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ABSTRACT 

 

There is currently considerable enthusiasm around the MapReduce paradigm, and the 

distributed computing paradigm for analysis of large volumes of data. The Apache 

Hadoop is the most popular open source implementation of MapReduce model and LINQ 

to HPC is Microsoft's alternative to open source Hadoop. In this thesis, the performance 

of LINQ to HPC and Hadoop are compared using different benchmarks.  

 

To this end, we identified four benchmarks (Grep, Word Count, Read and Write) that we 

have run on LINQ to HPC as well as on Hadoop. For each benchmark, we measured each 

system’s performance metrics (Execution Time, Average CPU utilization and Average 

Memory utilization) for various degrees of parallelism on clusters of different sizes. 

Results revealed some interesting trade-offs. For example, LINQ to HPC performed 

better on three out of the four benchmarks (Grep, Read and Write), whereas Hadoop 

performed better on the Word Count benchmark. While more research that is extensive 

has focused on Hadoop, there are not many references to similar research on the LINQ to 

HPC platform, which is slowly evolving during the writing of this thesis.  
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Chapter 1   

INTRODUCTION 

 

This thesis focuses on evaluating and comparing the performance of LINQ to HPC and 

Hadoop for unstructured data processing [LINQTOHPC12, HADOOP12]. With the 

growing volume of data captured, there is a huge interest for processing large sets of 

unstructured and structured data by organizations and scientific communities. Most Big 

Data processing systems take advantage of parallel and distributed computing 

architectures. Generally, the factors that are critical for processing large volumes of data 

are performance, cost, scalability and flexibility. Google’s MapReduce programming 

model generated huge interest in parallel and distributed computing using commodity 

clusters [Dean08]. The MapReduce programming model greatly inspired Hadoop and 

LINQ to HPC implementations. Both platforms, Hadoop and LINQ to HPC, allow for 

processing unstructured and structured data on a cluster by distributing and managing the 

processing tasks. 

 

In case of large data volumes, it is much more efficient for applications to execute 

computations near the data it operates on rather than moving the data where applications 

are running. This model increases the overall throughput and minimizes network 

congestion by reducing the time taken to move the data [HADOOP12]. This is one of the 

fundamental concepts behind LINQ to HPC and HADOOP. 
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Hadoop is a successful implementation of Google’s MapReduce programming model and 

is now an Apache Foundation open source project. It enables the processing of large 

volumes of structured and unstructured data using cluster of commodity hardware in a 

simple, scalable, economical and reliable way. Hadoop is primarily installed on Linux 

clusters even though it could be installed on Windows platforms using emulators like 

Cygwin. Hadoop provides the Hadoop distributed file system, which can store and 

replicate data over a cluster using the MapReduce.  

 

Cloudera CDH is an open source Apache Hadoop distribution coupled with Cloudera 

Manager to provide enterprise level support for advanced operations [CLOUDERA12]. 

Cloudera Manager provides graphical management capabilities to administer the Hadoop 

platform. CDH provides a streamlined path for implementing Hadoop platform and 

solutions. It delivers the core elements of Hadoop as well as the enterprise capabilities 

such as high availability, simple manageability, security, and integration with industry 

standard hardware and software solutions. 

 

LINQ to HPC is a Microsoft research project formerly named DRYAD, which allows for 

distributed computing on the Windows Platform [LINQTOHPC12]. It was developed as 

the Hadoop alternative for Windows clusters. LINQ to HPC allows developers to process 

large volumes of unstructured data on a Windows cluster of commodity hardware. DSC 

(Distributed Storage Catalog) is a distributed file system to enable the storage and 
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replication of large data volume on clusters. 

 

This thesis focuses on comparing the performance of both the Hadoop and the LINQ to 

HPC platforms through different experiments and using standard benchmarks on 

unstructured datasets. The motivation for this work comes from the increasing popularity 

of both platforms within organizations with Big Data processing needs. The results of 

these experiments should provide guidelines to practitioners on when to use each 

platform to achieve the best performance. 

 

1.1 Overview of MapReduce 

 

MapReduce is a programming model for processing large volumes of unstructured and 

structured data. It was originally developed by Google for processing Big Data to 

enhance search and Web Indexing [Dean08]. The MapReduce model is considered an 

efficient, scalable, and flexible distributed computing model for data intensive 

applications. The processing can take place on databases (structured) or file systems 

(unstructured). MapReduce takes advantage of computing near the data by decreasing 

data transfer latencies. 

 

The MapReduce model partitions input data (key-value-pairs) and distributes tasks across 

the computing nodes of an underlying cluster. Key-value-pair is an abstract data type 

where key is a unique identifier for some item of data and value. The Map task process 
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the input key-value-pairs, the resultant intermediate from the Map tasks are then 

processed by the Reduce task to generate the output key-value-pairs. 

 

Figure 1: MapReduce Model 

 

As illustrated in Figure 1, the Map function splits the input data into smaller problems 

and distributes them to Map Workers. Input splits are processed in parallel by Map 

Workers using different compute nodes. A Map Worker processes a smaller problem and 

passes its results back to the Master node. A Master/Head node is the primary node in 

cluster environments that consist of group of compute or process nodes. The MapReduce 

programming model collects the intermediate outputs and groups them together. The 

Reduce function is applied to each intermediate output in parallel, which produces the 

final output by combining the output from the map function. Figure 1 provides a 

depiction of the flow of actions that take place when a program calls the MapReduce 
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function. 

 

1.2 Overview of Hadoop 

 

Hadoop is a successful open source implementation of the MapReduce model. Hadoop 

includes a distributed file system called Hadoop Distributed File System (HDFS), which 

can store large sets of data on low-cost commodity hardware, and a MapReduce engine to 

process the data in a distributed environment [HDFS12]. Hadoop is reliable, scalable, 

cost effective, and efficient [HDFS12]. The Performance can be scaled linearly by adding 

more hardware resources to the cluster [HDFS12]. Hadoop has been successfully 

implemented in commercial environments with thousands of nodes processing petabytes 

of data [HDFS12]. Large corporations like Facebook, Yahoo, Amazon, LinkedIn, Visa 

and others have successful Hadoop implementations [HADOOP12A].  

 

Hadoop is written in Java without specific hardware requirements. Hadoop supports a 

variety of operating systems including Linux, FreeBSD, Solaris, MAC OS/X and 

Windows.  

 

1.2.1 Hadoop MapReduce Engine 

 

The Hadoop MapReduce works similar to Google’s MapReduce model that was 

discussed earlier. Hadoop MapReduce allows the processing of Big Data using 
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commodity hardware in a reliable, scalable and efficient manner. The Hadoop 

MapReduce engine provides features to enable scheduling, prioritizing, monitoring and 

failover of tasks [HDFS12]. 

 

The Hadoop MapReduce engine and Hadoop Distributed File System typically run on the 

same set of nodes in a cluster [HDFS12]. This allows the MapReduce engine to 

efficiently schedule the tasks where data resides.  It also re-executes failed tasks. A task 

represents the execution of a single process or multiple processes on a compute node. A 

collection of tasks that is used to perform a computation is known as a job. A standard 

Hadoop cluster usually has a single master server and multiple worker or slave nodes. A 

worker is also called a compute node when it has a task tracker and called data node 

when it has data node. A master server consists of a name node, data node, job tracker 

and a task tracker. A worker node consists of a data node and task tracker. It is possible to 

have compute only nodes and data only nodes. The job tracker is responsible for 

scheduling and monitoring the task.  The task tracker executes tasks as instructed by the 

job tracker. Figure 2 provides an architectural overview of a Hadoop system. 
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Figure 2: Hadoop Architecture 

 

Typically, a Job configuration contains Input, Output, Map and Reduce functions along 

with other job parameters. The job tracker processes a task based on the Job 

configuration. The job tracker works along with the task trackers to process the job by 

distributing tasks to compute nodes in an efficient manner. However, Hadoop 
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MapReduce model is implemented in Java, MapReduce applications can be developed 

using any programming language. 

 

1.2.2 Hadoop Distributed File System (HDFS) 

 

The Hadoop Distributed File System (HDFS) is a distributed file system component of 

the Apache Hadoop platform [HDFS12, HDFS12A]. HDFS has many similarities to other 

existing distributed file systems. However, some advantages of HDFS over the existing 

distributed file systems include high fault-tolerance, scalability, ability to deploy on 

commodity hardware, and being open source. HDFS provides the interface for 

applications to move computation closer to data. 

 

A typical HDFS cluster consists of a single name node and a number of data nodes. The 

NameNode is the centerpiece of an HDFS file system. It keeps the directory tree of all 

files in the file system, and tracks where across the cluster the file data is kept. It does not 

store the data of these files itself. Usually there are one data nodes per compute node in 

the cluster to manage the distributed storage.  

HDFS stores files as a sequence of blocks across machines in the cluster. The Block 

replication provides data reliability and fault tolerance. Data files are divided into blocks 

and replicated to three data nodes by default. The replication parameter and block size are 

configurable per file and can be changed at any time. Moreover, applications can specify 

a different number of replicas. 
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The name node performs the file system namespace operations, such as opening, closing, 

and renaming files and directories. Data nodes serve the read and write requests from file 

system’s clients. They also perform block creation, deletion, and replication upon 

instruction from the name node. The name node determines the mapping of blocks to data 

nodes and manages block replications based on heartbeat and block reports it receives 

periodically from the data node. Receipt of a heartbeat implies that the data node is 

functioning properly. A block report contains a list of all blocks on a data node. HDFS is 

highly fault-tolerant, and it can detect faults and recover lost and corrupt data 

automatically since data blocks are replicated. 

