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ABSTRACT 

Constraint optimization problems with multiple constraints and a large solution domain 

are NP hard and span almost all industries in a variety of applications. One such 

application is the optimization of resource scheduling in a "pay per use" grid 

enviromnent. Charging for these resources based on demand is often referr-ed to as 

Utility Computing, where resource providers lease computing power with varying costs 

based on processing speed. Consumers using this resource have time and cost 

constraints associated with each job they submit. Determining the optimal way to 

divide the job among the available resources with regard to the time and cost constraints 

is tasked to the Grid Resource Broker (GRB). The GRB must use an optimization 

algorithm that returns an accurate result in a timely mam1er. The Genetic Algorithm and 

the Simulated Annealing algorithm can both be used to achieve this goal, although 

Simulated Annealing outperforms the Genetic Algorithm for use by the GRB. 

Determining optimal values for the variables used in each algorithm is often achieved 

through trial and error, and success depends upon the solution domain of the problem. 

Although this work outlines a specific grid resource allocation application, the results 

can be applied to any optimization problem based on dual constraints. 
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Chapter 1 

INTRODUCTION 

Constraint Optimization Problem's (COP) are found in many fields and span across a 

wide variety of industries. Examples extend from the evaluation of a business based on 

assets, expenses, and annual turnover, to the optimization of transportation routes. 

COPs can be found in chemical processing, energy systems, airlines, raih·oad, trucking, 

insurance, and all other forms of business and research. 

This thesis will evaluate a COP that has two constraints and is associated with splitting 

a large computational job into smaller tasks to be processed on concunent available 

resources running on a grid. Finding a solution using an exhaustive search algorithm 

would take longer to complete than the usefullifecycle of the result, or depending on 

the size of the solution space, could take years to calculate. We will compare the 

performance of two stochastic algorithms and then contrast their results to an optimal 

search within small solution spaces. The best performing algorithm will be 

recommended for use in our grid computing resource allocation COP. 

1.1 The Dual Constraint Optimization Problem: Grid Resource Allocation 

Grid computing is being used in a wide variety of ways throughout the educational, 

research, and commercial communities. There are many types of grid computing 

paradigms. Some of these include cluster computing, data grids, and computational 
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grids. The ability to pull together the power of many disparate computer systems in a 

heterogeneous environment makes computational grids the most dynamic use of the 

grid architecture. This conglomerate of computing power can be used to power High 

Perfom1ance Computing (HPC) applications in almost all industries, such as Aerospace, 

Life Sciences, Financial Services, and Automotive and Electronics. As this demand for 

more computing power grows, so does the commercialization of this computing power. 

The leasing of computer time is not a new concept; it was how the early computer users 

gained time to run their programs on mainframe systems. This practice ofleasing time, 

or processing power, is once again being implemented and will only continue to grow in 

popularity due to the cost of purchasing equipment to run HPC applications. The 

business model of leasing computer resources as an on demand resource is commonly 

referred to as Utility Computing [Buyya02]. 

Guaranteeing Quality of Service (QoS) for each application is especially difficult. The 

resource Service Level Agreements (SLA) offered by the service providers must be 

mapped to the application level SLAs [Menasce04], which denote the terms required by 

the application. The SLAs detail quantifiable metrics that have to be met between a 

user application and a service provider. The availability of many different service 

provider options creates a very complex scheduling and optimization problem. 

Attempting to find an optimal solution would require an exhaustive search, which 

would require more time and money than our SLA would allow. The amount of time 

needed to find an optimal solution climbs exponentially as the number of available 
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resources mcrease. Each resource could have allocated anywhere from 0% to 100% 

share of the job, as long as the sum of the shares allocated to all resources equallOO%. 

An optimal solution for this problem is NP hard (Non-deterministic Polynomial-time 

hard) and requires heuristic solutions [Menasce04A]. This optimization process 

becomes more complex when the constraints are added. Even though we have chosen 

time and cost as our constraints, the results of this thesis can be applied to any dual­

constraint-based, NP-hard problem. 

This research compares two stochastic algorithms as possible solutions to this 

optimization problem-Genetic Algorithm and Simulated A1mealing. These two 

algorithms were created to mimic nature and the way it uses a stochastic approach to 

biological reproduction and the cooling of metals. Chapter 3 will further explain 

Genetic Algorithms and Chapter 4 will provide an overview of Simulated Annealing. 

1.2 Grid Computing and Its Variants 

The architecture of Grid Computing is the next advance in distributed computing 

[Feniera03]. Grid computing uses many different heterogeneous resources to simulate 

a single computing machine that, when united with a large number of donor resources, 

can be extremely powerful. There are many types of grid computing architectures, and 

each offers redundancy, dynamic expansion, and improved performance to each 

respective application. 

- 3 -



Cluster computing is a very close relation to grid computing, where resources are 

typically linked together by a fast Local Area Network (LAN). Cluster computing is 

not normally viewed as grid computing in the traditional sense, due to the way the 

resources are tightly coupled in a homogeneous manor. Grid computing is normally 

thought of as many types of heterogeneous resources, loosely coupled together across 

administrative domains. Clusters, on the other hand, are on a single domain with 

identical hardware and software configurations used across all resources. Computing 

clusters may be used as one of the available resources in a grid, but a grid would not be 

viewed as an available resource in cluster computing. 

A data grid is the second most common type of grid computing [Fe1Tiera03] and can 

have several uses associated with the storage of data. Data grids normally utilize space 

on almost any type of donor resource, although typically this space is scavenged from 

individual user workstations. A data grid can act as a resource for transitory data, such 

as what might be used by researchers who run applications that need large amounts of 

storage (terabytes, petabytes) to run complex computations. Researchers could also use 

this area as a virtual workspace, where a large amount of temporal storage is needed to 

study results from a test run. When data are stored on the grid using striping, then data 

can be accessed faster with more efficiency. Striping stores the same data at multiple 

locations, enabling parallel searches. A data grid also provides the ability to have data 

redundancy, with data at many different resources, thus eliminating a single point of 

contention, or failure. 
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In this research we concentrate on the most popular form of grid computing 

[Ferriera03], the computational grid. This type of grid reduces a large job to many 

different small sub-tasks and sends each sub-task to a different resource to process. 

When the resource has completed its sub-task, the result is returned to the controller, 

which pieces all of these sub-results together to fom1 the answer. Figure 1 illustrates 

the Grid Resource Broker splitting the sub-tasks, sending them to an available resource, 

and then collecting the results. 

Jooo and subiobl; to run 

11\ppllcaUon] 

Figure 1: Computational Jobs are Split 
to Run on the Grid [Ferriera03] 

The Grid Resource Broker (GRB) [Buyya02] has the job of dividing the job among the 

available resources. The GRB also has other responsibilities, including resource 

discovery, resource selection, and job division, as well as task-resource matching and 

optimization. 
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1.3 Utility Computing: The Grids Economic Approach 

Utility computing is fashioned after other on-demand services, such as electricity, 

water, and gas. The service, in our case of computing power, is offered by service 

providers with various levels of computing speed at different costs. No matter which 

industry employs utility computing, all users would like for their jobs to be completed 

as quickly as possible. Moreover, there are many products that manage scheduling and 

optimization for grid applications, such as GrADS, DAGMan, Askalon, ICENI, APST, 

and Pegasus [Buyya02]. These products are based on minimizing execution time, but 

they do not evaluate cost constraints associated with utility computing. Both cost and 

execution time must be considered when purchasing computing power from a service 

provider. Some users may need job results quickly and are able to absorb the premium 

cost associated with such a service, while others may wish to wait for results, as long as 

the job is executed within a specific time frame. 

Rajkumar Buyya gave a tutorial session at the 2005 International MultiConference in 

Computer Science and Computer Engineering, "Grid Computing: Making the Global 

Cyberinfrastructure for eScience and eBusiness a Reality." He outlined many 

challenges of implementing a utility grid, one of the most important being how to map 

jobs to resources to meet QoS requirements [Buyya05]. Buyya used Figure 2 to 

illustrate Gridbus and its associated technologies. It shows how the GRB fits into the 

User-Level Middleware layer of the grid architecture. 
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Figure 2: The Grid Resource Broker is a Part 
of the User-Level Middleware [Buyya05] 
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The GRB communicates with the Core Grid Middleware services to find out what 

resources are available, how much they cost, and the processing offered by each. It uses 

this information to find the best solution for the jobs being submitted at the application 

leveL The submitted jobs may have QoS requirements that have to be met, such as 

ensuring a job is completed in a certain time frame and ensuring it will cost no more 

than a certain amount. These requirements must be met for the solution to be valid and 

in the domain of possible solutions. 
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Chapter 2 

SURVEY OF RELATED WORK 

2.1 The Resource Allocation Problem: How to Optimize? 

Daniel Menasce and Emiliano Casalicchio published an article, "QoS in Grid 

Computing" [Menasce04], in which they discuss a mathematical model for optimizing 

the selection of services and service providers to obtain a solution within the bounds of 

the global Service Level Agreement (SLA). The authors' mathematical model includes 

provisions to take into account optimization problems that have cost and time 

constraints. This mathematical framework is the basis for this thesis and for the grid 

optimization problem being explored. 

Menasce and Casalicchio have written several papers discussing the QoS issue 

associated with grid computing resource allocation, where global SLAs must depend on 

local SLAs [Menasce04, Menasce04A, Menasce04B, Menasce04C]. In these papers, 

the authors talk at length about the factors involved when trying to select services from 

a service provider, so the global SLA is satisfied with a minimum of cost 

[Menasce04B]. Although the cost is minimized, the execution time must also fit within 

the guidelines of the SLA. 

The main factors are as follows: the job requires NC millions of CPU cycles to finish, it 

has to be finished in at most Tmax time units, and it must not cost more than Cmax dollars 

- 8 -



to run [Menasce04B]. For this optimization to take place, the Grid Resource Broker 

requires a priori lmowledge of each resource available, along with its speed and cost. 

Once all of the available resources are !mown, the chosen algorithm must produce a 

near optimal solution. 

The following three equations, in Figure 3, show the constraints associated with 

resource allocation. Equation 1 shows all of the cycles needed to complete the job, NC, 

are applied to the available computing resources, N. Equation 2 is the constraint 

associated with the maximum execution time. Since all the tasks, N, run in parallel, the 

total execution time is the task taking the longest to run. Equation 3 is the cost 

constraint equation. 

N 

~NCi=NC (1) 
i=l 

(2) 

(3) 

NC = Total number of cycles needed to complete the job 
N = Number of computing resources 
T = Execution time 
Tmax =Maximum allowed time to finish job 
Si = Speed of the resource i 
C= Cost 
Ci = Cost of resource i 
Cmax =Maximum allowed cost of job 

Figure 3: Equations for the Total Cycles, Time Constraint, 
and Cost Constraint [Menasce04B] 
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2.2 Stochastic Algorithmic Solutions 

An article published in the International Journal ofNetwork Management discussed the 

use of a Genetic Algorithm (GA) for allocating network resources in a competitive 

electronic commerce marketplace [YeO 1]. The authors, Jian Y e and Symeon 

Papavassiliou, use the GA to find the optimal network route, when given the ability to 

use multiple network providers. During their experimentation they used the following 

values for the GA parameters: 

• Population size: 71 

• Crossover rate: 0.6 (or 60%) 

• Mutation rate: 0.1 (or 10%) 

These researchers did not initially apply any stopping conditions and the algorithm 

would always run until it converged on a single solution. The results of multiple runs 

showed the GA would find the optimal solution in approximately 130 steps, although 

some runs could take more than 250 or as few as 40. The authors next applied some 

stopping conditions. One of these conditions halts the GA when the algorithm has not 

made an improvement after a certain period of time. This would give a near optimal 

solution, but not necessarily the very best solution. The optimization of network 

routing does not always require the optimal solution, but it does require a quick near­

optimal solution every time. The authors concluded a GA could be used effectively 

when tailored to the domain associated with the optimization problem. This algorithm's 

goal was to find the best possible solution without any constraints, such as cost or time. 
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Other related work has dealt with using Simulated Annealing for scheduling distributed 

applications on a computational grid. YarKhan and Dongarra have compared Simulated 

Annealing and an Ad-Hoc Greedy scheduler as the scheduling mechanisms for a 

ScaLAP ACK LU solver on a grid [YarKhan02]. The goal of this project was to 

minimize execution time, without regard to any cost or time constraints. The authors 

concluded the Simulated Annealing scheduler generates schedules that have better 

estimated execution times than those generated by the Ad-Hoc greedy scheduler. 

Seonho Kim and Jon B. Weissman presented a paper at the 2004 Intemational 

Conference on Parallel Processing titled, "A GA-based Approach for Scheduling 

Decomposable Data Grid Applications." This paper compared a GA-based algorithm 

with algorithms based on Divisible Load Theory (DLT), Constrained DLT (CDLT), and 

Tasks on Data Present (TDP). As with other reviewed works, the authors were trying to 

minimize optimization time, but they did not use any constraints. They found their 

proposed GA-based approach generally out-performed the other algorithms. 

One of the authorities on grid computing, Rajkumar Buyya, has written much on 

scheduling jobs on a computational grid. Buyya was one of the first to use the term 

"utility grid." This term describes the concept of grid computing being a "pay as you 

go" resource, much like electricity, water, or other utilities. Teaming with Ajith 

Abraham and Baikunth Nath, he wrote a paper on job scheduling comparing three 

different heuristics; Genetic Algorithm, Simulated Annealing (SA), and Tabu Search 
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(TS). Also included in the comparisons were approaches using GA-SA and GA-TS 

hybridized algorithms [AbrahamOO]. 

The authors concluded a GA-SA hybridized solution had better convergence than a 

standard GA implementation [AbrahamOO]. A GA-TS hybrid was also tested and 

showed improvement in efficiency when compared to a GA solution. Although the 

paper stated these findings, no empirical data were given to support these conclusions. 

This shortcoming is most likely due to the complexity of resource allocation and the 

way in which the solution's efficiency is altered by the many variables associated with 

each instance of the problem. The authors focused on minimizing the completion time 

of the job, so there was no mention of cost constraints associated with a utility grid. 

In 2006 Buyya co-authored a paper with Jia Yu titled, "A Budget Constrained 

Scheduling of Workflow Applications on Utility Grids using Genetic Algorithms" 

[Yu06]. Once again, the researchers explored various aspects of a "pay-per-use" grid 

paradigm. The work compares a slightly altered GA, with a Greedy Time (GT) 

scheduler. The GA uses a dual fitness function evaluation, which is divided into two 

parts: cost-fitness and time-fitness. Another alteration of their GA is the use ofMarkov 

decision processes to improve the convergence of the GA when given a very low 

budget. The authors took an approach similar to ours and tested in several areas. 

• Use ofvarying the budget (cost) as the constraint for multiple problems. 

• Use of Million Instructions (MI) to represent the length of the jobs and 

associated sub-tasks. 
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• Use of Million Instructions Per Second (MIPS) to depict the processing 

capabilities of available resources. 

• Use of multiple testing runs and averaging the results. This method is used due 

to the stochastic nature of the GA (They used 10 runs, but we used 100 for our 

averages.) 

Although there were some similarities, there were also several key differences. Buyya 

and Yu used cost as their only constraint and chose to only minimize time. During our 

testing, we compared our approach against another stochastic algorithm, Simulated 

Annealing, and to the optimal solution. Buyya and Yu compared their GA against a 

Greedy Time scheduler. The outcome of their work was displayed in a series of graphs 

that showed how the GA outperformed the Greedy Time scheduler for execution cost 

and execution time. 

2.3 Focus ofThesis 

The focus of this thesis was the creation of algorithms based on Menasce's 

mathematical model shown in Figure 3 and on the evaluation of the performance of 

each algorithm in relation to each other, as well as to an optimal solution. There were 

many steps to creating, testing, and evaluating the results for each algorithm. The main 

steps, goals, and contributions of this thesis are outlined below. 

• Genetic Algorithm 

o The mathematical model was mapped to a Genetic Algorithm. The 

mapping of a Genetic Algorithm onto a string (chromosome), which is 

the object processed by Genetic Algorithms, is completely unique to 
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every problem. Once the problem description was mapped to a string, 

the next step was to determine how to evaluate the fitness value of that 

string. 

o After reproduction took place the Genetic Algorithm, the next two steps 

were crossover and mutation. These two steps alter the value of the 

string, and sometimes the resulting string no longer satisfies the 

constraints of the model. If the new string is no longer a valid solution, 

then adjustments needed to be made to alter the values within the string. 

That required the creation of an Adjustment Operator for crossover and 

mutation. These Adjustment Operators were unique to this problem. 

• Simulated Atmealing 

o The mathematical model were then mapped to a Simulated Annealing 

algorithm. The mapping into a solution set for Simulated Annealing was 

unique, as it was with the Genetic Algorithm. The solution was then 

evaluated based on its energy value, which corresponds to the fitness 

value in a Genetic Algorithm. 

• Comparison 

o Both the Genetic Algorithm and the Simulated Annealing algorithm 

were compared to the optimal solution. A limited set of resources was 

used to create a relatively small solution space, so an optimal solution 

might found. 
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o Multiple variables were adjusted in each algorithm to find the best 

possible combination for the Genetic Algorithm and the Simulated 

A1mealing algorithm. 
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Chapter 3 

GENETIC ALGORITHMS: SURVIVAL OF THE FITTEST 

The Genetic Algorithm (GA) is based on the principles of natural selection and the 

genetic processes associated with biological organisms. Charles Darwin discussed this 

progression in his book, The Origin of Species by Means of Natural Selection, and 

Herbert Spencer used the term "survival of the fittest" in his books about evolutionary 

philosophy to explain how a species evolves over time. These same basic principles are 

mimicked in software development when creating a GA. 

The GA processes solutions represented by a string of value parameters. This solution 

string represents a chromosome and each value parameter symbolizes a gene. Each 

chromosome has a conespondingfitness value and this value represents the degree to 

which this chromosome is "good." The chromosomes with the better fitness values 

have a greater probability of being chosen for propagation to the next generation. GAs 

start with a randomly generated population pool. This pool houses chromosomes used 

to create the subsequent generation. Through genetic evolution, the chromosomes with 

the better fitness values yield better offspring and eventually converge on a near optimal 

solution. 

Finding a stopping point for the GA is another area where a decision has to be made. In 

our experimentation, we chose to stop when all the chromosomes converged on a single 

solution. Other possible stopping conditions include (a) reaching a preset limit on the 
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total number of iterations processed and (b) determining the fitness value of the best 

chromosome has changed only slightly for a number of generations [Kim04]. All of 

these stopping conditions could have been used separately or in combination. 

