopulation ::.
* Used to print the details of each chromosome population
* to the screen

*
* @param thisGA, GA instance to be displayed
* @param thisPopulation, Vector population to be displayed
* @param popDescription, String description to display that identifies the

population

*

*I

public void displayThisPopulation (GA thisGA, Vector thisPopulation, String
popDescription) (

double totalDisplay = 0.00;

System.out.print(''*****************************'');
for (int i=O;i < thisGA.chromosomeDimension + 1;i++)

System.out.print("********");
System.out.println("");
System.out.println(popDescription);
System.out.print(''*****************************'');
for (int i=O;i < thisGA.chromosomeDimension + 1;i++)

System.out.print("********");
System.out.println("");
System.out.println("* C JA FV CT JC
System.out.print("*");
for (int i=O;i < 37;i++)

System.out.print(" ");
for (int i=O;i < thisGA.chromosomeDimension;i++)

System.out.print(i);
if (i < thisGA.chromosomeDimension - 1)

System.out.print(" ");

System.out.println("");
System.out.print(''*****************************'');
for (int i=O;i < thisGA.chromosomeDimension + 1;i++)

System.out.print("********");
System.out.println("");
for (int i=O;i < thisGA.initialPopu1ation;i++)

for (int x=O;x < thisGA.chromosomeDimension;x++)
totalDisplay +=

((Chromosome)thisPopu1ation.get(i)) .genes[x] .getGeneJobShare();
System.out.print(" " + i +

GENES");

" + (getScaled(totalDisplay, this.decimalPrecision)
100) + "%" +

" +
((Chromosome)thisPopu1ation.get(i)) .getFitnessVa1ue(thisGA) +

" +
((Chromosome)thisPopulation.get(i)) .getChromosomeCompletionTime(thisGA) +

" +
((Chromosome)thisPopulation.get(i)) .getChromosomeCost(thisGA.totalJobCycles) +" ");

for (int x=O;x < thisGA.chromosomeDimension;x++)
System.out.print("ll "+

((Chromosome)thisPopulation.get(i)) .genes[x] .getGeneJobShare() +" ");
System.out.println("");

*

System.out.println("==
=======");

totalDisplay = 0.00;

) II End of METHOD: displayThisPopulation

- 86-

/***
* .:: checkConvergence ::.
* Used check to see if all the chromosomes in the
* current generation are identical. IE: All resources/genes
* are allocated identically to the other chromosomes in the
* current generation.

*
* @return boolean, true if all converge, false if different

*I

public boolean checkConvergence()

for (int i=O;i < myGA.initialPopulation;i++)
for (int x=O;x < myGA.chromosomeDimension;x++)

if(
((Chromosome)myGA.currGenChromosomes.get(i)) .genes[x] .getGeneJobShare() !=

((Chromosome)myGA.currGenChromosomes.get(O)) .genes[x] .getGeneJobShare()
return false;

return true;
II End of METHOD: checkConvergence

/***
k****

* Main method for GA class

*
* @param args, Passed in values for: InitialPopulation, NumberOfGenerations,

ChromosomeDimension

*

**

*I
public static void main(String[] args)

int population=O, generations=O, dimension=O;
int gen=O;
long timeBefore=O, timeAfter=O, timeDiff=O;
double totalDisplay = 0.00;
String popDescription = "";
Vector <Chromosome> tempVector=null;
boolean done = false;

System.out.println("\n*** GA started: "+new Date() .toString() +" ***");

try {
if (args.length < 3)

throw new GAException("Requires all 3 parameters:");

population
generations
dimension

Integer.parseint(args[O]);
Integer.parseint(args[1]);
Integer.parseint(args[2]);

if (population < 1)
thr01~ new GAException ("Initial Population must be greater than 0");
else if (generations < 1) {
throw new GAException("Chromosome_Dimension must be greater than 0");

if ((population % 2) != 0)
throw new GAException("Initial_Population must be an even number");

catch (GAException e)
System.out.println("\n" +e);
System.out.println("USE: java GA 'Initial Population Number of Generations

Chromosome Dimension'");
System.out.println("EXAMPLE: java GA 6 55");

- 87-

System.out.println(" ... exiting, goodbye.");
System.exit(l);

/* Open a file to store population information */
ReportWriter rw =new ReportWriter();

/* Complete 10 times for averaging purposes */
for (int zz=O;zz < lO;zz++)

myGA =new GA(population,generations,dimension);

/* Begin timings */
timeBefore = System.currentTimeMillis();
System.out.println("Begin time in milliseconds:" + timeBefore);

/* Initialize the beginning population pool */
myGA.initPopulationPool();

/* Initial population is created, now cycle through multiple generations */
//for (gen=O;gen < myGA.numberOfGenerations;gen++)
/* do loop used to perform loop until convergence */
do {

/* Check to see if there will be a crossover or mutation */
for (int i=O;i < myGA.initialPopulation;i++) {

/* Check to see if there will be a crossover performed */

if (myGA.checkForCrossover())
myGA.doCrossover(myGA.initialPopulation);
else {
I* No crossover, so check for a mutation */
if (myGA.checkForMutation()) {
if(

((Chromosome)myGA.currGenChromosomes.get(i)) .getChromosomeCost(myGA.totalJobCycles) >
myGA.maxJobCost) {

System.exit(l);
}

myGA.propagateFittestParentChromosome(myGA.initialPopulation);

/* Make new generation the current generation */
try {

tempVector = (Vector
<Chromosome>) (ObjectCloner.deepCopy(myGA.nextGenChromosomes));

} catch (Exception e) {
System.out.println("ObjectCloner exception: " +e);

myGA.currGenChromosomes.removeAllElements();
myGA.currGenChromosomes = tempVector;
myGA.nextGenChromosomes.removeAllElements();

