x University of North Florida

UNIVERSITY of ..
UNF NORTH FLORIDA. UNF Digital Commons
UNF Graduate Theses and Dissertations Student Scholarship
2007

Dual Constraint Problem Optimization Using A Natural Approach:
Genetic Algorithm and Simulated Annealing

James P. Sweeney
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

6‘ Part of the Theory and Algorithms Commons

Suggested Citation

Sweeney, James P, "Dual Constraint Problem Optimization Using A Natural Approach: Genetic Algorithm
and Simulated Annealing" (2007). UNF Graduate Theses and Dissertations. 283.
https://digitalcommons.unf.edu/etd/283

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital

Commons. It has been accepted for inclusion in UNF

Graduate Theses and Dissertations by an authorized \

administrator of UNF Digital Commons. For more

information, please contact Digital Projects. UNIVERSITY of

© 2007 All Rights Reserved UNF NORTH FLORIDA.

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.unf.edu%2Fetd%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/283?utm_source=digitalcommons.unf.edu%2Fetd%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

DUAL CONSTRAINT PROBLEM OPTIMIZATION USING
A NATURAL APPROACH:
GENETIC ALGORITHM AND SIMULATED ANNEALING

James P. Sweeney

A thesis submitted to the
School of Computing
in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOQL OF COMPUTING

June 8, 2007

Copyright (€©) 2007 by James P. Sweeney

All rights reserved. Reproduction in whole or in part in any form requires the prior
written permission of James P. Sweeney or designated representative,

i

The thesis "Dual Constraint Problem Optimization Using a Natural Approach: Genetic
Algorithm and Simulated Annealing” submitted by James P. Sweeney in partial
fulfillment of the requirements for the degree of Master of Science in Computer and
Information Sciences has been

Approved by the thesis committee: Date
Signature Deleted

7 /z / 07
Sanjay P. Ahuja, Ph.D,)
Thesis Advisor and Committee Chairperson

Roget Eggen, PHD.

Signature Deleted

Signature Deleted
7{/ %/ &/ 7

Yap Chua, Ph.D.

Accepted for the School of Computing:

Signature Deleted ‘
1) fon

Judith L. Solano, Ph.D. "
Director of the School

Accepted for the College of Computing, Enginecring, and Construction:

Signature Deleted 7/{\1/ J7

Neal S. Coulter, Ph.D.
Dean of the College

Accepted for the University:
Signature Deleted

/) Tvel 2e0F

David E.W. Fenner, Ph.D.
Dean of the Graduate School

iii

ACKNOWLEDGEMENT

[want to thank my advisor, Dr. Sanjay Ahuja, for his direction, fecdback, and
encouragement during my research. Gratitude also goes to my thesis committee, Dr.
Roger Eggen and Dr, Yap Chua, who have brought a fresh outlook and inspired new
challenges during the construction of this body of work. Most importantly, T owe the
opportunity to pursue this next level of education to my wife, who has graciously shared

time and teant unconditional support during this fengthy endeavor.

iv

CONTENTS

LISE OF FIZUIES oottt et e vii
ADSEIACT .1ttt ettt et b e ettt ea bbb 1) s ssetb e aer e iX
Chapter 11 ITOUCTION ...ciiieee et bana e beenas s be s eaasesbe s re e e 1
1.1 The Dual Constraint Optimization Problem: Grid Resource Allocation........... 1

1.2 Grid Computing and Its Variants............ TP TO UV RTOTUOPPPUTON 3

1.3 Utility Computing: The Grids HEconomic Approach........cccovvevviiiniienviiiiinnens 6
Chapter 2: Survey of Related WorK.......coiveiiiiiiieiieiiiiiccis s et ase e 8
2.1 The Resource Allocation Problem: How to OpHmize?ccvvecvivivinrerennennns 8

2.2 Stochastic Algorithmic Solutionsccceeevcnrnnnnnnn e e 10

2.3 FoCUS OF THESIS 1oeiciiiiiii et e sn s e 13
Chapter 3: Genetic Algorithms: Survival of the Fittest.......ccocoooeeviiveiniiciiiiccee 16
3.1 ReProdUCLION. ...ovivieceriieieccictie et e e sttt s esne e et enne e 18

3.2 CTOSSOVEL covieeriiitoieeccritrinieeae e st e saets s s b e bt e ke a et ase s e bea st sabeasssnnessbesbennebans 19

3.3 MULALION . oottt n e et a s en e e eraas 22
Chapter 4: Simulated Annealing: Cooling Hot Metalccooevviviiiievniiee e e, 25
Chapter 5: Testing and Evaluation of the Stochastic Algorithms...........cccoovvvreceinnnens 30
5.1 The Optimal SOIULION.t iiies it e st ests e ebre s s b erasese e rreeeaens 31

5.2 The Genetic AlBOTTtRIM ...ocoviiiiiienni e s s bt 34
5.2.1 Algorithmic Functionalitycccoceiiienniiiinnen o 35

522 Variable ValUes ..o bbb 38

5.3 The Simulated ANNEALIIEovovveeeie i eee et n e 44

53.1 Algorithmic FUnctionalitycoceeveeviiiieiii e 44

532 Variable Values ..o 48

Chapter 6; Conclusions and Future Workcccccnieiniiimi e 58
0.1 CONCIUBIONS 1totrietei et ciit ettt et ete et be et et e s st e s e eseseesbeseatssnnerne 58

0.2 FULUre WOIK ..ottt es et 59
RETETEIICES. ...ttt et ab e st r e ettt e b s nee s e a e 61
Appendix A: Optimal Solution Code LiStINES.....ccoceiiiieeirriiiiisirsn e essrairserseisesnas 64
Appendix B: Genctic Algorithm Code LIStINZS covvvevviiiieceniccrrenissresresenn s eerennns 73
Appendix C: Simulated Annealing Code LiStiNgS....cccoiiivviiniimeeiciiiimesnmnenn, 97
R R S OO RSO TPT VYOS U TR TO PP OTPPTOTPRPRTRTY 115

vi

LIST OF FIGURES

Figure 1: Computational Jobs are Split to Run on the Gridccoccoiiicininincninienn 5
Figure 2: The Grid Resource Broker is a Part of the User-Level Middleware 7
Figure 3: Equations for the Total Cycles, Time Constraint, and Cost Constraint............ 9
Figure 4: Genetic Algorithm FIOWChartoceciiiiicininince v 17

Figure 5: Weighted Roulette Wheel Representing Four Chromosomes. Chromosome
#2 has the Best Fitness Value and thus the Highest Probability of Being Chosen..19

Figure 6: Crossover EXampPle ..ottt ae st 20
Figure 7: Genetic Algorithm Propagation Pseudo Codeooooviiiiiiiiiicecinive e 21
Figure 8: Wright’s Adaptive SUIface......cocviirieieniiiieesscei e ane s 23
Figure 9: Examples of Mutation Methodsooceveeiiiioenccis e 24
Figurc 10: Probability FUNCHON. . cccciiiiiiici e sr b 26
Figure 11: Flowchart of a Standard Simulated Annealing Algorithmc..coovivnennee. 27
Fipure 12: Resource Scenarios and Their Associated Speed and Costcovvvinen. 32
Figure 13: Optimal Solutions for Problem Constraints #1cccceevrciiiivieiniienenn, 32
Figure 14: Optimal Solutions for Problem Constraints #2ccccovvvevvcciiiiieviesineeneen, 33
Figure 15: Ten Available Resources and Their Associated Speed and Cost....ccccvvnee. 34
Figure 16: Solution for Optimization Problem Using Ten Available Resources 34
Figure 17: Samplc Population Size vs. Fitness Value GA Test Run........ooccovveevirinns 40

Figure 18: Sample Genetic Algorithm Runtime vs. Population Size GA Test Run....... 41

Figure 19: Sample Job Execution Time vs. Population Size GA Test Runc..o...... 42
Figure 20: Sample Percentage of Optimum vs. Population Size GA Test Run 43
Figure 21: Sample Energy Value vs, Tweak Factor SA Test Runccccceeeviiceiecnnninen. 45
Figure 22: Simulated Annealing Runtime vs. Twealc Factor Test Run.........c.occoeeeiinnee 46

vii

Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32;
Figure 33:

Figure 34:

Sample Job Execution Timc vs. Tweak Factor SA Test Runt .oveeiciiieeninnnn, 47

Sample Percentage of Optimum vs, Tweak Factor SA Test Run................. 47
Sample Energy Value vs. Number of Iterations SA Test RUn.......oooovvvevvnne 50
Sample Simulated Annealing Ruatime vs. Number of Iterations Test Run . 51

Sample Percentage of Optimum vs, Number of Iterations Test Run............ 51
Sample Energy Value vs, Alpha SA Test RUN...covoveviiviieeveiiiiceniniennn 52
Sample Simulated Annealing Runtime vs. Alpha Test Run........ccooeeenenen., 53
Sample Percentage of Optimum vs. Alpha Test Run.........ccooovvvvnievvnieenen, 54
Sample Energy Value vs. Final Temperature SA Test Run.......cccoeeeeevvee. 55
Sample Simulated Annealing vs. Final Temperature Test Run......cc..v..oee. 56
Sample Percentage of Optimum vs. Final Temperature SA Test Run.......... 56
Results and Comparison of the GA and SA Rest Runs.c.oococoiiiiiiinnns 58

viil

ABSTRACT

Constraint optimization problems with multiple constraints and a large solution domain
are NP hard and span almost all industries in a variety of applications. One such
application is the optimization of resource scheduling in a “pay per use” grid
environment. Charging for thesc resources based on demand is often referred to as
Utility Computing, where resource providers lease computing power with varying costs
based on processing speed. Consumers using this resource have time and cost
constraints associated with each job they submit. Determining the optimal way to
divide the job among the available resources with regard to the time and cost constraints
is tasked to the Grid Resource Broker (GRB). The GRB must use an optimization
algorithm that returns an accurate result in a timely manner. The Genetic Algorithm and
the Simulated Annealing algorithm can both be used to achieve this goal, although
Sinmlated Annealing outperforms the Genetic Algorithm for use by the GRB.
Detcrmining optimal values for the variables used in each algorithm is often achicved
through trial and error, and success depends upon the solution domain of the problem.
Although this work outlines a specific grid resource allocation application, the results

can be applied to any optimization problem based on dual constraints.

iX

Chapter 1

INTRODUCTION

Constraint Optimization Problem’s (COP) are found in many fields and span across a
wide variety of industries. Examples extend from the evaluation of a business based on
assets, expenses, and annual turnover, to the optimization of transportation routes.
COPs can be found in chemical processing, energy systems, airlines, railroad, trucking,

insurance, and all other forms of business and research.

This thesis will evaluate a COP that has two constraints and is associated with splitting
a large computational job into smaller tasks to be processed on concurrent available
resources running on g grid, Finding a solution using an exhaustive search algorithm
would take longer to complete than the useful lifecycle of the result, or depending on
the size of the solution space, could take years to calculate. We will compare the
performance of two stochastic algorithms and then contrast their results to an optimal
search within small solution spaces. The best performing algorithm will be

recommended for use in our grid computing resource allocation COP,

1.1 The Dual Constraint Optimization Problem: Grid Resource Allocation

Grid computing is being used in a wide variety of ways throughout the educational,
research, and commercial communities. There are many types of grid computing

paradigms. Some of these include cluster computing, data grids, and computational

-1 -

grids. The ability to pull together the power of many disparate computer systems in a
heterogeneous environment makes computational grids the most dynamic use of the
grid architecture. This conglomerate of computing power can be used to power High
Performance Computing (HPC) applications in alimost all industries, such as Aerospace,
Life Sciences, Financial Services, and Automotive and Electronics. As this demand for
more computing power grows, so does the commercialization of this computing power,
The leasing of computer time is not a new concept; it was how the early computer users
gained time to run their programs on mainframe systems. This practice of leasing time,
or processing power, is once again being implemented and will only continue to grow in
popularity due to the cost of purchasing equipment to run HPC applications. The
business model of leasing computer resources as an on demand resource is commonly

reterred to as Utility Computing [Buyya02].

Guaranteeing Quality of Service (QoS) for each application is especially difficult. The
resource Service Level Agreements (SLA) offered by the service providers must be
mapped to the application level SLAs [Menascé04], which denote the terms required by
the application. The SLAs detail quantifiable metrics that have to be met between a
user application and a service provider. The availability of many different service

provider options creates a very complex scheduling and optimization problem.

Attempting to find an optimal solution would require an exhaustive search, which
would require more time and moncy than our SLA would allow. The amount of time

needed to find an optimal solution climbs exponentially as the number of available

resources increasc. Each resource could have allocated anywhere from 0% to 100%
share of the job, as long as the sum of the shares allocated to all resources equal 100%.
An optimal solution for this problem is NP hard {(Non-deterministic Polynomial-time
hard} and requires heuristic solutions [Menascé04A]. This optimization process
becomes more complex when the consiraints are added. Even though we have chosen
time and cost as our constraints, the results of this thesis can be applicd to any dual-

constraint-based, NP-hard problem.

This research comparcs two stochastic algorithms as possible solutions to this
optimization problem—Genetic Algorithm and Simulated Annealing. These two
algorithms were created to mimic nature and the way it uses a stochastic approach to
biological reproduction and the cooling of metals. Chapter 3 will further cxplain

Genetic Algorithms and Chapter 4 will provide an overview of Simulated Annealing.

1.2 Grid Computing and Its Variants

The architecture of Grid Computing is the next advance in distributed computing
[Ferriera03]. Grid computing uses many different heterogeneous resources to simulate
a single computing machine that, when united with a large number of donor resources,
can be extremely powerful. There are many types of grid computing architectures, and
each offers redundancy, dynamic expansion, and improved performance to each

respective application.

Cluster computing is a very close relation to grid computing, where resourccs are
typically linked together by a fast Local Area Network (LAN). Cluster computing is
not normally viewed as grid computing in the traditional sense, due to the way the
resources are tightly coupled in a homogeneous manor, Grid computing is normally
thought of as many types of heterogeneous resources, loosely coupled together across
administrative domains. Clusters, on the other hand, are on a single domain with
identical hardware and software configurations used across all resources. Computing
clusters may be used as one of the available resources in a grid, but a grid would not be

viewed as an available resource in cluster computing,

A data grid is the second most common type of grid computing [Ferriera03] and can
have several uses associated with the storage of data. Data grids normally utilize spacc
on almost any type of donor resource, although typically this space is scavenged from
individual user workstations. A data grid can act as a resource for transitory data, such
as what might be used by researchers who run applications that need large amounts of
storage (terabytes, petabytes) to run complex computations. Researchers could also use
this area as a virtual workspace, where a large amount of temporal storage is needed to
study results from a test run. When data are stored on the prid using striping, then data
can be accessed faster with more efficiency. Striping stores the same data at multiple
locations, enabling parallel searches. A data grid also provides the ability to have data
redundancy, with data at many different resources, thus eliminating a single point of

contention, or failure.

In this research we concentrate on the most popular form of grid computing
[Ferriera03], the computational grid. This type of grid reduces a large job to many
different small sub-tasks and sends each sub-task to a different resource to process.
When the resource has completed its sub-task, the result is returned to the controller,
which pieces all of these sub-results together to form the answer. Figure 1 illustrates
the Grid Resource Broker splitting the sub-tasks, sending them to an available resource,

and then collecting the results,

Joba and subjobs 1o un
. Orkl Rerouvrcs Brokgr
Joby queue _

- ¥
Colecting resuls

Figure 1: Computational Jobs are Split
to Run on the Grid [Ferriera03]

The Grid Resource Broker (GRB) [Buyya02] has the job of dividing the job among the
available resources. The GRB also has other responsibilities, including resource
discovery, resource selection, and job division, as well as task-resource matching and

optimization.

1.3 Utility Computing: The Grids Economic Approach

Utility computing is fashioned after other on-demand services, such as electricity,
water, and gas. The service, in our case of computing power, is offered by service
providers with various levels of computing speed at different costs. No matter which
industry employs utility computing, all users would like for their jobs to be completed
as quickly as possible. Moreover, there are many products that manage scheduling and
optimization for grid applications, such as GrADS, DAGMan, Askalon, ICENI, APST,
and Pegasus [Buyya02). These products are based on minimizing execution time, but
they do not evaluatc cost constraints associated with utility computing. Both cost and
execution time must be considered when purchasing computing power from a service
provider. Some users may need job results quickly and are able to absorb the premium
cost associated with such a service, while others may wish to wait for results, as long as

the job is executed within a specific time frame.

Rajkumar Buyya gave a tutorial session at the 2005 Intemational MultiConference in
Computer Science and Computer Engineering, “Grid Computing: Making the Global
Cyberinfrastructure for eScience and eBusiness a Reality,” He outlined many
challenges of implementing a utility grid, one of the most important being how to map
jobs to resources to meet QoS requirements [Buyya05]. Buyya used Figure 2 to
illustrate Gridbus and its associated technologies. It shows how the GRB fits into the

User-Level Middleware layer of the grid architecture.

rid
[_ Science } [Cummarce | | Engineering l | Collaboratnries I it [Portals | #pplioaticns
1
“.‘.. [ExcallGrid | I Gridscape | ; Workdflow | | X-Parameler Sweep Lany, 1 User-Level
d b ddleware
Grid Resource " : : A el T A ta Bk 1 |(Grid Toots)
Brokers: ’ Workflow Fngine 1 '___(_;_rfd_'i"_l_s_?_ﬂ_t?_g'f?!(?_r_--:
__________ [t T i Core Grid
--Unu:ore Grid ! ; ¥ Grid " Grid) ore
Alcheni Storaga |1 é;;l'li H Exchange & || Market | Middlevare
> | Nordutrid | xerid | feontmy |i..o..--.2} Federstlon) Directary |
2l LR LT e T e
o G
Cli el T som | Tranae 1l ore | [ece | M inea R
N[o) o | [omar] (o] (5] v | [romest] |} |
ol — m—m e — —— ttmmmeme ! D | Fatrle
5
b= Windows solaris [_iinuu | | AIXJ | 1IRIX l I OSF1L ' Mac I Sofwere
G M
) ﬁ ' ﬁ i ;l Grid
Fabrio
. '_ _:. ' Hardware
'\7 o ‘! 3'
Worldwlde Gl’iﬂ

Gridbus and Complementary
Technologies — realizing Utility Grid

Figure 2: The Grid Resource Broker is a Part
of the User-Level Middleware [Buyya05]

The GRB comrnunicates with the Core Grid Middleware services to find out what

resources are available, how much they cost, and the processing offered by each. It uses

this information to find the best solution for the jobs being submitted at the application

level. The submitted jobs may have QoS requirements that have to be met, such as

ensuring a job is completed in a certain time frame and ensuring it will cost no more

than a certain amount. These requirements must be met for the solution to be valid and

in the domain of possible solutions.

Chapter 2

SURVEY OF RELATED WORK

2.1 The Resource Allocation Problem: How to Optimize?

Daniel Menascé and Emiliano Casalicchio published an article, “QoS in Grid
Computing” [Mecnascé04], in which they discuss a mathematical model for optimizing
the selection of services and service providers to obtain a solution within the bounds of
the global Service Level Agreement (SLA). The authors’ mathematical model includes
provisions to take into account optimization problems that have cost and time
constraints, This mathematical framework is the basis for this thesis and for the grid

optimization problem being explored.

Menascé and Casalicchio have written several papers discussing the QoS issuc
associated with grid computing resource allocation, where global SLAs must depend on
local SLAs [Menascé04, Menascé(4 A, Menascé04B, Menasce04C]. In these papers,
the authors talk at length about the factors involved when frying to select services from
a service provider, so the global SLLA is satisfied with a minimum of cost
[Menascé04B]. Although the cost is minimized, the execution time must also fit within

the guidelines of the SLA.

The main factors are as follows: the job requires NC millions of CPU cycles to finish, it

has to be finished in at most T time units, and it must not cost more than C,,,, dollars

to run [Menascé04B]. For this optimization to take place, the Grid Resource Broker
requires « priori knowledge of each resource available, along with its speed and cost.
Once all of the available resources are known, the chosen algorithm must produce a

near optimal solution.

The following three equations, in Figure 3, show the constraints associated with
resource allocation. Equation 1 shows all of the cycles nceded to complete the job, NC,
are applied to the available computing resources, N. Equation 2 is the constraint
associated with the maximum execution time. Since all the tasks, N, run in parallcl, the
total execution time is the task taking the longest to run, Equation 3 is the cost

constraint equation.

N
NONG = NC (1)
1=1
T = 11']1.V‘El..}({ Nc’t } § ﬂnn){ (2)
i=1 S
N
NC;
C = i < Cnmx 3
Z . X g < (3)

=1

NC = Total number of cycles needed to complete the job
N = Number of computing resources

T = Execution time

Tier = Maximum allowed time to finish job

s; = Speed of the resource £

C'=Cost

¢; = Cost of resource {

Chiax = Maximum allowed cost of job

Figure 3: Equations for the Total Cycles, Time Constraint,
and Cost Constraint [Menascé04B]

2.2 Stochastic Algorithmic Solutions

An article published in the International Journal of Network Management discussed the
use of a Genetic Algorithm (GA) for allocating network resources in a competitive
electronic commerce marketplace [Ye01]. The authors, Jian Ye and Symeon
Papavassiliou, use the GA to find the optimal network route, when given the ability to
use multiple network providers. During their experimentation they used the following
values for the GA parameters:

¢ Population size: 71

e Crossover rate: 0.6 (or 60%)

e Mutation rate: 0.1 (or 10%)
These researchers did not initially apply any stopping conditions and the algorithm
would always run until it converged on a single solution. The results of multiple runs
showed the GA would find thc optimal solution in approximately 130 steps, although
some runs could take more than 250 or as few as 40. The authors next applied some
stopping conditions. One of these conditions halts the GA when the algorithm has not
made an improvement after a certain period of time. This would give a near optimal
solution, but not necessarily the very best solution. The optimization of network
routing does not always require the optimal solution, but it does require a quick ncar-
optimal solution every time. The authors concluded a GA could be used effectively
when tailored to the domain assoctated with the optimization problem. This algorithm’s

goal was to find the best possible solution without any constraints, such as cost or time.

- 10 -

Other related work has dealt with using Simulated Annealing for scheduling distributed
applications on a computattonal grid. YarKhan and Dongarra have compared Simulated
Anncaling and an Ad-Hoc Greedy scheduler as the scheduling mechanisms for a
ScaLAPACK LU solver on a grid [YarKhan02]. The goal of this project was to
minimize execution time, without regard to any cost or time constraints. The authors
concluded the Simulated Annealing scheduler generates schedules that have better

estimated execution times than those generated by the Ad-Hoc greedy scheduler.

Seonho Kim and Jon B. Weissman presented a paper at the 2004 International
Conference on Parallel Processing titled, “A GA-based Approach for Scheduling
Decomposable Data Grid Applications.” This paper compared a GA-based algorithm
with algorithms based on Divisible Load Theory (DLT), Constrained DLT (CDLT), and
Tasks on Data Present (TDP). As with other reviewed works, the authors were trying to
minimize optimization time, but they did not use any constraints. They found their

proposed GA-based approach generally out-performed the other algorithms.

