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ABSTRACT  

Previous nutritional physiology research using L-histidine and zinc in American 

lobster intestine (Homarus americanus) has suggested that these solutes can be co-

transported as complexes (Histidine-Zinc-Histidine) across the intestine using a peptide 

transporter.  Furthermore, transport of L-leucine was shown to be inhibited by high 

calcium concentrations.  Dipeptide and bis-complex transport and the role of calcium 

were investigated in the perfused intestines of lobster and Atlantic white shrimp 

(Litopenaeus setiferus).  Following trans-intestinal transport, serosal medium was 

analyzed for amino acid composition by gas chromatography.  In lobster, the transport 

of glycylsarcosine (Gly-Sar) from mucosa to serosa was stimulated two-fold with luminal 

pH 8.5, compared to the pH 5.5 control.  Mucosa to serosa and serosa to mucosa fluxes 

of Gly-Sar were measured; the dipeptide was transported intact in both directions, but 

the net flux was from mucosa to serosa.  The use of 0.5mM calcium chloride stimulated 

Gly-Sar transport two-fold, compared to 25 mM.  In shrimp, the addition of 50 µM zinc 

chloride increased the rate of L-histidine transport, while Gly-Sar inhibited histidine 

transport in the presence of zinc.  The rate of histidine transport was significantly higher 

with 1mM calcium chloride than with 25mM.  These results suggest that shrimp 

transport bis-complexes in a manner similar to lobster.  High calcium concentration had 

an inhibitory effect on both amino acid and dipeptide transport.  Proposed mechanisms 

accounting for the effects of metals and calcium on trans-intestinal transports of both 

amino acids and dipeptides by lobster and shrimp digestive tracts are discussed. 



 
 

INTRODUCTION 

Aquaculture Practices 

Aquaculture is expected to play an important role in the near future as the global 

population expands and the demand for high quality, rapidly produced protein 

increases.  In fact, the production of domestic seafood has increased steadily since the 

1980s, with a current estimated output of 500,000 metric tons at harvest per year, 

valued close to $1 billion (Nash, 2004).  Aquaculture is considered one of the fastest-

growing global food industries; accordingly, the US Department of Commerce has an 

updated aquaculture policy which includes the intent to increase domestic production 

by a factor of five by the year 2025 (Nash, 2004).  Farmed shrimp are of particular 

interest because they can be grown and harvested within a year and the majority of the 

animal is edible.  However, the profit margin for farming shrimp can be low due largely 

to costs from loss of animals to disease, the low efficiency of weight gain from feed and 

environmental regulation of tank wastewater (Martínez-Porchas et al., 2010).  Feed 

production and formulation is an important area of research in the aquaculture industry 

in order to improve the efficiency of nutrient conversion to body mass. 

 The production of farmed shrimp, as well as other fish and crustacean species 

such as lobster, has relied on the use of commercially produced feed that is formulated 

mainly from fish meal and fish oil (Rust et al., 2011).  This type of feeding method is 

convenient because fish meal contains essential nutrients in optimal proportions and is 

easily digestible (Rust et al., 2011).  However, it is becoming progressively more 
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expensive to continue to catch and process fish for fish meal because population sizes 

are decreasing and the cost of fuel for fishing boats is increasing (Rust et al., 2011).  

Several US organizations, including the National Oceanic and Atmospheric 

Administration and the US Department of Agriculture, are promoting research into 

alternate sources of protein for use in feed, such as soybeans, green peas, or algae 

(Terova et al., 2013).  While many plants contain enough protein for sustaining shrimp 

and other species, they do not contain all of the essential micronutrients needed and 

may not have specific essential amino acids in the appropriate concentrations (Rust et 

al., 2011).  The information learned from the present study will be used to help 

elucidate which additives could be used in commercial feed to increase amino acid and 

peptide uptake, thereby increasing nutrient absorption and the efficiency of body mass 

gain.  Incorporating this knowledge into feed formulation could significantly reduce the 

overhead costs of aquaculture, which would aid in expanding the domestic production 

of farmed shrimp and encourage the limited lobster aquaculture business (Factor, 

1995). 

In addition to feed, crustacean growth is also affected by water quality.  It has 

been reported that shrimp can survive in near freshwater conditions; however, salinities 

that are at least 50% of that of seawater are preferred by juveniles as this approximates 

natural estuarine conditions (Jacoby, 2012).  Lobsters do not have such a wide range of 

water quality tolerance and must be maintained in oxygenated, 32-35 ppt saltwater 

(Factor, 1995).  The water quality for farmed species depends on the water source, as 

well as any treatment processes used by the facility.  Current aquaculture practices, for 
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shrimp in particular, make use of large raceways that provide a constant flow of water 

from nearby sources (Martínez-Porchas et al., 2010).  By determining the ideal water 

quality for growth, farms can be established where existing well or surface water meets 

these requirements, or can be easily treated to create ideal water conditions. 

Calcium mainly functions as a structural component in crustacean exoskeletons, 

and is necessary for nerve impulse transmission and osmoregulation (National Research 

Council, 1993).  Earlier studies have determined the optimal levels of particular dietary 

minerals and established the requirements for calcium to be 1-2 g per 100 g diet for 

Penaeid shrimp.  However, most calcium can be absorbed through drinking, as long as 

mineral sources are soluble at the same pH as that of the intestinal lumen, or by direct 

absorption through gills or skin (Davis and Gatlin, 1996).  Studies in lobster (Homarus 

americanus) have found that a small calcium to phosphorous ratio (0.56 : 1.10) is ideal 

during the juvenile stage, while a ratio above 1:1 is desirable for adults (Factor, 1995).  It 

has been recommended that calcium in particular should be limited in prepared feeds, 

due to its deleterious effects when interacting with other nutrients, such as phosphorus 

and magnesium (Davis and Gatlin, 1996).   In addition, recent work in the Department of 

Biology at the University of North Florida has shown that calcium has an inhibitory effect 

on amino acid transport in lobster intestine, though the exact mechanism is unknown 

(Abdel-Malak and Ahearn, 2014).  The effects of calcium, sulfate, and zinc on nutrient 

transport will be investigated here to provide further information about optimizing 

crustacean growth. 
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Nutrient Transport 

 Amino acids are vital nutrients, some of which are only acquired in the diet.  

They are typically absorbed by cells and used to manufacture new proteins, but they 

also have several non-protein functions.  For instance, certain amino acids can be used 

in gluconeogenesis as a source of energy, while other amino acids function as 

neurotransmitters.  Therefore, the study of amino acid absorption by the 

gastrointestinal tract is necessary for ensuring the health of many farm-raised animals.  

In both shrimp and lobster, the hepatopancreas is the major organ of digestion, where 

enzymes are produced and absorption of sugars and amino acids occurs after passage of 

digested food materials from the cardiac and pyloric stomachs (Mantel, 1983).  

However, the anterior part of the intestine also contains a dense lining of columnar 

epithelial cells with microvilli borders, suggesting absorptive functions (Mantel, 1983).  

This histological relevance to nutrient absorption has been confirmed by many studies 

examining the kinetics of nutrient transport in lobster and shrimp intestines (Ahearn 

1976, Ahearn and Maginniss, 1976; Brick and Ahearn, 1978; Conrad and Ahearn, 2005, 

Abdel-Malak and Ahearn, 2014). 

As large molecules that may either be charged or neutral, amino acids must be 

transported across the plasma membrane of intestinal epithelial cells via transport 

proteins (Figure 1).  These proteins typically co-transport amino acids and sodium ions 

into the cell using the ATP-powered sodium-potassium pump located on the basolateral 

side which results in the movement of sodium down its concentration gradient, thus 
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pulling the amino acid into the cell (Bröer, 2008).  The amino acids can then exit the cell 

on the basolateral side by facilitated diffusion through another transmembrane protein, 

since the concentrations of amino acids are greater inside the cell than in the blood 

(Bröer, 2008).  The absorption of amino acids has been extensively studied in mammals 

and the pathways for their transport from the lumen to the blood have been 

characterized (Bröer, 2008).  However, amino acid transport in crustaceans has yet to be 

fully understood.  Previous studies have looked at the mechanisms involving one or two 

amino acids and many ions, including H+, Na+, K+, Ca+2, Cu+2, and Zn+2 (Conrad and 

Ahearn, 2005; Glover and Wood, 2008; Daniel and Kottra, 2004).  
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Figure 1. Transport of amino acids and peptides in small intestine epithelial cells.  On the 
apical membrane, peptides are cotransported with protons into the cell via PepT1.  
These protons are supplied by a sodium-proton exchanger (NHE) on the apical 
membrane, not pictured here.  Amino acids are cotransported with sodium by 
transporters on the apical membrane (Bo) and by antiport with sodium-independent 
processes (bo,+).  They exit the cell by antiport with sodium ions (y+L) or by facilitated 
diffusion down their concentration gradients (L,T, LAT2).  The amount of sodium in the 
cell is maintained by the sodium-potassium ATPase pump, which provides the driving 
force for apical transport.  Source: Chillarón et al., 2010. 