/* Check to make sure that the next generation is empty */
if (myGA.nextGenChromosomes.isEmpty()) {

some noise */

/* All is well, proceed to next generation */
else {
/*Error, next generation should be current generation, and empty ... make

popDescription = "*Generation:" + gen + ", nextGenChromosomes <== 0" ;
myGA.displayThisPopulation(myGA,myGA.nextGenChromosomes,popDescription);
System.out.println("ERROR!!!! (NextGen) population fitness average: " +

getScaled(myGA.getSumFitness(myGA.currGenChromosomes)/myGA.initialPopulation,
myGA.decimalPrecision) + "\n\n");

}

gen++;
done = myGA.checkConvergence();

while (! done) ;

- 88-

I* End timings *I
timeAfter = System.currentTimeMillis();
timeDiff = timeAfter - timeBefore;

rw.writeThisinfo(
((Chromosome)myGA.currGenChromosomes.get(O)) .getChromosomeCost(myGA.totalJobCycles) +
!If II +

((Chromosome)myGA.currGenChromosomes.get(O)) .getChromosomeCompletionTime(myGA) + "," +

((Chromosome)myGA.currGenChromosomes.get(O)) .getFitnessValue(myGA) + "," +
getScaled((timeDiff * .001) ,myGA.decimalPrecision) + "," +
gen

) ;

System.out.println("**
*******");

System.out.println(" TOTAL # OF
TOTAL GA");

System.out.println(" GENERATIONS
RUNTIME");

System.out.println(" " + gen +
" +

AVG CHROM AVG CHROM AVG CHROM

JOB COST COMPLETION TIME FV

((Chromosome)myGA.currGenChromosomes.get(O)) .getChromosomeCost(myGA.totalJobCycles) +
" +

((Chromosome)myGA.currGenChromosomes.get(O)) .getChromosomeCompletionTime(myGA) +
" +

((Chromosome)myGA.currGenChromosomes.get(O)) .getFitnessValue(myGA) +
"+ timeDiff + "ms" + "==> "+ getScaled((timeDiff

* .OOl),myGA.decimalPrecision) + "s");

System.out.println("**
*******");

gen = 0;

II end of for loop for averaging purposes

rw.closeReportFile();

popDescription = "Convergence"
myGA.displayThisPopulation(myGA,myGA.currGenChromosomes,popDescription);

System.out.println("\n*** GA ended: "+new Date() .toString() +" ***");

II End of METHOD: main

} II End of CLASS: GA

- 89-

import java.io.*;

/**
* @author James Sweeney
* March, 2007

*
* Class that stores the gene information
*I

public class Gene implements Serializable

private static final long serialVersionUID 1;
protected int geneSpeed;
protected double geneCost;
protected double geneJobShare;

/*
* Constructor for the Gene class

*
* @param speed, representing speed of this resource (gene)
* @param cost, representing cost of this resource (gene)
* @param jobShare, representing percentage of the job that this resource (gene)

will process
*I

public Gene (int speed, double cost, double jobShare)
this.geneSpeed speed;
this.geneCost cost;
this.geneJobShare jobShare;

public int getGeneSpeed()
return (this.geneSpeed);

public void setGeneSpeed(int s) {
this.geneSpeed = s;

public double getGeneCost()
return (this.geneCost);

public void setGeneCost(double c)
this.geneCost = c;

public double getGeneJobShare()
return (this.geneJobShare);

public void setGeneJobShare(double js)
this.geneJobShare = js;

- 90-

import java.io.*;

I**
* @author James Sweeney
* March, 2007

*
* Class that stores the chromosome information
*I

public class Chromosome implements Serializable

private static final long serialVersionUID 1;

II Gene storage for each Chromosome
protected Gene [] genes;

I*
* Constructor for the Chromosome class
* @param numGenes
*I

public Chromosome (int numGenes)
genes = ne\v Gene [numGenes];

/***
* . :: getGenes ::.

* @return Gene [] representing the chromosome

*I

public Gene [] getGenes()
return (genes);

/**
* .:: setThisGene ::.

* @param int representing the gene to set
* @param int representing the speed of the gene
* @param double representing the cost of the gene
* @param double representing the percentage of job assigned to that gene
**
*I

public void setThisGene(int thisGene, int geneSpeed, double geneCost, double
geneJobShare) {

genes[thisGene] =new Gene(geneSpeed,geneCost,geneJobShare);

/**
* .:: getGeneJobShareTotal ::.

* @return double representing % of job allocated
**
*I

public double getGeneJobShareTotal()
double geneTotal = 0;
for (int i=O;i < this.genes.length;i++)

geneTotal += genes[i] .getGeneJobShare();

return (GA.getScaled(geneTotal, 2));

/***

* .:: getFitnessValue::.
* @param thisGA, GA which contains the chromosome about which you wold like to

find the FV
* @return double representing the Fitness Value

**
**

*I
public double getFitnessValue(GA thisGA)

double completionTime = 0;
double tempCompletionTime = 0;

- 91-

for (int i=O;i < this.genes.length;i++)
tempCompletionTime = (thisGA.totalJobCycles * genes[i] .getGeneJobShare()

I genes[i] .getGeneSpeed();
if (tempCompletionTime > completionTime)

completionTime = tempCompletionTime;

return (thisGA.getScaled((thisGA.maxJobExecutionTime- completionTime), 2)) ;

/***

* .:: getChromosomeCompletionTime ::.
* @param thisGA, GA which contains the chromosome about which you wold like to

find the completion time
* @return double representing the time in ms, that it will take for the

chromosome to run

**

*I
public double getChromosomeCompletionTime(GA thisGA)

double completionTime = 0;
double tempCompletionTime = 0;

for (int i=O;i < this.genes.length;i++)
tempCompletionTime = (thisGA.totalJobCycles * genes[i] .getGeneJobShare()