Figure 4 depicts the flow of a basic GA, which starts with the randomly generated initial 

population pool. The population size used has a direct impact on the perfonnance of the 

GA and tends to be unique to each problem. If the population size chosen is too small, 

the population may lose genetic diversity, causing the GA performance to decline. 

Some studies suggest a good guideline to use is between 30 and 200 chromosomes 

[Krishnakumar89]. The next steps are reproduction, crossover, and mutation 

[Goldberg89]. The algorithm stops when all the chromosome values in a population are 

identical and the GA has converged to a single solution. 

Initial Pofulation 

~ Reproduction 
l 

Crossover 
l 

Mutation 
l 

L__ Convergence? 
l 

Figure 4: Genetic Algorithm Flowchart 
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3.1 Reproduction 

During reproduction, chromosomes are evaluated and then copied based on their fitness 

value. The better the fitness value, the higher the probability of that chromosome 

contributing one or more offspring to the next generation [Goldberg89]. This process 

continues until a new generation is created to take the place of the current one. The 

reproduction selection algorithm may be implemented in many different ways. A few 

implementations are as follows: [Haupt04] 

1. Random pairing: This process randomly chooses two parents. This method 

does not mimic natural selection, because the selection of mates is not 

uniformly random in nature. 

2. Top to bottom pairing: Chromosomes are paired two at a time, beginning 

from the first and ending with the last. This method does not model nature, 

but it is easy to implement. 

3. Tournament selection: This method randomly selects a small subset of 

chromosomes, usually between three and four. From this subset, the 

chromosome with the best fitness value is chosen to become a parent. The 

process is repeated for the next parent. This method mimics mating 

competition in nature. 

4. Weighted roulette wheel or weighted random pairing: Using a biased 

roulette wheel, this method selects chromosomes using a probability 

weighted toward choosing those with better fitness values. In our GA, we 

chose the weighted roulette wheel method of selecting parent chromosomes. 

This method is depicted in Figure 5. 
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No. String Fitness % ofTotal 

1 01101 169 14.4 

2 11000 576 49.2 

(2) 49.2% 3 01000 64 5.5 

4 10011 361 30.9 

Total 1170 100.00 

Figure 5: Weighted Roulette Wheel Representing Four Chromosomes. 

3.2 Crossover 

Chromosome #2 has the Best Fitness Value and thus the 
Highest Probability of Being Chosen [Goldberg89]. 

Crossover is used to create two new children chromosomes, derived from the two 

chosen parent chromosomes. The crossover function occurs between two parents 

depending on the value associated with the crossover probability, Pc, which usually falls 

in the range between 50% and 100% [Eiben03]. Other work [Man99] suggests thatpc 

has a typical value between 60% and 90%, but normal values found in nature are around 

60% [Kim04, Man99, Ye01]. The setting ofpc depends on the traits ofthe optimization 

problem and is critical to the performance of the GA. There is no single value for all 

problems, but some guidelines have been provided [Man99]: 

• For smaller populations (30),pc = 90% 

• For larger populations (lOO),pc = 60% 
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As with reproduction, there are several different ways to perform a crossover operation. 

The method most true to biological processes, and the one used in this work, is the 

single point crossover. A random crossover point is selected and then the last half of 

each parent chromosome is swapped to yield two new children chromosome strings. 

This is demonstrated in Figure 6. 

Example of crossover: 

Sl = 0 111 01 

S2 = 1 1 0 I 0 0 

Yields two new strings: 

S1'=01100 

S2' = 1 1 0 0 1 

Figure 6: Crossover Example 

Once a new set of chromosomes is created, rules for propagation to the next generation 

need to be implemented. Figure 7 displays pseudo code of the algorithm we created to 

determine propagation. 
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S1, S2 =Parent Chromosomes 
S 1 ', S2' = Children Chromosomes 

II*** Step 1 *** 
II Find the fittest child chromosome (BestChild) 
IfS1' Fitness Value= S2' Fitness Value 

If S 1' Cost < S2' Cost 
BestChild = S 1' 

Else 
BestChild = S2' 

Else If S 1' Fitness Value > S2' Fitness Value 
BestChild = S 1' 

Else 
BestChild = S2' 

II*** Step 2 *** 
II Find the fittest parent chromosome (BestParent) 
IfS1 Fitness Value= S2 Fitness Value 

If S 1 Cost < S2 Cost 
BestParent = S 1 

Else 
BestParent = S2 

Else If S 1 Fitness Value > S2 Fitness Value 
BestParent = S 1 

Else 
BestParent = S2 

II *** Step 3 *** 
II Evaluate BestChild and BestParent 
IfBestChild Fitness Value= BestParent Fitness Value 

If BestChild Cost < BestParent Cost 
Propagate BestChild 

Else 
Propagate Random(BestChild, BestParent) 

Else IfBestChild Fitness Value> BestParent Fitness Value 
Propagate BestChild 

Else 
Propagate Random(BestChild, BestParent) 

Figure 7: Genetic Algorithm Propagation Pseudo Code 
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3.3 Mutation 

Although mutation is considered a secondmy operator in a GA, it helps to keep the 

algorithm from converging on a single solution and failing to test new areas of the 

search space. This premature convergence can lead to the process of becoming stuck in 

a local minimum (or maximum) and not finding the global minimum (or maximum). 

Figure 8 illustrates Wright's adaptive surface [Wright32]. The z plane represents the 

fitness value, while x andy represent values for different trait combinations. In this 

multimodal problem, the many peaks represent higher fitness values, where there exist 

many solutions better than those neighboring. Each of the smaller peaks is known as a 

local maximum and the highest overall peak is known as the global maximum, which is 

the optimum solution. This outcome differs from a unimodal problem, where there 

would only be a single peak that would be the optimum solution. 
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Figure 8: Wright's Adaptive Surface [Wright32] 

To help avoid getting stuck in searching around a local maximum, mutation occurs 

using a specified probability, p 111 • The probability of mutation in nature is normally low, 

usually on the order of one mutation per thousand position transfers [Goldberg89]. 

Generally, a value somewhere between 1% and 10% is used for p 111 • Other work has 

suggested a much higher probability of mutation, around 50% [Kim04], which does not 

closely follow the rate represented in nature. As with the value of crossover probability 

and the initial number of generations, the mutation probability must be chosen with 

respect to the domain of the optimization problem. 
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Once the mutation probability is selected, the next step is to determine how to mutate 

the chromosome. As with the other variables associated with a GA, this process is also 

unique to the optimization problem. An example would be chromosomes composed of 

binary digits for genes. One common form of mutation would be to invert a randomly 

selected gene value. Figure 9 depicts three different variations of the mutation 

operation, Bit Flip Mutation, Swap Mutation, and Inverse Mutation. 

Example Mutations 

• Bit Flip (or Bitwise) Mutation: 
S1 = 1 0 0 0 1 
S1'=10011 

• Swap Mutation 
S1 = 1 0 0 0 1 
S1'=11000 

• Inverse Mutation 
S1 =123456 
S1'=143256 

Figure 9: Examples of Mutation Methods 
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Chapter 4 

SIMULATED ANNEALING: COOLING HOT METAL 

The physical process of slowly cooling a material until it has a strong crystalline 

structure is known as "allllealing" in metallurgy. The material is heated, giving the 

atoms lots of energy, and then it is slowly cooled so the atoms align and leave the 

material with little or no imperfections. In 1982 Kirkpatrick used the term "Simulated 

Allllealing" (SA) to describe how to use a virtual physical process to search out 

solutions to optimization problems [Kirpatrick83]. 

Unlike a Genetic Algorithm, which maintains a pool of candidate solutions, Simulated 

Allllealing only evaluates one candidate at a time. SA starts with a random solution and 

then perturbs that solution slightly, creating a new solution for comparison purposes. 

Since this new solution is only slightly perturbed, it is considered a neighbor and is 

located near the first solution in the solution space. If the new solution has a better 

energy value, meaning a better solution, then it is kept. If the newly created solution 

does not have a better energy value, then it is accepted solely on the basis of probability. 

The probability function is displayed in Figure 10. 
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p = e (-oEff) 

Where, 

8E =Change in energy, E, between two solutions 

T = Current temperature 

Figure 10: Probability Function 

A random number, r, is generated with a value between 0 and 1. This number is then 

compared to the probability, P, and is kept if it is less than r. Initially the new solutions 

are selected, but as the temperature Tis reduced, so is the probability of accepting 

solutions with worse energy values. However, as with mutations in the Genetic 

Algorithm, periodically accepting an inferior solution is necessary to avoid becoming 

trapped in a local maximum without searching other areas of the solution space. 

The flowchart of a standard Simulated A1111ealing algorithm is shown in Figure 11. 
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Figure 11: Flowchart of a Standard Simulated 
Annealing Algorithm [PhamOO] 
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When an SA algorithm is implemented, many decisions need to be made. As with the 

Genetic Algorithm, the solution representation is unique to every problem. Also unique 

is the evaluation function, which begets an energy value. The energy value is analogous 

to the fitness value found in the Genetic Algorithm. This value represents the 

"goodness" of the solution. As the algorithm iterates, the solution must be perturbed 

slightly to create the new comparison solution. This perturbation is also unique to each 

problem and is usually adjusted through experimentation to determine how much of a 

perturbation is needed to achieve the desired results. The main algorithm functionality 

issues that must be solved are listed below: 

• How to represent the solution 

• How to determine the energy value, E 

• How to perturb the solution in order to create a neighbor solution 

• How to construct a temperature function, T(t), to determine how the temperature 

is to be changed 

• How to determine the stopping criterion to terminate the algorithm 

Other choices that need to be made deal more specifically with the cooling schedule 

[Eglese90]. Each of the variables associated with the algorithm functionality has to be 

adjusted, usually through experimentation, to obtain the best possible results for the 

given solution domain. Although the best possible solution is desired, this solution 

must be arrived at in a timely manner and meet both the time and cost constraints of the 

problem. Some of these critical choices that deal with the cooling schedule are listed 

below: 
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• The initial value of the temperature, T 

• The number of iterations, N(t), to be perfom1ed at each temperature 

• The value used to update to a new, lower temperature at each level, a 

• The final temperature value 

Cooling schedules can vary, but most remain close to those based on the physical 

annealing process. Kirkpatrick eta!. started with an initial temperature high enough to 

ensure most of the initial solutions are accepted [Kirkpatrick83]. This approach would 

simulate the heating of the material until it is a liquid and all of the atoms are moving 

around rapidly. A temperature function is then used to decrement the current 

temperature in small amounts, T(t + 1) = aT(t). In this equation, a is a constant that 

usually has a value between 0.80 and 0.99 [Eglese90]. At each temperature level, a 

number of iterations are performed, N(t). The number of iterations could be deduced by 

several methods, but one of the simplest is to set the value in proportion to the size of 

the solution space. The stopping criterion is usually that the new solution has not been 

altered for a specified number of temperature changes. This condition is analogous to a 

physical frozen state [Eglese90]. More cooling schedules are available, but they tend to 

stray from the original physical analogy on which the algorithm was based. 
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Chapter 5 

TESTING AND EVALUATION OF THE STOCHASTIC ALGORITHMS 

To evaluate the results of our GA and SA algorithms, we had to establish a baseline, 

which meant an optimal solution had to be found for a given problem with a defined set 

of constraints. Finding the optimal solution requires an exhaustive search and can only 

be achieved for a small solution space. As a result, the number of available resources 

would have to be limited for our optimization problem. Through some informal testing, 

we found five available resources would give us a manageable solution space over 

which to perform an exhaustive search. 

All of the testing for this research was perfmmed on a workstation with an Intel Zeon 3-

GHz CPU and 2GB of RAM. To find the optimal solution for five available resources, 

the run completed over 1.9 billion comparisons and took approximately 112 hours. To 

run comparisons using more available resources, we adapted our algorithms to solve for 

10 resources. Although it would be impossible for us to run an exhaustive search for 

such a large search space, we ran the GA and SA algorithms several hundred times 

using 10 available resources. From these runs, we found both algorithms consistently 

derived the same near-optimal solution. We used this solution as the baseline for our 

testing with 10 available resources. 
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There are many different variables associated with the implementation of a GA or SA 

algorithm. The value of each variable can be adjusted to alter the performance of the 

algorithm, depending on the parameters associated with the problem itself. With such a 

large amount of changeability associated with each of the algorithm's variables, the 

creation of true empirical data is very difficult. Other researchers in the area of job 

scheduling on a grid usually make broad statements in their conclusions when 

comparing different algorithms. The conclusion typically states one algorithm has 

better convergence over another or one improves the efficiency when compared to a 

similar algorithm [AbrahamOO]. 

5.1 The Optimal Solution 

To find the true optimal solution against which to compare the GA and SA performance 

would require an exhaustive search through the entire solution space. We ran an 

exhaustive search to find the optimal solution for five available resources, offering five 

different computational rates, at five different costs. The exhaustive search ran for over 

112 hours and completed over 1.92 billion comparisons to anive at the optimal solution 

for each of the test scenarios. Considering the parallelism of grid computing, the total 

execution time of a specific job would be the maximum execution time among the set of 

sub-tasks. 

To fully exercise each algorithm, we created three different available resource 

scenarios. We then ran two different problems on each scenario, varying the cost 

constraint. We used the values listed in Figure 12 for our scenarios. 
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Available Resources Speed (Millions cycles/second) Cost ($/second) 
Rl (Scenario- I) 1 $ 1 
R2(Scenario-1) 2 $3 
R3(Scenario-l) 3 $5 
R4(Scenario-1) 4 $6 
R5(Scenario-l) 5 $7 
R1 (Scenario-2) 1 $ 1 
R2(Scenario-2) 3 $3 
R3(Scenario-2) 5 $5 
R4(Scenario-2) 7 $6 
R5(Scenario-2) 9 $7 
R1 (Scenario-3) 1 $ 1 
R2(Scenario-3) 3 $2 
R3(Scenario-3) 5 $3 

__ R4(Scenario-3) 7 $4 
R5(Scenario-3) 9 $5 

Figure 12: Resource Scenarios and Their Associated Speed and Cost 

We used the problem constraints listed below and ran each on the three different 

resource scenarios. Figures 13 and 14 reveal the optimal solution for each resource 

scenario, using each set of the problem constraints. 

• Problem Constraints #1 

o Total cycles required to complete job: 20 million cycles 

o Maximumjob execution time: 10 seconds 

o Maximumjob cost: $25.50 

Scenario 
%job allocated to each resource 

Time to complete job Job Cost 
R1: :R2: :R3: :R4: :R5 

S1 32%::0%::0%::0%::68% 6.4 seconds $ 25.44 
S2 4%::12%::20%::28%::36% 0.8 seconds $ 17.60 
S3 4%::12%::20%::28%::36% 0.8 seconds $ 12.00 

Figure 13: Optimal Solutions for Problem Constraints #1 
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• Problem Constraints #2 

o Total cycles required to complete job: 20 million cycles 

o Maximum job execution time: 10 seconds 

o Maximumjob cost: $25.00 

Scenario 
%job allocated to each resource 

Time to complete job Job Cost 
Rl::R2::R3::R4::R5 

Sl 38%::0%::0%::0%::62% 7.6 seconds $24.96 
S2 4%::12%::20%::28%::36% 0.8 seconds $ 17.60 
S3 4%::12%::20%::28%::36% 0.8 seconds $ 12.00 

Figure 14: Optimal Solutions for Problem Constraints #2 

Once the optimal solutions were found for the five-resource problems, we needed to 

find the optimal solution for the ten-resource problem. To ensure the entire job could 

not be entirely allocated to the fastest resource, we chose constraints that would force 

the job to be distributed throughout the available resources. Using informal testing, we 

chose the following constraints: 

• Total cycles required to complete job: 20 million cycles 

• Maximumjob execution time: 10 seconds 

• Maximumjob cost: $25.00 

We used the values listed in Figure 15 for our ten available resources. 
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Available Resources Speed (Millions cycles/second) Cost ($/second) 

Rl 1 $ 1 
R2 2 $3 
R3 3 $5 
R4 4 $6 
R5 5 $7 
R6 6 $8 
R7 7 $9 
R8 8 $ 10 
R9 9 $11 

RIO 10 $ 12 

Figure 15: Ten Available Resources and Their Associated Speed and Cost 

Through the hundreds of test runs performed using our GA and SA algorithms, we 

found the optimal solution given in Figure 16: 

%job allocated to each resource Time to 
Job Cost 

Rl::R2::R3::R4::R5::R6::R7::R8::R9::R10 complete job 
2%::0%::0%::0%::2%::14%:: 17%:: 19%::22%::24% 0.49 seconds $24.95 

Figure 16: Solution for Optimization Problem Using Ten Available Resources 

We used this solution as our baseline for testing the accuracy of our GA and SA 

solutions for ten available resources. 

5.2 The Genetic Algorithm 

There are many choices to be made when creating a GA solution. Each solution is 

unique to the particular problem of interest. We chose to mimic nature as closely as 

possible and concentrate on the pure GA solution, rather than trying to atiificially tweak 
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the GA operations. GA creation involves choices that fell into two main categories: 

functionality of the algorithm and variable values to be used during execution. 

5 .2.1 Algorithmic Functionality 

The first choice made dealt with the creation of the initial population to be used for the 

GA, so it fell into the category of algorithm functionality. A GA's initial population 

can be created in several ways, so we chose to begin with a randomly generated 

population of chromosomes that fit within our time and cost constraints. Another 

approach would have been to use a seeded population, where a certain percentage of the 

chromosomes with the best fitness values are used for the initial population, for 

example the top 50%. Depending on the population size and the size of the solution 

domain, seeding the initial population may cause the GA to converge rapidly on a local 

maximum. In order to better cover the solution landscape and more closely resemble 

nature, we did not seed our initial population. 

Unique to every GA is the fitness function, which is used to determine the "goodness" 

or "worth" of the particular chromosome. Once programmed, the fitness function will 

provide a way to compare the chromosome solutions to each other. Historically, GAs 

have been minimizing algorithms, which are algorithms that depict the chromosomes 

with smaller fitness values as being more desirable. We chose to make a maximizing 

algorithm out of our GA and place precedence on larger fitness values. To do this, we 

subtracted the chromosome solution time from the time constraint for the job and 

assigned that result to the fitness value. This approach would ensure the chromosome 
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with the fastest completion time would have the highest fitness value. The side benefit 

is any solution resulting in a fitness value of less than zero can immediately be 

discounted as a valid solution, since it would take longer to run than our time constraint 

would allow. 

The next choice in functionality was the selection of a reproduction method. In section 

3.1 several of the different ways to program the reproduction method were discussed. 

We chose the weighted roulette wheel, sometimes called "weighted random pairing." 

