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ABSTRACT 

Tropical cyclones (TCs) Irene and Sandy caused major damages in back to back years to the 

most densely populated city in the United States stunning the residents with storms linked to 

seemingly impossible probabilities. Such activity has raised questions about the effect of non-

stationary aspects within atmospheric circulation on storm behavior and some assumptions 

inherent in previous hazard studies of the New York City (NYC) area.  This study analyzes 

statistical aspects of hazard quantification for this area related to this non-stationarity and 

statistical characterization. In particular this study investigates the presence of multiple 

populations of storms, it also tests current assumptions inherent in these previous studies which 

produce surge hazards which differ significantly and it investigates a natural relationship 

between storm characteristics and large scale climate variations through Empirical Orthogonal 

Functions (EOF) of the sea surface pressure.  

 

The findings of this study show that there is a statistically significant influence of climate 

variability on storm frequency, intensity and direction within the Battery and vicinity (BAV, 

Battery Park and surrounding region).  Variations in large-scale atmospheric pressure patterns as 

well as sea surface temperature appear to be significantly affecting the surge hazard for this 

region.   

 

This study also shows there is a statistically significant relationship between storm heading and 

intensity as well as the presence of multiple populations of storms driven by different 

atmospheric states that behave with alternate characteristics. These multiple populations appear 

to be significantly influencing the overall average of storm behavior causing inaccurate 

assumptions in hazard quantification which leads to misestimation in risks. 



 

1 
 

 

CHAPTER 1 INTRODUCTION 

In recent years, there has been a growing knowledge and acceptance that coastal risks are 

increasing around the world.  This heightened risk perception particularly hits home for the 

United States after all of the catastrophic events caused by hurricanes along its coastal regions 

(i.e. Katrina, Sandy, Ike, Francis, etc.).  Before these recent events, many researchers would have 

deemed them relatively impossible.  In spite of all these recent events, it seems as though a 

disaster always seems to surprise the inhabitants of the area it strikes.  The National Hurricane 

Center states that the “Atlantic is in a period of heightened activity that started around 1995 and 

could last at least another decade” (Goldenberg et al 2001). Most recently, the most densely 

populated city in the U.S., New York City, was impacted by these Atlantic TCs in back to back 

years by Irene (2011) and Sandy (2012), which both caused devastating surge levels. In the NYC 

area, storm characteristics over the last few years have dramatically exceeded the expected 

frequency and intensity.  These two extreme events prompted the formation of The Rockefeller 

Commission.  This effort was initiated in order to develop a comprehensive resilience strategy 

for NYC to decrease the amount of time NYC needs to recover industrially and economically 

after tropical events (Rodin et al 2013).  A successful resilience strategy requires fully 

understanding what risks could arise and what, if anything, is causing the risk to increase and 

decrease. Further investigation is required in order to accomplish this goal.     

 

New York City is chosen as our study area because it is an important financial center, a major 

transportation hub, and is one of the most densely populated areas of the United States. The 

worldwide economy is dependent on this area and suffers greatly when the stock market is 
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closed for even one day (Sandy caused a two day closure). Figure 1a depicts a part of the NYC 

subway system following Sandy; New York was forced to stop all subway transportation as well 

as shutting down all other means of public transportation, which the city depends on because of 

its large population.  Figure 1b shows the Ground Zero construction site with seawater rushing 

into it.  Sandy and Irene both left many inundated areas and halted many means of 

communications for the city which impacted the residents of not only New York, but the rest of 

the United States as well.  In addition to the various impacts of Sandy, she was estimated to 

cause 6.5 billion dollars in damages to the city.   

    

Figure 1a and 1b: New York City in the Aftermath of Hurricane Sandy (Cameron 2012; 
Minchillo 2012) 
 

NYC is not only economically at risk, but also geographically vulnerable. Storm surge is the 

most detrimental impact of a tropical cyclone (TC) and this region possesses a coastal geometry 

(displayed in Figure 2 below) which produces a much higher surge (NYC 2009).  This area is 

also going to become more vulnerable in the future due to the observed sea level rise which is 

trending upward about 2.77 mm/year (NOAA 2012).  Thus, the passage of time will lead to 

increased flood hazard by this increase in water height depicted in Figure 3.  Specifically this 

Image redacted, paper copy 
available upon request to home 

institution.

Image redacted, paper copy 
available upon request to 

home institution.
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work will focus on the Battery and surrounding vicinity (BAV) because of its central location 

and proximity to important NYC features.  

 

Figure 2: New York Bight (NYC 2009) 

 

Figure 3: Water Levels at the Battery (NOAA 2013) 
 

Sandy and Irene are both associated to highly unlikely probabilities as discussed further in 

Chapter 6 Section 4 which are calculated based on the most recent probabilities of storm 



 

4 
 

characteristics developed for the New York Area by FEMA in 2011 and put into effect in 2012 

(FEMA 2012).  The probability of these two storms occurring in back to back years is so 

incredibly unlikely that it might be considered almost impossible. There are two main reasons as 

to why there are highly improbable events in short periods of time that are discussed below in the 

following three paragraphs.  Table 1 displays probability parameters of five dimensions of the 

storm probability and the associated distributions (FEMA 2012).   

Table 1: Storm Characteristic Probability Parameters (FEMA 2012) 

Five Dimensional Probability  
Parameter Distribution Distribution Parameters 
ΔP (mb) Truncated Weibull U=41.1 K=2.05 

Rp (km) Lognormal med: ln(RMW)=3.015-
(6.291*10-5Δp2)+0.337ψ σlnRp=0.44 

Vf(kt) Normal mean= 6+0.4*Δp σ=7 
ϴ Normal mean=22 σ=10 
B (Holland's B) Normal mean=1.1 σ=0.2 

 

The recent, frequent events of high intensity may just be an anomaly, or they may be hinting at 

an underlying interconnectivity between nature and storm characteristics which is producing an 

episodic variation in TC hazard that is being overlooked by standard statistics.  This is a problem 

dealing with complex statistics of natural phenomenon while assuming there is no organization 

in nature, and can be an extremely difficult issue to correct. Hurricane probabilities are 

calculated assuming secular variation, which can ignore the misunderstood coupling present 

within natural phenomenon.  These variations need to be investigated to determine if they are 

playing an important role in storm behavior because risk mitigation is contingent upon 

knowledge of relationships in nature and inclusion of these relationships within hazard 

calculations.  Many studies have linked episodic nature in storm characteristics to the episodic 
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variations of large scale circulation (or climate variation) in the form of oscillations to storm 

frequency for different regions, as discussed further within the historical perspective.   