 

It has been recently found that some amino acids can be moved across intestinal 

epithelia using metals as co-transporters (Conrad and Ahearn, 2005; Glover and Wood, 

2008; Obi et al., 2011; Abdel-Malak and Ahearn, 2014).  It is thought that two amino 

acids combine with a metal to form a bis-complex (e.g., Histidine-Zinc-Histidine) which is 

then taken up by a dipeptide transporter similar to PepT-1 (Conrad and Ahearn, 2005).  

This proton-oligopeptide transport system (PepT-like) requires a proton gradient to 
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function (Figure 1).  In mammals, protons are supplied by the apical sodium-proton 

exchanger (NHE), which are cotransported across the apical membrane with di- and tri-

peptides (Watanabe et al., 2005).  Researchers proposed that the dipeptide transporter 

was in use because transport was increased when a proton gradient was present and 

when zinc and L-histidine were present together in the lumen, but decreased when a 

competing dipeptide was added (Conrad and Ahearn, 2005).  Analysis with other amino 

acid-ion combinations, including L-histidine and copper, showed a similar pattern 

(Glover and Wood, 2008).  Their research suggested that under conditions where an 

excess of histidine is available for uptake, as is common in commercial fish pellets, more 

histidine could be transported when chelated with copper since this would increase the 

number of pathways for histidine to be absorbed (Glover and Wood, 2008). 

The goals of the present study will be to determine if a similar transport pathway 

is present in shrimp, and if they also have the ability to transport amino acids in a bis-

complex formation through potential PepT-like transporters, as has been suggested in 

lobster and trout (Conrad and Ahearn, 2005; Glover and Wood, 2008; Abdel-Malak and 

Ahearn, 2014).  This will be accomplished by analyzing the effect of zinc on amino acid 

transport.  Since shrimp are crustaceans and have similar digestive physiology, it is 

thought that their nutrient uptake pathways will be comparable to those found in 

lobster, and therefore results found in this study may be applicable to both species.  

One key difference in this study will be the use of a neutral dipeptide, glycylsarcosine.  

This dipeptide has been used extensively to characterize transporters through 

competitive interactions along the luminal brush border membrane (Daniel and Kottra, 
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2004).  However, few studies have examined transport through the basolateral 

membrane.  One recent study analyzed the uptake of glycylsarcosine from the 

basolateral side of the epithelium in human Caco-2 cells, and found it to be pH-

dependent (Bethelsen et al., 2013).  This is significant because it shows the ability of 

epithelia to transport small peptides from the blood to epithelial cytosol.  It also gives a 

cellular mechanism whereby small peptides can be transported intact across an 

epithelium without first being broken down into their constituent amino acids.  

Transepithelial transport of glycylsarcosine will be investigated here to give further 

evidence for the basolateral transport of small peptides, which has had limited study 

thus far.  This information could be used in feed formulations, since small peptides could 

be incorporated instead of pure amino acids, which may result in more efficient nutrient 

uptake and lower cost feed. 

Hypotheses 

Hypothesis 1:  Amino acids will form a bis-complex with zinc ions and will be taken up by 

a putative dipeptide-like transporter. 

The ability of amino acids, specifically L-histidine and L-leucine, to combine with metal 

ions, including zinc and copper, has been previously tested by sequentially perfusing a 

series of treatments through the intestine (Conrad and Ahearn, 2005; Glover and Wood, 

2008; Obi et al., 2011).  The first treatment had amino acids, the second treatment had 

the same concentration of amino acids plus a metal, and the third treatment had amino 

acids, metal, and a potential competitive inhibitor, such as a dipeptide.  It has been 
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shown in lobster and trout (Conrad and Ahearn, 2005; Glover and Wood, 2008; Abdel-

Malak and Ahearn, 2014) that L-histidine and L-leucine are transported at a higher rate 

when metal is added, and are inhibited by the addition of a dipeptide.  These 

experiments will be duplicated with shrimp intestine to give evidence for the existence 

of the same transport system in these closely related crustaceans. 

Hypothesis 2: Glycylsarcosine will be transported across the basolateral membrane 

intact. 

Much previous work has focused on the apical, or brush-border, transport of peptides 

and amino acids, and the transporters have been well characterized (Bröer, 2002; Daniel 

and Kottra, 2004).  Less emphasis has been placed on transporters on the basolateral 

side, where these nutrients exit the cell and enter the blood stream.  Additional 

experiments will be performed to demonstrate the movement of a neutral dipeptide, 

glycylsarcosine, across the basolateral membrane.  It is as yet unclear in invertebrates 

whether dipeptides are completely broken down enzymatically within the cell prior to 

transport, though there is evidence for basolateral transporters of small peptides in 

vertebrates (Dyer et al., 1990; Shepherd et al., 2002; Rønnestad et al., 2010; Bethelsen 

et al., 2013). 

Hypothesis 3:  Amino acid and dipeptide transport will be stimulated or inhibited by 

changes in luminal pH. 

Many previous experiments have shown that a luminal pH lower than that of the bath, 

or outer pH, stimulates the transport of L-histidine or L-leucine (Conrad and Ahearn, 
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2005; Simmons et al., 2012; Watanabe et al., 2005).  This effect will be studied by using 

saline with the same pH on both side of the intestine and by altering the pH of the 

luminal saline to reflect physiological conditions.  Recent work has shown zebrafish 

(Danio rerio) to have more efficient transport at higher pH, and enzymes such as trypsin 

from lobster function best at either pH 6 or 8 (Factor, 1995; Romano et al., 2013).  It is 

possible that lobster and shrimp, which live in an alkaline environment, may transport 

amino acids and dipeptides more effectively at a higher pH than previously thought. 

Hypothesis 4: Water quality will stimulate or inhibit amino acid and dipeptide transport. 

Information about the dietary mineral requirements of crustaceans shows that calcium 

is unnecessary for supplementation, since it can be absorbed from the water (Davis and 

Gatlin, 1996).  Calcium concentration will be examined by testing higher and lower 

concentrations and observing their effect on amino acid, bis-complex, and dipeptide 

transport.  Previous work has shown that calcium may have an inhibitory effect on 

transport, when present in sufficient amounts to block bis-complex formation with 

dietary metals, such as manganese (Abdel-Malak and Ahearn, 2014).  In certain shrimp 

farms, high levels of calcium and sulfate are found in the water due to their well source 

in limestone bedrock.  Experiments using varying levels of calcium and sulfate in the 

perfusate and bath saline will investigate the role of these minerals in amino acid and 

dipeptide transport, and a potential optimum balance will be suggested. 
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MATERIALS AND METHODS 

Materials 

 Live male and female Atlantic white shrimp (Litopenaeus setiferus) of 

approximately 15 g (± 5 g) each and live male lobsters (Homarus americanus) were 

purchased from local sellers.  Shrimp were wild-caught in the St. Johns River near 

Mayport, FL, while lobsters were wild-caught off the Atlantic coast near Massachusetts.  

Shrimp were maintained in fresh, oxygenated river water at 20°C for up to three days 

until used for experimental purposes.  Since they were maintained without feeding, to 

lessen waste accumulation, one to two shrimp were lost daily prior to experimental use.  

Lobsters were maintained in a saltwater aquarium at 10°C with a pH of 8.2.  Lobsters 

were kept up to four days until used in experiments.  Both shrimp and lobster were 

dissected by cutting the ventral nerve cord, then cutting the carapace to expose the 

intestine once the animals’ heart had stopped (Figure 2). 