This method selects pairs of chromosomes based on a biased roulette wheel, which uses 

a probability weighted toward choosing chromosomes with better fitness values. This 

method seems to more closely match biological reproduction. 

As with the other GA functions, crossover between two parent chromosomes can be 

performed in several ways. Crossover can be done from a single point, from multiple 

points, or using a randomly generated crossover mask. Each method has strengths and 

weaknesses, depending on the type of optimization problem. We chose the simplest 

and the one inspired by biological processes, single point crossover. 

The pseudo code we used to propagate chromosomes to the next generation after 

crossover was presented in Section 3.2 (Figure 7). To avoid rapid convergence to a 

local maximum, we did not always propagate the chromosomes with the best fitness 

values. We chose the more fit value between the two children and propagated that child 

who had a better fitness value than both parents. If the child chromosome did not have 
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a better fitness value than both parents, then the propagation was based on 

randomization. Allowing a less fit chromosome to sometimes propagate facilitated our 

coverage of more solution space and helped prevent the run from becoming stuck in a 

local maximum. 

Mutation is considered a secondary operator in a GA, but it also helps to guard against 

becoming stuck in a local maximum. Usually a low occunence operation, mutation 

makes a minor random change to one of the genes in the chromosome. In Section 3.3 

we discussed how mutation takes place during a GA generation. We chose to reduce a 

random gene in the selected chromosome by 5% ofthe assigned job and then to add that 

5% to another randomly selected gene in the chromosome. 

After crossover or mutation, the chromosome may violate the job constraints and 

become invalid. As with a cell's DNA repair system, we created a repair mechanism 

[Man99]. This mechanism is also sometimes referred to as "constraint handling" 

[Eiben03] or an "adjustment operator." Our repair mechanisms ensure the chromosome 

adheres to these main restrictions: 

• 100% of the job is allocated among the genes for that particular chromosome. 

• The newly created chromosome is not in violation of the job constraints. 

The last decision to make about the functionality of a GA is when should it stop? There 

are many schemes that can be used separately or in conjunction with one other. A GA 

can be stopped when a certain number of generations have been reached, when there is 
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no change in the fittest chromosome over a certain number of generations, when the 

percentage of change is very slight over a certain number of generations, or when all 

chromosomes converge to be the same. We chose to stop when all chromosomes 

converged, so we would be able to compare the absolute final outcome of the GA. 

5.2.2 Variable Values 

The main variables that compose a GA are mutation rate, crossover rate, and initial 

population. The rate of mutation and crossover are normally selected by trial and error, 

but there are some guidelines. Goldberg quotes a study of Genetic Algorithms in 

function optimization completed in 1975 by DeJong, which states," ... good GA 

performance requires the choice of a high crossover probability, a low mutation 

probability (inversely proportional to the population size), and a moderated population 

size" [Goldberg89]. In many of Goldberg's examples, he chooses to use a crossover 

probability of 60% and a mutation probability of 3%. Sections 3.2 and 3.4 supply 

further information about crossover and mutation from our literature survey. 

To determine values for the three different variables in our GA, we performed a series 

of test runs. For the probability of mutation, we found 2-5% yielded the best results for 

our test problems. The crossover probability performed best between 60-80% for our 

tests. We needed to find a balance between excess processing, which increases 

calculation time, and finding a near-optimal solution. 
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Using our selected values for the probability of mutation and crossover, we ran similar 

tests in which the population size was varied. We stmied with a population size of 1 0 

and increased by 10 until we had a population size of 100. We ran the GA ten times at 

each population size and took the average. This process was completed for both five 

and ten available resources. 

Figure 17 shows the fitness value of the GAin relation to the population size. This 

graph depicts how the population size has a direct effect on the fitness value of the 

solution. The optimum solution has a fitness value of3.6 for five available resources 

and 9.51 for ten resources. Figures 17-20 are examples of the GA's behavior using one 

of the resource scenarios and a single set of variable values while varying the 

population size. 
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Figure 17: Sample Population Size vs. Fitness Value GA Test Run 

100 

Figure 18 shows the time it takes for the GA to run in relation to the population size. 

From this graph we can see that as the population size grows, so does runtime of the 

GA, but the runtime does not increase at the same rate. The more resources involved, 

the faster the rate of increase in time for subsequently larger populations. For five 

resources, the GA runtime increased 3650% from using an initial population of 10, 

compared to using a population pool of 100. The GA runtime increased 4035% for the 

same test when we used 10 available resources. 
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GA Runtime vs. Population Size 

-+-10 RESOURCES: Pc=65% ,Pm=2% ,Ma xJobCost=25 ,MaxJob 1ime=1 0 ,TotJobCycles=20 

-IIF·5 RESOURCES: Pc=65%,Pm=2o/o,MaxJobCost=25.5,MaxJob1ime=10,TotJobCycles=20 

Figure 18: Sample Genetic Algorithm Runtime vs. Population Size GA Test Run 

Figure 19 shows the calculated execution time of the job found by the GAin relation to 

the population size. Since the fitness value of a solution is computed by subtracting the 

GA calculated job execution time from the job time constraint, this graph is inversely 

proportional to the fitness value graph. 
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Figure 20 shows the percentage of optimum for the solution found by the GA in relation 

to the population size. This graph illustrates the accuracy of the solutions created by the 

GA. As the number of available resources decreases, the population size must be 

increased to find a near-optimal solution. We wanted our GA to create solutions that 

were at least 95% of the optimum. To achieve this goal for five resources would 

require a population of 80 or more chromosomes for this example. For ten resources, 

our GA was able to achieve our 95% goal with a population of 20 for this test scenario. 
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We found the value ranges listed below worked best with our solution domain and 

problem characteristics for the GA: 

• Probability of Crossover: 60-80% 

• Probability ofMutation: 2-5% 

• Mutation Amount: 5% 

These results are inline with values we found during our Survey of Related Work 

[Eiben03, Goldberg89, Kim04, Man99, YeOl]. 
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5.3 The Simulated Am1ealing Algorithm 

As with the creation of a GA, the SA algorithm is also a unique solution for each new 

problem. The SA algorithm also requires the determination of key variable values, as 

well as determining the functionality of several areas within the algorithm. 

5.3 .1 Algorithmic Functionality 

The GA and SA algorithms are similar in many ways. We attempted to have the two 

algorithms use the same structure and functionality whenever possible to facilitate more 

accurate comparisons between the solutions. 

Each solution in an SA algorithm has the same structure as a chromosome in a GA. The 

solutions created by the SA algorithm contain the number of available resources and the 

percentage of the job assigned to each. This structure is equivalent to the chromosome­

gene structure used by our GA. We also used the same "goodness" evaluation methods 

used for a chromosome's fitness value as the energy value in our SA algorithm. This 

method subtracts the solution job execution time from the time constraint associated 

with that particular job. By being able to transfer the same evaluation methods and 

structure from our GA to our SA algorithm, we were able to better evaluate the basic 

algorithmic functions of each optimization method. 

An SA algorithm compares a single solution with one of its neighbors. To find this 

neighboring solution, we tweak the current solution slightly and then make a 

comparison. The tweaking of the solution requires reducing the percentage assigned to 
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one resource and adding to another to create a new solution. To find the best 

percentage to use for the tweak factor, we ran a series of tests. We started with a tweak 

factor of 1%, ran ten tests, and then took the average. We increased the tweak factor by 

1% after each series of tests until we reached 10%. Figures 21-24 are examples of the 

SA algorithm's behavior using one of the resource scenarios and a single set ofvariable 

values while the tweak factor is being varied. 

Figure 21 shows the results of our tests for a varying tweak factor and the resultant 

energy value. Figure 22 shows how long it took for the SA took to find a solution. 
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Figure 21: Sample Energy Value vs. Tweak Factor SA Test Run 
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Figure 22: Sample Simulated Annealing Runtime vs. Tweak Factor Test Run 

Figures 23 and 24 show the execution time of the SA created solution and the 

percentage of optimum for each solution, respectively. 
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Job Execution Time (Min EV) vs. Tweak Factor 
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Figure 23: Sample Job Execution Time vs. Tweak Factor SA Test Run 
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Figure 24: Sample Percentage of Optimum vs. Tweak Factor SA Test Run 
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Through a series of tests, we found 1% to be the best value for our tweak factor, so we 

used this value for the rest of our testing of the SA algorithm. 

The SA algorithm performs a number of iterations at varying temperature levels. The 

temperature is reduced, a number of iterations are performed, and the temperature is 

dropped again. Decrementing the temperature to the next lower level is accomplished 

by multiplying the current temperature by a constant. Through our literature survey, we 

found this constant varies between 0.80 and 0.99 [BraunOl, Eglese90]. 

Unless other stopping criteria are put into place, the SA algorithm will complete when 

the cmrent temperature reaches zero. We chose to have the algorithm run until the 

current temperature reaches zero, without introducing extra measures for early 

termination. In this regard, as with the GA algorithm, the SA algorithm closely follows 

the laws of nature. 

5.3 .2 Variable Values 

There are four main cooling schedule variables associated with an SA algorithm: the 

initial temperature value, the number of iterations performed at each temperature level, 

the a constant, and the final temperature value used to determine the stopping point. To 

find the best value for each of these variables, we performed a series of test runs. 

The value for the initial temperature is based on the size of the solution space for each 

specific problem. The value must be large enough to allow the algorithm to search 
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other parts of the solution space and not be trapped locally. However, if the value is too 

large, then no better solution is derived, and the algorithm is inefficient because of long 

processing time. We found a value in the range of 5-30 for the initial temperature gave 

us the best balance between processing time and solution quality. 

The number of iterations performed at each temperature level is another variable that 

needs to be fine tuned for each problem. As with the other variables, the number of 

iterations is determined by the size of the solution space. When the process first begins 

and has a higher temperature, the SA algorithm searches more of the solution landscape 

for the global optimum. As the algorithm progresses and the temperature cools, the 

solution search space is nanowed while it searches for the local optimum. Many 

researchers suggest manually performing experiments with the number of iterations to 

find the best values [Jones03]. To determine this value, we used the average often test 

runs at each of the following iteration values: 1, 5, 10, 15, 20, 25, 30, 35, 40, and 45. 

We performed the iteration value testing for both five and ten available resources. 

Figure 25 shows the energy value for each iteration value. Figures 25-27 depict some 

of the test runs we performed with the SA algorithm using one of the resource scenarios 

while varying the number of iterations. 
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Figure 25: Sample Energy Value vs. Number oflterations SA Test Run 

Figure 26 shows SA algorithm runtime for each iteration value and Figure 27 gives the 

percentage of the optimum solution. 
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Figure 26: Sample Simulated Annealing Runtime vs. Number of Iterations Test Run 
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Figure 27: Sample Percentage of Optimum vs. Number of Iterations Test Run 
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From our testing, we found using 10 iterations at each temperature level seemed to be a 

good balance between the produced energy value and the time needed for the SA 

algorithm to find a solution. 

The temperature function is used to decrement the current temperature by a small 

amount and produce the temperature for the next level. We did this by using the 

equation T(t + 1) = aT(t), where a represents a constant value, normally between 0.90 

and 0.99. To find the best value to use for this constant, we perfmmed a series of tests. 

As with our iteration testing, we took the average often test runs, varying the a value 

by 0.01, starting at 0.90 and ending at 0.99. We ran tests for five and ten available 

resources. Figures 28-30 show the energy value for each a value for one series of tests. 
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Figure 28: Sample Energy Value vs. Alpha SA Test Run 
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Figure 29 shows the amount of time it took for the SA algorithm to find the solution and 

Figure 30 gives the percentage of optimum for each value of a. 

SA Runtime vs. Alpha 

-+-1 0 RESOURCES: Initial_ Temp;3Q ,Final_ Temp;.01 ,lterations;1 0 ,Tweak_F acloF.01 ,MaxJobCost;25 ,MaxJob Time;1 0 ,TotJobCycles;2Q 
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Figure 29: Sample Simulated Annealing Runtime vs. Alpha Test Run 
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Figure 30: Sample Percentage of Optimum vs. Alpha Test Run 

The final temperature value was the last of the cooling schedule variables we needed to 

determine. This value is the one used to stop the SA algorithm and cause the run to 

present the solution. We performed tests using the same format as used in the iteration 

and a experiments. Although the tests showed a higher value could have been used for 

the final temperature, we chose to use 0.0 1. This value would give us a more accurate 

solution and still keep us within the time range observed during our GA experiments. 

This choice was also made with regard to the fact the solution space was smaller than 

would be likely in a real world solution. If this were a real world problem, then our SA 

algorithm could run longer than would be practically useful, and the value would have 

to be raised to reflect the size of the solution space. According to published research, 

the usual value for the final temperature is near 0.5 degrees [Jones03]. 
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The following graphs, Figures 31-33, show the energy value, SA algorithm runtime, 

and percentage of optimum for differing values used for the final temperature. Once 

again, these graphs represent one series of testing. 

Energy Value (EV) vs. Final Temperature 
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Figure 31: Sample Energy Value vs. Final Temperature SA Test Run 
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SA Runtime vs. Final Temperature 
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Figure 32: Sample Simulated Am1ealing vs. Final Temperature Test Run 
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Figure 33: Sample Percentage of Optimum vs. Final Temperature SA Test Run 
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We found the value ranges listed below to work best with our solution domain and 

problem characteristics for the SA algorithm: 

• Initial Temperature: 5-30 

• Tweak Factor: 0.01 (1 %) 

• Alpha: 0.94-0.99 (94-99%) 

• Iterations: 10 
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

The SA algorithm outperforms the GA in all of our test scenarios. When the solution 

domain was small, the SA algorithm achieved our near-optimal threshold much faster 

than the GA. We made the solution domain small by limiting the number of available 

resources to five. As we increased the size of the solution domain, the GA performed 

slightly better but was still outperformed by the SA algorithm, as Figure 34 shows. 
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Figure 34: Results and Comparison of the GA and SA Test Runs. 
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Although both algorithms could be used to find a near-optimal solution, the SA 

algorithm is the better choice for a Grid Resource Broker and any dual constraint 

optimization problem. The SA algorithm reached our near-optimal threshold much 

quicker than our GA based solution. The GA had slightly better performance as the 

number of available resources increased, but it still lagged behind the SA algorithm. 

With the SA algorithm's variables set to their optimal values, the SA algorithm 

performed vety well. To identify the optimal values for the variables requires trial and 

error, or even possibly the use of some other kind of optimization algorithm or program. 

To implement a stochastic algorithm-based GRB effectively requires a priori 

knowledge ofthe size ofthe solution domain, the attributes ofthejob to run on the grid, 

and the characteristics of the available resources. 

6.2 Future Work 

The current resource allocation solutions do not account for the duties of a GRB 

communicating with a Utility Grid, which would implement a "pay-per-use" model. 

This model would offer many desirable features not available in cutTent grid offerings, 

but it would also introduce a host of problems to overcome before implementation. 

A real world implementation of a GRB would have to take into account many more 

variables than have been addressed in this thesis. Resource failure during execution 

would have to be addressed, along with how to recognize new resources during job 

execution. Another issue would be etTor handling associated with the inability to find a 

valid solution. This issue could be handled by providing an alternative solution, or 
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several best effort scenarios. Also to be resolved is the possibility of intra task 

communication within a single job and dynamically collocating these tasks to minimize 

latency. 

Further evaluation is needed on other stochastic and non-stochastic algorithms to 

determine which ones perfonned better under which scenarios. These algorithms could 

then be hybridized and have their performance compared to the "pure" versions of each 

algorithm. Also, with more testing resource availability, these solutions could be tested 

on larger solution domains, which would give a better picture of their overall 

performance potential. 
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APPENDIX A 

Appendix A: Optimal Solution Code Listings 

import java.io.*; 
import java.util.*; 
import java.lang.Math; 
import java.math.*; 

I** 
* @author James Sweeney 
* March, 2007 

* 
* Main ExhaustiveSearch class 
* This is used to perform an exhaustive optimal search. 
* The components are the same as the GA, except the removal of 
* uneeded functions, and the addition of the exhaustiveSearch routine. 
*I 
public class ExhaustiveOptimalSearch{ 

@SuppressWarnings ( {"unchecked"}) 

*** 

II Probability of Crossover 
int crossoverProbability; 

II Probability of Mutation 
int mutationProbability; 

II Initial population in the pool 
int initialPopulation; 

II Number of generations 
int numberOfGenerations; 

II Dimension of the Chromosomes 
int chromosomeDimension; 

II Dicimal percision to use for each gene 
int decimalPrecision; 

II Total number of cycles needed to run the job 
int totalJobCycles; 

II Maximum time allowed for job execution 
int maxJobExecutionTime; 

I I Maximum cost all01ved for job execution 
double maxJobCost; 

II Current Chromosome pool 
Chromosome currChromosomes; 
Vector <Chromosome>currGenChromosomes; 

II Next generation Chromosome pool 
Chromosome nextChromosomes; 
Vector <Chromosome>nextGenChromosomes; 

static ExhaustiveOptimalSearch myExhaustiveOptimalSearch; 

/******************************************************************************* 

* Constructor for ExhaustiveOptimalSearch class. 

* 
* @param initialPopulation, int value for number of chromosomes in each 

population 
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used) 

** 

* @param numberOfGenerations, int value for number of generations to run (if 

* @param chromosomeDimension, int value for number of genes in each chromosome 

* 
******************************************************************************** 

*I 
public ExhaustiveOptimalSearch(int initialPopulation, 

int numberOfGenerations, 
int chromosomeDimension) 

this.initialPopulation 
this.numberOfGenerations 
this.chromosomeDimension 
this.decimalPrecision 
this.currChromosomes 
this.currGenChromosomes 

this.nextChromosomes 
this.nextGenChromosomes 

initialPopulation; 
numberOfGenerations; 
chromosomeDimension; 
2; 
new Chromosome(chromosomeDimension); 
new Vector <Chromosome>(); 

new Chromosome(chromosomeDimension); 
new Vector <Chromosome>(); 

for (int i=O;i < this.initialPopulation;i++) 
this.currGenChromosomes.add(new Chromosome(chromosomeDimension)); 

for (int x=O;x < this.chromosomeDimension;x++) 
if (x==O) { 

II 
Resource#,Speed,Cost,Job Share 

---1 
II \ I --

II v v v v 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,l,l,O); 
else if (x==l) { 

} 
} 

((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,3,2,0); 
else if (x==2) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,5,3,0); 
else if (x==3) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,7,4,0); 

} else if (x==4) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,9,5,0); 

//Probability of Crossover (ex: 60 => 60%) 
this.crossoverProbability = 65; 

//Probability of Mutation (ex: 5 => 5%) 
this.mutationProbability = 2; 

II Total number of cycles needed to run the job 
this.totalJobCycles 20; 

II Maximum time allowed for job execution 
this.maxJobExecutionTime 10; 

II Maximum cost allowed for job execution 
this.maxJobCost 25.50; 

} //End of CLASS CONSTRUCTOR: ExhaustiveOptimalSearch 

/*********************************************************************** 
* . :: getScaled ::. 
* Scale decimal number via the rounding mode BigDecimal.ROUND_HALF_UP. 
* Method is used to make sure that the correct number of decimal 
* places are used for each gene. 

