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Abstract

We �rst discuss some fundamental results such as equilibria, linearization, and

stability of nonlinear dynamical systems arising in mathematical modeling. Next we

study the dynamics in planar systems such as limit cycles, the Poincaré-Bendixson

theorem, and some of its useful consequences. We then study the interaction between

two and three di�erent cell populations, and perform stability and bifurcation analysis

on the systems. We also analyze the impact of immunotherapy on the tumor cell

population numerically.



CHAPTER 1

Introduction

To begin studying nonlinear dynamical systems requires a complete understanding

of how linear systems behave. The books [3, 4, 5, 8, 19, 22] all provide a full devel-

opment of linear theory. The essential results of linear theory include the existence

and uniqueness of solutions, the behavior of equilibrium points based on eigenvalue

analysis, and the extension of linear systems into Rn through the structure of linear

algebra and the matrix exponential. The reason for the emphasis on linear theory is

that locally, in the neighborhood of an equilibrium and under certain conditions, non-

linear systems behave identically to linear systems. Thus we can often characterize

the qualitative behavior of a nonlinear system by analyzing the corresponding locally

linear system at the equilibrium points, and piecing the results together. The impor-

tance of this cannot be understated, since explicit solutions for nonlinear systems are

most often extremely di�cult or impossible to determine.

Dynamical systems play an important role in determining the fate of many inter-

acting systems. They are used to model a variety of phenomena found in the physical,

�nancial, and biological realms. In [12] there is a rich development of nonlinear dy-

namical systems, and it is the primary source we follow for much of our paper. A

continuation of [12] is found in [18] which applies the dynamical system to manifolds

and thus generates even more theoretical results. Manifold theory will not play a role

in this paper since we are primarily interested in the interacting populations model

which does not require the notion of a manifold. In [6, 9] there is a rich number of

biological problems, and the general theory we develop in this paper has been tai-

lored to the needs of such problems. A more advanced look at the development of

dynamical system models and theory can be found in [10, 16, 23].

1



1. INTRODUCTION 2

In Chapter 2 we give some background material on the subject which provides

the framework needed to study a nonlinear dynamical system regardless of the phe-

nomenon being considered. In Chapter 3 we study the models in [14] and [13], and

analyze the details of the development and dynamics of the models mathematically

and numerically. We also determine the possible fates of these systems, and add the

treatment described in [20] to the model. In Chapter 4 we make some concluding

remarks, and Chapter 5 is the Appendix which contains a variety of topics necessary

to the cohesion of the preceding materials.



CHAPTER 2

Background Material

2.1. The Dynamical System

A dynamical system is a way of describing the properties of a physical system

through time. Examples of this include the space of states S of a system such as a

particle moving through space as time goes on, and the interaction among n di�erent

populations competing for resources. We often de�ne dynamical systems on a Eu-

clidean space or open subsets of a Euclidean space. Given a dynamical system on S

we are able to precisely locate where a particle is initially, call it x0 or at one unit of

time later, call it x1 or at one unit of time prior, call it x−1. By considering all such

positions we can extrapolate them in a continuous way to �ll up all real numbers and

obtain the solution x(t) = xt for any given t ∈ R.

The solution of a dynamical system, a function of time that satis�es initial con-

ditions is called the �ow of the system. We assume the map φ : R× S → S de�ned

by φ(t, x) = xt is at least continuously di�erentiable in t. The �ow has an inverse φ−t

and we denote φ0(x) to be the identity and furthermore the composition of two �ows

exists as φt(φs(x)) = φt+s(x). This leads to the following de�nition of a dynamical

system.

Definition 1. A dynamical system is a C1 map φ : R × S → S where S is

an open set of a Euclidean space and writing φ(t, x) = φt(x), the map φt : S → S

satis�es,

(i) φ0 : S → S is the identity,

(ii) The composition φt ◦ φs = φt+s for each t, s ∈ R.
3



2.2. EQUILIBRIA, LINEARIZATION, AND STABILITY ANALYSIS 4

Throughout this paper we let E denote a vector space with a norm ‖·‖, and

W ⊂ E be an open set in E, and let f : W → E be a continuous map. A solution to

the di�erential equation,

(2.1.1) x′ = f(x)

refers to a di�erentiable function,

u : J → W

de�ned on an interval J ⊂ R such that ∀t ∈ J where J is an open, closed, or half-open

interval on R,

u′(t) = f(u(t)).

It can be shown that every dynamical system gives rise to a di�erential equation, and

that every di�erential equation gives rise to a dynamical system.

2.2. Equilibria, Linearization, and Stability Analysis

In this section we analyze the nonlinear system (2.1.1) by determining its equilib-

rium points, and using linearization techniques to describe the behavior of the system

near the equilibria.

Some of the most important types of solutions are ones in which the system (2.1.1)

is not changing. Such solutions are called equilibrium points, and they are de�ned

below.

Definition 2. An equilibrium point x̄ ∈ W of the system (2.1.1) is a solution

that satis�es f(x̄) = 0 for all t.

The stability of an equilibrium point of (2.1.1) is an important notion whereby the

long-term behavior of a solution may be determined through stability analysis of the
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equilibrium points. An equilibrium point x̄ with initial condition x̄0 is called stable if

all solutions that begin near x̄ stay near x̄ for all t ≥ 0. We say that the equilibrium

point x̄ is asymptotically stable if all nearby solutions not only stay nearby, but also

tend toward x̄.

The study of equilibria and their stability plays an important role in determining

the usefulness of a mathematical model with respect to its corresponding physical or

biological system. This is especially true for a system where the initial conditions are

not exactly known. The three di�erent types of equilibria are de�ned below.

Definition 3. Suppose x̄ ∈ W is an equilibrium of (2.1.1). Then x̄ is a stable

equilibrium if for every neighborhood U of x̄ there is a neighborhood U1 of x̄ in U

such that every solution xt with x0 in U1 is de�ned and in U for all t > 0.

Figure 2.2.1. A stable equilibrium point.

The de�nition for asymptotic stability is obtained by adding an additional condi-

tion to De�nition 3.

Definition 4. We say that x̄ ∈ W is asymptotically stable if in addition to the

properties described in De�nition 3 it also has the property that limt→∞ x(t) = x̄.
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Figure 2.2.2. An asymptotically stable equilibrium point.

The de�nition of an unstable equilibrium point is as follows.

Definition 5. An equilibrium point x̄ ∈ W that is not stable or asymptotically

stable is called unstable. This means there is a neighborhood U of x̄ such that for

every neighborhood U1 of x̄ in U, there is at least one solution xt starting at x0 ∈ U1,

which does not lie entirely in U.

Figure 2.2.3. An unstable equilibrium point.
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2.2.1. Stability.

Definition 6. An equilibrium point x̄ is hyperbolic if none of the eigenvalues of

the matrix D (f(x̄)) have zero real part.

It is shown that the local behavior of nonlinear systems near a hyperbolic equi-

librium point x̄ is qualitatively determined by the behavior of the linear system,

x′ = Ax

for the matrix A = D (f(x̄)) which is a linear operator represented by the n × n

matrix of partial derivatives,

∂

∂xj
(fi(x1, ..., xn)) for i, j = 1, 2, ..., n

near the origin. The linear function Ax = D (f(x̄))x is called the linear part of f(x)

at x̄. As long as D (f(x̄)) has no zero or pure imaginary eigenvalues, then this linear

part will approximate the local behavior of the nonlinear system near the equilibrium

point. A detailed derivation of this linearization idea is given in Section 2.5, where

we de�ne the Jacobian which is a matrix that represents the linearized part of the

nonlinear system near an equilibrium point.

Definition 7. An equilibrium point x̄ of (2.1.1) is called a sink if all of the

eigenvalues of the matrix D (f(x̄)) have negative real part; it is called a source if all

of the eigenvalues of D (f(x̄)) have positive real part; and it is called a saddle if it

is a hyperbolic equilibrium point and D (f(x̄)) has at least one eigenvalues with a

positive real part and at least one with a negative real part.

The corresponding matrix evaluated at an equilibrium point x̄ will yield eigen-

values, and it is the eigenvalues that determine the stability properties of the corre-

sponding equilibrium point. This idea is expressed in the following theorems.
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Theorem 8. If all eigenvalues of D (f(x̄)) of the system (2.1.1) have negative

real part, then the equilibrium x̄ is asymptotically stable.

The proof of Theorem 8 follows after we discuss Theorem 9 and Liapunov's The-

orem. The following theorem provides an important stability result that states for

every positive equilibrium point none of the eigenvalues of D (f (x̄)) have positive real

part.

Theorem 9. Let W ⊂ E be open and f : W → E be continuously di�erentiable.

If f(x̄) = 0 and x̄ is a stable equilibrium point of x′ = f(x) then no eigenvalue of

D (f (x̄)) has positive real part.

Proof. See [12, pg.187] for the proof. �

A useful theoretical result was discovered by the Russian mathematician and

engineer Liapunov. The result provides a criteria whereby if a certain function V

behaves in a certain way, then the stability of the corresponding equilibrium point

can be determined. This idea is presented in Theorem 10, but �rst we develop some

notation needed to express the theorem.

Let V : U → R be a di�erentiable function de�ned in a neighborhood U ⊂ W of

x̄. We denote by V ′ : U → R the function de�ned by,

V ′(x) = DV (x)(f(x)),

where DV (x) is the di�erential operator applied to the vector f(x). Suppose φt(x) is

a solution to 2.1.1 with E = Rn at t = 0 passing through x then,

V ′(x) =
d

dt
V (φt(x))|t=0

by the chain rule. If V ′ is negative notice that V then decreases along the solution

through x.



2.2. EQUILIBRIA, LINEARIZATION, AND STABILITY ANALYSIS 9

Theorem 10 (Liapunov's Theorem). Let x̄ ∈ W be an equilibrium for x′ = f(x)

where f : W → Rn is a C1 map on an open set W ⊂ Rn. Let V : U → R be a

continuous function de�ned on a neighborhood U ⊂ W of x̄, di�erentiable on U − x̄,

such that,

(i) V (x̄) = 0 and V (x) > 0 if x 6= x̄,

(ii) V ′ ≤ 0 in U − x̄.

Then x̄ is stable. Furthermore, if also,

(iii) V ′ < 0 in U − x̄,

then x̄ is asymptotically stable.

Proof. See [12, pg.193] for the proof. �

Example 11. Consider the planar system,

x′1 = −x1 − x1x
2
2

x′2 = −x2 − x2
1x2

Then the function V = x2
1 + x2

2 yields,

V ′ = −2x2
1(1 + x2

2)− 2x2
2(1 + x2

1)

= −2
(
x2

1 + x2
2 + 2x2

1x
2
2

)
< 0

Since x2
1 + x2

2 + 2x2
1x

2
2 > 0 for all (x1, x2) ∈ R2 and V ′(0, 0) = 0 only for the equilib-

rium point, then it follows from Theorem 9 that the equilibrium point x̄ = (0, 0) is

asymptotically stable.