Physiological saline was prepared to match the osmolarity and make-up of 

crustacean hemolymph.  The salt concentrations used in the buffer were as follows: 420 

mM sodium chloride, 25 mM calcium chloride, 10 mM potassium chloride, 8.4 mM 

sodium sulfate, and 30 mM HEPES for a final adjusted pH of 7.0 or 8.5.  When the 

adjusted pH was 5.5, 30 mM MES was used instead of HEPES.  In all preliminary 

experiments, the perfusion chamber buffer was pH 7.0 and the perfusate buffer was pH 

5.5, resulting in a proton gradient from lumen to bath.  Adjustments to the physiological 

saline were made in later experiments, with lower concentrations of calcium chloride, 
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higher concentrations of sodium sulfate, and a higher pH perfusate, as designated in the 

results section. 

Intestinal Perfusion Technique 

 In vitro transmural mucosal to serosal transport of L-histidine, L-leucine, L-

isoleucine, L-methionine, L-phenylalanine, L-threonine, L-tryptophan, L-lysine, L-valine, 

and glycylsarcosine were studied using a perfusion apparatus as described previously 

(Ahearn and Maginniss, 1977).  Isolated, intact intestine was flushed with buffered 

saline solution and mounted onto 18 or 22 gauge blunted stainless steel needles, for 

lobster and shrimp respectively.  Surgical thread was used to secure both ends to the 

needles (Figure 3). 

 

Figure 2. A dissected shrimp with intestine exposed on the dorsal side, shown between 
bracketed lines.  Anterior (Ant.) and posterior (Post.) ends of shrimp identified.  Photo 
taken at the University of North Florida, M. Peterson, 2012. 
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The perfusion chamber was filled with 35 mL of physiological saline, which 

served as the serosal medium for the duration of the experiment.  The diameter and 

length of the intestine was measured and used in calculating its surface area with the 

equation SA=πld, where “SA” equals the calculated surface area in cm2, “l” equals the 

length and “d” equals the diameter of the intestine in cm.  Experimental perfusate made 

with physiological saline was perfused through the intestine as the mucosal medium 

using a peristaltic pump (Insteach Laboratories, Inc., Plymouth Meeting, PA, US) at a 

rate of 0.30 mL min-1 for shrimp or 0.38 ml min-1 for lobster for up to 240 minutes.  

Various concentrations of amino acids, zinc chloride, calcium chloride, sodium sulfate, 

and glycylsarcosine were added to the saline perfusate as needed for each experiment.  

All experiments were conducted at room temperature with the bath saline mixed by 

pipette every 15 minutes.  Triplicate 200 µL samples were removed from the bath at set 

time points relative to the starting time, such that each experimental treatment was 

perfused for 60 minutes prior to samples being removed.  For instance, samples would 

be taken 60 minutes after the start of the first treatment perfusion; the second 

treatment would begin and samples would be taken after 60 additional minutes, and so 

forth.  Samples were placed in labeled microcentrifuge tubes, capped, and stored at 0°C 

until analysis by gas chromatography (GC).  An equal amount of physiological saline was 

added to the bath after removing samples to maintain a constant bath volume of 35 mL. 

 A similar procedure was followed when measuring the in vitro transmural serosal 

to mucosal transport of glycylsarcosine in lobster intestine.  Experiments were 

conducted by adding glycylsarcosine and zinc chloride and/or L-leucine to the bath 
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saline.  Physiological saline was perfused through the intestine and various experimental 

treatments were added to the bath after each hour.  Triplicate 200 µL samples were 

removed from the collected perfusate exiting the intestine after each experimental 

treatment.  Since the perfusate effluent accumulated over the duration of the 

experiment, the total volume of the effluent was measured when samples were taken 

and used in calculations of glycylsarcosine concentrations during sample analysis. 

 

 

Figure 3. Perfusion apparatus used to measure transepithelial transport of amino acids 

and dipeptides.  The perfusate solution (A) represents the mucosal medium inside the 

intestine, which was pumped via the peristaltic pump (B) through the shrimp intestine 

(I).  The intestine was suspended within the perfusion bath chamber (C) containing 

serosal medium.  Samples of the bath saline were removed and analyzed by gas 

chromatography.  Photo taken at the University of North Florida, M. Peterson, 2012. 
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Data Analysis – Gas Chromatography 

Once perfusion was complete, samples were prepared for analysis using the 

EZ:faast ™ GC-FID Free (Physiological) Amino Acid Analysis Kit (Phenomenex Inc., 

Torrance, CA, US).  Briefly, this kit allows the user to extract amino acids from biological 

samples, including serum, plasma, and urine.  The amino acids are separated from 

interfering compounds, which are discarded, then derivatized using propyl 

chloroformate.  This reaction yields volatile derivatives of the amino acids, which may 

then be vaporized in the GC and separated based on the molecule’s size and reaction 

with the inside of the column.  As the molecules pass out of the column and into the 

flame ionization detector (FID), the hydrogen and air flame combusts the sample and 

produces positive and negative ions.  The negative ions are attracted by a collector 

electrode, which produces an analog signal, called a chromatogram, which displays ion 

abundance (pA) versus retention time (Figure 4). 
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Figure 4.  Separation of amino acid mixture (A) before transport and (B) after transport 
through the shrimp intestine.  The vertical scale for (B) is decreased by ¼ for clarity.  
Eight amino acids are shown clearly separated by GC-FID with retention times conserved 
from sample to sample. 

B 

A 
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Amino acid standards dissolved in saline were prepared for each experiment by 

diluting the experimental perfusate to the desired concentration in fresh saline.  A 

typical experimental perfusate contained three amino acids, each at 10 mM.  The most 

often used standard concentrations were 50 µM, 200 µM, and 500 µM because bath 

sample concentrations regularly fell within this range.  Samples of the experimental 

perfusate (200 µL) and each of the three standards were placed in labeled 

microcentrifuge tubes, capped, and stored at 0°C until analysis.  These samples were 

derivatized and analyzed by an HP Agilent 6890 series GC-FID system at the same time 

as the experimental samples (Agilent Technologies, Inc., Santa Clara, CA, US).  The 

standard curve preparation allowed for “known” and “unknown” samples to be run 

concurrently and was used in determining amino acid concentrations in the “unknown” 

samples, to ensure the derivatization procedure was successful and to account for any 

minor alterations in experimental analysis. 

Analyte signals were identified through the derivatization of pure standards 

provided with the EZ:faast™ kit as well as sample chromatograms that showed relative 

retention times for many amino acids (Phenomenex Inc., Torrance, CA, US).  The 

numerical output from the GC was used to determine the bath sample concentrations 

using a standard curve generated by the analysis of saline standards prepared during 

every perfusion experiment.  To calculate the sample concentrations, the area under the 

signal for the analyte of interest was divided by the area under the signal for the 

provided internal standard, norvaline.  These ratios were plotted versus the known 

concentrations of the standard solutions.  By performing a linear regression between 
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the three known concentrations, the given linear equation was used to calculate the 

concentration of the “unknown” bath samples.  The bath volume and intestine surface 

area were used in further calculations to quantify the amount of transport of each 

amino acid, measured in nmol cm-2. 

The transport rate of amino acids and glycylsarcosine were calculated by linear 

regression by plotting the amount of analyte in nmol cm-2 versus time.  The slope of the 

linear regression line was equal to the transport rate of that analyte over the treatment 

period.  These rates were displayed as histograms by plotting transport rate in nmolcm-2 

min -1 versus experimental treatment.  Each experiment was conducted at least three 

times using intestines from different animals and freshly prepared experimental 

treatments.  All values shown are means ± SEM.  Statistical differences between means 

were calculated using two-tailed Student’s t-test and paired Student’s t-test with 

Bonferroni correction factor using Microsoft Excel and SPSS (IBM Corporation, Armonk, 

NY).  Family-wise significant difference was established at p < 0.05.  With the correction 

factor, p (or α) was divided by the number of treatments (3) to reach a corrected p < 

0.02 for significant difference. 

Data Analysis – Liquid Scintillation Counting 

To assess the kinetics of leucine transmural mucosal to serosal transport in 

shrimp intestine, radiolabeled 3H- leucine (American Radiolabeled Chemicals, Inc., Saint 

Louis, MO) was used in conjunction with experimental treatments and measured by a 

Beckman LS6500 scintillation counter.  For these experiments, 5 µL of 3H-leucine was 
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added to 25 mL perfusate solutions containing varying concentrations of leucine, from 

2.5 µM up to 600 µM.  Triplicate 200 µL initial samples of the bath were taken to 

measure initial radioactivity levels, given as counts per minute (cpm).  The total amount 

of radioactivity in the perfusate treatment was determined by taking a 200 µL positive 

control sample from each prepared treatment prior to perfusion through the intestine.  