 

1.3 Overview of LINQ to HPC 

 

LINQ to HPC is a Microsoft product that provides a platform for creating and running 

applications which can process Big Data (structured and unstructured) on a cluster of 

commodity machines [LINQTOHPC12, Chappell11]. LINQ to HPC is built for Windows 

HPC Servers. It has three major components, namely, LINQ to HPC client, LINQ to HPC 

graph manager, and the Distributed Storage Catalog (DSC) [LINQTOHPC12, DSC12]. 

TLINQ to HPC provides a simple, scalable, reliable and cost effective platform for 

processing Big Data [Chappell11]. Figure 3 provides an architectural overview of a LINQ 

to HPC system. 
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Figure 3: LINQ to HPC Architecture 

 

LINQ to HPC uses the Dryad technology created by Microsoft Research [Israd09]. Dryad 

is similar to the MapReduce engine in Hadoop. Microsoft’s search engine Bing, and 

Kinect are examples of the applications powered by Dryad. LINQ to HPC application run 

code on the cluster by creating  LINQ to HPC queries that are executed in the runtime. 

LINQ to HPC application uses a graph model called Directed Acyclic Graph (DAG). The 

Directed Acyclic Graph defines the control flow and data flow dependencies among the 

individual tasks that are associated in executing a distributed query. Each node of the 

graph represents a unit of work called vertices, which will be performed by a single DSC 

node of the cluster using specific inputs and produce specific outputs. Dryad allows graph 



 

- 11 - 

 

vertices to use any number of input and output sets, whereas MapReduce restricts tasks to 

use one input and output set. 

 

LINQ to HPC differentiates itself from Hadoop by providing an easy to use query based 

programming model. The programming model is based on Microsoft’s Language 

Integrated Query (LINQ). Unlike the MapReduce model, the query based programming 

model is easy to comprehend, more expressive, and flexible [Chappell11]. 

 

LINQ to HPC creates an optimized execution plan for the query based on several factors, 

including the topology of the cluster. The query plan decomposes the grouped 

aggregation into efficient, distributed computations using the expression trees. The partial 

aggregation used by the plan greatly reduces the amount of network data transfer. 

 

1.3.1 LINQ to HPC Client  

 

The LINQ to HPC client contains two components, namely, the LINQ to HPC provider 

and DSC client services. LINQ to HPC provider resides on the client machine and 

analyzes application queries and creates an optimized execution plan to execute the LINQ 

to HPC queries. The provider communicates to the Windows HPC scheduler to initiate a 

LINQ to HPC job.  The DSC client service manages data used by LINQ to HPC queries. 

The DSC client talks to the DSC service that runs on the Windows HPC cluster.  

 

  



 

- 12 - 

 

1.3.2 LINQ to HPC Graph Manager 

 

LINQ to HPC graph manager is responsible for executing individual tasks that make up a 

LINQ to HPC job. An instance of LINQ to HPC graph manager is created for each LINQ 

to HPC job that is initiated by the job manager. The graph manager distributes 

computations across DSC nodes based on the execution plan created by the LINQ to HPC 

provider. The LINQ to HPC graph manager starts and stops vertices on the DSC node as 

needed. Additionally, it manages failures and assignment of tasks. The LINQ to HPC 

graph manager talks to the DSC service on the master node to assign a vertex to execute 

to a DSC node based on the execution plan. 

 

1.3.3 Distributed Storage Catalog 

 

The Distributed Storage Catalog (DSC) is a distributed file system that provides the 

ability to store large volumes of data across the cluster in a reliable, cost effective, fault-

tolerant, and secure way [LINQTOHPC12, DSC12]. The DSC has a service that manages 

the data used by LINQ to HPC and a database that holds the catalog of the DSC file and 

file sets. The database also holds the metadata for the cluster including the location of 

files in the DSC node, file to file set mapping, properties of the file and file sets. The 

DSC service runs on the master node and the compute nodes can be configured to be 

controlled by DSC service and these nodes are called DSC nodes. DSC service allows for 

the creation of DSC files sets, which are logical groupings of DSC files. 
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The DSC nodes perform tasks assigned to them by the DSC service. Tasks may include 

file validation, file replication, reclaiming temporary storage, and performing the 

computations of each vertex. File replication provides data reliability and fault tolerance. 

Files are replicated to three DSC nodes by default. The replication is configurable and 

can be changed any time. 

 

DSC file set is a collection of DSC files that is created and finalized and cannot be 

modified. LINQ to HPC provides a command line utility to perform basic file operations 

like adding a DSC file, managing permission, and deleting a file. LINQ to HPC queries 

can be used to interact directly with the data even though the DSC file set contains 

distributed data. 

 

1.4 Thesis Organization 

 

This thesis is organized as follows: Chapter 1 provides a background into the MapReduce 

model, the architecture of Hadoop, and Microsoft’s LINQ to HPC; Chapter 2 provides a  

literature review; Chapter 3 explains the research approach, the experimentation model, 

and provides a detailed description of evaluation metrics; Chapter 4 discusses the 

research methodology; Chapter 5 presents and discusses the experimentation results;  

Chapter 6 presents the conclusion and directions for future research. 
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Chapter 2   

LITERATURE REVIEW 

 

The MapReduce model, developed by Dean and Ghemawat, introduced a programming 

model and the associated implementation for distributed processing of large volumes of 

unstructured data using commodity hardware [Dean08]. The MapReduce model, 

implemented on Google’s cluster by Dean and Ghemawat, had demonstrated good 

performance for sorting, and pattern searching (Grep) on unstructured data. Dean and 

Ghemawat had suggested a particular implementation of Grep that we have adopted in 

parts to carry out the benchmarking aspects of the experiments.  

 

The Apache Hadoop website provides ample information on the implementation, sample 

code, and quick start guides to implementing Hadoop [HADOOP12]. The information 

provided on the Hadoop website was used for understanding the architecture and 

implementing Hadoop clusters.  

 

MapReduce uses a stricter pipeline expression of distributed computations as compared 

to Dryad’s expressive directed acyclic graphs (DAG) [Israd07]. DryadLINQ is an 

implementation of LINQ, a high level SQL query based language, for Dryad clusters 

[Israd09]. Compared to MapReduce, DryadLINQ offers an extended set of data 

operations to simplify writing complex algorithms [Dean08]. 
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In 2009, Dinh et al. conducted a performance study of Hadoop Distributed File system 

for reading and writing data [Dinh09]. They used the standard benchmark program 

TestDFSIO.java that is available with the Hadoop distribution. Their study discussed the 

implementation, design, and analysis of reading and writing performance. In the 

experimentation part of this research, we adopted similar read and write benchmarks to 

the one discussed by the authors. We used the native Read and Write commands available 

in Hadoop and LINQ to HPC for the benchmarking purposes. We did not use 

TestDFSIO.java since a similar benchmark was not available for LINQ to HPC. 

 

In 2009, Pavlo et al. discussed an approach to comparing MapReduce model to Parallel 

DBMS [Pavlo09]. As part of their experiments, they compared Hadoop, Vertica, and 

DBMS-X. The authors used benchmarks consisting of a collection of tasks that were run 

on the three platforms. For each task, they measured each system’s performance for 

various degrees of parallelism on a cluster of 100 nodes. They used Grep, Aggregate, 

Join, and Selection tasks.  In this research, we used the Grep and Aggregate benchmarks 

for our experiments. Join and Selection benchmarks can be used in the future to extend 

this research. The rest of the benchmarks and metrics used in this thesis are discussed in 

details in Chapter 3. 

 

Ekanayake et al. discussed the use of DryadLINQ for scientific data analysis and 

compared the performance with Hadoop for the same application [Ekanayake09]. A 

scientific, proprietary, application was programmed by the authors as a benchmark for 

comparing the two systems. Our approach in this thesis focuses primarily on generic 
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benchmarks with limited modification to the sample programs provided by Hadoop and 

LINQ to HPC. 

 

In 2010, Jiang et al. conducted a performance study of the Apache Hadoop on a 100-node 

Amazon EC2 cluster [Jian10]. They provided a detailed discussion of the design factors 

and performance tuning of the Apache Hadoop environment. They used Grep, Aggregate 

and Join benchmarks. Great parts of their approach were adopted in designing 

experiments for this research. We used similar benchmarks (Grep and Aggregate) and 

metrics in addition to few more benchmarks and metrics as discussed in Chapter 3.  

 

Gonz´alez-V´elez and Leyton’s research focused on evaluating the performance of 

Hadoop running in a virtualized environment [Gonzalez11]. They used a cloud running 

VMware with 1+16 nodes to evaluate the performance. The experiments were designed 

to use the Hadoop Random Writer and Sort algorithms to determine whether significant 

reductions in the execution time of computations were observed. The only metrics used in 

that research were execution time and CPU usage. For the purpose of our 

experimentation, we adopted a similar design approach using a virtualized environment, 

and used similar benchmarks and metrics as discussed in Chapter 3. 

 

In 2011, Fadika et al. presented a performance evaluation study to compare MapReduce 

platforms under a wide range of use cases [Fadika11]. They compared the performance of 

MapReduce, Apache Hadoop, Twister, and LEMO. The authors designed the 

performance design test under the following seven categories: data intensive, CPU 
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intensive, memory intensive, load-balancing, iterative application, fault-tolerance and 

cluster heterogeneity.  That study shed some light on the available design decisions, 

which can be used for future studies. 

 

Chappell gave an introductory overview to the LINQ to HPC in his paper sponsored by 

Microsoft [Chappell11]. Also, The LINQ to HPC programming guide provides details on 

creating applications using LINQ to HPC [LINQTOHPC12A]. This guide was used in 

understanding and implementing our experiments. The LINQ to HPC SDK sample code 

provides a set of sample codes and programs [LINQTOHPC12B].   