One of the authorities on grid computing, Rajkumar Buyya, has written much on
scheduling jobs on a computational grid. Buyya was one of the first to use the term
“utility grid.” This term describes the concept of grid computing being a “pay as you
go” resource, much like electricity, water, or other utilities. Teaming with Ajith
Abraham and Baikunth Nath, he wrote a paper on job scheduling comparing three

different heuristics; Genetic Algorithm, Simulated Annealing (SA), and Tabu Search

-11 -

(TS). Also included in the comparisons were approaches using GA-SA and GA-TS

hybridized algorithms [Abraham00],

The authors concluded a GA-SA hybridized solution had better convergence than a
standard GA implementation [Abraham00]. A GA-TS hybrid was also tested and
showed improvement in efficiency when compared to a GA solution. Although the
paper stated these findings, no empirical data were given to support these conclusions.
This shortcoming is most likely due to the complexity of resource allocation and the
way 1n which the solution’s efficiency is altered by the many variables associated with
each instance of the problem. The authors focused on minimizing the completion time

of the job, so therc was no mention of cost constraints associated with a utility grid.

In 2006 Buyya co-authored a paper with Jia Yu titled, “A Budget Constraincd
Scheduling of Workflow Applications on Utility Grids using Genetic Algorithms”
[Yu06]. Once again, the researchers explored various aspects of a “pay-per-use” grid
paradigm. The work compares a slightly altered GA, with a Greedy Time (GT)
scheduler. The GA uses a dual fitness function evaluation, which 1s divided into two
parts: cost-fitness and time-fitness. Another alteration of their GA is the use of Markov
decision processes to improve the convergence of the GA when given a very low
budget, The authors took an approach similar to ours and tested in several areas.

e Use of varying the budget (cost) as the constraint for multiple problems,

» Use of Million Instructions (M1) to represent the length of the jobs and

associated sub-tasks.

- 12 -

* Use of Million Instructions Per Second (MIPS) to depict the processing
capabilities of available resources.
¢ Use of multiple testing runs and averaging the results. This method is used due
to the stochastic nature of the GA (They used 10 runs, but we used 100 for our
averages.)
Although there were some similarities, there were also several key differences. Buyya
and Yu used cost as their only constraint and chose to only minimize time. During our
testing, we compared our approach against another stochastic algorithm, Simulated
Annealing, and to the optimal solution, Buyya and Yu compared their GA against a
Greedy Time scheduler. The outcome of their work was displayed in a series of graphs
that showed how the GA outperformed the Greedy Time scheduler for execution cost

and execution time.

2.3 Focus of Thesis

The focus of this thesis was the creation of algorithms based on Menascé’s
mathematical model shown in Figure 3 and on the evaluation of the performance of
each algorithm in relation to each other, as well as to an optimal solution, There were
many steps to creating, testing, and evaluating the results for each algorithm. The main
steps, goals, and conlributions of this thesis are outlined below.
* (enetic Algorithm
o The mathematical model was mapped to a Genetic Algorithm. The
mapping of a Genetic Algorithm onto a string (chromosome), which 1s

the object processed by Genetic Algorithms, is completely unique to

- 13 -

every problem. Once the problem description was mapped to a string,
the next step was to determine how to evaluate the fitness value of that
string.

o After reproduction took place the Genetic Algorithm, the next two steps
were crossover and mutation. These two steps alter the value of the
string, and sometimes the resulting string no longer satisfies the
constraints of the model. If the ncw string is no longer a valid solution,
then adjustments needed to be made to alter the values within the string,
That required the creation of an Adjustment Operator for crossover and
mutation. These Adjustment Operators were unique to this problem.

+ Simulated Annealing

o The mathematical mode] were then mapped to a Simulated Annealing
algorithm. The mapping into a solution set for Simulated Annealing was
unique, as it was with the Genetic Algorithm, The solution was then
evaluated based on its energy value, which corresponds to the fitness
value in a Genetic Algorithm.

s Comparison

o Both the Genetic Algorithm and the Simulated Annealing algorithm
were compared to the optimal solution. A limited set of resources was
used to create a relatively small solution space, so an optimal solution

might found.

- 14 -

o Multiple variables were adjusted in each algorithm to find the best
possible combination for the Genetic Algorithm and the Simulated

Annealing algorithm,

- 15 -

Chapter 3

GENETIC ALGORITHMS: SURVIVAL OF THE FITTEST

The Genetic Algorithm (GA) is based on the principles of natural selection and the
genetic processes associated with biological organisms. Charles Darwin discussed this

progression in his book, The Origin of Species by Means of Natural Selection, and

Herbert Spencer used the term “survival of the fittest” in his books about evolutionary
philosophy to explain how a species evolves over time. These samc basic principles are

mimicked in software development when creating a GA.

The GA processes solutions represented by a string of value parameters. This solution
string represents a chromosome and cach value parameter symbolizes a gene. Each
chromosome has a corresponding fitness value and this value represents the degree to
which this chromosome is “good.” The chromosomes with the better fitness values
have a greater probability of being chosen for propagation to the next generation. GAs
start with a randomly generated population pool. This pool houses chromosomes used
to create the subsequent generation. Through genetic evolution, the chromosomes with
the bettcr fitness values yield better offspring and eventually converge on a near optimal

solution,

Finding a stopping point for the GA is another area whcre a decision has to he made. Tn
our experimentation, we chose to stop when all the chromosomes converged on a single

solution. Other possible stopping conditions include (a) reaching a preset limit on the

-16 -

total number of iterations processed and (b) determining the fitness value of the best
chromosome has changed only slightly for a number of generations [Kim04]. All of

these stopping conditions could have been used separately or in combination.

Figure 4 depicts the flow of a basic GA, which starts with the randomly generated initial
population pool. The population size used has a direct impact on the performance of the
GA and tends to be unique to each problem. If the population size chosen is too small,
the population may lose genetic diversity, causing the GA performance to decline.

Some studies suggest a good guideline to use is between 30 and 200 chromosomes
{Krishnakumar89]. The next steps are reproduction, crossover, and mutation
[Goldberg89]. The algorithm stops when all the chromosome values in a population are

identical and the GA has converged to a single solution.

Initial Porjulation

r Reproclluction
Crossover

Mut?.tion

¥

— Convergence?

|

Figure 4: Genetic Algorithm Flowchart

-17 -

3.1 Reproduction

During reproduction, chromosomes are cvaluated and then copied based on their fitness
value. The better the fitness value, the higher the probability of that chromosome
contributing one or more offspring to the next generation [Goldberg89]. This process
confinues until a new generation is created to take the place of the current one. The
reproduction sclection algorithm may be implemented in many different ways. A few
implementations are as follows: [Haupt04]

1. Random pairing: This process randomly chooses two parents. This method
does not mimic natural selection, because the selection of mates is not
uniformly random in nature.

2. Top to bottom pairing: Chromosomes are paired two at a time, beginning
from the first and ending with the last, This method does not model nature,
but it is easy to implement.

3. Tournament selection: This method randomly selects a small subset of
chromosomes, usually between three and four. Froin this subset, the
chromosome with the best fitness value is chosen to become a parent. The
process is repeated for the next parent. This method mimics mating
competition in nature,

4. Weighted roulette wheel or weighted random pairing: Using a biased
roufette wheel, this method selccts chromosomes using a probability
weighted toward choosing those with better fitness values. In our GA, we
chose the weighted roulette wheel method of selecting parent chromosomes.

This method is depicted in Figure 5.

218 -

No. String Fitness % of Total
1 01101 169 14.4
2 11000 576 492
3 01000 64 5.5
4 10011 361 309
Total 1170 100.00

Figure 5: Weighted Roulette Wheel Representing Four Chromosomes.
Chromosome #2 has the Best Fitness Value and thus the
Highest Probability of Being Chosen [Goldberg89].

3.2 Crossover

Crossover is used to create two new children chromosomes, derived from the two
chosen parent chromosomes. The crossover function occurs between two parents
depending on the value associated with the crossover probability, p., which usually falls
in the range between 50% and [00% [Eiben03]. Other work [Man99] suggests that p.
has a typical value between 60% and 90%, but normal values found in nature are around
60% [Kim04, Man99, Ye0l]. The setting of p, depends on the traits of the optimization
problem and is critical to the performance of the GA. There is no single value for all
problems, but some guidelines have been provided [Man99];

» For smaller populations (30), p. = 90%

e For larger populations (100}, p. = 60%

-19-

As with reproduction, there are several different ways to perform a crossover operation.
The method most true to biological processes, and the one used in this work, is the
single point crossover. A random crossover point is selected and then the last half of
cach parent chromosome is swapped to yield two new children chromosome strings.

This is demonstrated in Figure 6.

Example of crossover:
S1=011]|01
S2=110|00

Yields two new strings:
SI'=01100

S2’=11001

Figure 6: Crossover Example

Once a new set of chromosomes 1s created, rules for propagation to the next generation

need to be implemented. Figure 7 displays pseudo code of the algorithm we created to

detenmine propagation,

220 -

S1, S2 = Parent Chromosomes
S1’, 8§2° = Children Chromosomes

Jf #% Step 1 *H*
// Find the fittest child chromosome {BestChild)
If S1’ Filness Value = S2° Fitness Value
IfS1’ Cost < S2° Cost
BestChild = S1°
Else
BestChild = S2°
Else If S1° Fitness Value > 82’ Fitness Value
BestChild =S1°
Else
BestChild = S2°

/] *%% Step 2 #H*
// Find the fittest parent chromosome (BestParent)
If S1 Fitness Value = S2 Fitness Value
If S1 Cost << S2 Cost
BestParent = S1
Else
BestParent = S2
Else If' S1 Fitness Value > S2 Fitness Value
BestParent = S1
Else
BestParent = 52

f k% Step 3 *kE
// Evaluate BestChild and BestParent
If BestChild Fitness Value = BestParent Fitness Value
If BestChild Cost < BestParent Cost
Propagate BestChild
Else
Propagate Random(BestChild, BestParent)
Else If BestChild Fitness Value > BestParent Fitness Value
Propagate BestChild
Else
Propagate Random(BestChild, BestParent)

Figure 7; Genetic Algorithm Propagation Pseudo Code

221 -

3.3 Mutation

Although mutation is considered a secondary operator in a GA, it helps to keep the
algorithm from converging on a single solution and failing to test new arcas of the
search space. This premature convergence can lead to the process of becoming stuck in

a local minimum (or maximum) and not finding the global minimum (or maximum).

Figure 8 illustrates Wright’s adaptive surface [Wright32]. The z plane represents the
fitness value, while x and y represent values for different trait combinations. In this
multimodal problem, the many peaks represent higher fitness values, where there exist
many solutions better than those neighboring. Each of the smaller peaks i1s known as a
local maximum and the highest overall peak is known as the global maximum, which is
the optimum solution. This outcome differs from a unimodal problem, where there

would only be a single peak that would be the optimum solution.

-2 -

Figure 8: Wright’s Adaptive Surface [Wright32]

To help avoid getting stuck in searching around a local maximum, mutation occurs
using a specified probability, p,,. The probability of mutation in nature is normally low,
usually on the order of one mutation per thousand position transfers [Goldberg89].
Generally, a value somewhere between 1% and 10% is used for p,,. Other work has
suggested a much higher probability of mutation, around 50% [Kim04], which does not
closely follow the rate represented in nature. As with the value of crossover probability
and the initial number of generations, the mutation probability must be chosen with

respect to the domain of the optimization problem.

-23 -

Once the mutation probability is selected, the next step is to determine how to mutate
the chromosome. As with the other variables associated with a GA, this process is also
unique to the optimization problem, An example would be chromosomes composed of
binary digits for genes. One common form of mutation would be to invert a randomly
selected gene value. Figure 9 depicts three ditferent variations of the mutation

opcration, Bit Flip Mutation, Swap Mutation, and Inverse Mutation.

Example Mutations

« Bit Flip (or Bitwise) Mutation:
51 =10001
SI'=10011

e Swap Mutation

S1=10001
SI’=11000
s Inverse Mutation
S1 =123456
S1'=143256

Figure 9: Examples of Mutation Methods

_24 -

Chapter 4

SIMULATED ANNEALING: COOLING HOT METAL

The physical process of slowly cooling a material until it has a strong crystalline
structure is known as “annealing™ in metallurgy. The material is heated, giving the
atoms lots of energy, and then it is slowly cooled so the atoms align and leave the
material with little or no imperfections. In 1982 Kirkpatrick used the term “Simulated
Annealing” (SA) to describe how to use a virtual physical proeess to search out

solutions to optimization problems [Kirpatrick83].

Unlike a Genetic Algorithm, which maintains a pool of candidate solutions, Simulated
Annealing only evaluates one candidate at a time. SA starts with a random solution and
then perturbs that solution slightly, creating a new solution for comparison purposes.
Since this new solution is only slightly perturbed, it is considered a neighbor and is
located near the first solution in the solution space. 1f the new solution has a better
energy value, meaning a better solution, then it is kept. 1f the newly created solution
does not have a better energy value, then it is accepted solely on the basis of probability.

The probability function is displayed in Figure 10,

- 25 .

P =g (BHT)
Where,

SE = Change in energy, E, between two solutions

T = Current temperature

Figure 10: Probability Function

A random number, r, is generated with a value between 0 and 1. This number 1s then
compared to the probability, P, and is kept if it is less than . Initially the new solutions
are selected, but as the temperature 7' is reduced, so is the probability of accepting
solutions with worse energy values. However, as with mutations in the Genetic
Algorithm, periodically accepting an inferior solution is necessary to avoid becoming

trapped in a local maximum without searching other areas of the solution space.

The flowchart of a standard Simulated Annealing algorithm is shown in Figure 11,

-26 -

Initial solution

¥

Evaluate the solution

3
/\\ No
Yes

Update the solution
Y

No
f’é@%
. — —
Generate 2 new solution perature?

X
Yes

Decrease temperature
1

No }ﬂmb
¢
\m@% ‘Yes

Final solution

Figure 11: Flowchart of a Standard Simulated
Annealing Algorithm [Pham00}

-27-

When an SA algorithm is implemented, many decisions need to be made. As with the
Genetic Algorithm, the solution representation is unique to every problem. Also unique
is the evaluation function, which begets an energy value. The energy value is analogous
to the fitness value found in the Genetic Algorithm. This value represents the
“goodness” of the solution. As the algorithm iterates, the solution must be perturbed
slightly to create the new comparison solution. This perturbation is also unique to each
problem and is usually adjusted through experimentation to determine how much of a
perturbation is needed to achieve the desired results. The main algorithm functionality

issues that must be solved are listed below:

¢ How to represent the solution

» How to determine the energy value, £

¢ How to perturb the solution in order to create a neighbor solution

s How to construct a temperature function, 7¢z), to determine how the temperature
is to be changed

s How to detcrmine the stopping criterion to terminate the algorithm

Other choices that need to be made deal more specifically with the cooling schedule
[Eglese90]. Each of the variables associated with the algorithm functionality has to be
adjusted, usually through experimentation, to obtain the best possible results for the
given solution domain. Although the best possible solution is desired, this solution
must be arrived at in a timely manner and meet both the time and cost constraints of the
problem. Some of these critical choices that deal with the cooling schedule are listed

below:

- 28 .

» The initial value of the temperature, T
o The number of iterations, N(t), to be performed at each temperature

o The value used to update to a new, lower temperature at cach level, «

¢ The final temperature value

Cooling schedules can vary, but most remain close to those based on the physical
annealing process. Kirkpatrick ef al. started with an initial temperature high enough to
ensure most of the initial solutions are accepted [Kirkpatrick831. This approach would
simulate the heating of the material until it is a liquid and all of the atoms are moving
around rapidly. A temperature function is then used to decrement the current
temperature in small amounts, 7(r + 1) = a7(¥). In this equation, o is a constant that
usually has a value between 0.80 and 0.99 [Eglese90]. At each temperature level, a
number of iterations are performed, N(#). The number of iterations could be deduced by
several methods, but one of the simplest is to set the value in proportion to the size of
the solution space. The stopping criterion is usually that the new solution has not been
altered for a specified number of temperature changes. This condition is analogous to a
physical frozen state [Eglese90]. More cooling schedules are available, but they tend to

stray from the original physical analogy on which the algorithm was based.

-29.

Chapter 5

TESTING AND EVALUATION OF THE STOCHASTIC ALGORITHMS

To evaluate the results of our GA and SA algorithms, we had to establish a baseline,
which meant an optimal solution had to be found for a given problem with a defined set
of constraints. Finding the optimal solution requires an exhaustive search and can only
be achieved for a small soluiion space. As a result, the number of available resources
would have to be limited for our optimization problem. Through some informal testing,
we found five available resources would give us a manageable solution space over

which to perform an exhaustive search.

All of the testing for this research was performed on a workstation with an Intel Zcon 3-
GHz CPU and 2 GB of RAM. To find the optimal solution for five available resources,
the run completed over 1.9 billion comparisons and took approximately 112 hours. To
run comparisons using more available resources, we adapted our algorithms to solve for
10 resources. Although it would be impossible for us to run an exhaustive search for
such a large search space, we ran the GA and SA algorithms several hundred times
using 10 available resources. From these runs, we found both algorithms consistently
derived the same near-optimal solution. We used this solution as the baseline for our

testing with 10 available resources,

-30 -

There are many different variables associated with the implementation of a GA or SA
algorithm. The value of each variable can be adjusted to alter the performance of the
algorithm, depending on the parameters associated with the problem itself. With such a
large amount of changeability associated with each of the algorithm’s variables, the
creation of true empirical data is very difficult, Other researchers in the area of job
scheduling on a grid usually make broad statements in their conclusions when
comparing different algorithms. The conclusion typically states one algorithm has
better convergence ovcer another or one improves the efficiency when compared to a

similar algorithm [Abraham00].

5.1 The Optimal Solution

To find the true optimal solution against which to compare the GA and SA performance
would require an exhaustive search through the entire solution space. We ran an
exhaustive search to find the optimal solution for five available resources, offering five
different computational rates, at five different costs. The exhaustive search ran for over
112 hours and completed over 1.92 billion comparisons to arrive at the optimal solution
for each of the test scenarios. Considering the parallelism of grid computing, the total
execution time of a specific job would be the maximum execution time among the set of

sub-tasks,

To fully exercise each algorithm, we created three different available resource
scenarios. We then ran two different prohlems on each scenario, varying the cost

constraint. We used the values listed in Figure 12 for our scenarios.

-31 -

Available Resources | Speed (Millions cycles/second) Cost ($/second)
R1(Scenario-1) 1 51
R2(Scenario-1) 2 $3
R3(Scenario-1) 3 $5
R4(Scenario-1) 4 $6
R5(Scenario-1) 5 $7
R1{Scenario-2) 1 $1
R2(Scenario-2) 3 $3
R3(Scenario-2) 5 $5
R4(Scenario-2) 7 $6
R5(Scenario-2) 9 $7
R1(Scenario-3) | $1
R2(Scenario-3) 3 $2
R3(Scenario-3) 5 $3
R4(Scenario-3) 7 $4
R5(Scenario-3) 9 $5

Figure 12: Resource Scenarios and Their Associated Speed and Cost

We used the problem constraints listed below and ran each on the three diffcrent

resource scenarios. Figures 13 and 14 reveal the optimal solution for each resource

scenario, using each set of the problem constraints.

e Problem Constraints #1

o Total cycles required to complete job: 20 million cycles

o Maximum job execution time: 10 seconds

o Maximum job cost: $25.50

as 1 e N -

Scenario 70 job ;llli'(l’{fl;i{go: ;?jﬁé?oume Time to complete job Job Cost
S 32%::0%::0%::0%::68% 6.4 seconds $ 2544
S2 49%5::12%::20%::28%::36% 0.8 seconds $17.60
S3 4%:112%::20%::28%::36% 0.8 seconds $12.00

Figure 13: Optimal Solutions for Problem Constraints #1

-32 .

e Problem Constraints #2
o Total cycles required to complete job: 20 million cycles
o Maximum job execution time: 10 seconds

o Maximum job cost: $25.00

0/ 3 \

Scenario % job 311] O(I:gecll{t; :(Elz:}?l;gsource Time to complete job Tob Cost
S1 38%:0%::0%::0%::62% 7.6 seconds $ 2496
S2 A4%::12%::20%::28%::36% 0.8 seconds $17.60
S3 4%::12%::20%::28%::36% 0.8 seconds $12.00

Figure 14: Optimal Solutions for Problem Constraints #2

Once the optimal solutions were found for the five-resource problems, we needed to
find the optimal solution for the ten-resource problem. To ensure the entire job could
not be entirely allocated to the fastest resource, we chose constraints that would force
the job to be distributed throughout the available resources. Using informal testing, we
chose the following constraints:

o Total cycles required to complete job: 20 million cycles

e Maximum job execution time: 10 seconds

¢ Maximum job cost: $25.00

We used the values listed in Figure 15 for our ten available resources.

-33 -

Available Resources | Speed (Millions cycles/second) Cost ($/second)
R1 1 $1
R2 2 $3
R3 3 $5
R4 4 §6
R5 5 $7
[R6 6 38
R7 7 $9
R8 8 $10
R9 9 $11
R10 10 $12

Figure 15: Ten Available Resources and Their Associated Speed and Cost

Through the hundreds of test runs performed using our GA and SA algorithms, we

found the optimal solution given in Figure 16:

% job allocated to each resource Time to Tob Cost
R1::R2::R3::R4:R5:R6:R7:REIR9:R10 complete job
2%::0%::0%::0%::2%::14%::17%::19%::22%::24% | 0.49 seconds $ 24.95

Figure 16: Solution for Optimization Problem Using Ten Available Resources

We used this solution as our bascline for testing the accuracy of our GA and SA

solutions for ten available resources.

5.2 The Genetic Algorithm

There are many choices to be made when creating a GA solution. Each solution is
unique to the particular problem of interest. We chose to mimic nature as closely as

possible and concentrate on the pure GA solution, rather than trying to artificially tweak

234 -

the GA operations, GA creation involves choices that fell into two main categories:

functionality of the algorithm and variable values to be used during execution.

5.2.1 Algorithmic Functionality

The first choice made dealt with the creation of the initial population o be used for the
GA, so it fell into the category of algorithm functionality. A GA's initial population
can be created in scveral ways, so we chose to begin with a randomly generated
population of chromosomes that fit within our time and cost constraints, Another
approach would have been to use a sceded population, where a certain percentage of the
chromosomcs with the best fitness values are uscd for the initial population, for
example the top 50%. Depending on the population size and the size of the solution
domain, seeding the mitial population may cause the GA to converge rapidly on a local
maximum. [n order to better cover the solution landscape and more closely resemble

nature, we did not secd our initial population,

Unique to every GA is the fitness function, which is used to deterimine the “goodness™
or “worth” of the particular chromosome. Once programmed, the fitness function will
provide a way to compare the chromosome solutions to each other. Historically, GAs
have been minimizing algorithms, which are algorithms that depict the chromosomes
with smaller fitness values as being more desirable. We chose to make a maximizing
algorithm out of our GA and place precedence on larger fitness values. To do this, we
subtracted the chromosome solution timme from the time constraint for the job and

assigned that result to the fitness value. This approach would ensure the chromosome

-35-

with the fastest completion time would have the highest fitness value. The side benefit
is any solution resulting in a fitness value of less than zero can immediately be
discounted as a valid solution, since it would take longer to run than our time constraint

would allow.

The next choice in functionality was the selection of a reproduction method. In section
3.1 several of the different ways to program the reproduction method were discussed.
We chose the weighted roulette wheel, sometimes called “weighted random pairing.”
This method selects pairs of chromosomes based on a biased roulette wheel, which uscs
a probability weighted toward choosing chromosomes with better fitness values. This

method seems to more closely match biological reproduction.

As with the other GA functions, crossover between two parent chromosomes can be
performed in several ways. Crossover can be done from a single point, from multiple
points, or using a randomly generated crossover mask. Each method has strengths and
weaknesses, depending on the type of optimization problem. We chose the simplest

and the one inspired by biological processes, single point crossover.