* 
* @param value, double value to be scaled 
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values 

* @param scale, int value for number of decimals to scale to 
* @return double representing the newly scaled number 
*********************************************************************** 
*I 
static public double getScaled(double value, int scale) 

double result= value; //default: unsealed 

//use BigDecimal String constructor as this is the only exact way for double 

result= new BigDecimal(value) .setScale(scale, 
BigDecimal.ROUND_HALF_UP) .doubleValue(); 

II Could also use: 
II result= Math.round(value * 100.0) I 100.0; 
return result; 
//End of METHOD: getScaled 

/************************************************************* 
* .:: exhaustiveSearch ::. 
* Method used to perform an exhaustive search for the 
* optimal solution using the global chromosome 
*parameters: totalJobCycles, maxJobCost, maxJobExecutionTime 

* 
************************************************************* 
*/ 

public static void exhaustiveSearch() 
double oldFitness = 0.00; 
double newFitness = 0.00; 
double oldCost = 0.00; 
double newCost = 0.00; 
Chromosome tempChrom; 
int chromTotal 0; 
int totalShare = 0; 
int intRO 0; 
int intR1 0; 
int intR2 0; 
int intR3 0; 
int intR4 0; 

System.out.println("\n*** Exhaustive Search started: " +new Date() .toString() 
+ II ***") i 

tempChrom new Chromosome(myExhaustiveOptimalSearch.chromosomeDimension); 

try { 
BufferedWri ter out = new BufferedWri ter (net~ FileWri ter ("Optimal result 

S13579 C13567.txt")); 
out.write("*** Exhaustive Search started: " +new Date() .toString() + " 

out.newLine(); 
out. flush(); 

for (int RO = O;RO <= 100; RO++) 
for (int R1 = O;R1 <= 100; R1++) 

for (int R2 = O;R2 <= 100; R2++) 
for (int R3 = O;R3 <= 100; R3++) { 

for (int R4 = O;R4 <= 100; R4++) 

II 
II 
II 

Resource#,Speed,Cost,Job Share 
\ I I I 

v v v 
tempChrom.setThisGene(0,1,1, 
tempChrom.setThisGene(1,3,2, 
tempChrom.setThisGene(2,5,3, 
tempChrom.setThisGene(3,7,4, 
tempChrom.setThisGene(4,9,5, 

v 
(RO*O. 01)); 
(R1*0.01)); 
(R2*0.01)); 
( R3 * 0 . 01) ) ; 
(R4*0.01)); 

newCost = 
tempChrom.getChromosomeCost(myExhaustiveOptimalSearch.totalJobCycles); 

newFitness tempChrom.getFitnessValue(myExhaustiveOptimalSearch); 
totalShare = RO + R1 + R2 + R3 + R4; 

- 66-



chromTotal++; 

if ( (totalShare 100) && (newFitness >= 0) && (newFitness > 
oldFitness) && 

(tempChrom.getChromosomeCost(myExhaustiveOptimalSearch.totalJobCycles) <= 
myExhaustiveOptimalSearch.maxJobCost) ) { 

": :" + R1 + ": :" + R2 + 

newCost + "\n"); 

"· ·" + R2 + ": :" + R3 + 

newCost + u\n"); 

oldFitness = newFitness; 
oldCost = newCost; 
intRO RO; 
intR1 R1; 
intR2 R2; 
intR3 R3; 
intR4 R4; 
System.out.println("Chromosome(" + chromTotal 

"· ·" + R3 + ": :" + R4 + ":: Tot Share=" + 
totalShare + " FV=" + newFitness 

out.write("Chromosome(" + chromTotal + ") ! !II 

": :" + R4 + ":: Tot Share=" + 
total Share 

out. ne1vLine () ; 
out.flush(); 

+ " FV=" + newFitness 

+ ") 

+ " 

+ RO 

+ " 

: :" + 

Cost=" 

+ "· ·" 

Cost=" 

else if 
(newFitness == oldFitness) && 

(totalShare 100) && (newFitness >= 0) && 

(tempChrom.getChromosomeCost(myExhaustiveOptimalSearch.totalJobCycles) <= 
myExhaustiveOptimalSearch.maxJobCost) && 

(tempChrom.getChromosomeCost(myExhaustiveOptimalSearch.totalJobCycles) < oldCost) 
oldFitness = newFitness; 

"· ·" + R1 + ": :" + R2 + 

newCost + "\n"); 

": :" + R2 + ": :'' + R3 + 

neHCost + "\n"); 

oldCost = newCost; 
intRO RO; 
intR1 R1; 
intR2 R2; 
intR3 R3; 
intR4 R4; 
System.out.println("Chromosome(" + chromTotal 
": :" + R3 + II! !II + R4 + ":: Tot Share=" + 

total Share + " FV=" + newFitness 

out.write("Chromosome(" + chromTotal + ") • 'II 

"· ·" + R4 + IT!! Tot Share=" + 
total Share 

out.neHLine(); 
out. flush () ; 

+ " FV=" + neHFitness 

+ ") ! !II + 

+ " Cost=" 

+ RO + ": :" 

+ " Cost=" 

RO 

+ 

+ 

+ 

RO 

+ 

+ 

+ 

out.Hrite("Fittest Chromosome ... after searching through:"+ chromTotal); 
out.neHLine(); 

+ 

R1 + 

+ 

R1 + 

out.Hrite("::" + intRO + ": :" + intR1 + "::" + intR2 + "··" + intR3 + "· ·" + 
intR4 + " : : ") ; 

out.neHLine(); 
out.Hrite("FV=" + oldFitness); 
out.neHLine(); 
out.write("Cost=" + oldCost); 
out.neHLine(); 
out.Hrite("\n*** Exhaustive Search ended: " + neiV Date() .toString() + " 

***"); 
out. flush(); 
out. close(); 

System.out.println("Fittest Chromosome ... after searching through:"+ 
chromTotal) ; 
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System.out.println("::" + intRO + "::" + intRl + "··" + intR2 + "::" + intR3 
+ 11 

•• n + intR4 + II: :II) ; 
System.out.println("FV=" + oldFitness); 
System.out.println("Cost=" + oldCost); 
System.out.println("\n*** Exhaustive Search ended: " +new Date() .toString() 

+ IT ***ll); 

catch (IOException e) (} 

/*************************************************************************************** 
********* 

* Main method for ExhaustiveOptimalSearch class 

* 
* @param args, Passed in values for: InitialPopulation, NumberOfGenerations, 

ChromosomeDimension 

* 

**************************************************************************************** 
******** 

*I 
public static void main(String[] args) 

int population=O, generations=O, dimension=O; 
int gen=O; 
long timeBefore=O, timeAfter=O, timeDiff=O; 
double totalDisplay = 0.00; 
String popDescription = ""; 
Vector <Chromosome> tempVector=null; 
boolean done = false; 

try ( 
if (args.length < 3) 

throw new ExhaustiveOptimalSearchException("Requires all 3 parameters:"); 

population 
generations 
dimension 

Integer.parseint(args[O]); 
Integer.parseint(args[l]); 
Integer.parseint(args[2]); 

if (population < 1) 
throw new ExhaustiveOptimalSearchException("Initial Population must be 

greater than 0"); 
} else if (generations < 1) 

thrmv new Exhausti veOptimalSearchException ("Chromosome _Dimension must be 
greater than 0"); 

} 

if ( (population % 2) J = 0) 
throw new ExhaustiveOptimalSearchException("Initial Population must be an 

even number") ; 

catch (ExhaustiveOptimalSearchException e) 
System.out.println("\n" +e); 
System.out.println("USE: java ExhaustiveOptimalSearch 'Initial Population 

Number of Generations Chromosome Dimension'"); 
- System.out.println("EXAMPLE: java ExhaustiveOptimalSearch 6 55"); 

System.out.println(" ... exiting, goodbye."); 
System.exit(l); 

myExhaustiveOptimalSearch = new 
ExhaustiveOptimalSearch(population,generations,dimension); 

I* Used when executing the exhaustive search funtion *I 
myExhaustiveOptimalSearch.exhaustiveSearch(); 

II End of METHOD: main 

} II End of CLASS: ExhaustiveOptimalSearch 
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import java.io.*; 

/** 
* @author James Sweeney 
* March, 2007 

* 
* Class that stores the gene information 
*I 

public class Gene implements Serializable 

private static final long serialVersionUID 1; 
protected int geneSpeed; 
protected double geneCost; 
protected double geneJobShare; 

/* 
* Constructor for the Gene class 

* 
* @param speed, representing speed of this resource (gene) 
* @param cost, representing cost of this resource (gene) 
* @param jobShare, representing percentage of the job that this resource (gene) 

will process 
*I 

public Gene (int speed, double cost, double jobShare) 
this.geneSpeed speed; 
this.geneCost cost; 
this.geneJobShare jobShare; 

public int getGeneSpeed() 
return (this.geneSpeed); 

public void setGeneSpeed(int s) 
this.geneSpeed = s; 

public double getGeneCost() 
return (this.geneCost); 

public void setGeneCost(double c) { 
this.geneCost = c; 

public double getGeneJobShare() 
return (this.geneJobShare); 

public void setGeneJobShare(double js) 
this.geneJobShare = js; 
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import java.io.*; 

I** 
* @author James Sweeney 
* March, 2007 

* 
* Class that stores the chromosome information 
*I 

public class Chromosome implements Serializable 

private static final long serialVersionUID 1; 

II Gene storage for each Chromosome 
protected Gene [] genes; 

I* 
* Constructor for the Chromosome class 
* @param numGenes 
*I 

public Chromosome (int numGenes) 
genes= new Gene [numGenes]; 

/********************************************* 
* .:: getGenes ::. 

* @return Gene [] representing the chromosome 
********************************************* 
*I 

public Gene [] getGenes() 
return (genes); 

/********~*************************************************************** 

* .:: setThisGene ::. 
* @param int representing the gene to set 
* @param int representing the speed of the gene 
* @param double representing the cost of the gene 
* @param double representing the percentage of job assigned to that gene 
************************************************************************ 
*I 

public void setThisGene(int thisGene, int geneSpeed, double geneCost, double 
geneJobShare) { 

genes[thisGene] =new Gene(geneSpeed,geneCost,geneJobShare); 

/************************************************ 
* .:: getGeneJobShareTotal ::. 
* @return double representing % of job allocated 
************************************************ 
*I 

public double getGeneJobShareTotal() 
double geneTotal = 0; 
for (int i=O;i < this.genes.length;i++) 

geneTotal += genes[i] .getGeneJobShare(); 

return (ExhaustiveOptimalSearch.getScaled(geneTotal, 2)); 

/******************************************************************************* 
*********** 

* .:: getFitnessValue ::. 
* @param thisExhaustiveOptimalSearch, ExhaustiveOptimalSearch which contains 

the chromosome about which you wold like to find the FV 
* @return double representing the Fitness Value 

**************************************************************************************** 
** 

*I 
public double getFitnessValue(ExhaustiveOptimalSearch 

thisExhaustiveOptimalSearch) { 
double completionTime = 0; 
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double tempCompletionTime = 0; 

for (int i=O;i < this.genes.length;i++) 
tempCompletionTime = ( thisExhaustiveOptimalSearch.totalJobCycles * 

genes[i] .getGeneJobShare() ) I genes[i] .getGeneSpeed(); 
if (tempCompletionTime > completionTime) { 

completionTime = tempCompletionTime; 

return 
thisExhaustiveOptimalSearch.getScaled((thisExhaustiveOptimalSearch.maxJobExecutionTime­
completionTime), 2) ); 

} 

/******************************************************************************* 
************************ 

* . :: getChromosomeCompletionTime ::. 
* @param thisExhaustiveOptimalSearch, ExhaustiveOptimalSearch which contains 

the chromosome about which you wold like to find the completion time 
* @return double representing the time in ms, that it will take for the 

chromosome to run 

**************************************************************************************** 
*************** 

*I 
public double getChromosomeCompletionTime(ExhaustiveOptimalSearch 

thisExhaustiveOptimalSearch) { 
double completionTime = 0; 

double tempCompletionTime = 0; 

for (int i=O;i < this.genes.length;i++) 
tempCompletionTime = ( thisExhaustiveOptimalSearch.totalJobCycles * 

genes[i] .getGeneJobShare() ) I genes[i] .getGeneSpeed(); 
if (tempCompletionTime > completionTime) { 

completionTime = tempCompletionTime; 

return ( thisExhaustiveOptimalSearch.getScaled((completionTime), 2) ); 

/***************************************************************** 
* .:: getChromosomeCost ::. 
* @param totalJobCycles, Total job cycles required to run the job 
* @return double representing the cost 
***************************************************************** 
*I 

public double getChromosomeCost(int totalJobCycles) 
double chromCost = 0; 
for (int i=O;i < this.genes.length;i++) 

chromCost += ( ( (genes[i] .getGeneJobShare() * totalJobCycles) I 
genes[i] .getGeneSpeed() ) * genes[i] .getGeneCost() ); 

} 
return (ExhaustiveOptimalSearch.getScaled(chromCost, 2)); 
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/** 
* @author James S\'leeney 
* March, 2007 

* 
* ExhaustiveOptimalSearch exception class 
*/ 

public class ExhaustiveOptimalSearchException extends Exception 
{ 

private static final long serialVersionUID = 1; 
/** 
* ExhaustiveOptimalSearchException constructor 
* @param msg, Error message 
*I 

ExhaustiveOptimalSearchException(String msg) 
{ 

super (msg) ; 
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APPENDIXB 

Appendix B: Genetic Algorithm Code Listings 

import java.io.*; 
import java.util.*; 
import java.lang.Math; 
import java.math.*; 

I** 
* @author James Sweeney 
* March, 2007 

* 
* Main GA class 
* This the main class for the Genetic Algorithm. 
*I 

public class GA( 

*** 

II Probability of Crossover 
int crossoverProbability; 

II Probability of Mutation 
int mutationProbability; 

II Initial population in the pool 
int initialPopulation; 

II Number of generations 
int numberOfGenerations; 

II Dimension of the Chromosomes 
int chromosomeDimension; 

II Dicimal percision to use for each gene 
int decimalPrecision; 

II Total number of cycles needed to run the job 
int totalJobCycles; 

II Maximum time allowed for job execution 
int maxJobExecutionTime; 

II Maximum cost allowed for job execution 
double maxJobCost; 

II Current Chromosome pool 
Chromosome currChromosomes; 
Vector <Chromosome>currGenChromosomes; 

II Next generation Chromosome pool 
Chromosome nextChromosomes; 
Vector <Chromosome>nextGenChromosomes; 

static GA myGA; 

/******************************************************************************* 

* Constructor for GA class. 

* 
* @param initialPopulation, int value for number of chromosomes in each 

population 
* @param numberOfGenerations, int value for number of generations to run (if 

used) 
* @param chromosomeDimension, int value for number of genes in each chromosome 
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* 

********************************************************************************** 
*/ 

public GA(int initialPopulation, 
int numberOfGenerations, 
int chromosomeDimension) 

Share*//* 

this.initialPopulation 
this.numberOfGenerations 
this.chromosomeDimension 
this.decimalPrecision 
this.currChromosomes 
this.currGenChromosomes 

initialPopulation; 
numberOfGenerations; 
chromosomeDimension; 
2; 
new Chromosome(chromosomeDimension); 
new Vector <Chromosome>(); 

this.nextChromosomes 
this.nextGenChromosomes 

new Chromosome(chromosomeDimension); 
new Vector <Chromosome>(); 

for (int i=O;i < this.initialPopulation;i++) 
this.currGenChromosomes.add(new Chromosome(chromosomeDimension)); 

//ALSO MUST BE CHANGED IN CREATECHROMOSOME PROCEDURE 
II If changing resource Speed/Cost values 

II Use for 5 available resource testing 
for (int x=O;x < this.chromosomeDimension;x++) 
if (x==O) { 

} 
} 

/* Gene-Resource #, Speed, Cost, Job Share*/ 
( (Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,l,l,O); 
else if (x==l) ( 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,3,3,0); 
else if (x==2) { 
( (Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,5,5,0); 
else if (x==3) { 
( (Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,7,6,0); 

} else if (x==4) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,9,7,0); 

/* Use for 10 available resource testing 
for (int x=O;x < this.chromosomeDimension;x++) 
if (x==O) { 

/* Gene-Resource #, Speed, Cost, Job 

((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,l,l,O); 
else if (x==l) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,2,3,0); 
else if (x==2) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,3,5,0); 
else if (x==3) { 
( (Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,4,6,0); 

} else if (x==4) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,5,7,0); 
else if (x==5) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,6,8,0); 
else if (x==6) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,7,9,0); 
else if (x==7) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,S,lO,O); 
else if (x==B) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,9,11,0); 
else { 

( (Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,l0,12,0); 
} 

} 

*/ 
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//Probability of Crossover (ex: 60 => 60%) 
this.crossoverProbability = 80; 

//Probability of Mutation (ex: 5 => 5%) 
this.mutationProbability = 5; 

II Total number of cycles needed to run the job 
this.totalJobCycles 20; 

II Maximum time allowed for job execution 
this.maxJobExecutionTime 10; 

II Maximum cost allowed for job execution 
this.maxJobCost 25.50; 

) //End of CLASS CONSTRUCTOR: GA 

/*********************************************************************** 
* . : : getScaled : : . 
* Scale decimal number via the rounding mode BigDecimal.ROUND_HALF_UP. 
* Method is used to make sure that the correct number of decimal 
* places are used for each gene. 