 

The Cloudera website provides information pertaining to the Cloudera distribution of 

Hadoop (CDH) [CLOUDERA12]. The Cloudera Installation Guide provides detailed 

systematic instruction on setting up CDH version 4 on Linux cluster [CLODERA12A]. 

The Cloudera Quick Start Guide was used to set up Cloudera and perform administrative 

tasks [CLODERA12B].  

 

Forrester research rates Cloudera as a leader in Enterprise Hadoop Solutions market 

[FORRESTER12]. Cloudera, Amazon Web Services, EMC Greenplum, Horton Works, 

IBM, MapR, Outerthought, DataMeer, DataStax, Zettaset are some of the well 

established enterprise Hadoop-based solutions. All of these vendors offer MapReduce but 

not everyone offers HDFS. Amazon is the most prominent provider in Enterprise Hadoop 

market, but it does not offer a Hadoop hardware appliance. IBM and EMC are more 
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oriented towards the enterprise data warehouse market. Cloudera is a Hadoop vendor 

with, inarguably, the most adoption in enterprise.  

 

The growing volume of unstructured and structured data has created huge opportunities 

for Big Data analysis. Hadoop has gained a lot of initial momentum with support from 

technology companies like Yahoo, Facebook, Amazon and others. There is currently no 

competitor to Hadoop in this space and the only product that stands a chance to compete 

with Hadoop is Microsoft’s LINQ to HPC. In addition, Hadoop is an open source system 

and LINQ to HPC is a proprietary system, which makes the comparison even more 

interesting for many organizations and researchers.  



 

- 19 - 

 

 

Chapter 3   

EVALUATION APPROACH 

 

In this chapter, we discuss the approach followed in the design and implementation of 

experiments to compare the performance of Hadoop and LINQ to HPC platforms. The 

discussion will provide detailed information on the performance parameters, performance 

metrics, benchmarks, configurations, and datasets. 

 

The goal of this research is to conduct a comprehensive comparison between Hadoop and 

LINQ to HPC with special emphasis on performance and resource utilization aspects. The 

fact that one of the systems, Hadoop, is Open Source and the other, LINQ to HPC, is 

commercial triggers a lot of interest in the results of this study. In order to, fairly and 

effectively, compare the two systems, the Cloudera Hadoop and LINQ to HPC were setup 

on clusters  with the same configuration (Processors, RAMs and hard disks) on a 

virtualized environment with a total of eight nodes. One of the nodes was designated to 

play dual roles (both master and worker) and the remaining seven nodes were setup as 

worker nodes. Virtualization provided for the flexibility to vary the workloads and 

available resources to perform the experiments. The benchmarks (Grep, Word Count, 

Read and Write) programs were run on both Hadoop and LINQ to HPC, and the results of 

the performance metrics and resource utilization with varying load, and varying dataset 

sizes were recorded. Figure 4 provides an architectural overview of the experiments 

setup. 
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Figure 4: Experiment Architecture 

 

3.1 Experimentation Overview 

 

In this section, we present our experimental setup. The test bed was setup with the same 

configurations for Hadoop and LINQ to HPC clusters. Cluster size, dataset size, and 

benchmarks are the three independent experiment parameters. In total, we used six cluster 

configurations and two data sets along with four benchmarks to conduct a total of 48 

experiments for each of Hadoop and LINQ to HPC Clusters. Average CPU usage, 

Average Memory Usage, and Execution Time were used as the performance metrics, or 

dependent parameters.  Each experiment was repeated three times under the same 

conditions to reduce the impact of system fluctuation errors. In all,  96 experiments (288 

runs) were conducted to capture the performance metrics. 
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3.1.1 Cluster Configuration Characteristic 

 

 The experiments used six cluster configurations, C3, C4, C5, C6, C7, C8 and C9, with 

varying number of nodes. Cluster configurations used varying number of nodes to study 

the scalability of the two platforms. For example, Cluster configuration C3 has one 

Master/Worker node and two Worker nodes, whereas Cluster configuration C8 has one 

Master/Worker node and seven Worker nodes. Each experiment was repeated three times 

as mentioned earlier. Table 1 provides the details of the cluster configurations. 

 

Cluster Config. No. C3 C4 C5 C6 C7 C8 

Master Node 1 1 1 1 1 1 

No. of Worker Nodes 2 3 4 5 6 7 

 

Table 1: Cluster Configurations 

 

3.1.2 Dataset Description 

 

In this section, we discuss the details of the datasets used for the experiments. We used 

two datasets, D1 and D2, as shown in Table 2. The datasets were obtained from the 

Google Ngram dataset repository that is publicly available for download. Sizes of the 

dataset used were about 6GB and 18GB. These sizes were carefully chosen given the 

available cluster sizes and their configurations. Considering the hardware configuration 

used for the experimentation, size of the data is big. 
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We chose to use the Google Ngram data repository because of its size and public 

availability. Google’s Ngram datasets are published by Google to provide the Books 

Ngram Viewer service. According to official Google research blog, these datasets were 

generated in 2009. Google specialists scanned over 5.2 million books, processed 

1,024,908,267,229 words of running text, and published the counts for all 1,176,470,663 

five-word sequences that appear at least 40 times in books. There are 13,588,391 unique 

words, after discarding words that appear less than 200 times. Data formatted as Tab-

Delimited data.   The format of the file is as follows: 

Ngram TAB year TAB match_count TAB page_count TAB volume_count NEWLINE 

 

A couple of examples using 1-grams are below:  

circumvallate   1978   313    215   85 

circumvallate   1979   183    147   77 

 

The Google’s Ngram repository has hundreds of files with each file around 1.2 GB in 

size. This provided us with flexibility in designing the experiments and allows for future 

extensions. The D1 dataset has four tab delimited files of 1.56 GB each, and data set D2 

has 12 tab delimited files of 1.56 GB each. Both datasets were used to conduct the 

experiments and record the results. Appendix A provides the details of each data set. 

 

 

 

 



 

- 23 - 

 

3.1.3 Performance Metrics and Benchmarks 

 

This section gives an overview of the benchmarks and metrics used in the experiments. 

The four benchmark tasks (Grep, Word Count, Read and Write), were used to evaluate 

and compare the performance of Hadoop and LINQ to HPC. The benchmarks were 

chosen based on the literary review conducted [Dean08, Dinh09, Pavlo09, Jian10, 

Gonzalez11]. The Read and Write Benchmarks were used to evaluate the performance of 

the distributed file system of Hadoop (HDFS) and LINQ to HPC (DFS). The Grep and 

Word Count benchmarks were used to evaluate the performance of the data processing 

engine of Hadoop (MapReduce) and LINQ to HPC (Dryad). 

Read Benchmark involves loading the benchmark data set from local file system to the 

Distributed File system. Write Benchmark involves downloading the benchmark data set 

from Distributed file system to the Local File system. Grep Benchmark extracts matching 

strings from text files and counts how many times they occurred. Word Count Benchmark 

reads text files and counts how often words occur. The input is text files and the output is 

text files, each line of which contains a word and the count of how often it occurred, 

separated by a tab. 

 

The three metrics were execution time, average CPU utilization, and average memory 

utilization. These metrics were selected based on the literature reviewed [Gonzalez11, 

Pavlo09].  Execution time and CPU utilization are commonly used metrics and many of 

the studies use these metrics to evaluate platforms performance. The three metrics were 

recorded and reported for the four benchmarks. Though the clusters were dedicated for 
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the experiments, i.e. no other programs were running, we decided to run each experiment 

for three times in order to eliminate any potential overhead introduced by routine 

housekeeping operations that might be coincidentally performed during experiment 

execution. 

 

Based on the literature reviewed [Gonzalez11, Pavlo09] the average CPU utilization and 

average memory utilization were measured as percentages of the overall CPU time and 

available memory, respectively, while the execution time was measured in seconds. 

Average CPU usage was calculated by recording detailed CPU utilization during 

execution of each benchmark task for all the active nodes at a sampling rate of one 

second. The detailed CPU utilization was then aggregated by averaging the value across 

the nodes and time during the execution of each benchmark task. Average Memory usage 

was calculated by recording the detail memory utilization during execution of each 

benchmark task for all the active nodes at a sampling rate of one second. The detail 

memory utilization was then aggregated by averaging the value across the nodes and time 

during the execution of each benchmark task. 

 

3.2 Architecture Overview 

 

LINQ to HPC was installed on an eight node Windows HPC cluster with one master node 

and eight computing nodes where the master node acted as a computing node as well. 

Similarly, the Cloudera Hadoop was installed on an eight node Linux cluster with one 

master node and eight computing node where the master node, also, acted as a computing 
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node. Both clusters were configured similarly with70GB of hard drive space, 4GB RAM 

on the master node, and 2 GB RAM on each of the seven computing nodes.  

 

3.2.1 LINQ to HPC Architecture 

 

LINQ to HPC was installed on eight nodes Windows HPC Cluster. The Windows HPC 

cluster was setup on virtual machines running Windows HPC server 2008 R2 and LINQ 

to HPC was installed on all of the nodes. Client components LINQ to HPC provider and 

HPC client were installed on the client machine running windows.  Visual studio 2010 

was used to compile and run the benchmark programs.  Figure 5 provides the 

architectural overview of the LINQ to HPC setup used in this research. 
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Figure 5: LINQ to HPC Experiments Architecture 

  

3.2.2 Hadoop Architecture 

 

The Cloudera Hadoop was installed on an eight nodes Linux Cluster with one master 

node and eight computing node. The master node acts as a computing node, as well. The 

Linux cluster was setup on virtual machines running CentOs Linux and Cloudera 

Hadoop. Client workstations ran CentOs Linux.  
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The Cloudera Installation was completed based on the systematic instruction available on 

Cloudera’s installation guide [CLODERA12A].  Figure 6 provides an architectural 

overview of the Hadoop setup used in our experiments. 