The pseudo code we used to propagate chromosomes to the next generation after
crossover was presented in Section 3.2 (Figure 7). To avoid rapid convergence to a
local maximum, we did not always propagate the chromosomes with the best fitness
values. We chose the more fit value between the two children and propagated that child

who had a better fitness value than both parents. If the child chromosome did not have

- 36 -

a better fitness value than both parents, then the propagation was based on
randomization. Allowing a less fit chromosome to sometimes propagate facilitated our
coverage of more solution space and helped prevent the run from becoming stuck in a

local maximum.

Mutation is considered a secondary operator in a GA, but it also helps to guard against
becoming stuck in a local maximum. Usually a low occurrence operation, mutation
malkes a minor random change to one of the gencs in the chromosome. In Section 3.3
we discussed how mintation takes place during a GA generation. We chose to reduce a
random gene in the selected chromosome by 5% of the assigned job and then to add that

5% to another randomly selected gene in the chromosome.

After crossover or mutation, the chromosome may violate the job constraints and
become invalid. As with a cell’s DNA repair system, we created a repair mechanism
[Man99]. This mechanism is also sometimes referred to as “constraint handling”
[Eiben03] or an “adjustment operator.” Our repair mechanisms ensure the chromosome
adheres to these main restrictions:

* 100% of the job is allocated among the genes for that particular chromosome.

* The newly created chromosome is not in violation of the job constraints.

The last decision to make about the functionality of a GA is when should it stop? There

are many schemes that can be used separately or in conjunction with one other. A GA

can be stopped when a certain number of generations have been reached, when there is

-37-

no change in the fittest chromosome over a certain number of generations, when the
percentage of change is very slight over a certain number of generations, or when all
chromosomes converge to be the same. We chose to stop when all chromosomes

converged, so we would be able to compare the absolute final outcome of the GA.

5.2.2 Variable Values

The main variables that compose a GA are mutation rate, crossover rate, and initial
population. The rate of mutation and crossover are normally selected by trial and error,
but there are some guidelines. Goldberg quotes a study of Genetic Algorithms in
function optimization completed in 1975 by De Jong, which states, “...good GA
performance requires the choice of a high crossover probability, a low mutation
probability (inversely proportional to the population size), and a moderated population
size” [Goldberg89]. In many of Goldberg’s examples, he chooses to usc a crossover
probability of 60% and a mutation probability of 3%. Sections 3.2 and 3.4 supply

further information about crossover and mutation from our literature survey.

To determine values for the three different variables in our GA, we performed a series
of test runs. For the probability of mutation, we found 2-5% yielded the best results for
our test problems. The crossover probability performed best between 60-80% for our
tests. We needed to find a balance between excess processing, which increases

calculation time, and finding a near-optimal solution.

-38-

Using our selected values for the probability of mutation and crossover, we ran similar
tests in which the population size was varted. We started with a population size of 10
and increased by 10 until we had a population size of 100, We ran the GA ten times at
each population size and took the average. This process was completed for both five

and ten available resources.

Figure 17 shows the fitness value of the GA in relation to the population size. This
graph depicts how the population size has a direct effect on the fithess value of the
solution. The optimum solution has a fitness value of 3.6 for five available resources
and 9.51 for ten resources. Figures 17-20 are examples of the GA’s behavior using one
of the resource scenarios and a single set of variable values while varying the

population size.

-39

Fltness Value (FV) vs. Population Size

1000 -

900 4

- i f

2

S

Fimess Yalue (FV)

8

3.00

200 =

10 20 Bl 40 a0 1] 70 =] il 100
Population Size

—~4— 10 RESOURCES: Po=E£5% Pm=2% MaxJobCosl=25 MaxJebTime=10TatlobCycles=20

—gte) RESOURCES: Pr=65% Pra=2% MaxJobCoet=25.5,ManchTirme=10,TotdsbCycles=20

Figure 17: Sample Population Size vs, Fitness Value GA Test Run

Figure 18 shows the time it takes for the GA to run in relation to the population size.
From this graph we can see that as the population size grows, so does runtime of the
GA, but the runtime does not increase at the same rate. The more resources involved,
the faster the rate of increase in time for subscquently larger populations. For five
resources, the GA runtime increased 3650% from using an initial population of 10,
compared to using a population pool of 100. The GA runtime increased 4035% for the

same test when we used 10 available resources,

- 40 -

GA Runtime vs. Population Size

4500

000 4=

GA Runtime
8]
(53]
S

2000

15.00
10.00 4
AEIE
it 0] 48 2] B0 70 #4] @ 300
Popuiation Slze

=410 RESOURCES: Pe=65% Pm=2% MaxJobCost=25 MaxJobTime=10,TotJobCycles=20
=z--F RESOURCES: Pc=65%,Pm=2% MaxJobCost=25.5 MaxJobTine=10, TotJobCycles=20

Figure 18: Sample Genetic Algorithm Runtime vs. Population Size GA Test Run

Figurc 19 shows the calculated execution time of the job found by the GA in relation to
the population size. Since the fitness value of a solution is computed by subtracting the

GA calculated job execution time from the job time constraint, this graph is inversely

proportional to the fitness value graph.

_41 -

Job Execution Time {Min FV) vs. Population Size

o
3

@
3

g

(Min F\)
o
2

m
=
[}

g
[=]
&

Job Execution Time

10 20 30 40 50 G0 70 2t} o) 100
Population Size

—s—10 RESBOURCES: Po=65% Pro=2% MaxlobCost=25 MaxJobTims=10.TotJobCyeles=20

—s—5 RESOURCES: Pe=65% Pm=2% fMaxJohCost=25.5 MaxJobTime=10 TotdobCyclas=20

Figure 19: Sample Job Execution Time vs. Population Size GA Test Run

Figure 20 shows the percentage of optimum for the solution found by the GA in relation
to the population size, This graph illustrates the accuracy of the solutions created by the
GA. As the number of available resources decreases, the population size must be
increased to find a near-optimal solution. We wanted our GA to create solutions that
were at least 95% of the optimum. To achieve this goal for five resources would
require a population of 80 or more chromosomes for this example, For ten resources,

our GA was able to achieve our 95% goal with a population of 20 for this test scenario.

S 47 .

% of Optlmum vs. Population Size
110.00% TR
:) .'=,:;99.BEE|
100.00% - s
890.00% -
E
£
= W
O 60.00%
=]
£
70.00% 4=
B0.00% e
60.00% A ol b i o SICH 2 e _
il 20 30 40 50 1] 70 80 80 tod
Papulation Size
—— 10 RESOURCES: Pc=b5% Prm=2% MaxlobCost=25 MaxJooTime=10 TotJobCycles=20
—#--5 RESOURCES; Pc=G5%,Pro=2% MaxobCosl=25.5 MaxJobTime=10 TolJobCyecles=20

Figure 2(:: Sample Percentage of Optimum vs. Population Size GA Test Run

We found the value ranges listed below worked best with our solution domain and
problem characteristics for the GA:

e Probability of Crossover: 60-80%

s Probability of Mutation: 2—5%

* Mutation Amount: 5%

These results are inline with values we found during our Survey of Related Work

[Eiben03, Goldberg89, Kim04, Man99, Ye(1].

- 43 -

5.3 The Simulated Annealing Algorithm

As with the creation of a GA, the SA algorithm is also & unique solution for each new
problem. The SA algorithm also requires the determination of key variable values, as

well as determining the functionality of scveral arcas within the algorithm.

5.3.1 Algorithmic Functionality

The GA and SA algorithms are similar in many ways. We attempted to have the two
algorithms use the same structure and functionality whenever possible to facilitate more

accuratc comparisons between the solutions.

Each solution in an SA algorithm has the same structure as a chromosome in a GA. The
solutions created by the SA algorithm contain the number of available resources and the
percentage of the job assigned to each. This structure is equivalent to the chromosome-
gene structure used by our GA. We also used the same “goodness™ evaluation methods
used for a chromosome’s fitness value as the energy value in our SA algorithm. This
mcthod subtracts the solution job execution time from the time constraint associated
with that particular job, By being able to transfer the same evaluation methods and
structure from our GA to our SA algorithm, we were able to better cvaluate the basic

algorithmic functions of each optimization method.

An SA algorithm compares a single solution with one of its neighbors, To find this
neighboring solution, we tweak the current solution slightly and then make a

comparisen. The tweaking of the solution requires reducing the percentage assigned to

- 44 -

one resource and adding to another to create a new solution. To find the best
percentage to use for the tweak factor, we ran a series of tests. We started with a tweak
factor of 1%, ran ten tests, and then took the average. We increased the tweak factor by
1% after cach series of tests until we reached 10%. Figures 21-24 are examples of the
SA algorithm’s behavior using one of the resource scenarios and a single set of variable

values while the tweal: factor is being varied.

Figure 21 shows the results of our tests for a varying tweak factor and the resultant

energy value. Figure 22 shows how long it took for the SA took to find a solution,

Energy Value (EV) vs. Tweak Factor

350 4

w
e
o

Enevgy Value {F\}

310+

1 2 3 1 5 g 7 a 9 i
Tweak Factor (%)

I—Q—SlaniTempiEU,Final_Tempﬁm Jterations:‘lﬂ,A\phax‘ﬂg,Max.JnhCDsl=25‘ED,MaxJDhTime=1D,TolJuhCchee;:QDJ

Figure 21: Sample Energy Value vs. Tweak Factor SA Test Run

- 45 -

S8A Runtime vs. Tweak Factor

B0.00 e

50.00

40,00 =

54 Runtime
[}
=
=
=

3

J0.00

0.00

Twaak Factor (%)

| -——Stanl_Temp=20 Final_Temp=.01 Jizrations=10,Alpha=.99 MaxJobCos1=25.50 MaxJobTime=10,TotJobCycles=20 |

Figure 22; Sample Simulated Annealing Runtime vs. Tweak Factor Test Run

Figures 23 and 24 show the execution time of the SA created solution and the

percentage of optimum for each solution, respectively,

- 46 -

Job Execution Time (Min EV) vs. Tweak Factor

B.70

=
[=2]
]

o
i
()

Job Execution time {Min EV)

m
=
=]

6,30 45

B0 L=

Tweak Factor (%)

‘ ——Slart_Temp=20 Final_Temp=.01 lterations=10 Alpha=.59 MaxJobCost=26.50 MaxtobTime=10 TatJobCyeles=20 |

Figure 23: Sample Job Execution Time vs. Tweak Factor SA Test Run

% of Optimum vs. Tweak Factor

102.00%

100.00%

98.00%

55.00%

24.00%

92.00%

% of Optimum

90,00%

08.00%

£6.00%

84 00%

1 2 3 4 5 5 7] 9 10
Tweak Faclor (%)

|+ Stan_Ternp=20,Final_Tamp=01}ksrations=10,Alpha=93 MaxJobC ost=28.50 MaxJobTime=10 TotJobCycles=20]

Figure 24: Sample Percentage of Optimum vs, Tweak Factor SA Test Run

-47 -

Through a series of tests, we found 1% to be the best value for our tweak factor, so we

used this value for the rest of our testing of the SA algorithm.

The SA algorithm performs a number of iterations at varying temperature levels. The
temperature is reduced, a number of itcrations are performed, and the temperature 1s
dropped again. Decrementing the temperature to the next lower level is accomplished
by multiplying the current temperature by a constant. Through our literature survey, we

found this constant varies between 0.80 and 0.99 [Braun01, Eglese90].

Unless other stopping criteria are put into place, the SA algorithm will complete when
the current temperature reaches zero. We chose to have the algorithm run until the
current temperature reaches zero, without introducing extra measures for early
termination. In this regard, as with the GA algorithm, the SA algorithm closely follows

the laws of nature.

5.3.2 Varniable Values

There are four main cooling schedule variables associated with an SA algorithm: the
initial temperature value, the number of iterations perforimed at each temperature level,
the o constant, and the final temperature value used to determine the stopping point. To

find the best value for each of these variables, we performed a series of test runs.

The value for the initial temperature is based on the size of the solution space for each

specific problem. The value must be large enough to allow the algorithm to search

-48 -

other parts of the solution space and not be trapped locally. However, if the value is too
large, then no better solution is derived, and the algorithin is inefficient because of long
processing time, We found a value in the range of 5-30 for the initial temperature gave

us the best balance between processing time and solution quality.

The number of iterations performed at each temperature level is another variable that
needs to be fine tuned for each problem, As with the other variables, the number of
iterations is determined by the size of the solution space. When the process first begins
and has a higher temperature, the SA algorithm searches more of the solution landscape
for the global optimum. As the algorithm progresses and the temperature cools, the
solution search space is narrowed while it searches for the local optimum. Many
researchers suggest manually performing experiments with the number of iterations to
find the best values [Jones03]. To determine this value, we used the average of ten test

runs at each of the following iteration values: 1, 5, 10, 15, 20, 25, 30, 35, 40, and 45.

We performed the iteration value testing for both five and ten available resources.
Figure 25 shows the energy value for each iteration value. Figures 25-27 depict some
of the test runs we performed with the SA algorithm using one of the resource scenarios

while varying the number of iterations.

- 49 .

Energy Value (EV) vs. Iterations
10.00 S .

’ i -.]9.505[\.. : 9.495' -‘_]9.503' o _:[9.504';-1
9.00 4——= : : : O
8.00

=
(=8
@ |
7o
)
5
£ .
6.00 +
500 L
4.00 -+
200 - —L:
1 £ 10 18 20 2 30 35 L] 15
Iterations
—+— 1] RESOURCES: Inftial_Temp=30,Final_Tarmp=11,Alpha=95 Tweak_Factor=01 MaxJobCost=25 MaxJobTime=10,TolJobCy cles=20
&5 RESOURCES: Inilial_Termp=30 Final_Termp=.01 Alpha= 99 Tweak_Factor=.01 MaxJobCost=28.5 MaxJohTime=10,TetJobCyclas=20

Figure 25: Sample Energy Value vs. Number of Tterations SA Test Run

Figure 26 shows SA algorithm runtime for each itcration value and Figure 27 gives the

percentage of the optimum solution,

- 50 -

SA Runtime vs. lterations

120,00 s

100.00

40.00

SA Runtime’
o
[m=i
=]
=

40.00

D,DU-" . -) D i P f i 3
17 5 10 15 20 25 30 35 40 45
Herations
—4— 10 RESOURCES: Initial_Temp=30 Final_Temp=.01 Alpha= 59 Tweak_Factor=.01 MaxJobCost=25 MaxJobTime=10 TotdobCycles=20

~-z—5 RESOURCES: Initial_Terap=30,Final_Temp=.01 Aloha=.93 Tweak_Facior=11 MaxJobCost=25.5 MaxJobTime=10,TotdobCycles=2]

Figure 26: Sample Simulated Annealing Runtime vs. Number of [terations Test Run

% of Optimum v, iterations

101.00% s ; 7 100.00% S 100.00% B 100.00% @
S, g o et sk il

99,10% A

95.00%

93.00%

% of Optimum

B1.00%

89.00%

95.00% ; i N BTN R A i
1 5 10 15 20 25 an 35 40 45
Iterations

——10 RESOURCES: Inilial_Terp=30 Final_Temp=.01 Alpha=.99 Tweak_Faclor=.01 Max.obCozt=25 MaxJobTime=10,TolJobCy clee=20
~&—b5 RESOURCES: Initial_Temp=30 Final_Temp=.01 Alpha= 59 Tweak_Factor=.01 MaxJobCost=25.5 MaxJobTime=10 TotJobCycles=20

Figure 27: Sample Percentage of Optimum vs. Number of [terations Test Run

-51 -

From our testing, we found using 10 iterations at each temperature level seemed to be a
good balance between the produced energy value and the time needed for the SA

algorithm to find a solution,

The temperature function is used to decrement the current temperature by a small
amount and produce the temperature for the next level. We did this by using the
equation 7{¢ + 1) = a1(f), wherc o represents a constant valuc, normally between 0,90
and 0.99. To find the best value to use for this constant, we performed a series of tests,
As with our iteration testing, we took the average of ten test runs, varying the o value
by 0.01, starting at 0.90 and ending at 0.99. We ran tests for five and ten available

resources. Figures 28-30 show the energy value for each o value for one series of tests.

Energy Value (EV) vs. Alpha

10.00 - Py - ot T T
e S 9.35[) o .-!9.37'-.5__.,- -]9-42|“ 'i‘MZl =[9-45|=.- -";EE?]
9.00 +—) :
8.00 4
7.00
< B
()
4
;193 6.00
=
o
@
= .
w Rt
5.00
400 0 B
3.00 ; : N : 3 o : ; PATTAI, ; ; \T L Bl
0.9 0,81 0.92 0.9, 0,54 0.85 0.96 0.97 0.58 059
Alpha

—e— 10 RESQURCES: Initial_Temp=30,Final_Termp=.01 Herations=10,Tweak_Factor=.01 MaxJobCost=25 MaJobTime=10 TotJobCycles=20
—g—5 RESOURCES: Initial_Termp=30 Finai_Temp=.01 ltarations=10 Tweak_Factor=01 MaxJobCost=25.5 MaxJabTime=10 ToldobCycles=20

Figure 28: Sample Energy Value vs. Alpha SA Test Run

-52.-

Figure 29 shows the amount of time it took for the SA algorithm to find the solution and

Figure 30 gives the percentage of optimum for each value of a.

SA Runtime vs. Alpha
3000
2500 +
0.0 4=
Q
E
3 ;
& 15100 4=
< -
[25)
10.00
5.00
D-Uﬂ*.. b R . AN sy i . e -T-)
[iE] 091 092 093 0.94 0es 0.96 0.97 0.98 099
Alpha
—e— 10 RESOURCES: Initial_Temp=30 Final_Terap=.01 lteraticns=10 Tweak_Faclor=.01 MaxJobCost=25 MaxJobTime=10,TolJobCyclas=20
-5 RESOURCES; Initial_Temp=30 Final_Temp=.01 lterations=10 Tweak_Facior=.01 MaxJobCost=25,5 MaxJob Tirng=10,TotJobCycles=20

Figure 29: Sample Simulated Annealing Runtime vs. Alpha Test Run

- 53 .

% of Optimum vs. Alpha

=

T ——

102.00% T——

100.00%

-7

100.00% S 100.00% B

Y8.00%

up.00%

imum

24.00%

h of Opt

97 00% =

90.00%

B89.00%

o 0o L] B i e S SRt o M SR TN : ,_".
0.9 091 052 093 0.94 0,95 0.95 0.87 098 499
Alpha

—e— 10 RESOURCES: inilial_Temp=30,Final_Temp=.01 lterations=10,Tweak_Factoi=.01 MaxJobCuost=25 MaxJobTime=10,TolJobGycles=21
—#—~8 RESQURCES: initial_Ternp=30 Final_Temp=.01 lterations=10 Tweak_Factor=.01 MaxJobCost=25.5 MaxdobTime=10, TollebCycles=20

Figure 30: Sample Percentage of Optimum vs. Alpha Test Run

The final temperature value was the last of the cooling schedule variables we needed to
determine. This value is the one used to stop the SA algorithm and cause the run to
present the solution. We performed tests using the same format as used in the iteration
and o experiments. Although the tests showed a higher value could have been used for
the final temperature, we chose to use 0.01. This value would give us a more accurate
solution and still keep us within the time range observed during our GA experiments.
This choice was also made with regard to the fact the solution space was smaller than
would be likely in a real world solution. If this were a real world problem, then our SA
algorithm could run longer than would be practically useful, and the value would have
to be raised to reflect the size of the solution space. According to published research,

the usual value for the final temperature is near 0.5 degrees [Jones03].

- 54 -

The following graphs, Figures 31-33, show the energy value, SA algorithm runtime,

and perecentage of optimum for differing values used for the final temperature. Once

again,

these graphs represent one geries of testing,

760 -

=2
@
S

Energy Value [EV)
28
8

4,60 4=

260

Energy Value (EV) vs. Final Temperature

0.01)) } 0.20 0.26
Final Temperature

0.20 035

—— 10 RESOURCES: Initial_Temp=30,Alphs=92 ferations=10,Tweak_Factor 07 MaxJobCost=25 MaxJabTime=10TotohCycles=20
~F—5 RESOURCES: Intial_Temp=30 Alphs= 39 kerations=10 Tweak_Factor=.01 MaxJobCosl=26 5 MaxJobTime=10TolJabCyeles=20

Figure 31: Sample Energy Value vs. Final Temperature SA Test Run

- 55

SA Runtime vs. Final Temperature

an.o0o

20.00

SA Runtime
o
2

i0.00

500 4

000 Fmeds R : ; o : : :
om 0.05 010 0.15 0.20 0.25 0.30 0.35 0.4n 0.45

Final Temperature
—+—10 RESOURCES: Initial_Temp=30 Alpha=.29 lterstions=10,Tweak_Factor=.01 MaxJobCost=25 MaxJohTime=10 TetJobCyclas=20
—iz=5 RESOURCES: Inftial_Temp=30 Alpha=.93 |terations=10 Tweak_Factor=01 MaxJobCost=28 5 MaxlobTime=10,TalJobCycles=20

Figure 32: Sample Simulated Annealing vs. Final Temperature Test Run

% of Optimum vs, Final Temperature

00.09%,

o5 5o M
100.00% -0 a_“% —Jos.65u

49.75%

95.00%

50.00%

% of Qptimum

85.00%

80.00%

7E.00% 421) REVEHE St o o : S - R
oo n.os] 015 0.2 0.25 0.3 0.3 0.4 0.45
FIlnal Temperature

—— 10 RESQURCES: Initial_Ternp=30 Alphs= 99 lterationg=10,Tweak_Faclor=01 MaxJobCoz1=25 MaxJobTirme=10 TotdohCycles=20
~F=5 RESOURCES: Initia{_Tamp=30 Aipha=93 llerations=10 Twezk Factor=.01 MaxnobCosi=255 MaxJobTime=10,TotdobCyclas=20

Figure 33. Sample Percentage of Optimum vs. Final Temperature SA Test Run

- 56 -

We found the value ranges listed below to work best with our solution domain and
problem characteristics for the SA algorithm:

s Initial Temperature: 5-30

e Twealk Factor: 0.01 (1%)

e Alpha: 0.94-0.99 (94-99%)

e [terations: 10

-57 -

6.1 Conclusions

Chapter 6

CONCLUSIONS AND FUTURE WORK

The SA algorithm outperforms the GA in all of our test scenarios. When the solution

domain was small, the SA algorithm achieved our near-optimal threshold much faster

than the GA. We made the solution domain small by limiting the number of available

resources to five. As we increased the size of the solution domain, the GA performed

slightly better but was still outperformed by the SA algorithm, as Figure 34 shows.

GA IAvefagg of all runs {100 each) i
-+ O . i i i ‘ =

5 Max Avg Fitnass Avg Exec Avyg# of Avg Time to Avg % of Optimuin
Resources . Cost Speed/Cost Valua Time Generations Find Solulon Optimum Optlmum Sotution Fitness Value
T B 2500 1234B/13567 231 7.69 32,67 3420 §5.26% mo|nio)s2 24

13675013567 919 08 4.7 3.90 98.85% 413220{26]36) 92
L 19579142345, 516, 0.82 - M54 699 . 990% . Ap22012036 - 0 . 42
i 1 2 | i . L
_ b \ | i i | !
1§ 25.50 12345/13567 342 6.58 30.30 5.24 95.00% 3210100168 35

_ 13679113567 AT)¢ 37.34 7.27 9a90% AH2R0BEE 92
L ; 135758112345 t SROR N 1 RERRS R L IR :_34.ﬂ3l 6,86 . 99.88% . L A22012816° - - 9.2

_______) Lo | L . | i A

10 KMax Avg Fitness Avg Exec ‘ Avg # of Avg Time to Avg % of Optimum
Resources ' Cost Speed/Cost - - Value Time Generations Find Solutlon Optimum Opumum Selutfon Fitness Velue

12345678910/ i
|8 7500 1356789161112 9.4__01,7 0,60 4270 4168) BB.81%! 2I0j01012(1417(19122124 | 951
N i |
L l._ _ _—
SA _ |Average of all runs (100 each) .
P Y 1 A el . : !