 

Another possibility is the statistics used in current FEMA hazard calculations may be neglecting 

multiple populations within the storms affecting the BAV which may each exhibit different 

storm behaviors.  The FEMA analysis shows three different tracks that storms tend to follow 

illustrated in Figure 5 differentiated by colors.  Within these tracks, storms may exhibit different 

characteristics because they are storms of a different type which would create a need for 

differentiating dependent parameters and calculating relationships based on the multiple sets. If 

storm are behaving differently, the statistics will misestimate the hazard for the region, making it 

impossible to properly mitigate the risks associated.  Although this study will likely not unveil 

everything behind natural statistics of tropical storm characteristics for the BAV, it can present 

methods to test them for other locations and use the information attained to calculate more 

accurate storm hazard, greatly assisting the resilience effort.   

 

 

Figure 4: Storm Track Sets Differentiated by Color (FEMA 2012) 
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The purpose of this thesis is to enhance the knowledge and understanding of tropical cyclone 

(TC) behavior in the BAV with respect to natural variations through time and with respect to the 

assumption of homogeneity in storm populations to improve the way natural statistics are dealt 

with for this area.  This study first investigates a relationship between the episodic variations of 

large scale circulation and storm frequency and storm intensity to determine the role of nature’s 

organization at different scales and its impact on storm surge and phenomenon for the BAV.  It 

next investigates a presence of different populations of storms within the dataset based on angle 

as well as investigating various assumptions made in calculating currently utilized storm hazards 

for the BAV.  Details describing the steps and motivation behind steps taken are presented within 

the methodology. A discussion of the results and future work are located at the end of this thesis.   
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CHAPTER 2 HISTORICAL PERSPECTIVE 

 

The historical perspective first presents previous studies which relate to hazards for this region 

and the associated methods used.  This chapter next discusses findings of previous studies which 

indicate a need for further investigation of these influences within the BAV.  

 

2.1 HAZARD ASSESSMENTS DEVELOPED FOR THE BAV 

Currently the Stephens Institute is investigating surge hazard for the NYC area employing a 

method of synthetic storms.  Hwang (2013) also is investigating storm surge for the area using 

the Battery water height data from 1920 to 2012 and claims the data follows the generalized 

extreme value (GEV) distribution with a mean of 8.10ft and COV of 10.07%. He used only the 

water maxima for this investigation and included every type of event.  Lin et al applied a model-

based risk assessment methodology by coupling a statistical/deterministic hurricane model with 

the SLOSH  surge model to generate a large amount of synthetic surge events which predicts a 

surge of Sandy’s height to occur about once every 500 years, and a surge of Gloria’s height to 

occur once every 400 years (Lin et al 2010).  In the last 200 years three storms surpassed 

Gloria’s surge height which leaves four events in this period to have surges above this estimate 

of 2.56m. The United States Army Corps of Engineers also conducted a study of Fire Island to 

Montauk Point (FIMP), but the information from the study was never released. 

 

The item all of these studies fails to address is a possibility of a variable hazard which will be 

investigated here in this thesis.  The National Hurricane Center (NHC) introduces the hypothesis 



 

8 
 

that TC frequencies are attributed to multi-decadal climate variability, yet there are no studies 

which investigate the relationship between storm frequencies and surface pressures (which 

control a great portion of climate variability) (NOAA NHC 2013).  “20th Century Reanalysis” 

was formed for the Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative 

and is readily available (Compo et al 2011).  With the hypothesis by NOAA and the data 

available, it now seems pertinent to assess the relationship.   

2.2 RELATIONSHIP BETWEEN SEA SURFACE TEMPERATURE (SST) AND INTENSITY 

A TC is a textbook example of a Carnot (heat) engine (Emanuel 1987).  These systems use heat 

for energy; therefore it is apparent that their strength or intensity is dependent on the amount of 

heat present in the region of the storm.  Warm upper-ocean features can significantly impact TC 

intensity by providing a positive feedback and cause a sudden increase in intensity while in 

warm, oceanic regimes (Shay et al 2000).   It has also been found that there is a direct correlation 

between the power dissipation index (PDI) developed by Emanuel (quantifies storm intensity, 

duration, and frequency) and SST with a 99% certainty in the tropical Atlantic where the storms 

are forming. The best correlation was shown for a filtered variability on time scales of a few 

years in order to remove high frequency fluctuations (Emanuel 2007).  This evidence suggests a 

multi-year, non-secular variation that is affecting the SST and therefore the TC intensity within 

the study region.   

2.3 RELATIONSHIP BETWEEN ATMOSPHERIC CIRCULATION AND TC FREQUENCY 

There have been many studies linking different pressure oscillations (i.e. North Atlantic 

Oscillation, El Nino Southern Oscillation) to TC frequencies.  HuiJun et al (2007) documented a 

relationship with the North Pacific Oscillation and Western Pacific TC frequency).  There are 

also studies which even link the Antarctic Oscillation and the Western North Pacific Typhoon 
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frequencies (Wang and Fan 2004).  An negative correlation exists between the El Nino Southern 

Oscillation and storm frequency within the Atlantic. Also, during years which winds blow from a 

westerly direction and become more westerly with time there is a substantial increase in TC 

frequency within the region (Gray 1984).  The oscillations around the globe assist or deter TC 

frequency and should therefore be investigated with a closer look for individual regions.  It is 

hypothesized here that rather than one specific named oscillation controlling TC frequency for 

each region, the overall atmospheric circulation causes variations in storm frequency and should 

be analyzed objectively using empirical orthogonal functions (EOF). This thesis will investigate 

a relationship between the orthogonal functions of variance of the sea surface pressure patterns 

surrounding the study region and the hurricane frequency.  

 

Throughout the world, with New York not being exempt, large scale climate variations couple 

with the TC’s internal dynamics to determine the TC tracks (Wang et al 2011). The Atlantic 

Warm Pool as well as the Atlantic Multidecadal Oscillation have been shown to affect storm 

activity in the Atlantic Basin (Wang et al 2011, Goldenberg et al 2001).  There have been many 

studies conducted which link inter-annual climatology with TC tracks in the North Altantic (eg. 

Xie et al 2005, Kossin et al 2010).  Although these studies exist, there is a  lack of studies which 

focus on a specific region and identify the patterns which induce storm frequency for the region 

specifically.   

 

Resio and Orelup (2007) conducted a study of climactic variations in TC characteristics which 

discovered a significant relationship between storms characteristics (mainly surge potential) and 

Empirical Orthogonal Functions (EOF’s).  EOF’s were utilized here to distinguished natural 
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patterns in the atmosphere.  These patterns were then compared with storms of the Gulf of 

Mexico and proved to show significant relationships (Resio and Orelup, 2007). This thesis will 

use similar methodology to investigate relationships between the EOF’s developed for the BAV 

and storm characteristics for this region comparing to all pressure patterns present.  

