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ABSTRACT 

 Carnivorous plants perform as both producers and consumers. Botanical carnivory has evolved 

in sunny, moist, nutrient-poor environments, and the primary nutrient supplied by prey is proposed to 

be nitrogen. There is a trade-off between carnivorous and photosynthetic structures which corresponds 

to degree of carnivory expression and available nutrients. This study was conducted on the hooded 

pitcher plant, Sarracenia minor, which is a facultative wetland plant and Florida-threatened species. 

Sarracenia minor is considered a specialist myrmecophage and ants characterize the majority of 

attracted and captured prey. Ants not only provide nutritional benefit, but also protection against 

herbivory. A natural population of S. minor in northeast Florida was selected to test response to prey 

and fertilizer nitrogen in a press-experimental design. Introduced fire ants (Solenopsis invicta) and 

ammonium nitrate (NH4NO3) were used as prey and fertilizer nitrogen sources, respectively. Treatments 

included: 1) ant addition; 2) fertilizer addition; 3) ant addition/fertilizer addition; 4) no ants/no fertilizer; 

5) control. Treatments were administered biweekly and morphological characteristics and herbivory 

were measured monthly from April-November 2012. Results indicated no significant treatment effects 

on plant performance and morphological characteristics, except for a significantly greater number of 

flowers displayed by the nutrient-deprived group (p < .005). Herbivory by Exyra semicrocea also showed 

a marginally significant negative effect on the tallest pitchers per ramet. Since nitrogen is primarily 

stored by pitchers and allocated to new growth in the following growing season, the predictive power of 

this study may be limited. However, increased flowering rate in the nutrient-deprived group suggests 

that plants were induced to flower from nutrient stress. Also, a burn at the beginning of the study likely 

influenced nutrient availability and plant response to experimental treatments. In conclusion, stress may 

have occurred from both fire and nutrients, and S. minor showed resistance and poor response to 

nitrogen addition.   
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INTRODUCTION 

History and Background 

Plants are one of the most diverse and ancient group of organisms on the planet. Plants account 

for approximately 22% (≈308,000 species) of extant species (Strong et al., 1984). Diversity of an 

arthropod community is also influenced by plant diversity (Siemann et al., 1998). Various relationships 

have evolved between plants and arthropods, such as pollination, seed dispersal, galling, herbivory, ant-

protection, myrmecotrophy and insectivory (Bronstein, 1998; Bronstein et al., 2006). However, 

symbiotic relationships are not often absolute, nor symmetrical, and the degree to which interactions 

occur, whether mutual, commensal or parasitic, may be difficult to define as transitional ecological roles 

and functions are examined (Holland and DeAngelis, 2009). Relationships between carnivorous plants 

and arthropods have been an area of ongoing debate and intrigue. The earliest fossil records of 

carnivorous plants include pollen of Aldrovanda from the Eocene (≈55-34 mya) and Droseraceae from 

the Miocene period (≈24-5 mya) (Pietropaolo and Pietropaolo, 1999). In 1576, illustrations of pitcher 

plants belonging to the genus Sarracenia were documented in Nova Stirpium Adversaria by l’Obel 

(Romanowski, 2002). Carnivorous plants exist across the globe and have developed unique strategies 

that allow them to take advantage of available resources and survive in nutrient-poor areas such as bogs 

or seepage savannas, where competition with other plants is low. Basic morphological observations 

have suggested that insects benefit these carnivorous plants by providing nutrients such as nitrogen or 

phosphorous (Plummer and Kethley, 1964). Many studies have investigated the function and purpose of 

modified leaves in carnivorous plants and whether or not these plants truly depend on insect prey for 

essential nutrients such as nitrogen, or whether root uptake of nitrogen is sufficient to meet their 

metabolic needs. Reputable evidence for botanical carnivory came with the discovery of Dionaea 

muscipula (Venus flytrap) and supporting communication between John Ellis and Carl Linnaeus in the 

mid-18th century (Barthlott et al., 2007). In the 19th century, the association between botanical carnivory 

 
 



and nutrient-deficient habitats was duly noted (Darwin, 1971; 1893 edition revised by Francis Darwin). 

The ability to utilize both photosynthesis and insect prey for nutrients should provide carnivorous plants 

with a competitive advantage in nutrient-poor substrates and allows them to exploit niches incapable of 

being occupied by most plants.  

Carnivorous plants and myrmecophytes are exceptional examples of how plants have adapted 

to limited resources and developed unique relationships with insects to obtain nutrients. 

Myrmecophytic plants are considered those which harbor ants in a specialized structure which 

ultimately absorbs nutrients from the ants’ debris piles. In comparison, Givnish et al. (1984) proposed a 

definition for carnivorous plants with two requirements: nutrients are absorbed from dead animals on 

tissue surfaces which contribute to increased plant growth or fitness; and plants must have a unique 

adaptation or strategy to allocate resources such that the primary result is to attract, capture and/or 

digest prey. Ants may serve as an indirect nutritional source to myrmecophytic plants whereby the 

plants absorb nutrients from ant waste products (Thompson, 1981) or as a direct source of nutrition for 

carnivorous plants (Moon et al., 2010). Both myrmecophytic and insectivorous plants have evolved the 

ability to gather nutrients from environments with low levels of available soil nutrients. Prey capture is 

believed to provide a supplemental source of nitrogen. Furthermore, insectivorous plants have a 

relationship with ants that is mainly documented as antagonistic, such that the ants are used solely as 

prey, in contrast to myrmecophytic plants which represent a mutualistic relationship with ants. In a 

myrmecophytic plant, specialized structures benefit the ants by providing potential food resources, in 

addition to housing and shelter where colonies can safely thrive (Thompson, 1981; Givnish et al., 1984). 

Myrmecophytic plants are also protected by ants against natural enemies (Brontstein, 1998; Bronstein 

et al., 2006). In the hooded pitcher plant, Sarracenia minor, ants have been demonstrated to not only 

provide nutritional benefit, but also protection against herbivory by Exyra semicrocea caterpillars (Moon 

et al., 2010). Regardless of proposed differences, insectivorous and myrmecophytic plants share similar 
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life histories and nutrient requirements. Both types of plants are generally perennial, grow in substrates 

where nutrient levels are low, and derive nitrogen from prey or debris (Thompson, 1981). The variable 

roles of insects and degrees of interaction between carnivorous plants and potential insect prey are 

areas of ongoing research. Measurement of insect capture efficiency and allocation of nutrients towards 

expression of carnivorous or photosynthetic characteristics has also received more recent attention.   

In order for botanical carnivory to become favored, benefits of carnivorous structures must 

outweigh production costs. A trade-off exists whereby energy must be appropriately allocated towards 

production of carnivorous versus photosynthetic structures. If the nutrients provided by insects via 

carnivorous structures are insufficient then enhancement of photosynthetic structures must become the 

primary strategy for survival. In contrast, if sufficient nutrients are obtained from carnivorous structures 

then energy will likely be allocated towards greater carnivory expression. Carnivorous structures are 

modified leaves or roots which are conducive for attracting and trapping prey. Prey are consequently 

digested and absorption of organic nutrients, especially nitrogen, enhances survival of the plant. 