5 Max Avg Energy Avg Exec # of Avg Time to Avg % of o Optimum
Resources . Cost SpeediCost Vaive Time lterations Find Sotullon Optimum Optimum Solutton Energy Value
1% 2500 12345013567 2.32 7.68 10 12.23 98.75% 38|0(0]0]62 24
o 13679/13567 813 0.87 Rl 0.32 99.26% 412(20128)36 9.2
- B | 13679/12345 CATTEAY L 08T RN || R S0 -9919% o 411220028134, . CooeR

|] ‘ L _
i | . !
12345/13667 348 6.54 10 2.58 96 00% 32|010(0[68 36
i 7 13579713567 994 088 1 0,31 90.30% 4j12)202836 52
o OTIRTOAZRAG L 92 - 088 e 3 99,10%_' U AN 2202816 | 92
- ! | | ! _

10 Max Avg Energy Avg Exec # of Avg Time to Avg % of Optimum

Resources . Cost SpeediCost Value Time lterattons Find Solulon Optimum Optlmum Salution Energy Value
12345676810 / ‘ i l
9 2500 1356789101112 9.37 0,63 10.00 2.31 98.56%| 2(0j0[012[14]97119)22}24 9.51

Figure 34: Results and Comparison

- 58 -

of the GA and SA Test Runs.

Although both algorithms could be used to find a near-optimal solution, the SA
algorithm is the better choice for a Grid Resource Broker and any dual constraint
optimization problem. The SA algorithm reached our near-optimal threshold much
quicker than our GA based solution. The GA had slightly better performance as the
number of available resources increased, but it still lagged behind the SA algorithm.
With the SA algorithm’s variables set to their optimal values, the SA algorithm
performed very well. To identify the optimal values for the variables requires trial and
error, or even possibly the use of some other kind of optimization algorithm or program.
To implement a stochastic algorithm-based GRB effectively requires a priori
knowledge of the size of the solution domain, the attributes of the job to run on the grid,

and the characteristics of the avatlable resources.

6.2 Future Work

The current resource allocation solutions do not account for the duties of a GRB
communicating with a Utility Grid, which would implement a “pay-per-use” model.
This model would offer many desirable features not available in current grid offerings,

but it would also introduce a host of problems to overcome before implementation.

A real world implementation of a GRB would have to take into account many more
variables than have been addressed m this thesis. Resource failure during execution
would have to be addressed, along with how to recognize new resources during job
execution. Another issue would he error handling associated with the inability to find a

valid solution. This issue could be handled by providing an alternative solution, or

~59 -

several best effort scenarios, Also to be resolved is the possibility of intra task
communication within a single job and dynamically collocating these tasks to minimize

latency.

Further evaluaticn is needed on other stochastic and non-stochastic algorithms to
determine which ones performed better under which scenarios. These algorithms could
then be hybridized and have their performance compared to the “pure” versions of each
algorithm. Also, with more testing resource availability, these solutions could be tested
on larger solution domains, which would give a better picture of their overall

performance potential.

- 60 -

REFERENCES

[Abraham00]

Abraham, A., R. Buyya, and B. Nath, “Nature’s Heuristics for Scheduling Jobs on
Computation Grids,” Proceedings of the 8™ IEEE International Conference on
Advanced Computing and Communications (2000), pp. 45-52.

[Braun01]

Braun, T.D., et al., “A Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing Systems,” Journal of
Parallel and Distributed Computing 61 (2001), pp. 810-837.

[Buyya02]

Buyya, R., “Economic-based Distributed Resource Management and Scheduling for
Grid Computing,” Ph.D. dissertation, Department of Computer Science and
Software Engineering, Monash University, Mclbourne, Australia, April 12, 2002,

[Buyya05]

Buyya, R., “Grid Computing: Making the Global Cyberinfrastructure for eSecience and
eBusiness a Reality”, International MultiConference in Computer Science and
Computer Engineering, Las Vegas, June 28, 2005.

[Eiben03]
Eiben, A.E. and J.E. Smith, Introduction to Evolutionary Computing, Springer-Verlag
Berlin Heidelberg, Germany, 2003.

[Eglese90]
Eglese, R W., “Simulated Annealing: A Tool for Operational Research,” European
Journal of Operational Research 46, 3 (1990), pp. 271-281.

[Ferriera03]
Fierriera, L., et al., “Introduction to Grid Computing With Globus,” IBM Redbooks,
{2003).

-6l -

[Goldberg89]
Goldberg, D.E., Genetic Algorithms in Scarch, Optimization, and Machine Learning,
Addison-Wesley Publishing Company, Inc., 1989,

[Haupt04]
Haupt, R.L. and S.E. Haupt, Practical Genetic Algorithms, John Wiley & Sons, Inc.,
New Jersey, 2004,

[Jones03]
Jones, T., Al Application Programming, Hingham, Massachusetts, Charles River

Media, 2003,

[Kim04]

Kim, S, and J.B. Weissman, “A GA-based Approach for Scheduling Decomposable
Data Grid Applications,” Proceedings of the International Conference on Parallel
Processing (1ICPP’04) (2004), pp. 406-413.

[Kirkpatrick83]
Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, “Optimization by Simulated Annealing,”
Science 220, 4598 (1983), pp. 671-680.

[Krishnakumar89]
Krishnakumar, K., “Micro-genetic Algorithms for Stationary and Non-Stationary
Function Optimization,” SPIE 1196 (1989), pp. 289-296.

[Man99]
Man, K.F., K.S. Tang and S. Kwong, Genetic Algorithms, Springer-Verlag T.ondon

Limited, London, 1999,

[Menascé04]
Menascé, D.A. and E. Casalicchio, “QoS in Grid Computing,” IEEE Internet

Computing 8, 4 (2004), pp. 85-87.

[Menascé04A |

Menascé, D.A. and E. Casalicchio, “A Framework for Resource Allocation in Grid
Computing,” Proceedings of The IEEE Computer Society’s 122 Annual
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS'04), (October, 2004).

-62 -

[Menascé04B]

Menascé, D.A. and E. Casalicchio, “Quality of Service Aspects and Metrics in Grid
Computing,” Proceedings of The Computer Measurement Group Conference
(December, 2004).

[Menascé04C]
Menascé, D.A., “Mapping Service-Level Agreements in Distributed Applications,”
IEEE Internet Computing 8, 5 (2004), pp. 100-102.

[PhamOQ0]

Pham, D.T. and D. Karaboga, Intelligent Optimisation Technigues: Genetic Algorithms,
Tabu Search, Simulated Annealing, and Neural Networks, Springer-Verlag London
Limited, London, 2000.

[Wright32]

Wright, S., “The Roles of Mufation, Inbreeding, Crossbreeding, and Selection in
Evolution,” Proceedings of 6% International Congress on Genetics 1, 1 (1932),
Ithaca, NY, pp. 356-366.

[YarKhan(2]
YarKhan, A. and 1.J. Dongarra, “Experiments with Scheduling Using Simulated
Annealing in a Grid Environment,” Lecture Notes in Computer Science:

Proceedings of the Third International Workshop on Grid Computing 2563 (2002},
pp. 232-242,

[YeOl]

Ye, J. and S. Papavassiliou, “Dynamic Market-driven Allocation of Network Resources
Using Genetic Algorithms in a Competitive Electronic Commerce Marketplace,”
International Journal of Network Management 11 (2001}, pp. 375-385.

[Yu06]

Yu, J. and R, Buyya, “A Budget Constrained Scheduling of Workflow Applications on
Utility Grids using Genetic Algorithms,” Proceedings of 15 IEEE International
Symposium on High Performance Distributed Computing (HPDC 2006} (June 19-
23, 2006).

- 63 -

APPENDIX A

Appendix A: Optimal Solution Code Listings

import java.io.*;
import Jjawva.util.*;
import Java,lang.Wath;
import java.math.*;

/*}c

* Rauthonr James Sweeney

* March, 2007

*

* Main ExhaustiveSearch class

* This 1s used to perform an exhaustive optimal search.

* The components are the same as the GA, except the removal of

* uneedesd functions, and the additicon of the exhaustiveSearch routine.
*

/
public class ExhaustiveOptimalSearchi
A8uppresaWwarnings { { "unchecked"}}

// Probability of Crossover
int crossoverProbability;

// Probability of Mutation
int mutationPrebakility;

// Initial population in the pool
int initialPopulation;

// Wumber of generatlons
int numberCfEGeneralions;

// Dimension of the Chromosomes
int chromosomeDimension;

// Dicimal percision to use for each gene
int decimalPrecision;

f/ Tozal number of cycles needed to run the job
int reokalJobCycles;

// Maximum time allowed for job execution
int maxJobExecutionTime;

// Maximum cost allowed for job execution
double maxJobCost;

// Current Chromosome pool
Chromogome currChromosomes;
VYector <ChromosomercurrGenChromosomes;

// Next generation Chromosome pool
Chromosome nextChromosomes;
Vector <Chromosome>nextGenChromosomes;

static ExhauskbiveOplimalSearch myExhaustiveCptimalSearch;

/******‘k*‘k**'&******** FEEFHAKAAE LI AR A RA AN A AT I r bk ks h bk kA AR r R hdhrdhdhodht ok hni

* ok

* Constructor for ExhaustiveOptimalSearch class.
*

* @Bparam initialPopulation, int value for number of chromosomes in each
population

- 64 -

* @param numberOfGenerations, int value for number of generations to run (if

uged)
* @param chromosomeDimension, int value for purher of genes in each chromosome
*
R E I E P R RS XSS SRR R IR SRR SRR RS i st R R Rl RS EERERESEEEES,
*w
*/
pubiic ExhaustiveOptinalSearch{int initialPopulation,
int numberOfGenerations,
int ohromosomeDimension} {

this,initialPopulation = initialPopulation;
this.numberCfGenerations = nunberCfGenerations;
this.chromosomeDimension = chromosomeDimension;
thig,decimalPrecision - 2

this.currChromosomes = new Chromosome {chromcsomeDimension) ;
this,currGenChromosomes = new Vector <Chromosgome> (}}
this.nextChromosomes ~ new Chromoscome {chromosomeDimension)
thisg.nextGenChromosomes = new Vector <Chromosome>{};

for {int i=0;1i < this.initzalPopulazien;i++) {
this,currGenChromosones.add {(new Chromosome (chromosomeDimension))

for (int x=Cjx < this.,chromoczsomeDimension;x++) {

1f (x==0) {
/i
Resourcell, Speed, Cost, Job Share
!/ N LS
-1
/ vvovvw

{ (Chromosome) this, currGenChramosomes , get (1)) . setThisGene (x,1,1,0);
} else if (x==1) |

{({Chromosome}this.currGenChromosomes.get (1)) .5etThisGene (x,3,2,0});
} eise if (x==2) {

{(Chromosome} Lhis.currGenChromcsomes.get (1}) .setThisGene{x,5,3,0);
} eise if (x==3) {

{ (Chromosome} this. currGenChromosomes. gel (1)) . setThisGene (x, 7, 4,0} ;

} oelse 1f {x——4y |
{ (Chromosome} this.currGenChromosomes.get (1)} .s5etThisGene {x,9,5,0);

}

//Probability of Crossover (ex: 60 =» G0%)
this.crossoverProbability = 65;
//Propability of Mutation (ex:
this.metationProbability = 2;

// Total number of cycles needed to run the job
this,totalJoblycles = 203

// Maximum time allowed for job executlon
this.maxJobExecutionTime = 10

// Maximum cost allowed for job execulbion
this. maxJobCost = 25.,50;

} // End of CLASS CONSTRUCTOR: ExhaustiveOptimalS3earch

/********************************i******kk*******************kk****‘h LI
.1 getScaled ::.

S5cale decimal number via the rounding mode BigDecimal.ROUND_HALF_UP.

Methed is used to make sure that the correct number of decimal

places are ucsed for each gene,

* o A % % x

Bparam value, double vaiue to be scaled

_65 -

* @param scale, int value for number of decimals fto scale to
* @return double representing the newly scaled number
e R R R R R R R R EREE R R R EE R R R EEE R
*/
static public double getfcaled{double wvalue, int scale) |
double result = value; //default: unscaleg

//use BigDecimal String constructcr as this i1s the only exact way for double
values

result = new BigDecimal {value) .setScale(scale,
BigDecimal .ROUND HALF_ UL) .doubleValue(};

// Could also use:
// resu.t = Math.roundi{value * 1C0.0) / 100.0:
return result;

} // End of METHOD: getScaled

/*******ﬂ'k'Air*'k*'k‘k***7’(**'k*t**********************************‘k*
.:! exhaustiveSearch ::.

* Method used to perform an exhaustive search for the

* nptimal seoluticn using the glcbal chromosome

* parameters: totalJobCycles, maxJobCost, maxJobExecutionTime

*

FHAA R T RK LR AR E A A TR AT AT AT IR AT A Ak r bk kb vk rdhrrhkrbhdtriknrk
*/
public static void exhaustiveSearch{) {
double cldFitness — 0.00;
dounle newbitness = 0.00;
double oldCost = 0.00;
double newCost = 0.00;
Chromoscme tempChrem;
int chrowrToctal = 0;
int totalShare = 0y
int intRO = 0}

int intRl1 = §;

int intR2 = §;

int intR3 = 0}

int intR4d = 0

System,out.println ("\n*** Exhaustive Search started: " + new Date().toSc<ring()
f " **kll);

tempChrom — new Chromosome (myBExhaustiveOptimaZSearch.chromosomebDimension);

try {
BufferedWriter cut = new BuiferedWriter (new FileWriter ("Optimal_ resul:
§13579 13567 .txt")),

out.write("*** Exhaustive Search started: " + new Date().toString(}) 1 "
***“);

out.newlLine {};

ogut,.flushi);

for (int RO = 0;RO <= 100; RO++) |

for {(int BRI = C;Rl <= 100; RI1++) {
for (int RZ2 = 0;RZ <= 100; RZw+) |
for (int R3 = C;R3 <= 100; R31ir} {
for (int R4 = 0;R4 <= 100; R4-+) {
¥ Resourced, Speed, Cost, Job Share
i N/ Z
/7 v v v v
tempChrom, setThisGene (0,1,1, (RO*0.01));
tempChrom. setThisGene {1,3,2, {R1*0.01)};
tempChrom, setThisGene (2, 5,3, (R2¥0.01));
tempChrom, setThisGene (3,7,4, (R3*0.01) };
tempChrom, setThisGene (4, 2,5, (R4*0.01)) ;
newCost =
tempChrom. ge=ChromosomeCost {(myExhaustiveCptimalSearch. totalJobCycles};

newFitness — tempChrom.get¥XlnessValue (myExhaustiveOpuimalSearch);

totalShare = RO + R1 1 RZ + R3 + R4;

- 66 -

oldTFitness) &&

({tempChrom. getChromosomeCost {(myExhaustiveOptimalSearch, totalJobCycles)

if (

chromTotalil;

{totalshare —= 100) &&

myExhaustiveOptimalSearch.maxJobCoskb)) {

.o

"+ R1 + M

nawCost + "\n");

oldfFitness = newi'itness;

oldCost = newCost}

intR0O = ROG;

intRl = R1;

intRZ — RZ;

intR3 = R3;

intR4d = R4;

System.out.println("Chromosome (" + chromTotal

"ot o R3 R4 + ":: TotShare=" +
totalShare + " FV=" 4+ newFitness

Wealt g

out.write ("Chrowrosome (" + chromTotal + ") 1"

(newFitness »= 0} &&

"M 4+ R2 4+ My "ot 4 R4 - My TotShare=" +
totalShare + " FV=" + newfitness
new(ost + "wn"};
out,newLine (};
out.flush ()
} else if { (totalShare == -00) && (newFitness »=
{(newFitness == oldFitness) &&

(tempChrom.getChromosomeCost (myExhaustiveOptimalSearch. totalJoblyales)

myExhaustiveOpltimalSearch.maxJobCost) &&

(tempChrom.getChromosomeCost (myExhaustiveOptimalSearch, totalJokCycles)

Hae o

+ Rl +

newCost + "\n"};

LI}

newCost + "\n"};

}

n, .r

+ R2 + "

}

oldFitness = newrFitness;
oldCost = newCost;

intRD = RO;

intRl = R1l;

intR2 = RZ;

intR3 = R3;

intR4d = RA4;

System.out.printin("Chromosome (" + chromTotal
"1™+ R3I + Mi:" + R4 + ":: TokShare—" +
totalshare + " FV=" + newFitness

out.write ("Chromosome (" + chromTolal +
"o b R4+ Mi: TotShare-=" +
totalShare + "

n) R

Fv=" 4 newFitness

out.newlhine (};
out., flush{);

+

+

+

InewFitness >

<=
Mot o RO+
" Cost=" +
RO + *::" I R1
" Cast~" +
Q) &&
e

< oldCost)) {

"o 4+ RO
" Cost=" -
RO + "™::" | R1

Cost=" =~

out . write("Fittest Chromosome, ,.after searching chrough:" + chromTotal);
cut.newlLine (};

oub.write("::® + intRO

intR4 +

neawy;

Mie™ o dimtRL 4 M::™ + intR2 +

out.newline () ;

out,write ("FV="

+ oldFitness);

out.newlLine () ;

out.write ("Cost=" +

0ldCost);

out,.newLine () ;

out.write("\n*** Exhaustive Search ended:

***”) !

out., flush(
out.cloge(

System,out.println ("Fittest Chromosome. .

chromTotal);

v
i

- 67 -

+ intR3 + " "

" + new Date(}.toString() I "

.after searching through:" +

System.oul,.printdn{™::" + intRO + ":;:" + intR1 + "::" + intR2 + “:;:" + intR3
Moo AneR b Moy

System.out,println{"FV=" + oldFitness);

System.cut.println{"Cost=" + o dCost);

System.out.println{"\n*** Exhaustive Search ended: " + new Date(}.toString()
+ **k“);

} catch {I0Exception e) {}

/********t******t***tt**tt*******ti*t****t********
wkkkkkck okok

* Main method for Exhaust’!wveOptimalSearch class

*

* @param args, Passed in wvalues for: InitialPopulation, Number(fGenerations,

ChromcscomaDimension
*

IR R AR E R R EEEEEEEE SR R R E ST RN R R R L R e e SRR RS E R EEEEEEEELEEEEEEEEEEE SR E N
dkwkhk ok k &
*/
public static void main(String’] args) {
int population=0, generations=0, dimension=0;
int gen=0;
long LimeBefore=0, timeAfter—0, timeDiff-=0;
double totallisplay = (0.00;
String poplescription = "%
Vector <Chromosome> tempVector—null;

boolean done = false;
try |
if (args.length < 3)
throw new ExhaustiveOptimalSearchException|{"Requires all 3 parameters:");
population = Integer.parselnt(args{C]};
generations = Integer.parselnt{args(l]};
dimensioen = Integer.parselnt{args([2]};

if (population < 1) {
throw new ExhaustiveOptimalSearchExcepticon{®Initial Popu-.ation must be
greater than 0"); n
+ else 1f (generations < 1} {
throw new ExhaustiveOptimalSearchException("Chromosome Dimension must be
greater than 07}

if ((populaticn % Z} I= 0} |
throw new ExhaustiveOptimalSearchException("Initial Population must be an
even nunber®);
}
}
catch (ExhaustiveOptimalSearchException e)
System.out.println(™\n" + e};
System.out.println("USE: Jjava ExhaustiveOptimalSearch 'Initial Population

Number of Generaticons Chromosome Dimensien'");

System.out.println {("EXAMPLE: Jjava ExhaustiveCptimalSearch 6 5 5"},
System.out.println (™, ..exiting, goodbye."):
System.exit (1);

}

mykrxhaustivelptimalSearch = new
ExhaustiveOptimalSearch (population,generations, dimension);

/* Used when execuzning the exhaustive search funtion */
myExhaustiveOptimalSearch.exhaustiveSearch();

} // End of METHOD: main

} // End of CLASS: ExhaustiveOptimalSearch

- GR -

import java.io.¥;

/**
* RBauthor James Sweeney

* March, 2007
-

* Class that stores the gene intormation
*/

public class Gene implenments Serializable |

private static final long serialVersienOID = 1;
protected int geneSpeod;

protected double geneCost;

protected doub:e geneJocbShare;

!

Constructor for the Gene class

Aparam speed, representing speed of this rescurce (gene)

@param cost, representing cost of this resource (gene)

@param jobShare, representing percentage of the job that this resource (gene)
will process

ok A Ak

*/
public Gene (int speed, double cost, double jobShare} {
this.geneSpeed = speed;
this.geneCost ~ cost;

this.genedobShare — jobShare;

}

public int getGenaSpeed() (
return (this.geneSpeed);

1

public void secGeneSpeed(int s} {
this,geneSpeed = s;
}

public double getGeneCost() |
return (this,geneCost};

}

public void setGeneCost (double ¢} {
this,geneCost = c;

}

public double getGenedobShare() |
return {this.geneJohShare);

}

public void setGeneJcobShare{double js) {
this.geneJobShare = Js;
}

- 69 -

import java.io.*;

/*v‘r

* @Gauthor James Sweeney

* March, 2007

*

* Class that stores the chromosome information
L

public class Chromeoscme implements Serializable |
private szatic final long serislVersionUID = 1;

// Gene skorage for each Chromosome
protected Gene [] genes;

/*
* Constructor For Lhe Chromosome class
* @param numGenes
*/

public Chromosome (inlk numGenes) |

genes = new Gene ‘numGenes];

/*iii***t***********%*****k*w*****************
* L1 getGenes :.
* @return Gene [} representing the chromosome
EEE L ELELESEEEE RS SR SRS EEEEEEREEEEEEEEES EEES]
*/
public Gene [] getGenes() |
return {genes);

/*****************************K*********i********************************

* .1t getThisGene ::.

* @param int representing the gene to set

* @param int representing the speed of the gene

* @param deuble representing the cost of the gene

* @param deuble representing the percentage of Jjob assigned to that gene

For ke Rk kT kR ok ke ke kR ok ok Rk ek e ok e ke ok ok ko kKR R ek ok ek Ak kR ko Ak ko

~/

public vold setThisGene(int thisGene, int geneSpesed, double geneCost, double
geneJcb3hare) |
genes(thisGene) = new Gene (geneSpeed,geneCost,genedJobShare);

/***i
* .11 getGeneJobShareTotal ::.