I genes[i] .getGeneSpeed();
if (tempCompletionTime > completionTime)

completionTime = tempCompletionTime;

return (thisGA.getScaled((completionTime), 2));

/***
* .:: getChromosomeCost ::.
* @param totalJobCycles, Total job cycles required to run the job
* @return double representing the cost

*I

public double getChromosomeCost(int totalJobCycles)
double chromCost = 0;
for (int i=O;i < this.genes.length;i++)

chromCost += (((genes[i] .getGeneJobShare() * totalJobCycles) I
genes[i] .getGeneSpeed()) * genes[i] .getGeneCost());

}
return (GA.getScaled(chromCost, 2));

-92-

/**
* @author James Sweeney
* March, 2007

*
* GA exception class

*
*I

public class GAException extends Exception
(

private static final long serialVersionUID 1;

/**
* GAException constructor
* @param msg, Error message
*I

GAException(String msg)
(

super(msg);

- 93-

import java.io.*;
import java.util.*;
import java.awt.*;

I**
* @author James Sweeney (Dave Miller code)
* March, 2007

*
* Class used to make a deep copy of an object
*I

public class ObjectCloner
{

II so that nobody can accidentally create an ObjectCloner object
private ObjectCloner() {)
II returns a deep copy of an object
static public Object deepCopy(Object oldObj) throws Exception
{

ObjectOutputStream oos = null;
ObjectinputStream ois = null;
try
{

ByteArrayOutputStream bas =
ne1~ ByteArrayOutputStream () ; I I A

oos =new ObjectOutputStream(bos); II B
II serialize and pass the object
oos.writeObject(oldObj); II C
oos.flush(); II D
ByteArrayinputStream bin

new ByteArrayinputStream(bos.toByteArray());
ois =new ObjectinputStream(bin);
II return the new object
return ois.readObject(); II G

catch(Exception e)
{

II E
II F

System.out.println("Exception in ObjectCloner
throw (e);

" + e);

finally
{

oos.close();
ois.close();

- 94-

import java.io.*;
import java.util.*;

/**
* @author James Sweeney
* March, 2007

*
* Class that is used to create a file to be used to write information
*I

public class ReportWriter {

String fileName = "report.txt";
File f;
FileWriter fw;
PrintWriter pw;

/*
* Constructor for the ReportWriter class
*I

public ReportWriter ()
try {

f new File(fileName);
fw =new FileWriter(f);
pw =new PrintWriter(fw);
//pw.println("\n*** GA started:"+ new Date().toString() +" ***");

catch(IOException e)
System.out.println("Exception writing file:"+ e);

/***
* . :: writeThisPopulation ::.
* @param
* @param
* @param

thisGA, GA that contains the population of interest
thisPopulation, Vector containing the cromosomes in the population
popDescription, String describing the population

*

*/

public void writeThisPopulation (GA thisGA, Vector thisPopulation, String
popDescription) {

double totalDisplay = 0.00;

pw.print(''\n\n*****************************'');
for (int i=O;i < thisGA.chromosomeDimension + l;i++)

pw.print(''********'');
pw.println("");
pw.println(popDescription);
pw.print(''*****************************'');
for (int i=O;i < thisGA.chromosomeDimension + l;i++)

pw.print(''********'');
p1~.println ("");
pw.println("* C JA
pw.print("*");
for (int i=O;i < 37;i++)

pw.print(" ");

FV CT JC

for (int i=O;i < thisGA.chromosomeDimension;i++)
plv.print(i);
if (i < thisGA.chromosomeDimension - l)

pw.print(" ");

pw.println("");
pw.print(''*****************************'');

GENES");

for (int i=O;i < thisGA.chromosomeDimension + l;i++)
pw.print(''********'');

plv.println("");
for (int i=O;i < thisGA.initialPopulation;i++)

for (int x=O;x < thisGA.chromosomeDimension;x++)
totalDisplay +=

((Chromosome)thisPopulation.get(i)) .genes[x] .getGeneJobShare();
pw.print(" " + i +

- 95-

" + (thisGA.getScaled(totalDisplay,
thisGA.decimalPrecision) * 100) + "%" +

" +
((Chromosome)thisPopulation.get(i)) .getFitnessValue(thisGA) +

" +
((Chromosome)thisPopulation.get(i)) .getChromosomeCompletionTime(thisGA) +

" +
((Chromosome)thisPopulation.get(i)) .getChromosomeCost(thisGA.totalJobCycles) +" ");

for (int x=O;x < thisGA.chromosomeDimension;x++)
pw.print("ll "+

((Chromosome)thisPopulation.get(i)) .genes[x] .getGeneJobShare() +" ");
pw.println("");

pw.println("==="
) ;

totalDisplay = 0.00;

} // End of METHOD: writeThisPopulation

/**************************************
* .:: writeThisinfo ::.
* @param info, String to write to file

*

*I

public void writeThisinfo(String info)
pw.println(info);

/**************************************
* , :: closeReportFile ::.
* Method to record the time that the
* GA ended, and close the file

*

*/

public void closeReportFile()
pw.close();

- 96-

APPENDIXC

Appendix C: Simulated Annealing Code Listings

import java.io.*;
import java.util.*;
import java.lang.Math;
import java.math.*;

I**
* @author James Stveeney
* March, 2007

*
* Main Simulated Annealing class

*
*I

public class SimulatedAnnealing{

I* Annealing Schedule Variables *I

II Variables for the bounds of the cooling schedule
double initialTemperature; II starting point for algorithm
double finalTemperature; II stopping point for algorithm
double tweakFactor; II used to perturb the solution

II Constant used for geometric cooling
double alpha; II used as a multiplier to decrement the temperature

II Number of iterations performed at each temperature change (plateau)
int stepsPerChange; II number of iterations at each temperature level

II Number of available resources for each solution
int solutionDimension;

II Decimal precision to use for each resource
int decimalPrecision;

II Total number of cycles needed to run the job
int totalJobCycles;

II Maximum time allowed for job execution
int maxJobExecutionTime;

II Maximum cost allowed for job execution
double maxJobCost;

Solution current, working, best;

static SimulatedAnnealing mySA;

/***

* Constructor for SimulatedAnnealing class.