Triplicate 200 µL samples from the bath were taken every 5 minutes and were replaced 

by an equal volume of unlabeled bath saline to maintain constant volume.  All samples 

were placed in a 7 mL tube containing 3 mL of scintillation cocktail. 

To calculate radioactivity, the average of three initial background counts were 

subtracted from each sample.  The concentration of leucine in picomoles was 

determined by dividing the counts per minute by the specific activity for each 

experimental treatment as generated by the positive control samples.  The bath volume 

and surface area of the intestine were taken into account to give pmol cm-2.  The 

averages of the triplicate samples for each time point were plotted, and the slope 

generated by linear regression was used to find the transmural flux rate expressed in 

pmol cm-2 min-1.  These slopes were plotted versus treatment leucine concentration in 

µM to determine the kinetic constants using Sigma Plot 10.0 software (Systat Software, 

Inc., Point Richmond, CA, US).  Each experiment was conducted at least three times 

using intestines from different shrimp and freshly prepared experimental treatments.  

All values shown are means ± SEM. 
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Method Development 

Analysis by gas chromatography was a novel technique used here to quantify 

amino acid concentrations for many amino acids in the same sample.  Previous work has 

made use of radiolabeled amino acids and sugars; the major limitation of this method is 

the inability to analyze more than one or two amino acids in the sample.  Multiple initial 

experiments were conducted to optimize this new technique.  Additionally, the 

intestinal perfusion of shrimp had only been previously attempted in Melicertus 

(previously Penaeus) marginatus and Macrobrachium rosenbergii, both much larger 

species on average than the Atlantic white shrimp used in this study (Ahearn and 

Maginniss, 1977).  The flow rate of the experimental perfusate through the intestine 

needed to be modified for the shrimp intestine, which has a mean surface area ten 

times smaller than that of the lobster.  It was found that a flow rate of 0.3 mL min-1 

produced a linear accumulation of the three amino acids tested, L-leucine, L-

methionine, and L-histidine, in the bath over a period of 3.5 hours, whereas a higher 

flow rate (0.38 mL min-1) resulted in an exponential increase, signifying possible tissue 

damage and paracellular amino acid movement (Figures 5 and 6).  In addition, the 

perfusion chamber required modifications from previous use with lobster that included 

changing the needle size to a much smaller bore (22 gauge instead of 18 gauge) to 

accommodate the smaller intestinal diameter of the shrimp, which was 0.15 mm on 

average.  
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Figure 5.  Accumulation of three amino acids, each 10 mM, with perfusate flow rate 
changed each hour from 0.25 mL min-1 after the first 60 min to 0.3 mL min-1 for 60 to 
120 min, to 0.38 mL min-1 for 120 to 180 min.  The last hour of perfusion demonstrates 
the exponential increase in amino acid concentration, possibly due to tissue damage 
and paracellular trasport.  A flow rate of 0.3 mL min-1 was used in all subsequent 
experiments due to its linearity.  Data represents average of two shrimp intestines with 
error bars representing ± SEM. 

 

 

 

 

 

Figure 6. Transport of three amino acids at a perfusate flow rate of 0.3 mL min-1 for 
three hours, showing linear transport when using the lower flow rate as compared to 
0.38 mL min-1 as seen in Figure 5.  Data points represent the average from three shrimp 
intestines ± SEM.  Linear regression equations shown are for L-histidine (upper) and L-
methionine (lower).  The slope of these lines gives the rate of amino acid transport, in 
nmol cm-2 min-1. L-methionine and L-leucine data points are similar enough that they 
overlap. 
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Preliminary experiments also included a constant perfusion of a mixture of 9 

amino acids, each at 10 mM concentration, over a 3.5 hour period (Figure 7).  This not 

only demonstrated the consistent measurement of a complex mixture by GC-FID, it also 

gave an expected amount of accumulation over time for each amino acid.  The amino 

acids chosen were essential for shrimp, meaning they cannot be synthesized de novo.  It 

was found that the GC-FID EZ:faast kit (Phenomenex, Inc., Torrance, CA, US) could not 

measure L-arginine, the tenth essential amino acid, so L-arginine was excluded from 

further experimentation.  It was also found that L-threonine does not always appear in 

the bath in concentrations sufficient for measurement by GC-FID. 

  

Figure 7.  The accumulation of 9 essential amino acids over time.  Shown is the transport 
(nmol cm-2) of nine amino acids as measured in the perfusion bath chamber: 30 
minutes, 90 minutes, 150 minutes, and 210 minutes after the start of perfusing a 10 mM 
mixture at 0.3 mL min-1 through the shrimp intestine. 
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  It is of interest to note that there appears to be a distinct grouping of amino 

acid transport (Figure 7).  Lysine, tryptophan, histidine, and phenylalanine are 

consistently transported by the shrimp intestine at a higher rate than leucine, valine, 

isoleucine, methionine, and threonine.  There are a few possible explanations for this 

behavior.  Firstly, these four amino acids could be more completely ionized by GC-FID 

and therefore would appear to have a higher final concentration at all time points.  GC-

FID gives an output based on how well different molecules burn; the larger amino acids 

and those with more nitrogen could be ionizing better than the smaller amino acids. 

In addition, it was found that perfusate concentrations of 10 mM were necessary 

to ensure adequate concentrations of amino acids in the bath.  This is problematic for 

future work if kinetic constants are being determined, since these values are typically 

found in the micromolar range.  Testing was done to see if large bath samples could be 

taken and concentrated in the event that micromolar perfusate treatments were 

desired.  However, sample concentration using solid phase extraction of amino acids in 

conjunction with lyophilization of saline samples and reconstitution in smaller volumes 

of distilled water proved to be inadequate for detection by GC-FID and highly variable 

(Figure 8).  The tested samples had an initial volume of 1 mL, 2 mL, or 3.5 mL and either 

50% or 100% salinity.  Lyophilization and reconstitution in 100 µL deionized water 

should have given 1 mM concentrations for each amino acid, as the same moles of 

amino acids were added to each initial saline sample.  Future work using this method 

will either need to use high micromolar or low millimolar concentrations of amino acids 

or an alternative technique for sample concentration prior to analysis.  As shown, only 3 
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samples that were extracted via solid phase extraction, lyophilized, and reconstituted 

had higher than 50% recovery of amino acids (Figure 8).  In addition to low recovery, 

there was a high degree of variation between samples. 

 

 

 

 

Figure 8.  Amino acid recovery using various initial samples with solid-phase extraction 
and lyophilization.  All solutions began with 200 µmoles L-leucine, L-methionine, and L-
histidine.  After sample concentration by lyophylization and reconstitution in 200 µL 
distilled water, estimated amino acid concentration was 1000 µM for all samples with 
100% recovery, except the control, which used normal sample preparation methods not 
involving lyophylization.  As seen, recovery was much lower than expected, typically 
50% or less for all volumes and salinity concentrations for all three amino acids.  Bars 
represent the mean of two pseudoreplicate samples with error bars representing ± SEM.  
Means without error bars indicate that one sample was below the limit of detection for 
gas chromatography.  
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RESULTS 

Transport Experiments Using Lobster Intestine 

Initial testing was performed using lobster intestine in order to verify the new 

GC-FID technique and to assess how it could be further used with shrimp intestine.  An 

experiment similar to those already attempted with lobster intestine was designed that 

would analyze the amount of amino acids transported across the lobster intestine alone 

and in the presence of a stimulatory metal and a competing dipeptide.  Since the GC 

allows for the analysis of a complex mixture, three amino acids were used.  Previously 

only one or two amino acids could be tested at a time using the radioisotope technique. 