2

* freturn double representing % of job aliocated
EE R RS EEE SRR SRS EEES RS S SRS A SRR RS EEEEEREELE SR

v/
public double getGeneJobShareTotbal () |
double geneTotal — 0
for {(int i=0:;i < this.genes,length;i++} |
geneTotal += genes[i] .getGeneJobShare ();

}
return (ExhaustiveOptimalSearch.getScaled{geneTotal, 2)};

/***i**ikﬂ**i*i**fi*************
LEEE X SRR R RS
* .11 getFitnessValue :@:.
* @param thisExbaustiveOptimalSearch, ExhaustiveOptimalSearch which contains
the chromosome about which vou wold like to find the FV
* @return double representing the Fitnesas Value

X TR S S R R A s e R A S R S SR R RS R RS LRSS ERE SRR EEEEEEE SRR EEEREEEEFEEEERERE SRR
**
*/
public double getFitnessValue {ExhaustlveOptimal3earch
thisExhaustiveOptimalSearch} |
double completionTime = 0;

-70 -

dotble tempCompletionTime == J;

for {(int i=0;i < this.genes.length;irt} {
tempCompletionTime = (thisExhaustiveOptimalSearch,ltotalJobkCycles *
genesii].getGeneJobSharte () } / genes[i].getGeneSpesd();
if (tempCompletionTime > complebionT me)
completionTime = tempCompletionTime;

\

return ¢
thisExhaustiveOprimaliearch.geticaled [(thiskxhaustivelptimalSearch, maxJobExecutionTime ~
completion®ime}, 2} };

}

/******‘****i***********‘k‘k*\’*****‘k*******‘k**********‘k*****‘***********************
Hok AR Ak ko dek ko ko Aok ok kA ok Aok
* .:i getChromosomeCompletionTime 1.
* @param thisExhaustiveOptimalSearch, ExhaustiveOptimalSearch which contains
the chromocsome about which you wold like to find the completion Lime
* Breturn double representing the time in ms, that it will take for the
chromosome teo run

k**‘k******’;***'ﬁ'*'k'k******1‘********'A'ﬁ'w_'k'k**'k'k"**'k'ﬂ\'**‘i Ihkbkdk b xAET AL R AR KR AN ETNE R R A FA TR R ATk ok hw k&
E R I R R o
*/
pubiic deouble getChromesomeCempletionTime {(BxhaustiveOptimalSearch
thisExhaustiveOptimalSearch) |
double completionTime = Q;
double tempCompletionTime ~ 0;

tor (int i=0;1 < this,genes,length;it++) {
LempCompletionTime — (thisExhaustiveOptimalSearch.totaldchCycles *
genes[i] .getGenedJobShare () } / genes[i].getGeneSpeed();
if (tempCompletionTime > completionTime) {
completionTime = tempCompletionTime;
}
}

return [thiskzhaustiveOptimalSearch.getScaled ({completionTime)}, 2});:

}

/******‘k************ AR E LS L E R LR RS SR EE R EESEEEEE SN
* .11 getChromoscmeCost 1.
* f@param totalJoblycles, Total job cycles required to run the job
* @return double representing the coest
IR E R EEE L E ST E SRR LRSS AR E L AR EEE R EEE R LR LR L L EL R R EE R LR E R
*/
public double getChromosomeCost (int totalJdobhCycles) {
double chromCost = 0;
for (int i=0;1 < this.genes.length;i++) {
chromCost = (((genes[1].getGenedohShare(} * zolkaldobCycles) /
genes[1].getGeneSpeed()) * genes[i].getGeneCost(} };

}

return [ExhaustiveOptimalSearch.getScaled(chromCost, 2)1);

- 71 -

/**
* Rauthor James Sweeney
* March, 2007
*
* ExhaustiveOptimalSearch exceptlon ciass
*/
public class ExhaustiveOptinalSearchException extends Exception
{
private static final long serialVersionUTD = 1;
/1(*
* ExhaustiveOptimalSearchException constructor
* @param msyg, Error message

x/

ExhaustiveOptimalSearchException (String msqg)
{
super (msg});

}

-72 -

APPENDIX B

Appendix B: Genetic Algorithm Code Listings

import java.ie.*:
import java.util,*;
import java.lang.Math;
imporlk java.math.*;

*

T

¥ oA o* o oA ¥ %

Bauzhor James Sweeney
March, 2007

Main GA class
This khe main class for the Genetic Algorithm.

~—

public class GA{

// Probability of Crossover
int crossoverProbability;

// Probability of Mutation
int mutationProbabiiity;

// Initial population in the pool
int initialPopulation;

// Number of generations
int numberOfGenerations;

// Dimension of the Chromosomes
int chromoscmelimension;

// Dicimal percision to use for each gene
int decimalPrecision;

// Total number of cycles needed to run the job
int TotalJoblycles)

// Maximum time allowed for job execution
int maxJohExecutionTime;

// Maximum cost allowed for job execution
double maxJobCost;

// Current Chromosome pool
Chromesome currChromosomes;
Vector <Chromosome>»currGenChromesomes;

// Next generation Chromoscme pcol
Chromosome nextChromosomes;
Vertor <ChromosomernextGentChromescmes;

static GA myGh;

/*******‘k*****************i*i*t***i*fc‘****‘***'k***‘k*'**‘ki"k‘ir*'k'k'ir'*'kk'k'k***************

L

* Constructor for GA class.
*

* @param initialPopuliation, int value for number of chromosomes in each
pepulation

* @param numberQfGenerations, int value for number of generations to run (if
used)

* @param chromosomeDimension, int value for number of genes in each chremosome

- 73 -

R R R TR TR R T PR R E R LR LR R R R EE AR EER R AR SRR R EEE SRR

*
public GA{int initialPopulation,
int numberOfCenerations,
int chromosomeDimension)

this.initialPcpulation = initialPopulalkion;
this.numberfGenerations — numberOfGenerations;
this.chromosomeDimension = chromosomeDimensiony
this.decimalPrecision = 2}
this.currChromosomes = new Chromosame {chromosomeDimension) ;
this.currGenChromosones = new Vector <Chromosome> ()}
this.nextChromosomes = new Chromosome (chromosomeDimension?;
this.nextGenChromosomes = new Vector «<Chromosome>{);

for (int i=0;i < this.initialPopulation;i++) {

this.currGenChromnosames, add (new Chromosome (chromosomaelimension)) ;

// ALS0O MUSYT BE CHANGED IN CREATECHROMOSCME PROCEDURE

// If changing resource

// Use for 3 available resource testing
(int x=0;x < this.chromosomeDimension;x++)

for
if tx==0) {

{{Chromosome) this.,
} else 1if (=x==1) {
{ {(Chromecsome) this.,
} else if (x==2) |
({Chromosome) this.
} else if (x=—3) |
{{Chromcsome) this.
} else if (x——4) {
[{Chromosome) this.
}
}

/* Use for 1§ available resource testing

gpeed/Cost values

/* Gene-Resource ¥,
get{i})).

currGenChromosames

currGenChromosomes

currGenChromosomas

currGenChromosomes

currGenChromosomas

.get{i)).
get{i)}.
get{i)}.

Jget{i)},

Speed, Cost,

{

Job Share*/
setThisGene(x,1,1,0);

setThisGene (X, 3,3,0);
setThisGene(x,5,5,0);
satThisGene (x,7,6,0);

zetThisGene (x,%,7,0);

for (int x=0;x < this.chromosomeDimension;x++} |
if (x=—0} |
/* Gene-Resource f, Spced, Cost, Job
Share*//*

{{Chromosome) this, currGenChromosomes.ge= (i)} .setThisGene(x,2,1,0);
} else if (x==1; {

{{Chromocsome) this, currGenChromosones,get (i)} .setThisGene (x,2,3,0);
} else if (x==2) {

{{Chromosome) this. currGenChromosomes.get (i}) . 8etThisGene (%, 3,5,0);
} else if (x==3) {

{ {(Chromasome) this, currGenChromosomes.ge= (i)} .setThisGene (x,4,6,0)}:
1 else 1T (x==4d} {

({Chromosome) this. currGenChromosomes,get (i)}, setThisGena(x,5,7,0);
} else if (x==5) {

{ {(Chromosome) this, currGenChromosomes,ge= (i)} .setThisGene (x,6,8,0]};
} else if (x==0} |

({Chromocsome) this, currGenChromosomes,gev (1)) .setThisGene (x,7,9,0};
} elgse if (x==7} |

{{Chromosome) this, currGenChromosomes.ge={i)}.setThisGene (x,8,10,0);
} alse if (x—==8) {

({Chromcsome) this, currGenChromosomes,get (1)) .setThisGena(x,9,11,0);
} else |

{ (Chromosome) this.currGenChromosomes.get (i)} .setThisGene (x,10,12,0);

- 74 -

//FProbability of Creossover (ex: 60 => &0%)
this.crossoverProbablility = B8Q;

//Brcbhability of Mutation (e S =>» 5%)

X
this.mutaticnProkability 5;

// Total number of cycles needed to run the job
this.totaldobCycles = 20;

// Maximum Lime ailowed for job execution
this.maxJobExecutionTime = 10;

// Maximum cost allowed for job execulion
this.maxJobCost = 25.50;

} // End of CLASS CONSTRUCTOR: GA

/**************************************t**********k****************i**ﬁk

* .1t getScaled :i.

* Scale decimal number via the rounding mode BigDecimal .ROUND HALF _UP.
* Method is used to make sure that the correct number of decimal

* places are used for each gene.

*

* fparam value, double value to be scaled

* @param scale, int value for number of decimals to scale to

* @return double representing the newly scaled number
S S E R RS R LR R R RS E S RS RS R R LSRR RS R R R R EEE R EEEEEEREAEERERER]
*/
static public double getScaled(double value, int scale) |
double result = value; //default: unscaled

//use BigDecimal String conatructer as this is the only exact way for double
values

result = new BigDecimal{value).setScale{scale,
RigDecimal.ROUND_HALF UP).doublevalue();

// Could also use:
// result = Math.rocund(value * 100.0} / 100.0;
return result;

} // End of METHOD: getScaled

/*k*i**Lii**********i*****t*****************************t**
* .1 getRandom (int}

* return a integer random number between 0 and upperBound
* @Rparam upperBound of the range for randomization

* @return inlk, randomly generated number
PR R R R R R R R R R R R R E R R R R RS

*

!

int getRandem (int upperBound) {
int iRandom — {int) (Math.random({) * upperBound}:;
return ({iRandom):;

V // End of METHOD: getRandom (int)

* .1t getRandom (double) ::.
* return a deouble random number between 0 and upperBound
* @param upperBound of the range for randomization
* @return double, randomly generated number
FhEARKERE LT RRT I AT h ko vtk krkdhkddrxhwdd o
*/
double getRandom{double upperBound) |
// Gives a random nunmber that is:
// 0.00 <= dRandcm < upperBound
// This does exclude returning the maximum value
doubhle dRandem = (Math.random({}) * upperBound);
return (dRandom} ;
} // End of METHOD: getRandom (double)

/************************k**k*****ik****Aki*ﬁ**i*i************************

* .1 propogateThisChromosome ::.

-75-

* @param chrom, Chromoscome that will be propogated to the next generation
*
T EE R R E R EEA SR E LR S EEEEE SR EEEEEEE R LSS L LR EEEEEEEEEREREEES EEEEEELEREEEEEE]

*/

public vold propagateThisChromosonmne (Chromosome chrom} |
nextGenChromosomes . add (chxom} ;

} // End of METHOD: propagateThisChromosome

/i****x******i********** (B A S SR EREEELEES SR EEE SRR EEEE RN 2
* .:! propogateFittestChromosome ::.

* @param parentl, Chromsome representing parent 1

* @param parent?, Chromsome representing parent 2

* @param childl, Chroemsome representing child 1

* @param childz, Chromsome representing child 2

*

EE R EERER SRS A EEEREEEREEEE SRR EEEEEEERE R R R R R

*/
public vold propagateFittestChromecsceme (Chromoscme parentl, Chromosome parentZ,
Chromosome childl, Chromoseme child2) {
int propRandNumber—99;
Chromosome propChromoscome = null;

Chrom@scme kestChild = null:
Chromoscme hestParent = null;

// Find the best child...
if (childl.getFitnessValue {myGA) == child2.getF.itnessValue (myGA)) (
1L (childl.getChromosomeCost {(myGh.totalJokblyeles) <
child2.getChromosomeCost (myGA.totaldobCycles))
bastChild = chilal;
else
bestChild = child2;
} else if (childl.getFitnessValue (myGA) > child2.getFitnessValue (myGAR)) |
bestChild —~ childl;
} else |
bestChild = childZ;
}

/4 +..now find the best parent...
if (parentl.getFitnessvValue (myGh) —— parent2.,getTitnessValue (myGa)) |
if (parentl.getChromosomeCost (myGA.totalJobCycles) <
parent?.getChromesomeCost (myGA. totalJoblycles) |
bestParent = parentl;
elze
bestParent = parenlkZ;
} else if (parentl.getFitnessValue (myGA) > parent2.getFitnessva_uelmyGA}) {
bastParent = parentl;
} oelse |
bestParent = parent;

h

// ...evaluate hestChild and the bestParent...
“f { (bestChild.getFitnessvValue (myGA) —— bestParent.,getFitnessValue (myGA}}) {
if (bestChild.getChromosomeCost (myGA. totalJobCycles) <
bestParent.getChromoscmeCost (myGh.totaldohCycles)) |
// bhestChild and bhestParent have egual FV, but bestChild has lower
cost, . .propagate bestChild
propChromogome = bestlhild;
b oelse |
// bestChild and bestParent have equal FV, but bestParent has lower
cost...choose randomly to propagate
propRandNumber — getRandom(2);
if (propRandNumber ~— 1}
propChromosome = bestChild;
else
propChremecsome = besbParent;
}
} else if (bestChild.getFitnessValue (my3A) > bestParent.getFitnessValue (myGa)) {
// besltChild has a better FV than bestParent, so propagate bestChild
prepChromosome = bestChild;
} else |

-76 -

// bestParent has a better FV than hestParent...choose randomly to propagaze

propRandNumber - getRandom (2} ;
if {preopRanddMumber —= 1}
propChromosome = bestChildy
else
propChromosome = bestParent;

propagateThisChromosome (propChronosone) ;

} // End METHOD: propagateFittestChromoscme

/**-kk*-A-*-A-k-k***k-k**-k*-k-k******A-‘A—****w**********-k-};*-*-k-k****u k% k&
* L propogateFilttestParentChromosone

* Aparam pool3ize, number of chromosomes in this generation
*

AAAKRKNA KA AKX EETHXRARKRENARAF L AN R A A ART A TNTRE L Rk b &k hd A%k & ok ek o
*/
public void propagatefFittestParentChromesome (int poalsSize) |
int chromosomel = getRandom(poclSize);
int chromosome2 = getRandom({poolSize);
Chromoseme propChromosame — nully
Chromosome temp = null;

/* To ensure that thls parent hasn't already been chosen */

if (currGenChromosomes,get (chromosomel) —— currGenChromosones.get (chromosome?2)
{
do {
chromosoma2 — getRandom (poolSize);
} while (currGenChromosomes.get {chromoscomel) ==

currGenChromosomnes.get (chremosome2)) ;

}

if (((Chromusome)currGenChromosomes.get (chromosomel)) .getFitnessvValue (myGRA) ==
{ (Chromosome) currGanChromosomas . get {chromosoma2)) ,getFitnessValue (myGh)) {
if |
({Chromosome) currCGenChromosones.get (chromosemel)) .getChremoscomeCost (myGA . totalJobCycles)

<

{ {Chromosome)} currGaenChromosomes ., get (chromosomeZ)) .getChromoscomeCost (myGA. totalJobCycles)
o
try {
propChromosome —
tChromosome} {(ObjectCloner.deepCopy (currGenChromosomes . get (chromosomel)))
} catch (Exception e} |
System,out.println("ChjectCloner exception: " + e);
}
} eise |
try {
rropChromosone —
(Chromosome} (ObjectCloner,deepCopy (currGenChromosomes. get (chromosomne2})) ;
} cabtch (Exception e) 1

System.ocubt.printin("CbjecltCloner exception: " + ej;
}
}
} else if |
({Chromoseme) currGenChromosemes . get (chromosomel}) . getFitnessvalue (myGA) >
{(Chromeoscme} currGenChromoscomes. get (chromosomeZ}) .getFitnessValue (myGA))} {
try |
propChromosome =

{Chromeosome) (CbjectCloner.desplopy (currGenChromosones. get {chromosemel))) ;
} catch (Exception e) {
System.out.println({"ObjectCloner exception: " + e);
)
v else |
try |
propChromosons =
{Chromoscme) (CbhjectCloner,deepCopy {currGenChromosomes.gaet {chromosome?2) }) ;
} catch (Exception e) |
System,out,printin("ObjectCloner exception: " + &);

=77 -

propagateThisChronosome (propChromosome) ;

} // End of methed propagateFittestParentChromosoms

/***i*******************i**ﬁ*k***

* .11 checkForCrossover ::.
* @return beolean, True to perform crossover, False to not perform crossover
*

ok ek k kA A kA b A A kA b A A AL ARk h Ak A A A A A F T ALk Ak A AR AR AR Ak A A AR A AR R A AR AR Rk

*/
public becolean checkForCrossover () {
int crossoverCheckvValue = getRandom(1G61};

/* IE the random number chcsen 'n', from 0 to 100, is less than or
equal to the crossoverProbability, then crossover */
if (crossoverCheckValue <= this.crossoverProbabllity)
return true;
else
return false;
} // End of METHOD: checkForCrossover

/******Aki**i*ii***********kkﬁ*%*wi**ii*#*t************w*******************

* .+: checkForMutation ::,

* @return becolean, True To perform mutaticn, False tc not perform mutation
*

EEREE T AR RS SR SRR ER SRR EREsR Rt R SRR EREREEEEEERE SRR EE RS

>
public beonlean checkForMutation (} |
int mutaticenCheckvValue = getRandom{l01);

/* If the random number cheosen 'n', from 0 fo 100, is less <Than or
equal Lo Lhe mutationProbability, —hen muzate */
if {mutaliecnCheckValue <= this.mutationProbability}
return true;
else
return false;
} // End of METHOD: checkForMutation

/**
* .11 getSumFitness ::.
* @param chromPopulaticn, Vector of chromosome population of which to sum the
fitness

* @freturn double representing the sum of all the FV's in this population
*

ERER LA E R RS R LR L EE AR RS RS E L EEERE R LSRR R ERE SRR R B0 B E RS]
*/

public double getSumFitness (Vector chromPopulation) |
double fvTotal = 0.00;

For f{int 1-0;1 < chromPopulation.size{);il+} |
fvTotal += {(Chromosome)chromPopulation,getz{i))}.getFitnessValue (myGA}:;
;
return getScaled(fvTotal, this.decimalPrecision);
} // End of METHOD: getSumFitness

/***************t*******t******************t************t**********

* .11 rouletzeSelectChromosome @i,

Method that takes a Vector of chromeosomes, which represents
a generation, and selects cne using a biased roullete wheel
method.

Bparam chromPopulation, Vector representing the total population
@return int representing the selected chromosoms

EE A B

-78 -

Fhkk kR kA bk kA Erk kb wk ok ok dkdk Ak krh kA wkkhkkwk ko dokhorkok

*/
public int rouletteSelectChromosoms (Vector chromPopulation) <
int 1 = -=1;
double randon - 0y
double partsum -~ 0y
random = getRandom{l,() * getSumFitness (chromPopulation);
if Arandom !— O} {
do {
it+;
partsum += ({Chromosome)chromPopulation,get(i}).getFitnessvValue {nyGA};
} while ((i < (Lhis.initialPopulation - 1)} && (partsum < random));
}
else {
1 — getRandom (chromPopulation,size()};
}
return i;

y // End of METHOD: roulietteSelectChromosome

/‘i(******************t**t*t**1(******‘k*******t‘kt*************

* .o doMutatien ::.

*

* Method that takes a given chromosome, and mutates it
* by subktrackting 5% from a randomly selected genes job
* share, and then adding that 3% to ancther randomly

* gelected gene's job share.
*

* @param mutationChromosome, Chromosome to mutate
FhhkhhhhhhkhhkArkFrhbdddrk b rdr bk rrhhirhrkb bbbkt rk sk drk
*/
protected void doMutation(Chromosome mutationChromascme) |

int mutationGeneMinus = 0;

int mutabionGenendd = Q3

Chromosome tempChromosome = null;

double mutationAmount = 0.05;

do |
try |
tempChromosome = (Chromosome) (ObjectCloner.deepCopy (mutationChremoscme});
} cateh (Exception e} |
System.out.println ("CbjectClener exception: " + ae};
}
// Find a gene in the given chromoscme, from which the mutationdmeunt (ex: .05 -

> 5%} can be subtracred without
// leaving a negative number.

do |
mutatlonGeneMinus = getRandom{chromoscmelimension};
} while { (tempChromosome.genes[mutationGeneMinus].getGenedobShare () -

mutationAmount) < 0);

// Subtract the mutationAmount
tempChromosome.genes [mutaclonGeneMinus] . setGeneJobshare (
getScaled((tempChromosome .genes [mutationGeneMinus), getGeneJobShare () -
mutationAmount), this,decimalPrecision)};

// Find a gene to add the mutationAmount, but not the one just reduced by the
muzationAmount

do |
mutationGeneAdd = getRandomi{chromosomeDimensiont};
} while (mutationGeneddd == mutationGeneMinus);

// Add the mutationAmount
tempChrormosome. genes [mutationGeneAdd; . setGeneJobShare (
getScaled ((tempChromosome . genes [mutationGeneddd] . getGeneJobShare () -
mutationAmount), this.decimalPrecision)]);

-79.

// Bdjust the new chromosome, to make sure the entire job is allocated
myGh. adjustGenaDistributi on (LempChromosome)} ;

// Repeat process 1f any of the following are true:

Iy - New Chromnsome doesn't meel the Maximum Cost requiremets

I — New Chromosome doesn't account for 100% of the job

7/ - New Chromcsome doesn't mect the Fitness Value regquirments (within time
limits)

} while { {(ZempChreomozome.getChromesemeCost (myGA.totalJohCycles) »

myGh. maxJobCost) |

tgetScaled(LempChromosome.getGeneJobShareTotal (), this,decimaibrecision)
1=1.00} 1]

{tempChromosome, getFitnessValue (myGA) < 0.C0)),

// Copy tempChromosome informalbion over to mutationChronosome to complete the
mutation
for (intT x=0;x < chromosomeDimension;xi+) |

mutationChromeseme, genes(x] ., setGenedJobShare (tempChromoscme.genes [x] .getGenaJobShare ()) ;

|3

} // End of METHOD: doMulalion

/***************‘********i**************f*********‘k***‘****‘k**
* .11 doCrossover @i,
* Method to choose 2 random chromosomes, and then

* perform a crossover on them.
*

¥ @param int poolSize, int representing the chromoscme pool
LA AR SRR SRR ER AR RERERELEEESEEEEEEEEEEEEEREEEEEEEEELEEES]

*/

protected vold doCrossover{int poolSize) |
int crossoverChromosomel = rouletteSelectChromosome (myGA.currGenChromosomes) ;
int ecreossoverChromeosome? = rouletteSelectChromosome (myGa.currGenChromcsomes)
Chromosome childl — null;

Chromosome child?2 = npull;

/* To ensure that this parent deoesn't mate with itself (I8-P) */
if ({Chromosome}mnyGA.currGenChronosomes,get {crossoverChromosomnel) =
(Chromosome) myGh, currGenChromoscmes . get {(crossoverChromosome)) [
do {
crossoverChromosome? = rouletteSelectChromosone (myGa, currGenChromosomes) ;
} while ((Chromosoma)}myGA,currGenChromosomes,get (crossoverChromosomel) ==
{Chromasome) myGA. currGenChromosomes. get (croasoverChromosome2))

}
try {
childl =
(Chremosome) (ObjectCloner,deepCopy {myGh, currCenChromosomes get {(crossoverChromosemel})) 5
child2 =
(Chromosome) {ObjectCloner . .deeplopy (MyGA ., currGenChromosomes , get (crossovarChraomosomez})) ;
crossoverTheseChroraosomes (childl, child2);

adiustGenebistribulion (childl);

// Does the chromosome meet the Maximum Cost requirements ?
if ({childl.getChromosomeCost {myGA,totalJobCycles) > myGA.maxJobhClost) |

// The Maximum Cost reguirements were NOT met, so...

do {
// Create a new chromosome itc replace the rejected one
childl = (Chromosome) {ObjectCloner.deepCopy (myGA.createChromosome () });

//Adjust the new chromosome, to make sure the entire job is allocated
myGA.adjustGeneDistribution (childl);

//Repeat process if any of the following are true:
/7 - New Chromosome doesn't meet the Maximum Cost requiremets

- 80 -

I - New Chromosome doesn't account for 100% of the job
I — New Chromosome doesn't meet the Fitness Value requirments {within
time limits)
} while { {childl.getChromosomeCost (myGA.totalJobCycles) > myGA.maxJcobCost)
|
(getScaled(childl.getGeneJehShareTotal ()}, this, decimalPrecision) !=
1.00) ||
(childl.getFitnessValue (myGAY < 0.00})
}

adjusltGeneDistribution (child2);

// Does the chromosone meet the Maximum Cost requirements ?
if {child2.getChromosomeCosl (myGA.tetalJohCycles) > myGA.maxJobCost)

// The Maximum Cost requirements were NOT melk, so0...
do |
// Create a new chromosome to replace the rejected cone
childZ — (Chromosome) (ObjectCloner,deepCopy (myGA.createChromosome (})) ;

/4 Adjust the new chromosome, to make sure the entire job is allocated
myGa,adjusktGeneDistributicon (child2) ;

!/ Repeat process 1F any of the fclleowing are true:

/7 - New Chromosome deesn't meet the Maximum Cost requiremets
Iz - HNew Chromosome doesn't account for 100% of the job
I - New Chromosome deoesn't meet the Fitness Value requirments (wilhin

tire limits)
} while { {childZ2.getChromosomeCost (myGAh.totalJobCycles) » myGA.maxJobCost)
|
{getScaled(child?.getGeneJobShareTontal(), this.decimallrecision) !=

1.00y 11
{child2.getFitnessValue (myGA) < 0.00})
}
} catch (Exception e) {
System.oub,.printin("ObjectCloner exception: " + e);
}
propagateFittestChromosome (
{ (Chromosome) myGh . currGanChromasomes ., get (crosseverChramosonel) }, { (Chromoszsome) myGa . currGe
nChromosomes.get {crossoverChromosome?)), chiZdl, childz);

i // End of METHOD: doCrossover

/*irA*i‘A"k‘ir**‘k*‘k‘***‘k*‘k****‘i’**********************

i .:1 crossoverTheseChromosomes ::.