* 
* @param value, double value to be scaled 
* @param scale, int value for number of decimals to scale to 
* @return double representing the newly scaled number 
*********************************************************************** 
*I 

static public double getScaled(double value, int scale) 
double result= value; //default: unsealed 

//use BigDecimal String constructor as this is the only exact way for double 
values 

result= new BigDecimal(value) .setScale(scale, 
BigDecimal.ROUND_HALF_UP) .doubleValue(); 

II Could also use: 
II result= Math.round(value * 100.0) I 100.0; 
return result; 

//End of METHOD: getScaled 

/********************************************************** 
* . :: getRandom (int) ... 
* return a integer random number between 0 and upperBound 
* @param upperBound of the range for randomization 
* @return int, randomly generated number 
********************************************************** 
*/ 

int getRandom(int upperBound) 
int iRandom = (int) (Math.random() * upperBound); 
return (iRandom); 

//End of METHOD: getRandom (int) 

/******************************************************** 
* . :: getRandom (double) ... 
* return a double random number between 0 and upperBound 
* @param upperBound of the range for randomization 
* @return double, randomly generated number 
******************************************************** 
*I 

double getRandom(double upperBound) 
II Gives a random number that is: 
II 0.00 <= dRandom < upperBound 
II This does exclude returning the maximum value 
double dRandom = (Math.random() * upperBound); 
return (dRandom); 

II End of METHOD: getRandom (double) 

/************************************************************************* 
* . :: propogateThisChromosome ::. 
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* @param chrom, Chromosome that will be propagated to the next generation 

* 
************************************************************************* 
*I 

public void propagateThisChromosome(Chromosome chrom) 
nextGenChromosomes.add(chrom); 

) II End of METHOD: propagateThisChromosome 

/******************************************************** 
* . :: propogateFittestChromosome ... 
* @param parentl, Chromsome representing parent 1 
* @param parent2, Chromsome representing parent 2 
* @param childl, Chromsome representing child 1 
* @param child2, Chromsome representing child 2 

* 
******************************************************** 
*I 

public void propagateFittestChromosome(Chromosome parentl, Chromosome parent2, 
Chromosome childl, Chromosome child2) { 

int propRandNumber=99; 
Chromosome propChromosome = null; 
Chromosome bestChild null; 
Chromosome bestParent = null; 

II Find the best child ... 
if (childl.getFitnessValue(myGA) == child2.getFitnessValue(myGA) ) { 

if (childl.getChromosomeCost(myGA.totalJobCycles) < 
child2.getChromosomeCost(myGA.totalJobCycles) ) 

bestChild childl; 
else 

bestChild child2; 
else if (childl.getFitnessValue(myGA) > child2.getFitnessValue(myGA) ) 

bestChild childl; 
else { 

bestChild child2; 

II ... now find the best parent ... 
if (parentl.getFitnessValue(myGA) == parent2.getFitnessValue(myGA) 

if (parentl.getChromosomeCost(myGA.totalJobCycles) < 
parent2.getChromosomeCost(myGA.totalJobCycles) ) 

bestParent parentl; 
else 

bestParent parent2; 
else if (parentl.getFitnessValue(myGA) > parent2.getFitnessValue(myGA) ) 

bestParent parentl; 
else { 

bestParent parent2; 

II ... evaluate bestChild and the bestParent ... 
if ( (bestChild.getFitnessValue(myGA) == bestParent.getFitnessValue(myGA)) 

if (bestChild.getChromosomeCost(myGA.totalJobCycles) < 
bestParent.getChromosomeCost(myGA.totalJobCycles) ) { 

II bestChild and bestParent have equal FV, but bestChild has lower 
cost ... propagate bestChild 

propChromosome bestChild; 
} else { 

II bestChild and bestParent have equal FV, but bestParent has lower 
cost ... choose randomly to propagate 

propRandNumber = getRandom(2); 
if (propRandNumber == 1) 

propChromosome bestChild; 
else 

propChromosome bestParent; 

else if (bestChild.getFitnessValue(myGA) > bestParent.getFitnessValue(myGA) 
II bestChild has a better FV than bestParent, so propagate bestChild 
propChromosome = bestChild; 

else { 
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II bestParent has a better FV than bestParent ... choose randomly to propagate 
propRandNumber = getRandom(2); 
if (propRandNumber == 1) 

propChromosome bestChild; 
else 

propChromosome bestParent; 

propagateThisChromosome(propChromosome); 

II End METHOD: propagateFittestChromosome 

/*********************************************************** 
* .:: propogateFittestParentChromosome ::. 
* @param poolSize, number of chromosomes in this generation 

* 
*********************************************************** 
*I 

public void propagateFittestParentChromosome(int poolSize) 
int chromosomel = getRandom(poolSize); 
int chromosome2 = getRandom(poolSize); 
Chromosome propChromosome = null; 
Chromosome ~emp = null; 

I* To ensure that this parent hasn't already been chosen *I 
if currGenChromosomes.get(chromosomel) == currGenChromosomes.get(chromosome2) 

do 
chromosome2 = getRandom(poolSize); 

) \vhile ( currGenChromosomes. get ( chromosomel) 
currGenChromosornes. get ( chromosome2) ) ; 

) 

if ((Chromosome)currGenChromosomes.get(chromosomel)) .getFitnessValue(myGA) 
((Chromosome)currGenChromosomes.get(chromosome2)) .getFitnessValue(myGA) 

if( 
((Chromosome)currGenChromosomes.get(chromosomel)) .getChromosomeCost(myGA.totalJobCycles) 
< 

((Chromosome)currGenChromosomes.get(chromosome2)) .getChromosomeCost(myGA.totalJobCycles) 
) ( 

try ( 
propChromosome 

(Chromosome) (ObjectCloner.deepCopy(currGenChromosomes.get(chromosomel))); 
) catch (Exception e) ( 

System.out.println("ObjectCloner exception: "+e); 

else ( 
try ( 

propChromosome 
(Chromosome) (ObjectCloner.deepCopy(currGenChromosomes.get(chromosome2))); 

) catch (Exception e) ( 
System.out.println("ObjectCloner exception: "+e); 

else if 
((Chromosome)currGenChromosomes.get(chromosomel)) .getFitnessValue(myGA) > 

((Chromosome)currGenChromosomes.get(chromosome2)) .getFitnessValue(myGA) 
try ( 

propChromosome = 

(Chromosome) (ObjectCloner.deepCopy(currGenChromosomes.get(chromosomel))); 
) catch (Exception e) ( 

System.out.println("ObjectCloner exception: "+e); 

else ( 
try ( 

propChromosome 
(Chromosome) (ObjectCloner.deepCopy(currGenChromosomes.get(chromosome2))); 

) catch (Exception e) ( 
System.out.println("ObjectCloner exception: "+e); 
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propagateThisChromosome(propChromosome); 

II End of method propagateFittestParentChromosome 

/**************************************************************************** 
* . : : checkForCrossover ... 
* @return boolean, True to perform crossover, False to not perform crossover 

* 
**************************************************************************** 
*I 

public boolean checkForCrossover () 
int crossoverCheckValue = getRandom(lOl); 

I* If the random number chosen 'n', from 0 to 100, is less than or 
equal to the crossoverProbability, then crossover *I 

if (crossoverCheckValue <= this.crossoverProbability) 
return true; 

else 
return false; 

II End of METHOD: checkForCrossover 

/************************************************************************** 
* . :: checkForMutation ::. 
* @return boolean, True to perform mutation, False to not perform mutation 

* 
************************************************************************** 
*I 

public boolean checkForMutation () 
int mutationCheckValue = getRandom(lOl); 

I* If the random number chosen 'n', from 0 to 100, is less than or 
equal to the mutationProbability, then mutate *I 

if (mutationCheckValue <= this.mutationProbability) 
return true; 

else 
return false; 

II End of METHOD: checkForMutation 

/******************************************************** 
* . :: getSumFitness ::. 
* @param chromPopulation, Vector of chromosome population of which to sum the 

fitness 
* @return double representing the sum of all the FV's in this population 

* 
******************************************************** 
*I 

public double getSumFitness(Vector chromPopulation) 
double fvTotal 0.00; 

for (int i=O;i < chromPopulation.size();i++) 
fvTotal += ((Chromosome)chromPopulation.get(i)) .getFitnessValue(myGA); 

return getScaled(fvTotal, this.decimalPrecision); 
II End of METHOD: getSumFitness 

/****************************************************************** 
* . :: rouletteSelectChromosome ::. 

* 
* Method that takes a Vector of chromosomes, which represents 
* a generation, and selects one using a biased roullete wheel 
* method. 
* 
* @param chromPopulation, Vector representing the total population 
* @return int representing the selected chromosome 
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****************************************************************** 
*I 

public int rouletteSelectChromosome(Vector chromPopulation) 
int i = -1; 
double random 0; 
double partsum 0; 

random= getRandom(l.O) * getSumFitness(chromPopulation); 

if (random != 0) 
do { 

else 

i++; 
part sum 
while ( 

+= ((Chromosome)chromPopulation.get(i)) .getFitnessValue(myGA); 
(i < (this.initialPopulation- 1)) && (partsum <random)); 

i = getRandom(chromPopulation.size()); 

return i; 
II End of METHOD: rouletteSelectChromosome 

/********************************************************** 
* . : : doMutation : : . 

* 
* Method that takes a given chromosome, and mutates it 
* by subtracting 5% from a randomly selected genes job 
* share, and then adding that 5% to another randomly 
* selected gene's job share. 

* 
* @param mutationChromosome, Chromosome to mutate 
********************************************************** 
*I 

protected void doMutation(Chromosome mutationChromosome) 
int mutationGeneMinus = 0; 
int mutationGeneAdd = 0; 
Chromosome tempChromosome = null; 
double mutationAmount = 0.05; 

do { 

try 
tempChromosome = (Chromosome) (ObjectCloner.deepCopy(mutationChromosome)); 
catch (Exception e) 
System.out.println("ObjectCloner exception: "+e); 

II Find a gene in the given chromosome, from which the mutationAmount (ex: .05 -
> 5%) can be subtracted without 

II leaving a negative number. 
do { 

mutationGeneMinus = getRandom(chromosomeDimension); 
} while (tempChromosome.genes[mutationGeneMinus] .getGeneJobShare() -

mutationAmount) < 0 ); 

II Subtract the mutationAmount 
tempChromosome.genes[mutationGeneMinus] .setGeneJobShare( 

getScaled((tempChromosome.genes[mutationGeneMinus] .getGeneJobShare() -
mutationAmount), this.decimalPrecision)); 

II Find a gene to add the mutationAmount, but not the one just reduced by the 
mutationAmount 

do { 
mutationGeneAdd = getRandom(chromosomeDimension); 

} while (mutationGeneAdd == mutationGeneMinus); 

II Add the mutationAmount 
tempChromosome.genes[mutationGeneAdd] .setGeneJobShare( 

getScaled((tempChromosome.genes[mutationGeneAdd] .getGeneJobShare() + 
mutationAmount), this.decimalPrecision)); 
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II Adjust the new chromosome, to make sure the entire job is allocated 
myGA.adjustGeneDistribution(tempChromosome); 

II Repeat process if any of the following are true: 
II -New Chromosome doesn't meet the Maximum Cost requiremets 
II - New Chromosome doesn't account for 100% of the job 
II -New Chromosome doesn't meet the Fitness Value requirments (within time 

limits) 
} while ( 

myGA.maxJobCost) 
(tempChromosome.getChromosomeCost(myGA.totalJobCycles) > 

II 
(getScaled( tempChromosome.getGeneJobShareTotal(),this.decimalPrecision) 

!= 1.00) II 
(tempChromosome.getFitnessValue(myGA) < 0.00) ); 

II Copy tempChromosome information over to mutationChromosome to complete the 
mutation 

for (int x=O;x < chromosomeDimension;x++) 

mutationChromosome.genes[x] .setGeneJobShare(tempChromosome.genes[x] .getGeneJobShare()); 
} 

//End of METHOD: doMutation 

/*********************************************************** 
* . :: doCrossover ::. 
* Method to choose 2 random chromosomes, and then 
* perform a crossover on them. 

* 
* @param int poolSize, int representing the chromosome pool 
*********************************************************** 
*/ 

protected void doCrossover(int poolSize) 
int crossoverChromosomel = rouletteSelectChromosome(myGA.currGenChromosomes); 
int crossoverChromosome2 = rouletteSelectChromosome(myGA.currGenChromosomes}; 
Chromosome childl null; 
Chromosome child2 = null; 

/* To ensure that this parent doesn't mate with itself (IB-P) */ 
if (Chromosome)myGA.currGenChromosomes.get(crossoverChromosomel) 

(Chromosome)myGA.currGenChromosomes.get(crossoverChromosome2) 
do { 

crossoverChromosome2 = rouletteSelectChromosome(myGA.currGenChromosomes); 
} while ( (Chromosome)myGA.currGenChromosomes.get(crossoverChromosomel) 

(Chromosome)myGA.currGenChromosomes.get(crossoverChromosome2} ); 

try 
childl 

(Chromosome) (ObjectCloner.deepCopy(myGA.currGenChromosomes.get(crossoverChromosomel))); 
child2 = 

(Chromosome) (ObjectCloner.deepCopy(myGA.currGenChromosomes.get(crossoverChromosome2))); 

crossoverTheseChromosomes(childl, child2); 

adjustGeneDistribution(childl); 

II Does the chromosome meet the Maximum Cost requirements ? 
if (childl.getChromosomeCost(myGA.totalJobCycles) > myGA.maxJobCost) 

II The Maximum Cost requirements were NOT met, so ... 
do { 

II Create a new chromosome to replace the rejected one 
childl = (Chromosome) (ObjectCloner.deepCopy(myGA.createChromosome())); 

//Adjust the new chromosome, to make sure the entire job is allocated 
myGA.adjustGeneDistribution(childl); 

//Repeat process if any of the following are true: 
II -New Chromosome doesn't meet the Maximum Cost requiremets 
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II - New Chromosome doesn't account for 100% of the job 
II -New Chromosome doesn't meet the Fitness Value requirments (within 

time limits) 
} while (childl.getChromosomeCost(myGA.totalJobCycles) > myGA.maxJobCost) 

II 
(getScaled( childl.getGeneJobShareTotal(),this.decimalPrecision) != 

1. 00) I I 
(childl.getFitnessValue(myGA) < 0.00) ) ; 

adjustGeneDistribution(child2); 

II Does the chromosome meet the Maximum Cost requirements ? 
if (child2.getChromosomeCost(myGA.totalJobCycles) > myGA.maxJobCost) 

II The Maximum Cost requirements were NOT met, so ... 
do { 

II Create a new chromosome to replace the rejected one 
child2 = (Chromosome) (ObjectCloner.deepCopy(myGA.createChromosome())); 

II Adjust the new chromosome, to make sure the entire job is allocated 
myGA.adjustGeneDistribution(child2); 

II Repeat process if any of the following are true: 
II - New Chromosome doesn't meet the Maximum Cost requiremets 
II -New Chromosome doesn't account for 100% of the job 
II -New Chromosome doesn't meet the Fitness Value requirments (within 

time limits) 
} while ( (child2.getChromosomeCost(myGA.totalJobCycles) > myGA.maxJobCost) 

II 
(getScaled( child2.getGeneJobShareTotal(),this.decimalPrecision) != 

1. 00) I I 
(child2.getFitnessValue(myGA) < 0.00) ); 

catch (Exception e) 
System.out.println("ObjectCloner exception: "+e); 

propagateFittestChromosome( 
((Chromosome)myGA.currGenChromosomes.get(crossoverChromosomel)), ((Chromosome)myGA.currGe 
nChromosomes.get(crossoverChromosome2)),childl, child2); 

} II End of METHOD: doCrossover 

/********************************************** 
* . :: crossoverTheseChromosomes ::. 
* Crossover 2 chromosomes at a random point 

* 
* @param Chromosome cl, Chromosome to crossover 
* @param Chromosome c2, Chromosome to crossover 
*********************************************** 
*I 

protected void crossoverTheseChromosomes(Chromosome cl, Chromosome c2) 
int crossoverPoint = getRandom(this.chromosomeDimension+l); 
Chromosome temp = null; 

I* Creates a new separate copy of cl, which will be 
use later to populate c2. Uses Java serialization 
to do the "deep copy" *I 

try { 
temp= (Chromosome) (ObjectCloner.deepCopy(cl)); 
catch (Exception e) 
System.out.println("ObjectCloner exception: "+e); 

for (int i=O;i < crossoverPoint;i++) 
cl.genes[i] .setGeneJobShare(c2.genes[i] .getGeneJobShare()); 

for (int i=O;i < crossoverPoint;i++) 
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1) 

c2.genes[i] .setGeneJobShare(temp.genes[i] .getGeneJobShare()); 

II End of METHOD: crossoverTheseChromosomes 

/******************************************************* 
* .:: adjustGeneDistribution ::. 
* Used to adjust a chromosome, so that the sum of the 
* genes job shares equal 1 (100%, entire job allocated) 

* 
* @param c1, Chromosome to adjust 
******************************************************* 
*I 

protected void adjustGeneDistribution(Chromosome c1) 
boolean adjusting = false; 

if ( getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision) != 1) { 
if ( getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision) < 1) { 

do { 
int adjustGene = getRandom(this.chromosomeDimension); 
if ( (c1.getGenes() [adjustGene] .getGeneJobShare() + 

(1- getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision))) <= 

c1.getGenes() [adjustGene] .setGeneJobShare( 
c1. getGenes () [adjustGene] . getGeneJobShare () + (l -
getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision)) ); 

cl.getGenes() [adjustGene] .setGeneJobShare( 
getScaled(c1.getGenes() [adjustGene] .getGeneJobShare(), this.decimalPrecision) ) ; 

adjusting = true; 

0) 

while (!adjusting); 

else 
if 

do 

(getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision) - 1) >= 

int adjustGene = getRandom(this.chromosomeDimension); 
if ( (cl. getGenes () [adjustGene]. getGeneJobShare () -

(getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision) - 1)) 
>= 0 ) 

c1.getGenes() [adjustGene] .setGeneJobShare( 
c1. getGenes () [adjustGene] . getGeneJobShare () -
(getScaled(c1.getGeneJobShareTotal(),this.decimalPrecision) - 1) 

c1.getGenes() [adjustGene] .setGeneJobShare( 
getSca1ed(c1.getGenes() [adjustGene] .getGeneJobShare(), this.decimalPrecision) ) ; 

adjusting = true; 
else ( 
c1. getGenes () [ adjustGene] . setGeneJobShare ( 0. 00); 

while (!adjusting); 

II End of METHOD: adjustGeneDistribution 

/********************************************************************************* 
* , :: createChromosome ::. 
* Used to create a new chromosome, and then insert it into a specific place in 
* a Vector of chromosomes 

* 
* @param thisChromosome, Vector of chromosomes 
* @param chromosomeindex, int representing the index of the chromosome to replace 

* 
********************************************************************************* 
*I 

public void createChromosome(Vector thisChromosome,int chromosomeindex) 
double geneSum = 0.00; 

do { 
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do { 
for {int x=O;x < this.chromosomeDimension;x++) 