*
* @param initialTemperature, double value for starting temperature of the

algorithm
* @param finalTemperature, double value for the ending temperature of the

algorithm

level
* @param iterations, int value for the number of cycles at each temperature

* @param alpha, double value used as a multiplier to decrement the temperature
* @param tweakFactor, double value used perturb the solution.

*

- 97-

*
*I

public SimulatedAnnealing(double
double
int
double
double

initialTemperature,
final Temperature,
iterations,
alpha,
tweakFactor)

this.initialTemperature
this.finalTemperature
this.stepsPerChange
this.alpha
this.tweakFactor

this.solutionDimension

initialTemperature;
final Temperature;
iterations;
alpha;
tweakFactor;

= 5;

current
working
best

new Solution(solutionDimension);
new Solution(solutionDimension);
new Solution(solutionDimension);

for (int x=O;x < solutionDimension;x++) {
if (x==O) {

/* Gene-Resource #, Speed, Cost, Job Share*/
current.setThisResource(x,l,l,O);
working.setThisResource(x,l,l,O);
best.setThisResource(x,l,l,O);
else if (x==l) {
current.setThisResource(x,3,3,0);
working.setThisResource(x,3,3,0);
best.setThisResource(x,3,3,0);
else if (x==2) {
current.setThisResource(x,5,5,0);
working.setThisResource(x,5,5,0);
best.setThisResource(x,5,5,0);
else if (x==3) {
current.setThisResource(x,7,6,0);
working.setThisResource(x,7,6,0);
best.setThisResource(x,7,6,0);
else if (x==4) {
current.setThisResource(x,9,7,0);
working.setThisResource(x,9,7,0);
best.setThisResource(x,9,7,0);

//To be used with 10 available resources
/*else if (x==5) {
current.setThisResource(x,6,8,0);
working.setThisResource(x,6,8,0);
best.setThisResource(x,6,8,0);
else if (x==6) {
current.setThisResource(x,7,9,0);
working.setThisResource(x,7,9,0);
best.setThisResource(x,7,9,0);
else if (x==7) {
current.setThisResource(x,8,10,0);
working.setThisResource(x,8,10,0);
best.setThisResource(x,8,10,0);
else if (x==8) {
current.setThisResource(x,9,11,0);
working.setThisResource(x,9,11,0);
best.setThisResource(x,9,11,0);
else {
current.setThisResource(x,10,12,0);
working.setThisResource(x,10,12,0);
best.setThisResource(x,10,12,0);
*/

this.decimalPrecision = 2;

II Total number of cycles needed to run the job
this.totalJobCycles = 20;

- 98-

II Maximum time allowed for job execution
this.maxJobExecutionTime = 10;

II Maximum cost allowed for job execution
this.maxJobCost = 25.50;

/***
* . : : getScaled : : .
* Scale decimal number via the rounding mode BigDecimal.ROUND_HALF_UP.
* Method is used to make sure that the correct number of decimal
* places are used for each resource.

*
* @param value, double value to be scaled
* @param scale, int value for number of decimals to scale to
* @return double representing the newly scaled number

*I

static public double getScaled(double value, int scale)
double result= value; //default: unsealed

//use BigDecimal String constructor as this is the only exact way for double
values

result= new BigDecimal(value) .setScale(scale,
BigDecimal.ROUND_HALF_UP) .doubleValue();

II Could also use:
//result= Math.round(value * 100.0) I 100.0;

return result;
//End of METHOD: getScaled

/**
* .:: getRandom (int) ...
* return a integer random number between 0 and upperBound
* @param upperBound of the range for randomization
* @return int, randomly generated number
**
*I

int getRandom(int upperBound)
int iRandom = (int) (Math.random() * upperBound);
return (iRandom);

//End of METHOD: getRandom (int)

/**
* . :: getRandom (double) ...
* return a double random number between 0 and upperBound
* @param upperBound of the range for randomization
* @return double, randomly generated number
**
*I

double getRandom(double upperBound)
II Gives a random number that is:
II 0.00 <= dRandom < upperBound
II This does exclude returning the maximum value
double dRandom = (Math.random() * upperBound);
return (dRandom);

II End of METHOD: getRandom (double)

/**
* . : : tweakSolution : : .

*
* Method that takes a given Solution, and tweaks it
* by subtracting "tweakFactor" (ex: .05 ==> 5%) from a
* randomly selected resources job share,
* and then adding that "tweakFactor" to another randomly
* selected resources's job share. The "tweakFactor" variable
* is passed in at program startup.

- 99-

*
* @param thisSolution, Solution to tweak
**
*I

protected Solution tweakSolution(Solution thisSolution)
int resourceMinus 0;
int resourceAdd = 0;

I* Find a resource in the given solution, from which tweakFactor can be subtracted
without

leaving a negative number. *I
do {

resourceMinus = getRandom(solutionDimension);
} while ((thisSolution.resources[resourceMinus] .getResourceJobShare() -

this.tweakFactor) < 0);

I* Subtract the tweakFactor *I
thisSolution.resources[resourceMinus] .setResourceJobShare(

getScaled((thisSolution.resources[resourceMinus] .getResourceJobShare()
- this.tweakFactor), this.decimalPrecision));

*I
I* Find a resource to add t1veakFactor, but not the one just reduced by tweakFactor

do
resourceAdd = getRandom(solutionDimension);

} while (resourceAdd == resourceMinus);