* (ressover 2 chromosomes at a random polint
*
* @param Chromosome cl, Chromosome Lo crossover
* @param Chromosome ¢2, Chromosome to crossover
KA ERL AR LA ARk bk r kT h Rk r Tk rrrhkrhxkrix
*/
protected vold crossoverlheseChromosomes (Chromoseme cl, Chromosome c2) |
int crossoverPoint = getRandomithis,.chromosomeDimensiontl);
Chromosome temp = null;

/* Creates a new separate copy of cl, which will be

use later to populate c2. Uses Java serializalion
to de the "deep copy" */
try {
temp = (Chromosome) {ObjectCloner.deepCopy{cl)};
} catch (Exception e) {
System.out.printin("Objectlloner exception: " + a)jf

)
for (int i-0;1 < crossoverPoint;i-+) |{

cl.genes[:].selGenedobShare (¢2.genes [1] .getGanaeJobShare ()}

for (int i=0;i < crossoverPoint;i++}) {

-81 -

c2.genes[i] . setGeneJobShare (temp.genes[i] . getGenedobShare () };

}
} // Bnd ol METHOD: crosscovertheseChromosomes

/*******************t*i*i****i***tf(*t***‘*#***t**‘k******i
* .+ adjust@enebDistribution @,
* Used to adjust a chromosome, so that the sum cf the
* genes job shares equal 1 (100%, entire job allocated)
&

* @param cl, Chromosorme to adjust
Ak khkrhhhkhRhARAh kb dddhb bk kdxhdbdhdhkddhthhdrhhdhrdddehbtbrt

*/
protected void adjustGenelistribution(Chromosome cl) {
boolean adjusting = fa’lse;

if (getScaled(cl.getGeneJobShareTotal (}, this.decimalPrecision) != 1
if (getzScaled(cl.getGeneJobShareTotal(),this.decimalPrecision) <
do |
int adjustGene = getRandom{this.chromosomeDimension};
if [(cl.getGenes() [adjustGene].getGeneJobkShare () +
(1 - getSecaled(cl.getGenadohShareTotal{),this.decimalPrecision})} <-

)
1y {

1y {

cl.getGenes (} ‘adjustGene] . setGenaJob3hare (
cl.gebGenes () ladjusiGene] ,getGeneJobShare () + (1 -
getScaled{cl.getGeneJobShareTotal [}, thia,decimalPrecision)) };

cl.getGenes () [adjustGene] . setGeneJoblhare (
getScaled{cl.getGanes () [adjustGene] .getGeneJoh8hare (), this.decimalPrecision))

adjusting = true;

}
} whiile {(ladjusting};

1 else |
if { (getSecaledicl.ge-GenaedobShareTotal (), this.decimalPrecizion} - 1} >-—

do §
int adjustGene — getRandom{this.chromoscmeDimensicn) ;
if { (cl.getGenes(} [adjustGene] getGenadobShare () -
(getScaled {ci.getGeneJoblhareTotal (), this,decimalPrecision) - 1})

cl,getGenes () ladjustGene] . setGenedobShare (
cl.getGenes () ladjusiGene] .getGeneJobShare () -
{getScaled{cl.getGenedobShareTotal (), this.decimalPrecision) - 1)) ;
cl.getGenes () [adjustGene] . setGenedobShare {
getScaled{cl.getGenes () [adjustGene} . .getGeneJobshare (), this.decimalPrecision)):
adjusting — true;
} else |
cl.getGenes () [adjust—Gene].setGeneJobShare (0.00) ;
}
} while ({(ladjusting):

}

} // End of METHOD: adjustGeneDistribution

/***i IEE SRR E LR SRR R RS R RS R REE SRR EEEE LR EE RS E AR AR EEEEEEERREEESLERRE SRR EEEEEEESE

* ,: createChromosome ::.

* Used to create a new chromoscome, and then insert it into a specific place in
* a Vector of chromosomes

* &

fparam thisChremosome, Vector cf chromosomes

@param chromoscmelndex, int representing the index of the chromosome to replace
*
LR s RS E R E R A R E R R S R RS S R R R R R R E R R EE R RS S R SR R SRR TR
*/

public void createChromosome (Vector thisChromosome, int chromosomeIndex) {

double geneSun — 0.00;

do {

- 82 -

do {
for (int x=0;x < this.,chromosomeDimension;x++)

({Chromesome) thisChromosome. get (chromesomeIndex)) .genes [X] . setGeneJobShare {(getRandem (1C0
I
genesum +=
{ (Chromosome) thisChromosome.get (chromoscmelIndeax)) .genes[x] . getGenedJobShare () ;
'

} while (geneaSum == 0); /* In the rare case the sum is 0 */

for (int z=0;z < this.chromocsomeDimension;z++} |
{ {Chromosone} thisChromesome. get (chromesomelIndex)) .genes[z].setGeneJdobShare(
{ (Chromosoma) thisChromosome.get (chromosomelIndex)) .genes [z} .getGeneJobShare () / genedum
Vi
{ {(Chromosome} thisChromoseme, get (chromosomeTndex)) .genas[z] .setGeneJohShare (
getScaled(({ (Chromosome) thisChremosome.get {chromosomaindex)) .ganes [z] .getGeneJobShare (})
, Lhis,decimalPrecision) }}
!
} while (
{ (Chromosome) thisChromosome. get (chromosomeIndex)) .getFitnessValue (myGa) < 0.00);
geneSum = §.00;

v /7 Fnd of METHOD: createChromosome

/*.‘r*****‘******t**kti‘ki************* B R R R

* .1 createChromosome
* Used to create a new chromosome
*
* @return Chromesome, that was just created
*
LR R R e R R R R RS EREERERRE R R TR R R
*/
public Chromosome createChromosome () {
double geneSum = 0.0C;
Chromosome newChrom = new Chromoscme (myGA.chromoscmeDimension);

// Use for 5 available resources teszing
for {int x=0;x% < myGA.chromosomeDimenslon;xt++} |
if (x==0) {
/* Gene-Resource #, Speed, Cost, Job Share*/
newChrom, setThizsGene{x,1,1,0);
} else if (x==1) {(
newChrom. setThisGene(x,3,3,0};
1 else if (x==2) |
newChrom. setThisGene (x, 5,5,0) ;
} else if (x==3) |
naewChrom, setThisGene {(x,7,6,0};
} else {
newChrom, setThisGene (x,9,7,0);

/* Usze for 10 avallable rescurces testing
for (int x=0;x%x < this.chromosomeDimension;x++} {
iF (x==0) |
/* Gene-Resource {, Speed, Cost, (Job
Share*//*
t{Chromosome) this. currGenChromosomes.get (1}) .5etThisGene(x,1,1,0});
} else if (x==1) ¢
t(Chromoscme) this. currGenChromosomes.get (i}) .setThisGene (x,2,3,0}
} else if (x==7) |{
{ {(Chromosome) thiz.currGenChromesores.get (1)) .setThisGene (=, 3,5,0);
} else if (x==3) {
{ (Chromoscme} this, currGenChromosomes.get (1)) .setThisGene(x,4,6,0};
} elae 1if {u==4) {
{ (Chromosome) this, currGenChromosomes.get(i}) .setThisGene (x,5,7,0);
} else if (x==3) {
{ (Chromoscme} this. currGenChromosomes.get (1)) .setThisGene (%, 6, 8,0) ;
} else if (x==86) {
{ (Chromosome) this.currGenChromosomes.get (1)) .setThisGene (x,7,9,0};

-83-

1 else if (x==7) {

{ (Chromosome) this,currGenChromosones.get (1}) ., setThisGene (x,8,10,0);
} else if (x==8) {

((Chromosome) this,currGenChromosomes.get (1)) .setThisGene(x,9,11,0);
} else {

({Chromosome) this.currGenChronosones.get (i)} .setThisGena (x,20,12,0);
}
]
*/

do {
do |
for (int x~0;x < myGA,chromcscomeDimension;z++}) |
newChrom.genes [x] ., setGeneJobShare (getRandom (100) } ;
genesum += newChrom.genes([x).getGeneJobShare ()

}

! while (geneSum == 0); /* In the rare case the sum is 0 */

for (int z=0;z < myGA.chromoscmeDimension;z+it} {
newChrom,genes(z] . setGaneJobShare { newChrom,genes (2] .getGaneJobsShare () /
genedum) ;
newChrom.genes[z],setGenaeJokthara |
getScaled((newChrom.genes[z] .getGenedJobShare ()}, nyGA.decimalPrecision) };
}
} while (newChrom,gectFitnessvalue (myGa) < 0,00);
genesum = 0.00;

return newChrom;

1 // End of METHOD: creabeChromosome

/**********i*t***-1-************i****i*i**************i**

* .i: initPopulationPool @,

* Used to create the initial ponl of chromosomes
*

LR R RS ER R RS ER SRR SRRt E R Rl AR TR E RS SR Y

*
/
protectad waid initPopulationPool () |
dauble geneSum = 0.00;
double total = 0,00;
double totalDisplay = 0.00;
double adjustment - 0.00;
int adjustGene = 05

/* Create the initial population, Randomly select the percentage
of the job, that each gene(resource) will be assigned, */
for (int i=0;1 < this.initiallopulation;i++) |
myGA. createChromosome {this.currGenChromosomes, 1) ;

}

/* Find the total percentage of the job being distributed amongst
the genes in a given chromosome, Lo make sure it equals 1 (100%).
If this is not true, then adjust accordingly. */

for (ink 1=0;1 < this.initlialPopulation;itt) |

da |
total = 0.00;
for (int =»=0;x < this.chromcsomeDimension;xlt}) |
total +=
[{Chromosoms) myGa . currGenChromosones ., geb (1)) .genes [#] .getGeneJobShare () ;

}

/* hdjust one of the genes in the chromosome, 50 that the botal eguals 1 {or
10C%) */

if { getScaled!{(l - total}),this.decimalPrecisicny |- 0} {

/* In case the gene selected is 0.00, and the adjustment amount
is less than 0, we don't want to suhtract from 1it,

-84 -

which would realize a negative number. */
if { getScaled((l - tetal),this.decima’ Precision) < Q) <
do {
adjustGena = getRandom{this.chromosomeDimension);

I while (

{ {Chromosome) myGA. currGenchromosomes.get {i)) . genes [adjustGane] .getGeneJob3hare ()} <
gotScaled((total -

1}, this.decimalPrecision) };

}

adjustment = getScaled ({1 - total}, this.decimalPrecision);

/* Does an adjustment need to be made? */
1f ¢ {getScaled{adjustment, this.decimalPrecision)) != 0.00) {
/* hdd the "adjustment”™ to the randomly selected gene */

{ (Chromosome) myGA. currGenChromosomas.get (1)) .genes [adiustGene] . setGeneJobShare (

{ (Chromosome) myGR. currGenChromosomes.get (1)) . genes [adjustGene] . getGenaJobshare ()
adjustnent};
/* Scale value to the decimal precisicn */

{ (Chromosome) myGA, currGenChromosomes.get (1}) .genes [adiustGene} . setGaneJobshare (

getScaled (((Chromoscme} myGA. currGenChromosomes gel (1)) . genes[adjustGene) .getGenedJobShare
{}, this.decimalbPrecisiaon))i
}
H

/* Does the adjusted chromosome meet the Fitness Value reguirements (within
time limZits}? */
if { {({Chromoscme)myGA,currGenChromosomes.get (1)) .getFitnessValue (myGA) <
G.00) {
/* Create a new chromosome to replace the rejected one */
myGA. createChromosome (myGA . currGenChromosomes, 1)

H

/* Does the chromosome meet the Maximum Cost requirements ? */
if
((Chromosome) myGA, currGenChromosomes.,.get (1)) . getChromosomeCost (myGA.totalJobCycles) >
myGA. maxJobCast) |
/* The Maximum Cost regquirements were NOT met, so... */
do |
/* Create a new chromecsome to replace the rejected ocne */
myGh. createChromosome (myGA . currGanChromosomes, i) }

/* Adjust the new chromosome, to make sure the entire job is allocated */
myGA.adjustGeneDistribution((Chromosome)myGa, currGenChronosomas,get (1))¢

/* Repeat process if any of the following are true:

- New Chromosome doesn’'t meet the Maximum Cost requiremets

- New Chromesome doesn't account for L00% of the job

- New Chromosome doesn't meet the Fitness Value requirments (within
time limits) */

b owhile ¢

{ { (Chromosome) myGA.currGenChromosones.get (1)) .getChromesomeCost {myGA. totalJoblycles) >
myGh . maxJchCost) Il

{getScaled(
{ (Chromosome}myGA,. currGenChromosomes.get (1)) .getGeneJebShareTotal (), this.decimalPrecisio
ny = 1,00% |1
({ (Chromosome) myGA. currGenChromosomes.get (1)) .getFitnessValue (myGa) < 0.00} };
}

} while (((Chromosome)myGh,currGanChromosomas.get(i)) . getFitnessvalue (myGa) <

0.00 ||
(getScaled (total,this.decimalPrecision) !'= 1.00) ||

({ {Chromosome)myGA . currGenChromosomas,get (1)} ,getChromosomeCost (myGA. totalJobCycles) >

nyGA.maxdobCosT))7
}

-B5-

!} // End of METHOD: initPopulationPool

/k***************iii***‘********tﬁ*****kt***k********'i***‘tit**f*w***i******‘k'*******ﬁ***
* .:: displayThisPopulation ::.

Used to print the details of each chromoscme population

to tThe screen

fparam thisGA, GA instance to he displayed
Bparam thisPopulation, Vector population to be disp_ayed
@param popDescripticon, String descripticn to display that identifies the
population
*

E O I

AR E T E R EE R TR E RS S SRR S R R E R XSS EERR SRR SRRt R R R XS R R RSt R R R R EEE S
*/
public woid displayThisTopulation (GA thisGA, Vector thisPopulation, String
popDescription) |
double totalDisplay = 0.00;

Systeﬂ.out.print ("******'k**********************") :
for {(int i=0;Z < thisGA.chromosomeDimension + 1;3i++)
System.out.print (MrrFkEkkwu)
System.cut,println("");
System.out.println(popbescription):
System_out‘pr-‘_nt (“**i‘***i*%****%'**‘k*‘k**i’*******il) :
for (int 1==0;i < thisGA.chromosomeDimension 1 1;i1t%)
System.out.print (FrFrkxEEen)
System,out.printlin("");
System,out.printlin("* C JA
System.out.,print ("*"};
for {int Z=0;i < 37;1it+)
System,out,print (" ");
for (int i=0;1i < thisGA.chromoscmeDimension;i-+) {
System.out.print (i)
1f {i < thisGA.chromosomeDimension - 1)
System.out . .print (" "y

rzg
<

CcT JC GENES™)

}
System,out.println("");
System‘out‘print ("*******************t***t**k**") ;
for (int i-0;1 < thisGA,chromosomeDimensiaon o 1;i4+4)
System.out.print ("ekkkxkaEny .
System.out.printin("");
for (int i—8;1 < thisGA.initialPopulaticn;i++} |
for {int x=0;x < thisGA,chromosomeDimension; xt++)
totalbDisplay +=
({Chromosome) thisPopulation.get (i) .genesix] .getGeneJobihare (};
System.out.print{"” " + 1 +
" " 4+ (getScaled(totalblisplay, this,decimalPrecision) *
100) + »g" +

" "
+
((Chromosome) thisPopulation.get(i}) . gecFitnessValue (LhisGh) +
n n +
{ (Chromosome) thisPopulation.get (1)) .gezChromosomeCorpletionTime (thisGA) +
woow oy
{ (Chromosome) thisPopulation.get (i}).getChromosomeCost (bhisGA. totalJobCycles) + " "):

for (int x=0;x% < +thisGA.chromosomeDimension;x+t I}
System.out,print {"{i " +
((Chromosome) thisPopulation.get(i}).genes[x].getGeneJobShare (} + " "}:
System,out,printlin {"");

System.out:, println (Mommmmmmmm——— S === e == = =

m———=ay,;

totalDisplay — €.00;
}

} // End of METHOD: displayThisPopulation

- 86 -

/**********k*i**ii********f*ikktik*%**i*i%*i***i**********k*k*
* .1t checkConvergence 1:.

Used check ta see if all the chromosomss in the

current generation are identical. IE: Al: resources/genes
are allocated identically to the other chromosomes in the
current generation,

* o F o x

* @return hoolean, true if all converge, false if different
EE R E LR EE SRR SRR SRR LA R AR L ETEE R LR R R R SRS R RS ELEEELEEE]

*/

vublic boaolean checxConvergence({} !

for (int 1i-0:i < myGa.initialPopulation;it+) |
for (int x=0;x < myGA.chromosoneDimension;x++) {
if |
{ (Chromosone)nyGh.currGenChromosomes.gat (1)) .genes [x] .getGenaeJobShare () !-=

{ (Chromosome) myGa. currGenChromosomes.get (0}) .genes [x] .qetGeneJobShare ()) |
return false;

}
return true;
} // End of METHOD: checkConvergence

/i**************ti**i****i*****w******t**iw******k******************tﬁ*kt****t*i********
Rk ke ok ok k ok ok

* Main method for GA class

*

* @param args, Passed in values for: InitialPopu_ation, NumberOfGenerations,

ChromosomebDimensicn
-

LR R R e L R R R R R R R R R R R R R R R E R EEE R R R R R R
Wk ok ok ok ok ke
*/
public static wvoid main(String[]l args) {
int population—0, generatlons=0, dimension—0;
int gen=0;
long timreBefore=0, timeAfter=0, timeDiff=0;
double totalbisplay = 0.00;
String popDescription — "*;
Vector <Chronmnosone> tempVector=null;
boolean done = false;

System.out.printin(®"\n*** GA started: " + new Date().coS3tring(} + ™ ***"},;

try |
if (args.length < 3)
throw new GAException("Requires all 3 parameters:™};

population = Integer.parselnt{args([Q]}:
generations = Integer.parselnt{args[l]};
dimension — Integer.parselnt (args[2)};
if (population < 1} {

throw new GAEkxcepticn("Initlal Population must be grealer than 0%);
] else if (generations < 1) {
throw new GAException ("Chromosome Dimension must be greater than 0Y);
}
if ({population % 2} != 0) {
throw new GAException{"Initial Population must be an even number");
}
catch {GAException g) {
System.out.println{"\n" + e};
System,out,println("USE: java GA 'Initial Population Kumher of Generations
Chromosome_Dimension'™):
Syslem.out.println ("EXAMPLE: java GA 6 5 L'i;

-87-

System.out.println("...exiting, goodbye."}:
System.exit (1),

/* Open a file to sktore population information */
ReportWriter rw = new ReportWriter(};

/* Complete .0 times for averaging purposes */
for (int zz=0;zz < 1l0;zz++) |
myGh = new GA(population,generations,dimension);

/* Begin timings */
timeBefore = System.currentTimeMillis(};
Jystem,oulk.println(*Begin time in millisecconds:" + timeBefore);

/* Initialize the beg:nning popu-ation pool */
myGA. initFapuliationlPool ()

/* Initial population is created, now aycle through multiple generations */
//for (gen=0;gen < myGEa.numberOfGeneraticnsigent+} |

/* do loop used to perform loop until convergence */

dn |

/* Check to see if there will be a crossover or muktation */
for (int i=0;1 < myGA.initialPapulaticn;i!t} |
/* Check to see if there will be a crossover performed */

if {myGa.checkForCrossover{}) |
myGhA.doCrossover (myGA. initialPopulation);
} else {
/* No crossover, so check for a mutation »/
if {myGh.checkForMutation()) |
if
{ (Chromosome) myGh, currGenChromosomes,gel (1)) .getChromosomeCost (MyGA. totaldokbCycles) >
myGA.maxJobhCost)} {
System.exit (1};
}
}
myGh.propagatefittestParentChromosome (myGA, initiallPopuliation);
}
}

/* Make new generation the current generation */
try |
tempVector = (Vector
<Chromusone>) (ObjectCloner, deepCopy (MyGA, nextGenChromoesomes)) ;
} catch (Exception e) |
Systrem.out.printlin ("CbhjectCloner exception: " + e};
}
myGh ., currGenChromosomes, removebl_Elements () ;
myGA. currGenChromosomes = tempVector;
nyGh , nextSenChromosomes, removeAllElements () 7

/* Check to make sure that the next generation is empty */
if (myGA.nextGenChromosomes.isEmpty ()} {
/* Bll is well, proceed Lo next generation */
} else {
/* Error, next generation should be current generation, and empty..,make
some noise */

poplDescription = "* Generation:" + gen + ", nextGenChromcsomes <== 0"
myGA.dlsplay?nisPopulation{myGA, myGA.nextGenChromosones, popbescription)
System.out.println ("ERROR!!!! (NextGen) population fitness average: " +

getScaled (myGA,getSumFitness (myBA, currGenChromosomas) /myGA, initia’ Population,
myGA.decimalPrecision} -+ "\n\n"});

}

gen-+;
done — myGA.checkConvergence{);

} while {l!done};

- HE

/* End timings */
timeAfter = System.currentTimeMillis(};
timeDiff = timeafter - timeBefnre;

W, writeThisInlo(
((Chromosome)myGA . currGenChromosomes.get (0}) .getChromoscmeCost (myGA. tetaldJobCyales) +

L]
Il

{ (Chromosome) myGAh . currGenChronosomes, get (0)) .getChromosomeCompletionTime (myGh) - ", " +

{ {(Chromesome) myGA . currGenChromesomes.get (0}) .getFitnessValue (myGh) | f
getScaled ((timeDiff * .001),myGA.decimalPrecision) + *," +

gen

)i

System Out‘println("************************************W**********k********************

*******");

System.out.println (" TOTAL 4 OF AVG CHROM AV CHROM AV: CHROM
TOTAL GAM™):
System.cut,println (" GENERATIONS JOB COST COMPLETION TIME BY
RUNTIME") ;
System.out.println (" " + gen +
s " +
{ {Chromoscme) myGA.currGenChromosomes. get (0)) .getChromosomeCost {myGh, totalJokCyclas)
" LN

{ (Chromosome)myGA . currGenChromosones.get (0)) .getChromosomeCompletionTime (myGA) +
n 1" |

{ (Chromosome}myGh.curriGenChromoscmes.get (0} } .getFitnessvalue (myGh) +
" " + timeDiff + "ms" + " ==3> " + getScaled((timeDifE

* 001),myBA.decimalPrecision)y + "s") ;

System out println("*kk**i*****t******ti********t******A********i***********************

*i***ﬁk");
gen = 0;
} // end of for loop for averaging purpases
rw.closeRepcrtFile{);

popDescription = "Convergence"” ;
myGh.displayThisPopulation {myGA, myGA. currGenChremosemes, popDescription) ;

System.out.println{"\n*** GA ended: " + new Date!().toString() + " *=**w},;
V // End of METHOD: main

} // End of CLASS: GA

_RO.

import java.io.*;

/**
* Qauthor James Sweeney
* March, 2007
*
* Class that stores the gene information
v/
public class Gene implements Serializable (

private static final long serlia’versicnUID = 1;
protected int geneSpeed;

protected double geneCast;

protected double geneJobShare;

/*
* Constructer for the Gene class

*

* @param speed, representing speed of this rescurce (gene)
* @param cost, representing cost of this resource [gene)

i

@param jobShare, representing percentage of the job that this resource (gene)
will process

*/
public Gene {int speed, double cost, double jobShare) {
this.geneSpeed = speed;
this.geneCost —= cost;
this.genedobShare — jobShare;

}

public int getGenedpeed{(} {
return (this.geneSpeed};

}

public void setGeneSpeed(int s} |
this.geneSpeed = s5;
)

public double getGeneCest() |
return [this.geneCost);

}

public void setGeneCost{double c} |
this.genaCost = ¢}

}

public double getGenedobShare () {
return {(this,geneJobShare);
]

public veid setGeneJobShare (double js) |

this.geneJobShare = js;

}

- 90 -

iport java.lo.*;

/**

* Qauthor James Sweeney

* March, 2007

«

* Class that stores the chromecsome information
*/

public class Chromosome implements Serializable |
private static final long serialVersionUID = 1;

// Gene storage for each Chromosome
protected Gene [] genes;

P2
* Constructor for the Chromosome class
* @param numGenes
*/
puklic Chromosame (int numGenes) |
genes = new Gene [numBenes];

L T R R R
* .11 getGenes 1.