A pH 5.5 saline solution containing 1 mM each of L-histidine, L-methionine, and 

L-leucine was perfused through lobster intestine for one hour.  These amino acids were 

chosen due to their abundant use in previous studies as well as their distinctly different 

retention times (typically 2.501 min for leucine, 3.596 min for methionine, and 5.407 

min for histidine).  At the start of the second hour, a new solution containing the same 

concentration of amino acids plus 25 µM zinc chloride was perfused.  At the start of the 

third hour, a new solution containing the same concentration of amino acids, zinc 

chloride, and 2 mM glycylsarcosine was perfused.  There was no significant difference 

between the transport rates of amino acids when perfused by themselves versus when 

zinc was added to the perfusate (Figure 9).  However, there was significant inhibition of 

transport for histidine when the competing dipeptide glycylsarcosine was added (paired 

Student’s t-test, Bonferroni correction, p < 0.02).  This suggests that bis-complexes may 
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have formed with the amino acid, since the transport rates decreased when the 

competitive inhibitor was added.  It was also found in previous experiments that leucine 

could be used to inhibit histidine movement across the intestine, when the amount of 

leucine added to the perfusate was five times higher that of the histidine (Conrad and 

Ahearn, 2005; Mullins and Ahearn, 2008).  The current results suggest that leucine does 

not necessarily inhibit histidine when present in the same concentrations. 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Effect of 25 µM Zn+2 and 2 mM Gly-Sar on 1 mM L-histidine, 1 mM L-

methionine, and 1 mM L-leucine transport in lobster intestine.  Bars represent the mean 

rate of amino acid transport in nmol cm-2 min-1 (N=3).  Error bars represent ± SEM.  

Significant difference was analyzed pair-wise for each amino acid separately, across the 

range of three treatments.  Significance for each amino acid is denoted using different 

letters for each amino acid (A for L-histidine, B for L-methionine or C for L-leucine).  

Means with lower-case letters denote significant difference from means with capital 

letters between treatments for each amino acid (paired Student’s t-test, Bonferroni 

correction, p < 0.02).  L-leucine was not detected during the first treatment; means are 

given for the second and third treatments only. 
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 Since it was found that the dipeptide can be analyzed with the same 

derivatization procedure used to analyze amino acid content, further testing with 

lobster intestine investigated the transport of the neutral dipeptide glycylsarcosine.  It 

has been used extensively as a competitive inhibitor, but transepithelial dipeptide 

transport has not been as extensively studied as amino acid transport (Conrad and 

Ahearn, 2005; Mullins and Ahearn, 2008; Obi et al., 2011; Berthelsen et al., 2013).  One 

major question was if the dipeptide would be transported across the intestine intact, or 

if it would be broken into its constituent amino acids, which were also detected by GC-

FID.  It was found that glycylsarcosine was transported intact across the membrane, 

with little to no breakdown to glycine and sarcosine (Figure 10).  When 1 mM 

glycylsarcosine was perfused, with the additions of 25 µM zinc chloride and 2 mM L-

leucine during the second and third hours of perfusion, respectively, there was a 

significant decrease in glycylsarcosine transport during the third hour (paired Student’s 

t-test, Bonferroni correction, p < 0.02, Figure 11).  This was expected, since zinc should 

not affect glycylsarcosine transport unless an amino acid was also present to form bis-

complexes and thus compete for the same peptide transporter.  There was no 

significant difference between glycylsarcosine transport with and without zinc chloride. 

 A similar experiment was conducted to ensure L-leucine alone did not affect 

glycylsarcosine transport.   Glycylsarcosine (10 mM) was perfused through the lobster 

intestine, followed by the addition of 20 mM L-leucine during the second hour and 50 

µM zinc chloride during the third hour (Figure 12).  There was no significant difference 

when L-leucine was added to the perfusate.  However, when zinc chloride and leucine 
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were present together, glycylsarcosine transport was significantly inhibited (paired 

Student’s t-test, Bonferroni correction, p < 0.02).  The results of this test show that a 

single amino acid has no effect on dipeptide transport, unless it is combined with a 

metal, which is in agreement with the previous experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Gas chromatograms of glycylsarcosine, glycine, and sarcosine saline standard 
mixture (A) and of a saline bath sample after 3 hours of 10 mM glycylsarcosine perfusion 
through the lobster intestine (B).  Glycylsarcosine is transported intact through the 
lobster intestine and is minimally broken down into glycine and sarcosine. 
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Figure 11.  Effect of 25 µM Zn+2 and 2 mM L-leucine on 1 mM glycylsarcosine transport.  

Bars represent the average rate of amino acid transport in nmol cm-2 min-1 for three 

lobster intestines.  Error bars represent ± SEM for the three replicates.  Means with 

different letters denote significant difference between treatments (paired Student’s t-

test, Bonferroni correction, p < 0.02). 

 

 

 

 

 

 

 

 

 

Figure 12.  Effect of 20 mM L-leucine and 50 µM Zn+2 on 10 mM glycylsarcosine 
transport.  Bars represent the average rate of amino acid transport in nmol cm-2 min-1 
for three lobster intestines.  Error bars represent ± SEM for the three replicates.  Means 
with different letters denote significant difference between treatments (paired 
Student’s t-test, Bonferroni correction, p < 0.02). 

a 

a 

b 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 mM Gly-Sar 1 mM Gly-Sar + 25 µM
Zinc

1 mM Gly-Sar + 25 µM
Zinc + 2 mM Leucine

G
ly

cy
ls

ar
co

si
n

e 
tr

an
sp

o
rt

 r
at

e 
   

   
   

   
(n

m
o

l c
m

-2
 m

in
-1

) 

Perfused Saline Treatment 

a a b 

b 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

10 mM Gly-Sar 10 mM Gly-Sar + 20
mM Leucine

10 mM Gly-Sar + 20
mM Leucine + 50 µM

Zinc

G
ly

cy
ls

ar
co

si
n

e 
tr

an
sp

o
rt

 r
at

e 
   

   
   

   
 

(n
m

o
l c

m
-2

 m
in

-1
) 

Perfused saline treatment 



38 
 

 An analysis of the mucosal to serosal (M to S) glycylsarcosine transport was 

conducted and compared to the serosal to mucosal (S to M) transport of the same 

concentration of dipeptide.  The net flux was determined by subtracting the rate of 

glycylsarcosine transport S to M from the transport rate for M to S (Figure 13). As 

shown, the net flux was approximately 3 nmolcm-2min-1, indicating that under the 

experimental conditions, glycylsarcosine was transported from mucosa to serosa even 

with equal concentrations of glycylsarcosine on either side of the epithelium.  It also 

suggests the presence of a basolateral peptide transporter for glycylsarcosine.  Since the 

rates of transport are different from M to S and S to M, it may be inferred that the 

movement of glycylsarcosine is not due to paracellular flow, but rather may be 

attributed to either facilitated diffusion or active transport.  While the addition of 

leucine and zinc to perfused glycylsarcosine had a significantly inhibitory effect on the 

glycylsarcosine transport rate (Figures 11 and 12), this was not the case when the S to M 

transport was investigated and no difference between the three bath treatments was 

found. 

 To positively identify the presence of a peptide transport protein, the transmural 

transport rate of glycylsarcosine was measured for a range of glycylsarcosine 

concentrations from 1 mM to 15 mM.  As the luminal concentration of glycylsarcosine 

increased, the transport rate increased in a hyberbolic manner consistent with 

Michaelis-Menten kinetics (Figure 14).  The maximum transport rate is 4.11 ± 1.05 nmol 

cm-2 min-1 (Jmax) and the transporter is working at half of its maximum velocity at 6.93 ± 

3.83 mM glycylsarcosine(Km).  A high Km is indicative of a low-affinity system, which is 
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not consistent with the previously defined ‘scavenger’ nature of the intestinal 

epithelium (Ceccaldi, 1989). 

 

 

 

 

 

 

 

 

Figure 13.  The net flux of glycylsarcosine was calculated from mucosal to serosal (M to 
S) transport rates and serosal to mucosal (S to M) transport rates under the same 
treatment conditions.  Bars represent the average rate of amino acid transport in nmol 
cm-2 min-1 for lobster intestines (N=3).  Error bars represent ± SEM.  For M to S 
replicates, the saline treatment was perfused through the intestine and measurements 
of the normal bath saline were taken.  For S to M replicates, the saline treatment was in 
the bath chamber and normal saline was perfused through the intestine.  
Measurements were taken from the perfusate effluent that was collected for the 
duration of the experiment.  Means with different letters denote significant difference 
between treatments (paired Student’s t-test, Bonferroni correction, p < 0.02).  Asterisk 
represents significant difference between M to S and S to M transport rates with 10 mM 
glycylsarcosine (Student’s t-test, p < 0.05). 
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Figure 14.  The effect of increasing glycylsarcosine concentration on the mucosal to 
serosal transmural transport of glycylsarcosine.  Data points represent the transport 
rate nmol cm-2 min-1 with error bars ± SEM from three lobster intestines (N=3).  The 
kinetic constants found by fitting a hyperbolic curve were Jmax = 4.11 ± 1.05 nmol cm-

2min-1 and Km = 6.93 ± 3.83 mM glycylsarcosine. 