Notice that for an asymptotically stable equilibrium point the quantity ‖x− x̄‖ →

0 as t→∞. Liapunov realized that the norm need not be the only quantity that tends
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to zero as the solution gets closer and closer to the equilibrium point, namely he found

that the above conditions on a devised function V would also guarantee stability.

We now proceed with the proof of Theorem 8.

Proof. Let x̄ ∈ W be an equilibrium for x′ = f(x) where f : W → Rn is a C1

map on an open set W ⊂ Rn. Let y = x− x̄ translate the �xed point to the origin so

that we obtain,

y′ = f(y + x̄), y ∈ Rn

Using the Taylor expansion we obtain,

(2.2.1) y′ = D (f(x̄)y) +R(y)

with R(y) ≡ O (|y2|) , where R(y) ≡ O (|y2|) if and only if there exists K > 0 ∈ R

and y0 ∈ R such that |R(y)| ≤ K |y2| for all y > y0.

Let y = εu where 0 < ε < 1, which implies that for a small ε we have a small y vector.

Thus (2.2.1) becomes,

u′ = D (f(x̄)u) + R̄(u, ε)

where R̄(u, ε) = R(uε)
ε
. Let R̄(u, 0) ≡ limε→∞ R̄(u, ε)→ 0 since R(y) ≡ O (|y2|) .

Let the Liapunov function be de�ned as,

V (u) =
1

2
|u|2 .

it then follows that,

V ′(u) = ∇V (u) · u′

= (u ·D (f(x̄)u)) +
(
u · R̄(u, ε)

)
.
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Since all of the eigenvalues of D (f(x̄)u) have negative real part,

u ·D (f(x̄)u) < k |u|2 < 0

for some real number k and all u. Hence for ε small enough V ′(u) is strictly negative,

and thus the �xed point x̄ is asymptotically stable. �

As we have seen, the stability of an equilibrium point of a nonlinear system can

often be determined by analyzing the eigenvalues of the corresponding linearized

system. However, not all equilibrium points exhibit this type of limiting behavior, in

fact there often exist periodic solutions. In the next section we develop tools used to

understand some of the dynamics that arise as a result of these periodic solutions,

and we prove a very important classical result for planar dynamical systems.

2.3. Periodic Solutions and Limit Cycles

In the preceding section we analyzed the behavior of solutions starting near an

equilibrium point. For �rst order di�erential equations this was enough to describe

the behavior of all solutions, as every solution is either unbounded or approaches an

equilibrium point. As we will see, solutions to second order di�erential equations yield

other possible limiting behaviors. Consequently, we must consider what happens to

a solution that does not begin near equilibria. Such systems often arise in models of

interacting populations.

We still consider a dynamical system on an open set W in a vector space E, that

is we de�ne φt on a C1 vector �eld f : W → E. We now develop a handful of results

needed to prove the main results of Subsections 2.3.4 and 2.3.5.

Invariance refers to a certain mathematical property that is maintained after a

transformation is applied to it. For example, the degree of a polynomial Pn(x) is not

invariant under the derivative operator, as the degree is reduced after the transfor-

mation is applied. The invariance of a dynamical system is essentially a statement of

boundedness and existence of solutions in a certain set, and is de�ned below.
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Definition 12. A set A in the domain W of a dynamical system is invariant

if for every x ∈ A, φt(x) is de�ned and in A for all t ∈ R. A system is said to be

positively invariant if the de�nition of invariance is met for all t ≥ 0.

An equilibrium point is a simple example of an invariant set. Also a periodic

orbit, which will be discussed shortly, is an example of an invariant set because the

set of all points that start on a periodic orbit will always be de�ned and remain on

the orbit for all time.

2.3.1. Limit Sets. For planar dynamical systems limit sets are fairly simple, for

example every equilibrium point is its own α and ω-limit set, and every asymptotically

stable solution is also an ω-limit set for every point in its basin. These ideas are de�ned

below.

Definition 13. Let y ∈ Rn be an ω-limit point for the solution through x if there

is a sequence tn → ∞ such that limn→∞φtn(x) = y. The set of all ω-limit points of

the solution through x is the ω-limit set of x and is denoted by Lω(x). The α-limit

set is designed similarly, except tn → −∞ and it is denoted by Lα(x).

Example 14. Consider the second-order di�erential equation,

x′′ = −x.

A solution is xt = sin(t). An ω-limit point is such that for a sequence tn we have as

tn → ∞ that xtn = r where r ∈ R. Such a sequence exists for r ∈ [−1, 1] and hence

Lω(x) = [−1, 1]. Furthermore, since sin(t) is periodic one can easily �nd sequences

that always yield the same values as tn →∞.

Some facts regarding limit sets are recorded in the following proposition.

Proposition 15. (i) If x and z are on the same solution, then Lω(x) = Lω(z)

and Lα(x) = Lα(z).
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(ii) If D is a closed positively [negatively] invariant set and z ∈ D, then Lw(z) ⊂ D

[Lα(z) ⊂ D].

(iii) A closed invariant set, in particular a limit set, contains the α-limit and

ω-limit sets of every point in it.

Proof. (i) Suppose that y ∈ Lω(x), and φs(x) = z, in other words for some

time s the �ow at x is equivalent to z. If φtn(x) → y, then we can shift z to x by

φtn−s(z) = φtn(x)→ y. Hence, y ∈ Lω(z) also.

(ii) If φtn(z)→ y ∈ Lω(z) as tn →∞, then we have tn ≥ 0 for n large enough so

that φtn(z) ∈ D. Therefore, y ∈ D since D is a closed set.

(iii) Follows immediately from (ii). �

2.3.2. Local Sections and Flow Boxes. The proof of the Poincaré-Bendixson

Theorem in this paper requires the concepts of local sections and �ow boxes, which

we de�ne in this section. As above, we still consider the �ow φt of the C
1 vector �eld

f : W → E and suppose the origin 0 ∈ E belongs to W.

Definition 16. A local section at 0 of f is an open set S containing 0 in the

hyperplane H ⊂ E which is transverse to f.

The hyperplane H of E is a linear subspace of E whose dimension is one less than

E. To say that S ⊂ H is transverse to f means that f(x) /∈ H ∀x ∈ S. Particularly

we mean that f(x) 6= 0 for x ∈ S.

The local section is devised so that we can consider the �ow of a solution in a

neighborhood of 0. A �ow box provides a complete description of a �ow in a neighbor-

hood of a nonequilibrium point of any �ow by choosing a special set of coordinates.

The idea is that points move in parallel straight lines at constant speed.

Definition 17. Let U and V be open sets of vector spaces. Then a di�eomor-

phism Ψ : U → V, is a di�erentiable map from one open set of a vector space to

another with a di�erentiable inverse.
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A �ow box is a special di�eomorphism de�ned as follows.

Definition 18. Let N be a neighborhood of (0, 0) in R × H and let h be a

neighborhood of 0 in W. Then a �ow box is a di�eomorphism,

Ψ : N → W

that transforms the vector �eld f : W → E into the constant vector �eld (1, 0) on

R×H. The �ow of f is thereby converted to a simple �ow on R×H,

ψs(t, y) = (t+ s, y).

The map Ψ is de�ned by,

Ψ(t, y) = φt(y)

for (t, y) in a su�ciently small neighborhood of (0, 0) in R×H.

Figure 2.3.1. Diagram of the �ow box.

A �ow box can be de�ned around any nonequilibrium point x0 by rede�ning f(x) by

f(x− x0) which converts the point to 0.

Proposition 19. Let S be a local section at 0 as above, and suppose φt0(z0) = 0.

Then there is an open set U ⊂ W containing z0 and a unique C1 map τ : U → R

such that τ(z0) = t0 and,

φτ(x)(x) ∈ S
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for all x ∈ U.

Proof. Let h : E → R be a linear map whose kernel H is the hyperplane

containing S. Then by de�nition we have h(f(0)) 6= 0. The function,

G(x, t) = hφt(x)

is C1 and,

dG

dt
(z0, t0) = h(f(0)) 6= 0.

By the implicit function theorem there must exist a unique C1 map x → τ(x) ∈ R

de�ned on a neighborhood U1 of z0 in W such that τ(z0) = t0 and G(x, τ(x)) ≡ 0.

Thus, φτ(x)(x) ∈ H and for U ⊂ U1 in a su�ciently small neighborhood of z0 it follows

that φτ(x) ∈ S. �

2.3.3. Monotone Sequences in the Plane. Let x0, x1, x2, ... be a �nite or

in�nite sequence of distinct points on the solution curve C = {φt(x0) | 0 ≤ t ≤ α}

which is in the plane. The solution is monotone if φtn(x0) = xn with 0 ≤ t1 < · · · ≤ α.

Let y0, y1, y2, ... be a �nite or in�nite sequence of points on a line segment I in R2.

The sequence is monotone along I if the vector yn−y0 is a scalar multiple λn(y1−y0)

with 1 < λ2 < λ3 < · · ·n = 2, 3, .... In other words, yn−1 < yn < yn+1 for the ordering

along I and n = 1, 2, ....

For a local section it is impossible for a sequence of points to be monotone along

the solution curve but not along the segment I, which is the essence of the following

proposition. Notationally we replace the interval I with the local section S.

Proposition 20. Let S be a local section of a C1 planar dynamical system and

let y0, y1, y2, ... be a sequence of distinct points of S that lie on the same solution curve

C. If the sequence is monotone along C, then it is also monotone along S.
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Proof. Consider the points y0, y1, and y2. Let γ be the simple closed curve made

up of the part B of C between y0 and y1 and the segment T ⊂ S between y0 and y1.

Let D be the region bounded by γ. Without loss of generality assume the solution of

y1 leaves D at y1, where a similar argument follows as it enters instead. Since T is a

part of the local section the solution leaves D at every point in T.

It follows that the complement of D is positively invariant, since no solution can

enter D at a point of T, and it can never cross B by uniqueness of solutions. Therefore

we have, φt(y1) ∈ R2 −D for all t > 0, and speci�cally we have, y2 ∈ S − T.

The set S−T can be represented by two half open intervals, I0 and I1 with y0 an

endpoint of I0 and y1 and endpoint of I1. For ε > 0 and small enough an arc can be

drawn from a point φε(y1) to a point I1, without crossing γ, and so we can conclude

that I1 is outside D. Thus y1 is between y0 and y2 in I which proves the proposition.

The main idea of the argument is illustrated in Figure 2.3.2 below. �

Figure 2.3.2. Diagram for Proposition 20.

Proposition 21. Let y ∈ Lω(x)∪Lα(x). Then the solution of y crosses any local

section at not more than one point.