* fBreturn Gene [] representing the chromosome
EEE R R EEEEAEEE RS RS EE R R ERAENE SRR RS SR SRR LR RS

*/
public Gene [] getGenes{} |
return (genes);

/***i**k**********************X*t****t***********t******i***k*********f**

* .13 setThisGene ::.

* @param int representing the gene to set

* @param int representing the speed of the gene

* @param double representing the cost of the gene

* GBparam double representing the percentage of job assigned to that gene
ek Rk Kk kK Rk Rk Kk k kR kR Kk Rk Kk kk ok h ok A Rk ARk ok ok ok ko ok kR kAN kR Wk Kk R kKK

*/
public void setThisGene (int thisGene, int geneSpeed, double geneCosl, double
genedobihare) |
genes [thisGene] = new Gene (geneSpeed,geneCost,genaelobShare);

/*****-ir**ir*******'k*******************************

* .11 getGeneJobShareTotal 1.

a

* Ereturn double representing % of job allocated
LR SRR EREEE SR E R R A R o R R R R R N

*/
public double getGenedobShareTotal (} (
double geneTotal = 0
for (int i=0;1 < this.,genes.length;it++) ¢
geneTotal += genes[i].getGenaedobShare ()}
}
return (Gh.getScaled(geneTotal, 2}

/***********************-k******************\k*****-}:******************************
ko k ok oW ko kK
* .11 getFilnessValue ;.
* @param thisGA, GA which contains the chromcsome abeout which you weld like to
find the FV
* Greturn double representing the Fitness Value

KRR E KT TR AT FE LR R AR AT R R T R R R b N A AR R AN R Ak AR A AR AR AR AT RAAR KA R EN A A AR RANKN AR AT AT kN KA T L hkhwh &
* ok

*/
public double getFitnessValue (GA thisGa} |
double completionTime = 0;
double tempCompletionTime = 0;

-91 -

for {inv 1=0;1 < this.,genes.length;i++) {
tempCompleticonTime ~ { thisGh.totalJobCycles * genes[i].gebGenedobshara(d)
/ genes[1].getGenespead ()}
if (tempCompletionTime > completionTime) (
completionTime = tempCompletionTime;

}

return { thisGh.getScaled((thisGA.maxJobRErecutionTime - comp.etionTima), 2) Vi

}

/***********t************************t*************i***********************i****
kkkkdhkkhkhhbhrdrkbrbihrdh
* .t getChromosomeConpletionTime ¢!,
* @param thisGA, GA which contains the chromosome abou:t which you wold like to

find the completion time
* @return double representing the time in ms, that it will take for the

chromosome to run
LSRR R R R e e R RS S LR S R R R I RS R AR S SRR R R EEEE RS AL EEE LR

KEXKAE AT XA LR XAR

*/
public doubkle getChromosomeCompletionTime (GA thisGh) |

double completionTime = 0;
double tempCompletionTime = 0}

for (int i=0;i < this.genes.length;i++} |
tempCompletionTime = (thisGa.totaldobCycles * genes[i].getGenedobshare()
/ genes (1] ,getGenaSpeeal);
if (tempCompletionTime > completionTime) {

completionTime = tempCompletionTime;

}

}
return { thisGA.get3caled({completionTime), 21):

}

/******************************Y*****************ii***********k***

* .1 getChromosomeCost $:,

* @param totalJobCycles, Tota® job cycles required to run the Jjob

* @return double representing the cost

EE S R R R A TR R R R R A RN R R LR RS e EEEEEEEEEE RS

*/

public double getChreomosomeCost (int totalJobCyules) |
double chromCost = 0y
for (int i1=0;1 < this.genes.length;it++) |
chromCost += ({ { {(genes!i).getGeneJobShare() * totalJobCycles) /

genes{i].getCenelpeaed()) * genesii].getGeneCost ())¢

}
return (GA.getScaled(chromCost, 2)};

-02 .

*

@author James Sweeney
March, 2007

Gh exception class
/

public class GAException extends Exception

{

A A .

private stabtic final long serialVersionUID — 1;
/1‘*

* GARException constructor

* @param msy, Error message

*/
GAException{String msg)

{

super {msg) ;

-03 -

inport java.io.¥;
ipport java.ubil,*;
impeort java.awt.*;

/**
* Rauthor James Sweeney (Dave Miller code)
* March, 2067
¥
* Class used to make a deep copy of an cbject
*/
public class ObjectCloner
{
// so that nobody can accidentally create an CbjectCloner obiect
private ObjectCloner ()i}
// returns a deep copy cof an objecL
static public Ohject deepCopy(Cbject ©ldOhj) throws Excephion
[
ObjectOutputStream ovos — null;
OhjectInputStream ois = null;
try
{
ByteArrayOutputStream bos =
new ByteArrayOutputStream{); // A
oos = new ObjectQutputStream(bos); // B
// serialize and pass the cbject
oos,.writeObject (01dObi) ; /fC
oos, flush!y; // D
BytehArraylnputStream bin =
new ByteArrayInputStream(bos.LoBytedrray(}}; // B
ois = new ObjectInputStream(bin}; [/ F
// return the new object
return ois.readOhject()y; // G
}
catch (Exceplion e}
{
System.out,println("Exception in ObjectCloner = " | e);
throw (e} ;

1
I

fFinally

i
ons,close ()
ols.close();

-94 .

import java.ic.*;
import Java.util.*;

/*A‘*
* Rauthor James Sweeney
* March, 2C07

El

* Class that 1s used to create a file to be used to write information
*/

public class ReportWriter |

String fileName = “report.txt";
File f;

FileWriter fw;

PrintWriter pw:

/*
* Constructor feor the ReportWriler class
*f
public ReportWriter ()
try {
£f = new File(fileName);
fw = new FileWriter (f};
pw = new PrintWriter (fw);
//pw.println("\n*** GA started: " new Date!}.toString() + " ***w");
}

catch (I0Exception e) |
System.ovt.println ("Exception writing f£ile:™ + e);

}

/*k*t**&kﬁ‘&*****ikii (A S TSR E S SRS RS R LN E R LR RS RS R R SRR RS E RS EE X E L EE]
* .t writeThisPopulation
* @param thisGA, GR that contains the population of interest
* @param thisPopulation, Vector containing the cromosomes in the population
* @param popDescription, String describing the populaticn
-
LR R N e R e R R e N RN R SRR S RN S E R EE R R AR SRR R
*/
public void writeThisPopulation (GAR thisGA, Vector thisPopulaticn, String
popDescription) {
double toralDisplay == 0.0C:

pw.print(ll\n\n**'k**‘k*'*****'k*‘i‘**'kir‘i******'k*%");
for {(int i=0;i < thisaGA.chromosomeDimension + 1;i++)
pw.print("********");
pw.printlon("");
pw.printin{popDescription) ¢
p‘q_print(Nf(irk********t***tﬁ********t***||);
for {int i=0;1i < thisGA.chromosomelDimensicon + 1;i++)
pw.print("********"),'
pw.println{™"};
pw.printlo("* C JA v CT Jc GENES") ;
pw.print ("%,
for (int 1=0;1 < 37;4i++)
pw.print (" ");
for {(int i=0;i < thisGA.chromosomeD:irension;i++)
pw.print{i);
if (1 < thisGA.chromosomeDimension - 1)
pw.print (" "y
}
pw.println{""};
pw_Pr.i_nt(|r***t*ti*****w**t*tit*t****t**");
for {(int i-0;1 < thisGA.chromoscmeDimension + 1;1i++)
PW.print (MEEREREIINY
pw.printin{™"};
for (int i=0;i < thisGA.initialPopulaczion;i++) {
for (int x=0;x < thisGA.chromosomeDimension;x++)
totalDisplay +=
({Chromosome) thisPopulation.get (1)) .genes(x],getGeneJobShare () ;
pw.print (" " + 1 +

- 05 .

" " + {thisGA.getScaled{totalDisplay,

thisGA, decimalPrecision) * 100) + &Y |
Wy

({Chromosome) thisFopulation.get (1)) .getFitnessvalue (thiaGn)
n " +

({Chromosome) thisPopulation.get (1)) .getChromosomeCompletionTime (thisGA)

n LU

+

({Chromesome) thislopulation.get (i}) .get.ChromosomeCost (thisGA.totalJdoblycles) +

for (int x=0;x < thisGA.chromosomeDimension;x++)
pw.pring ("] " +
{{Chromosome) thisPopulation.get {i}) ,genes[x] .getGeneJob3hare ()
pw.println(""};

pw.println{*=== =: == ==== ==

+ "oy,

lw

)i
tatalbDisplay = 0.00;
H

} // End of METHOR: writeThisPopulation

/t*******t*************************k***
* ,it writeThisInfo ::.

* @param info, String to write to file
N .

AR RS E SRR R EE R RS REEEESELEEEERERESEERETR,]
*/

public void wrizeThisInfo{String infe) {
pw.println{info};

}

Jhhkdek ko kkk ok ko h ok ko ke k o ko Rk ko ok K ko
* .11 closeReportFile ::.
* Method to record the time that the

* 3A ended, and close the file
*

FhAhkFEEEERT kAT hR T A bR A AL TR kR R T ERERTE w4
>/

public vold closeReportFile(} {
pw.close () ;

}

- 96 -

APPENDIX C

Appendix C: Simulated Annealing Code Listings

import java.io.*;
imgort java.uzil,*;
import java.lang.Math;
import java.math.,*;

-

/

I

*

*/

Gauthor James Sweeney
March, 2007

Main Simulated annealing class

public ¢lass SimulatedAnnealing{

o ko ke

level

/* Amnnealing Schedule Variables */

// Variables for the boundas of the cooling schedule

double initialTemperature; // starting peoint for algorithm
rdoubie finalTemperature; // stopping point for algorithm
roublie tweakFactor; [/ used to perturb the solution

// Constant used for geometric cooling
double alpha: // used as a muliiplier to

// Number of iterations performed at each temperature
int stepsPerChange; // number of iterationsz at

// Wumber of avallable resources for each solution
int scluticonDimension;

// Decimal precision to use for each resource
int decimalPrecision;

// Total number of cycles needed to run the Jjob
int totalJobCycles;

// Maximum time allowed for job execution
int maxJobExecutionTime;

// Maximum cost allowed for job execution
double maxJobCos<;

Solution currenk, working, best;

static SimulatedAnnezling mySA;

decrement the temperature

change {plateau)
each temperature level

IR A AR R LR RS LR AEERESEREEELEERREEELELESELELELRRELEELEEEREEEELERENEEESE IR

* Constructer for SimulatedAnnealing class.
*

* @param initialTemperature, douhle walue for starting temperature cof the
algorithm
* @param finalTemperature, double value for the ending temperature of the
algnrithm
* @param iterations, int value for the number of cycles at each temperature

* Bparam alpha, double wvalue used as 3 mullbiplier to

decrement the temperature

* @param tweakFactor, double value used perturb the selution.

L3R SRR SR SR SRR SRS LR RS EEEE R SRR ERSEERSRR LR RRE AR EEEREREEEEEREEEEEE S EEEEEE SRR

-G7 -

*f
public SimulatedBnnealing{double initlalTemperature,
double [inalTemperature,
int iterations,
double alpha,
double tweakFactor) |

this.initialT”emperature = initialTemperature;
this.finalTemperature = finalTemperature;
this, stepsPerChange — iterations;
this.alpha = alphay
this.tweakTactor = tweakFacltor;
this.sclutionDimension = 5;

current = new Soluticn(solutionDimension);
working = new Solution{solutionDimenszion)};
best = ngw Solu*lon{solutionDimension);

for (int x-0;x < zolutionDimension;xt!l) {
1F (x—=0) {
/* Gene-Resource {, Speed, Cost, Job Share*/
current. setthisResource (x, 1,2, 0);
working,setThisResource (x,1,1,0);
bast.setThisResource(x,%,1,0);
alge 1§ (xm==1}) {
current.sebThisResource (x, 3, 3,0)
working.setThisRescource (x,3,3,0);
best.setThisResource(x,3,3,0);
else if (x==2)
current,setThisResource{x,5,5,0);
working.setThisResource (x,5,5,0);
best . setThisResource (2,5, 5,00 ;
else if (x==3) {
current.setThisRescurce{x,7,5,0);
working, setThisResource {x,7,6,0):
best.usetThisRescurce(z,7,6,0);
} else if (x==4) {
current.sclThisResource (x,9,7,0);
working, setThisResource(x, 9,7,0);
best.setThisResocurce{x,9,7,0);

—

//To be used with 10 available resources
/*else 1f (x==5)
current.setThisResource (x,6,8,0);
working.setThisResource(x,6,8,0);
best.getThisResource(x,6,8,0);

} else 1if {x==6) |
currenk, setThisResource (x,7,9,0};
working.setThisResource(x,7,9,0);
hest.se-ThisResource(x,7,%9,0):

} elge 1f {x==T7) |
current.setThisResource (%, 4,10,0);
working.setThisResource (x,8,10,0});
best.setThisResource(x,8,10,0);

} else if (x==8}) {
current, setThisResource (», 2,11, 0) ¢
warking.setThisResource (x,9,11,0);
best,setThisResource(x,9,11,0);

} else |
current.setThisRescurce {x,10,12,0);
working.setThisResource (%,10,12,0};
best.setThisResource {x, 10,12,0);

}por/

'
H

this.decimalPrecision = 2;

// Total number of cycles needed to run the job
this, totalJobCycles = 20;

- 98 -

// Maximum time allowed for job execution
this,.marJobExecutionTime = 16;

// Maximum cost allowed for job executieon
thig.maxJobCost = 25.50;

/***************************t*************************************i**'**

* .11 getScaled ::.

* Becale decimal number via the reounding mode BigDecimal.ROUND HALF UF,
* Method is used to make sure that the correct number of decimal

* places are used for each resource,

W

* @param value, double value to be scaled

* @param gcale, int value for number of decima’s to scale to

* [freturn double representing the newly scaled number
Kodk otk ek ok ke ok k Rk KRk ke ko k Ak k ok kR Ak ke ko kR ok Aok ok Rk Ak kK ok ok ok kR ok ko k ok k kR A kR Kk
*/
static public double getScaled{double walue, int scale) {
double result = value; //default: unscaled

//use BigDecimal String constructer as this is the enly exact way for double
values

result = new BigDscimal{value).selLScale (scale,
BigDecimal .ROUND_HALF UP) .doublevalue!(};

// Could also use:
//result = Math.round{value * 100.0} / 10C.0;
return result;
} // End of METHOD: getScaled

/************************k*******ki********i*******&******k

* .1 getRandom (int} ::.

* return a integer random number bec-ween 0 and upperBound

* @param upperBound of the range for randomization

* @return int, randomly generated number

EEEE R ERE S EE SRR R LRSS REELELESEE SRR ERERERESREEEREEEEEEL LRSS

*/

int getRandom{int upperBound} {
int iRandom = {(int} {Math.random() * upperBound};
return (iRandem) @

Yy // End of METHOD: getRandom (int)

/*i*******i********i**i**ﬂ*ii*******i********************
* .1+ getRandom {double) ::.
* return a double random number between 0 and upperBound
* @param upperBound of the range for randomization
* @return double, randomly generated number
EEE RS LS S SR LR RAEER SRR A SRR LR SRR SRR AR EREEESESEEES]
*/
double getRandom{double upparBound) {
// Gives a random number that is:
// 0,00 <= dRandom < upperBound
// This does exclude revurning the maximum value
double dRandom = (Math,random() * upperBound);
return (dRandom) ;
} // End of METHOD: getRandom (double)

/*******i*****k*********i******i*****%***************1*****

* .1: tweakSolution ::.

* *

Method that takes a given Solution, and tweaks it

by subtracting "tweakFactor" (ex: ,05 ==> 5%) frem a
randomly selected resources job share,

and then adding that "tweakFactor" to another randomly
selected resources's job share. The "tweakFactor" variable
is passed in at program startup.

+ o = A w

- 99 -

>

* @param thisSelution, Sclubion fo tweak
PR EE R R R R R R R A R R RN EE LR R E SRR R R R

*f
protected Solution tweak3cluticn(Sclution thisSolution) |
inT resourceMinus = C;
int resourcehdd = 0;

/* Find a rescurce in the given solution, from which tweakFactor can be subtracted
without
leaving a negative number. */

do |
resourceMinus = getRandom (solutionDimension);
} while { (thisSclution,rescurces|[resourceMinusl.getResourceJobShare() -

this.tweakFactor) < 0)

/¥ Bubtract the tweakFactor */
thisSoluticn, resgurces [rasourceMinus] . selResourceJobsSharea (
getScaled((thisSolution.resources|resourceMinus].getResourceJobShare ()
~ this, tweakFacter), this.decimalPrecision));

/* rind a resource to add tweakFactor, but not the one just reduced by tweakFactor

*/
do {
resourcehdd = getRandom({zolutionDimensicn):
} while (resourceddd -= resourceMinus);

/* Add the tweakFactor */
thisSolution, resources [resourceddd] .setRaesourcedJobsShare (
getScaled{ (thisSolution, rasourcesresourceddd] ,getResourcedobshare (} |
this,tweakFactor), this.decimalPrecision)};

try |

/% Does the solution meet the Maximum Cost requirements ? */
if (thisSolutiocn.getSclutionCost (myS5A. LotalJokbCycles) > mySA.maxJobCest}) {
/* The Maximum Cost reguirements were NOT met, so... */
do
do {
/* Create a new solution to replace the rejected one */
thisSolution = myS&.create3clution();

/* Adjust the new solutlon, Lo make sure the entire jobh 1s allocated */
mySA. adjustResourcebistribution{thisSclution};

/* Repeatr process if any of the following are true:
- New solution doesn’'t meet the Maximum Cost requiremets
~ New solution doesn't account for 100% of the job
- Wew solution doesn't meet the Energy requirments {within time
limits) */
} while ((thisSclution.getScolutionCost {my3A.totalJobCycles} >
mySA . maxJohCaosl) |
(getScaled(
thisSolution.getResourceJobShareTotal (), this.decimalPrecision) = 1.00) |
tthisSolution.getEnargy (mysa) < 0.00))
} while {' thisSoluticn,isValid()};

}
catch (Exception &) |
System.cuT.println("ObkjectCloner excepilion: " I e);

}
return thisSolution;

} // End of METHOD: tweakSolution

FE e R R s
* ,1: adjnstRescurceDistribution ::1.
* Used to adjust a Resource, so that the sum of the

* Resgurce job shares equal 1 (100%, entire job allocated)
*

- 100 -

* @Gparam 51, Resource to adjust
EEEE RS R AR AR RES SRR R RS R RS REEEEESRlSEY

*f
protected vold adjustResourceDistribution(8olution si) |
boolean adjusting = false;

if { getScaled{sl,getRasourceJobShareTotal {),mySA.decimalPrecisiony = 1} {
if (getScaled(sl.gstResourceJobShareTotal {},mysSa,.decimalPrecision) < 1) {
do |
int adjustResource = getRandeomimySA.so_utionDimension);
if { (sl.getResources () [adjustResource’ .getRescurcedobshare () +

{1l - getScaled{sl.getResourceJobshareTotal (},mySA,decimalPrecision) })
<= 13 |

sl.getRescurces () [adjustRescurce] . setRescurcedobsShare (
sl.getResources () [adjustResource] .getResourceJobShare () + (1 -
getScaled(gl,.getRescurceJoblfhareTotal (), myS5A.decimalPrecision))) ;

sl.gerResources () [adjustResource’ . setResourcaelebshare (
getScaled (sl .getResources {) [adjustResource] .getResourceJobShare (),
mySh.decimalbrecisian} J);

adiusting = true;

1
} while (!adjusting);

} else {
if { {get8caledisl.getRescurceJobShareTotal (), mySA.decimalPrecision} - 1}

do {
int adjustResource = getRandom(myS5A.sclutionDimension);
if { (sl.getResources(} [adiustResource] ., getResourcedJobShare () —
(getScaled(sl.getResourceJobsharelotal () ,mySA.decimalPrecision) -
1) >=0 1) |
sil.getRescurces () 'adjustResource] . setResourceJobShare {
sl.getResources () [adjustRescurce] .getResourcedohShare () -
(getScaled({sl.getResourceJohShareTotal (), mySA.decimalPrecision) - 1)) ;
sl.getRescurces ()} [adjustResource] . setResourcedobsShare {
getScaled(sl.gaetResources () [adjustResource] .getResourceJobsShare (),
mySA.decimalPrecision) };
adjusting = true;
} else {
sl.getResources () [adjustResource] . setResourceJobihare (C.00)
t
} while (ladjusting};

y // End of METHOD: adjustGeneDistribukbion

/******i*#******t*******i*i**t*****i*******************
4 .11 creakesolution
* Used to create a new sclution
*®
* Breturn Solution, that was just created
"
IR R A E RS R EER RS SRR RS S ST EER SRS S SRR EER SR LR E L XL
r/
public Solution createSclution()
double resourceSum — 0,CQ;
Solution newSolution = new Solution (mySA.sclutionDimension);

for (int ®»=0;x < mySA.solutionDimension;x++) {

1f (x==0) |
/* Resource #, Speed, Cost, Job Share*/
newlSolution,setThisResource (x,1,1,0);

] else if (x==1) {
nawSolution,setThisResource(x,3,3,0);

} else 1f (x==2}
newSolution, setThisRescurce (x,5,5,0);

} else Lf (x==3) {
newSo ution.setThigResource(x,7,6,0);

- 101 -

} else if (x==4) {
newSelubion, setThisResource (x, 9, 7,03 ;

/{ To be used with 10 availahle resources
/*else 1f {(x==3) {
newSolution. setThisResource (x,6,8,0);
} elae if [x=—8) {
newSo_ution.setThisResource (x,7,9,0);
} else if (x==7} {
newSolution.setThisResource (x,8,10,0);
} else if (x—=0}
newSnlution. setThisResource(x, 9, 11,0} ;
} else {
newSolution.setThisResource (x,10,12,0);
}
*/

dao |
do {
for (int x=0;x < mySA.sclutionDimension;x++)
newSolution.resources[x),.setRespurcedJobShare (getRandom (100} } ;
rescurceSum 4= newsSolution,resources(x:.getResourceJobShare() ;
}

} while (resocurceSumn == () /* In the rare case the sum is 0 */

for (int z=0;z < mySA,solutionDimension;z++) |
newSolution,resources[z].setResourceJobShare (
newSnlution.resources [z} . getResourcedobShare () / rescurceSun);
newSolution, resourcas(z].setResourceJokShare {
getScaled({newSolution,rescources(z] .getResourceJobshare{)}, mySA.decimallrecision});
1

mySh.adjustResourceDistribution{newSalution};
} while (newSolution.getEnergy{mySa) < 0.00 };

try {
/* Does the Splution meet the Maximum Cost reguirements ? */
if (newSolution.getSolutionCost {mySA.totaldobCyeles) > my3A.maxJobCost) |

/* The Kazirum Cost requirements were NOT net, so set valid flag to false */
newSolution.setValid(false);
return newSolution;
)
} catch (Exception &) |
System.out.println{"ChjectCloner exception: " + e};

}
resourceSun — 0.00;

if {(newSoluticn.getScluticnCost (myda.totaldobCycles) > mySA.maxJcblost) {
mySA,printsolution(newSclution, ",,,0VER COST - NEW SOLUTION.,."};
}

return newSolution;
V // End of METHOD: createSclu+tion

/***‘#*****‘5*********'k*‘*******ik**'k***Jl RS EF R R R R R R RS E R R E R AR EREEEEEREEEEEERE S]
* displayThisPopulation ::.