Multiple evolutionary lineages of botanical carnivory are hypothesized to have occurred as an 

adaptation to high-light, wet and nutrient-poor habitats (Thompson, 1981; Givnish et al., 1984; Ellison 

and Gotelli, 2001; Farnsworth and Ellison, 2008; Ellison and Gotelli, 2009). Sites where carnivorous 

plants are typically found are N-limited (Givnish, 1989; Ellison and Gotelli, 2001; Karagatzides et al., 

2009) and include habitats such as bogs, peaty swamps, banks of streams (Thompson, 1981; Givnish et 

al., 1984), seepage swamps and fens (Butler and Ellison, 2007) and seepage savannahs (Hermann, 1995; 

Meyer et al., 2001). The relationship between a carnivorous plant and its insect visitors must be 

balanced such that consumption of beneficial pollinators as prey is avoided. Traps and flowers exhibit a 

spatial and temporal separation whereby flowers mature before traps or flowers are elevated above 

traps on elongated petioles. In aquatic carnivorous plants, such as Utricularia spp., the traps, or modified 

roots, are submerged while the flowers are emergent. In terrestrial pitcher plants and butterworts the 
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flowers mature above opened traps (Zamora, 1999). The advantage of producing carnivorous structures 

is closely related to available nutrients and mechanisms of energy allocation which enhance survival and 

fitness.  

The specialized morphology of carnivorous plants may selectively capture prey and reflect 

available habitat resources for a particular environment (Ellison and Gotelli, 2009). In dry environments, 

myrmecophily, a mutualistic relationship with ants, is favored over carnivory (Thompson, 1981). 

Photosynthetic rates are often low in carnivorous plants (Small, 1972; Méndez and Karlsson, 1999; 

Butler and Ellison, 2007) and carnivory provides nutritional benefits that are independent of 

photosynthesis (Ellison and Gotelli, 2001). Furthermore, Givnish et al. (1984) designed a cost-benefit 

model that predicted botanical carnivory to be favored in nutrient-poor, high-light, moist environments, 

which Benzing (2000) later expanded to include nutrient tradeoffs through litter. Analysis of the carbon 

and nitrogen tissue content could indicate the degree to which investment of photosynthetic and 

carnivorous structures contribute towards survival (Ellison and Gotelli, 2009; Karagatzides et al., 2009). 

Thus, the ratio of C:N in plant tissues may pose as a useful measurement of carnivory expression, in 

addition to comparison of carnivorous and photosynthetic morphology (Ellison and Gotelli, 2002; Moon 

et al., 2008; Moon et al., 2010).  

Trapping Mechanisms 

Molecular systematics has revealed a high level of trap convergence among carnivorous plants 

(Ellison and Gotelli, 2009). Trapping mechanisms are considered either active or passive, depending on 

the response mechanisms to stimuli by insect visitors. Active traps have “hairs” which act as triggers and 

respond to stimuli by enclosing prey within the modified leaf. Passive traps utilize directional hairs or 

sticky resin to ensure capture and prevent escape of prey. Examples of active traps are those exhibited 

by the Venus flytrap (Dionaeae) and bladderwort (Utricularia). Passive traps are displayed in pitcher 

4 
 



plant genera (Sarracenia, Nepenthes, Heliamphora, Darlingtonia, Cephalotus), sundews (Drosera) and 

butterworts (Pinguicula) (Pietropaolo and Pietropaolo, 1999; Romanowski, 2002; Schnell, 2002; 

Barthlott et al., 2007; McPherson, 2007). Furthermore, passive traps are divided into flypaper (sticky) 

traps, which are found in Droseraceae, Drosophyllaceae and Roridulaceae, and pitfall traps, which are 

found in Nepenthaceae, Cephalotaceae and Sarraceniaceae (Ellison and Gotelli, 2009). Within these 

families, four genera of pitcher plants (Sarracenia, Nepenthes, Darlingtonia, Cephalotus) have juveniles 

with nonfunctional pitchers which derive nitrogen from older pitchers (Schulze et al., 1997). Non-

pitcher, photosynthetic leaves, termed phyllodia, are also produced by Sarracenia spp. (Fig. 1, 2; Givnish 

et al., 1984; Pietropaolo and Pietropaolo, 1996; Ellison and Gotelli, 2002; Barthlott et al., 2007). In 

Sarracenia spp., pitcher traps are divided into four zones (Fig. 3).  Zone 1 is designated as the pitcher 

hood. The hood has interior, superficial hairs which point inward to facilitate prey movement towards 

the pitcher tube. The hood may be brightly colored in the ultraviolet spectrum as a visual cue to insects. 

Non-pigmented spots, or fenestrations, which act as light windows that insects may perceive as a 

method of escape, are also present on the hood. Zone 2 is the lip, mouth and neck area. The lip, often 

referred to as the nectar roll, may be brightly colored and consists of nectaries and a smooth waxy 

surface. Zone 3 is the smooth waxy section of the tube which offers no grip as insects plummet to the 

bottom digestive zone. This zone also contains digestive enzyme glands. Sarracenia spp. are known to 

produce amylase, esterase, lipase, phosphatase and protease enzymes (Barthlott et al., 2007) which aid 

digestion of prey and release nutrients readily absorbed by plant tissue. Zone 4 is the digestive zone 

which is lined with downward pointing hairs and is where usable nutrients from prey are digested and 

absorbed. The pitcher tube may be filled with fluid where prey drown and sink to the bottom of the 

tube and final breakdown by enzymes and bacteria occurs (Pietropaolo and Pietropaolo, 1996; 

Romanowski, 2002).  

5 
 



To further enhance prey attraction, pitcher plants are equipped with both floral and extrafloral 

nectaries (EFN) (Dress et al., 1997; Newell and Nastase, 1998; Plachno, 2007). Insects receive nutritional 

benefits of amino acids and sugars from nectar of S. purpurea (Dress et al., 1997). Extrafloral nectaries 

are most dense around the lip of the pitcher. Prey are attracted to the nectar on the smooth, waxy lip 

where they may slip and fall into the digestive fluid of the pitcher.  