 

In addition to the effect of metals and amino acids, the amount of calcium and 

pH of the perfusate were examined for their effects on dipeptide transport.  First, the 

effect of pH was tested by perfusing saline containing 10 mM glycylsarcosine through 

the lobster intestine at a range of pH from 5.5 to 8.5, with the bath saline maintained at 

pH 7.0.  The initial experiment contained 25 mM calcium chloride in both perfused and 

bath saline solutions.  It was found that there was no difference between 

glycylsarcosine transport rates when the perfused saline was at pH 5.5, 6.5, or 7.5.  

However, at pH 8.5 the transport rate was significantly increased (Figure 15).  Since a 

higher transport rate at a high pH was unexpected, the experiment was adjusted and 
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attempted with three more lobster intestines, this time with a lower calcium chloride 

concentration of 0.5 mM (Figure 15).  This change in calcium concentration was found to 

significantly increase the rate of glycylsarcosine transport at both pH 7.5 and 8.5.  At pH 

5.5 and 6.5 there was a larger amount of standard error between the treatments, so any 

observed difference was not statistically significant.  It was also seen that the transport 

rate at pH 8.5 was significantly different than the rate at pH 5.5, for intestines perfused 

with a lower concentration of calcium (paired Student’s t-test, Bonferroni correction, p < 

0.02).   

 

 

 

 

 

 

 

 

 

Figure 15.  Effect of calcium concentration and perfused saline pH on transport rate of 

10 mM glycylsarcosine.  Bath saline was maintained at pH 7.0 for all treatments.  Data 

represent means from three lobster intestines for both 0.5 mM and 25 mM calcium 

levels (total N = 6) and error bars represent ± SEM.  Asterisks represent significantly 

different transport rates between calcium treatments at the same saline pH (two-tailed 

Student’s t-test, p < 0.01).  Number signs represent significantly different transport rates 

between pH treatments for 0.5 mM calcium (paired Student’s t-test, Bonferroni 

correction, p < 0.02). 
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Since the combination of higher perfused pH and lower calcium chloride 

concentration appeared to optimize the transport of glycylsarcosine, this experimental 

set-up was tested for linearity by perfusing 10 mM glycylsarcosine through the lobster 

intestine for 3 hours with a perfusate pH of 8.5, a bath pH of 7.0, and a 1 mM calcium 

chloride concentration (Figure 16).  The calcium was increased slightly from 0.5 mM to 1 

mM due to a slight swelling observed in the tissue during perfusion at the lower calcium 

concentration, as well as nutritional data confirming the use of 1g calcium/100g pelleted 

food (Davis and Gatlin, 1996) and lobster physiological data about the concentration of 

calcium in the hemolymph (Factor, 1995).  There was no significant difference in the 

transport rates of glycylsarcosine over the three hour experimental period (Figure 16). 

 

 

 

 

 

 

Figure 16.  Transport rates of 10 mM glycylsarcosine perfused with 1 mM calcium 
chloride at pH 8.5 through lobster intestine.  Each treatment was perfused for 1 hour, 
with a total experiment time of 3 hours.  Bath saline was maintained at pH 7.0 with the 
same concentration of calcium chloride.  Data represent means from three lobster 
intestines and error bars represent ± SEM.  No significant difference was found between 
the transport rates during the three hours of perfusion (paired Student’s t-test, 
Bonferroni correction, p < 0.02). 
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Transport Experiments Using Shrimp Intestine 

 Initial experiments with shrimp intestine began with the radioisotopic technique, 

as this had been used previously for the study of lobster intestine and shrimp intestine 

and was well documented as a functional technique (Ahearn and Maginnis, 1976; 

Conrad and Ahearn, 2005).  H3-L-leucine was used in conjunction with a range of 

concentrations of L-leucine from 5 µM to 50 µM to determine the transepithelial 

transport kinetics of this amino acid.  As the luminal concentration of L-leucine 

increased, the transport rate increased in a hyperbolic manner (Figure 17).  The 

maximum transport rate is 416 ± 58.9 pmol cm-2 min-1 (Jmax) and the transporter is 

working at half of its maximum velocity at 76.2 ± 16 µM leucine (Km).  A low Km is 

indicative of a high-affinity system, which is consistent with the previously work using L-

leucine in the lobster intestine (Obi et al., 2011).  These data show that the shrimp 

intestine was functioning properly and did not have paracellular transport of amino 

acids, as would be expected if the tissue was stretched or otherwise compromised using 

the modified perfusion apparatus for the shrimp intestine, which is considerably smaller 

than the previously used lobster intestine. 
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Figure 17.  The effect of increasing 3H-L-leucine concentration on the mucosal to serosal 
transmural transport of L-leucine.  Data points represent the transport rate pmol cm-2 
min-1 with error bars ± SEM from three shrimp intestines (N=3).  The kinetic constants 
found by fitting a hyperbolic curve were Jmax = 416 ± 58.9 pmol cm-2min-1 and Km = 76.2 ± 
16 µM L-leucine. 

 

After using the new GC-FID method with lobster intestine, testing was conducted 

to see if previous experimental procedures (Conrad and Ahearn, 2005; Conrad and 

Ahearn, 2007) would give similar results using shrimp intestine.  An experimental 

perfusate of 10 mM L-leucine, L-methionine, and L-histidine was perfused through the 

shrimp intestine at 0.30 mL/min for 3.5 hours to show a linear increase in transport over 

time (Figure 5). 
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When this was established in three trials using different shrimp intestines, a 

perfusate containing 10 mM L-histidine was used with the addition of 50 µM zinc during 

the second hour and 20 mM glycylsarcosine during the third hour.  This amount of zinc 

was used in order to achieve a measurable effect on histidine transport.  The level of 

zinc present in formulated shrimp diets is typically 100 mg/kg (Davis and Gatlin, 1996).  

As shown below, the addition of zinc to the perfusate caused a significant increase in 

transport and a decrease in transport when the dipeptide inhibitor was added (paired 

Student’s t-test, Bonferroni correction, p < 0.01, Figure 18).  This finding is consistent 

with previous studies on the stimulatory effect of zinc on histidine transport in the 

lobster (Conrad and Ahearn, 2005; Conrad and Ahearn, 2007).  
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Figure 18.  Effect of 50 µM zinc chloride and 20 mM glycylsarcosine on the transport 

rate of 10 mM L-histidine through shrimp intestine.  Perfused saline contained 1 mM 

calcium chloride and 8.4 mM sodium sulfate and was at pH 8.5, while the bath saline 

was maintained at pH 7.0.  Data represent means (N = 4) and error bars represent ± 

SEM.  Means with different letters denote significant difference between treatments 

(paired Student’s t-test, Bonferroni correction, p < 0.01). 

 

     The effects of calcium chloride and sodium sulfate were examined using the 

perfusion of 10 mM L-histidine alone and with the addition of 50 µM zinc during the 

second hour and 20 mM glycylsarcosine during the third hour.  However, the amount of 

calcium chloride and sodium sulfate in both the perfused saline and bath saline were 

altered over the course of four experiments, each with at least three replicates of 

shrimp intestines.  There remained a significant increase in L-histidine transport with the 

addition of zinc to the perfusate when the calcium chloride concentration was raised to 

25 mM (paired Student’s t-test, Bonferroni correction, p < 0.02, Figure 19).  There was 
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no significant difference found between the transport rates of L-histidine in the 

presence of zinc or both zinc and glycylsarcosine.  The concentration of calcium had an 

impact on the transport rate of L-histidine alone, but not in the presence of zinc or when 

both zinc and glycylsarcosine were added.  It was found that histidine transport was 

significantly higher with 1 mM calcium chloride than with 25mM calcium chloride when 

histidine was perfused by itself (two-tailed Student’s t-test, p < 0.05, Figure 19). 

