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ABSTRACT

The focus of this thesis is the development and implementation of a neural network model predictive
controller to be used for controlling the integrated recycle heat exchanger (Intrex) in a 300MW
circulating fluidized bed (CFB) boiler. Discussion of the development of the controller will include data
collection and preprocessing, controller design and controller tuning. The controller will be
programmed directly into the plant distributed control system (DCS) and does not require the

continuous use of any third party software.

The intrexes serve as the loop seal in the CFB as well as intermediate and finishing superheaters. Heat is
transferred to the steam in the intrex superheaters from the circulating ash which can vary in
consistency, quantity and quality. Fuel composition can have a large impact on the ash quality and in
turn, on intrex performance. Variations in MW load and airflow settings will also impact intrex
performance due to their impact on the quantity of ash circulating in the CFB. Insufficient intrex heat
transfer will result in low main steam temperature while excessive heat transfer will result in high

superheat attemperator sprays and/or loss of unit efficiency.

This controller will automatically adjust to optimize intrex ash flow to compensate for changes in the
other ash properties by controlling intrex air flows. The controller will allow the operator to enter a
target intrex steam temperature increase which will cause all of the intrex air flows to adjust
simultaneously to achieve the target temperature. The result will be stable main steam temperature

and in turn stable and reliable operation of the CFB.



Chapter 1 : Introduction to the Circulating Fluidized Bed (CFB) Boiler

1.1 CFB Background

In the power generation industry, the circulating fluidized bed boiler (CFB) is a relatively new technology
when compared with boilers traditionally used for power generation. Fluidized bed boilers were
adapted to burn petroleum coke and coal mining waste in the US in the early 1980’s. Due to the ability
to burn inexpensive renewable and “waste” fuels while maintaining lower emissions than standard
pulverized coal units, the demand for CFB boilers has increased. As demand increased for CFB’s, so has
the size of the CFB. When the CFB'’s at JEA’s Northside Generating Station were built in the early 2000’s
they were the largest in the world at 297MW each. By 2009 the world’s largest CFB was 460 MW.

Today units are available at over 600MW. (1)

The JEA owned Foster Wheeler CFB’s that are the topic of this research were built as part of a
demonstration project with a partnership between the US Department of Energy and JEA. (2) They have
gone through years of modifications and process improvements. The process and control improvements
made to the existing system eliminated the need for costly modifications to the intrexes. (3) (4) As new
CFB’s are designed and constructed, CFB manufacturers continue to modify designs to try to improve
performance while at the same time boiler owners work to do the same to existing units. This project

applies advanced controls to further improve the performance of the CFB.



1.2 CFB Steam generation and superheat

In a CFB boiler, feedwater enters the boiler drum located on top of the boiler. The water exits the boiler
drum and moves into the water wall tubes that surround the combustor. As the water is heated in
these tubes it turns to steam and enters the top of the boiler drum. This area of the boiler is the steam

generating section.

Steam leaves the boiler drum and is heated to higher temperatures in the cyclones and superheat
sections of the boiler. The superheat sections add superheat to the steam before it is sent to the
turbine. The boiler that is the focus of this project has a primary superheater (PSH) with an outlet
temperature between 750 and 800 degrees F followed by three intrex superheaters. Steam leaving the
last intrex superheater moves to the high pressure section of the steam turbine with a steam
temperature of 1000F. This temperature is controlled by attemperating the steam using feedwater
between the primary superheater and first intrex and between the second and third intrex. An overview

of the steam path can be seen in Figure 1-1.

Steam
600F-630F
Feedwater for
Drum Attemperation
Cyclone,
Combustor HEA
PSH
Intrex Intrex Intrex Malir?OSﬂeFam
c B A to Turbine

Figure 1-1 Steam Path Overview



If the steam picks up too much superheat, more feedwater is needed for attemperation. Overheating
the Intrex tubes and/or excessive attemperator spray has the potential to cause metallurgical problems.
If the attemperator is not able to keep the steam temperature down to 1000F, there is loss of turbine
efficiency and potential to damage the steam turbine from overheating. If the intrexes do not pick up
enough heat there is potential for water induction into the turbine which would also cause damage.