Inquiline Community 

Pitcher leaves provide refugia and nutritional resources for micro- and macrofauna. In pitchers 

filled with fluid, such as rain water, a microcosm is created whereby some invertebrates utilize space 

and nutrients from decomposing prey. This assemblage of organisms is referred to as the inquiline 

community, or phytotelmata. Inquiline community members of S. purpurea may include bacteria, mites, 

midges, protozoa, rotifers and dipteran larvae (Fish and Hall, 1978; Bradshaw and Creelman, 1984; 

Heard, 1994; Kneitel and Miller, 2002; Mouquet et al., 2008; terHorst, 2010). Copepods and cladocerans 

have also been observed inside pitchers (Kneitel and Miller, 2002). Detritus is broken down by bacteria, 

mites and midges, and protozoa and rotifers in turn feed on the bacteria. Bacterial diversity found in S. 

minor pitchers includes strains of Serratia, Achromobacter, Pantoea, Micrococcus, Bacillus, Lactococcus 

Chryseobacterium and Rhodococcus, which often arrive from insect vectors (Siragusa et al., 2007). 

Dipteran larvae compose the top predators in the community; larvae of three dipteran species that have 

been found to inhabit the pitcher fluid are Blaesoxipha fletcheri (Sarchophagidae), Metriocnemus knabi 

(Chironomidae) and Wyeomyia smithii (Culicidae) (Fish and Hall, 1978; Heard, 1994; Kneitel and Miller, 

2002; Mouquet et al., 2008; terHorst, 2010). Blaesoxipha fletcheri is restricted to feeding on fresh prey 

at the water’s surface, while Metriocnemus knabi feeds on dead prey at the pitcher bottom, and 

Wyeomyia smithii filter-feeds on suspended particulate matter and small organisms including bacteria 

and protozoa throughout the pitcher fluid (Fish and Hall, 1978; Bradshaw and Creelman, 1984). 
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Mosquito larvae, W. smithii, are considered the keystone predators in this food-web (Mouquet et al., 

2008). Within the pitcher the inquiline community is influenced by both temporal and spatial 

segregation. Spatial segregation is caused by different respiratory mechanisms as well as resource 

partitioning due to the heterogeneity of food types and feeding behaviors (Fish and Hall, 1978; Kitching, 

1987; Naeem, 1988). Temporal segregation occurs due to different developmental and oviposition 

patterns between B. fletcheri, M. knabi and W. smithii (Fish and Hall, 1978). Succession of organisms 

composing the inquiline community is also influenced by pitcher age (Fish and Hall, 1978). For instance, 

Fish and Hall (1978) observed lower abundance of M. knabi in youngest and oldest leaves of S. purpurea. 

Thus, competition between inquiline community members is minimized due to the temporal and spatial 

segregation (Fish and Hall, 1978). Prey nutrients become available to pitcher leaves not only through 

action by digestive enzymes, but also through decomposition and detritus fractioning as a byproduct of 

the inquiline food-web (Bradshaw and Creelman, 1984; Heard, 1994). Pitcher plants such as S. purpurea 

are able to directly absorb amino acids (Jones et al., 2009) and nutrients which may be released from 

decomposed prey and microorganism metabolism (Bradshaw and Creelman, 1984). There is still debate, 

however, whether competition for nutrients occurs between the pitcher plant and its inquiline 

community.  

Nutrients 

Nitrogen is regarded as the nutrient that most limits plant growth (Berendse and Aerts, 1987; 

Vitousek et al., 1997; Karagatzides et al., 2009). Nitrogen also constitutes the dominant nutrient 

provided from prey (Shulze et al., 1997). Although prey are a source of phosphorous as well (Plummer 

and Kethley, 1964), nitrogen has been demonstrated to be the primary limiting nutrient in most plants 

including S. purpurea, while phosphorous acts as a secondary limiting nutrient (Chapin and Pastor, 

1995). Recycling and remineralization of nitrogenous compounds is also facilitated by the bacterial 
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diversity found in pitchers (Siragusa et al., 2007). Pitcher plants are capable of absorbing various 

nutrients from prey including amino acids and peptides through the leaves (Plummer and Kethley, 

1964). Competition for soil nutrients varies with habitats and diversity of microbial communities. Thus, it 

is important to consider the nitrogen cycle and how nitrogen is accumulated and mobilized in soils and 

assimilated by plants. Anthropogenic effects of agriculture and fossil-fuels should also be considered 

regarding nitrogen byproducts and nutrient-loading in the environment (Koch and Reddy, 1992; Ellison 

and Gotelli, 2002). Nutrient loading from atmospheric and agricultural deposition influences the soil N 

composition and microbial dynamics.  

Forms of nitrogen available and usable by plant roots depend upon the soil quality, whether or 

not the soil is anoxic, and the microbial community composition. In N-limited ecosystems amino acids 

may regulate nutrient availability due to their high turnover rate caused by microbes (Jones et al., 2009). 

Dissolved inorganic nitrogen (DIN), such as nitrate (NO3
-) and ammonium (NH4

+), are directly absorbed 

by roots and rhizomes; whereas, dissolved organic nitrogen (DON), such as amino acids, proteins and 

peptides, must go through the process of nitrification or mineralization in order for roots and rhizomes 

to utilize the nitrogen (Jones et al., 2005). Sources of nitrogen include precipitation (dissolved NH4
+ and 

NO3
-), mineralized N from prey, potential N present in soil or substrate, and N stored by the plant 

(Ellison and Gotelli, 2007). Many terrestrial ecosystems contain soils with greater than 90% of their 

nitrogen bound in organic form, of which amino acids represent 20-40% (Senwo and Tabatabai, 1998). 

Sarracenia spp. absorb minerals and amino acids from digestion of prey protein (Pietropaolo and 

Pietropaolo, 1996), and S. purpurea has been shown to take up amino acids directly (Jones et al., 2009). 

Roots and pitchers of S. purpurea are capable of utilizing NO3
- due to the presence of nitrate reductase 

(Butler and Ellison, 2007). Species of Sarraceniaceae in North America such as S. purpurea have pitchers 

that account for the greatest uptake of nitrogen, followed by the roots and rhizomes. Stored N provides 

the sink by which growth occurs and pitchers are produced. Assimilated and stored nitrogen is then 

8 
 



translocated from senescing pitchers into new pitcher biomass, thereby conserving nutrients and 

amplifying prey capture through carnivory expression rather than production of photosynthetic tissue 

(Butler and Ellison, 2007). Data from Ellison and Gotelli (2001) showed that dependence on insect-

derived nitrogen may increase in some carnivorous plant species as more elaborate carnivorous 

structures are produced. Efficiency of insect capture and associated nutrients influences energy 

allocation and carnivory expression. Available nutrient pools also impact uptake and storage in 

aboveground and belowground biomass. 