I* Add the tweakFactor *I
thisSolution.resources[resourceAdd] .setResourceJobShare(

getScaled((thisSolution.resources[resourceAdd] .getResourceJobShare() +
this.tweakFactor), this.decimalPrecision));

try

limits) *I

I* Does the solution meet the Maximum Cost requirements ? *I
if (thisSolution.getSolutionCost(mySA.totalJobCycles) > mySA.maxJobCost)

I* The Maximum Cost requirements were NOT met, so ... *I
do {

do {
I* Create a new solution to replace the rejected one *I
thisSolution = mySA.createSolution();

I* Adjust the ne\oJ solution, to make sure the entire job is allocated *I
mySA.adjustResourceDistribution(thisSolution);

I* Repeat process if any of the following are true:
-New solution doesn't meet the Maximum Cost requiremets
-New solution doesn't account for 100% of the job
-New solution doesn't meet the Energy requirments (within time

while
mySA.maxJobCost)

(thisSolution.getSolutionCost(mySA.totalJobCycles) >
II

(getScaled(
this Solution. getResourceJobShareTotal () , this. decimalPrecision) ! = 1. 00) I I

(thisSolution.getEnergy(mySA) < 0.00)) ;
} while (! thisSolution.isValid());

catch (Exception e)
System.out.println("ObjectCloner exception: "+e);

}

return thisSolution;

} II End of METHOD: tweakSolution

/***
* . :: adjustResourceDistribution ::.
* Used to adjust a Resource, so that the sum of the
* Resource job shares equal 1 (100%, entire job allocated)

*

- 100-

* @param sl, Resource to adjust

*I

protected void adjustResourceDistribution(Solution sl)
boolean adjusting = false;

<= 1)

if (getScaled (slo getResourceJobShareTotal () , my SA 0 decimalPrecision) ! = 1) {
if (getScaled(slogetResourceJobShareTotal(),mySAodecimalPrecision) < 1) {

do {
int adjustResource = getRandom(mySAosolutionDimension);
if ((slogetResources() [adjustResource]ogetResourceJobShare() +

(1- getScaled(slogetResourceJobShareTotal(),mySAodecimalPrecision)))

slogetResources() [adjustResource] osetResourceJobShare(
sl o getResources () [adjustResource] o getResourceJobShare () + (1 -
getScaled(slogetResourceJobShareTotal(),mySAodecimalPrecision)));

slogetResources() [adjustResource] osetResourceJobShare(
getScaled(slogetResources() [adjustResource] ogetResourceJobShare(),
mySAodecimalPrecision));

>= 0)

adjusting = true;

while (!adjusting);

else
if

do

(getScaled(slogetResourceJobShareTotal() ,mySAodecimalPrecision) - 1)

int adjustResource = getRandom(mySAosolutionDimension);
if ((slo getResources () [adjustResource] 0 getResourceJobShare () -

(getScaled(slogetResourceJobShareTotal(),mySAodecimalPrecision) -
1)) >= 0)

slo getResources () [adjustResource] o setResourceJobShare (
sl o getResources () [adj ustResource] o getResourceJobShare () -
(getScaled(slogetResourceJobShareTotal() ,mySAodecimalPrecision) - 1)) ;

slogetResources() [adjustResource] osetResourceJobShare(
getScaled(slogetResources() [adjustResource] ogetResourceJobShare(),
mySAodecimalPrecision));

adjusting = true;
else {
slogetResources() [adjustResource] osetResourceJobShare(OoOO);

while (!adjusting);

II End of METHOD: adjustGeneDistribution

/**
* 0:: createSolution ::o
* Used to create a new solution

*
* @return Solution, that was just created

*
**
*I

public Solution createSolution()
double resourceSum = OoOO;
Solution newSolution =new Solution(mySAosolutionDimension);

for (int x=O;x < mySAosolutionDimension;x++)
if (x==O) {

I* Resource #, Speed, Cost, Job Share*/
newSolutionosetThisResource(x,l,l,O);

else if (x==l) {
newSolutionosetThisResource(x,3,3,0);

else if (x==2) {
newSolutionosetThisResource(x,5,5,0);

else if (x==3) {
newSolutionosetThisResource(x,7,6,0);

- 101 -

}

*I

do

else if (x==4)
newSolution.setThisResource(x,9,7,0);

II To be used with 10 available resources
/*else if (x==5) {

newSolution.setThisResource(x,6,8,0);
else if (x==6) {

newSolution.setThisResource(x,7,9,0);
else if (x==7) {

newSolution.setThisResource(x,B,lO,O);
else if (x==B) {

newSolution.setThisResource(x,9,ll,O);
else {

newSolution.setThisResource(x,10,12,0);

do
for (int x=O;x < mySA.solutionDimension;x++)

newSolution.resources[x] .setResourceJobShare(getRandom(lOO));
resourceSum += newSolution.resources[x] .getResourceJobShare();

while (resourceSum == 0); /* In the rare case the sum is 0 */

for (int z=O;z < mySA.solutionDimension;z++)
newSolution.resources[z] .setResourceJobShare(

newSolution.resources[z] .getResourceJobShare() I resourceSum);
newSolution.resources[z] .setResourceJobShare(

getScaled((newSolution.resources[z] .getResourceJobShare()), mySA.decimalPrecision));
}

mySA.adjustResourceDistribution(newSolution);

while (newSolution.getEnergy(mySA) < 0.00);

try {
/* Does the Solution meet the Maximum Cost requirements ? */
if (newSolution.getSolutionCost(mySA.totalJobCycles) > mySA.maxJobCost)

/* The Maximum Cost requirements were NOT met, so set valid flag to false */
newSolution.setValid(false);
return newSolution;

catch (Exception e)
System. out. println ("Obj ectCloner exception: " + e) ;

resourceSum = 0.00;

if (newSolution.getSolutionCost(mySA.totalJobCycles) > mySA.maxJobCost)
mySA.printSolution(newSolution, " ... OVER COST- NEW SOLUTION ... ");

return newSolution;