Any deviation in main steam temperature from 1000F will impact turbine efficiency.

1.3 CFB Hot Loop

In a CFB, fuel and air are added to the combustor. The fuel mixes with bed material at the bottom of the
combustor where it is fluidized by air nozzles in the floor of the boiler. Limestone is also added to the
boiler combustion process in order to control SO, production and to act as additional bed material. The
combination of fuel, ash, and limestone makes up the bed material. Some of the smaller bed material
moves up through the combustor and out through the top with the boiler gas. It enters the cyclones

where the heavier bed material falls out of the boiler gasses and enters the top of the intrex.

Bed materials move through the intrex and back to the combustor. The intrex provides the seal in the
loop between the higher pressure combustor and the lower pressure cyclones. The tubes in the intrex
have direct contact with the bed material and heat is absorbed from the bed material through the tubes

into the main steam. This cycle is shown with the red arrows in Figure 1-2.



Heat
Recover
@ ,7 Area ’
Combustor
e — Cyclone
A
Secondary Secondary -
AirN Air
Fuel and
Fuel and Secor_'ndary
Secondary o A/
\ / Intrex
\ Intrex and Bed Material =
Seal Pot Hot G
Air ot Gas

Primary ﬁ D
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Figure 1-2 CFB Hot Loop

1.4 Current Intrex Control configuration

Many factors can impact the steam temperature increase through the intrexes including steam flow and
the temperature of the bed material as well as the manner in which bed material moves through the
intrexes. The intrex air flow controls can be used to change the flow of bed material through the
intrexes. Each section of the intrex has an independent air flow control damper. These sections can be

seen in Figure 1-3.

Using the airflow controls to move more bed material through the intrex tubes will result in more heat
being added to the steam. Using the airflow controls to move more material through the bypass
channel will result in less heat being added to the steam. The red arrows in Figure 1-4 show the flow of

material through the tubes in an intrex superheater and the orange arrows show the bypass flow.

4
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In the previous control configuration the intrex air flows were set depending on unit MW load only so at
a certain load the intrex air flows would be the same regardless of other boiler parameters. In this
configuration, the steam passing through the intrexes can pick up too much superheat under certain
boiler conditions. In some instances the attemperator cannot provide enough attemperation spray to
keep steam temperature down to 1000F even when spraying the maximum amount of possible
feedwater. This increases the potential for damage to the intrexs and turbine while at the same time
reducing efficiency. There can also be times when the intrexes pick up too little superheat which can

result in low main steam temperature and the potential for turbine water induction.

The rate at which the material moves through the intrexes is also an important factor. If the material
does not move through the intrexes quickly enough, material will back up into the cyclone and it will
plug. Once the cyclone plugs, the circulation of material through the hot loop will stop. Without proper
hot loop flow, the boiler will not operate and will be forced to come off line. It is not uncommon for the
operator to place the intrex air flow controls in manual and adjust them to try to move more ash
through the intrexes if they have indications that the cyclones are plugging. This often has a negative
impact on intrex heat transfer but enables the unit to continue to operate. The ideal intrex control

system would provide intrex heat transfer control while preventing cyclone plugging.

1.5 Organization of Thesis

This Thesis will provide a solution to the current intrex control problems using a multiple input neural
network model predictive controller. Other types of advanced controllers have been successfully
applied to CFB boiler control applications. (5) Neural Networks have been utilized in the past for

modeling and predicting CFB boiler operations. (6) The controller that is the topic of this Thesis will



maintain intrex differential temperature to stabilize main steam temperature and allow the operator to
control how much superheat is added to the main steam in the intrex. In order to accomplish this, the
model will use inputs from the plant along with air flows generated by an optimization algorithm to
determine how to adjust the intrex air flows to compensate for changes in the properties of the bed

material.

There are many considerations to be made when considering the application of a neural network model
predictive controller. These considerations along with the general structure of the neural network
model predictive controller will be discussed in detail in chapter 2. Many of the considerations revolve
around the data that will be used for modeling. Chapter 3 will discuss data collection and preprocessing.
The discussion on preprocessing will include data point selection, data set reduction, and data

normalization.