 

This chapter presents results of previous studies which may relate to this study.  Thus, this thesis 

will investigate the influences presented throughout the historical perspective and their role in 

TC hazards for the BAV to determine if the hazards are neglecting the influence of the 

organization in nature.  
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CHAPTER 3 DATA  

 

There are three major datasets used within this study: 1) TC data including central pressure, 

angle traveled and forward velocity, 2) Gridded sea level pressure data and 3) Sea surface 

temperature at Battery Park, N.Y.  This chapter will discuss the datasets in further detail to 

present how and why they were formed and used here. 

 

The TC data used in this study is majorly from the Hurdat2 Reanalysis (HURDAT2 2013), but 

some of the data came from NWS 38 (NOAA 1987).  The TCs used in this dataset along with 

their maximum central pressure within the study region are shown below in Table 2.  To be 

included in the dataset, the storms must have passed through the 45degree line from 36.5˚N to 

41.5˚N and 76˚W to 71˚W off the coast of NYC that is shown in Figure 5; if the TC’s track was 

above this region it was included in the dataset.  This filtering was done to eliminate the large 

amount of bypassing storms of weak nature that pose little threat to the vicinity and will only 

lower the expected hazards for this region, lessening the ability to mitigate.   



 

12 
 

 

Figure 5: Map of NYC Coast to Display Line Storms Must Cross to be Included in Dataset 

 

Storms referred to as ‘intense’ throughout this study will be all storms with central pressures 980 

and below.  The central pressures (Cp) used in this set are only the minimum Cp that the storm 

exhibits while within the boxed region because that is what affects the BAV.  This study also 

uses the location, angle of incidence, and radius to wind data also available within HURDAT2.   
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Table 2: Tropical Storm Data Set  Used in the Investigation of Climate 
Relationships 

Storm  Max Cp (mb) Name  Storm  Max Cp (mb) Name  
AL041877 X Unnamed AL031954 976 Carol  
AL021879 979 Unnamed AL021955 969 Connie 
AL061881 X Unnamed AL051960 970 Donna  
AL041882 X Unnamed AL061961 X Unnamed 
AL021886 X Unnamed AL091971 997 Doria  
AL041893 X Unnamed AL021972 980 Agnes 
AL111893 X Unnamed AL071976 977 Belle 
AL051894 X Unnamed AL091985 951 Gloria 
AL031897 X Unnamed AL101985 1006 Henri 
AL061900 X Unnamed AL051986 990 Charley 
AL041903 990 Unnamed AL031991 964 Bob  
AL011907 X Unnamed AL081999 980 Floyd 
AL021908 X Unnamed AL112000 1005 Gordon 
AL011916 990 Unnamed AL012001 1004 Allison 
AL031916 993 Unnamed AL022004 1012 Bonnie  
AL071934 989 Unnamed AL032004 1014 Charley 
AL061938 941 Unnamed AL232005 1005 Twenty-Two 
AL071943 X Unnamed AL022007 991 Barry 
AL031944 X Unnamed AL092011 958 Irene 
AL071944 966 Unnamed AL182012 943 Sandy  
AL111944 X Unnamed       

 

 The mean sea level pressure data used in this study is from the 20th Century Reanalysis which 

was made available in 2010 after being formed using state-of-the-art data assimilation systems 

and surface pressure observations (PRMSL 2012).  It contains six-hourly, four-dimensional 

global atmospheric dataset spanning from 1871 to 2012 which covers the entire globe with a two 

degree by two degree grid. The dataset used in this case is the surface pressure at mean sea level.  

Only a portion of this set is used for this analysis; this portion is described further below in the 

methodology. 
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The sea surface temperature used throughout this study is the temperature retrieved from the 

Battery tide gauge (8518750) in degrees Celsius (NOAA 2013). A computer program written  

using Fortran calculates the average SST for the time period between July and October which is 

used for this study.  This data is then smoothed to determine a five-year time centered average 

that represents yearly variability.   
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CHAPTER 4 METHODOLOGY 

 

The ultimate goal of this study is to investigate the interrelationships among the large-scale 

atmospheric variability inherent in this scale of motion and synoptic-scale events, specifically, 

TCs, to determine if a correlation exists which can be used to produce a hazard for the region 

with this information.  Figure 6 shows this goal in the form of a diagram often used by 

meteorologists in “down-scaling” studies. The diagram illustrates how each item relates to one 

another in their different scales and the form of the data which will be compared to one another.  

The climate variability will be quantified via multivariate analysis of large-scale circulations and 

synoptic information comes from HURDAT2 and NWS38.  Storm surges will be inferred 

through scaling relationships (Irish and Resio 2010).  The methodology of this flow chart and 

analysis are described below throughout this chapter.  

  

Figure 6: Study Approach 
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Work in this thesis is divided into two parts: Part 1) Investigation of variability of large-scale 

pressure patterns, SST and associated variation in storm characteristics and Part 2) Evaluation of 

parameter relationships relevent to hazard estimation. The methodology of each of these parts 

will be described throughout this chapter.   

4.1 METHODOLOGY OF PART ONE: INVESTIGATION OF VARIABILITY OF LARGE-
SCALE PRESSURE PATTERNS, SST AND ASSOCIATED VARIATION IN STORM 
CHARACTERISTICS 

The first step of this investigates relationships between tropical cyclone (TC) behavior and large-

scale circulation patterns. To quantify the variation of large-scale patterns, a number of steps 

were taken employing the surface pressure data from the 20th Century Reanalysis (Compo 2011).  

To focus on the area of intent, the field is narrowed and utilizes just the area between latitudes of 

2-60 degrees N and longitudes of 270-358 and 0-20 degrees E at every two degrees.  To filter 

some of the synoptic scale contribution to the field, input data is averaged onto four degree 

increments rather than retaining the initial two degree basis. The pressure at the center of four 

points is calculated by taking the average of the surrounding four points: 

      (∑ ∑        
  
       

  
       )     ………………………………………………Equation 1 

where P is the surface pressure at (i, j), and time, k (k goes from 1-1460 for non-leap years and 

1-1464 for leap years), during year, y. Each point is only included in one average.  Figure 7 

depicts a small set of the points included in the study at every two degrees and the new points at 

every four degrees to clarify the procedure.  It should be noted that each procedure described 

throughout the methodology section is conducted through computer programs written in Fortran 

90 by the author of this thesis, Shannon Kay.  
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Figure 7: Illustration of Averaging Procedure  
 

These points are then included in calculating five day averages (73 for each year).  Each five day 

average consists of 20 measurements, except for the times of leap year, where 24 measurements 

are included in the 12th five-day (six days in this case) increment: 

      
(∑      

  
  

)

    
…………………………..………………………………….……….Equation 2 

Where,  

     (   )    ……………………………………………………………...……Equation 3 

       ……………………...…………...……………………………..……………Equation 4 

     (
   

  
)    …………………………………………………...…………...……Equation 5 

An overall average for each of the 73 increments is calculated for the 140 year period from 1871-

2010.   
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(∑      

   
   )

   
 ……………….…………………………….……………………….Equation 6 

As shown in Equation 7, a field of pressure deviations from the mean is defined by subtracting 

the total average for the associated 5-day increment calculated using Equation 6.   