Uzed to print the details of each chromcsome population to the screan

*

*

* @param thisSolution, Solution to he displayed

* @param description, String description to display that identifies the sclution
*

LR S A A IR EE R R R R R RS R RN SRR R E R RS R R RS RS SRR R LRSS L ELEREES

*/

-102 -

public void printSeluticn (Sclution thisSolution, String description) {
double totalDisplay = 0,0;

System.out.print ("kirirfr**-k-k******t***k****** »\&*ll) ;
for (int i=0;i < nySA.solutionDimension + 1;i++)
System,out.print (tsxrxrsrrig .,
System.out.printin(""});
System.out.printlin(descripticn);
Syatem_out'print("****kﬁkkk***********i*t*****");
for {(int i=0;i < my3A.solutionDimension + 1l;i++)
System,out . print (Mhrkeshkatny
System.ouf.println{"");
System.out.println{"* Jn ENERGY cT JC RESOURCES™) ;
System,oub.prink {Y*")
for (int i=0;i < 37;i+4)
System,out.print{™ "}:
for {int i=0;1 < mySh.solutionDimension;i++) {
System.out.print (i};
iF {1 < mySha.soluticonDimension ~ 1)
System.out.print (" ")
}
Systen.out.println (") ;
System'outlprint{"****************kt********k*“);
for (int Z=0;i < mySA.solutionDimension + 1;i++)
System,oub. prink (Merxesidciy,
System.out.printin (") ;

for {(int ==0;x < my3A.soclutionDimension;x++)
totalDisplay I= thisSolution,getResources{) [x].getResourcedobshare ()
System,out.print(
" " + (get3caleditotallisplay, mySA.decimalPrecision}y *

100) + vav o+

" " + thisSeolution.getEnergy(mnyS2) +

" " + thisSolution.getSolutionCompletionTime {mySA) +

" " 4 thisSolution.getSolutionCost (mySh, totalJohCycles)
L "yi

for {int ==0;x < mySA.solutionDimension;x++)
System,oul, print ("] " +

thisSolution.getResources () [¥].getResourcedobshare() + " ")

System,out.println("");

} // End of METHOD: printSolution

/***t************************Y******
ok wkAh ok ok ok kR kK

* Main method for SA class

*

* Bparam args, Passed in values for:

initia.Temperature, finalTemperature,iterations,alpha, tweaklactor
*x

AR R RS SRR ER SRR RS R E RS SRR SRR R SRR R R AR RN SR EREERE M EREEEEEEEEEEEEEEEEE]
ek ok ke ok ok ok ok ok R ko
*/

public static void main{String[) args) {

double temperature = 0.00;

long timeBefore=0, timeAfter=0, CimeDiff=0;

int step;

double initial Temperature—0.00,
finalTemperature=0,00, alpha=0.00, tweakFactor=0,00;

int iterations=0;

boolean solution — false;

System.out.println("\n*** SA started: " + new Date(}.teSzring() + " ***"),;

- 103 -

try {
if targs.length < Z)
throw new SAException("Requires all 5 parameters:™);

initiaiTemperature = Double.parsebDouble(args[01);

finalTemperalure = Double.parseDocuble{args{li);
iterations = Integer.parselnt{argsl2]);

calpha = Double.parseDouble{args(3]);
tweakFactor — Double.parseDouble (args(4]);

if (initialTemperature < 1) {
throw new SAExceptiZon{”Initial Temperature must be greater than or equal
to 1,0");
}
if (finalTemperature < 0.01)
throw new SAException{"Fina® Temperature must Dbe greater than 0.01"};
}
if (iterations < 1) {
throw new SAExXception{"iterations must be grealer than or equal to 1");
}
if (alpha >= 1} {
throw new SAException("alpha must be less than 1");
}
if (tweakFaclbor »>= 1) {
throw new SAGLxceptilon("tweakFactor must be less than 1™);

}
catch {S5AException e) {
System.out,.println ("\n" + &);
System.cut.println("USE: java SimulatedAnnealing ‘initialTemperature
finalTemperature iterations alpha tweakFactor'");
System.cut.println ("EXAMPLE: java Simulatedannealing 50 .05 10 ,99% ,Q05"};
System.out.println{"...exiting, goodbye.,"):
Sysktem,exit (1)}
}

/* Open a file to store population information */
ReportWriter rw = new ReportWriter{);

/* Complete 10 times for averaging purposes */
for (int zz=C;zz < 1Q;zz~+} {
mysh = new
SimulatedAnnealing (initia’Temperature, finalTemperature,iterations,alpha, tweakFactor);

temperature — mySA.initialTemperature;

/* Begin timings */
timeRefore = System.currentTimeMillis();
System.out.println("Begin zZime in milliseconds:" + timsBefore};

do {
do {
/* Create a new Solution bto replace the rejected one */
mySA.current = mySaA.createSolution(}:

/* Adjust the new Solution, to make sure the entire job is allocated */
mySA, adjustResourceDistributicon {my32. current) ;

/* Repeat process if any of the fcllowing are true:

- Kew Soluticn doesn't meet the Maximum Cost requiremets

- New Scolution doesn't account for 100% of the job

- New Sclution doesn't meet the Energy reguirments (within time limiks)
*/

} while { (mySA.current.getSolutionCost (mySA.totalJobCycles) >
my3h.maxJobCost) |
{get.Scaled(

mySA.current.getResourcedJobShareTotal (), mySA.decimalPrecision} 1= 1.00) |}
{mySA.current.getEnergy (myS5a; < §.00))
} while (! mySA.current,isValid{)):

- 104 -

try 4
mySh.working = (Solution) {ObjectCloner,deepCopy (mySh.current));

mySa.best = {(Sclution) (UbjectCloner.deepCopy(mySA,current));
} catch (Exception &) {
System,out.println ("ObjectCloner excepkicon: " + e);

}
do {

for (step = (;step < myS5A.stepsPerChange;stepd+) |

try {

mySh.working = (Solution) (ObjectCloner.deepCopy (mySh,currenz)};
} cazch (Exception e)

System.out.println("ObjectCloner exception: " + e);

}

mySAh.working = mySA.tweakScelution (mySA.working)

double test ~ my3A.getRandom(1.0);

double delia = mySA.working.getEnergy (mySA) -
mySA.current.getEnergy (mySA) ;

doukle calc = 0,00;

if {(delta > 0) {

try {

my3A.current — (Solution) (ObjectCloner.deepCopy{mySh.working)):;
} catch (Exception e} |

dystem.out.println{"ObjectCloner exception: " I e);

}

iE (mySA.working,getEnergy (mySA) > mySA.best.getEnergy (mySa))y |

try {
mySA.best —~ (Solution) (CbhjectCleoner.deepCopy (mySA.working));
} catch {Exception e) |
System.out.println{"ObjectCloner exception: " + e);
H
} else if ((mySA.working.getEnergy{mySA} == mySA.best.getEnergy{mySA)}

&&
(nySA.working.getSolutionCost (mySA. totalJobCycles) <=
mySh.best.getSolutionCost (my3h.totalJobCycles)t) |

try {

mySh,.best — (Selubtion) {(OhjectCloner.deepCopy (mySA.warking))
I caktch (Exception o) |

System.out.println{"OhjectCloner excepktion: " + e};

}
}

1 else if (test < Math.exp(delta/temperature})} {

try |

myS5&.current = {(Solution} (ObjectCloner.deepCopy (mySk.working));
} catch (Exception e} |

System.oub.println ("ObjectCloner exception: " + e);

}

temperature *= mySA.alpha;
} while (temperature > mySh,fipalTempsrature);:
/* End timings */

timsAfter = System.currentTimeMillis (),
timeDiff = timeAfter - timeBefore;

rw.writeThisInfo{ my3A.best.getSolutionCost (mySA.totalJobCycles) + ", " +
my3A.best.getSnlutionCompletionTime (myS&) + ", " +
mySA.best,getEnergy (my3A) + ", " +

- 105 -

getScalaed ({timeDiff * 001),my5n.decimalPracision) + ", " 4+
my3A. stepsPerChange
Vi
mySA,print3olution (my3A,best, zz + ": BEST SOLUTION FOUND");
System.out.println (" " + timeDiff { "ms" + " —=» " 4 getScaled((timeDiff *
LOCLYy ,my5SA.decimalPrecision))¢
} // end of for loop for averaging purposes

rw.closeReportFile ()

1V // END of METHOD: Main

} /f BEnd of CLASS: Simulated Anneallng

- 106 -

impors java.io.*;

/**
* @author James Sweeney

* March, 2007
*

* 2lass that storss the Resource information
*/

public class Resource implements Serializable |

// Speed of this resource
protected int rescurceSpeed;

// Cost of this resocurce
protacted double resourcelost;

// Percencage of the job assigned to this rescurce
protectad double resourceJobShare;

/1r

Constructor for the Resource class

@param cost, representing cost of this resource

*
b

* @param speed, representing speed of this resource

%

* Bparam jobkShare, representing percentage eof the job assigned to this Reacurcs
*

/
public Resource (int speed, double cost, double jobShare)
this.resourceipaed = speed;
this,resourcelost = CO8t}

this.resourceJobsShare — jobShare;

/****ﬁi**********t*******i********************tt************

* .1 getResourceSpeed ::.

* @return int representing the speed of this Resource
*

LR R R R EE R SR EEEAES AR EEER R RER AR EERLEREERREEEE EREE RESE RS
*/

public int getRescurceSpeed{] |
return (this,resocurceSpeed);

/*******ﬁ*t*t*********ﬂ*t*w********k*ii*******k**t**********

* : se=ResourceSpeed ::.

* @param § representing the speed of this Resource
*

khkhhkhkdkhhhhkbkhkdtddk kbbbt bt hdrhdeddhrbdrdrhtdddrbhd bkt rdhd

*/
public woid setResourceSpeed(int s} {
this,resourceipeed = s;
;
/*****t*k}t********k***********k*ﬁ***********kAi************
* .1 getResourcelost ::.
* f@return int representing the cost of —his Resource
-

AR R R SRR LSS R L AR SRR R EEEEREESLEEEEEEREEELEEELEREEERSREEEER SR L
*/

pubiic double getResourceCosk(} |
return (this.resourceCost};

}
/**********i*i***********i**********i***i**i**i**t***i***i**
* .t setResourceCost .
* @param ¢ representing the cost of this Resource
*
LEa R RS RS R REEERES R R R R RSt R X R R R R R R R X
*/
public void setResocurceCost (double c) {
this,resourceCost — cj

- 107 -

/ii****t**i**********i********i**t*i******
%
* . it getResourcedobShare ::.
¥ @return double representing the percentage of the job assigned to this
Resource

IR R R R R R N R R R R R R R R R R R R R EER R R R R R o R o R
*/
pulblic double getResourceJobShare{} |
return (this,rescurceJobShare);

/*f*****************i***f***********************i***************************ﬁ

* .11 setResourceJobsShare .

* @param Js representing the percentage of the job assigned to this Rescurce
*

ko ko kk kA k kA hk ok ke kr bk d bk krxkhArdr kA d b rhdrrrxhrhkhdkhkddhkrwdhhddhkk

*/
public wvoid setRescurceJobShare (dcuble jz) {
this.resourceJobShare = js;

} // End of CLASS: Resourc

- 108 -

import java.io.*;

JE*
* @author James Sweeney
* March, 2007

E

Ciass that stores the Solution information
y

public class Solution implements Serializable |

boulean validSaolution;

// Resource storage for each Sclution
protected Resource] resources;

/*
* Constructor for the Resocource class
* @param numRescurces
*/
public Solution (int numResources) |
resources = new Resource [numResources];
validSclution — true;

/*********t************************kt***f*****ﬁiﬁ**********tkt*
* .11 getReaources .
* @return Resource [], an array of Resources for this Solution
*
LER RS R R ESEEEEEE LR SR ESEELESEE S EEEEESLELEREEEREEREREEEEEEEESEEE,]
*/

public Rescurce [] getResources() |

reburn (resources);

/t********k***************ii***********t*****k*****************
* .01 ometvValid @@,
* f@param v, boolean value depicting the soluticn validity
+*
KEHERANKA N AR R AT RAA AT TR E LR AR A AR F kLT r A ebr kv A kA b b Ak A Ak wkh v hh®
*/
public void setValid(boolean v) |
valid&clution = w;

/******T******************i*******************k*****w**********
* L1t isValid .

* @reburn boolean, true if seclution is valid, else False

%

K FEAEFTERXA AR AT A FER XA T LR AN R R LT A AR AT A A d A a T A A AN AR A h T ATk bk dh &
*/
public boolean isValid() {

return (validSolution);

/iki*********kii**********i*********fi****k*******k*k**********ikt*********f****
dedk dr ok gk ok e kR A
* .i: setThisResource i1,
* Bparam thisResource, integer index to the resocurce to set
* @param resourceSpeed, integer value representing the speed of this rescurce
* @param resourceCost, integer value reprenting the cost of this resource
* @param resourceJobfhare, integer value representin the percentage of job this

resSource owns
*

R R R AR E R R R EEERE SRR S SRS EEE RS RN R R L E LR E RN R R R R R L RS AR RS LR LSRR E RS
S
*/
public voild setThisResource (int LhisResource, inl respurceSpeed, double
resourceCost, double rescurcedJobShare) |
resources [thisResourcel = new
Resvurce (rescurceSpeed, rescurceCost, resourceJobShare) ;

}

- 109 -

/****************ﬁ*kt*ii*****t*ﬁ******kw****k*********i’*i EAEE RS LRSS LR EL]

*

* @return double representing the percentage of the job allocated Zo all
resources

*

getResourcedJobShareTotal ::

LR S R e e R RS R RS L e SR AR R SRR ERER LS AR ARE R LSRR SRS EEEERES R LR

*/

public double getResourceJobkShareTotal () |
douinle resourceTotal = 0}
for (int i=0;1 < this.resources.length;i++) {

resocurceTotal —= resourcesfi).getResourceJcbShare();

}
return {(SimulatedAnnsaling.getScaled{resourceTotal, 2)};

}

/********k*i**i******i**k**
*

i getEnergy v

* @return double representing the Energy Value for this Solution
*

R R LR R R E R E R R RS R SRS S R RS SRRt Rt R R ER R EREEESESEE]

*/
public double getEnergy(SimulatedAnnealing thisSaj) |
double completionTime = 0;

;

double tempCompletionTime = 0;

far (int i=0;i < this.resourcea.lengkh;i++) |

tempCompletionTime = (thisSA,taotaldobCycles *
esources(i] .getResourceJobshare ()} } / resources|[i].getResourceSpeed():
if

(tempCompletionTime > completionTime) |
completionTime = tempCompletionTime;

}

return (this3SA.getScalced{{thisSh.maxJobExecutionTime - completiconTime), 2});
}

/*****t**i********************************i***kk**kAii*iii*k**********t****i*
*

.:: getSolutionCompletionTime ::.
* @return double representing the time it will take for this Solution to run
-

R R R e L E R E RS S E R A RS R RS RS AR SRS R R R EESEEE R EES

+/
public double getSolutionCompletionTime (fimulatedAnnsaling thisSa) {
douple completionTime = 0;
double tempCompletionTime = 0;

for {int i—=0;i < this.resources.length;i++} |
tempCompletionTime = (thisSA.totalJoblycles *
resources(i],getResourceJobshare{} } / resources(il}.getResourceSpeed(};
if (tempCompletionTime > completionTime) {
completionTime = tempCompletionTime;

return (thisSa.get8caled({ccmpletionTime), 2}):

|

/*****k**********k**i**#ﬁ**i********i*ti********************
* .11 getSclutionCost @i,

* @return double representing the cost to run this Sclution
*

Khkhhkhhkwdhkhhkkhk bRk d Ak hk kbbb hkt otk rbw v rhrhhkakhhedkd

*/

public double getScluticnCost(int totalJobCycles) |
double solCost = 07

for (lnt i=0;1i < this.resources.length;it+) {

- 110 -

solCast 1= (((resources[i].getResourcedobShare() * totalJobCycles) /
resources[i] .getResourceSpeed() } * resourcesii].getRescurceCost() };
y

return (Simulatedhnnealing,getScaled(solCost, 2));
i

} // End of CLASS: Solution

- 111 -

e
¥ Bauthor James Sweeney

% March, 2007
*

* SA exception class
*/
public class SAException extends Exception

{

Jx®
* SAException constructor
* dparam msg
*/

S8AException(String msg)

{

super (msg} ;

}

- 112 -

import java.lo.*;
import java.util.*;
import java.awt.*;

/i-a-
* Rauthor James Sweeney (Dave Miller code)

* March, 2007
*

*
*/
public class ObjectCloner
{
// so that nobody can accidentally create an CbjectCloner object
private ObjectlClonexr(}{}
// returns a deep copy cf an object
static public Cbject deepCopy{Cbject o0ldObj) throws Exception
{
ObjectlutputStream cos = null;
ObjectInputStream ois = null;
try
{
ByteArrayQutputStream bos =
new ByteArrayOutputStream{); // A
cos = new CbijectOutputStream(bos): // B
// serialize and pass the obiect

pos, WwriteObject (oldobiy ; [/ C
oos. Elush(}; // D
ByteArrayInputStream pin =

new ByteArrayInputStream(bos,teBytedrray()); // B
0is = new ObjeccInputStream(bin); // F
// return the new object
return cis.readObject(i; // G

)
catch (Exception e)
{
System.out.println("Exception in ObjectCloner = " 4)i
throw (e} ;
;
finally
{
cos.claose();
cia.closa{);

-113 -

import java.io.*;
import java.utlil.*;

e
* fauthor James Sweeney
* March, 2007
*
* Class that iz used to create a file to ke used Lo write informaticn
*/

public class ReportWriler {

String fileName = "report.txt";
File f;

FileWriter fw;

PrintWriter pw;

/*
* Constructor for the ReportWriter class
*/

public ReportWriter () {
try |

f = new File(fileName);
fw — new FileWritex(f):
pw = new PrintWriter (fw);
}
catch{IOExcepzion e} |
System.out,.println ("Exception writing fi

}

[
m
+
[1d

/*i****************t****i*ttttt****i*t*
* .1t writeThisTnfo 11,
* @param info, S5tring to write to file
*
IR R EE R R LSS RS SRS bR R EEEEEEE R R R A SIS R
*/

public void writeThisInfo(strirng info} {
pw.println{info};

}

JEERERE IR TR KK H KA R TR AR KA AR Ak KA H R AR AR AR
* .:: closeReportFile ::,
* Method to reccrd The time that the
* GA ended, and close the file
*
EE SRR EEEE L EE S EEEEREE NS SRR LR RS RS S
*/

public void closeReportFile(} {
pw.close();

}

- 114 -

VITA

James P. Sweeney has a Bachelor of Science degree from Davis & Elkins College in
Computer Science with a minor in mathematics, 1994, and expects to receive a Master
of Science in Computer and Information Sciences from the University of North Florida,
August 2007. Dr. Sanjay Ahuja of the University of North Florida is serving as James’
thesis advisor. James is currently employed as a senior programmer analyst at Mayo
Clinic Jacksonville and has been with the clinic four years. Prior to that, James was a
programmer and consultant with a variety of companies including; Alltel Information
Services, Merrill Lynch, Prudential, IBM Global Services, JMFE/Southcast Toyota,

Convergys, NASA, and the National Radio Astronomy Observatory,

James has on-going interests in grid and distributed computing, stochastic algorithms,
and natural language parsing. James has programming experience in Visual Basic,
Java, COBOL, Perl, and SQL to name a few. James’ academic work has included the
use of Pascal, Fortran 90, and Ada, as well. James is a competitive cyclist who enjoys
the outdoors as well as all things electronic. Married for the last five years, James has a

four-year-old Boxer.

- 115~

	Dual Constraint Problem Optimization Using A Natural Approach: Genetic Algorithm and Simulated Annealing
	Suggested Citation

	Title Page

	Contents

	List of Figures

	Abstract

	Chapter 1: Introduction

	1.1 The Dual Constraint Optimization Problem: Grid Resource Allocation
	1.2 Grid Computing and Its Variants
	1.3 Utility Computing: The Grids Economic Approach

	Chapter 2: Survey of Related Work

	2.1 The Resource Allocation Problem: How to Optimize?
	2.2 Stochastic Algorithmic Solutions
	2.3 Focus of Thesis

	Chapter 3: Genetic Algorithms: Survival of the Fittest

	3.1 Reproduction
	3.2 Crossover
	3.3 Mutation

	Chapter 4: Simulated Annealing: Cooling Hot Metal
	Chapter 5: Testing and Evaluation of the Stochastic Algorithms

	5.1 The Optimal Solution
	5.2 The Genetic Algorithm
	5 .2.1 Algorithmic Functionality
	5.2.2 Variable Values

	5.3 The Simulated Annealing Algorithm

	5.3.1 Algorithmic Functionality

	5.3.2 Variable Values

	Chapter 6: Conclusions and Future Work

	6.1 Conclusions
	6.2 Future Work

	References

	Appendix A: Optimal Solution Code Listings
	Appendix B: Genetic Algorithm Code Listings
	Appendix C: Simulated Annealing Code Listings