II End of METHOD: createSolution

/***
* .:: displayThisPopulation ::.
* Used to print the details of each chromosome population to the screen

*
* @param thisSolution, Solution to be displayed
* @param description, String description to display that identifies the solution
*

*/

- 102-

public void printSolution(Solution thisSolution, String description)
double totalDisplay = OoO;

System.out.print(''****************************''};
for (int i=O;i < mySAosolutionDimension + l;i++)

Systemooutoprint("********");
Systemooutoprintln("");
Systemooutoprintln(description);
System.out.print(''****************************'');
for (int i=O;i < mySAosolutionDimension + 1;i++)

Systemooutoprint("********");
Systemooutoprintln("");
Systemooutoprintln("* JA ENERGY CT
Systemooutoprint("*");
for (int i=O;i < 37;i++)

Systemooutoprint(" ");
for (int i=O;i < mySAosolutionDimension;i++)

Systemooutoprint(i);
if (i < mySAosolutionDimension - 1)

Systemooutoprint(" ");

JC

Systemooutoprintln("");
System.out.print(''****************************'');
for (int i=O;i < mySAosolutionDimension + 1;i++)

Systemooutoprint("********");
Systemooutoprintln("");

for (int x=O;x < mySAosolutionDimension;x++)

RESOURCES") ;

totalDisplay += thisSolutionogetResources() [x] ogetResourceJobShare();
Systemooutoprint(

" + (getScaled(totalDisplay, mySAodecimalPrecision) *
100) + "%" +

+ II ") i

" + thisSolutionogetEnergy(mySA) +
" + thisSolutionogetSolutionCompletionTime(mySA) +
" + thisSolutionogetSolutionCost(mySAototalJobCycles)

for (int x=O;x < mySAosolutionDimension;x++)
Systemooutoprint("ll "+

thisSolution o getResources () [x] o getResourceJobShare () + " ");
Systemooutoprintln("");

Systemooutoprintln("==
=======II) ;

) II End of METHOD: printSolution

/***

* Main method for SA class

*
* @param args, Passed in values for:

initialTemperature,finalTemperature,iterations,alpha,tweakFactor

*

**

*I
public static void main(String[] args)

double temperature= OoOO;
long timeBefore=O, timeAfter=O, timeDiff=O;
int step;
double initialTemperature=OoOO,

finalTemperature=O o 00, alpha=O o 00, tlveakFactor=O o 00;
int iterations=O;
boolean solution = false;

Systemooutoprintln("\n*** SA started: " +new Date() otoString() + " ***");

- 103-

try {
if (args.length < 5)

throw new SAException("Requires all 5 parameters:");

initial Temperature
final Temperature
iterations
alpha
tweakFactor

Double.parseDouble(args[O]);
Double.parseDouble(args[1]);
Integer.parseint(args[2]);
Double.parseDouble(args[3]);
Double.parseDouble(args[4]);

if (initialTemperature < 1)
throw new SAException("Initial_Temperature must be greater than or equal

to 1.0");

if (finalTemperature < 0.01) {
throw new SAException("Final_Temperature must be greater than 0.01");

if (iterations < 1)
throw new SAException("iterations must be greater than or equal to 1");

if (alpha >= 1)
throw new SAException("alpha must be less than 1");

if (tweakFactor >= 1)
throw new SAException("tweakFactor must be less than 1");

catch (SAException e)
System.out.println("\n" +e);
System.out.println("USE: java SimulatedAnnealing 'initialTemperature

final Temperature iterations alpha t\~eakFactor' ") ;
System.out.println("EXAMPLE: java SimulatedAnnealing 50 .05 10 .99 .05");
System.out.println(" ... exiting, goodbye.");
System.exit(1);

/* Open a file to store population information */
ReportWriter rw =new ReportWriter();

/* Complete 10 times for averaging purposes */
for (int zz=O;zz < 10;zz++) {

mySA = new
SimulatedAnnealing(initialTemperature,finalTemperature,iterations,alpha,tweakFactor);

*/

temperature= mySA.initialTemperature;

/* Begin timings */
timeBefore = System.currentTimeMillis();
System.out.println("Begin time in milliseconds:"+ timeBefore);

do {
do {

/* Create a new Solution to replace the rejected one */
mySA.current = mySA.createSolution();

/* Adjust the new Solution, to make sure the entire job is allocated */
mySA.adjustResourceDistribution(mySA.current);

I* Repeat process if any of the following are true:
-New Solution doesn't meet the Maximum Cost requiremets
-New Solution doesn't account for 100% of the job
- New Solution doesn't meet the Energy requirments (within time limits)

1~hile

mySA.maxJobCost)
(mySA.current.getSolutionCost(mySA.totalJobCycles) >

II
(getScaled (

mySA.current.getResourceJobShareTotal(),mySA.decimalPrecision) != 1.00) I I
(mySA.current.getEnergy(mySA) < 0.00));

} while (! mySA.current.isValid());

- 104-

try {

do

mySAoworking = (Solution) (ObjectClonerodeepCopy(mySAocurrent));
mySAobest = (Solution) (ObjectClonerodeepCopy(mySAocurrent));
catch (Exception e) {
Systemooutoprintln("ObjectCloner exception: "+e);

for (step O;step < mySAostepsPerChange;step++) {

try {
mySAoworking = (Solution) (ObjectClonerodeepCopy(mySAocurrent));
catch (Exception e) {
Systemooutoprintln("ObjectCloner exception: "+e);

mySAoworking mySAotweakSolution(mySAoworking);

double test mySAogetRandom(loO);
double delta mySAoworkingogetEnergy(mySA) -

mySAocurrentogetEnergy(mySA);