                  ……………………………………………………………..….Equation 7 

To characterize the seasonal pressure patterns, the averages of the deviations for the time period 

from July 29th to November 6th is taken, shown in Equation 8.    

      
(∑       

  
    )

  
 ………………………………………………………….………Equation 8 

To focus our analysis on multi-year variability, a five year time-centered average is taken from 

this yearly value, as shown in Equation 9.   

       
(∑      

    

      
)

 
………………………..………...………………….…………Equation  9 

 

The pressure field resulting from this calculation will then be used in computing the covariance 

matrix. With this methodology, 136 samples are used in the covariance matrix rather than the 

140 because the averaging makes it so that two samples are lost on each end.  To calculate the 

covariance matrix, the following equations are used.   

      
(∑ (        )(        )

   
   )

   
 ……………………………………………….….Equation 10 

Where L and J are the variable counters in the horizontal and vertical respectively, where both go 

from one to n, where n is given by: 

  (   )     …………………………………………………………………….Equation 11 

From this covariance matrix, eigenvectors are developed which are described in Appendix A.  

Eigenvectors are orthogonal functions which describe the overall covariance of a data field.  

These functions can be used to objectively determine states which affect processes occurring 
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within them, in this case, TC frequency.  Here, 15 eigenvectors are estimated which explain 

descending percentages of the overall variance.  A table of the respected variance explained by 

each empirical orthogonal function (EOF) followed by the plots of each can be found in 

Appendix A.  The eigenfunctions will be referred to throughout this thesis as EOF(n) where n is 

the number of the eigenvector (1-15). 

 

The results here were generated by the time-centered 5 year average deviations of the 105 day 

period from July 29th to November 6th, which are the best results to represent variation through 

time.  The running average deviation employs the 105 day period as well as the two 105 day 

periods surrounding on either side to calculate the time centered average to eliminate 

randomness and describe multi-year variance.  Because many factors contribute to the sea 

surface pressure, (TCs, small storms, fronts etc.), including them can cause many jagged edges in 

the output which can overlook the long term behavior of the function.  This method smoothes 

and allows for a better representation of the overall climate variability, ignoring oscillations 

people are previously acquainted to.  

 

The inner products between thee annual average deviations and EOFs are computed and will be 

referred to here as the weightings of the EOFs.  

    ∑ (       
       ) ………………………………………………………….…Equation 12 

The weightings provide an accurate representation of the behavior of the pressures and can be 

used in comparisons to determine potential relationships.  Plots of these weightings can be found 

in Appendix B. For preliminary assessment, the weightings are examined visually for correlation 

with storm events.  All of the weightings are put through the entire relationship testing process, 



 

20 
 

but it is hypothesized that the ones passing the visual screen will be the ones to show a prominent 

relationship.   

 

Since the weightings provide a succinct representation of the large-scale circulation, they can be 

used to define the atmospheric state.  Thus each year can be categorized via its weightings on the 

EOFs and will be used for quantitative analysis to identify which EOFs are affecting TC 

frequency within the study region.  To do this, each of the weightings is first sorted into two 

groups of equal probability where one group is primarily negative and the other positive.  To 

visualize the effect of the weightings on storm frequency, each will be put into a table, as shown 

below in Table 3. ‘n’  represents the number of times a TC occurs during the current weighing’s 

state.  If the eigenvector corresponding to its weighting has effect on storms in the area, most of 

the weightings during that year should be in the same group (either positive or negative), 

therefore the table values would either ascend or descend.  This is conducted once for all storms 

affecting the BAV and a second time only for intense storms denoted as those with central 

pressures (Cp) less than or equal to 980 mb to investigate the possibility of effect only during 

strong events.   

Table 3: Storm Frequencies 
per Category of Weightings  

Weighting (1-15) 
w ≤ x w > x 
n N 

 

The number of storms can then be put into contingency tables similar to Table 3,  but including a 

second weighting in investigate if more than one eigenvector works together to  affect storm 

frequency in the BAV as shown in Table 4.   
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The methodology of testing the statistical significance of these contingency tables can be 

accomplished through Chi Squared Testing as described below. 

Chi Squared Testing  

1. Develop a Contingency Table 
2. Form Null and Alternative Hypothesis: H0= No Relationship Ha= A relationship 

exists 
3. Calculate Chi Squared:    ∑ (                 ) 

         

 
    

4. Determine the degrees of freedom 
5. Compare to the Critical Value:   ≤ Critical Value: Do not reject null hypothesis, 

   Critical Value: Reject  
 

Since the weightings are split into equal categories, the theoretical expected value for this case is 

one quarter of the total number of storms because the initial expectation is that there is no 

relationship and between the weightings and the total number of samples contain equal 

probability.  The critical values used are those at the 95% certainty.  The Chi-Squared chart is 

shown in Table 5.   

 

 

 

Table 4: Contingency Table of Multiple Weighting’s 
effect on Storm Frequencies 

Weighting(1-15) Weighting (1-15) 

  w ≤ x w > x 

w ≤ x 
 Data filled in based on the 

weighting during the year of 

each storm w > x 
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Table 5: Chi-Squared Critical Values (Dougherty 2001) 

 

The contingency tables are also analyzed using only the intense storms to investigate an effect of 

the EOFs on the frequency of intense storms. Then the EOFs are compared with sea surface 

temperature (SST) and put into contingency tables where it takes the place of the second 

weighting, shown in Table 6.  This is also done again for only the intense storms.   

 

 

 

 

 

 

Table 6: SST/ Weighting Contingency Table 
for Years with Storm 

SST  
  

Weighting (1-15) 

w ≤ x w > x 

SST ≤ SSTbar 
  Data filled in based on 

the weighting and SST 

during the year of each 

storm SST > SSTbar 
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The EOFs are also plotted in a linear regression to investigate a relationship between SST and 

each eigenvector. Based on the coupling between atmospheric circulation and ocean currents, it 

is likely that there will be at least one EOF that possesses a significant relationship with SST.  