 The data from an earlier experiment with 1 mM calcium chloride and 8.4 mM 

sodium sulfate in the physiological saline was used to analyze the effect of increasing 

sodium sulfate concentration to 26mM (Figure 20).  It was seen that the use of 26 mM 

sodium sulfate had a slightly inhibitory effect on L-histidine transport in the presence of 

zinc that was not significant (p < 0.1).  The higher concentration of sulfate did not affect 

L-histidine transport during the other treatments in the experiment.  The transport rate 

of L-histidine was not significantly increased with the addition of zinc to the perfusate (p 

< 0.1), and the further addition of glycylsarcosine had no effect on transport rate (Figure 

20). 
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Figure 19.  Effect of calcium chloride on the transport rate of 10 mM L-histidine through 
shrimp intestine.  Perfused saline contained 8.4 mM sodium sulfate and either 1 mM or 
25 mM calcium chloride and was at pH 8.5, while the bath saline was maintained at pH 
7.0.  Data represent means and error bars represent ± SEM (N=4 for 1mM, N=3 for 
25mM calcium).  Asterisk represents significant difference between 1 mM and 25 mM 
calcium treatments (p < 0.05) using two-tailed Student’s t-test.  Significance for each 
concentration of calcium is denoted using different letters (A for 1 mM, B for 25 mM).  
Means with lower-case letters denote significant difference from means with capital 
letters between treatments for L-histidine (paired Student’s t-test, Bonferroni 
correction, p < 0.02). 
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Figure 20.  Effect of sodium sulfate on the transport rate of 10 mM L-Histidine through 

shrimp intestine.  Perfused saline contained 1 mM calcium chloride and either 8.4 mM 

or 26 mM sodium sulfate and was at pH 8.5, while the bath saline was maintained at pH 

7.0.  Bars represent means and error bars represent ± SEM (N=4 for 8.4mM, N=3 for 

26mM sodium sulfate).  No significant difference was found between perfused 

treatments for 26 mM sodium sulfate (p > 0.05) or between each treatment at either 

8.4 mM or 26 mM sodium sulfate.  Means with different letters denote significant 

difference between treatments using 8.4mM sodium sulfate (paired Student’s t-test, 

Bonferroni correction, p < 0.02). 
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DISCUSSION 

Gas Chromatography Technique 

The present study investigated numerous lines of research that both extended 

previous physiological knowledge of crustacean transport mechanisms as well as 

provided a physiological basis for improving crustacean nutrition.  Valuable insight was 

gained in the novel use of gas chromatography for amino acid analysis, which can be 

applied to future studies examining complex mixtures that would otherwise not be 

feasible using methods such as radioisotopic labeling of single amino acids or sugars.  

The results from the investigation of transport mechanisms in shrimp intestine can be 

used to provide suggestions for changes in water quality and feed composition.  This 

could ultimately improve shrimp nutrition, allowing for faster growth and quicker 

maturation to the desired size.  In addition, these data can be used to optimize feed 

composition.  Knowledge of the cellular processes of nutrient uptake in shrimp can 

ensure that feed does not contain excessive amounts of unnecessary supplements, and 

adequate amounts of others. 

 The preliminary experiments in this study verified that gas chromatography 

could be used in subsequent studies of amino acids.  It was found that a complex 

mixture of amino acids as well as certain dipeptides can be analyzed effectively and 

relatively quickly.  Several drawbacks to this method were discovered through trial-and-

error.  For instance, it is necessary to have a fairly large concentration of amino acids 

present in the solution for analysis by GC-FID.  This is a hindrance for kinetic studies due 
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to the typically low Km and Jmax kinetic constants that are useful in cellular transport 

research, which often occur in the picomolar or nanomolar range.  The current study 

found that analysis by GC-FID is only effective for saline sample solutions containing at 

least 50 µM concentrations of amino acids.  It was often necessary to perfuse at least 10 

mM concentrations of amino acids through the lumen of the intestine in order to have 

sufficient accumulation of amino acids in the bath saline.  It may be possible through 

further optimization of the perfusate saline to use lower concentrations in the 

perfusate, but this study recommends that no lower than 1 mM be used, as it was found 

that this concentration would only provide measureable results half of the time.  

However, many transporters in the intestine of crustaceans are saturable in the 

micromolar range.  This is due to the use of the intestine as a ‘scavenger’ organ, as most 

of the nutrient uptake occurs in the hepatopancreas (Factor, 1995).  While it may be 

difficult to generate kinetic constants, the method used in this study is still applicable for 

intestine research due to several low-affinity systems present within the epithelium. 

Metal Co-Transporter Experiments 

 Multiple experiments using lobster intestine were carried on concurrently with 

shrimp studies.  Initially, the research focused on bis-complex transport in both animals, 

using zinc ions to form complexes with amino acids that result in molecules that 

resemble dipeptides and can be transported through a PepT-like dipeptide transporter 

(Conrad and Ahearn, 2005; Conrad and Ahearn 2007; Obi et al., 2011).  Bis-complexes 

have been investigated in teleost fish as well as lobster, and their apparent formation in 
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shrimp was confirmed in this study (Glover and Wood, 2008).  Even though zinc was 

used at a concentration that was 200 times lower than the concentration of L-histidine 

in the saline perfusate, it was still found to significantly increase the rate of histidine 

transport by enabling the transepithelial transport of histidine by multiple routes 

(Figures 18-20).  While a similar result has been seen in lobster intestine and interpreted 

as molecular mimicry of dipeptides, this information was novel for shrimp intestine (Obi 

et al., 2011).  Since the production of farmed shrimp is a much larger industry than 

farmed lobster, data that directly supports the use of supplemental metals in the shrimp 

diet is preferred to analogous data from a different crustacean species. 

Glycylsarcosine Experiments 

 During the course of the bis-complex investigation, it was found that the 

dipeptide glycylsarcosine could be analyzed by GC-FID, though its visualization proved 

more difficult than for the three amino acids that were measured most often in this 

study (L-leucine, L-methionine, and L-histidine).  Even at the same millimolar 

concentrations, the relative signal area shown on the chromatogram was much smaller 

for glycylsarcosine.  This necessitated the use of a 10 mM perfusate, although a few 

experiments were conducted successfully using a 1mM concentration (Figure 11). 

 Multiple conclusions can be drawn from the analysis of glycylsarcosine.  First, it 

was shown that the dipeptide is transported intact in both directions across the 

intestinal epithelium.  Although dipeptide transport has been investigated for many 

years, early researchers came to the conclusion that any small peptides that entered 
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cells would be enzymatically degraded into their amino acid components prior to exit 

from the cell (Rubino, Field, and Shwachman, 1971).  Transporters on the apical side of 

the membrane have been identified and extensively studied, including members of the 

PepT and PHT families (Daniel and Kottra, 2004).  These transporters have been 

characterized in vertebrates and invertebrates and appear to be highly conserved across 

evolutionary history (Bröer, 2008).  More recent studies have shown that peptides are 

not necessarily degraded within the epithelium, and that small peptides can be 

transported to the blood (Dyer et al., 1990; Shepherd et al., 2002; Daniel and Kottra, 

2004).  The results seen with glycylsarcosine in this study demonstrate that crustaceans 

can also absorb small peptides from the lumen and transport them directly to the blood 

(Figures 10-16).  It also gives rise to the assumption that since glycylsarcosine is not 

being broken down within the cell, there must be a basolateral transporter for peptides.  

Basolateral transport mechanisms have not been as widely investigated as apical 

transporters and warrant further research to enhance knowledge of nutrient transport 

across epithelia (Shepherd et al., 2002).  A recent study investigated the pH-dependence 

of a basolateral transporter in human Caco-2 cells using glycylsarcosine (Bethelson et al., 

2013).  The results from the present investigation support the findings from this 

previous study, and also indicate that basolateral transport proteins may be as 

conserved as apical transport proteins, due to their existence in invertebrates as well as 

vertebrates. 