 

 

Figure 6: Hadoop Experiments Architecture  
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3.3 Hardware and Software Considerations 

 

In this section, we discuss the hardware and software specifications used for The LINQ to 

HPC and Hadoop environments. The LINQ to HPC and Hadoop experiments were 

performed on hardware of identical specifications.   

 

3.3.1 Hardware  

 

The LINQ to HPC and Hadoop were setup on eight 64-bit virtual machines. Each 

machine used Ext3 file systems with a virtual hard drive of 70 GB and 4 GB RAM on the 

master node and 2 GB of RAM on slave nodes, and each with a single virtual dual core 

processor Xeon 5150 2.66 GHZ. The hypervisor was Microsoft HyperV 6.1.  

 

3.3.2 Software  

 

The LINQ to HPC Beta 2 was installed on a Windows HPC cluster running WINDOWS 

2008 R2 server edition. Visual Studio 2010 was used to compile the benchmarks.  

 

Cloudera Distribution of Hadoop CDH 4.0.1 (Apache Hadoop 2.0, Cloudera Manager 

4.0) was installed on a Linux cluster running CentOS 6.2.  
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Chapter 4   

RESEARCH METHODOLOGY 

 

This section provides an overview of the processes and methodologies adopted for 

modeling the experiments, configuring and executing the benchmarks, and collecting and 

processing of the results. 

 

4.1 LINQ to HPC Cluster  

 

LINQ to HPC applications setup uses a High Performance Computing (HPC) cluster to 

process a large volume of data. The LINQ to HPC and the Distributed Storage Catalog 

(DSC) contained services that run on a HPC cluster, as well as client-side components 

that are invoked by applications. LINQ to HPC setup involves the installation of 

Windows HPC Cluster, LINQ to HPC on all the nodes in cluster, LINQ to HPC on client 

machine and Configuring LINQ to HPC. 

 

4.1.1 Configuring Windows HPC Cluster  

 

The LINQ to HPC was setup on a Windows HPC cluster consisting of eight Windows 

HPC Server 2008 R2, 64 bit virtual machines. The virtual machines were created using 

Microsoft HyperV hypervisor. Each virtual machine was configured with a single dual 

core processor, ext3 file systems with a virtual hard drive of 70 GB, and 2 GB of RAM, 

except the master node was assigned 4 GB RAM.  
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4.1.1.1 Windows HPC Cluster Setup 

 

The installation of LINQ to HPC was performed with accordance to the procedure 

described in HPC documentation [HPC12]. WINDOWS HPC Server 2008 R2 was 

installed on eight virtual machines. The master node and compute nodes in the HPC 

cluster were added as members of an Active Directory domain. The HPC Cluster was 

setup by execution HPC Pack 2008 Express R2. The configuration of the master node 

was completed first, and was followed by the configuration of the compute nodes.  

 

4.1.1.2 LINQ to HPC Setup 

 

After completing the Windows HPC Cluster setup LINQ to HPC and the DSC were setup 

on the cluster. The following steps were followed to install LINQ to HPC on each of the 

cluster’s eight nodes. LINQ to HPC Beta 2 was installed on each of the nodes. During the 

installation process installation, type (master or compute) was set based on the type of 

node. 

 

4.1.1.3 LINQ to HPC Client Setup 

 

The client machine has to have HPC Cluster Manager client version before the 

installation of LINQ to HPC client components. This procedure installs the HPC Cluster 
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Manager, the HPC Job Manager, and HPC PowerShell on the client machine. The 

following steps were performed to install the software on the client. Install the HPC Pack 

2008 R2 Express by following the installation wizard. On the Select Installation Type 

page, select Install only the client utilities and follow the wizard. The next step is to 

proceed with LINQ to HPC Client installation. Open the LINQ to HPC Beta 2 download 

and execute LINQ to HPCSetup.exe. The Microsoft LINQ to HPC Beta 2 Installation 

Wizard appears and follow the wizard’s instruction. On the Select Installation Type page, 

select Install LINQ to HPC on a client and follow the wizard. 

 

4.1.1.4 LINQ to HPC Configuration 

 

The configuration of LINQ to HPC involves defining a node group, adding users to the 

cluster, adding nodes to the DSC and configuring a replication factor. 

 A new node group, LinqToHpcNodes, was added to the groups by using the HPC Cluster 

Manager in the client machine. Users must be members of the HPC Users group on the 

cluster to use the DSC and submit LINQ to HPC jobs. Using the HPC Cluster Manager 

Utility in the client machine, a user was added to the new node group. 

Each node was added to the DSC service using the DSC NODE ADD command. On the 

client machine using the HPC power shell client, the below command was used to add 

master node DRYAD1 node to the DSC. 

 

DSC NODE ADD DRYAD1 /TEMPPATH:c:\L2H\HpcTemp /DATAPATH:c:\L2H\HpcData 

/SERVICE:DRYAD1 
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The replication factor for LINQ to HPC was set to three using the DSC PARAM SET 

command. On the client machine using the HPC power shell client, the following 

command was executed to set the replication factor. 

 

DSC PARAMS SET ReplicationFactor 3 

 

 

4.2 Executing LINQ to HPC Benchmarks 

 

The four benchmarks (Read, Write, Grep and Word Count) were run from the LINQ to 

HPC client running on the client machine. The Read and Write benchmarks were run 

using the standard command used to put files in DSC and get files from DSC. The Grep 

and Word Count used the sample program that is available in Microsoft Software 

Developers Network (MSDN) [LINQTOHPC12B].  

 

4.2.1 Write Benchmark 

 

The Write benchmark uses the DSC command FILESET ADD to load files from the 

client machine to the DSC cluster. The ADD command creates a new file set with the 

name specified. It uploads files from source directory to the DSC. The NTFS permissions 

on the file sets are based on the User group and privileges. Owner and administrators of 

the file set have full control permissions, whereas users in the Authenticated Users group 
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have read permissions. The /service option specifies the name of the cluster’s master 

node.  

 

Syntax  

DSC FILESET ADD sourceDirectory targetFileSetName [/service:headnode] 

[/public] 

 

The following command was used to create a new fileset, NGRAM, and copy files from 

local folder D1 to file set NGRAM in DSC. 

 

DSC FILESET ADD \\THOTH\Share\DATASET\D1 NGRAM /service:dryad 

 

4.2.2 Read Benchmark 

 

The Read benchmark uses the DSC command FILESET Read command to get files from 

DSC to the local client machine. The Read command downloads files from the file set 

that is specified as target FileSet name, to the local client directory specified as the target 

directory. The /service option specifies the name of the cluster’s master node. 

 

Syntax  

DSC FILESET Read targetFileSetName targetDirectory [/service:headnode] 

 

The following commands copies file set D1 from DSC to local folder RC3D11. 
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DSC FILESET read D1 \\THOTH\Share\DATASET\RC3D11  /service:DRYAD1 

 

4.2.3 Grep Benchmark 

 

The Grep benchmark on LINQ to HPC was run using the “FGrep” sample program, 

which is a sample implementation of the UNIX Grep command. The FGrep sample uses 

a single LINQ to HPC query to return the matching lines. The following sample code 

provides the LINQ to HPC query used for pattern search. 

 

//FGrep SAMPLE 

int count = 0; 

foreach (LineRecord line in context.FromDsc<LineRecord>(fileSetName) 

    .Where(r => regex.IsMatch(r.Line))) 

{ 

    Console.WriteLine(line); 

    count++; 

} 

Console.WriteLine("\nFound {0} matching lines.", count); 

 

 

From the command line in the directory containing the FGrep binary, we ran FGrep and 

passed in three arguments. The first argument was the name of the Input DSC file set, the 

second was the name of the output file set, and the third was the regular expression to 

search for in each line. 

 

Syntax 

FGrep <INPUT FILE SET <OUTPUT FILE SET> <SEARCH STRING> 
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For example, the following command searches the file set named “NGRAM” for all lines 

that contain the word “and” and output the result to DSC file set “OUPUT”. The below 

example uses the word “and” as the search string. 

 

FGrep “NGRAM” “OUTPUT” and 

 

Below is a sample output produced by the Grep benchmark for the above “and” search 

string where the second token represents the search string frequency. 

 

and 8159675 

 

4.2.4 Word Count Benchmark 

 

The Word Count benchmark uses the sample program “MapReduce”. The MapReduce 

sample program counts the occurrences of words in a DSC file set. The following sample 

code explains the main aspects of the Word Count benchmark. 

 

// Define a map expression: 

 

Expression<Func<LineRecord, IEnumerable<string>>> mapper = (line) => 

    line.Line.Split(new[] { ' ', '\t' }, 

StringSplitOptions.RemoveEmptyEntries); 

 

// Define a key selector: 

 

Expression<Func<string, string>> selector = (word) => word; 

 

// Define a reducer (LINQ to HPC is able to infer the  

// Decomposable nature of this expression): 

 

Expression<Func<string, IEnumerable<string>, Pair>> reducer =  
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    (key, words) => new Pair(key, words.Count()); 

 

// Map-reduce query with ordered results and take top 200. 