Sarracenia minor 

Carnivorous plants may be important indicators of long-term environmental change because 

their decline may signal detrimental impacts of chronic N deposition (Ellison and Gotelli, 2001). Much 

work has been done on the nutrient and prey dynamics of Nepenthes spp. (Moran, 1996; Schulze et al., 

1997; Ellison and Gotelli, 2001; Bohn and Federle, 2004) and S. purpurea (Heard, 1998; Newell and 

Nastase, 1998; Deppe et al., 2000; Ellison and Gotelli, 2002; Gotelli and Ellison, 2002; Kneitel and Miller, 

2002; Wakefield et al., 2005; Atwater et al., 2006; Butler and Ellison, 2007; Mouquet et al., 2008; 

Karagatzides et al., 2009), but only a limited number of studies have investigated the hooded pitcher 

plant, S. minor (Plummer, 1963; Meyer et al., 2001; Beaulac et al., 2002; Siragusa et al., 2007; Moon et 

al., 2008; Moon et al., 2010). Sarracenia minor is a Florida state-threatened species (Wunderlin and 

Hansen, 2008; USDA, 2012) and is also a potential indicator species of freshwater wetlands (Meyer et 

al., 2001; Beaulac et al., 2002). The range of S. minor is limited to the southeast United States (Florida, 

Georgia, South Carolina, North Carolina) (USDA, 2012) and populations have been documented as far 

south as the Everglades (Romanowski, 2002). Sarracenia minor is a facultative wetland plant (Wunderlin 

and Hansen, 2008) and populations are known to inhabit seepage savannahs (Hermann, 1995; Meyer et 

al., 2001), bogs and fens (Pietropaolo and Pietropaolo, 1996; Moon et al., 2010) and moist and 
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intermediate pine-barrens (Plummer, 1963). Sarracenia minor is an herbaceous perennial which 

reproduces both asexually and sexually (Pietropaolo and Pietropaolo, 1996; Barthlott et al., 2007) and in 

northeast Florida produces an average rosette of 5-20 pitchers (Moon et al., 2010). Fenestrations, 

nectar, waxy cuticles and downward pointing hairs are utilized to entice prey and prevent escape, while 

digestive enzymes and bacteria in the pitcher liquid are used to break down captured prey (Pietropaolo 

and Pietropaolo, 1996; Schnell, 2002; Barthlott et al., 2007; McPherson, 2007).  

A net benefit may exist for both plants and prey through a balance of consumption and defense 

that leads to a selectively favored relationship (Rutter and Rausher, 2004; Bronstein, 2006; Moon et al., 

2010). Regarding prey capture within Sarraceniaceae, ants, beetles, wasps, flies, crickets and spiders fall 

victim to pitchers (Pietropaolo and Pietropaolo, 1996; Beaulac et al., 2002), but ants account for the 

majority of attracted (Newell and Nastase, 1998) and captured insects (Beaulac et al., 2002; Barthlott et 

al., 2007; Ellison and Gotelli, 2009; Moon et al., 2010). Sarracenia minor is hypothesized to be a 

specialist myrmecophage (Givnish, 1989) and the red imported fire ant, Solenopsis invicta, has been 

observed as the major ant prey of S. minor in the southeastern United States (Ellison and Gotelli, 2009). 

However, fire ants were not found in S. minor pitchers at a study site in Duval County, FL (Moon et al., 

2010). Moon et al. (2010) demonstrated that increased ant attendance to S. minor not only provided 

direct nutritional benefits, but also reduced plant damage from herbivory by Exyra semicrocea 

caterpillars. Nutrient and insect community dynamics of S. minor are not completely understood, but 

further investigation may influence the approach to future research and design of conservation 

management plans for carnivorous plants and their ecosystems. 

Insect prey is proposed to be the most important source of nutrients for carnivorous plants and 

assimilation of these nutrients directly affects expression of carnivory. However, if carnivorous plants 

show positive response to root-derived nutrients then conservation programs may be designed which 

incorporate carnivorous plant species, such as S. minor, as potential candidates for reintroduction. The 
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goal of this study was to examine the effects of prey-derived nitrogen by pitchers compared to root 

uptake of fertilizer nitrogen on performance and fitness of the hooded pitcher plant, S. minor, through 

an in-situ press-experimental design. Plants subjected to prey addition were hypothesized to show 

enhanced expression of carnivory, plant performance and greater fitness rates. Plants that received 

NH4NO3 fertilizer were hypothesized to display a greater dependence on photosynthetic structures such 

that carnivory expression would decrease alongside plant performance and fitness.  

METHODS 

This study was conducted along a boundary of McGirt’s Creek Park, Jacksonville, FL (N: 

30O13.432’; W: 081O46.965’) and data were recorded from April-November 2012. The site is 

approximately 65m x 20m and situated within a powerline corridor owned by Jacksonville Electric 

Authority (JEA). Site selection was based, in part, because it is a semi-protected location, and it contains 

a large, healthy population of S. minor. The plot is bordered by largely undisturbed mesic pine-flatwoods 

and represents a wet prairie community with species of Utricularia, Aster, Cicuta, Coreopsis, Eriocaulon, 

Helianthus, Hypericum, Lachnanthes, Liatris, Lilium, Nephrolepis, Polygala, Rhexia, Solidago and Xyris. 

The canopy is completely open and the corridor has a history of regular disturbance from mowing 

approximately twice per year by JEA. However, the study site is marked off as a research site and has 

not been mowed for multiple seasons. In order to clear overgrown vegetation, we requested that JEA 

mow the site once in late July 2011. Pitcher plants recovered promptly after the mow. In early March 

2012, an accidental fire occurred along sections of the powerline corridor and the site was scorched to 

bare earth (Fig. 4). Subsequently, the population of S. minor consisted of similar sized ramets with young 

or unopened pitchers, many of which had newly produced flowers or buds. Ramets were then 

haphazardly selected and randomly assigned to treatments.   
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Experimental Field Design 

Nitrogen sources chosen to test the effects of prey and fertilizer on plant performance were fire 

ants (Solenopsis invicta) and ammonium nitrate (NH4NO3), respectively. Solenopsis invicta was used as 

the prey addition nitrogen source because ants constitute the vast majority of S. minor prey (Givnish, 

1989; Beaulac et al., 2002; Barthlott et al., 2007; Ellison and Gotelli, 2009), and also due to their 

abundance at the site (Stiles and Jones, 2001; Lubertazzi and Tschinkel, 2003) and prevalence in open 

canopy and disturbed habitats (Menzel and Nebeker, 2008; Epperson and Allen, 2010). The corridor 

contained numerous fire ant colonies both within and outside the study area. Ammonium nitrate 

(NH4NO3) was used as the fertilizer nitrogen source due to the solubility and nitrogen ions in NH4
+ and 

NO3
- which are readily absorbed by plant roots. NH4NO3 has also been used as a nitrogen source in 

previous studies of S. purpurea (Butler and Ellison, 2007; Karagatizides et al., 2009).  

Plants were selected haphazardly and randomly assigned to treatments. Press-experimental 

treatments were: 1) + Ants; 2) + Fertilizer; 3) + Prey/+ Fertilizer; 4) No Ants/No Fertilizer; 5) Control. 

Each treatment contained 15 replicates, for a total N=75 plants. A secondary control to standardize soil 

moisture was administered to all plants in treatments that did not receive fertilizer solution using an 

equal volume of roH2O, which follows the protocol used in previous studies (Butler and Ellison, 2007). 