Proof. Suppose y1 and y2 are distinct points on the solution of y and S is a local

section containing y1 and y2. Without loss of generality suppose y ∈ Lω(x). Then

yk ∈ Lω(x) for k = 1, 2. Let F(1) and F(2) be �ow boxes at yk de�ned by intervals
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Jk ⊂ S; with J1 and J2 being disjoint. Then the solution of x will enter F(k) in�nitely

often and must therefore cross Jk in�nitely often. Thus there exists a monotone

sequence,

a1, b1, a2, b2, a3, b3, ...

which is monotone along the solution of x, with an ∈ J1, bn ∈ J2, n = 1, 2, .... However,

since J1 and J2 are disjoint, the monotone sequence cannot be monotone along S,

which contradicts Proposition 20. Figure 2.3.3 helps to elucidate the proof. �

Figure 2.3.3. Diagram for Proposition 21.

2.3.4. The Poincaré-Bendixson Theorem. The Poincaré-Bendixson Theo-

rem characterizes all possible limiting behaviors of planar systems, but unfortunately

it cannot be extended into higher dimensions as a consequence of the Jordan Curve

Theorem [15, pg.335] not holding outside of the plane.

A closed orbit of a dynamical system refers to the image of a nontrivial periodic

solution. We consider a solution Γ to be a closed orbit if Γ is not an equilibrium

point, and φp(x) = x for some x ∈ Γ, p 6= 0. Hence we have,

φnp(y) = y
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for all y ∈ Γ, n = 0,±1,±2, ....

We now have the tools needed to prove the Poincaré-Bendixson Theorem. As

mentioned above the proof requires the Jordan Curve Theorem, which we will assume

to be true. The theorem allows us to divide the plane into two components, an �inside�

and and �outside�. It is this simple, yet unique to the plane characteristic that allows

us to prove the Poincaré-Bendixson theorem, and also the reason the theorem cannot

be extended beyond the plane.

Theorem 22 (The Poincaré-Bendixson Theorem). A nonempty compact limit

set of a C1 planar dynamical system, which contains no equilibrium point, is a closed

orbit.

Proof. Without loss of generality we will prove this for ω-limit sets, however the

case for α-limit sets is similar. Assume Lω(x) is compact and let y ∈ Lω(x). From (ii)

of Proposition 15 we know that since y belongs to the compact invariant set Lω(x),

then Lω(y) is a nonempty subset of Lω(x).

Let z ∈ Lω(y), S be a local section at z, and F be a �ow box neighborhood of

z about an open interval J, z ∈ J ⊂ S. By Proposition 21 we know the solution of

y meets S at exactly one point. However, there is a sequence tn → ∞ such that

φtn(y) → z, and thus in�nitely many φtn(y) belong to F. Thus we can �nd r, s ∈ R

such that for r > s and,

φr(y) ∈ S ∩ F, φs(y) ∈ S ∩ F.

It then follows that φr(y) = φs(y) and so φr−s(y) = y and r − s > 0. Since Lω(x)

contains no equilibrium, y belongs to a closed orbit.

Now we must show that if Γ is a closed orbit in Lω(x) then Γ = Lω(x) by proving

that,

lim
t→∞

d(φt(x),Γ) = 0
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where d(φt(x),Γ) is the distance from φt(x) to the compact set Γ.

Let S be a local section at z ∈ Γ, su�ciently small such that S ∩ Γ = z. By looking

at a �ow box Fε near z we see that there is a sequence t0 < t1 < t2 · · · such that,

φtn(x) ∈ S,

φtn → z,

φt(z) /∈ S for tn−1 < t < tn, n = 1, 2, ....

Let xn = φtn(x). By Proposition 20 we know that xn → z monotonically in S. Thus

there must exist an upper bound for the set of positive numbers tn+1 − tn. Suppose

φλ(z) = z, λ > 0. Then for xn close enough to z we have φλ(xn) ∈ Fε and hence,

φλ+t(xn) ∈ S

for some t ∈ [−ε, ε]. Thus,

tn+1 − tn ≤ λ+ ε.

Let β > 0. Then by properties of norms and continuity there exists δ > 0 such that

if ‖xn − u‖ < δ and |t| ≤ λ+ ε then,

‖φ(xn)− φt(u)‖ < β.

Let n0 be large enough such that ‖xn − z‖ < δ for all n ≥ n0. Then,

‖φ(xn)− φt(z)‖ < β

if |t| ≤ λ+ ε and n ≥ n0. Now let t ≥ tn0 and let n ≥ n0 be such that,

tn ≤ t ≤ tn+1.
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It follows that,

d(φt(x),Γ) ≤ ‖φt(x)− φt−tn(z)‖

= ‖φt−tn(xn)− φt−tn(z)‖

< β

since |t− tn| ≤ λ+ ε, which completes the proof. �

2.3.5. Consequences of The Poincaré-Bendixson Theorem. The following

results are still for planar dynamics.

Definition 23. A limit cycle is a closed orbit Γ such that Γ ⊂ Lω(x) or Γ ⊂ Lα(x)

for some x /∈ Γ. The former is called an ω-limit cycle and the latter an α−limit cycle.

Limit cycles are special periodic solutions where something like one-sided or pos-

sibly two-sided stability exists. For example, a center in a linear system is not a limit

cycle because neighboring initial conditions will not tend to the closed orbit, instead

they maintain their own orbit.

A consequence of this one- or two-sided stability is as follows.

Proposition 24. Let Γ be an ω-limit cycle. If Γ = Lω(x), x /∈ Γ then x has a

neighborhood V such that Γ = Lω(y) for all y ∈ V. In other words the set,

A = {y |Γ = Lω(y)} − Γ

is open.

Proof. Suppose Γ is an ω-limit cycle and let φt(x) approach Γ as t → ∞. Let

S be a local section at z ∈ Γ. Then there exists an interval T ⊂ S which is disjoint

from Γ and bounded by φt0 , φt1 with t0 < t1 and not meeting the solution of x for

t0 < t < t1. The region A bounded by Γ, T, and the curve,
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{φt(x) | t0 < t < t1}

is positively invariant as is the set B = A−Γ. It follows that φt(x)→ Γ for all y ∈ A.

For t > 0 and large enough we have that φt(x) is in the interior of the set A. Thus

φt(y) ∈ A for y su�ciently close to x. �

Theorem 25. A nonempty compact set K that is positively invariant or negatively

invariant contains either a limit cycle or an equilibrium.

Proof. Let K be positively invariant. If x ∈ K, then Lω(x) is a nonempty

subset of K. By the Poincaré-Bendixson theorem the set K must be a closed orbit if

it contains no equilibrium point. If the invariant set is an equilibrium, then the last

result follows. �

Proposition 26. Let Γ by a closed orbit and suppose that the domain W of the

dynamical system includes the whole open region U enclosed by Γ. Then U contains

either an equilibrium or a limit cycle.

Proof. Let D be the compact set U ∪ Γ where D is invariant since no solution

from U can cross Γ and hence they can never lie on the same solution. If U contains

no limit cycle and no equilibrium, then, for any x ∈ U,

Lω(x) = Lα(x) = Γ

by the Poincaré-Bendixson Theorem. If S is a local section at a point z ∈ Γ, there

must exist sequences tn →∞, sn → −∞ such that,

φtn(x) ∈ S, φtn(x)→ z,

and

φsn(x) ∈ S, φsn(x)→ z,
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which contradicts Proposition 20. �

Theorem 27. Let Γ be a closed orbit enclosing an open set U contained in the

domain W of the dynamical system. Then U contains an equilibrium.

Proof. The proof shall be given by contradiction.

Suppose U contains no equilibrium and let x be a point in U . If xn → x in U

and each xn lies on a closed orbit, then x must lie on a closed orbit. If not, then the

solution of x would spiral toward a limit cycle, and by Proposition 25 so would the

solution of xn.

Let A ≥ 0 be the greatest lower bound of the areas of the regions enclosed by

closed orbits in U. Let {Γn} be a sequence of closed orbits enclosing regions of areas

An such that limn→∞An = A and let xn ∈ Γn.

Since Γ ∪ U is compact we can assume that xn → x ∈ U. If U contains no

equilibrium then x lies on a closed orbit β of area A(β). As n→∞, Γn gets arbitrarily

close to β and hence the area An−A(β), of the region between Γn and β goes to zero

and consequently A(β) = A.

Hence if U contains no equilibrium, it contains a closed orbit β enclosing a region

of minimal area. Thus, the region enclosed by β contains neither a closed orbit nor

an equilibrium, which contradicts Proposition 2. �

Since planar systems allow for limit cycle solutions as a possibility, and because

the stability of a solution can depend on the parameters of the system, we study

bifurcation diagrams which help us to visualize the possible behaviors that occur

as certain parameters are varied. In the next section we consider one special type

of bifurcation point which occurs naturally after concluding the discussion on limit

cycles.

2.4. The Hopf-Bifurcation

Many physical systems depend on constants, or parameters, that can have a large

impact on the fate of the system. We are interested in situations where, as a parameter
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is varied, the system experiences a shift in its qualitative behavior (usually in terms

of its stability).

We modify (2.1.1) to include the parameter µ and obtain,

(2.4.1) x′ = f(x, µ)

where µ is regarded as the bifurcation parameter. When a system bifurcates we are

referring to a change in the stability of the system as the bifurcation parameter is

changed. The set of (x, µ) satisfying f(x, µ) = 0 is called the bifurcation diagram or

solution set of f. It is necessary to note that such solution sets often do not represent

functions since the stability type depends on two variables, the state variable x, and

the bifurcation parameter µ.

A Hopf-Bifurcation occurs when an equilibrium point of a dynamical system loses

stability as a pair of complex conjugate eigenvalues of the linearization around the

equilibrium point cross the imaginary axis of the complex plane. This phenomenon

often creates a branch of limit cycles from the equilibrium point.

The following theorem comes from [9, pg.342], and establishes a result for the

planar Hopf-Bifurcation.

Theorem 28 (The Hopf-Bifurcation Theorem for the case n = 2.). Consider the

system of two di�erential equations which contains a parameter µ,

dx1

dt
= f1(x1, x2, µ)(2.4.2)

dx2

dt
= f2(x1, x2, µ)

where f1 and f2 are continuous and have partial derivatives. Suppose that for each

value of µ the equations admit a steady state whose value may depend on µ, that is
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(x̄(µ), ȳ(µ)) , and consider the Jacobian matrix evaluated at the parameter-dependent

steady state,

J (µ) =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


(x̄,ȳ)

Suppose eigenvalues of this matrix are λ(µ) = a(µ)±b(µ)i. Also suppose that there

is a value µ∗, called the bifurcation value, such that a(µ∗) = 0, b(µ∗) 6= 0, and as µ is

varied through µ∗, the real parts of the eigenvalues change signs ( da
dµ
6= 0 at µ = µ∗).

Then the following three are possible,

(i) At the value µ = µ∗ a center is created at the steady state, and thus in�nitely

many neutrally stable concentric closed orbits surround the point (x̄, ȳ) .