 

IQueryable<Pair> results = 

context.FromDsc<LineRecord>(inputFileSetName) 

    .MapReduce(mapper, selector, reducer) 

    .OrderByDescending(pair => pair.Count); 

 

 

A new Fileset was created using the DSC FILESET ADD command to load the dataset 

onto the cluster. From the command line in the directory containing the MapReduce 

binary, we ran MapReduce and passed two arguments. The first argument was the name 

of the Input DSC file set, and the second was name of the output file set. 

 

Syntax 

MapReduce <INPUT FILE SET>  <OUTPUT FILE SET> 

 

For example, the following command uses the file set named “NGRAM” as input and 

counts the occurrences of each word in the input file set. The result is stored in the output 

file set “OUPUT”. 

 

MapReduce “NGRAM” “OUTPUT” 
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Below is a sample output produced by the MapReduce benchmark. The first token in 

each line represents a word from the fileset and the second token in each line represents 

the frequency. 

 

and  89 

are  24 

get 41 

is 76 

 

4.3 Collecting Metrics and Processing Results for LINQ to HPC 

 

This section discusses in detail the methodology used to collect and process the metrics 

data. It is worth mentioning that the experiments were conducted in a sequential fashion 

using PowerShell scripts and the metrics data were collected using Windows HPC 

cmdlets utility [HPCCMDLET12]. The metrics data were redirected to flat files, as 

opposed to noting them down from the screen. The logs and metrics data were imported 

to Oracle database tables and were aggregated, as explained below, for analysis. 

 

4.3.1 Metrics Collection 

 

Windows HPC Server 2008 R2 provides a cmdlet utility that can be used to get 

information about jobs, nodes, and metrics for building custom reports. We used the 

Cmdlet “Get-HpcMetricValueHistory” to collect the values of the specified metric based 

on a specified time period. 
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As discussed in the earlier section, we collected three metrics for each experiment. These 

metrics were run time, average CPU usage, and average memory usage. The run time was 

obtained by running the “Get-Date” cmdlet in HPC PowerShell before and after the 

execution of benchmarks and redirecting the results to the log. The start and end times are 

important not only to measure the run time but also to extract the average CPU and 

average memory. The Get-HpcMetricValueHistory cmdlet was used to query the HPC 

database to obtain the average CPU usage and average memory usage metrics between 

the start and end times. 

 

The results of cmdlet Get-HpcMetricValueHistory be filtered using metric names, node 

names as well as counter parameters. Except StartDate and EndDate parameters, all the 

other parameters are optional. When used without the optional parameters, cmdlet 

retrieves the values of all the counters, for all of the metrics, and on all of the nodes of the 

HPC cluster. 

Syntax  

Get-HpcMetricValueHistory [-StartDate] <DateTime> [-EndDate] <DateTime> 

[-Counter <String> ] [-MetricName <String> ] [-NodeName <String> ] [-

Scheduler <String> ] [ <CommonParameters>] 

 

cmdlet was used without the optional parameters and using only the StartDate and 

EndDate to collect the metrics values. The results were pipelined and exported to a flat 

file using the cmdlet utility Export-CSV.  Below is a sample command. 

 

Get-HpcMetricValueHistory -StartDate "Monday, April 02, 2012 2:34:00 

PM" -EndDate "Monday, April 02, 2012 2:36:33 PM" | Export-Csv 

c:\dryad\log.csv 
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We collected HPCCpuUsage and HPCPhysicalMem metrics. The HPCCpuUsage collects 

percentage CPU usage for all processors on the compute node, and HPCPhysicalMem 

collects the available physical memory on the compute node in megabytes. The command 

creates a flat file with the following details: Node name, metric name, time and value. 

The output data was rolled-up to the minutes with a sampling rate of one second. 

Below is a sample output produced by the Get-HpcMetricValueHistory command. 

 

DRYAD1,HPCCpuUsage,_Total,"4/9/2012 11:40:00 AM",3.369397 

DRYAD1,HPCCpuUsage,_Total,"4/9/2012 11:41:00 AM",46.00943 

DRYAD1,HPCCpuUsage,_Total,"4/9/2012 11:42:00 AM",3.574733 

DRYAD1,HPCPhysicalMem,,"4/9/2012 11:40:00 AM",1721.61 

DRYAD1,HPCPhysicalMem,,"4/9/2012 11:41:00 AM",1439.224 

 

 

4.3.2 Aggregating the Results 

 

The data collected in logs were imported to relational database tables. The data in the 

tables were then queried for aggregation and production of summarized reports. For the 

LINQ to HPC experiments we used two tables. One table stores the start and end times of 

the experiments with one record per experiment. The data extracted from the metrics 

were stored in a results table with the time, node name, metric name and metric value. 

The experiments produced 200,000 records in the results table. These two tables were 

joined and grouped to form an aggregate view of the result details, execution time in 

seconds, percent average CPU usage, and percent average memory usage. This 

consolidated view was used to prepare the charts and analyze the results. 
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4.4 Cloudera Hadoop Cluster  

 

The Cloudera Hadoop cluster was created using an eight-node Linux cluster. The setup 

and configuration involved the installation of the Cloudera manager and CDH on the 

cluster followed by the setup of client and configuration of the cluster. 

 

4.4.1 Cloudera Hadoop Cluster Configuration  

 

The cluster, created using Microsoft HyperV, consists of eight 64-bit virtual machines 

running CentOS 6.2. Each machine uses a single dual core processor, Ext3 file systems 

with a virtual hard drive of 70 GB, and 4 GB RAM on the master node and two GB of 

RAM on compute nodes. The nodes had DNS entries and reserved IP addresses. Nodes 

also had IPtables enabled, and SELinux disabled. The Cloudera distribution of Hadoop 

(CDH 4.0) was installed without any custom tuning from the default installation scripts. 

All nodes had pre shared SSH in order to communicate properly.  

 

4.4.1.1 Installation of Cloudera Manager and CDH  

 

The Cloudera Manager and CDH setup was performed using the automated installation 

script provided by Cloudera. The Cloudera Manager was installed by executing the 

Cloudera Manager installer with the default settings. The CDH was installed using the 

Cloudera Manager Admin console. The Cloudera manager was used to install the CDH 
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on the client, and the client configuration file generated by the Cloudera Manager for the 

cluster was download and deployed manually. 

 

4.5 Executing Hadoop Benchmarks 

 

The four benchmarks (Read, Write, Grep and Word count) were run from the Linux client 

running on the client machine. The Read and Write benchmarks were run using the 

standard Hadoop HDFS File system (FS) shell command. FS shell commands were used 

to put files in HDFS and get files from HDFS. The Grep and Word Count use the sample 

program provided as part of the standard Hadoop examples. 

 

The File System (FS) shell was invoked using “bin/hadoop fs <args>” [HDFS12B]. The 

commands in FS shell behave similar to the corresponding UNIX commands. All FS shell 

commands take path URIs (scheme://authority/path) as arguments. For HDFS, the 

scheme is hdfs, and for the local file-system the scheme is file. Scheme and authority are 

optional, and if not specified the default scheme as specified in the configuration file is 

used. 

 

4.5.1 Write Benchmark 

 

The Write benchmark uses the HDFS command “fs –put”, as shown below, to load files 

from the client machine to the HDFS. The put command copies files from source 



 

- 42 - 

 

directory from local client machine to the HDFS file system. In addition, it reads input 

from stdin device and writes to the destination file system.  

 

Syntax 

hadoop fs -put <localsrc> ... <dst> 

 

The - -config option was used to specify explicitly the Hadoop configuration file in the 

client machine. 

 

hadoop --config /usr/conf  fs -put /usr/dataset/d2 /d2; 

 

4.5.2 Read Benchmark 

 

The Read benchmark uses the HDFS command “fs –get” to copy/read files from HDFS 

to the local client machine, as shown below. The get command copies files to the local 

client directory from the HDFS file system.  

Syntax 

hadoop fs -get [-ignorecrc] [-crc] <src> <localdst>  

 

Here too, the - -config option was used to specify explicitly the Hadoop configuration file 

in the client machine. 

 

hadoop --config /usr/conf  fs -get /d2 /usr/dataset/output/C5D21; 
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4.5.3 Grep Benchmark 

 

The Grep benchmark uses the “grep” sample program provided as part of the hadoop-

examples-0.20.2-cdh3u4.jar package. The grep is a map-reduce implementation of the 

UNIX Grep command. This map-reduce program counts the matches of a regular 

expression in the input files. First, we used the fs -put command to load the dataset onto 

the HDFS cluster. Next, we executed the grep program from the client by and passing 

three arguments. The first argument is the name of the input HDFS file location, the 

second is the location in HDFS where results have to be stored, and the third is the 

regular expression to search for in each line. 

 

Syntax 

hadoop /usr/lib/hadoop/hadoop-examples-0.20.2-cdh3u4.jar grep <Input 

hdfs file location> <output file location> <Regular expression> 

 

In the below example, the command searches the file set d2 for all lines that contain the 

search string “and” and results are stored under /C7D2R1. The experiment was repeated 

three times for datasets D1 and D2 and for the six cluster configurations. 

 

hadoop --config /usr/conf jar  /usr/lib/hadoop/hadoop-examples-0.20.2-

cdh3u4.jar grep /d2 /C7D2GR1 'and'; 
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Below is a sample output produced by the Grep benchmark. The first token represents the 

frequency and the second token represents the value of the search string. 

 

8159675 and 

 

4.5.4 Word Count Benchmark 

 

For the Word Count benchmark, we adopted the “wordcount” program that was provided 

as part of the hadoop-examples-0.20.2-cdh3u4.jar package. The word count is a map-

reduce implementation to count the occurrences of each string token in the input file set. 