A detailed discussion of the development of the neural network model specific to this thesis takes place
in chapter 4. The structure of the neural network, discussed briefly in chapter 2, is selected through
testing from two different structures. A genetic algorithm that uses the data selected in chapter 3 to
tune the neural network is discussed in detail along with various parameters of the genetic algorithm
that are tested in an attempt to find those which provide optimal tuning of the neural network. Genetic

algorithms have been successfully implemented in a wide range of controls applications. (7) (8)

The development and structure of the controller optimization algorithm is discussed in chapter 5. The
optimization algorithm includes a linear congruential random number generator for generating random
airflows that are applied to the controller’s neural network model to determine the optimum air flow

setting for the current boiler parameters. The optimization algorithm and neural network model



developed in chapter 4 are programmed directly into the plant distributed control system (DCS). The

implementation of the controller into the DCS is discussed in chapter 6.

The results of the controller implementation, shown in chapter 7, verify the ability of the neural network
model predictive controller to successfully use the intrex air flow to control intrex differential
temperature which will result in stable main steam temperature. Conclusions of this Thesis are
discussed in chapter 8 along with opportunities for future research that may improve this application as

well as opportunities for additional applications of this research to other areas of CFB control.



Chapter 2 : Overview of the Neural Network Model Predictive Controller
2.1 System Considerations for Neural Network Model Predictive Controllers

When considering a system for neural network control, there are many considerations to be made.
Most processes can be controlled by much simpler, traditional methods. Systems that can be accurately
mathematically modeled using well-established physics based relationships may not always benefit from
a neural network model which is empirical in nature and requires training data to generate. (9) In order
to successfully implement a neural network model predictive controller one must consider:

System Complexity
Process Knowledge

Reliability and Repeatability of Instrumentation

1

2

3

4. Data availability
5. Process Control Requirements
6

Resources available for controller implementation

For systems that require only single input-single output PID controllers, an intelligent neural network
control system would not likely be necessary. (10) Neural network controllers are ideal for complex,
multiple input, multiple output systems. The neural network controller can adjust many parameters
simultaneously to reach a desired output. In order to control the heat transferred to the steam in the
intrex, 10 air control dampers are controlled simultaneously by 5 different controller outputs.

Numerous other boiler parameters will be used to model the intrex heat transfer.



Process knowledge is the starting off point for the neural network design. One of the advantages of a
neural network controller is that the physics of the process do not need to be completely understood to
design a neural network controller (11) (12). The neural network will “learn” how the system works by
using training data. Knowing what process parameters impact the variable that will be controlled by the
neural network can reduce unnecessary inputs and reduce system complexity. The list can start out
large and then be reduced by analyzing the relationships between collected data. For the intrex, testing
has shown that manipulating the intrex airflows has the ability to impact intrex heat transfer. In
addition to the intrex air flows, there are dozens of other boiler parameters believed to impact intrex

heat transfer.

Process parameters that are deemed important must have reliable and repeatable instrumentation.
Unreliable instrumentation will make neural network model tuning difficult and can cause the controller
model to incorrectly predict the results of control changes. Averaging values from redundant
instruments can increase the availability of the network by reducing the possibility of failure from a
single instrument failure. In the intrexes, both sides measure the same parameters and past experience
along with historical data has shown that when all instrumentations and controls are working properly,

the instrumentation from each of the two sides can be considered redundant and averaged.

For optimal neural network training, data should be available for all operating conditions. (9) If data is
not available for all operating conditions, testing and data collection should be performed to expand the
data set. Similar quantities of data should be available for all operating conditions as too much data at
limited operating conditions will cause the network to be over trained for those conditions causing poor

performance under other operating conditions (9).
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Different processes can have very different control requirements. The response of the process to
controls changes will have a large impact on the control scheme. The CFB has approximately a five
minute lag from the time the fuel is changed to the time the MW output changes. Air flow changes in
the intrex will have a much more immediate impact. In the case of the intrexes, there is not a desire to
have the steam temperature change quickly but rather to be able to maintain it to a set temperature
when other boiler parameters change. Having a system that doesn’t require a fast response allows for a

controller that has a slower response.