(ii) There is a range of µ values such that µ∗ < µ < c for which a single closed

orbit (a limit cycle) surrounds (x̄, ȳ) . As µ is varied, the diameter of the limit cycle

changes in proportion to |µ− µ∗|1/2 . There are no other closed orbits near (x̄, ȳ) .

Since the limit cycle exists for µ values above µ∗, this phenomenon is known as a

supercritical bifurcation.

(iii) There is a range of values such that d < µ < µ∗ for which a conclusion

similar to case (ii) holds, and it is called a subcritical bifurcation.

Theorem 28 has also been generalized in [9, pg.344] for a system of n-equations.

To do this consider the following system,

dx1

dt
= f1(x1, x2, ..., xn, µ)(2.4.3)

dx2

dt
= f2(x1, x2, ..., xn, µ)

...
...

...

dxn
dt

= fn(x1, x2, ..., xn, µ).



2.4. THE HOPF-BIFURCATION 25

Theorem 29 (The Hopf-Bifurcation Theorem for the case n > 2.). Consider the

system of n variables in (2.4.3), with the appropriate smoothness assumptions on fi,

which are functions of the variables and the parameter µ. If x̄ is an equilibrium point

of this system and linearization about this equilibrium point yields n eigenvalues,

λ1, λ2, ..., λn−2, a+ bi, a− bi

where eigenvalues λ1 through λn−2 have negative real parts and exactly λn−1, λn are

complex conjugates that cross the imaginary axis when µ varies through some critical

value, then there exist limit-cycle solutions.

The following stability criterion was devised in [16, pgs.104-130] and can some-

times determine whether a limit cycle is stable or unstable.

Theorem 30. Suppose the system (2.4.2) for µ = µ∗ has the Jacobian matrix of

the form,

J (x̄, ȳ) |µ=µ∗ =

 0 1

−b 0


which has eigenvalues λ1 = bi and λ2 = −bi. Then for,

V ′′′ =
3π

4b
(fxxx + fxyy + gxxy + gyyy)(2.4.4)

+
3π

4b2
[fxy (fxx + fyy) + gxy (gxx + gyy) + fxxgxx − fyygyy]

evaluated at (x̄, ȳ, µ∗) the conclusions are as follows,

(i) If V ′′′ < 0, then the limit cycle occurs for µ > µ∗ (supercritical) and is stable.

(ii) If V ′′′ > 0, the limit cycle occurs for µ < µ∗ (subcritical) and is unstable.

(iii) If V ′′′ = 0, the test is inconclusive.

The following example illustrates the above theorems.
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Example 31. Consider the planar system,

dx1

dt
= x2(2.4.5)

dx2

dt
= −a

(
(x1 − û)2 − η2

)
x2 − x3

1 + 3(x1 + 1)− µ

where the set of parameters {a, û, η} are �xed and µ is the bifurcation parameter.

The bifurcation diagram for this system is generated below,

Figure 2.4.1. A Hopf-Bifurcation occurs at (2,0) for µ = 1.

Let the parameters be a = 1, û = 1.5, and η = 0.5. The red curve represents

stable equilibrium points, the black curve represents unstable equilibrium points,

and the green branches represent limit cycles that occur as a result of the Hopf-

Bifurcation. Notice that for µ between 1 and approximately 3.5 there exist limit

cycles that surround the unstable equilibrium points.

The Jacobian of (2.4.5) is,

J =

 0 1

−2x1x2 + 3x2 − 3x2
1 + 3 − ((x1 − 1.5)2 − 0.25)


and hence for µ = µ∗ = 1 and the steady state (2, 0) we obtain,
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J((2, 0, )µ∗) =

 0 1

−9 0


which has eigenvalues λ1 = 9i and λ2 = −9i. From the diagram we see that the

bifurcation value µ∗ = 1 is supercritical. We verify this using Theorem 30 as follows.

First notice that with the exclusion of the zero terms from (2.4.4) the condition for

(2.4.5) simpli�es to,

V ′′′(x, y) =
3π

4(9)
gxxx +

3π

4(81)
gxxgxy

and when evaluated at the equilibrium point (2, 0) yields,

V ′′′ = − π

18
< 0

which is a stable supercritical limit cycle as we expected.

2.5. Modeling Interacting Populations

In most real-life situations there are more than two interacting populations in-

volved. For example there are a billions of cells interacting in the body at any

given moment. Modeling this is mathematically intractable, so we often determine

which populations are the most important, and only consider these populations in the

model. In the preceding section we studied some planar dynamical system results,

and these results can often be used as building blocks to study larger systems. In

general though, the study of multipopulation models is very complicated, and planar

results do not have direct analogues to higher dimensions.

Consider a system comprised of n populations, x1, x2, ..., xn, where we assume

that x1, x2, ..., xn are continuously di�erentiable functions of t whose derivatives are

functions of n population sizes at the same time. We can then write the system of n

populations as,
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dx1

dt
= f1(x1, x2, ..., xn)(2.5.1)

dx2

dt
= f2(x1, x2, ..., xn)

...
...

...

dxn
dt

= fn(x1, x2, ..., xn).

As in the study of single-population models [4, 5, 6, 19], the assumptions that

lead to the form of (2.5.1) neglect many factors of importance in multi-population

dynamics, but the model is a useful �rst step and may still model some real population

dynamics quite well.

The system (2.5.1) is a standard way to express a system of n-autonomous dif-

ferential equations, or a dynamical system. For (2.5.1) the �ow would be de�ned as

follows, φ : R × Rn → Rn, where we let S = Rn, and t ∈ R as usual. This notation

provides a natural extension into Chapter 3, where we study the dynamics obtained

when two or three cell populations interact with each other. In Chapter 3 we consider

two models, one with n = 2 and one with n = 3. Let's consider the n = 3 case brie�y.

The extension is that for n = 3, there are three equations which take the following

form,

dx1

dt
= f1(x1, x2, x3)

dx2

dt
= f2(x1, x2, x3)

dx3

dt
= f3(x1, x2, x3).

The functions f1(x1, x2, x3), f2(x1, x2, x3), and f3(x1, x2, x3) are formulated using cer-

tain hypothesis relevant to the problem. For us, the problem in Chapter 3 is biological

in nature, so some appropriate assumptions have been made with respect to those
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interactions. In the next section we see how the general framework considered in

Section 2.2, regarding equilibria and linearization, carries over into the Rn case.

2.5.1. Equilibria and Linearization in Rn. According to the general frame-

work of Section 2.2 an equilibrium in Rn will be a solution (x̄1, x̄2, ..., x̄n) of (2.5.1)

which is set equal to zero, i.e,

x′1 =
dx1

dt
= f1(x̄1, x̄2, ..., x̄n) = 0(2.5.2)

x′2 =
dx2

dt
= f2(x̄1, x̄2, ..., x̄n) = 0

...
...

...

x′n =
dxn
dt

= fn(x̄1, x̄2, ..., x̄n) = 0.

Thus, an equilibrium is a constant solution of the system of di�erential equations. If

(x̄1, x̄2, ..., x̄n) is an equilibrium, we can make a change of variables,

u1 = x1 − x̄1

...
...

...

un = xn − x̄n

which yields the system,

u′1 = f1(x̄1 + u1, x̄2 + u2, ..., x̄n + un)(2.5.3)

...
...

...

u′n = fn(x̄1 + u1, x̄2 + u2, ..., x̄n + un).

Using the Taylor expansion for functions of n variables we may write,
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f1(x̄1 + u1, x̄2 + u2, ..., x̄n + un) = f1(x̄1, x̄2, ..., x̄n) + f1x1
(x̄1, x̄2, ..., x̄n)u1 +

· · ·+ f1xn (x̄1, x̄2, ..., x̄n)un + h1

f2(x̄1 + u1, x̄2 + u2, ..., x̄n + un) = f2(x̄1, x̄2, ..., x̄n) + f2x1
(x̄1, x̄2, ..., x̄n)u1 +

· · ·+ f2xn (x̄1, x̄2, ..., x̄n)un + h2

...
...

...

fn(x̄1 + u1, x̄2 + u2, ..., x̄n + un) = fn(x̄1, x̄2, ..., x̄n) + fnx1
(x̄1, x̄2, ..., x̄n)u1 +

· · ·+ fnxn
(x̄1, x̄2, ..., x̄n)un + hn

where h1, ..., hn are functions that are small for small u1, ..., un in the sense that,

lim
u1,...,un→0

hi(x̄1, x̄2, ..., x̄n)√
u2

1 + · · ·u2
n

= 0 for i = 1, ..., n.

The linearization of the system, obtained by using f1(x̄1, x̄2, ..., x̄n) = 0, ..., fn(x̄1, x̄2, ..., x̄n) =

0 and neglecting the higher order terms h1(u1, ..., un), ..., hn(u1, ..., un) is de�ned to

be the n-dimensional linear system,

u′1 = f1x1
(x̄1, ..., x̄n)u1 + · · ·+ f1xn (x̄1, ..., x̄n)un(2.5.4)

...
...

...

u′n = fnx1
(x̄1, ..., x̄n)u1 + · · ·+ fnxn

(x̄1, ..., x̄n)un.

The coe�cient matrix of (2.5.4) is then,

J =


f1x1

(x̄1, ..., x̄n) · · · f1xn (x̄1, ..., x̄n)

...
. . .

...

fnx1
(x̄1, ..., x̄n) · · · fnxn

(x̄1, ..., x̄n)


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which is called the Jacobian matrix at (x̄1, ..., x̄n) and was previously denoted by

D (f(x̄)) .

The system (2.5.1) can be written in the vector form,

(2.5.5) x′ = F (x),

and an equilibrium is a vector x satisfying F (x̄) = 0. We write the linearization of

(2.5.5) as,

u′ = Au

where A = D (f(x̄)) .

The general theorem described in Subsection 2.2.1 suggests that an equilibrium of

the system (2.5.2) is asymptotically stable if all solutions of the linearization at this

equilibrium tend to zero (as a result of the eigenvalues all having negative real part)

as t→∞, while an equilibrium x̄ is unstable if the linearization has any solution that

grows unbounded exponentially. It is also true that all solutions of the linearization

tend to zero if all roots of the characteristic equation,

(2.5.6) det(A− λI) = 0

have negative real part and that the solutions of the linearization grow exponentially

unbounded if (2.5.6) has any roots with positive real part. The roots of (2.5.6) are

the eigenvalues of the matrix A. The characteristic equation has the property that

its roots are the value of λ such that the linearization has a solution eλtc for some

constant column vector c. Thus the stability of an equilibrium x̄ can be determined

from the eigenvalues of A as was seen in Subsection 2.2.1.
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The characteristic equation for the n-dimensional system is a polynomial equation

of degree n for which it may be di�cult or impossible to �nd all roots explicitly. Nev-

ertheless there does exist a general criteria for determining all roots of a polynomial

equation having negative real part, and it is known as the Ruth-Hurwitz criteria [6,

pg.216]. This gives the condition on a polynomial equation,

λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0

under which all roots have negative real part.