((Chromosome)thisChromosome.get(chromosomeindex)) .genes[x] .setGeneJobShare(getRandom(lOO 
) ) ; 

geneSum += 
((Chromosome)thisChromosome.get(chromosomeindex)) .genes[x] .getGeneJobShare(); 

} 

} while (geneSum == 0); /* In the rare case the sum is 0 */ 

for (int z=O;z < this.chromosomeDimension;z++) { 
((Chromosome)thisChromosome.get(chromosomeindex)) .genes[z] .setGeneJobShare( 

((Chromosome}thisChromosome.get(chromosomeindex)) .genes[z] .getGeneJobShare() I geneSum 
) ; 

((Chromosome)thisChromosome.get(chromosomeindex)) .genes[z] .setGeneJobShare( 
getScaled((((Chromosome)thisChromosome.get(chromosomeindex)) .genes[z] .getGeneJobShare()) 
, this. decimalPrecision) ) ; 

} 

} while ( 
((Chromosome)thisChromosome.get(chromosomeindex)) .getFitnessValue(myGA) < 0.00 ); 

geneSum = 0. 00; 

II End of METHOD: createChromosome 

/****************************************************** 
* . : : createChromosome : : . 
* Used to create a new chromosome 

* 
* @return Chromosome, that was just created 

* 
****************************************************** 
*I 

public Chromosome createChromosome() 
double geneSum = 0.00; 
Chromosome newChrom =new Chromosome(myGA.chromosomeDimension); 

II Use for 5 available resources testing 
for (int x=O;x < myGA.chromosomeDimension;x++) 
if (x==O) { 

Share*//* 

/* Gene-Resource #, Speed, Cost, Job Share*/ 
newChrom.setThisGene(x,l,l,O); 

else if (x==l) { 
newChrom.setThisGene(x,3,3,0); 

else if (x==2) { 
newChrom.setThisGene(x,5,5,0); 

else if (x==3) { 
newChrom.setThisGene(x,7,6,0); 

else { 
newChrom.setThisGene(x,9,7,0); 

/* Use for 10 available resources testing 
for (int x=O;x < this.chromosomeDimension;x++) 
if (x==O) { 

/* Gene-Resource #, Speed, Cost, Job 

( (Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,l,l,O); 
else if (x==l) { 
( (Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,2,3,0); 
else if (x==2) { 
( (Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,3,5,0); 
else if (x==3) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,4,6,0); 

} else if (x==4) { 
( (Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,5,7,0); 
else if (x==S) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,6,8,0); 
else if (x==6) { 
( (Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,7,9,0); 
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else if (x==7) 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,B,lO,O); 
else if (x==B) { 
((Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,9,11,0); 
else { 

( (Chromosome)this.currGenChromosomes.get(i)) .setThisGene(x,10,12,0); 
} 

do 
do 

} 

*I 

for (int x=O;x < myGA.chromosomeDimension;x++) 
newChrom.genes[x] .setGeneJobShare(getRandom(100)); 
geneSum += newChrom.genes[x] .getGeneJobShare(); 

while (geneSum == 0); I* In the rare case the sum is 0 *I 

for (int z=O;z < myGA.chromosomeDimension;z++) 
newChrom.genes[z] .setGeneJobShare( newChrom.genes[z] .getGeneJobShare() I 

geneSum ) ; 
newChrom.genes[z] .setGeneJobShare( 

getScaled((newChrom.genes[z] .getGeneJobShare()), myGA.decimalPrecision) ); 
) 

} tvhile 
geneSum 

newChrom.getFitnessValue(myGA) < 0.00 ); 
0.00; 

return netvChrom; 

II End of METHOD: createChromosome 

/****************************************************** 
* . :: initPopulationPool ... 
* Used to create the initial pool of chromosomes 

* 
****************************************************** 
*I 

protected void initPopulationPool() 
double geneSum 0.00; 
double total 0.00; 
double totalDisplay 0.00; 
double adjustment 0.00; 
int adjustGene 0; 

I* Create the initial population. Randomly select the percentage 
of the job, that each gene(resource) will be assigned. *I 

for (int i=O;i < this.initialPopulation;i++) { 
myGA.createChromosome(this.currGenChromosomes,i); 

I* Find the total percentage of the job being distributed amongst 
the genes in a given chromosome, to make sure it equals 1 (100%). 
If this is not true, then adjust accordingly. *I 

for (int i=O;i < this.initia1Population;i++) { 
do { 

total= 0.00; 
for (int x=O;x < this.chromosomeDimension;x++) 

total += 
((Chromosome)myGA.currGenChromosomes.get(i)) .genes[x] .getGeneJobShare(); 

) 

100%) *I 
I* Adjust one of the genes in the chromosome, so that the total equals 1 (or 

if getScaled( (1 - total) ,this.decimalPrecision) != 0) 

I* In case the gene selected is 0.00, and the adjustment amount 
is less than O, we don't tvant to subtract from it, 
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which would realize a negative number. */ 
if ( getScaled((l- total),this.decimalPrecision) < 0) 

do { 
adjustGene = getRandom(this.chromosomeDimension); 

} while ( 
((Chromosome)myGA.currGenChromosomes.get(i)) .genes[adjustGene] .getGeneJobShare() < 

getScaled ( (total -
l),this.decimalPrecision) ); 

} 

adjustment= getScaled((l- total), this.decimalPrecision); 

/* Does an adjustment need to be made? */ 
if ( (getScaled(adjustment, this.decimalPrecision)) != 0.00) 

/* Add the "adjustment" to the randomly selected gene */ 

((Chromosome)myGA.currGenChromosomes.get(i)) .genes[adjustGene] .setGeneJobShare( 

((Chromosome)myGA.currGenChromosomes.get(i)) .genes[adjustGene] .getGeneJobShare() + 
adjustment); 

/* Scale value to the decimal precision */ 

((Chromosome)myGA.currGenChromosomes.get(i)) .genes[adjustGene] .setGeneJobShare( 

getScaled(((Chromosome)myGA.currGenChromosomes.get(i)) .genes[adjustGene] .getGeneJobShare 
(), this.decimalPrecision) ) ; 

} 

/* Does the adjusted chromosome meet the Fitness Value requirements (within 
time limits)?*/ 

0.00) 
if ( ((Chromosome)myGA.currGenChromosomes.get(i)) .getFitnessValue(myGA) < 

/* Create a new chromosome to replace the rejected one */ 
myGA.createChromosome(myGA.currGenChromosomes,i); 

/* Does the chromosome meet the Maximum Cost requirements ? */ 
if( 

((Chromosome)myGA.currGenChromosomes.get(i)) .getChromosomeCost(myGA.totalJobCycles) > 
myGA.maxJobCost) { 

/*The Maximum Cost requirements were NOT met, so ... */ 
do { 

/* Create a new chromosome to replace the rejected one */ 
myGA.createChromosome(myGA.currGenChromosomes,i); 

/* Adjust the new chromosome, to make sure the entire job is allocated */ 
myGA.adjustGeneDistribution( (Chromosome)myGA.currGenChromosomes.get(i) ); 

/* Repeat process if any of the following are true: 
-New Chromosome doesn't meet the Maximum Cost requiremets 
-New Chromosome doesn't account for 100% of the job 
- New Chromosome doesn't meet the Fitness Value requirments (1-1i thin 

time limits) */ 
} while ( 

(((Chromosome)myGA.currGenChromosomes.get(i)) .getChromosomeCost(myGA.totalJobCycles) > 
myGA.maxJobCost) I I 

(get Scaled ( 
((Chromosome)myGA.currGenChromosomes.get(i)) .getGeneJobShareTotal(),this.decimalPrecisio 
n) != 1.00) II 

(((Chromosome)myGA.currGenChromosomes.get(i)) .getFitnessValue(myGA) < 0.00) ); 
} 

while ((Chromosome)myGA.currGenChromosomes.get(i)) .getFitnessValue(myGA) < 
o.oo I I 

(getScaled(total,this.decimalPrecision) != 1.00) II 

(((Chromosome)myGA.currGenChromosomes.get(i)) .getChromosomeCost(myGA.totalJobCycles) > 
myGA.maxJobCost) ); 

} 

- 85-



) II End of METHOD: initPopulationPool 

/************************************************************************************* 
* . :: displayThisPopulation ::. 
* Used to print the details of each chromosome population 
* to the screen 

* 
* @param thisGA, GA instance to be displayed 
* @param thisPopulation, Vector population to be displayed 
* @param popDescription, String description to display that identifies the 

population 

* 

************************************************************************************* 
*I 

public void displayThisPopulation (GA thisGA, Vector thisPopulation, String 
popDescription) ( 

double totalDisplay = 0.00; 

System.out.print(''*****************************''); 
for (int i=O;i < thisGA.chromosomeDimension + 1;i++) 

System.out.print("********"); 
System.out.println(""); 
System.out.println(popDescription); 
System.out.print(''*****************************''); 
for (int i=O;i < thisGA.chromosomeDimension + 1;i++) 

System.out.print("********"); 
System.out.println(""); 
System.out.println("* C JA FV CT JC 
System.out.print("*"); 
for (int i=O;i < 37;i++) 

System.out.print(" "); 
for (int i=O;i < thisGA.chromosomeDimension;i++) 

System.out.print(i); 
if (i < thisGA.chromosomeDimension - 1) 

System.out.print(" "); 

System.out.println(""); 
System.out.print(''*****************************''); 
for (int i=O;i < thisGA.chromosomeDimension + 1;i++) 

System.out.print("********"); 
System.out.println(""); 
for (int i=O;i < thisGA.initialPopu1ation;i++) 

for (int x=O;x < thisGA.chromosomeDimension;x++) 
totalDisplay += 

((Chromosome)thisPopu1ation.get(i)) .genes[x] .getGeneJobShare(); 
System.out.print(" " + i + 

GENES"); 

" + (getScaled(totalDisplay, this.decimalPrecision) 
100) + "%" + 

" + 
((Chromosome)thisPopu1ation.get(i)) .getFitnessVa1ue(thisGA) + 

" + 
((Chromosome)thisPopulation.get(i)) .getChromosomeCompletionTime(thisGA) + 

" + 
((Chromosome)thisPopulation.get(i)) .getChromosomeCost(thisGA.totalJobCycles) +" "); 

for (int x=O;x < thisGA.chromosomeDimension;x++) 
System.out.print("ll "+ 

((Chromosome)thisPopulation.get(i)) .genes[x] .getGeneJobShare() +" "); 
System.out.println(""); 

* 

System.out.println("==================================================================== 
======="); 

totalDisplay = 0.00; 

) II End of METHOD: displayThisPopulation 
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/************************************************************* 
* .:: checkConvergence ::. 
* Used check to see if all the chromosomes in the 
* current generation are identical. IE: All resources/genes 
* are allocated identically to the other chromosomes in the 
* current generation. 

* 
* @return boolean, true if all converge, false if different 
************************************************************* 
*I 

public boolean checkConvergence() 

for (int i=O;i < myGA.initialPopulation;i++) 
for (int x=O;x < myGA.chromosomeDimension;x++) 

if( 
((Chromosome)myGA.currGenChromosomes.get(i)) .genes[x] .getGeneJobShare() != 

( (Chromosome)myGA.currGenChromosomes.get(O)) .genes[x] .getGeneJobShare() 
return false; 

return true; 
II End of METHOD: checkConvergence 

/*************************************************************************************** 
**k****** 

* Main method for GA class 

* 
* @param args, Passed in values for: InitialPopulation, NumberOfGenerations, 

ChromosomeDimension 

* 

**************************************************************************************** 
******** 

*I 
public static void main(String[] args) 

int population=O, generations=O, dimension=O; 
int gen=O; 
long timeBefore=O, timeAfter=O, timeDiff=O; 
double totalDisplay = 0.00; 
String popDescription = ""; 
Vector <Chromosome> tempVector=null; 
boolean done = false; 

System.out.println("\n*** GA started: "+new Date() .toString() +" ***"); 

try { 
if (args.length < 3) 

throw new GAException("Requires all 3 parameters:"); 

population 
generations 
dimension 

Integer.parseint(args[O]); 
Integer.parseint(args[1]); 
Integer.parseint(args[2]); 

if (population < 1) 
thr01~ new GAException ("Initial Population must be greater than 0"); 
else if (generations < 1) { 
throw new GAException("Chromosome_Dimension must be greater than 0"); 

if ((population % 2) != 0) 
throw new GAException("Initial_Population must be an even number"); 

catch (GAException e) 
System.out.println("\n" +e); 
System.out.println("USE: java GA 'Initial Population Number of Generations 

Chromosome Dimension'"); 
System.out.println("EXAMPLE: java GA 6 55"); 
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System.out.println(" ... exiting, goodbye."); 
System.exit(l); 

/* Open a file to store population information */ 
ReportWriter rw =new ReportWriter(); 

/* Complete 10 times for averaging purposes */ 
for (int zz=O;zz < lO;zz++) 

myGA =new GA(population,generations,dimension); 

/* Begin timings */ 
timeBefore = System.currentTimeMillis(); 
System.out.println("Begin time in milliseconds:" + timeBefore); 

/* Initialize the beginning population pool */ 
myGA.initPopulationPool(); 

/* Initial population is created, now cycle through multiple generations */ 
//for (gen=O;gen < myGA.numberOfGenerations;gen++) 
/* do loop used to perform loop until convergence */ 
do { 

/* Check to see if there will be a crossover or mutation */ 
for (int i=O;i < myGA.initialPopulation;i++) { 

/* Check to see if there will be a crossover performed */ 

if (myGA.checkForCrossover()) 
myGA.doCrossover(myGA.initialPopulation); 
else { 
I* No crossover, so check for a mutation */ 
if (myGA.checkForMutation()) { 
if( 

((Chromosome)myGA.currGenChromosomes.get(i)) .getChromosomeCost(myGA.totalJobCycles) > 
myGA.maxJobCost ) { 

System.exit(l); 
} 

myGA.propagateFittestParentChromosome(myGA.initialPopulation); 

/* Make new generation the current generation */ 
try { 

tempVector = (Vector 
<Chromosome>) (ObjectCloner.deepCopy(myGA.nextGenChromosomes)); 

} catch (Exception e) { 
System.out.println("ObjectCloner exception: " +e); 

myGA.currGenChromosomes.removeAllElements(); 
myGA.currGenChromosomes = tempVector; 
myGA.nextGenChromosomes.removeAllElements(); 

/* Check to make sure that the next generation is empty */ 
if (myGA.nextGenChromosomes.isEmpty()) { 

some noise */ 

/* All is well, proceed to next generation */ 
else { 
/*Error, next generation should be current generation, and empty ... make 

popDescription = "*Generation:" + gen + ", nextGenChromosomes <== 0" ; 
myGA.displayThisPopulation(myGA,myGA.nextGenChromosomes,popDescription); 
System.out.println("ERROR!!!! (NextGen) population fitness average: " + 

getScaled(myGA.getSumFitness(myGA.currGenChromosomes)/myGA.initialPopulation, 
myGA.decimalPrecision) + "\n\n"); 

} 

gen++; 
done = myGA.checkConvergence(); 

while ( ! done) ; 
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I* End timings *I 
timeAfter = System.currentTimeMillis(); 
timeDiff = timeAfter - timeBefore; 

rw.writeThisinfo( 
((Chromosome)myGA.currGenChromosomes.get(O)) .getChromosomeCost(myGA.totalJobCycles) + 
!If II + 

((Chromosome)myGA.currGenChromosomes.get(O)) .getChromosomeCompletionTime(myGA) + "," + 

((Chromosome)myGA.currGenChromosomes.get(O)) .getFitnessValue(myGA) + "," + 
getScaled( (timeDiff * .001) ,myGA.decimalPrecision) + "," + 
gen 

) ; 

System.out.println("******************************************************************** 
*******"); 

System.out.println(" TOTAL # OF 
TOTAL GA"); 

System.out.println(" GENERATIONS 
RUNTIME"); 

System.out.println(" " + gen + 
" + 

AVG CHROM AVG CHROM AVG CHROM 

JOB COST COMPLETION TIME FV 

((Chromosome)myGA.currGenChromosomes.get(O)) .getChromosomeCost(myGA.totalJobCycles) + 
" + 

((Chromosome)myGA.currGenChromosomes.get(O)) .getChromosomeCompletionTime(myGA) + 
" + 

((Chromosome)myGA.currGenChromosomes.get(O)) .getFitnessValue(myGA) + 
"+ timeDiff + "ms" + "==> "+ getScaled((timeDiff 

* .OOl),myGA.decimalPrecision) + "s" ); 

System.out.println("******************************************************************** 
*******"); 

gen = 0; 

II end of for loop for averaging purposes 

rw.closeReportFile(); 

popDescription = "Convergence" 
myGA.displayThisPopulation(myGA,myGA.currGenChromosomes,popDescription); 

System.out.println("\n*** GA ended: "+new Date() .toString() +" ***"); 

II End of METHOD: main 

} II End of CLASS: GA 
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import java.io.*; 

/** 
* @author James Sweeney 
* March, 2007 

* 
* Class that stores the gene information 
*I 

public class Gene implements Serializable 

private static final long serialVersionUID 1; 
protected int geneSpeed; 
protected double geneCost; 
protected double geneJobShare; 

/* 
* Constructor for the Gene class 

* 
* @param speed, representing speed of this resource (gene) 
* @param cost, representing cost of this resource (gene) 
* @param jobShare, representing percentage of the job that this resource (gene) 

will process 
*I 

public Gene (int speed, double cost, double jobShare) 
this.geneSpeed speed; 
this.geneCost cost; 
this.geneJobShare jobShare; 

public int getGeneSpeed() 
return (this.geneSpeed); 

public void setGeneSpeed(int s) { 
this.geneSpeed = s; 

public double getGeneCost() 
return (this.geneCost); 

public void setGeneCost(double c) 
this.geneCost = c; 

public double getGeneJobShare() 
return (this.geneJobShare); 

public void setGeneJobShare(double js) 
this.geneJobShare = js; 
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import java.io.*; 

I** 
* @author James Sweeney 
* March, 2007 

* 
* Class that stores the chromosome information 
*I 

public class Chromosome implements Serializable 

private static final long serialVersionUID 1; 

II Gene storage for each Chromosome 
protected Gene [] genes; 

I* 
* Constructor for the Chromosome class 
* @param numGenes 
*I 

public Chromosome (int numGenes) 
genes = ne\v Gene [numGenes]; 

/********************************************* 
* . :: getGenes ::. 

* @return Gene [] representing the chromosome 
********************************************* 
*I 

public Gene [] getGenes() 
return (genes); 

/************************************************************************ 
* .:: setThisGene ::. 