The relationship between the weightings on the EOFs and SST will be tested for significance 

using the Pearson’s test of correlation. A table of the critical values for this test along with their 

associated probabilities is shown below where the probability of significance is (1-α).  For this 

investigation, relationships will be considered significant with a 95% certainty as long as the R 

value (correlation coefficient) is greater than the critical value shown in the chart corresponding 

to α of 0.05 where the degrees of freedom for this test are the number of samples minus two.   

 

Table 7: Critical Values for Pearson’s test of Linear 
Regression (R-value) 

  One Tailed Probabilities 

 Alpha  0.0

5 
0.025 0.005 0.0005 

  Two-Tailed Probabilities 

N Samples 

(N-2 DOF) 
0.1 0.05 0.01 0.001 

10 0.549 0.632 0.765 0.872 

20 0.378 0.444 0.561 0.679 

30 0.306 0.361 0.463 0.57 

40 0.264 0.312 0.403 0.501 

50 0.235 0.279 0.361 0.451 

60 0.214 0.254 0.33 0.414 

70 0.198 0.235 0.306 0.385 

80 0.185 0.22 0.286 0.361 

90 0.174 0.207 0.27 0.341 

100 0.165 0.197 0.256 0.324 

200 0.117 0.139 0.182 0.231 

300 0.095 0.113 0.149 0.189 
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If a significant relationship exists between EOF and SST, the expected values for the 

contingency table must then be recalculated to incorporate this correlation into the theoretical 

expected frequencies.  If the newly calculated Chi Squared value is still significant based on 95% 

certainty and 1 degree of freedom, then it is apparent that the sea surface temperature is working 

alongside the atmospheric circulation to create an inviting area for tropical storms. The 

probabilities of frequencies for the expected values are recalculated using Equation 13. 

 (     )  ∫ ∫
 

√      
   ( 

(       ̅̅ ̅̅ ̅) 

     
 )  

 

√      
   ( 

(   (   )) 

     
 )       

 

      

 

 
…….. 

……………………………………………………………………………………......Equation 13 

The integral is taken for the various boxes of the contingency table with those values used as the 

limits where x is the average for each weighting and σ denotes the associated standard deviation. 

The residual standard deviation for the σ about the linear relationship, w(SST), is calculated 

using Equation 14 

     √      ……………………………………………………………….……Equation 14 

where ρ is the correlation coefficient of the line.  .  The expected value is then calculated for each 

by:  

          (     )                   ………………………..……………Equation 15 

Then the X2 will be reevaluated based on the new expected frequencies. 

 

Contingency tables will be done a final time incorporating storm heading (the angle direction of 

the storm from the horizontal) where SST was in the table to investigate a relationship between 

the atmospheric circulation and heading of the storms.  Each of the contingency tests will 

evaluate how the climatic variations are affecting storm characteristics and multiple variations 

are working together to affect storm frequency and intensity.  These results can later be used to 
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mitigate storm hazards through a better understanding of storm behavior based on the 

organization in nature. 

 

4.2 METHODOLOGY OF PART 2: EVALUATION OF PARAMETER RELATIONSHIPS 
RELATIVE TO HAZARD ESTIMATES 

The next step of this study is to investigate various assumptions made and test methodology of 

current hazard estimates.  These statistical analyses will test common assumptions and possible 

relationships for a varying hazard of storms that can be used in a future assessment of hazard for 

the area.   

4.2.1 TESTING FOR DIFFERENT STORM INTENSITIES WITH ANGLE TRAVELED 

The first step in this investigation is to determine whether or not there are storms following 

different behaviors that are related to other identifiable factors.  A preliminary screening 

suggested that storm heading, the angle of direction counter-clockwise from horizontal is 

affected by storm intensity.  Consequently, the storms were divided into two sets either heading 

less than or equal to 65 degrees, or greater than 65 degrees, which was chosen as the cut off 

because the two sets have relatively equal probabilities. The means and standard deviations are 

calculated for the minimum central pressures (Cp) of each of data sets and are compared using a 

Student’s T test to determine if the values are statistically different.  The steps of this hypothesis 

testing are as follows:  

1) Form Null and Alternative Hypothesis: H0: M1=M2;  Ha: M1≠ M2 where M signifies the 
mean 

2) Calculate student’s t:   
     

√
(    )  

  (    )  
 

       
[
     
    

]

 

3) Determine Degrees of Freedom  
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4) Compare to the Critical Value: t≤ Critical Value: Do not reject null hypothesis, 
  Critical Value: Reject (Critical value is determined by t-test statistic with values 
shown in Table 8.  

 

Table 8: Student’s t-Distribution Critical Values (Dougherty 2001) 

 

 

If the mean Cps of each set is statistically different, it is likely that alternate storm tracks denote 

different storm intensities and these storms may be affected by physical factors related to large-

scale atmospheric states.  If the TCs have statistically different average intensities, the next step 

will be to test the relationship between angle and Cp by plotting them against each other and 

forming a regression.  The regression will be tested for significance with the same method 

described for testing the regression above with Table 7.   
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Continuing the investigation of the effect of storm angle on intensity, a Gumbel ranking method 

is used to determine the different estimates, truncating the heading angle with as close to possible 

equal probabilities.  The Gumbel ranking will be done on a plot with each of the two as well as 

the entire set in one (three lines).  This is done by first determining the CDF for each of the 

storms by sorting from largest to smallest because the higher the Cp denotes a weaker storm.  

 ( )   
    

   
 …………………………………………………………………..………Equation 16 

Where F(x) is the Cumulative Distribution Function (CDF) and, the rank is the number of the 

storm after it is put into ascending order of weakest to strongest intensities, and n is the number 

of storms within the dataset.  The next step in the Gumbel ranking process is to take the double 

log of the equation: 

       (    ( ( ))………………………………………………………….……….Equation 17 

This is then plotted as the x value, and the y value is plotted as the Central pressure.  If the two 

sets trend differently, it is likely that the Cp return period has been misestimated for storm 

events.  The linear trend of this line can be used in estimating return periods of central pressures.  

The return period for each of these lines will be done using the Poisson frequency (μ) and the 

regression.   

  
                

           
……………………………………………………………………Equation 18  

In this case, the Poisson frequency is 47/162 because during the 162 years from 1851 to 2013, 47 

storms crossed into this region.   

The expected return period is calculated by: 

   
 

 (   ( ))
 ………………………………………………………………….………Equation 19 
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The double natural log taken for the return period and this value is then entered into the 

regression equation to find the corresponding Cp. 