 The results from the glycylsarcosine data also showed the net movement of this 

dipeptide from the lumen to the blood, indicating its transport is absorptive (Figure 12).  
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These data, as well as those from the kinetic study (Figure 14), confirm that much of the 

transport of glycylsarcosine as seen in this investigation is due to the presence of a 

transport protein, and does not occur via paracellular transport.  The existence of a 

PepT-like transporter in crustaceans has been previously suggested as a mechanism of 

transport for amino acid and metal complexes (Conrad and Ahearn, 2005).  The use of 

glycylsarcosine in this study confirms the existence of a peptide transporter in 

crustaceans.  This is of interest both physiologically as well as for use in feed 

formulation.  By adding small peptides to shrimp feed, it may be possible to increase 

their growth rates.  It has been shown that pure amino acids are present in shrimp feed 

in excess, and that a large proportion of nutrients from feed are dissolved in the water 

and lost before consumption (Martínez-Porchas et al., 2010).  The addition of small 

peptides to feed will mimic natural foods more closely and could enhance the uptake of 

other components of the feed, which could reduce waste. 

Water Quality Experiments – pH, Calcium and Sulfate Effects 

 During the course of experiments using dipeptides and amino acids, it was found 

that their transport can be enhanced at a high luminal pH (Figure 15).  This finding was 

not expected; previous studies investigating amino acid transport have found that a 

luminal pH range from 5 to 6 and a blood pH of 7 results in optimal transport (Conrad 

and Ahearn, 2005; Obi et al., 2011).  This is the accepted model in vertebrates, and the 

uptake of peptides has been shown to be proton-dependent, such that peptides enter 

the cell via antiport with protons, while the uptake of amino acids is sodium-dependent 
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(Watanabe et al., 2005; Bröer, 2002).  However, another study using zebrafish (Danio 

rerio) also found transport of glycylsarcosine to be more effective at an alkaline pH 

(Romano et al., 2013).  In that study, it was posited that since the zebrafish does not 

possess an acidic stomach, the luminal pH may be naturally much more alkaline that 

what is seen in other fish and mammals.  The stomach of the shrimp is known to be 

slightly acidic.  It is possible that shrimp produce enzymes or buffers to regulate the pH 

of the intestine so that it is closer to neutral or slightly basic.  This idea is supported by 

the findings that an alkaline pH optimizes the enzymatic processes for proteinases such 

as trypsin and peptidase in shrimp (Mantel, 1983; Jones et al., 1997).  Future studies 

could further examine this aspect of their physiology.  The results from this experiment 

imply that shrimp raised in near freshwater conditions may not be absorbing nutrients 

as effectively as shrimp raised in brackish water, as freshwater conditions would have a 

more acidic pH than brackish or saltwater.  Water quality on shrimp farms could be 

monitored to maintain brackish or saltwater conditions, rather than raising shrimp in 

sub-optimal freshwater conditions. 

Under typical conditions, the crustacean epithelium is electronegative inside the 

cell (Ahearn, 1982).  This electrical gradient is used along with the concentration 

gradient to drive nutrient uptake from the lumen to the cell and then to the blood.  Low 

amounts of sodium within the cell also help power their transport, and the low 

intracellular concentration of sodium is maintained by Na+/K+ -ATPase pumps.  The 

findings from this study suggest that calcium may also play a role in nutrient uptake.  It 

was seen that high luminal concentrations of calcium result in a significantly lower rate 
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of transport for both sodium-dependent amino acid transport and dipeptide transport 

(Figures 15 and 19).  This may be explained by the presence of calcium channels along 

the apical membrane (Abdel-Malak and Ahearn, 2014; Ahearn and Zhuang, 1995).  

When the luminal concentration of calcium is high, these channels may open and allow 

the flow of calcium from the lumen to inside the cell.  This movement may depolarize 

the cell, which may inhibit the uptake through other electrogenic systems.  This 

mechanism could explain why higher concentrations of calcium negatively affect the 

rate of nutrient uptake.  Since this was also seen in a recent study in the Ahearn 

laboratory using lobster intestine, it is likely that the same process is occurring in both 

lobster and shrimp intestine when exposed to high levels of calcium (Abdel-Malak and 

Ahearn, 2014).  Additionally, excess calcium in the diet can react with metals such as 

zinc and magnesium, and consequently form chelates, which could inhibit the 

stimulatory effect of zinc on amino acid transport (Davis and Gatlin, 1996).  This finding 

is supported by field observations on a Florida shrimp farm, where a deep well provides 

water for 25 acres of shrimp ponds (Wood’s Fisheries, Inc., Port St. Joe, FL).  At about 

five parts per thousand salinity, the well water is composed primarily of calcium and 

sulfate salts, and shrimp grown for a period of 165 days only reach a total weight of 

about 30 grams, as compared to a typical adult weight of 30-45 grams (Rosenberry, 

2007; Godwin and Ahearn, personal communication, 2013; FAO, 2006).  In this type of 

situation, shrimp growth may be occurring at a less than optimal rate due to the 

proportionately increased calcium content of the water when compared to natural 

conditions. 
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As compared to the effect of calcium, sulfate was seen to have little to no effect 

on L-histidine transport in shrimp (Figure 19).  It has been discovered previously that fish 

ponds built on acid sulfate soils, such as those found in mangroves, will have diminished 

growth of cultured species (Golez, 1995).  By conversion of the sulfate in the soil to an 

acidic form by anaerobic bacteria, pond water above the soil will become acidified 

(Golez, 1995).  The data generated from the current research indicates that sulfate 

itself, in the form of sodium sulfate in saline, does not have a negative effect on amino 

acid transport.  It is possible, however, that ponds containing an excess of sulfate in the 

water may become acidified more quickly than those with less of a sulfate load.  This 

acidification could lead to a reduction in growth through other deleterious effects than 

by inhibition of amino acid transport. 

Future work will needed to identify the particular calcium concentrations in 

water that promote the highest growth rate in shrimp, preferably with live shrimp 

reared in an easily controlled environment.  A simple experimental design would involve 

multiple aquarium tanks with juvenile shrimp exposed to low, medium, and high calcium 

chloride conditions.  Results from this study indicate that the use of aquaculture ponds 

containing 25 mM calcium salts could be reducing the growth rate of their larvae.  It 

would also be of use to test feed formulations with a reduction in calcium, as it has been 

found that shrimp can acquire sufficient calcium from their ingestion of water and 

through their gills (Davis and Gatlin, 1996).  Feed formulations with supplemented 

metals, such as zinc and manganese, or small peptides could also be analyzed for higher 

growth rates in shrimp. 
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Aside from rearing juvenile shrimp under various conditions, further work using 

both shrimp intestine and shrimp hepatopancreas could continue to improve the 

research community’s knowledge of the physiological processes of digestion in 

crustaceans.  Future experiments utilizing gas chromatography would be of particular 

use since various mixtures of amino acids and dipeptides could be analyzed at the same 

time.  While this would not elucidate the transport mechanisms responsible for each 

amino acid or dipeptide, it would provide data that would better represent the natural 

state of digestion, in which concentrations and types of peptides could vary greatly.  

New research has focused on the role of PepT-1 transporters in teleost fish and other 

aquaculture species, and it has been found that feed formulations using plant proteins 

rather than fish meal can have a negative impact on digestion and cause enteritis in 

carnivorous fish as well as lowered expression of PepT-1 mRNA (Rønnestad et al., 2010; 

Lui et al., 2013).  The use of gas chromatography to analyze perfused mixtures of amino 

acids and peptides would give more information about competitive inhibition within the 

intestine, and could aid in future aquaculture studies of PepT-1 and basolateral 

transporters. 
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CONCLUSIONS 

The following information was concluded from this study: 

1. Gas chromatography can be used in subsequent studies of amino acids.  A 

complex mixture of amino acids as well as certain dipeptides can be analyzed 

effectively and quickly, but only at high concentrations. 

2. Zinc significantly increased the rate of L-histidine transport in the shrimp 

intestine.  Transport was reduced with the addition of a competing dipeptide, 

indicating that bis-complex formation and a PepT-like transporter may be 

present in shrimp intestine. 

3. Glycylsarcosine is transported intact in both directions across the intestinal 

epithelium. 

4. Net flux of glycylsarcosine is from mucosa to serosa; movement of 

glycylsarcosine from serosa to mucosa is not affected by the presence of bis-

complexes, while in the opposite direction, glycylsarcosine transport is 

significantly inhibited by bis-complexes. 

5. An alkaline pH significantly increased the transepithelial transport of 

glycylsarsocine and L-histidine in lobster and shrimp, respectively. 

6. Excess calcium significantly inhibited the transport of L-histidine across shrimp 

intestine, and glycylsarcosine across lobster intestine. 
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