* @param int representing the gene to set 
* @param int representing the speed of the gene 
* @param double representing the cost of the gene 
* @param double representing the percentage of job assigned to that gene 
************************************************************************ 
*I 

public void setThisGene(int thisGene, int geneSpeed, double geneCost, double 
geneJobShare) { 

genes[thisGene] =new Gene(geneSpeed,geneCost,geneJobShare); 

/************************************************ 
* .:: getGeneJobShareTotal ::. 

* @return double representing % of job allocated 
************************************************ 
*I 

public double getGeneJobShareTotal() 
double geneTotal = 0; 
for (int i=O;i < this.genes.length;i++) 

geneTotal += genes[i] .getGeneJobShare(); 

return (GA.getScaled(geneTotal, 2)); 

/******************************************************************************* 
*********** 

* .:: getFitnessValue::. 
* @param thisGA, GA which contains the chromosome about which you wold like to 

find the FV 
* @return double representing the Fitness Value 

**************************************************************************************** 
** 

*I 
public double getFitnessValue(GA thisGA) 

double completionTime = 0; 
double tempCompletionTime = 0; 
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for (int i=O;i < this.genes.length;i++) 
tempCompletionTime = ( thisGA.totalJobCycles * genes[i] .getGeneJobShare() 

I genes[i] .getGeneSpeed(); 
if (tempCompletionTime > completionTime) 

completionTime = tempCompletionTime; 

return ( thisGA.getScaled((thisGA.maxJobExecutionTime- completionTime), 2) ) ; 

/******************************************************************************* 
************************ 

* .:: getChromosomeCompletionTime ::. 
* @param thisGA, GA which contains the chromosome about which you wold like to 

find the completion time 
* @return double representing the time in ms, that it will take for the 

chromosome to run 

**************************************************************************************** 
*************** 

*I 
public double getChromosomeCompletionTime(GA thisGA) 

double completionTime = 0; 
double tempCompletionTime = 0; 

for (int i=O;i < this.genes.length;i++) 
tempCompletionTime = ( thisGA.totalJobCycles * genes[i] .getGeneJobShare() 

I genes[i] .getGeneSpeed(); 
if (tempCompletionTime > completionTime) 

completionTime = tempCompletionTime; 

return ( thisGA.getScaled((completionTime), 2) ); 

/***************************************************************** 
* .:: getChromosomeCost ::. 
* @param totalJobCycles, Total job cycles required to run the job 
* @return double representing the cost 
***************************************************************** 
*I 

public double getChromosomeCost(int totalJobCycles) 
double chromCost = 0; 
for (int i=O;i < this.genes.length;i++) 

chromCost += ( ( (genes[i] .getGeneJobShare() * totalJobCycles) I 
genes[i] .getGeneSpeed() ) * genes[i] .getGeneCost() ); 

} 
return (GA.getScaled(chromCost, 2)); 
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/** 
* @author James Sweeney 
* March, 2007 

* 
* GA exception class 

* 
*I 

public class GAException extends Exception 
( 

private static final long serialVersionUID 1; 

/** 
* GAException constructor 
* @param msg, Error message 
*I 

GAException(String msg) 
( 

super(msg); 
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import java.io.*; 
import java.util.*; 
import java.awt.*; 

I** 
* @author James Sweeney (Dave Miller code) 
* March, 2007 

* 
* Class used to make a deep copy of an object 
*I 

public class ObjectCloner 
{ 

II so that nobody can accidentally create an ObjectCloner object 
private ObjectCloner() {) 
II returns a deep copy of an object 
static public Object deepCopy(Object oldObj) throws Exception 
{ 

ObjectOutputStream oos = null; 
ObjectinputStream ois = null; 
try 
{ 

ByteArrayOutputStream bas = 
ne1~ ByteArrayOutputStream () ; I I A 

oos =new ObjectOutputStream(bos); II B 
II serialize and pass the object 
oos.writeObject(oldObj); II C 
oos.flush(); II D 
ByteArrayinputStream bin 

new ByteArrayinputStream(bos.toByteArray()); 
ois =new ObjectinputStream(bin); 
II return the new object 
return ois.readObject(); II G 

catch(Exception e) 
{ 

II E 
II F 

System.out.println("Exception in ObjectCloner 
throw (e); 

" + e); 

finally 
{ 

oos.close(); 
ois.close(); 
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import java.io.*; 
import java.util.*; 

/** 
* @author James Sweeney 
* March, 2007 

* 
* Class that is used to create a file to be used to write information 
*I 

public class ReportWriter { 

String fileName = "report.txt"; 
File f; 
FileWriter fw; 
PrintWriter pw; 

/* 
* Constructor for the ReportWriter class 
*I 

public ReportWriter () 
try { 

f new File(fileName); 
fw =new FileWriter(f); 
pw =new PrintWriter(fw); 
//pw.println("\n*** GA started:"+ new Date().toString() +" ***"); 

catch(IOException e) 
System.out.println("Exception writing file:"+ e); 

/*************************************************************************** 
* . :: writeThisPopulation ::. 
* @param 
* @param 
* @param 

thisGA, GA that contains the population of interest 
thisPopulation, Vector containing the cromosomes in the population 
popDescription, String describing the population 

* 
*************************************************************************** 
*/ 

public void writeThisPopulation (GA thisGA, Vector thisPopulation, String 
popDescription) { 

double totalDisplay = 0.00; 

pw.print(''\n\n*****************************''); 
for (int i=O;i < thisGA.chromosomeDimension + l;i++) 

pw.print(''********''); 
pw.println(""); 
pw.println(popDescription); 
pw.print(''*****************************''); 
for (int i=O;i < thisGA.chromosomeDimension + l;i++) 

pw.print(''********''); 
p1~.println (""); 
pw.println("* C JA 
pw.print("*"); 
for (int i=O;i < 37;i++) 

pw.print(" "); 

FV CT JC 

for (int i=O;i < thisGA.chromosomeDimension;i++) 
plv.print(i); 
if (i < thisGA.chromosomeDimension - l) 

pw.print(" "); 

pw.println(""); 
pw.print(''*****************************''); 

GENES"); 

for (int i=O;i < thisGA.chromosomeDimension + l;i++) 
pw.print(''********''); 

plv.println(""); 
for (int i=O;i < thisGA.initialPopulation;i++) 

for (int x=O;x < thisGA.chromosomeDimension;x++) 
totalDisplay += 

( (Chromosome)thisPopulation.get(i)) .genes[x] .getGeneJobShare(); 
pw.print(" " + i + 
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" + (thisGA.getScaled(totalDisplay, 
thisGA.decimalPrecision) * 100) + "%" + 

" + 
((Chromosome)thisPopulation.get(i)) .getFitnessValue(thisGA) + 

" + 
((Chromosome)thisPopulation.get(i)) .getChromosomeCompletionTime(thisGA) + 

" + 
((Chromosome)thisPopulation.get(i)) .getChromosomeCost(thisGA.totalJobCycles) +" "); 

for (int x=O;x < thisGA.chromosomeDimension;x++) 
pw.print("ll "+ 

((Chromosome)thisPopulation.get(i)) .genes[x] .getGeneJobShare() +" "); 
pw.println(""); 

pw.println("===========================================================================" 
) ; 

totalDisplay = 0.00; 

} // End of METHOD: writeThisPopulation 

/************************************** 
* .:: writeThisinfo ::. 
* @param info, String to write to file 

* 
************************************** 
*I 

public void writeThisinfo(String info) 
pw.println(info); 

/************************************** 
* , :: closeReportFile ::. 
* Method to record the time that the 
* GA ended, and close the file 

* 
************************************** 
*/ 

public void closeReportFile() 
pw.close(); 
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APPENDIXC 

Appendix C: Simulated Annealing Code Listings 

import java.io.*; 
import java.util.*; 
import java.lang.Math; 
import java.math.*; 

I** 
* @author James Stveeney 
* March, 2007 

* 
* Main Simulated Annealing class 

* 
*I 

public class SimulatedAnnealing{ 

**** 

I* Annealing Schedule Variables *I 

II Variables for the bounds of the cooling schedule 
double initialTemperature; II starting point for algorithm 
double finalTemperature; II stopping point for algorithm 
double tweakFactor; II used to perturb the solution 

II Constant used for geometric cooling 
double alpha; II used as a multiplier to decrement the temperature 

II Number of iterations performed at each temperature change (plateau) 
int stepsPerChange; II number of iterations at each temperature level 

II Number of available resources for each solution 
int solutionDimension; 

II Decimal precision to use for each resource 
int decimalPrecision; 

II Total number of cycles needed to run the job 
int totalJobCycles; 

II Maximum time allowed for job execution 
int maxJobExecutionTime; 

II Maximum cost allowed for job execution 
double maxJobCost; 

Solution current, working, best; 

static SimulatedAnnealing mySA; 

/******************************************************************************* 

* Constructor for SimulatedAnnealing class. 

* 
* @param initialTemperature, double value for starting temperature of the 

algorithm 
* @param finalTemperature, double value for the ending temperature of the 

algorithm 

level 
* @param iterations, int value for the number of cycles at each temperature 

* @param alpha, double value used as a multiplier to decrement the temperature 
* @param tweakFactor, double value used perturb the solution. 

* 

*********************************************************************************** 

- 97-



* 
*I 

public SimulatedAnnealing(double 
double 
int 
double 
double 

initialTemperature, 
final Temperature, 
iterations, 
alpha, 
tweakFactor) 

this.initialTemperature 
this.finalTemperature 
this.stepsPerChange 
this.alpha 
this.tweakFactor 

this.solutionDimension 

initialTemperature; 
final Temperature; 
iterations; 
alpha; 
tweakFactor; 

= 5; 

current 
working 
best 

new Solution(solutionDimension); 
new Solution(solutionDimension); 
new Solution(solutionDimension); 

for (int x=O;x < solutionDimension;x++) { 
if (x==O) { 

/* Gene-Resource #, Speed, Cost, Job Share*/ 
current.setThisResource(x,l,l,O); 
working.setThisResource(x,l,l,O); 
best.setThisResource(x,l,l,O); 
else if (x==l) { 
current.setThisResource(x,3,3,0); 
working.setThisResource(x,3,3,0); 
best.setThisResource(x,3,3,0); 
else if (x==2) { 
current.setThisResource(x,5,5,0); 
working.setThisResource(x,5,5,0); 
best.setThisResource(x,5,5,0); 
else if (x==3) { 
current.setThisResource(x,7,6,0); 
working.setThisResource(x,7,6,0); 
best.setThisResource(x,7,6,0); 
else if (x==4) { 
current.setThisResource(x,9,7,0); 
working.setThisResource(x,9,7,0); 
best.setThisResource(x,9,7,0); 

//To be used with 10 available resources 
/*else if (x==5) { 
current.setThisResource(x,6,8,0); 
working.setThisResource(x,6,8,0); 
best.setThisResource(x,6,8,0); 
else if (x==6) { 
current.setThisResource(x,7,9,0); 
working.setThisResource(x,7,9,0); 
best.setThisResource(x,7,9,0); 
else if (x==7) { 
current.setThisResource(x,8,10,0); 
working.setThisResource(x,8,10,0); 
best.setThisResource(x,8,10,0); 
else if (x==8) { 
current.setThisResource(x,9,11,0); 
working.setThisResource(x,9,11,0); 
best.setThisResource(x,9,11,0); 
else { 
current.setThisResource(x,10,12,0); 
working.setThisResource(x,10,12,0); 
best.setThisResource(x,10,12,0); 
*/ 

this.decimalPrecision = 2; 

II Total number of cycles needed to run the job 
this.totalJobCycles = 20; 
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II Maximum time allowed for job execution 
this.maxJobExecutionTime = 10; 

II Maximum cost allowed for job execution 
this.maxJobCost = 25.50; 

/*********************************************************************** 
* . : : getScaled : : . 
* Scale decimal number via the rounding mode BigDecimal.ROUND_HALF_UP. 
* Method is used to make sure that the correct number of decimal 
* places are used for each resource. 

* 
* @param value, double value to be scaled 
* @param scale, int value for number of decimals to scale to 
* @return double representing the newly scaled number 
*********************************************************************** 
*I 

static public double getScaled(double value, int scale) 
double result= value; //default: unsealed 

//use BigDecimal String constructor as this is the only exact way for double 
values 

result= new BigDecimal(value) .setScale(scale, 
BigDecimal.ROUND_HALF_UP) .doubleValue(); 

II Could also use: 
//result= Math.round(value * 100.0) I 100.0; 

return result; 
//End of METHOD: getScaled 

/********************************************************** 
* .:: getRandom (int) ... 
* return a integer random number between 0 and upperBound 
* @param upperBound of the range for randomization 
* @return int, randomly generated number 
********************************************************** 
*I 

int getRandom(int upperBound) 
int iRandom = (int) (Math.random() * upperBound); 
return (iRandom); 

//End of METHOD: getRandom (int) 

/******************************************************** 
* . :: getRandom (double) ... 
* return a double random number between 0 and upperBound 
* @param upperBound of the range for randomization 
* @return double, randomly generated number 
******************************************************** 
*I 

double getRandom(double upperBound) 
II Gives a random number that is: 
II 0.00 <= dRandom < upperBound 
II This does exclude returning the maximum value 
double dRandom = (Math.random() * upperBound); 
return (dRandom); 

II End of METHOD: getRandom (double) 

/********************************************************** 
* . : : tweakSolution : : . 

* 
* Method that takes a given Solution, and tweaks it 
* by subtracting "tweakFactor" (ex: .05 ==> 5%) from a 
* randomly selected resources job share, 
* and then adding that "tweakFactor" to another randomly 
* selected resources's job share. The "tweakFactor" variable 
* is passed in at program startup. 
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* 
* @param thisSolution, Solution to tweak 
********************************************************** 
*I 

protected Solution tweakSolution(Solution thisSolution) 
int resourceMinus 0; 
int resourceAdd = 0; 

I* Find a resource in the given solution, from which tweakFactor can be subtracted 
without 

leaving a negative number. *I 
do { 

resourceMinus = getRandom(solutionDimension); 
} while ( (thisSolution.resources[resourceMinus] .getResourceJobShare() -

this.tweakFactor) < 0 ); 

I* Subtract the tweakFactor *I 
thisSolution.resources[resourceMinus] .setResourceJobShare( 

getScaled((thisSolution.resources[resourceMinus] .getResourceJobShare() 
- this.tweakFactor), this.decimalPrecision)); 

*I 
I* Find a resource to add t1veakFactor, but not the one just reduced by tweakFactor 

do 
resourceAdd = getRandom(solutionDimension); 

} while (resourceAdd == resourceMinus); 

I* Add the tweakFactor *I 
thisSolution.resources[resourceAdd] .setResourceJobShare( 

getScaled((thisSolution.resources[resourceAdd] .getResourceJobShare() + 
this.tweakFactor), this.decimalPrecision)); 

try 

limits) *I 

I* Does the solution meet the Maximum Cost requirements ? *I 
if (thisSolution.getSolutionCost(mySA.totalJobCycles) > mySA.maxJobCost) 

I* The Maximum Cost requirements were NOT met, so ... *I 
do { 

do { 
I* Create a new solution to replace the rejected one *I 
thisSolution = mySA.createSolution(); 

I* Adjust the ne\oJ solution, to make sure the entire job is allocated *I 
mySA.adjustResourceDistribution(thisSolution); 

I* Repeat process if any of the following are true: 
-New solution doesn't meet the Maximum Cost requiremets 
-New solution doesn't account for 100% of the job 
-New solution doesn't meet the Energy requirments (within time 

while 
mySA.maxJobCost) 

(thisSolution.getSolutionCost(mySA.totalJobCycles) > 
II 

(getScaled( 
this Solution. getResourceJobShareTotal () , this. decimalPrecision) ! = 1. 00) I I 

(thisSolution.getEnergy(mySA) < 0.00) ) ; 
} while (! thisSolution.isValid()); 

catch (Exception e) 
System.out.println("ObjectCloner exception: "+e); 

} 

return thisSolution; 

} II End of METHOD: tweakSolution 

/******************************************************* 
* . :: adjustResourceDistribution ::. 
* Used to adjust a Resource, so that the sum of the 
* Resource job shares equal 1 (100%, entire job allocated) 

* 
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* @param sl, Resource to adjust 
******************************************************* 
*I 

protected void adjustResourceDistribution(Solution sl) 
boolean adjusting = false; 

<= 1) 

if ( getScaled ( slo getResourceJobShareTotal () , my SA 0 decimalPrecision) ! = 1) { 
if ( getScaled(slogetResourceJobShareTotal(),mySAodecimalPrecision) < 1) { 

do { 
int adjustResource = getRandom(mySAosolutionDimension); 
if ( (slogetResources() [adjustResource]ogetResourceJobShare() + 

(1- getScaled(slogetResourceJobShareTotal(),mySAodecimalPrecision))) 

slogetResources() [adjustResource] osetResourceJobShare( 
sl o getResources () [adjustResource] o getResourceJobShare () + ( 1 -
getScaled(slogetResourceJobShareTotal(),mySAodecimalPrecision)) ); 

slogetResources() [adjustResource] osetResourceJobShare( 
getScaled(slogetResources() [adjustResource] ogetResourceJobShare(), 
mySAodecimalPrecision) ); 

>= 0) 

adjusting = true; 

while (!adjusting); 

else 
if 

do 

(getScaled(slogetResourceJobShareTotal() ,mySAodecimalPrecision) - 1) 

int adjustResource = getRandom(mySAosolutionDimension); 
if ( (slo getResources () [adjustResource] 0 getResourceJobShare () -

(getScaled(slogetResourceJobShareTotal(),mySAodecimalPrecision) -
1)) >= 0 ) 

slo getResources () [ adjustResource] o setResourceJobShare ( 
sl o getResources () [adj ustResource] o getResourceJobShare () -
(getScaled(slogetResourceJobShareTotal() ,mySAodecimalPrecision) - 1) ) ; 

slogetResources() [adjustResource] osetResourceJobShare( 
getScaled(slogetResources() [adjustResource] ogetResourceJobShare(), 
mySAodecimalPrecision) ); 

adjusting = true; 
else { 
slogetResources() [adjustResource] osetResourceJobShare(OoOO); 

while (!adjusting); 

II End of METHOD: adjustGeneDistribution 

/****************************************************** 
* 0:: createSolution ::o 
* Used to create a new solution 

* 
* @return Solution, that was just created 

* 
****************************************************** 
*I 

public Solution createSolution() 
double resourceSum = OoOO; 
Solution newSolution =new Solution(mySAosolutionDimension); 

for (int x=O;x < mySAosolutionDimension;x++) 
if (x==O) { 

I* Resource #, Speed, Cost, Job Share*/ 
newSolutionosetThisResource(x,l,l,O); 

else if (x==l) { 
newSolutionosetThisResource(x,3,3,0); 

else if (x==2) { 
newSolutionosetThisResource(x,5,5,0); 

else if (x==3) { 
newSolutionosetThisResource(x,7,6,0); 
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} 