Using a predictive controller to control a process can require much more computing resources than a
traditional PID controller as typical DCS systems have a single logic block to handle PID controls but can
require the combinations of dozens to hundreds of logic blocks to implement a model predictive
controller. (13) The speed at which the controller has to respond has a direct impact on the amount of
required computing resources. For slower processes the computing does not have to happen as rapidly
and less computing resources are needed. The requirements for the intrex are such that the controller
can be programmed directly into the DCS controller without the use of external computing resources.
This eliminates the need for additional communication interfaces between the DCS and a dedicated
neural network machine and also eliminates the need for the continuous use of third party neural

network software.

2.2 Neural Network Model Predictive Control Structure

The neural network controller for this project will be a model predictive controller. The controller
structure will consist of a neural network model of the intrex and a predictive controller that will apply

air flow inputs to the model and compare the model output error to the current output error. If the
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applied airflows result in a lower error than those currently applied to the live plant, the airflows from
the predictive controller will be applied to the live plant. The block diagram for the neural network

model predictive controller can be seen in Figure 2-1.

Plant Plant
Paramers
Intrex NN Model
Model Output Error
Predictive Test Air Flow
Controller Set Point
Optimization _
Algorithm Output Air Flow
Intrex

Figure 2-1 Model Predictive Controller Block Diagram

The neural network structure will consist of multiple nodes and layers. Each node will have multiple
inputs multiplied by weights and then summed together with a constant. The output of the summation
will be applied to an activation function. The outputs from the first layer will serve as the inputs to the

next layer. The structure of the neural network node can be seen in Figure 2-2.

Input 1
Input 2 -
Activation
Input 3 Function
S Output

Input n

Figure 2-2 Neural Network Node
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Chapter 3 : Data Collection and Pre-Processing

As discussed in Chapter 2, good data is essential for the design of a neural network model. (9)
Insufficient data can result in poor performance and excessive data will require excessive computing
resources to implement. The first step in creating a neural network controller is a good data collection
and preprocessing plan. The focus of this project is the A intrex. The main steam is supplied to the high
pressure turbine from the outlet of the A intrex. Because of this, controlling the A intrex steam

temperature increase has the greatest potential for a positive impact on main steam temperature.

3.1 Data Point Selection

In order to model the intrex, the properties of the steam and bed material passing through it must be
determined. Some of these properties either have a direct measurement or another measurement with
a direct relationship where others do not. There are however many measurements that can be

combined to determine parameters without direct measurements or direct relationships.

Data was collected from the plant information (Pl) system using the Pl Datalink software add on for
Microsoft Excel. Data was not collected from failed redundant instruments. Data was collected for the
time period from March — August 2013 in five minute intervals. Periods of operation below 178MW
were excluded from the dataset as those are outside the range of normal unit operation. A list of the

collected points can be seen in Table 3.1.
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Table 3-1 Initial Data Point Set