For n = 2, the Ruth-Hurwitz criteria conditions are a1 > 0 and a2 > 0 (equivalent

to the conditions that the trace of the matrix A is negative, and the determinant of

the matrix A is positive). For n = 3 the Ruth-Hurwitz criteria conditions are a1 > 0,

a3 > 0, and a1a2 > a3. For a polynomial of degree n there are n conditions. As a

result of this, the Ruth-Hurwitz criteria may be useful on occasion, but it can become

cumbersome to apply to problems of higher dimensions.

For planar autonomous systems, the Poincaré-Bendixson theorem makes it pos-

sible to analyze the qualitative behavior of a system under very general conditions.

Essentially we know that a bounded orbit must approach either an equilibrium or a

limit cycle. For autonomous systems consisting of more than two di�erential equa-

tions a much larger range of behavior is possible.

Biological evidence suggests that more complicated interacting population sys-

tems have a tendency to be more stable than simple systems. For example, in a

predator-prey model a predator population can switch between di�erent prey pop-

ulations, since its food supply may be less sensitive to disturbances than if it were

dependent on a single food supply [9]. On the other hand the removal of one popula-

tion can lead to the collapse of a population in the system. The relationship between

stability and population systems, a question raised by [17], is not well understood. In

the following Chapter one of the important things we will study is how adding an ad-

ditional population into a model can change the qualitative behavior of the solutions.
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This implies that the predictive power of a model is highly contingent on making sure

as many of the essential variables have been considered in the model as possible.



CHAPTER 3

A Mathematical Modeling of Tumor Growth

A tumor forms when cancerous cells in the body are allowed to grow without bound

due to the immune system perceiving them as �self� cells [1, 14]. One of the ways

tumors develop is when the mechanisms that control cell growth and di�erentiation

malfunction. Many of the treatments used to combat cancer yield only temporary

results due to the ability of cancer cells to go undetected by the immune system and

replicate themselves at a high rate. In order for treatments to be successful they must

either completely eradicate all cancer cells from the body, or remove enough of them

to allow the immune system to combat the remaining tumor cells. However, since the

strength of the immune system varies from individual to individual the outcome of

the treatments vary greatly [20]. In the succeeding sections we study a model which

accounts for the e�ect of the immune system on the population of tumor cells.

3.1. Model 1 - Analysis of the E�ector/Tumor Cell Interaction

3.1.1. Required Biology. When cancerous tumor cells are present in a person,

one of the �rst lines of defense is o�ered by the immune system. Within the body

there are always present immune system cells, or e�ector cells, such as cytotoxic

T-lymphocytes (CTL) and natural killer cells (NK) which work to kill tumor cells.

For most people, spontaneously arising tumors grow out of control, and the immune

system alone is incapable of �ghting the tumor in a way that allows the person to

survive. As a result of this, many di�erent therapies have been developed, and one

such therapy is considered in Section 3.2 when we study Model 2. For now the model

we consider will have no therapies, and instead will focus on how the immune system

alone is capable of handling the tumor. The term immunogenic refers to tumor cells

34
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which are subject to be attacked by CTL or NK cells. In contrast, some tumor cells

are able to sneak past the CTL and NK cells because the immune system sees them

as a part of the �self�. In Model 1 we �nd several di�erent possibilities as a result of

our stability analysis, and an interesting exclusion of closed orbits as a result of the

Dulac-Bendixson criterion. These results will be followed by a bifurcation analysis.

3.1.2. Development and Description of Model 1. Let E(t) be the popula-

tion of CTL and NK cells, and T (t) be the population of tumor cells. Then the model

developed in [14] is,

dE

dt
= s+

p1ET

g1 + T
−mET − dE(3.1.1)

dT

dt
= r2T (1− bT )− nET

with initial conditions E(0) = E0 and T (0) = T0.

In the �rst equation of (3.1.1) the quantity s represents a constant production

of e�ector cells, p1ET
g1+T

the assumed Michaelis-Menten kinetics (see Appendix, 5.2)

between E and T with rate p1. mET is the removal of e�ector cells from the system

as they expire �ghting o� the tumor cells, and dE represents the natural death rate

of the e�ector cells. For the Michaelis-Menten term, the quantity p1 represents the

limiting or saturation population as t → ∞, and when t = g1 exactly half of the

saturation has been achieved.

In the second equation of (3.1.1) the quantity r2T (1− bT ) represents the logistic

growth of the tumor cells as was determined experimentally in [14] and nET is the

removal of tumor cells from the system as they are killed by the e�ector cells.

Figure 3.1.1. A diagram of system (3.1.1).
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3.1.3. Parameter Estimation. Using data acquired from a variety of sources

[14] was able to estimate the parameters in (3.1.1) and the results are recorded below

in Table 1.

Eq. (1) s = 1.3× 104 cells
day

p1 = 0.1245 day−1 g1 = 2.019× 107 cells

m = 3.422× 10−10 1
day cells

d = 0.0412 day−1

Eq. (2) r2 = 0.18 day−1 b = 2.0× 109 cells−1 n = 1.101× 10−7 1
day cells

Table 1: Parameter Values

3.1.4. Nondimensionalization of the System. From Table 1 it is apparent

that the system given in (3.1.1) has parameter values with vastly di�erent scales.

As a result of this we non-dimensionalize (see Appendix 5.1) the system so that the

numerical techniques used by the computer algebra systems will be more stable.

x =
E

E0

, y =
T

T0

, τ = nT0t,

σ =
s

nE0T0

, ρ =
p1

nT0

, η =
g1

T0

,

α =
r2

nT0

, δ =
d

nT0

, µ =
m

n
β = bT0.

The above scaling yields the following scaled system after substitution,

dx

dτ
= σ +

ρxy

η + y
− µxy − δx(3.1.2)

dy

dτ
= αy(1− βy)− xy.

We then obtain the following set of non-dimensional parameters,
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Eq. (1) σ = 0.1181 ρ = 1.131 η = 20.19 µ = 0.00311 δ = 0.3743

Eq. (2) α = 1.636 β = 2.0× 10−3

Table 2: Parameter Values

3.1.5. Stability Analysis. To determine the �xed points of (3.1.2) we employ

nullcline analysis. There is only one nullcline for the equation dx
dτ

= 0 and it is,

f(y) ≡ x =
σ

δ + µy − ρy
η+y

.

There are two nullclines for the equation dy
dτ

= 0 and they are,

y = 0 and g(y) ≡ x = α(1− βy).

The intersection of y = 0 and f(y) yields e1 =
(
σ
δ
, 0
)
as an equilibrium point of the

system. The intersection of f(y) and g(y),

α(1− βy) =
σ

δ + µy − ρy
η+y

yields, after some algebra, the third degree polynomial,

a3y
3 + a2y

2 + a1y + a0 = 0

where,

a0 = η
(σ
α
− δ
)
, a1 =

σ

α
+ ρ− µη − δ + δηβ

a2 = −µ+ (µη + δ − p) β and a3 = µβ

It was shown in [14, pg.14] that there exist between 1 and 4 equilibrium points

depending on the values of a0, a1, a2, and a3.

The Jacobian of the system is,
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J =

 ρy
η+y
− µy − δ ρxη

(η+y)2
− µx

−y α− 2αβy − xy


For e1 =

(
σ
δ
, 0
)
we have,

J(e1) =

 −δ ρη
δn
− µσ

δ

0 α− σ
δ

 .

The eigenvalues are λ1 = −δ and λ2 = α − σ
δ
which yields an unstable saddle point

when α > σ
δ
, and a stable equilibrium point when α < σ

δ
.

3.1.6. Typical Solution Curves. Using the dimensionless quantities in (3.1.2)

and the parameters in Table 2, we now plot the nullclines along with some solutions

of the system.

Figure 3.1.2. Phase portrait for (3.1.2) with parameters from Table 2.

From Figure 3.1.2 it is evident from the intersection of the nullclines that there

are three equilibrium points, two stable equilibria and one saddle point.
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3.1.7. Nonexistence of Limit Cycles. The system (3.1.2) contains no closed

orbits, and therefore no limit cycles as a result of the Dulac-Bendixson criterion (see

Appendix 5.3). Consider the function M = 1
xy
. Then,

L ≡ ∂

∂x

(
M
dx

dτ

)
+

∂

∂y

(
M
dy

dτ

)
=

∂

∂x

(
1

xy

(
σ +

ρxy

η + y
− µxy − δx

))
+

∂

∂y

(
1

xy
(αy(1− βy)− xy)

)
= − σ

x2y
− αβ

x

= −
(
σ

x2y
+
αβ

x

)
< 0

because x, y, α, β, σ > 0. Since there exist no closed orbits in the system, we conclude

that the spiraling equilibrium point found in Figure 3.1.2 must be an asymptotically

stable sink.

3.1.8. Bifurcation Analysis of Model 1. We now employ a bifurcation anal-

ysis on the parameter σ which was highlighted by [14] to be a parameter of inter-

est. Before proceeding we note that the nonexistence of limit cycles excludes Hopf-

Bifurcations as a possibility from the analysis.

Figure 3.1.3. Transcritical Bifurcation for 0 ≤ σ ≤ 1.3.
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We observe a transcritical bifurcation (see Appendix, 5.4) in the system as the

parameter σ is varied. The black line represents unstable equilibrium points, and

the red line represents stable equilibrium points. The place where the bifurcation

occurs is for σTB = 0.6124, x = 1.636, and y = 9.544 × 10−7 respectively. This tells

us that for parameter values just to the left or right of σTB the system will exhibit

qualitatively di�erent behavior as the stability of the equilibrium point changes for

values on either side of σTB.

3.2. Model 2 - Inclusion of IL-2

3.2.1. Additional Required Biology. Methods outside of chemo- and radio-

therapies and surgeries, which often lead to a regression of cancer and not a cure,

are being thoroughly investigated by oncologists. One such method is that of im-

munotherapy, which refers to the use of cytokines usually together with adoptive

cellular immunotherapy (ACI). ACI refers to a treatment in which cultured immune

cells with anti-tumor properties are applied to a tumor. Cytokines are protein hor-

mones that bolster the bodies immunity. Interleukin-2 (IL-2) is the primary cytokine

responsible for lymphocyte activation and growth. Essentially the lymphocytes can

be seen as �good� cells whose numbers are bolstered by the presence of cytokines. As

a result, the number of e�ector cells is bolstered by the presence of IL-2.

3.2.2. Development and Description of Model 2. In [13] the new dynamics

are obtained by considering how the presence of IL-2 a�ects the model of Section 3.1.

After studying [14] and other existing models, a model was generated that consists of

three variables, namely, the e�ector cells E(t), tumor cells T (t), and the concentration

of IL-2 IL(t). The model derived in [13] is,
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dE

dt
= cT − µ2E +

p1EIL
g1 + IL

+ s1(3.2.1)

dT

dt
= r2T (1− bT )− aET

g2 + T

dIL
dt

=
p2ET

g3 + T
− µ3IL + s2

with initial conditions E(0) = E0, T (0) = T0, and IL(0) = IL0 .