First, we used the fs -put command to load the dataset onto the HDFS cluster. Next, we 

executed the wordcount program from the client by passing two arguments. The first 

argument is the name of the HDFS file set for which the word count has to be performed, 

and the second argument is the name of the output directory under HDFS where the 

output will be stored. 

 

Syntax 

hadoop /usr/lib/hadoop/hadoop-examples-0.20.2-cdh3u4.jar wordcount 

<Input hdfs file location>  <output file location> 
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In the below example, wordcount counts the occurrence of each word for the files under 

directory /d2 in HDFS and aggregates the counts. The results of the wordcount program 

are stored in directory /C7d2WC2.  

 

hadoop  --config /usr/conf jar  /usr/lib/hadoop/hadoop-examples-0.20.2-

cdh3u4.jar wordcount /d2 /C7D2WC2; 

 

Below is a sample output produced by the Word Count benchmark. The first token in 

each line represents a word from the file set and the second token represents the 

aggregated frequency of that word. 

 

and 89 

are 24 

get 41 

is 76 
 

 

4.6 Collecting Metrics and Processing Results for Hadoop 

 

This section provides a detailed discussion on the methodology used to collect and 

process the metrics data. It is worth mentioning that the experiments were conducted in a 

sequential fashion using Linux shell scripts and the metrics data were collected using the 

SAR command. The metrics data were redirected to flat log files, as opposed to noting 

them down from the screen. The logs and metrics data were imported to database tables 

and were aggregated, as explained below, for analysis. 
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4.6.1 Metrics Collection 

 

As discussed in the earlier section, we collected three metrics for the experiment. These 

metrics were: run time, average CPU usage, and average memory usage. Timestamps 

were obtained by running the command “date” in Linux shell before and after the 

execution of benchmarks and redirecting the results to log files. SAR command was run 

in the background in each node to capture the CPU and memory activity with a sampling 

rate of 1 second. The output from SAR was redirected to a log file. The flat file logs were 

imported to Oracle database tables for analysis. The Linux utility SAR reports the 

measures of selected cumulative activity counters in the operating system. 

 

Syntax 

sar [ -A ] [ -b ] [ -B ] [ -C ] [ -d ] [ -h ] [ -i interval ] [ -m ] [ 

-p ] [ -q ] [ -r ] [ -R ] [ -S ] [ -t ] [ -u [ ALL ] ] [ -v ] [ -V ] [ 

-w ] [ -W ] [ -y ] [ -n { keyword [,...] | ALL } ] [ -I { int [,...] | 

SUM | ALL | XALL } ] [ -P { cpu [,...] | ALL } ] [ -o [ filename ] | -f 

[ filename ] ] [ -s [ hh:mm:ss ] ] [ -e [ hh:mm:ss ] ] [ interval [ 

count ] ] 

 

 

For the experiments, two SAR commands were run one for capturing CPU utilization and 

another for capturing memory utilization. The commands were run on each node, as 

background processes and the resultant files were transferred and consolidated at the 

client machine.  
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The following command captured the cpu activity and redirected the result to sar.cpu.log 

at a sampling rate of one second. The command runs as a background process. 

 

Sar –u 1 > sar.cpu.log & 

 

The sample output shown below is the result of running the SAR command with –u 

option. 

 

Linux 2.6.32-220.17.1.el6.x86_64 (CISHADOOP1.ccec.unf.edu)  07/21/2012 

 _x86_64_ (1 CPU) 

03:45:53 PM     CPU     %user     %nice   %system   %iowait    %steal     %idle 

03:45:54 PM     all     10.10      0.00     10.10      0.00      0.00     79.80 

03:45:55 PM     all      7.22      0.00      8.25      0.00      0.00     84.54 

03:45:56 PM     all      2.97      0.00      8.91      0.00      0.00     88.12 

03:45:57 PM     all      2.00      0.00      8.00      0.00      0.00     90.00 

03:45:58 PM     all      2.00      0.00     10.00      0.00      0.00     88.00 
 

The following command captured the memory activity and redirected the result to 

sar.memory.log at a sampling rate of one second. The command runs as a background 

process. 

 

Sar –r 1 > sar.memory.log & 

 

The sample output shown below is the result of running the SAR command with –r 

option. 

 

Linux 2.6.32-220.17.1.el6.x86_64 (CISHADOOP1.ccec.unf.edu)  07/21/2012  _x86_64_

 (1 CPU) 

 

03:45:53 PM kbmemfree kbmemused  %memused kbbuffers  kbcached  kbcommit   %commit 

03:45:54 PM   2676704   1239084     31.64     30656    187400   1010124     10.02 

03:45:55 PM   2676704   1239084     31.64     30656    187416   1010444     10.03 
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4.6.2 Aggregating the results 

 

The data collected in log files were imported to relational database tables. Data in the 

tables were then processed for aggregation and provide summarized reports. For the 

Hadoop experiments, we used three tables. One table stored the start and end times of the 

experiments with one record per experiment. The metrics data extracted from the SAR 

command were stored in two result tables one for CPU and another for memory 

utilization. The experiments produced approximately 5 million records in the results 

tables. These tables where joined and grouped to form an aggregate view of experiment 

details, execution time in seconds, percent average CPU usage and percent average 

memory usage. This consolidated view was used to prepare the charts and analyze the 

results. 
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Chapter 5   

ANALYSIS OF RESULTS 

 

The discussion and analysis of the results for both Hadoop and LINQ to HPC are 

organized by the benchmarks, i.e., Grep, Word Count, Read, and Write, and the results of 

each of the benchmarks are summarized by the different cluster configurations, dataset 

and metric.  

 

5.1 Grep Benchmark Results 

 

Grep benchmark results for the Hadoop and LINQ to HPC are summarized in Table 2 for 

the different cluster configurations (C3, C4, C5, C6, C7, and C8) and datasets (D1 and 

D2) for average execution time, percent CPU utilization, and average percent memory 

utilization. The values presented in the table represent the average value of three different 

runs. 
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CONFIGUR

ATION 

DATA

SET 

Execution Time (S) Average CPU (%) Average Memory 

(%) 

HAD

OOP 

LINQ TO 

HPC 

HAD

OOP 

LINQ TO 

HPC 

HAD

OOP 

LINQ TO 

HPC 

C3 
D1 365.67 143 87 20 94 30 

D2 991.67 353 92 23 95 29 

C4 
D1 260.67 126 84 13 93 34 

D2 740.67 265 89 22 94 33 

C5 
D1 238.33 124.33 81 11 94 34 

D2 648.33 224.67 88 19 94 34 

C6 
D1 241.67 103.33 75 10 94 34 

D2 561.67 208 87 17 94 34 

C7 
D1 208 103.33 74 9 94 35 

D2 512 208 84 16 94 35 

C8 
D1 191 98 67 8 93 38 

D2 455.67 191.67 77 14 93 3 

 

Table 2: Grep Benchmark Results Summary 
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Figure 7: GREP Execution Time for D1  

Figures 7 and 8 provide a comparison of the 

execution times between Hadoop and LINQ 

to HPC for the Grep benchmark on the 

different clusters configuration for the two 

datasets. Results show that LINQ to HPC 

performed approximately two times better 

on the Grep benchmark on dataset D1 and 

2.5 times better on dataset D2 on all cluster 

configurations. As the number of nodes in 

the cluster for Hadoop and LINQ to HPC 

increased, the run times were reduced for 

both datasets. The difference in average 

execution time for Hadoop and LINQ to 

HPC was statistically significant (p= 0.002) 

for both datasets. 

 

Figure 8: GREP Execution Time for D2 

 

Figure 9: Grep Execution Time Line chart 

Figure 9 suggests that as the cluster gets 

bigger the gap between LINQ to HPC and 

Hadoop is decreased from 60% to 50%. We 

expect Hadoop to catch up to LINQ to 

HPC’s performance with larger clusters, as 

in more practically sized clusters. 
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Figures 10 and 11 provide a comparison of the average CPU usage between Hadoop and 

LINQ to HPC for the Grep benchmark on different cluster configurations on the two 

datasets.  Hadoop’s CPU usage was approximately three times higher when compared to 

LINQ to HPC for all cluster configurations and datasets. However, the average CPU 

usage decreased in Hadoop as more nodes were added. Interestingly, unlike Hadoop, 

LINQ to HPC’s average CPU usage increased slightly when more nodes were added to 

the cluster as shown in Figure 10 below. The difference in average CPU usage for 

Hadoop and LINQ to HPC was statistically significant (p < 0.001) for both datasets. 

 

 

Figure 10: Grep Average CPU Usage for D1 

 

Figure 11: Grep Average CPU Usage for D2 
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Figures 12 and 13 provide a comparison of the percentage average memory usage 

between Hadoop and LINQ to HPC for the Grep benchmark on different cluster 

configurations for the two datasets.  Results reveal that Hadoop used approximately five 

times more memory than LINQ to HPC for all cluster configurations and datasets. The 

average memory usage was found to be consistent in Hadoop and did not vary much with 

the increase in the number of nodes or data volume, which indicates Hadoop uses 

memory more effectively. On the other hand, the memory usage of LINQ to HPC 

decreased slightly as more nodes were added to the cluster. The difference in average 

memory usage for Hadoop and LINQ to HPC was statistically significant (p < 0.001) for 

both datasets. 