    (  (  ( ))    …………………………………………….…………..……..Equation 20 

Where m is the slope and b is the y intercept of the regression equation.  This is then done for a 

wide range of values to make a plot of the Cp’s against their return period.  Each of the three sets 

(the angle above the cut off, angle below, and the set of both is plotted in order to visualize the 

difference in prediction for the datasets considering separation versus together.  This method can 

identify if central pressure return periods are being misestimated therefore causing hazard 

calculations to produce incorrect values.   

4.2.2 TESTING A RELATIONSHIP BETWEEN CENTRAL PRESSURE AND FORWARD 
VELOCITY 

The relationship between central pressure and forward velocity is tested using a linear regression 

because the current hazard calculations utilized for the BAV are calculated using a mean Vf 

linearly dependent on the pressure differential of the TC.  A regression of the two will be plotted 

and the associated correlation coefficient is compared to a critical value of R=0.30 based off 46 

degrees of freedom and a 95% certainty.  

4.2.3 METHODOLOGY OF PROBABILITY CALCULATIONS OF SANDY AND IRENE  

Each parameter probability of Sandy and Irene presented in section 6.4 are calculated using the 

distributions in Table 1 (FEMA 2012). The probabilities for the parameters following a normal 

distribution (where x can be ϴ and Vf) were calculated using the CDF (cumulative density 

function) formula for a normal distribution: 

 ( )  ∫
 

 √  
  

[
(   ) 

   ] 

 
……………………………………………….…………….Equation 21 
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where σ is the standard deviation and  ̅ is mean of either ϴ or Vf depending on which the 

probability is being calculated; both are found in Table 1. Although the Holland’s B parameter 

also follows the normal distribution, the associated probabilities for this were not calculated 

because B shows very little variability in this region for stronger storms. The probabilities for 

pressure differential (x=ΔP) are calculated based on a truncated Weibull where the exceedance 

probability is (FEMA 2012): 

 ( )      [ (
 

 
)
 
 (

   

 
)
 
] ……………………………………………….………Equation 22 

Where U and k are constants 41.2 and 2.05 respectively and     is equal to 33mb.  The final 

calculation used in this probability is the lognormal distribution for Rp, the radius to maximum 

winds.  The formula for the median used is taken to be similar to Vickery and Wadhera (2008): 

    (  )        (          )            ……...………...…………..Equation 23 

Where Rp is dependent on latitude,  , and the pressure differential.  This median is the expected 

value for the radius to maximum winds used in the lognormal CDF (x=Rp): 

 ( )  ∫ (
 

   √  
)     [ 

(  ( )   ( )) 

   
]

 

 
……………………………………..…....Equation 24 

The exceedance probability for storms is somewhat more complicated.  In a complete 

multivariate analysis we would have  

 ( )     ( ) ………………………………….…………………………………..Equation 25 

where  

 ( )    (∫∫∫∫∫ (             ) (   (             ))              ……… 

…………………………………………………………………………………….…..Equation 26 

This is typically done using a numerical model; however, a complete computer simulation of all 

possible storms is beyond the scope of this thesis.   
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4.2.4 INVESTIGATING THE GOODNESS OF FIT OF STORM OCCURRENCES TO THE 
POISSON DISTRIBUTION 

The assumption that storms follow a Poisson distribution is tested by comparing the theoretical 

exponential distribution of years between storms to the actual distribution of years between 

storms with a Chi Squared test.  The Poisson frequency parameter, λ, is used in the exponential 

distribution to calculate the expected number of occurrences for the numbers of years between 

storms. The equation of the CDF for the exponential distribution is as follows: 

 ( )        ……………………………………………………………..…..……Equation 27  

The pdf is: 

 ( )       …………………………………………………………..………….…..Equation 28 

 For this case, λ is equal to 47/162 because 47 storms occurred in the last 162 years within this 

dataset. To convert the probabilities for the CDF into number of events to compare, the total 

number of events is multiplied by each value.  This number is used to determine the number of 

events within each category.   

                                    ∫  ( )
  

  
  ………………………..Equation 29 

 To eliminate the large number of zero values in the contingency table, years will be combined 

into multiyear increments. For the case of all storms, these increments will consist of four year 

periods. The contingency table to be filled in based on this information is shown in Table 9.  
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Table 9: Contingency Table Comparing a Theoretical 
Exponential Distribution of the Time Between TC Events to 
the Actual number of Occurrences  

  0-3 Y 4-7 Y 8-11 Y 12-15 Y 16-19 Y  

Observed  
 Data filled in based on the observed frequency 

and the calculated theoretical frequency 

(Equation29) Theoretical  

 

These values are then used to calculate the X2 test statistic and tested for significance based on 

four degrees of freedom and 95% certainty.  In addition to tests for all storms, this test is 

repeated for only intense storms to determine if more hazardous storms follow the assumed 

distribution.  The theoretical calculations for intense storms are done based on the Poisson 

frequency of λ=12/114. The data from 1900 and on is used for the intense storms because of the 

large number of data before this period lacking storm central pressure.     

 

The relationships tested throughout this chapter will provide a better understanding of the 

behavior of tropical cyclones affecting the BAV. This information will provide the foundation 

for improved hazard quantification for the NYC area.   
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CHAPTER 5 RESULTS OF PART 1: THE ANALYSIS OF FACTORS AFFECTING STORM 
FREQUENCY AND INTENSITY  

 

This study identifies important and interesting aspects about storm characteristics which affect 

the risk for the Battery and vicinity (BAV).   As will be shown here, there is at least one 

atmospheric state which is associated with increased storm frequency and intensity.  There is 

also a correlation between SST and storm frequency for all storms which becomes more 

significant for intense storms. In a physical context, the atmosphere state and SST provide a 

means for tropical cyclones to enter the region and remain intense while doing so.  This 

information is evaluated via Chi Squared testing and is presented throughout this chapter.   

5.1 IDENTIFYING A RELATIONSHIP BETWEEN ATMOSPHERIC PRESSURE AND TC’s 

A preliminary investigation, a visual screening of the EOF weightings, identified which 

conditions in the atmosphere tended to steer TCs into the BAV.  If the weighting on an EOF 

affects storms within the region, it might expected to have opposite deviations (opposite signs) 

during times of heavy activity compared to during times of inactivity.  In the visual screening, 

EOF3 stood out as one which may have some effect over the storms within the region because of 

its drastic lows during the times of notable storms within the region, as depicted in Figure 8.  

This weighting illustrates some striking features; in the period during the 1920’s to the early 30’s 

the value is very positive which corresponds to a period of inactivity while the weighting shows 

some interesting lows during times of intense activity.  The 1938 Storm (The Long Island 

Express/New England Hurricane) occurred during a local minima where the data set is shifting 

into the negative region, The Great Atlantic Hurricane of 1944 occurred during the first major 



 

33 
 

low in the data, Donna of 1960 also happened during a local minima, Gloria of 1985 coincided 

with a distinct dip in weighting, and finally towards the end of the weighting where Irene occurs 

is intensely negative, yet Sandy occurred during an upward swing in the weighing. This positive 

feature in 2012 neglects the smoothing done to describe long term variability because the data 

from 2013 and 2014 was not available and therefore may be different than the output presented. 