The parameter c in the �rst equation of (3.2.1) quanti�es the antigenicity of the

tumor, and provides a measure of the bodies natural ability to detect and combat

the tumor being studied. The higher the value of c, the larger the number of e�ector

cells, and hence the better the body will be at �ghting tumor cells. The second term

represents the natural death of e�ector cells with an average lifespan of 1
µ2
. The

third term represents the growth of e�ector cells due to the presence of IL-2, and

the Michaelis-Menten form has been chosen with rate p1. The last term, s1 is the

treatment term which represents a constant external source of e�ector cells generated

by ACI.

The second equation in (3.2.1) assumes a logistic rate of growth with carrying

capacity 1
b
for the tumor cells, and the second term removes tumor cells based on the

Michaelis-Menten interaction with e�ector cells at rate a.

The �nal equation in (3.2.1) models the change in concentration of IL-2 cells with

a death rate of µ3, and a treatment term s2 which indicates the external input of IL-2

into the system. The presence of e�ector and tumor cells stimulates the production

of IL-2 and the Michaelis-Menten form has been chosen with rate p2.
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Figure 3.2.1. A diagram of system (3.2.1).

3.2.3. Parameter Estimation. The parameter c will be studied carefully since

knowing the value of this parameter in general is not possible, as each patient will

naturally have their own unique value. A patient can only hope their body has a larger

value of c which represents a well recognized antigen, and a better capacity to �ght

the tumor as mentioned above. The authors considered many resources, including

[14] and they chose the parameter values listed in Table 3 below. Note that some of

the parameters are the same as in Table 1, and the units remain the same. The new

parameters µ1 and µ2 have units of days−1.

Eq. (1) 0 ≤ c ≤ 0.05 µ2 = 0.03 p1 = 0.1245 g1 = 2× 107

Eq. (2) g2 = 1× 105 r2 = 0.18 b = 1× 109 a = 1

Eq. (3) µ3 = 10 p2 = 5 g3 = 1× 103

Table 3: Parameter Values

3.2.4. Nondimensionalization of the System. In the same way, and for the

same reasons that we nondimensionalized Model 1 in Subsection 3.1.4 we nondimen-

sionalize (3.2.1) by using the following scaling from [13],

x =
E

E0

, y =
T

T0

, z =
IL
IL0

, τ = tst c̄ =
cT0

tsE0

,

p̄ =
p1

ts
, ḡ1 =

g1

IL0

, µ̄2 =
µ2

ts
, ḡ2 =

g2

T0

b̄ = bT0,
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r̄2 =
r2

ts
, ā =

aE0

tsT0

, µ̄3 =
µ3

ts
, p̄2 =

p2E0

tsIL0

ḡ3 =
g3

T0

,

s̄1 =
s1

tsE0

, s̄2 =
s2

tsIL0

.

We derive the new e�ector cell equation using the substitutions above, and simply

write the other two. Solving for the left hand side yields,


E = xE0

t = τ
ts

=⇒ dE

dt
=
dxE0

d τ
ts

= tsE0
dx

dτ
,


T = yT0

c = c̄tsE0

T0

=⇒ cT =
yT0c̄tsE0

T0

= c̄tsE0y,


µ2 = µ̄2ts

E = xE0

=⇒ −µ2E = −µ̄2tsE0x,


p1 = p̄1ts

g1 = ḡ1IL0

=⇒ p1EIL
g1 + IL

=
p̄1tsE0IL0xz

ḡ1IL0 + zIL0

=
p̄1tsE0xz

ḡ1 + z
.

Notice that each expression has the factor tsE0, so dividing through by it yields,

dx

dτ
= c̄y − µ̄2x+

p̄1xz

ḡ1 + z
+ s̄1

= cy − µ2x+
p1xz

ḡ1 + z
+ s1

where we obtained the second equation by dropping the bar notation on the param-

eters, however the parameters should be computed using the scaling de�ned above.

We can do this exact same thing for the remaining two equations and obtain the
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scaled system,

dx

dτ
= cy − µ2x+

p1xz

g1 + z
+ s1(3.2.2)

dy

dτ
= r2y(1− by)− axy

g2 + y

dz

dτ
=

p2xy

g3 + y
− µ3z + s2

with initial conditions, x(0) = x0, y(0) = y0, and z(0) = z0.

3.2.5. Stability Analysis. The Jacobian for the system (3.2.2) is,

(3.2.3) J =


−µ2 + p1z

g1+z
c p1x

g1+z
− p1xz

(g1+z)2

−ay
g2+y

r2 − 2br2y − ax
g2+y

+ axy

(g2+y)2
0

p2y
g2+y

p2x
g3+y
− p2xy

(g3+y)2
−µ3


Consider the trivial equilibrium point e0 = (0, 0, 0). When we evaluate (3.2.3) at the

trivial equilibrium point we obtain the matrix,

J(e0) =


−µ2 c 0

0 r2 0

0 0 −µ3


This equilibrium point has a combination of positive and negative eigenvalues, and

hence is a locally unstable saddle point. Analytic computation of the other equilib-

rium points is very di�cult primarily due to the presence of the Michaelis-Menten

terms.

3.2.6. Two Di�erent Scalings, One Result. Note that for now and until

Section 3.2.9 we will consider (3.2.2) with s1 = s2 = 0. To con�rm the qualitative

behavior of the system we will use two di�erent scalings and show that they both lead

to identical output as expected. First we utilize the scaling suggested in [14] which
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is T0 = E0 = IL0 = 1/b, and ts = r2. This leads to the parameters shown below in

Table 4 with a carrying capacity of 1.

Eq. (1) 0 ≤ c ≤ 0.27777 µ2 = 0.16666 p1 = 0.69166 g1 = 0.02

Eq. (2) g2 = 0.0001 r2 = 1 b = 1 a = 5.55555

Eq. (3) µ3 = 55.55555 p2 = 27.77777 g3 = 1× 10−6

Table 4: Parameter Values

Notice the scaling suggested in [13] has a time scale which is reduced to 18% of the

original. We now observe the behavior of a particular situation with the parameters

in Table 4, c = 0.083333, and initial conditions E0 = T0 = IL0 = 1 × 10−9 with the

results displayed in Figure 3.2.2.

Figure 3.2.2. Plot using parameters in Table 4.

Next we utilize a scaling with a carrying capacity of 1 × 105 which means that

T0 = E0 = IL0 = 1/b = 1× 105 and we do not scale the time, i.e. ts = 1. This leads

to the parameters shown below in Table 5.

Eq. (1) 0 ≤ c ≤ 0.05 µ2 = 0.03 p1 = 0.1245 g1 = 2000

Eq. (2) g2 = 10 r2 = 0.18 b = 1× 10−5 a =1

Eq. (3) µ3 = 10 p2 = 5 g3 = 0.1

Table 5: Parameter Values
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We now observe the behavior of a particular situation with the parameters in

Table 5, c = 0.015, and initial conditions E0 = T0 = IL0 = 1× 10−5 with the results

displayed in Figure 3.2.3.

Figure 3.2.3. Plot using parameters in Table 5.

Comparing Figure 3.2.3 with Figure 3.2.2 we can immediately see that the be-

havior is identical, the only change being in the scales. Figure 3.2.3 has preserved

the scale of the original problem, which was in days, whereas Figure 3.2.2 has a new

scale where every time unit is approximately 4 days. Furthermore, the volume scale

has changed as well, and to equal the original scale would require a multiplication of

1× 105 which is the di�erence in the scaling of the two problems considered above.

3.2.7. E�ects of the Antigenicity, c. Let's focus exclusively on the scaling

used in Table 5, as this choice preserves the day time scale, and consider how varying

the parameter c changes the solution curves. First recall that we biologically expect

an increase in antigenicity to lead to a reduction in the mass of the tumor. This

corresponds to an increase in the number of e�ector cells, which leads to a reduction

in the number of tumor cells. Several solution curves have been generated on the next

page, each with a di�erent value of c. For the following graphs the red curve indicates

the e�ector cell population, the black curve represents the tumor cell population, and

the orange curve represents the IL-2 cell population.
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Figure 3.2.4. c = 5× 10−5.

Figure 3.2.5. Left: c = 0.001. Right: c = 0.01.

Figure 3.2.6. Left: c = 0.02. Right: c = 0.035.
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Some very interesting results can now be mentioned. First, in Figure 3.2.4 for

c = 5×10−5 we notice that the population of the tumor cell has a very sharp increase

and approaches the carrying capacity of the scaled model
(

1
b

= 1× 105
)
from the lo-

gistic growth assumption. The e�ector and IL-2 cells also approach their respective

�carrying capacities� which is approximately three orders of magnitude smaller. Ob-

serve that there is an initial reduction in the number of tumor cells, however after a

period of approximately 200 days there is a drastic increase in the tumor population

which tends to the carrying capacity. This represents the inability to �ght the small

number of tumor cells due to a very small antigenicity.

The three Figures (3.2.5)-(3.2.6)(Left) all represent the same behavior which be-

gins when c = c0 = 0.8552 × 10−5 and ends when c = c1 = 0.03247. We notice

that the solutions are all periodic with two primary di�erences. The �rst noticeable

di�erence is that the value of the amplitude depends heavily on the value of c, as is

to be expected. For smaller values of c such as in Figure 3.2.5(Left) we notice that

the amplitude of the tumor cells reaches approximately 90% of the carrying capacity,

whereas for Figure 3.2.6(Left) the amplitude of the tumor cells reaches approximately

0.04% of the carrying capacity. The second noticeable di�erence is that as c increases

the period of the solutions decrease, leading to solutions which are more oscillatory,

but reach much lower tumor population levels.

In Figure 3.2.6(Right) we have an interesting situation where the amplitude of

the solution curves decrease with each successive �period�. Eventually the solution

will reach a stable equilibrium point whereby the tumor cell population will have a

constant very small mass in comparison to the other two possibilities described above.

3.2.8. Bifurcation Analysis. The results found from the above section natu-

rally lead to a bifurcation analysis on the antigenicity parameter c since it plays a

very obvious role in determining the outcome of the solutions. From XPPAut we

obtain the following bifurcation diagram.
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Figure 3.2.7. Bifurcation diagram with carrying capacity of tumor
scaled to 1, and the time not scaled.

Changing the numerics on the axes allows us to see some interesting behavior.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

Y

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

c

Figure 3.2.8. Scaled to see the Hopf-Bifurcation.

We observe a Hopf-Bifurcation occurring at cHB = 0.03247. The Hopf-Bifurcation

branch is represented by the green and blue curve where we see the branch surround

an unstable equilibrium point and hence cHB is a supercritical bifurcation point. This
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behavior has also been captured numerically, as we can plot solutions just to the left

of cHB and observe limit cycles, and plot values just to the right of cHB and observe

periodic solutions with decreasing amplitudes that tend toward a small mass tumor.