 

 

Figure 12: Grep Average Memory Usage for D1 

 

Figure 13: Grep Average Memory Usage for D2 

 

 

  

0%

20%

40%

60%

80%

100%

C3 C4 C5 C6 C7 C8

A
v

e
ra

g
e

 M
e

m
o

ry
(%

) 

Cluster Configuration 

GREP - Average Memory(%) 

D1 LinqToHPC D1 Hadoop

0%

20%

40%

60%

80%

100%

C3 C4 C5 C6 C7 C8

A
v

e
ra

g
e

 M
e

m
o

ry
(%

) 

Cluster Configuration 

GREP - Average Memory(%) 

D2 LinqToHPC D2 Hadoop



 

- 54 - 

 

5.2 Word Count Benchmark Results 

 

The Word Count benchmark results are summarized in Table 3 for Hadoop and LINQ to 

HPC using the different cluster configurations (C3, C4, C5, C6, C7, and C8) and datasets 

(D1 and D2) for execution time, average CPU utilization, and average memory 

utilization. The values presented in the table represent the average value of three different 

experiment runs. 

 

CONFIG

URATIO

N 

DATAS

ET 

Execution Time (S) Average CPU (%) Average Memory 

(%) 

HADOO

P 

LINQ TO 

HPC 

HAD

OOP 

LINQ TO 

HPC 

HAD

OOP 

LINQ TO 

HPC 

C3 
D1 1306 2156.67 96 33 95 26 

D2 3822.33 6479.33 98 31 95 28 

C4 
D1 991.33 1555.33 95 28 95 31 

D2 2836 4465 98 31 95 31 

C5 
D1 842.33 1298.33 95 29 95 32 

D2 2442.67 3377.67 97 32 95 31 

C6 
D1 725.67 1297 92 25 95 33 

D2 2018.33 3490.33 97 28 95 32 

C7 
D1 669.67 1349.67 89 21 94 33 

D2 1774.67 2889.67 96 30 95 32 

C8 
D1 621 1072.67 83 20 93 36 

D2 1630.67 2491 93 28 95 35 

 

Table 3: Word Count Benchmark Results Summary 
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Figure 14: Word Count Execution Time for D1 

Figures 14, 15, and 16 represent a 

comparison of execution times between 

Hadoop and LINQ to HPC for the Word 

Count benchmark. This benchmark is the 

most computational intensive task of the four 

benchmarks. Hadoop performed 

approximately 50% better on datasets D1 

and D2 for all cluster configurations. For 

dataset D2 and on a three-node cluster the 

difference between Hadoop and LINQ to 

HPC execution times was greater than it was 

when the numbers of nodes were increased. 

Another interesting observation is that 

Hadoop splits the source files into smaller 

blocks when the data files were put into the 

Hadoop distributed file system. The data was 

distributed more evenly in Hadoop across the 

nodes compared to LINQ to HPC. The 

difference in the average execution time for 

Hadoop and LINQ to HPC was statistically 

significant (p = 0.01) for D1 and statistically 

insignificant (p = 0.06) for D2. 

 

Figure 15: Word Count Execution Time for D2 

 

Figure 16: Word Count Execution Time Line 
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Figures 17 and 18 represent a comparison of the average CPU utilization between 

Hadoop and LINQ to HPC for the Word Count benchmark on different cluster 

configurations and datasets. The CPU usage of Hadoop was approximately three times 

more that of LINQ to HPC for all cluster configurations and datasets. The average CPU 

usage decreased in Hadoop as the number of nodes was increased. Unlike Hadoop, LINQ 

to HPC’s average CPU usage increased slightly for bigger clusters. The difference in 

average CPU usage for Hadoop and LINQ to HPC was statistically significant (p < 

0.001) for both datasets. 

 

 

Figure 17: Word Count Average CPU Usage for D1 

 

Figure 18: Word Count Average CPU usage for D2 

 

 

  

0%

20%

40%

60%

80%

100%

120%

C3 C4 C5 C6 C7 C8

A
v
e
ra

g
e

 C
P

U
(%

) 
 

Cluster Configuration 

Wortd Count - Average CPU(%) 

D1 LinqToHPC D1 Hadoop

0%

20%

40%

60%

80%

100%

120%

C3 C4 C5 C6 C7 C8

A
v
e
ra

g
e

 C
P

U
(%

) 
 

Cluster Configuration 

Wortd Count - Average CPU(%) 

D2 LinqToHPC D2 Hadoop



 

- 57 - 

 

Figures 19 and 20 represent a comparison of the average memory utilization between 

Hadoop and LINQ to HPC for the Word Count benchmark. Results show that Hadoop 

used, approximately, four times more memory than LINQ to HPC for all cluster 

configurations and dataset sizes. The average memory usage was found to be consistent 

in Hadoop and did not vary much in larger clusters or with increased data volumes. On 

the contrary, the memory usage of LINQ to HPC decreased with larger clusters. The 

difference in average memory usage for Hadoop and LINQ to HPC was statistically 

significant (p < 0.001) for both datasets. 

 

 

Figure 19: Word Count Average Memory Usage for 

D1 

 

Figure 20: Word Count Average Memory Usage for 

D2 
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5.3 Read Benchmark Results 

 

The Read benchmark results are summarized in the Table 4 for the Hadoop and LINQ to 

HPC for execution time, average CPU percentage utilization, and average memory 

percentage utilization. The results presented in the table represent the average value of 

three different runs. 

 

CONFIG

URATION 

DATA

SET 

Execution Time (S) Average CPU (%) Average Memory 

(%) 

HADOO

P 

LINQ TO 

HPC 

HAD

OOP 

LINQ TO 

HPC 

HAD

OOP 

LINQ TO 

HPC 

C3 
D1 5658 205.67 44 11 96 31 

D2 17019.67 619 44 12 97 30 

C4 
D1 5646 192.67 37 7 96 34 

D2 17039.33 598.33 36 13 97 33 

C5 
D1 5184.67 185.67 31 4 97 34 

D2 15388.67 610.67 31 5 97 35 

C6 
D1 5003 194.67 28 3 97 35 

D2 14480.67 604.33 27 5 97 35 

C7 
D1 4808.67 208.33 29 3 97 36 

D2 13785 596 25 4 96 36 

C8 
D1 4832 185 24 3 97 39 

D2 13724.67 639 23 3 97 39 

 

Table 4: Read Benchmark Results Summary 
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Figure 21: Read Execution Time for D1 

Figures 21, 22, and 23 represent a 

comparison of the execution time between 

Hadoop and LINQ to HPC for the Read 

benchmark on the different cluster 

configurations and datasets. Hadoop took 

approximately twenty five times more time 

to read the data from the distributed file 

system compared to LINQ to HPC.  

 

The number of nodes in the cluster did not 

have an impact on the Read performance of 

LINQ to HPC. However, in Hadoop there 

was a slight improvement in the 

performance as the number of nodes was 

increased. The difference in average 

execution time for Hadoop and LINQ to 

HPC was statistically significant (p < 

0.001) for both datasets. 

 

Figure 22: Read Execution Time for D2 

 

Figure 23: Read Execution Time Line chart 
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Figure 24: Read Average CPU Usage for D1 

Figures 24 and 25 represent a comparison 

of the average CPU usage between Hadoop 

and LINQ to HPC for the Read benchmark. 

Unlike Grep and Word Count benchmarks, 

the CPU usage for the Read benchmark 

followed an interesting pattern. The 

average CPU usage increased as the 

number of nodes increased in LINQ to 

HPC whereas it decreased as number of 

nodes increased in Hadoop.    

 

There was not much insight on how CPU 

usage happens in LINQ to HPC through 

literature but we believe the observed CPU 

behavior in LINQ to HPC is attributed to 

the way data was distributed. The 

difference in the average CPU usage for 

Hadoop and LINQ to HPC was statistically 

significant (p < 0.001) for both datasets. 

 

 

Figure 25: Read Average CPU Usage for D2 

 

Figure 26: Read Average CPU Usage Line chart 
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Figures 27 and 28 represent a comparison of the average CPU usage between Hadoop 

and LINQ to HPC for the Read benchmark on different cluster configurations and 

different dataset sizes. Hadoop used approximately ten times more memory than LINQ to 

HPC for all cluster configurations. However, the Average memory usage was consistent 

in Hadoop and did not vary much with the increase in number of nodes or increase in 

data volume. On the other hand, LINQ to HPC memory usage decreased slightly as more 

nodes were added. The difference in the average memory usage for Hadoop and LINQ to 

HPC was statistically significant (p < 0.001) for both datasets. 

 

 

Figure 27: Read Average Memory Usage for D1 

 

Figure 28: Read Average Memory Usage for D2 
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5.4 Write Benchmark Results 

 

The Write benchmark results are summarized in Table 5 for the Hadoop and LINQ to 

HPC for the different cluster configurations (C3, C4, C5, C6, C7, and C8) and dataset 

sizes (D1 and D2) for execution time, average CPU percentage utilization, and average 

memory percentage utilization. The results presented in the table represent the average 

value of three different runs. 

 

CONFIG

URATION 

DATA

SET 

Execution Time (S) Average CPU (%) Average Memory 

(%) 

HADOO

P 

LINQ TO 

HPC 

HAD

OOP 

LINQ TO 

HPC 

HAD

OOP 

LINQ TO 

HPC 

C3 
D1 9931.67 407 78 18 86 30 

D2 29252 1269.33 79 18 94 30% 

C4 
D1 9450 305.67 64 17 85 32 

D2 29061 1057 64 18 92 32 

C5 
D1 8025.33 302.67 50 13 80 33 

D2 24701.67 1005.67 49 13 91 33 

C6 
D1 7446.33 320 42 11 77 34 

D2 22387 1030.67 42 12 90 34 

C7 
D1 7445.67 298 40 9 73 35 

D2 21553.33 1086.67 37 9 89 35 

C8 
D1 7326.33 279.67 35 8 71 38 

D2 21301.67 956 34 9 88 38 

 

Table 5: Write Benchmark Result Summary 
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Figure 29: Write Execution Time for D1 

Figures 29, 30, and 31 represent a 

comparison of the execution time between 

Hadoop and LINQ to HPC for the Write 

benchmark on different cluster 

configurations and datasets. Overall, LINQ 

to HPC performed better on the Write 

benchmark with datasets D1 and D2 for all 

cluster configurations. 