Tag Name

Description

PS:N1:NO1SI34TE821

Intrex Cell AB temperature 1

PS:N1:NO1SI34TE822

Intrex Cell AB temperature 2

PS:N1:NO1SI34TE824

Intrex Cell AB temperature 3

PS:N1:NO1SI34TE825

Intrex Cell AB temperature 4

PS:N1:NO1SI34TE827

Intrex Cell AB temperature 5

PS:N1:NO1SI34TE828

Intrex Cell AB temperature 6

PS:N1:NO1SI34TE805

Intrex Cell AA temperature 1

PS:N1:NO1SI34TE806

Intrex Cell AA temperature 2

PS:N1:NO1SI34TE807

Intrex Cell AA temperature 3

PS:N1:NO1SI34TE808

Intrex Cell AA temperature 4

PS:N1:NO1SI34TE809

Intrex Cell AA temperature 5

PS:N1:NO1SI34TE810

Intrex Cell AA temperature 6

PS:N1:NO1SI34TE811

Intrex Cell AA temperature 7

PS:N1:NO1SI34TE812

Intrex Cell AA temperature 8

PS:N1:NO1SI34TE861

Intrex Downleg Temperature

PS:N1:NO1SI34TE850

Intrex Upleg Temperature 1

PS:N1:NO1SI34TE851

Intrex Upleg Temperature 2

PS:N1:NO1SI34TE483

Intrex Return Temperature A

PS:N1:NO1SI34TE484

Intrex Return Temperature B

PS:N1:1SI34FI800A

Intrex Cell AB1 Air Flow

PS:N1:1SI134FI800B

Intrex Cell AB2 Air Flow

PS:N1:1SI34FI800C

Intrex Cell AB3 Air Flow

PS:N1:1SI34FI816A

Intrex Cell AA1 Air Flow

PS:N1:1SI34FI816B

Intrex Cell AA2 Air Flow

PS:N1:1SI34F1816C

Intrex Cell AA3 Air Flow

PS:N1:1FSHSPFL_A

Intrex Startup Channel Air Flow A

PS:N1:1FSHSPFL_B

Intrex Startup Channel Air Flow B

PS:N1:1FSHDFL

Intrex Downleg Air Flow

PS:N1:1FSHSPUPG_FL

Intrex Upleg Air Flow

PS:N1:NO1SI34TE537

Main Steam Temperature to intrex A A

PS:N1:NO1SI34TE538

Main Steam Temperature to intrex A B

PS:N1:1AVGBEDDP

Average Furnace Bed Pressure

PS:N1:NO1BB34PT422

Furnace Freeboard Pressure 1

PS:N1:NO1BB34PT472

Furnace Freeboard Pressure 2

PS:N1:NO1BB34PT482

Furnace Freeboard Pressure 3

PS:N1:1TOTPAFLOW

Total Primary Air Flow

PS:N1:1TOTAIRFLOW

Total Air Flow

PS:N1:1SOLIDFUELFLW

Total Solid Fuel Flow

PS:N1:N01GG34JT003

Total Unit Megawatt Load

PS:N1:1FNHEATIN

Total Heat Input

PS:N1:1AVGFBTMP

Average Furnace Bed Temperature

PS:N1:1TOTALLIME

Total limestone flow

PS:N1:1SF_KLB_H

Main steam flow

PS:N1:1INTRXADIF_TMP

Intrex A Differential Steam Temperature
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The original data points were believed to have an impact on intrex performance based on process
knowledge and past experience. Additional process knowledge was used to reduce the data set. The
two intrex cells each contain nine thermocouples. All of the measurements in each cell were averaged
together to reduce those data points from 18 points to two. This not only reduces data points but also
reduces the potential for a single instrument failure causing the neural network model to malfunction.
If one of the instruments malfunctions, the control system will remove it from the average and the

model will continue to function properly. The two upleg temperatures were also averaged together.

There is no desire to control the two sides of the intrex differently so controls on either side of the intrex
can be averaged together. This was done for the intrex cell air flows, intrex startup channel air flows,
and intrex return temperatures. Other parameters outside of the intrex can also be averaged such as

redundant thermocouples and Furnace Freeboard Pressure.

Not all of the boiler parameters that are outside of the intrex have an immediate impact on intrex
performance. Five minute time delays were also included for some of the parameters outside of the
intrex to attempt to capture any delayed impact to intrex performance. The data set with averaged

points and five minute delays included can be seen in Table 3-2.
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Table 3-2 Data Points with Averages and Delays

Parameter Description Included Tags

Avg A1 AF Intrex Average Al Air Flow PS:N1:1SI34FI800A, PS:N1:1SI34FI816A
Avg A2 AF Intrex Average A2 Air Flow PS:N1:1S134FI800B, PS:N1:1SI134FI816B
Avg A3 AF Intrex Average A3 Air Flow PS:N1:1SI34FI800C, PS:N1:1SI34FI816C
Avg SUC AF Intrex Average Startup PS:N1:1FSHSPFL_A, PS:N1:1FSHSPFL_B

Channel Air Flow
DNLG AF Intrex Downleg Air Flow PS:N1:1FSHDFL
UPLG AF Intrex Upleg Air Flow