A consequence of the bifurcation diagram is a plot of how the period changes as

the parameter c is changed, and such a plot has been generated below.
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Figure 3.2.9. c vs period.

It is evident that for smaller values of c the period increases, which means that not

only are the tumors getting larger in size, but they stay larger for longer periods of

time. This makes sense since as c approaches c0 we expect the tumor to get closer

and closer to the carrying capacity.
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3.2.9. Treatment. According to [7, 20] real life treatment is not continuous as

was assumed in [13], but instead occurs as large dosages for a certain cycle length.

Suppose the value s2 instead of being constant, is a function of time and the e�ector

cell population. The study in [20] provides a methodology that was used to treat

patients with two di�erent types of cancer using immunotherapy. Treatment was

administered intravenously over 15 minutes every 8 hours or until grade 3 or 4 toxicity

was reached. The toxicity grade provides a measure for how negative the impact of

treatment is on the patient. Each treatment course consisted of two cycles containing

a maximum of 15 doses of IL-2 per cycle. Approximately 10 days after completing the

�rst cycle of treatment, patients began to receive the second cycle [20]. This implies

that the treatment was continuous only over the course of 15 minutes, which is a very

short time scale for our model where the time is in days. First we attempt to model

the treatment described above in [20]. The MATLAB output is provided in Figure

3.2.10 below.

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

E

time (days)

0 50 100 150 200 250 300 350 400 450 500
0

5

10

x 10
4

T

time (days)

290 295 300 305 310 315 320 325 330
0

5000

10000

L

time (days)

Figure 3.2.10. Plot of impact of treatment from [20].
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Treatments used to generate the above �gure were given for 15 minutes, 8 times

per day, 10 days apart, and for 2 cycles. According to the model the described

treatment should have no impact on the tumor cell population, however this is not

true since in real life according to [20] 19% of the patients in the study experienced

complete or partial regression of their respective cancers. The failure of the model to

capture this behavior could be due to a variety of reasons, however it was observed

that for no value of c did the treatment have any considerable impact on the tumor cell

population for any reasonable value of s2. It should be noted that without treatment

and from Figure 3.2.4 it is seen that the e�ector cell population levels o� around

200, but with the addition of the treatment it is able to brie�y approach 300. This

slight increase is not enough to impact the tumor cell population. A larger dose

could be administered to increase the e�ector cell population even more, however this

larger dose may not be physically possible in reality due to toxicity, and needs to be

investigated further.

In [7] the situation was modeled by using an on/o� switch according to an immune

threshold �ag which simulated the impact of toxicity on the system as a result of the

IL-2 therapy. By considering similar conditions we are able to model a reduction in

the tumor cell population, which is evident in Figure 3.2.11 below.
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Figure 3.2.11. Plot of a periodic �xed-duration continuous treatment.
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The treatment was initially given on day 300, lasted for 60 days, and spaced 1000

days apart. The treatment is able to regress the tumor, however only for a certain

period of time before it comes back. By varying the amount of treatment s2, the

duration of each treatment, the number of treatments, the immune response a, and

the antigenicity c we are able to develop di�erent treatment possibilities. A question

to consider is would a person survive the treatment regimen used to generate Figure

3.2.11, since it varies so drastically from the study done in [20]. The number of

e�ector cells becomes much larger due to the second treatment as a result of the

continuous input of IL-2, which is the reason for the reduction in tumor mass. By

considering di�erent parameter combinations, one may be able to devise an optimal

drug regimen for a certain person, however doing this would be di�cult because each

persons parameter values di�er, and so it would have to be done on a case by case

basis. In reality, these complications could be indicative of the model's limitations

when treatment is included, and a more re�ned or advanced model may be needed.



CHAPTER 4

Concluding Remarks

In Model 2 of Chapter 3 we studied the e�ects of IL-2 on tumor-immune dynamics,

and determined that the antigenicity c plays an important role in the long-term

behavior of the system. We found that for 0 < c0 ≤ 0.8552 × 10−5 the tumor

population approaches its carrying capacity, for 0.8552 × 10−5 < c1 ≤ 0.03247 the

tumor population tends to stable limit cycles of varying amplitudes and periods, and

that for c2 > c1 the tumor population approaches a small constant size. All three of

these possibilities have been documented in case studies [13] which provides evidence

to support the di�erent behaviors predicted by the model.

While studying Model 2 we employed two computer algebra systems to solve

the problem which were XPPAut and MATLAB. While using this software it was

evident that achieving accurate results not only depended on setting the appropriate

absolute and relative tolerances, but was also parameter dependent, in particular

on the antigenicity c. This means that the system might converge to a solution for

one value of c, but fail to provide a solution for a di�erent value of c. It is observed

numerically that the system (3.2.1) is a sti� system, and it turned out that for certain

values of c the traditional Runge-Kutta 4 would fail to converge. By sti� we mean

that the convergence of solutions using computer algebra systems was parameter

dependent. Thus we had to utilize sti� solvers such as VODE, which use variable time

steps to provide a solution. It was also found that in situations where two di�erent

numerical methods were applied to the same problem with oscillatory solutions they

would often di�er in phase. It is not possible to know which solution is more accurate

since the exact solution is unknown.
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There is still much to be done in the �eld of tumor modeling, especially when it

comes to analyzing how to best implement treatments into the model. The paper [2]

continues the story by adding a fourth variable into the system we studied in Section

3.2. The system is modi�ed to account for more possibilities that can occur when a

tumor is forming in the body such as the e�ects of the immuno-suppresive cytokine

TGF − β which actually works to reduce the number of e�ector cells in the system.

They then extend the model to include siRNA treatment which work to reduce the

number of TGF − β cells present, and thus again boost the e�ects of the immune

system. It is this seemingly in�nite game of tug of war that beautifully illustrates

the arising complications of higher dimensional dynamical systems. Furthermore, for

higher dimensional systems most of the elegant results discovered for two-dimensions

are lost. While many higher dimensional systems have geometrically equivalent lower

dimensional counterparts, however this is not usually the case for systems of the type

studied in this paper. This inevitably leads to the use of computer algebra systems

to solve higher dimensional problems, but as we have seen these can still have their

limitations.

An interesting future study would be the inclusion of chemotherapy to the model

developed in Section 3.2 or to the more re�ned model of [2]. Perhaps a mixture of

less toxic treatments would lead to models which predict regression or termination

of the tumor cell population. The answers to such questions may not only lead to

mathematically signi�cant results, but also to matters of great practical importance

as cancer is a leading cause of death in the world.



CHAPTER 5

Appendix

5.1. Nondimensionalization and Scaling Techniques

Many mathematical equations contain units, especially when physical quantities

are concerned, but these units can make the equations more cumbersome to work

with, and as a consequence it is often of great desire to remove all or some of the

units from a problem.

Dynamical systems often involve many physical quantities, not just one or two, and

so keeping track of them can be quite a challenge. This is why it is often advantageous

to nondimensionalize a problem, as this can remove the units, make the problem

simpler, and even reduce the number of parameters in the problem as will be shown

in Example 33.

Remark 32. Nondimensionalization is the full or partial removal of units from

an equation involving physical quantities by a suitable substitution of variables.

There is no exact way to optimally nondimensionalize a problem, and as a result

trial and error is often necessary to determine a suitable substitution. An outline of

the procedure is provided below,

(i) Identify all of the independent and dependent variables.

(ii) Replace each of them with a quantity scaled relative to a characteristic unit of

measure to be determined.

(iii) Divide through by the coe�cient of the highest order polynomial or derivative

term.

(iv) Determine a characteristic unit for each variable so that the coe�cients of as

many of the terms as possible becomes 1.
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(v) Rewrite the system of equation in terms of their new dimensionless quantities.

Example 33. Consider the model for the chemostat developed in [17],

dN

dt
=

(
kmaxC

kn + C

)
N − FN

V
(5.1.1)

dC

dt
= −α

(
kmaxC

kn + C

)
N − FC

V
+
FC0

V

which has the six parameters α, kmax, kn, F, V, C0, and where the variable N rep-

resents the bacterial population density and the variable C represents the nutrient

concentration in the growth chamber.

Let N = N̄N̂ , C = C̄Ĉ, and t = t̄t̂ where the variables N̄ , C̄, and t̄ are scalar mul-

tiples and N̂ , Ĉ, and t̂ represent the unit which carries the dimensions. Substituting

these into (5.1.1) then yields,

d
(
N̄N̂

)
d
(
t̄t̂
) =

(
kmaxC̄Ĉ

kn + C̄Ĉ

)
N̄N̂ − FN̄N̂

V

d
(
C̄Ĉ
)

d
(
t̄t̂
) = −α

(
kmaxC̄Ĉ

kn + C̄Ĉ

)
N̄N̂ − FC̄Ĉ

V
+
FC0

V
.

Now we multiply both equations by τ and divide the �rst equation by N̂ and the

second by Ĉ which yields,

dN̄

dt̄
= t̂

(
kmaxC̄Ĉ

kn + C̄Ĉ

)
N̄ − t̂F N̄

V

dC̄

dt̄
= −αt̂

(
kmaxC̄

kn + C̄Ĉ

)
N̄N̂ − t̂F C̄

V
+
t̂FC0

V Ĉ
.

Let τ = V
F
then,
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dN̄

dt̄
= t̂

(
kmaxC̄
kn
Ĉ

+ C̄

)
N̄ − N̄

dC̄

dt̄
= −αt̂

Ĉ

(
kmaxC̄
kn
Ĉ

+ C̄

)
N̄N̂ − C̄ +

C0

Ĉ
.

Let kn = Ĉ then,

dN̄

dt̄
=

(
t̂kmaxC̄

1 + C̄

)
N̄ − N̄

dC̄

dt̄
= −αt̂

kn

(
kmaxC̄

1 + C̄

)
N̄N̂ − C̄ +

C0

kn
.

Let N̂ = kn
ατkmax

thus,

dN̄

dt̄
=

(
t̂kmaxC̄

1 + C̄

)
N̄ − N̄

dC̄

dt̄
= −

(
C̄

1 + C̄

)
N̄ − C̄ +

C0

kn
.

For convenience let N = N̄ , C = C̄, α1 = t̂kmax, and α2 = C0

kn
thus,

dN

dt̄
= α1

(
C

1 + C

)
N −N

dC

dt̄
= −

(
C

1 + C

)
N − C + α2

which only contains two dimensionless parameters as opposed to the six we started

with in (5.1.1). This not only makes the system less cumbersome, but helps to

pinpoint exactly what parameters will qualitatively make the biggest di�erence when

studying the behavior of the system.
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5.2. Michaelis-Menten Kinetics

The following discussion comes from [20] and is used to help illustrate the Michaelis-

Menten assumption used in (3.2.1).The growth rate of cells was modeled by Jacques

Monod and has the same structure as the Michaelis-Menten enzyme kinetics. Sup-

pose there is a cell which depends on a certain nutrient to survive or exist. Monod

considered bacterial growth as a function of nutrient concentration and developed the

following formula based on his experimental data for the speci�c growth rate,

dN

Ndt
=

rS

a+ S

for constants r > 0 and a > 0. The constant r is the limiting value of the function, and

when t = a half saturation has been achieved. Since the growth rate and consumption

rate are assumed to be proportional, dN = −γdS, then the nutrient depletion is,

dS

dt
= −1

γ

rSN

a+ S
.