 

Hadoop took approximately twenty five 

times more time to write the data from the 

local client to the distributed file system 

compared to LINQ to HPC. As the number 

of nodes increased, the Write benchmark 

performance improved on both LINQ to 

HPC and Hadoop. The difference in the 

average execution time for Hadoop and 

LINQ to HPC was statistically significant 

(p < 0.001) for both datasets. 

 

Figure 30: Write Execution Time for D2 

 

Figure 31: Write Execution Time Line Chart 
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Figure 32: Write Average CPU for D1 

Figures 32 and 33 represent a comparison 

of the average CPU usage between Hadoop 

and LINQ to HPC for the Write benchmark 

on the different cluster configurations and 

datasets. Unlike the Grep and Word Count 

benchmarks, the CPU usage for the Write 

benchmark follows an interesting pattern, 

similar to that of the Read benchmark.  

 

The average CPU usage increased as the 

number of nodes increased in LINQ to 

HPC, whereas it decreased as the number 

of nodes increased in Hadoop. Here too, we 

believe the observed CPU behavior in 

LINQ to HPC is due to the way data was 

distributed. The difference in the average 

CPU usage for Hadoop and LINQ to HPC 

was statistically significant (p <= 0.002) for 

both datasets.  

 

 

Figure 33: Write Average CPU for D2 

 

Figure 34: Write Average CPU Line Chart 
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Figures 35 and 36 represent a comparison of the average memory utilization between 

Hadoop and LINQ to HPC for the Write benchmark on different cluster configurations 

and dataset sizes. Hadoop used approximately seven times more memory than LINQ to 

HPC on all cluster configurations. Although the average memory usage was consistent in 

Hadoop, i.e., it did not vary much with the increase in cluster size or data volume, LIN Q 

to HPC memory usage decreased slightly for larger clusters. The difference in the average 

memory usage for Hadoop and LINQ to HPC was statistically significant (p < 0.001) for 

both datasets. 

 

 

Figure 35: Write Average Memory for D1 

 

Figure 36: Write Average Memory for D2 
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5.5 Result Discussions Summary 

 

This section provides a summary of the findings based on the detailed analysis performed 

in the previous sections. The result discussions are summarized in Table 6 for the Hadoop 

and LINQ to HPC. 

 

BENCHAMRK FIGURE COMMENT 

Grep 7, 8 and 9 

LINQ to HPC performed approximately two 

times better than Hadoop for the Grep 

benchmark based on execution time. As the 

number of nodes increased, the gap between 

LINQ to HPC and Hadoop narrowed. 

Grep 10 and 11 

The average CPU usage was consistently about 

three times higher for Hadoop than LINQ to 

HPC 

Grep 12 and 13 

The average memory usage was also 

consistently higher for Hadoop compared to 

LINQ to HPC. 

 

Word Count 14, 15 and 16 

Hadoop performed 50% better than LINQ to 

HPC for the Word Count benchmark with 

respect to execution time. As the number of 

nodes was increased, the execution time 

reduced for both LINQ to HPC and Hadoop. 

When the number of nodes was increased the 

gap between LINQ to HPC and Hadoop 

narrowed.  

Word Count 17 and 18 

The average CPU usage was consistently three 

times higher for Hadoop compared to LINQ to 

HPC. 

Word Count 19 and 20 
The average memory usage was consistently 

higher for Hadoop. 

Read 21, 22 and 23 

LINQ to HPC performed better on the Read 

benchmark based on the execution time metric. 

Hadoop took, on average, twenty five times 

more time to read the data from the distributed 

file system compared to LINQ to HPC. . The 

number of cluster nodes did not have an impact 

on the Read performance of LINQ to HPC. In 
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Hadoop, there was a slight performance 

improvement as the number of nodes was 

increased. 

Read 24, 25 and 26 

The average CPU usage increased as the 

number of nodes increased in LINQ to HPC 

whereas it decreased as the number of nodes 

increased in Hadoop.  

Read 27 and 28 
The average memory usage was consistently 

higher for Hadoop. 

Write 29, 30 and 31 

Hadoop took, on average, twenty-five times 

more time to write the data from the local client 

machine to the distributed file system compared 

to LINQ to HPC. As the number of nodes 

increased the Write benchmark, the execution 

time of LINQ to HPC and Hadoop improved. 

Write 32, 33 and 34 

The average CPU usage increased as the 

number of nodes increased in LINQ to HPC, 

whereas it decreased as the number of nodes 

increased in Hadoop. 

Write 35 and 36 

The average memory usage was consistent in 

Hadoop whereas LINQ to HPC memory usage 

decreased slightly for larger clusters. 

 

Table 6: Result Discussions Summary 
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Chapter 6   

CONCLUSION AND FUTURE WORK 

 

Most organizations and enterprises are flooded with a deluge of data, typically referred to 

as Big Data. This data comes from traditional systems, sensors, mobile devices, cloud 

application and social media to name a few. IBM research claims that 2.5 quintillion 

bytes of data is created every day, so much that 90% of all data has been created in last 

two years only. IBM also claims that 80% of enterprise data is unstructured 

[BIGDATA12]. Traditionally, enterprises have been analyzing historical structured data 

only. With the availability of Big Data volumes, enterprises started to realize the 

significant opportunity and potential value of analyzing newer types of data to answer 

questions that were previously considered beyond their reach. Until recently, managing 

and analyzing Big Data were not practical because of the prohibitive cost, bad 

performance, and lack of tools and technical knowhow.  

 

Hadoop is increasingly becoming the popular option to manage, process, and analyze 

huge volumes of unstructured data that comes from disparate data source. Hadoop has 

disrupted the enterprise data and analytics market with a scalable platform. Enterprises 

look at Hadoop as an extension to their existing IT environments to tackle the volume, 

velocity, and variety of Big Data. A number of companies like Cloudera, Horton Works, 

EMC, to name a few, are emerging to provide an enterprise grade Hadoop.  
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There are only few alternative platforms to Hadoop including Microsoft’s LINQ to HPC, 

Lexis Nexis, IBM Pure Data (Netezza), Aster Data SQL-MR, and Green Plum Map 

Reduce. Microsoft’s LINQ to HPC differentiates itself from the other platforms by 

enabling programmers to write high level queries based on Language Integrated Query 

(LINQ).  The query-based programming model is simple, expressive and flexible than 

distributed computing frameworks, which require complex Map/Reduce pattern. Another 

key factor that differentiates LINQ to HPC from other platform is its ability to run on 

Windows HPC servers, which is widely used in enterprise environments.  

 

Before this thesis, there was no performance analysis study to compare Hadoop and 

LINQ to HPC in an enterprise application environment. In addition, Hadoop is an open 

source system and LINQ to HPC is a proprietary system, which makes the comparison 

even more interesting for many organizations and researchers. 

 

Experiments showed that LINQ to HPC performs better than Hadoop on three of the 

four-benchmark tasks (Grep, Read and Write) based on the execution time metric. 

Average Memory utilization of LINQ to HPC was better than Hadoop for all four 

benchmarks. The Average CPU utilization of LINQ to HPC was better than Hadoop for 

two of the four-benchmark tasks (Grep and Word Count).  Hadoop was faster than LINQ 

to HPC on the Word Count benchmark, but the difference was not significant as the data 

size increased. On the I/O benchmarks (Read and Write) LINQ to HPC performed on an 

average three times better than Hadoop based on the execution time metric. On the Grep 

benchmark, LINQ to HPC performed, on an average, two times faster than Hadoop.  As 
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the number of nodes were increased the gap between Hadoop and LINQ to HPC for the 

Grep and Word Count Benchmark results were getting closer, but the number of nodes 

did not significantly affect the I/O benchmark performance of Hadoop and LINQ to HPC. 

Hadoop processed data files to convert them into small blocks and distributed them 

effectively throughout the cluster, whereas LINQ to HPC stored them without processing 

and replicated them across the cluster. We believe this was the main reason why LINQ to 

HPC outperformed Hadoop in the Read and Write benchmark. 

 

6.1 Future Work 

 

Although Hadoop and its variants enjoy a much larger adoption in enterprise 

environments, our experiments indicate that LINQ to HPC performs better in most 

typical use scenarios, particularly for smaller implementations given the cluster sizes 

used in our experiments. Comparing LINQ to HPC and Hadoop in larger sized clusters 

and using terabytes of data will be of interest to larger organizations and scientific 

communities. In addition, in our experiments we used Windows HPC clusters for both 

Hadoop and LINQ to HPC for the obvious reason of neutralizing the effect of operating 

systems, yet most organizations that adopted Hadoop use Linux as the underlying 

operating system. It will be of interest to conduct further experiments using Hadoop on 

Linux clusters. 
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Appendix A 

 

 

Dataset Description 

Table 7 provides the details regarding the data sets used for the experimentation. 

 

Data 

Set 

No 

Dataset 

Size 

(GB) 

Dataset Files 

D1 6.24 http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-0.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-1.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-2.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-3.csv.zip 

D2 18.72 http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-0.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-1.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-2.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-3.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-4.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-5.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-6.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-7.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-8.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-9.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-10.csv.zip 

http://commondatastorage.googleapis.com/books/ngrams/books/googlebooks-eng-all-

2gram-20090715-11.csv.zip 

 

Table 7: Dataset Description 
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