For the prey-addition treatment groups, 20 ants (7mg) were administered biweekly for a total of 40 ants 

(14mg)/month to the tallest pitcher/ramet. The number of ants added to each pitcher was derived from 

previous research and analysis of S. minor pitcher contents which indicated a mean catch of 125 ants per 

pitcher over a three month active period (Beaulac et al., 2002). A stock solution of organic NH4NO3 was 

used to produce a 10% N concentration that represented equivalent nitrogen content to that of S. 

invicta (Table 1). The 10% N solution was also administered biweekly in doses of 50mL for a total of 

100mL/month. Applying nutrient solution on a biweekly rate is a relatively common method (Ellison and 

Gotelli, 2002). The N stock solution was applied in monthly doses of 100mL which is approximately equal 
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to the nitrogen content of 14mg of S. invicta. All pitchers of plant ramets in manipulated treatments 1-4 

were also plugged with cottonballs to prevent ambient prey from being captured by the plants (Fig. 5). 

Cotton was replaced as needed and appropriately sized pieces of cotton were used to plug pitcher 

mouths. Cotton occasionally became damp from rain and was gently removed and replaced as needed 

to prevent rotting of plant tissue. Various studies have used cotton (Moran and Moran, 1998) and other 

materials to plug pitchers such as cheesecloth, wire mesh, or glass wool (Chapin and Pastor, 1995; 

Ellison and Gotelli, 2002).  

Individual ramets were marked using wire flags as well as aluminum tags and orange flagging 

which were tied loosely around the ramet. An additional loop of orange flagging was used to designate 

the tallest pitcher being measured. The orange flagging helped to keep measurements of ramets and 

pitchers consistent, since a neighboring ramet would often encroach and new taller pitchers would 

mature rapidly. Data recorded for each pitcher ramet included number of pitchers, phyllodia and 

flowers. Measurements of pitcher height and width, keel width and mouth diameter were taken on the 

tallest pitcher of each replicate (Fig. 1). Height of the tallest pitcher was measured from the ground to 

the apex of the hood with a ruler to the nearest millimeter (Moon et al., 2008; Moon et al., 2010). 

Pitcher width, keel width, and mouth diameter were measured at the widest point to the nearest 

.01mm using digital calipers. Diameter of the pitcher mouth was measured directly above the lip 

between the vertices where the hood begins. Herbivory was measured as a count of the number of 

Exyra semicrocea caterpillar galleries per tallest pitcher per ramet, and total number of pitchers per 

ramet with galleries. Data were recorded once every four weeks.        

Ant Collection and Analyses 

Collection of S. invicta started in summer and fall 2011, and continued throughout the project as 

needed. Ants were collected using an aspirator, stored in plastic vials and frozen at 0oC until sorted and 
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dried. A sit-and-wait tactic was used at S. invicta mounds, but a petri dish with sugar-water occasionally 

proved successful to bait ants. In the lab, a metal splatter screen, paper plate and paintbrushes were 

used to separate ants from loose soil pebbles and plant material. Sorted ants were then heated at 40oC 

for a minimum of 72 hours to eliminate water mass. Dried ants were fed to pitchers and used for ant 

mass and nitrogen analysis.  

Dried ants were weighed to the nearest 0.1mg using an analytical balance (Denver Instrument 

Company, TR-204). Linear regression was used to describe the relationship between ant quantity and 

mass. Eight groups of ants (5, 10, 15, 20, 25, 30, 35, 40), each with five replicates, were counted and 

weighed. Means of each ant group were used to establish a regression equation (Fig. 6, y = 0.359x - 

0.385, r = .950), with ant quantity as the independent variable. The correlation between ant quantity 

and mass was highly statistically significant (F7, 39 = 70.484, p < .001). The equation was then used to 

calculate the mass of 40 ants (14mg) so that ants could subsequently be weighed in the lab for use in the 

field. Note that the mass of a specified quantity of ants as calculated using the equation was within a 2% 

difference from the actual ant group mean. Dried ants were then stored in glass screw-top vials (each 

with 7mg ants) and placed in a desiccant chamber until required in the field.  

Ant nitrogen content was analyzed to determine nitrogen content as a percent. Ants were 

homogenized with a Wiley Mill and combusted in a CHNS/O Analyzer (PerkinElmer, Series II CHNS/S 

Analyzer 2400). Four replicates of ant groups, each with 40 ants, were homogenized and each group was 

divided into two sub-replicates. Sub-replicates contained 2mg of homogenized ants (as set by CHNS/O 

Analyzer protocol). Means of each replicate were used to calculate a final mean of 10.4% nitrogen (Table 

1). Thus, using molarity and dilution formulae, a 10% N-fertilizer solution was created using the stock 

NH4NO3 solution. A one-way ANOVA with a Tukey’s HSD post-hoc test and Bonferroni correction was 

used to test if any variation of ant nitrogen occurred. As expected, the nitrogen content of ants did not 

show a significant statistical difference (F3, 7 = 4.977, p = .078). 
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Statistical Analyses of Treatments 

Statistical analyses and figures were generated using SPSS and SigmaPlot, respectively. 

Preliminary and post-treatment data of pitcher, phyllodia and flower number, as well as, pitcher height, 

pitcher width, keel width and pitcher mouth diameter were analyzed with a one-way Analysis of 

Variance (ANOVA) with a Tukey’s HSD post-hoc test and Bonferroni correction. Pre-treatment data 

showed no statistical difference between groups. When data could not be normalized or other 

assumptions of the ANOVA were not met, data were analyzed non-parametrically using a χ2-test.  

RESULTS 

Results of the ANOVA showed that nutrient status produced no significant statistical differences 

between treatments for number of pitchers (F4, 72 = .347, p = .845), number of phyllodia (F4, 72 = .292, p = 

.882), pitcher height (F4, 72 = .349, p = .844), pitcher width (F4, 72 = .388, p = .817), keel width (F4, 72 = .812, 

p = .522) or pitcher mouth diameter (F4, 72 = .481, p = .749). Ranges of means for all treatments were: 

pitcher number = 5.9-7.9; phyllodia number = 1.1-1.6; flower number = .03-.1; pitcher height = 169.4-

186.2; pitcher width = 11.8-13.5; keel width = 12.2-13.9; mouth diameter = 8.7-10.0 (Table 2). Pooled 

total number of new phyllodia per treatment were also not affected by treatments (Fig. 8, χ2 = 2.346, df 

= 4, p > .5). The nutrient-deprived group (No Ants/No Fertilizer) showed the greatest mean number of 

pitchers, flowers and pitcher mouth diameter, while the control group showed the greatest mean 

pitcher height, pitcher width and keel width.  