Consider the Michaelis-Menten part of (3.2.1) in the �rst equation which is,

dE

dt
=

p1EIL
g1 + IL

where p1 = 0.1245 and g1 = 2000 when we neglect the other terms.

The speci�c growth rate is then,

(5.2.1) f(IL) =
dE

Edt
=

p1IL
g1 + IL

As an analogue to the above discussion we notice that in this case IL is being

considered as necessary to the growth of E. Although IL is not a nutrient to E its

presence acts to stimulate the production of E as though it were a nutrient. This is

the main reason this type of function works to model the growth of these interacting

cell populations. The graph of (5.2.1) is provided below in Figure 5.2.1.
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Figure 5.2.1. Plot of (5.2.1).

Notice that for large values of IL the function tends to the parameter p1, and thus

for large values of IL we see the percentage of E that's being added to the model is

p1E. This is observed algebraically by observing,

lim
IL→∞

p1EIL
g1 + IL

= p1E

5.3. More about the Poincaré-Bendixson Theorem

The following theorem is used in Subsection 3.1.7, and provides a useful way to

determine whether limit cycles exist in a planar dynamical system.

Theorem 34 (Dulac-Bendixson Theorem). Let M(x1, x2) be a continuously dif-

ferentiable function such that,

∂ (Mf1)

∂x
+
∂ (Mf2)

∂y

has the same sign ( 6= 0) in a set of measure zero in a simply connected region, then

the planar autonomous dynamical system,
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dx1

dt
= f1(x1, x2)

dx2

dt
= f2(x1, x2)

has no closed orbits.

Proof. Suppose there exists a function M(x1, x2) such that,

∂ (Mf1)

∂x1

+
∂ (Mf2)

∂x2

> 0

in a simply connected region S. Let Γ be a closed solution on the planar autonomous

dynamical system in S, and let I be the interior of Γ. From Green's Theorem we

obtain,

ˆ ˆ
I

(
∂ (Mf1)

∂x1
+
∂ (Mf2)

∂x2

)
dx1dx2 =

˛
Γ

−Mf2dx1 +Mf1dx2

=

˛
Γ

M (−x′2dx1 + x′1dx2) ,

however on Γ we have that dx1 = x′1dt and dx2 = x′2dt and hence the integral evaluates

to zero, which yields a contradiction and thus there can be no such closed solution Γ

in S. �

5.4. Elementary Bifurcations

We consider some of the most common bifurcation types below.

The simplest such equation which exhibits the saddle node bifurcation behavior

is shown below,

(5.4.1) x′ = µ− x2
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The solution set for the saddle node bifurcation is found by solving x′ = 0 which

yields x̄ = ±√µ. The stability of the system is determined by plotting the graph of

(5.4.1) for the three cases where µ > 0, µ < 0, and µ = 0. Doing this shows us that

the system is stable when µ > 0 and unstable for µ ≤ 0. This behavior has also been

captured using XPPAut and is shown below in Figure 5.4.1.

The simplest such equation which exhibits the transcritical bifurcation behavior

is shown below,

(5.4.2) x′ = µx− x2.

The equilibrium points of (5.4.2) are x̄0 = 0 and x̄1 = µ. Once stability is determined

along each branch then using the fact that there are two lines in the (µ, x) plane we

see that for µ < 0 along the x = 0 branch the equilibrium points are stable, and for

µ > 0 along the same branch the equilibrium points are unstable. Along the x = µ

branch the conclusions are reversed. This is shown in Figure 5.4.1 below.

The simplest such equation which exhibits the pitchfork bifurcation is shown be-

low,

(5.4.3) x′ = ux− x3.

The equilibrium points of (5.4.3) are x̄0 = 0 and x̄± = ±√µ. Di�erentiating (5.4.3)

with respect to x yields −2µ when evaluated at x̄± and µ when evaluated at x0. Thus

a bifurcation occurs at (x, µ) = (0, 0). By plotting (5.4.3) for the possible sign values

of µ and considering the phase lines we can generate the bifurcation branches, which

has been done in Figure 5.4.2 below.

The simplest such system which exhibits the Hopf-Bifurcation is shown below,
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(5.4.4)


x′1 = −x2 + x1(µ− x2

1 − x2
2)

x′2 = x1 + x2(µ− x2
1 − x2

2).

By letting x1 = r cos(θ) and x2 = r sin(θ) we can modify (5.4.4) into the form,

r′ = r(µ− r2)

θ′ = 1.

This yields the equilibrium points r̄0 = 0 which corresponds to the steady state of

(0, 0) in (5.4.4) and r̄± = ±√µ which corresponds to a periodic orbit of x2
1 + x2

2 = µ

in (5.4.4). The bifurcation occurs at (0, 0) and yields a supercritical bifurcation with

two limit cycle branches appearing corresponding to r̄±. This behavior is captured

below in Figure 5.4.2.
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Figure 5.4.1. Left: Saddle Node Bifurcation. Right: Transcritical Bifurcation.

Figure 5.4.2. Left: Pitchfork Bifurcation. Right:Hopf-Bifurcation.



Bibliography

[1] A. Abbas, A. Lichtman, and J. Pober, �Cellular and Molecular Immunology�, (1997)
[2] J. Arciero, T. Jackson, and D. Kirschner, �A Mathematical Model of Tumor-Immune Evasion

and siRNA Treatment�, (2004)
[3] D. Armbuster, and E. Kostelich, �Introductory Di�erential Equations, From Linearity to Chaos�,

(2005)
[4] P. Blanchard, R. Devaney, and G. Hall, �Di�erential Equations�, (2006)
[5] W. Boyce, and R. DiPrima, �Elementary Di�erential Equations and Boundary Value Problems

10th Edition�, (2012)
[6] F. Brauer, and C. Castillo-Chavez, �Mathematical Models in Population Biology and Epidemi-

ology�, (2001)
[7] C. Cunningham, T. Jackson, and A. Usman, �Application of the Mathematical Model of Tumor-

Immune Interactions for IL-2 Adoptive Immunotherapy to Studies on Patients with Metastic
Melanoma or Renal Cell Cancer�, (2005)

[8] R. Devaney, M. Hirsch, and S. Smale, �Di�erential Equations, Dynamical Systems, and an
Introduction to Chaos�, (2013)

[9] L. Edelstein-Keshet, �Mathematical Models in Biology�, (2005)
[10] M. Golubitsky, and D. Schae�er, �Singularities and Groups in Bifurcation Theory, Volume I�,

(1985)
[11] J. Guckenheimer, and P. Holmes, �Nonlinear Oscillations, Dynamical Systems, and Bifurcations

of Vector Fields�, (1983)
[12] M. Hirsch, and S. Smale, �Di�erential Equations, Dynamical Systems, and Linear Algebra�,

(1974)
[13] D. Kirschner, and J. Panetta, �Modeling immunotherapy of the tumor - immune interaction�,

(1997)
[14] V. Kuznetsov, I. Makalkin, A. Perelson, and M. Taylor, �Nonlinear Dynamics of Immunogenic

Tumors: Parameter Estimation and Global Bifurcation Anaylsis�, (1992)
[15] S. Lovett, �Di�erential Geometry of Manifolds�, (2010)
[16] J. Marsden, and M. McCracken, �The Hopf-Bifurcation and Its Applications�, (1976)
[17] R. May, �Stability and Complexity in Model Ecosystems�, (1974)
[18] L. Perko �Di�erential Equations and Dynamical Systems�, (1996)
[19] H. Pollard, and M. Tenenbaum, �Ordinary Di�erential Equations�, (1963)
[20] S. Rosenberg, S. Topalian, and J. Yang, et. al, �Treatment of 283 Consecutive Patients With

Metastic Melanoma or Renal Cell Cancer Using High-Dose Bolus Interleukin 2�, (1994)
[21] H. Smith, �Modeling Microbial Populations in the Chemostat�, (2012)
[22] G. Teschl, �Ordinary Di�erential Equations and Dynamical Systems�, (2013)
[23] S. Wiggins, �Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd Edition�,

(2010)

65



BIBLIOGRAPHY 66

Vita

Biographical Information

Author's Name: Joseph Albert Ferrara

Place of Birth:

Date of Birth:

Telephone:

Work Experience

August 2011 - August 2013 Graduate Teaching Assistant at UNF

April 2012 - present WyzAnt Tutor

Education

August 2011 - present Master of Science in Mathematical Sciences

University of North Florida, Jacksonville FL

Graduated May 2011 Bachelor of Science in Mathematics

University of North Florida, Jacksonville FL


	A Study of Nonlinear Dynamics in Mathematical Biology
	Suggested Citation

	Title Page

	Acknowledgements
	Table of Contents
	Abstract
	CHAPTER 1
Introduction
	CHAPTER 2
Background Material
	2.1. The Dynamical System
	2.2. Equilibria, Linearization, and Stability Analysis
	2.2.1. Stability

	2.3. Periodic Solutions and Limit Cycles
	2.3.1. Limit Sets
	2.3.2. Local Sections and Flow Boxes
	2.3.3. Monotone Sequences in the Plane
	2.3.4. The Poincaré-Bendixson Theorem
	2.3.5. Consequences of The Poincaré-Bendixson Theorem

	2.4. The Hopf-Bifurcation
	2.5. Modeling Interacting Populations

	CHAPTER 3
A Mathematical Modeling of Tumor Growth
	3.1. Model 1 - Analysis of the E˙ector/Tumor Cell Interaction
	3.1.1. Required Biology
	3.1.2. Development and Description of Model 1
	3.1.3. Parameter Estimation
	3.1.4. Nondimensionalization of the System
	3.1.5. Stability Analysis
	3.1.6. Typical Solution Curves
	3.1.7. Nonexistence of Limit Cycles
	3.1.8. Bifurcation Analysis of Model 1

	3.2. Model 2 - Inclusion of IL-2
	3.2.1. Additional Required Biology
	3.2.2. Development and Description of Model 2
	3.2.3. Parameter Estimation
	3.2.4. Nondimensionalization of the System
	3.2.5. Stability Analysis
	3.2.6. Two Different Scalings, One Result

	3.2.7. Effects of the Antigenicity
	3.2.8. Bifurcation Analysis
	3.2.9. Treatment


	CHAPTER 4
Concluding Remarks
	CHAPTER 5
Appendix
	5.1. Nondimensionalization and Scaling Techniques
	5.2. Michaelis-Menten Kinetics
	5.3. More about the Poincaré-Bendixson Theorem
	5.4. Elementary Bifurcations

	Bibliography