Also, this value may incorporate the behavior of Sandy because she was present for a long period 

of time during this season.  Although all weightings will continue to be analyzed, the focus will 

be shifted to EOF3 since it appears to have most potential to relate with storms within the region.   

 

 

Figure 8: Weighting of EOF3 vs Year 
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5.2 OBSERVING THE DATA IN A SINGLE VARIABLE TABLE 

 In order to further understand how much each EOF affects the frequency of storms within the 

region, each EOF’s weightings are placed into a single variable table, where the probability of 

each year possessing a certain weighting is equal.  The number put into the table coincides with a 

TC occurring in conjuncture with that atmospheric state.  If the EOF affects the storm frequency 

in the BAVs then there should be a trend in the numbers within the tables. These tables are 

calculated for all storms as well as a second time for only intense storms.  If a relationship exists, 

it is hypothesized that trend will be emphasized when considering only intense storms.  This test 

is another screen and does not present the statistical significance of a relationship, but is a useful 

tool in solving the puzzle.  The tables with the highest trends are shown in tables 10 and 11. 

Weightings on EOF3 and EOF7 appear to display a pattern which affects TC frequencies.  

Although all the EOF’s will continue to be investigated, it is likely that one or both of these are 

affecting the steering of storms into the BAV while the atmospheric pressure is being controlled 

by the opposite (negative) of the EOF. Each table shown below actually contains two tables.  The 

left shows a table for all storms and the right shows a table for only intense storms.  The 

contingency tables throughout this thesis will continue to display two tables into one.    

Table 10: Single Variable Tables of W3 

Weighting 3 

All Storms Intense Storms 
w ≤ x w > x w ≤ x w > x 

28 13 8 4 
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Table 11: Single Variable Tables of W7 

Weighting 7 

All Storms Intense Storms 
w ≤ x w > x w ≤ x w > x 

27 14 10 2 
 

The next single variable table made is the number of storms versus the SST; it is done in the 

same fashion as the tables of the weightings and is shown in Table 12.  Although there are many 

storms in each category for years with storms, the intense storms seem to only be present during 

times of high SST.  This suggests that the intensity of the storm is affected by current SST in the 

vicinity. This suggests that it is justifiable to continue investigating a relationship between 

intense storms and SST for the BAV. 

Table 12: Single Variable SST Tables 

Sea Surface Temperature 

All Storms Intense Storms 

SST ≤ SSTbar SST > SSTbar SST ≤ SSTbar SST > SSTbar 
17 24 1 11 

 

5.3 DETERMINING A RELATIONSHIP BETWEEN STORM FREQUENCIES AND 
MULTIPLE FACTORS 

The next step is to move on to a double variable table and test for statistical significance since it 

is possible that storm probabilities depend on more than one factor.  From a meteorological 

perspective, it is likely that the atmosphere and the sea contribute to storm frequency in this 

region as well as the strength of these storms because large-scale atmospheric pressure state 

strongly influences storm steering and storm intensity is related to SST.   It is also possible that 
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more than one of the EOFs control the large-scale steering currents which drive storms into this 

region as well as the SST coming into account coupling with the atmosphere and influencing 

storm frequency.  Each weighing on the EOF was put into a double variable table with the others 

as well as with the SST.  The striking tables are shown below along with their calculated Chi-

Squared values.  In this case Chi-Squared values are determined according to one degree of 

freedom.  In order to have a relationship with 95% significance, the value must be above 3.84.  

To be significant with 99% certainty, the Chi-Squared value must be above 6.64. ` All of the 

notable tables presented here possess values at least significant with 99% certainty.  There are 

other tables which have high Chi-Squared values, but the ones displayed here are only those 

which have both high values in the intense storm years as well as all storm years.  Tables for 

weightings three and seven are the significant ones shown below in Tables 13 and 14.   

Table 13: Weightings 3 vs. SST Contingency Tables 

Weighting on 
EOF 3 

 

All Storms Intense Storms 

X2 13.731708 X2 10.00 
w ≤ x w > x w ≤ x w > x 

SST ≤ SSTbar 8 9 1 0 
SST > SSTbar 20 4 7 4 

 
 

Table 14: Weighting 7 vs. SST Contingency Table 

Weighting on 
EOF 7 

 

All Storms Intense Storms 

X2 18.219511 X2 22.00 
w ≤ x w > x w ≤ x w > x 

SST ≤ SSTbar 6 11 0 1 
SST > SSTbar 21 3 10 1 
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These two tables are striking because they are both display extremely significant interactions 

with certainty above 99% when comparing to a critical value of 6.63 therefore majorly affect TC 

frequency within the BAV.  The storms tend to occur in conjunction with higher than average 

SST’s and negative weightings on both the EOF’s shown.  In addition to the significantly high 

Chi Squared value, it is has also been seen that the vast majority of the weak storms disappear 

from the times which there are positive weightings and low SST’s (which is shown in the table 

on the right of intense storms in Tables 13 and 14).  The SST seems to be primarily affecting the 

storm intensity in the BAV and the weightings on the EOFs appear to be more influential on 

storm frequency.  The weightings of EOF3 and EOF7 have also been compared against each 

other in another contingency table to determine if the two work together to create the proper 

atmospheric conditions for TC’s which can be seen in Table 15.  It appears that the two 

weightings combine to steer TC’s into the BAV, and it also appears that when both the EOF’s 

are affecting the pressure positively, that intense storms have little ability to enter the region at 

all.  The EOFs are simply orthogonal functions which represent the covariance of the system 

based on the entire field, but these two EOFs have similar local features surrounding the BAV 

which would sensibly combine to steer TCs into this region.  These similar local features can be 

seen in the contours of the EOFs found in Appendix A. This tool allows individuals to identify 

patterns and relate these patterns with occurrences and in this case, more than one of these 

patterns relates to TC presence. 
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Table 15: Weighting of EOF3 vs. Weighting of EOF7 

Weighting of EOF 3 

Weighting of 
EOF7 

All Storms Intense Storms 
X2 9.8292685 X2 6.666667 

 
w ≤ x w > x w ≤ x w > x 

w ≤ x 18 9 6 4 
w > x 10 4 2 0 

 

There is statistical evidence with 99% certainty that EOF3 and EOF7 combine to steer TC’s into 

the area because the calculated Chi Squared values are greater than the critical value of 6.63. 