No significant treatment effects were shown for the percent change between the minimum and 

maximum number of pitchers (Fig. 7, F4, 70 = .094, p = .984), pitcher height (Fig. 10, F4, 70 = 1.485, p = 

.217), pitcher width (Fig. 11, F4, 70 = .581, p = .678), keel width (Fig. 12, F4, 70 = .265, p = .900) or mouth 

diameter (Fig. 13, F4, 70 = .635, p = .640). Ant-deprived groups (+ Fertilizer, No Ants/No Fertilizer) 
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generally displayed the lowest percent change of number of pitchers, and greatest percent change for 

pitcher height, pitcher width, keel width, and mouth diameter.  

Analysis of herbivory showed no significant treatment effect for total number of pitchers per 

ramet with E. semicrocea galleries (F4, 70 = .250, p = .908) or number of galleries per tallest pitcher per 

ramet (F4, 70 = .515, p = .725). A scaled χ2-test was also used to detect any trends in totals per treatments. 

Total number of pitchers with galleries showed no significance (Fig. 14, χ2 = 1.756, df = 4, p > .5), but 

marginal significance was detected for total number of galleries per tallest pitcher (Fig. 15, χ2 = 9.488, df 

= 4, .05 < p < .1). The control group, which had the greatest mean pitcher height, width, and keel width, 

also showed the greatest number of galleries per tallest pitcher. Although no significance was detected, 

plants in treatments deprived of prey (+ Fertilizer, No Ants/No Fertilizer) displayed the greatest total 

number of pitchers with E. semicrocea galleries.  

A strong statistical difference was detected for number of flowers per ramet using a scaled χ2-

test (Fig. 9, χ2 = 16.000, df = 4, p < .005). The χ2-test was conducted for flower number due to 

heteroscedastic variances that could not be normalized through data transformation. Plants in the No 

Ants/No Fertilizer treatment not only produced the most flowers per ramet (Fig. 9, χ2 = 16.000, df = 4, p 

< .005) but also new phyllodia per ramet (Fig. 8, χ2 = 2.346, df = 4, p > .5). Plants in treatments 

manipulated with ant addition (+ Ants, + Ants/+ Fertilizer) produced the fewest number of flowers but 

ranked second to the No Ants/No Fertilizer treatment in new phyllodia production. In addition to 

greatest flowering rate, the No Ants/No Fertilizer group and control group also had the greatest number 

of E. semicrocea galleries per tallest pitcher.    

DISCUSSION 

Carnivorous plants perform as both producers and consumers and are able to exploit a niche not 

occupied by most plants. Carnivorous plants have adapted to sunny, wet and nutrient-poor habitats by 
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evolving unique strategies to obtain nutrients from prey (Thompson, 1981; Givnish et al., 1984; Ellison 

and Gotelli, 2001; Farnsworth and Ellison, 2008; Ellison and Gotelli, 2009). Carnivorous organs must 

therefore be selectively favored over production costs and photosynthesis. Florida contains a rich 

biodiversity, including numerous threatened and endangered species (Myers and Ewel, 1990), and the 

greatest diversity of carnivorous plants in the United States (Hermann, 1995). One Dionaea sp., five 

Drosera spp., six Pinguicula spp., 16 Sarracenia spp. and 14 Utricularia spp. are found throughout 

Florida; this includes one threatened and one endangered Drosera spp., five threatened and one 

endangered Sarracenia spp., three threatened and two endangered Pinguicula spp. The focus of this 

study, the hooded pitcher plant, Sarracenia minor, is a facultative wetland plant and FL-threatened 

species (Wunderlin and Hansen, 2008). Unfortunately, the wetland habitats where S. minor is typically 

found, such as bogs and seepage savannahs, are sensitive ecosystems which are greatly impacted by 

anthropogenic activities even outside their borders. In order to help conserve and protect wetland 

environments in Florida the Warren S. Henderson Wetlands Protection Act was enacted in 1984 which 

regulates activities in wetlands, including construction, dredging and filling (Smallwood et al., 1985; 

Beaulac et al., 2002). Carnivorous plants have also been suggested as indicators of N deposition (Ellison 

and Gotelli, 2001) which may be environmentally detrimental. However, much work has investigated 

the northern pitcher plant, Sarracenia purpurea (Fish and Hall, 1978; Bradshaw and Creelman, 1984; 

Chapin and Pastor, 1995; Dress et al., 1997; Heard, 1998; Newell and Nastase, 1998; Deppe et al., 2000; 

Ellison and Gotelli, 2002; Gotelli and Ellison, 2002; Kneitel and Miller, 2002; Wakefield et al., 2005; 

Atwater et al., 2006; Butler and Ellison, 2007; Mouquet et al., 2008; Karagatzides et al., 2009) and 

Nepenthes spp. (Moran, 1996; Schulze et al., 1997; Moran and Moran, 1998; Bohn and Federle, 2004), 

but limited research has focused on S. minor (Plummer, 1963; Meyer et al., 2001; Beaulac et al., 2002; 

Siragusa et al., 2007; Moon et al., 2008; Moon et al., 2010). More research is needed to understand 
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community and nutrient dynamics of S. minor which may help to design future conservation and 

management plans that protect carnivorous plant communities and threatened ecosystems.   

Despite its negative reputation, the recently introduced fire ant, Solenopsis invicta, could have 

beneficial value for the ant specialist and FL-native and threatened hooded pitcher plant, Sarracenia 

minor. Fire ants are well known for their aggressiveness and negative impact on native invertebrate 

diversity, especially resident ant communities (Stiles and Jones, 2001; Lubertazzi and Tschinkel, 2003; 

Menzel and Nebeker, 2008; Epperson and Allen, 2010). However, since ants have been demonstrated to 

provide both nutrition and protection against herbivory to S. minor (Moon et al., 2010), the aggressive S. 

invicta could be a prime benefactor for S. minor. Fire ant colonies were prevalent in the powerline 

corridor and were observed as the dominant ant species at the McGirt’s Creek site. Fire ant mounds 

were often present in close proximity to pitcher plant ramets and ants were frequently observed on 

pitchers (Fig. 16). Thus, the presence of fire ants would serve as nutritional value to S. minor, 

complemented by protection from herbivory. Various insect prey have been recorded in S. minor 

pitchers, which include ants, beetles, flies, hemipterans, orthopterans, wasps and spiders (Pietropaolo 

and Pietropaolo, 1996; Beaulac et al., 2002), but ants constitute the majority of attracted (Newell and 

Nastase, 1998) and captured prey (Beaulac et al., 2002; Barthlott et al., 2007; Ellison and Gotelli, 2009; 

Moon et al., 2010). Considering the abundance of fire ants at the site, the natural diversity of the 

arthropod community may be negatively impacted. However, the observed arthropod diversity at 

McGirt’s Creek appeared relatively rich and included members of the orders Coleoptera (families: 

Buprestidae, Cantharidae, Carabidae, Chrysomelidae, Scarabaeidae), Diptera (families: Calliphoridae, 

Culicidae), Hymenoptera (families: Apidae, Formicidae, Halictidae, Sphecidae, Vespidae), Hemiptera 

(families: Cercopidae, Cicadellidae, Pentatomidae), Lepidoptera (families: Erebidae, Hesperiidae, 

Lycaenidae, Noctuidae, Nymphalidae, Papilionidae, Pieridae, Yponomeutidae), Odonata (families: 

Aeshnidae, Coenagrionidae, Libellulidae), Orthoptera (families: Acrididae, Gryllidae, Tetrigidae, 
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Tettigoniidae) and Araneae. Furthermore, top-down control by fire ants (Stiles and Jones, 2001) on the 

herbivorous E. semicrocea and orthopterans, as well as spiders which potentially compete with pitchers 

for prey, may actually benefit S. minor populations. If the presence of the introduced fire ant positively 

influences the survival of a native, threatened species such as S. minor, then this introduced species may 

have positive implications not typically considered.   