PS:N1:1FSHSPUPG_FL

Cell AB Ave Temp

Intrex Average Cell AB
Temperature

PS:N1:NO1SI34TE821, PS:N1:NO1SI34TE822,
PS:N1:NO1SI34TE824, PS:N1:NO1SI34TE825,
PS:N1:NO1SI34TE827, PS:N1:NO1SI34TE828

Cell AA Ave Temp

Intrex Average Cell AA
Temperature

PS:N1:NO1SI34TE805, PS:N1:NO1SI34TE806,
PS:N1:NO1SI34TE807, PS:N1:NO1SI34TE80S,
PS:N1:NO1SI34TE809, PS:N1:NO1SI34TE810,
PS:N1:NO1SI34TE811, PS:N1:NO1SI34TE812

DNLG Temp Intrex Downleg Temperature PS:N1:NO1SI34TE861
UPLEG TEMP Intrex Upleg Temperature PS:N1:NO1SI34TE850, PS:N1:NO1SI34TE851
Avg RTN TE Intrex Average Return
Temperature PS:N1:NO1SI34TE483, PS:N1:NO1SI34TE484
STM IN TE Intrex Steam Inlet PS:N1:NO1SI34TE537, PS:N1:NO1SI34TE538
Temperature
AVG BED Average Furnace Bed Pressure PS:N1:1AVGBEDDP
AVG FB Average Furnace Freeboard PS:N1:N0O1BB34PT422, PS:N1:NO1BB34PT472,
PS:N1:NO1BB34PT482
Total PA Total Primary Air Flow PS:N1:17TOTPAFLOW
TOT AIR Total Secondary Air Flow PS:N1:1TOTAIRFLOW
TOT FUEL Total Solid Fuel Flow PS:N1:1SOLIDFUELFLW
MW Total unit Megawatt Load PS:N1:N01GG34JT003
Heat in Total Unit Heat Input PS:N1:1FNHEATIN
AVG FB Temp Average Furnace Bed

Temperature

PS:N1:1AVGFBTMP

Limestne Flow

Limestone Flow

PS:N1:1TOTALLIME

Steam Flow

Main Steam Flow

PS:N1:1SF_KLB_H

Main stm deviation

Main Steam Temperature
Deviation from 1000F

PS:N1:1INTRXADIF_TMP, STM IN TE

intrex a TEMP Intrex A Steam Temperature
INCREASE Increase PS:N1:1INTRXADIF_TMP
TOT FUEL -5 Total Fuel Flow with 5 minute PS:N1:1SOLIDFUELFLW
lag
Limestne Flow -5 Total Limestone Flow with 5
minute lag PS:N1:1TOTALLIME
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3.2 Dataset Reduction by Stepwise Regression

In order to reduce the complexity of the model the original data set can be reduced to eliminate
unnecessary variables. Stepwise regression was selected for dataset reduction. Stepwise regression is a

collection of related methods that are designed to work effectively with large data sets. (14)

Regression analysis is used to explore the statistical relationships between variables. Linear regression
attempts to find a line of the form y=mx+b that is the best fit of the relationship between the variables.
When linear regression is used to model a relationship between two variables, the ability of the model
to account for the variability in the relationship is called the coefficient of determination (R?). In order
to calculate the R? value, the error sum of squares and total sum of squares are needed. The error sum
of squares is calculated by squaring and summing the differences between the actual output values (y;)
and the predicted model output values (V;) as seen in equation 3-1. The total sum of squares is the
measure of the total variability in the response and is calculated from equation 3-2. The ratio of SS; to
SSt is the proportion of variability in the relationship between the variables that cannot be accounted
for by the regression model. By subtracting this number from 1, the proportion of variability in the
relationship between the variables that can be accounted for by the regression model can be calculated.
The R? value can be calculated from equation 3-3. The closer the R*value is to 1, the more accurate the

regression model is. (14)

Equation 3-1: Error Sum of Squares

n
$S5 = ) i =9
i=1
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Equation 3-2: Total Sum of Squares

n
SSr =) =7
i=1

Equation 3-3: Coefficient of Determination (R?)