*I 

do 

else if (x==4) 
newSolution.setThisResource(x,9,7,0); 

II To be used with 10 available resources 
/*else if (x==5) { 

newSolution.setThisResource(x,6,8,0); 
else if (x==6) { 

newSolution.setThisResource(x,7,9,0); 
else if (x==7) { 

newSolution.setThisResource(x,B,lO,O); 
else if (x==B) { 

newSolution.setThisResource(x,9,ll,O); 
else { 

newSolution.setThisResource(x,10,12,0); 

do 
for (int x=O;x < mySA.solutionDimension;x++) 

newSolution.resources[x] .setResourceJobShare(getRandom(lOO)); 
resourceSum += newSolution.resources[x] .getResourceJobShare(); 

while (resourceSum == 0); /* In the rare case the sum is 0 */ 

for (int z=O;z < mySA.solutionDimension;z++) 
newSolution.resources[z] .setResourceJobShare( 

newSolution.resources[z] .getResourceJobShare() I resourceSum ); 
newSolution.resources[z] .setResourceJobShare( 

getScaled((newSolution.resources[z] .getResourceJobShare()), mySA.decimalPrecision) ); 
} 

mySA.adjustResourceDistribution(newSolution); 

while ( newSolution.getEnergy(mySA) < 0.00 ); 

try { 
/* Does the Solution meet the Maximum Cost requirements ? */ 
if (newSolution.getSolutionCost(mySA.totalJobCycles) > mySA.maxJobCost) 

/* The Maximum Cost requirements were NOT met, so set valid flag to false */ 
newSolution.setValid(false); 
return newSolution; 

catch (Exception e) 
System. out. println ( "Obj ectCloner exception: " + e) ; 

resourceSum = 0.00; 

if (newSolution.getSolutionCost(mySA.totalJobCycles) > mySA.maxJobCost) 
mySA.printSolution(newSolution, " ... OVER COST- NEW SOLUTION ... "); 

return newSolution; 

II End of METHOD: createSolution 

/************************************************************************************* 
* .:: displayThisPopulation ::. 
* Used to print the details of each chromosome population to the screen 

* 
* @param thisSolution, Solution to be displayed 
* @param description, String description to display that identifies the solution 
* 

************************************************************************************* 
*/ 
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public void printSolution(Solution thisSolution, String description) 
double totalDisplay = OoO; 

System.out.print(''****************************''}; 
for (int i=O;i < mySAosolutionDimension + l;i++) 

Systemooutoprint("********"); 
Systemooutoprintln(""); 
Systemooutoprintln(description); 
System.out.print(''****************************''); 
for (int i=O;i < mySAosolutionDimension + 1;i++) 

Systemooutoprint("********"); 
Systemooutoprintln(""); 
Systemooutoprintln("* JA ENERGY CT 
Systemooutoprint("*"); 
for (int i=O;i < 37;i++) 

Systemooutoprint(" "); 
for (int i=O;i < mySAosolutionDimension;i++) 

Systemooutoprint(i); 
if (i < mySAosolutionDimension - 1) 

Systemooutoprint(" "); 

JC 

Systemooutoprintln(""); 
System.out.print(''****************************''); 
for (int i=O;i < mySAosolutionDimension + 1;i++) 

Systemooutoprint("********"); 
Systemooutoprintln(""); 

for (int x=O;x < mySAosolutionDimension;x++) 

RESOURCES") ; 

totalDisplay += thisSolutionogetResources() [x] ogetResourceJobShare(); 
Systemooutoprint( 

" + (getScaled(totalDisplay, mySAodecimalPrecision) * 
100) + "%" + 

+ II ") i 

" + thisSolutionogetEnergy(mySA) + 
" + thisSolutionogetSolutionCompletionTime(mySA) + 
" + thisSolutionogetSolutionCost(mySAototalJobCycles) 

for (int x=O;x < mySAosolutionDimension;x++) 
Systemooutoprint("ll "+ 

thisSolution o getResources () [x] o getResourceJobShare () + " "); 
Systemooutoprintln(""); 

Systemooutoprintln("==================================================================== 
=======II ) ; 

) II End of METHOD: printSolution 

/*************************************************************************************** 
************** 

* Main method for SA class 

* 
* @param args, Passed in values for: 

initialTemperature,finalTemperature,iterations,alpha,tweakFactor 

* 

**************************************************************************************** 
************* 

*I 
public static void main(String[] args) 

double temperature= OoOO; 
long timeBefore=O, timeAfter=O, timeDiff=O; 
int step; 
double initialTemperature=OoOO, 

finalTemperature=O o 00, alpha=O o 00, tlveakFactor=O o 00; 
int iterations=O; 
boolean solution = false; 

Systemooutoprintln("\n*** SA started: " +new Date() otoString() + " ***"); 
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try { 
if (args.length < 5) 

throw new SAException("Requires all 5 parameters:"); 

initial Temperature 
final Temperature 
iterations 
alpha 
tweakFactor 

Double.parseDouble(args[O]); 
Double.parseDouble(args[1]); 
Integer.parseint(args[2]); 
Double.parseDouble(args[3]); 
Double.parseDouble(args[4]); 

if (initialTemperature < 1) 
throw new SAException("Initial_Temperature must be greater than or equal 

to 1.0"); 

if (finalTemperature < 0.01) { 
throw new SAException("Final_Temperature must be greater than 0.01"); 

if (iterations < 1) 
throw new SAException("iterations must be greater than or equal to 1"); 

if (alpha >= 1) 
throw new SAException("alpha must be less than 1"); 

if (tweakFactor >= 1) 
throw new SAException("tweakFactor must be less than 1"); 

catch (SAException e) 
System.out.println("\n" +e); 
System.out.println("USE: java SimulatedAnnealing 'initialTemperature 

final Temperature iterations alpha t\~eakFactor' ") ; 
System.out.println("EXAMPLE: java SimulatedAnnealing 50 .05 10 .99 .05"); 
System.out.println(" ... exiting, goodbye."); 
System.exit(1); 

/* Open a file to store population information */ 
ReportWriter rw =new ReportWriter(); 

/* Complete 10 times for averaging purposes */ 
for (int zz=O;zz < 10;zz++) { 

mySA = new 
SimulatedAnnealing(initialTemperature,finalTemperature,iterations,alpha,tweakFactor); 

*/ 

temperature= mySA.initialTemperature; 

/* Begin timings */ 
timeBefore = System.currentTimeMillis(); 
System.out.println("Begin time in milliseconds:"+ timeBefore); 

do { 
do { 

/* Create a new Solution to replace the rejected one */ 
mySA.current = mySA.createSolution(); 

/* Adjust the new Solution, to make sure the entire job is allocated */ 
mySA.adjustResourceDistribution(mySA.current); 

I* Repeat process if any of the following are true: 
-New Solution doesn't meet the Maximum Cost requiremets 
-New Solution doesn't account for 100% of the job 
- New Solution doesn't meet the Energy requirments (within time limits) 

1~hile 

mySA.maxJobCost) 
(mySA.current.getSolutionCost(mySA.totalJobCycles) > 

II 
(getScaled ( 

mySA.current.getResourceJobShareTotal(),mySA.decimalPrecision) != 1.00) I I 
(mySA.current.getEnergy(mySA) < 0.00) ); 

} while (! mySA.current.isValid()); 
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try { 

do 

mySAoworking = (Solution) (ObjectClonerodeepCopy(mySAocurrent)); 
mySAobest = (Solution) (ObjectClonerodeepCopy(mySAocurrent)); 
catch (Exception e) { 
Systemooutoprintln("ObjectCloner exception: "+e); 

for (step O;step < mySAostepsPerChange;step++) { 

try { 
mySAoworking = (Solution) (ObjectClonerodeepCopy(mySAocurrent)); 
catch (Exception e) { 
Systemooutoprintln("ObjectCloner exception: "+e); 

mySAoworking mySAotweakSolution(mySAoworking); 

double test mySAogetRandom(loO); 
double delta mySAoworkingogetEnergy(mySA) -

mySAocurrentogetEnergy(mySA); 

&& 

double calc OoOO; 

if (delta > 0) 

try { 
mySAocurrent = (Solution) (ObjectClonerodeepCopy(mySAolvorking)); 
catch (Exception e) { 
Systemooutoprintln ("ObjectCloner exception: " + e); 

if (mySAoworkingogetEnergy(mySA) > mySAobestogetEnergy(mySA)) { 
try { 

mySAobest = (Solution) (ObjectClonerodeepCopy(mySAoworking)); 
catch (Exception e) { 
Systemooutoprintln("ObjectCloner exception: "+e); 

else if ( (mySA 0 working 0 getEnergy (mySA) == my SAo best o getEnergy (my SA) ) 

(mySAoworkingogetSolutionCost(mySAototalJobCycles) <= 
mySAobestogetSolutionCost(mySAototalJobCycles)) ) { 

try { 
mySAobest = (Solution) (ObjectClonerodeepCopy(mySAoworking)); 
catch (Exception e) { 
SystemooUtoprintln("ObjectCloner exception: "+e); 

else if (test< Mathoexp(delta/temperature) ) { 
try { 

mySAocurrent = (Solution) (ObjectClonerodeepCopy(mySAoworking)); 
catch (Exception e) { 
Systemooutoprintln("ObjectCloner exception: "+e); 

temperature *= mySAoalpha; 

while (temperature> mySAofinalTemperature); 

/* End timings */ 
timeAfter = SystemocurrentTimeMillis(); 
timeDiff = timeAfter - timeBefore; 

rwowriteThisinfo( mySAobestogetSolutionCost(mySAototalJobCycles) + "," + 
mySAobestogetSolutionCompletionTime(mySA) + "," + 
mySAobestogetEnergy(mySA) + "," + 
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getScaled((tirneDiff * .OOl),rnySA.decirnalPrecision) + "," + 
rnySA.stepsPerChange 

) ; 

rnySA.printSolution(rnySA.best, zz +":BEST SOLUTION FOUND"); 
Systern.out.println(" "+ tirneDiff + "rns" + "~~> "+ getScaled((tirneDiff * 

. 001) ,rnySA.decirnalPrecision) ) ; 

) II end of for loop for averaging purposes 

rw.closeReportFile(); 

II END of METHOD: Main 

) II End of CLASS: Simulated Annealing 
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import java.io.*; 

I** 
* @author James Sweeney 
* March, 2007 

* 
* Class that stores the Resource information 
*I 

public class Resource implements Serializable 

II Speed of this resource 
protected int resourceSpeed; 

II Cost of this resource 
protected double resourceCost; 

II Percentage of the job assigned to this resource 
protected double resourceJobShare; 

I* 
* Constructor for the Resource class 

* 
* @param speed, representing speed of this resource 
* @param cost, representing cost of this resource 
* @param jobShare, representing percentage of the job assigned to this Resource 
*I 

public Resource (int speed, double cost, double jobShare) 
this.resourceSpeed speed; 
this.resourceCost cost; 
this.resourceJobShare jobShare; 

/*********************************************************** 
* . :: getResourceSpeed ... 
* @return int representing the speed of this Resource 

* 
*********************************************************** 
*I 

public int getResourceSpeed() 
return (this.resourceSpeed); 

/*********************************************************** 
* .:: setResourceSpeed ::. 
* @param s representing the speed of this Resource 

* 
*********************************************************** 
*I 

public void setResourceSpeed(int s) 
this.resourceSpeed = s; 

/*********************************************************** 
* .:: getResourceCost ... 
* @return int representing the cost of this Resource 

* 
*********************************************************** 
*I 

public double getResourceCost() 
return (this.resourceCost); 

/*********************************************************** 
* .:: setResourceCost ::. 
* @param c representing the cost of this Resource 

* 
*********************************************************** 
*I 

public void setResourceCost(double c) 
this.resourceCost = c; 
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/******************************************************************************* 
** 

* .:: getResourceJobShare ::. 
* @return double representing the percentage of the job assigned to this 

Resource 

* 

********************************************************************************* 
*I 

public double getResourceJobShare() 
return (this.resourceJobShare); 

/**************************************************************************** 
* . : : setResourceJobShare 
* @param js representing the percentage of the job assigned to this Resource 

* 
**************************************************************************** 
*I 

public void setResourceJobShare(double js) 
this.resourceJobShare = js; 

II End of CLASS: Resource 
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import java.io.*; 

I** 
* @author James Sweeney 
* March, 2007 

* 
* Class that stores the Solution information 
*I 

public class Solution implements Serializable 
boolean validSolution; 

II Resource storage for each Solution 
protected Resource [] resources; 

I* 
* Constructor for the Resource class 
* @param numResources 
*I 

public Solution (int numResources) 
resources= new Resource [numResources]; 
validSolution = true; 

/************************************************************** 
* 
* @return Resource 

* 

.: : getResources ::. 
[], an array of Resources for this Solution 

************************************************************** 
*I 

public Resource [] getResources() 
return (resources); 

/************************************************************** 
* . :: setValid::. 
* @param v, boolean value depicting the solution validity 

* 
************************************************************** 
*I 

public void setValid(boolean v) 
validSolution = v; 

/************************************************************** 
* . :: isValid ::. 
* @return boolean, true if solution is valid, else false 

* 
************************************************************** 
*I 

public boolean isValid() 
return (validSolution) ; 

/******************************************************************************* 
************** 

* . :: setThisResource ::. 
* @param thisResource, integer index to the resource to set 
* @param resourceSpeed, integer value representing the speed of this resource 
* @param resourceCost, integer value reprenting the cost of this resource 
* @param resourceJobShare, integer value representin the percentage of job this 

resource owns 

* 

**************************************************************************************** 
***** 

*I 
public void setThisResource(int thisResource, int resourceSpeed, double 

resourceCost, double resourceJobShare) 
resources[thisResource] =new 

Resource(resourceSpeed,resourceCost,resourceJobShare); 
} 
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/******************************************************************************* 
*** 

* , :: getResourceJobShareTotal ::. 
* @return double representing the percentage of the job allocated to all 

resources 

* 

********************************************************************************** 
*I 

public double getResourceJobShareTotal() 
double resourceTotal = 0; 
for (int i=O;i < this.resources.length;i++) 

resourceTotal += resources[i] .getResourceJobShare(); 

return (SimulatedAnnealing.getScaled(resourceTotal, 2)); 

/**************************************************************** 
* . : : getEnergy : : , 
* @return double representing the Energy Value for this Solution 

* 
**************************************************************** 
*I 

public double getEnergy(SimulatedAnnealing thisSA) 
double completionTime = 0; 
double tempCompletionTime = 0; 

for (int i=O;i < this.resources.length;i++) 
tempCompletionTime = ( thisSA.totalJobCycles * 

resources[i] .getResourceJobShare() ) I resources[i] .getResourceSpeed(); 
if (tempCompletionTime > completionTime) { 

completionTime = tempCompletionTime; 

return ( thisSA.getScaled((thisSA.maxJobExecutionTime- completionTime), 2) ); 

/**************************************************************************** 
* .:: getSolutionCompletionTime ::. 
* @return double representing the time it will take for this Solution to run 

* 
**************************************************************************** 
*I 

public double getSolutionCompletionTime(SimulatedAnnealing thisSA) 
double completionTime = 0; 
double tempCompletionTime = 0; 

for (int i=O;i < this.resources.length;i++) 
tempCompletionTime = ( thisSA.totalJobCycles * 

resources[i] .getResourceJobShare() ) I resources[i] .getResourceSpeed(); 
if (tempCompletionTime > completionTime) { 

completionTime = tempCompletionTime; 

return ( thisSA.getScaled((completionTime), 2) ) ; 

/*********************************************************** 
* .:: getSolutionCost ::. 
* @return double representing the cost to run this Solution 

* 
*********************************************************** 
*I 

public double getSolutionCost(int totalJobCycles) 
double solCost 0; 
for (int i=O;i < this.resources.length;i++) 
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solCost += ( ( (resources[i] .getResourceJobShare() * totalJobCycles) I 
resources[i] .getResourceSpeed() ) * resources[i] .getResourceCost() ); 

} 

return (SimulatedAnnealing.getScaled(solCost, 2)); 

II End of CLASS: Solution 
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/** 
* @author James Sweeney 
* March, 2007 

* 
* SA exception class 
*I 

public class SAException extends Exception 
{ 

/** 
* SAException constructor 
* @param msg 
*I 

SAException(String msg) 
{ 

super (msg) ; 
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import java.io.*; 
import java.util.*; 
import java.awt.*; 

I** 
* @author James Sweeney (Dave Miller code) 
* March, 2007 

* 
* 
*I 

public class ObjectCloner 
{ 

II so that nobody can accidentally create an ObjectCloner object 
private ObjectCloner(){} 
II returns a deep copy of an object 
static public Object deepCopy(Object oldObj) throws Exception 
{ 

ObjectOutputStream oos = null; 
ObjectinputStream ois = null; 
try 
{ 

ByteArrayOutputStream bos = 
new ByteArrayOutputStream(); II A 

oos =new ObjectOutputStream(bos); II B 
II serialize and pass the object 
oos.writeObject(oldObj); II C 
oos.flush(); II D 
ByteArrayinputStream bin 

new ByteArrayinputStream(bos.toByteArray()); II E 
ois =new ObjectinputStream(bin); II F 
II return the new object 
return ois.readObject(); II G 

catch(Exception e) 
{ 

System.out.println("Exception in ObjectCloner 
throw (e); 

finally 
{ 

oos.close(); 
ois.close(); 
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import java.io.*; 
import java.util.*; 

/** 
* @author James Sweeney 
* March, 2007 

* 
* Class that is used to create a file to be used to write information 
*I 

public class ReportWriter { 

String fileName = "report.txt"; 
File f; 
FileWri ter hn 
PrintWriter pw; 

/* 
* Constructor for the ReportWriter class 
*I 

public ReportWriter () 
try { 

f 
fw 
pw 

new 
new 
new 

File(fileName); 
FileWriter(f); 
PrintWriter(fw); 

catch(IOException e) 
System.out.println("Exception writing file:"+ e); 

/************************************** 
* . :: writeThisinfo ::. 
* @param info, String to write to file 

* 
************************************** 
*I 

public void writeThisinfo(String info) 
pw.println(info); 

/************************************** 
* .:: closeReportFile ::. 
* Method to record the time that the 
* GA ended, and close the file 

* 
************************************** 
*I 

public void closeReportFile() 
pw.close(); 
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