Although original hypotheses were rejected, disturbance from the mow and burn must be 

incorporated in the interpretation of results from this study. The mow in July 2011 and accidental fire in 

March 2012 likely influenced the nutrient dynamics of the site as well as the response of S. minor to 

nitrogen manipulation. Promptly following the fire, pitcher plants were among the first species to 

resprout. A resprouting strategy implies that energy must be stored in specialized organs (Carpenter and 

Recher, 1979) such as rhizomes in S. minor. Fires have been known to promote plant diversity and 

ecosystem health (Myers and Ewel, 1990; Glitzenstein et al., 1995) and benefit carnivorous plants by 

means of reducing competitive vegetation and canopy cover, as well as releasing nutrients (Pietropaolo 

and Pietropaolo, 1996; Romanowski, 2002; Schnell, 2002; Barthlott et al., 2007; McPherson, 2007). 

Various nutrients such as phosphorous, potassium and magnesium may play a minor role in plant 

performance, but nitrogen has been shown to be the primary limiting nutrient for S. purpurea (Chapin 

and Pastor, 1995). Nutrients released by the burn could have created a sink of N for S. minor whereby 

potential treatment effects of prey-N and fertilizer-N became negligible. Burns modify soil nutrient 

concentrations and often result in a pulse of nutrients, such that pools of inorganic N and P increase 

(Kutiel and Naveh, 1987; Anderson and Menges, 1997). Pools of NH4
+ and NO3

- have been shown to 

rapidly increase immediately following a burn, and decrease throughout the growing season as plant 

assimilation and leaching occurs (Lavoie et al., 2010). Furthermore, herbaceous plants have been shown 

to increase growth and storage following a nutrient flush from ash-soil. Rhizomatal species such as the 

clover, Trifolium sativum, also displayed poor response to available soil nitrogen after a burn (Kutiel and 
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Naveh, 1987). In light of this evidence, available N potentially contributed to growth or storage in S. 

minor and rendered any additional N provided through ants or fertilizer ineffective. 

When plants are deprived of a sufficient supply of external nitrogen, nitrate reserves are rapidly 

drawn down from tissues (Chapin, 1991). Storage and allocation of nutrients to roots supports 

development and growth in perennial plants subjected to poor-resource environments (Chapin et al., 

1990; Chapin, 1991), and diverting resources to defense or storage will cause slow growth (Chapin, 

1991). Butler and Ellison (2007) showed that S. purpurea does not rely on roots for N-acquisition and 

that stored nitrogen in pitchers is translocated to growth in the subsequent growing season (Butler and 

Ellison, 2007). Thus, detection of any treatment effects may also have been limited in this study since 

only a single growing season was measured. Increased foliar content of nitrogen and phosphorous from 

insect prey have also been recorded for Sarracenia spp. (Chapin and Pastor, 1995). However, according 

to the prey-deprivation study by Moran and Moran (1998), nitrogen and phosphorous concentrations in 

root and leaf tissue showed no significant differences in N. rafflesiana; but, foliar reflectance in prey-

deprived plants was significantly higher in the photosynthetically active waveband (608-738nm) and 

reduced at 550nm. Therefore, foliar reflectance may be a more powerful indicator of nutrient stress, 

especially nitrogen, compared to analyses of nutrient concentrations in tissues (Moran and Moran, 

1998). 

Following the burn, majority of pitcher plants in the population consequently produced flowers 

and buds in addition to young and immature, unopened, pitchers. Abrahamson (1984) observed an 

increased flowering response to fire in various Florida plant species such as Aristida stricta, Lilium 

catesbaei, Panicum abscissum and Polygala rugellii, among others. Certain carnivorous plants, such as 

some Drosera spp., depend on fire to flower or will display an increased flowering rate in response to 

burns (Pietropaolo and Pietropaolo, 1996). Frequency, intensity and season of fires are also factors that 

will influence the response and recovery of organisms and ecosystems (Abrahamson, 1984; Knight and 
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Holt, 2005). Late spring/summer fires often result in a flowering response while winter fires cause a 

vegetative response (Abrahamson, 1984). The question whether S. minor flowered after the burn due to 

a temporal cue or nutrient factor, such as stress, is open for debate. In the latter scenario regarding 

nutrient-stress, flowering may have resulted as a survival strategy. Mechanisms which stimulated an 

increased flowering rate by S. minor in the nutrient-deprived group of this study are also speculative due 

to potential influence by prior disturbance and/or nutrient-stress from fire.  

Exposure to various degrees of stress in this study, such as fire, nutrients and herbivory, are 

factors likely related to treatment responses. Greater flowering rate in the nutrient-deprived treatment 

group (Fig. 9, No Ants/No Fertilizer) suggests a stress induced strategy for survival. Hormonal balances 

are altered in response to stressful conditions (Chapin, 1991), and decreased rate of photosynthesis may 

be caused by reduced stomatal conductance in response to nitrogen stress (Chapin, 1991). Many plant 

species can be induced to flower from stress factors such as poor nitrogen and nutrition, drought, 

photoperiod or temperature in order to produce seeds to increase chances of survival (Kolář and 

Seňková, 2008; Wada and Takeno, 2010). For instance, drought is known to promote flowering in Citrus 

spp. (Monselise, 1985) and both drought and salinity accelerate flowering in the desert species 

Mesembryanthemum crystallinum (Adams et al., 1998). Arabidopsis thaliana also displayed an early and 

increased flowering rate due to nutrient reduction (Kolář and Seňková, 2008). Aside from nutrient-

stress, induced flowering from disturbances such as burns must not be overlooked since many species 

display greater flowering rates directly related to fire (Abrahamson, 1984; Pietropaolo and Pietropaolo, 