RZ=1-—
SSr

The relevance of the inputs to a regression model can be determined through hypothesis testing. In the
case of the regression model, the null hypothesis Hy would be that the regression coefficient for a given
input would equal to zero. If the null hypothesis is rejected, the alternate hypothesis, the regression
coefficient is not equal to zero, would be accepted. In order to determine whether or not to reject the
null hypothesis, the P-value is used. The P-value is the probability that the test statistic will take on a
value that is at least as extreme as the observed value of the statistic when the null hypothesis is true. A
typical cutoff value for the P-value, referred to as a, is 0.05. This can be interpreted as meaning that
there is only a 5% chance that the null hypothesis is true or a 95% chance that the null hypothesis is

false. (14)

In order to perform the stepwise regression for data selection, data was needed for varying operating
conditions. Testing was performed for one week at which time the intrex airflows were adjusted to
values that they are not normally operated at. In addition to collecting the data from the test period,
points were taken from the standard operating condition data collected from March through August and
added to the dataset. The combined dataset was loaded into Minitab 16 statistical analysis software for

the purposes of performing a stepwise regression to reduce the size of the data set.
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The stepwise regression tool in Minitab allows the user to select which data is the response and which
data to use to attempt to predict that response. It also allows the user to select predictors to be used in
every model. For the purposes of this project, the intrex air flows are included in every model since they
are going to be the means of control. With the stepwise regression function, Minitab will automatically
add/remove the other predictors from the model based on the P-value calculated for each predictor.

Minitab allows for the user to set the a value and also allows for the stepwise regression to be

performed by adding predictors, removing predictors, or both. The analysis of the intrex data set was

performed using an a of 0.05 to add or remove predictors and with both the add and remove function

active. This allowed for a reduction of the dataset from 25 variables to 20 variables which can be seen in

Table 3-3.
Table 3-3 Reduced Dataset from Stepwise Regression
Description Regression

Parameter Coefficient P-Value
Constant Regression Constant 805.1 N/A
Avg Al AF Intrex Average Al Air Flow 0.00128 0.000
Avg A2 AF Intrex Average A2 Air Flow -0.00084 0.001
Avg A3 AF Intrex Average A3 Air Flow 0.001 0.000
Avg SUC AF Intrex Average Startup Channel Air Flow 0.0004 0.000
DNLG AF Intrex Downleg Air Flow 0.00082 0.011
UPLG AF Intrex Upleg Air Flow -0.0001 0.013
Cell AB Ave Temp Intrex Average Cell AB Temperature 0.0284 0.000
Cell AA Ave Temp Intrex Average Cell AA Temperature 0.0154 0.000
DNLG Temp Intrex Downleg Temperature -0.0049 0.02
UPLEG TEMP Intrex Upleg Temperature 0.014 0.000
STM IN TE Intrex Steam Inlet Temperature -0.8355 0.000
AVG BED Average Furnace Bed Pressure 0.032 0.027
AVG FB Average Furnace Freeboard -0.324 0.000
Total PA Total Primary Air Flow 0.00557 0.000
Heat in Total Unit Heat Input -0.00482 0.000
AVG FB Temp Average Furnace Bed Temperature -0.0081 0.000
Limestne Flow Limestone Flow -0.0092 0.000
Steam Flow Main Steam Flow -0.0118 0.000
Main stm deviation Main Steam Temperature Deviation from 1000F 0.592 0.000
TOT FUEL -5 Total Limestone Flow with 5 minute lag 0.0148 0.033
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The stepwise regression output from Minitab predicts an R value of 92.30% with the predictors from
Table 3-3. The complete output file from Minitab can be seen in Appendix A. By multiplying each
variable by the associated coefficient from Table 3-3 and then adding the constant from the Table, the
regression model output of the intrex differential temperature can be calculated. The regression model

output equation can be seen in equation 3-4.

Equation 3-4: Regression Model Output

20

Intrex DT = 805.1 + Z(Parameteri X Coef ficient;)
i=1

The regression model will serve as the baseline for model performance. The goal is to find a better
model of the system using a neural network than that found by using the regression. In order to verify
model performance, the mean squared error (MSE) and the coefficient of determination (R?) will be

calculated.
3.3 Data normalization

Before the data can be used to for neural network modeling, it must be normalized. (15) Normalization
of the data effectively removes the units from the data by rescaling all of the variables to the same
scale. In theory, data normalization is not necessary as the model tuning should tune out the scales. In
reality, if the data is not normalized and the variables are on varying scales, the model will take a long
time to tune and is more likely to get stuck in a local minimum in the error surface. Tuning weights for
variables with contrasting ranges can be challenging. This will also degrade the performance any

dynamic tuning algorithms. (15)
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Normalization can mean different things from rescaling variables in a data set to have the same scale
(vector length) to transforming data to be zero mean with a standard deviation of one. The variables for

this project will be normalized to be zero mean with a standard deviation of one.