&&

double calc OoOO;

if (delta > 0)

try {
mySAocurrent = (Solution) (ObjectClonerodeepCopy(mySAolvorking));
catch (Exception e) {
Systemooutoprintln ("ObjectCloner exception: " + e);

if (mySAoworkingogetEnergy(mySA) > mySAobestogetEnergy(mySA)) {
try {

mySAobest = (Solution) (ObjectClonerodeepCopy(mySAoworking));
catch (Exception e) {
Systemooutoprintln("ObjectCloner exception: "+e);

else if ((mySA 0 working 0 getEnergy (mySA) == my SAo best o getEnergy (my SA))

(mySAoworkingogetSolutionCost(mySAototalJobCycles) <=
mySAobestogetSolutionCost(mySAototalJobCycles))) {

try {
mySAobest = (Solution) (ObjectClonerodeepCopy(mySAoworking));
catch (Exception e) {
SystemooUtoprintln("ObjectCloner exception: "+e);

else if (test< Mathoexp(delta/temperature)) {
try {

mySAocurrent = (Solution) (ObjectClonerodeepCopy(mySAoworking));
catch (Exception e) {
Systemooutoprintln("ObjectCloner exception: "+e);

temperature *= mySAoalpha;

while (temperature> mySAofinalTemperature);

/* End timings */
timeAfter = SystemocurrentTimeMillis();
timeDiff = timeAfter - timeBefore;

rwowriteThisinfo(mySAobestogetSolutionCost(mySAototalJobCycles) + "," +
mySAobestogetSolutionCompletionTime(mySA) + "," +
mySAobestogetEnergy(mySA) + "," +

- 105-

getScaled((tirneDiff * .OOl),rnySA.decirnalPrecision) + "," +
rnySA.stepsPerChange

) ;

rnySA.printSolution(rnySA.best, zz +":BEST SOLUTION FOUND");
Systern.out.println(" "+ tirneDiff + "rns" + "~~> "+ getScaled((tirneDiff *

. 001) ,rnySA.decirnalPrecision)) ;

) II end of for loop for averaging purposes

rw.closeReportFile();

II END of METHOD: Main

) II End of CLASS: Simulated Annealing

- 106-

import java.io.*;

I**
* @author James Sweeney
* March, 2007

*
* Class that stores the Resource information
*I

public class Resource implements Serializable

II Speed of this resource
protected int resourceSpeed;

II Cost of this resource
protected double resourceCost;

II Percentage of the job assigned to this resource
protected double resourceJobShare;

I*
* Constructor for the Resource class

*
* @param speed, representing speed of this resource
* @param cost, representing cost of this resource
* @param jobShare, representing percentage of the job assigned to this Resource
*I

public Resource (int speed, double cost, double jobShare)
this.resourceSpeed speed;
this.resourceCost cost;
this.resourceJobShare jobShare;

/***
* . :: getResourceSpeed ...
* @return int representing the speed of this Resource

*

*I

public int getResourceSpeed()
return (this.resourceSpeed);

/***
* .:: setResourceSpeed ::.
* @param s representing the speed of this Resource

*

*I

public void setResourceSpeed(int s)
this.resourceSpeed = s;

/***
* .:: getResourceCost ...
* @return int representing the cost of this Resource

*

*I

public double getResourceCost()
return (this.resourceCost);

/***
* .:: setResourceCost ::.
* @param c representing the cost of this Resource

*

*I

public void setResourceCost(double c)
this.resourceCost = c;

- 107-

/***
**

* .:: getResourceJobShare ::.
* @return double representing the percentage of the job assigned to this

Resource

*

*I

public double getResourceJobShare()
return (this.resourceJobShare);

/**
* . : : setResourceJobShare
* @param js representing the percentage of the job assigned to this Resource

*
**
*I

public void setResourceJobShare(double js)
this.resourceJobShare = js;

II End of CLASS: Resource

- 108-

import java.io.*;

I**
* @author James Sweeney
* March, 2007

*
* Class that stores the Solution information
*I

public class Solution implements Serializable
boolean validSolution;

II Resource storage for each Solution
protected Resource [] resources;

I*
* Constructor for the Resource class
* @param numResources
*I

public Solution (int numResources)
resources= new Resource [numResources];
validSolution = true;

/**
*
* @return Resource

*

.: : getResources ::.
[], an array of Resources for this Solution

**
*I

public Resource [] getResources()
return (resources);

/**
* . :: setValid::.
* @param v, boolean value depicting the solution validity

*
**
*I

public void setValid(boolean v)
validSolution = v;

/**
* . :: isValid ::.
* @return boolean, true if solution is valid, else false

*
**
*I

public boolean isValid()
return (validSolution) ;

/***

* . :: setThisResource ::.
* @param thisResource, integer index to the resource to set
* @param resourceSpeed, integer value representing the speed of this resource
* @param resourceCost, integer value reprenting the cost of this resource
* @param resourceJobShare, integer value representin the percentage of job this

resource owns

*

**

*I
public void setThisResource(int thisResource, int resourceSpeed, double

resourceCost, double resourceJobShare)
resources[thisResource] =new

Resource(resourceSpeed,resourceCost,resourceJobShare);
}

- 109-

/***

* , :: getResourceJobShareTotal ::.
* @return double representing the percentage of the job allocated to all

resources

*

**
*I

public double getResourceJobShareTotal()
double resourceTotal = 0;
for (int i=O;i < this.resources.length;i++)

resourceTotal += resources[i] .getResourceJobShare();

return (SimulatedAnnealing.getScaled(resourceTotal, 2));

/**
* . : : getEnergy : : ,
* @return double representing the Energy Value for this Solution

*
**
*I

public double getEnergy(SimulatedAnnealing thisSA)
double completionTime = 0;
double tempCompletionTime = 0;

for (int i=O;i < this.resources.length;i++)
tempCompletionTime = (thisSA.totalJobCycles *

resources[i] .getResourceJobShare()) I resources[i] .getResourceSpeed();
if (tempCompletionTime > completionTime) {

completionTime = tempCompletionTime;

return (thisSA.getScaled((thisSA.maxJobExecutionTime- completionTime), 2));