1996). Control plants also displayed a relatively high rate of flowering, which does not necessarily 

indicate good health, but may imply that plants were subjected to stress from insufficient nutrients or 

fire. Results of S. minor flowering are supported by the aforementioned evidence which indicates that 

plants produced more flowers due to stress. 
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Herbivory on S. minor pitchers was caused by both Exyra semicrocea caterpillars and 

orthopterans. Herbivory by E. semicrocea caterpillars eventually causes pitcher senescence and was 

observed as brown epidermal galleries on plant tissue caused by consumption from inside the pitcher 

(Moon et al., 2008). Herbivory from orthopterans was obvious as tissue damage to pitcher tubes and 

keels. Control plants showed the greatest number of galleries per tallest pitcher (Fig. 15) along with the 

greatest mean height, keel width and mouth diameter (Table 2). Moon et al. (2008) also observed a 

positive correlation between herbivory and tallest pitchers of S. minor. Thus, increased herbivory on 

control pitchers is probably accredited to their larger size which designates them as larger targets for E. 

semicrocea. Furthermore, as herbivory increased the growth and flowering rates of S. minor decreased 

(Moon et al., 2008). In contrast, this study showed that treatments with relatively greater levels of 

herbivory, particularly number of galleries per tallest pitchers, displayed an increased flowering rate. 

Herbivory is also directly influenced by plant tissue quality. Foliar nutrient concentrations, especially 

nitrogen, are a driving force of insect parasitism such as galling (Stiling and Rossi, 1996; Stiling and Rossi, 

1997; Rossi and Stiling, 1998; Moon et al., 2000). Therefore, herbivory on S. minor pitchers, which are N 

sinks, may be a stress factor partly responsible for slow growth or flowering rate. Although difficult to 

determine from this study, foliar nitrogen of nutrient-deprived and control groups possibly increased, 

along with flower production, as a means to enhance carnivory expression and increase chances of 

survival. In this case, increased flowering rate may have also occurred from stress caused by a 

combination of nutrient-deficiency and herbivory.           

Slow growth and low rates of photosynthesis, in addition to low nutrient uptake capacity, are 

characteristic of plants in low-resource habitats (Chapin 1980; Grime 1977; Parsons 1968) even when 

supplied with optimal resources (Chapin, 1991). Results from this study are consistent with previous 

research on S. purpurea which showed no treatment effect of prey addition on morphological and 

growth characteristics (Wakefield et al., 2005). Furthermore, the use of fertilizer on Sarracenia spp. is 
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superfluous for survival and growth (Romanowski, 2002; Butler and Ellison, 2007). Increased flowering 

rate in the No Ants/No Fertilizer treatment group also denotes nutrient stress. Disturbances from the 

mow and burn at the beginning of this study are suspected to be major factors that impacted S. minor 

growth and fitness responses. Energy allocation and storage were conceivably influenced by stress and 

alteration of the available nutrient pools. In conclusion, S. minor displays resistance and poor response 

to nitrogen addition, and would serve as an ineffective species indicator of N-deposition.  

Further investigation of soil and inquiline nutrient dynamics, as well as long-term monitoring 

over consecutive growing seasons, may provide insight towards pitcher plant performance and 

conservation plans. Measuring effects of various levels of disturbance and stress on carnivorous plants 

could also help disseminate strategies used for energy storage and allocation. Greenhouse experiments 

that control ambient soil nutrients and genotypes would also be worthwhile endeavors to help identify 

mechanisms responsible for growth and fitness patterns.        
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APPENDIX I: TABLES 

Table 1: Mean ± SEM of nitrogen content (%) of fire ants (Solenopsis 
invicta). Final mean of replicates equals 10.4%. 

  Group 1 Group 2 Group 3 Group 4 
Fire Ant            

N Content 
(%)  

10.52 ± .055 11.25 ± .045 10.14 ± .275 9.55 ± .570 
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Table 2: Mean ± SEM of morphological characteristics of S. minor. Parameters were analyzed using a one-way ANOVA, except for number 
of flowers which was analyzed using a χ2-test (see text for details). 

Treatment 

Number 
of 

Pitchers 

Number 
of 

Phyllodia 

Number 
of 

Flowers 

Pitcher 
Height   
(mm) 

Pitcher Width 
(mm) 

Keel Width 
(mm) 

Mouth 
Diameter 

(mm) 

+ Ants 7.0 ± 1.47 1.6 ± .41 3e-2 ± .02 176.9 ± 8.08 11.800 ± .8812 13.620 ± .6713 8.652 ± .7240 
+ Fertilizer 6.4 ± 1.02 1.1 ± .25 5e-2 ± .02 169.4 ± 10.19 12.355 ± 1.0881 12.384 ± .7553 9.215 ± .6926 

+ Ants/+ Fertilizer 7.2 ± 1.65 1.3 ± .34 3e-2 ± .02 173.2 ± 8.58 12.601 ± 1.0173 13.050 ± 1.1516 9.634 ± .7061 
No Ants/No Fertilizer 7.9 ± 1.28 1.4 ± .24 .1 ± .04 175.0 ± 9.92 12.893 ± 1.1240 12.191 ± .7264 9.956 ± .9429 

Control  5.9 ± .80 1.3 ± .27 .1 ± .04 186.2 ± 14.54 13.451 ± .7315 13.941 ± .7701 9.560 ± .4030 
 

 

 

 

 
 



 

 

APPENDIX II: FIGURES 

 

Figure 1: Morphology of the hooded pitcher plant, Sarracenia minor. Note photosynthetic phyllode and 
keel. 
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Figure 2: Photosynthetic phyllode produced by S. minor. 
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Figure 3: Pitcher plant zones: Zone 1 = hood region with directional hairs and fenestrations; Zone 2 = lip, 
mouth and neck region with nectar glands; Zone 3 = waxy region with enzyme glands; Zone 4 = fluid 
filled digestive region with downward pointing hairs. 
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Figure 4: McGirt’s Creek research site after the accidental fire on March 2, 2012. 
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Figure 5: Sarracenia minor pitchers plugged with cotton to control ambient prey capture. 
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Figure 6: Linear regression of fire ant, S. invicta, quantity vs. mass (mg) (y = .359x - .385, r = .950).  
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Figure 7: Percent change between the minimum and maximum number of pitchers per ramet. 
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Figure 8: Number of new phyllodia produced per ramet. 
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Figure 9: Number of flowers produced per ramet. 
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Figure 10: Percent change between the minimum and maximum pitcher height (mm). 
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Figure 11: Percent change between the minimum and maximum pitcher width (mm). 
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Figure 12: Percent change between the minimum and maximum keel width (mm). 
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Figure 13: Percent change between the minimum and maximum mouth diameter (mm). 
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Figure 14: Number of pitchers with E. semicrocea galleries per ramet. 
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Figure 15: Number of E. semicrocea galleries per tallest pitcher per ramet. 
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Figure 16: Solenopsis invicta patrolling pitcher and flower. Also note S. invicta mound built at the base of 
the S. minor ramet.  
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