To perform the normalization, the mean and standard deviation are required for each variable in the
data set. The mean for each variable is subtracted from that variable and the result is divided by the

standard deviation for that variable as seen in equation 3-5. In statistics this is also called standardizing.

Equation 3-5: Normalization

X, — X
o

Normalized X; =

The mean and standard deviation were calculated for each variable in the data set. It is important to
note that if new data are added to the existing data set that these values may need to be updated.
Matlab programs were written to automatically normalize and un-normalize the data set. The Matlab
programs written for the normalization and inverse normalization can be seen in Figures 3-1 and 3-2

respectively.

function [normdatal= mmnorm(normmat,data)

% This function will take in data and an associated normalization matrix

% (normmat)containing the mean and standard deviation of the data set

% and perform normalization. The normalized data will be returned.

normdata = zeros(size(data,l),size(data,?2)):; $Initialize the matrix

x=normmat (1, :); %Get mean for each variable

y=normmat (2, :); %Get SD for each variable

parfor i=l:size(data,2) %$Normalize the data
normdata (:,1i) = ((data(:,1)-x(1)))/y(i);

end

end

Figure 3-1 Matlab Normilization Function
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function [normdatal= immnorm (normmat,data)

This function will take in data and an associated normalization matrix
(normmat) containg the mean and standard deviation of the data set and

o® o° o°

perform inverse normalization. The un-normalized data will be returned.
normdata = zeros (size(data,l),size(data,2)); %$Initialize the matrix
x=normmat (1, :); %$Get mean for each
variable
y=normmat (2, :) ; %Get SD for each variable
parfor i=l:size(data,2) %$Un-Normalize the data

normdata(:,1) = ((data(:,1)*y(i)))+x (i)

end
end

Figure 3-2 Matlab Inverse Normalization Function
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Chapter 4 : Neural Network Modeling

When designing the neural network model, there are many considerations to be made. The number of
input variables was previously determined by stepwise regression and the number of output variables is
already known to be one. The number of layers, number of nodes in each layer, and the activation

function need to be determined. The method for training the neural network must also be determined.

4.1 Neural Network Model Structure

Neural Networks with one hidden layer are considered universal approximators according to the 1989
paper written by Hornik, Stinchcombe, and White. (16) This means that in most cases a system can be
successfully modeled with only one hidden layer. The model for this project will use one hidden layer

with an input and output layer.

The number of input layer nodes typically matches the number of input variables which will be the case
for this project. The number of output nodes is set by the number of model outputs which in this case is
one. Many “rules of thumb” exist for determining the number of hidden layer nodes, one being that the
number of hidden layer nodes is typically between the number of input and output nodes. (17) (18)In
reality, the ideal number of nodes in the hidden layer is dependent on the system the model is based on
and the “rules of thumb” are a starting point. (19) (18) This project will use testing to select the number

of hidden layer nodes.
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The output of each node in the neural network with the exception of the node in the output layer will be
applied to an activation function. There are many types of activation functions that are commonly used.
If a linear activation function is used, the neural network acts as a combination of linear regressions with

each node representing a single regression.

Activation functions for neural networks are typically a form of sigmoid function. The sigmoid functions
are non-linear “S” shaped functions that limit the output value of the node. (20) The sigmoid function
also enables the network to model non-linear functions. For the Intrex Neural Network model, it is
desired to have the output of the transfer function for each node fall between 1 and -1. This would
typically be done with a tan-sigmoid activation function. The shape of the tan-sigmoid activation

function can be seen in Figure 4-1.

0.5r

-05+

Figure 4-1 Tan-Sigmoid Activation Function

The tan-sigmoid activation function is implemented in the model