/**
* .:: getSolutionCompletionTime ::.
* @return double representing the time it will take for this Solution to run

*
**
*I

public double getSolutionCompletionTime(SimulatedAnnealing thisSA)
double completionTime = 0;
double tempCompletionTime = 0;

for (int i=O;i < this.resources.length;i++)
tempCompletionTime = (thisSA.totalJobCycles *

resources[i] .getResourceJobShare()) I resources[i] .getResourceSpeed();
if (tempCompletionTime > completionTime) {

completionTime = tempCompletionTime;

return (thisSA.getScaled((completionTime), 2)) ;

/***
* .:: getSolutionCost ::.
* @return double representing the cost to run this Solution

*

*I

public double getSolutionCost(int totalJobCycles)
double solCost 0;
for (int i=O;i < this.resources.length;i++)

- 110-

solCost += (((resources[i] .getResourceJobShare() * totalJobCycles) I
resources[i] .getResourceSpeed()) * resources[i] .getResourceCost());

}

return (SimulatedAnnealing.getScaled(solCost, 2));

II End of CLASS: Solution

- 111 -

/**
* @author James Sweeney
* March, 2007

*
* SA exception class
*I

public class SAException extends Exception
{

/**
* SAException constructor
* @param msg
*I

SAException(String msg)
{

super (msg) ;

- 112-

import java.io.*;
import java.util.*;
import java.awt.*;

I**
* @author James Sweeney (Dave Miller code)
* March, 2007

*
*
*I

public class ObjectCloner
{

II so that nobody can accidentally create an ObjectCloner object
private ObjectCloner(){}
II returns a deep copy of an object
static public Object deepCopy(Object oldObj) throws Exception
{

ObjectOutputStream oos = null;
ObjectinputStream ois = null;
try
{

ByteArrayOutputStream bos =
new ByteArrayOutputStream(); II A

oos =new ObjectOutputStream(bos); II B
II serialize and pass the object
oos.writeObject(oldObj); II C
oos.flush(); II D
ByteArrayinputStream bin

new ByteArrayinputStream(bos.toByteArray()); II E
ois =new ObjectinputStream(bin); II F
II return the new object
return ois.readObject(); II G

catch(Exception e)
{

System.out.println("Exception in ObjectCloner
throw (e);

finally
{

oos.close();
ois.close();

- 113-

" + e);

import java.io.*;
import java.util.*;

/**
* @author James Sweeney
* March, 2007

*
* Class that is used to create a file to be used to write information
*I

public class ReportWriter {

String fileName = "report.txt";
File f;
FileWri ter hn
PrintWriter pw;

/*
* Constructor for the ReportWriter class
*I

public ReportWriter ()
try {

f
fw
pw

new
new
new

File(fileName);
FileWriter(f);
PrintWriter(fw);

catch(IOException e)
System.out.println("Exception writing file:"+ e);

/**************************************
* . :: writeThisinfo ::.
* @param info, String to write to file

*

*I

public void writeThisinfo(String info)
pw.println(info);

/**************************************
* .:: closeReportFile ::.
* Method to record the time that the
* GA ended, and close the file

*

*I

public void closeReportFile()
pw.close();

- 114-

VITA

James P. Sweeney has a Bachelor of Science degree from Davis & Elkins College in

Computer Science with a minor in mathematics, 1994, and expects to receive a Master

of Science in Computer and Infom1ation Sciences from the University of North Florida,

August 2007. Dr. Sanjay Ahuja of the University ofNotih Florida is serving as James'

thesis advisor. James is currently employed as a senior programmer analyst at Mayo

Clinic Jacksonville and has been with the clinic four years. Prior to that, James was a

programmer and consultant with a variety of companies including; All tel Information

Services, Merrill Lynch, Prudential, IBM Global Services, JMFE/Southeast Toyota,

Convergys, NASA, and the National Radio Astronomy Observatory.

James has on-going interests in grid and distributed computing, stochastic algorithms,

and natural language parsing. James has programming experience in Visual Basic,

Java, COBOL, Perl, and SQL to name a few. James' academic work has included the

use of Pascal, Fotiran 90, and Ada, as well. James is a competitive cyclist who enjoys

the outdoors as well as all things electronic. Married for the last five years, James has a

four-year-old Boxer.

- 115-

	Dual Constraint Problem Optimization Using A Natural Approach: Genetic Algorithm and Simulated Annealing
	Suggested Citation

	Title Page

	Contents

	List of Figures

	Abstract

	Chapter 1: Introduction

	1.1 The Dual Constraint Optimization Problem: Grid Resource Allocation
	1.2 Grid Computing and Its Variants
	1.3 Utility Computing: The Grids Economic Approach

	Chapter 2: Survey of Related Work

	2.1 The Resource Allocation Problem: How to Optimize?
	2.2 Stochastic Algorithmic Solutions
	2.3 Focus of Thesis

	Chapter 3: Genetic Algorithms: Survival of the Fittest

	3.1 Reproduction
	3.2 Crossover
	3.3 Mutation

	Chapter 4: Simulated Annealing: Cooling Hot Metal
	Chapter 5: Testing and Evaluation of the Stochastic Algorithms

	5.1 The Optimal Solution
	5.2 The Genetic Algorithm
	5 .2.1 Algorithmic Functionality
	5.2.2 Variable Values

	5.3 The Simulated Annealing Algorithm

	5.3.1 Algorithmic Functionality

	5.3.2 Variable Values

	Chapter 6: Conclusions and Future Work

	6.1 Conclusions
	6.2 Future Work

	References

	Appendix A: Optimal Solution Code Listings
	Appendix B: Genetic Algorithm Code Listings
	Appendix C: Simulated Annealing Code Listings