Because there is a zero in the intense storm table, the result of this analysis is weaker than for 

tables with no zero’s, but it is clear to those viewing the table that a relationship exists 

concluding that these functions greatly influence storm frequency.  When both of the weightings 

are negative, the probability for a cyclone to enter the BAV is much higher.   

 

The statistical tests performed  were based on the expectation of equal probabilities in each of the 

categories of the table, but if a linear relationship exists between either of the weightings on 

EOFs and the SST or the two EOFs weightings, then the expected values need to be recalculated 

based on that and reevaluated for significance. Thus, a test of the relationship between these 

variables will be conducted in the next section.  

5.4 TESTING FOR A RELATIONSHIP BETWEEN THE SIGNIFICANT EOFS AND SST 

To confirm the significance of the contingency tables, a relationship EOFs and SST is 

investigated. A relationship between the weightings on EOF3 and EOF7 is also investigated to 

confirm significance, although it is unlikely because of the orthoganality constraint of the EOF 
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estimation. These relationships are tested using linear regressions and are presented in Figures 9-

11 .The weightings and SSTs corresponding to the year are shown in these figures below as well 

as the associated linear equations and the squared values of the correlation coefficients.  

 

 

Figure 9: Weighting 3 vs. SST for each Year  
 

 

Figure 10: Weighting 7 vs. SST for each Year  
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The correlation coefficients (R) of weightings on EOF 3 and 7 against SST are 0.4915 and 

0.4462 respectively.  Therefore, SST and EOF3 as well as SST and EOF7 possess linear 

relationships considered significant to 95% based on a critical value of 0.1767 (which was 

determined from interpolating between 100 and 200 to compute the value based on 134 degrees 

of freedom).  Not only do the values surpass the 95% level of significance, but both are 

significant with 99.9% certainty.  Due to the relationship between there variables, the expected 

values used in the Chi Squared testing need to be recalculated and their significance reevaluated 

based on those values.  It should be noted that the x and y axis of the regression was done with 

the opposite orientation of the contingency table, therefore the trend is converted to the opposite 

of what is seen in Figures 9 and 10. 

 

Next the weightings of EOF3 and EOF7 are plotted against each other for the corresponding 

years.  EOFs 3 and 7 are not related with any level of significance based on a correlation 

coefficient of R = 0.0006, which confirms the expected orthogonality.  The test for significance 

of the Chi Squared values for the storm tables between EOF3 and 7 are valid.   
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Figure 11: Weighting of EOF3 vs Weighting of EOF7 
 

5.5 REEVALUATING CONTINGENCY TABLES INCLUDING THE EFFECTS OF 
CORRELATION BETWEEN SST AND EOFs 

 

The relationship between EOF3 and SST as well as the relationship between EOF7 and SST shift 

the expected values in the contingency tables to higher probabilities following the linear 

relationship in the bottom left and top right (negative weighting, high SST and positive 

weighting, low SST).  Therefore the expected value will rise in these two regions and fall in the 

other two.  The revised expected values for EOF7 and EOF3 are based on the cumulative 

probability of the area in each box found by integrating 
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  (   )                       …………………………………………….….Equation 31 

  (   )                      ……………………………………………..….Equation 32 

With squared correlation coefficients of   
 =0.4416 and   

 =0.1991. The residual standard 

deviation based on correlation and the standard deviation of the weighting is: 

       √    ……………………………………………………………….……Equation 33 

The standard deviation are:    =55.32271,    =25.65545,      =0.702417 and the mean of SST 

is 20.51473 degrees Celsius. The integrals are evaluated for the numbers within each category of 

the contingency table.  Based on this integration the expected percentages of the contingency 

table of EOF3 and SST as well as EOF7 and SST are presented in Tables 16 and 17 below. 

 

Table 16: Expected Probabilities 
within the Contingency Table for 

EOF3 and SST 

EOF3 w ≤ wbar w > wbar 

SST ≤ SSTbar 0.1682 0.3318 
SST > SSTbar 0.3318 0.1682 

 
 

Table 17: Expected Probabilities 
within the Contingency Table for 

EOF7 and SST 

EOF7 w ≤ wbar w > wbar 

SST ≤ SSTbar 0.1765 0.3235 
SST > SSTbar 0.3235 0.1765 
 

Each of these percentages is multiplied by the total number of storms used within the table to 

compute the expected frequency.  
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          (     )              …………………………………….………..Equation 34 

The revised contingency tables with respected Chi Squared values based on these alternate 

probabilities are displayed in Tables 18 and 19.   

Table 18: Contingency Table of SST and EOF3 with Revised 
X2 Based on Linear Relationship 

Weighting 
of EIG 3 

All Storms Intense Storms 
X2 5.958359 X2 8.72912 

w ≤ x w > x w ≤ x w > x 
SST ≤ 
SSTbar 

8 9 1 0 

SST > 
SSTbar 

20 4 7 4 

 

Table 19: Contingency Table of SST and EOF7 with Revised 
X2 Based on Linear Relationship 

Weighting 
of EIG 7 

All Storms Intense Storms 
X2 7.590399 X2 14.48966 

w ≤ x w > x w ≤ x w > x 
SST ≤ 
SSTbar 

6 11 0 1 

SST > 
SSTbar 

21 3 10 1 

 

Given that Tables 18 and 19 have removed the influence of the correlation between SST and 

each of the EOFs’ weightings, the remaining influence of including SST is significant.  Although 

the zero’s in the table still compromise the statistical evidence for the intense storms, there it is 

clear that EOF’s 3 and 7 both individually pair with the SST to make favorable conditions for TC 

to enter the BAV as well as remain intense while the SST is above average and the weightings 

are below average with a 99% certainty in comparison to a critical value of 6.63.  
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5.6 TESTING A RELATIONSHIP BETWEEN STORM HEADING AND WEIGHTING 

As with previous contingency tables, Table 12 contains two tables, one for all storms and another 

for only intense storms to determine if the EOF affects storm heading (the storm’s path direction 

in degrees from the horizontal) and again to determine if the EOF has a stronger effect on storm 

heading for more intense TCs.  If there is a relationship between storm heading and weighting, it 

is likely that more of the storms will be along one of the diagonals of the table. This relationship 

would show that the large-scale, atmospheric steering currents have an effect over the heading as 

well as the influence of storm frequencies previously shown. This test is conducted for all of the 

EOF’s, but only tables which display statistical significance in both of the tests (all storms and 

intense storms) are presented here in Table 20.  EOF6 has statistically significant Chi-Squared 

values both above the 99% certainty critical value. 

Table 20: Contingency Table of Storm Angle and 
Weighting of EOF6 

Weighting of 
EIG 6 

All Storms Intense Storms 

X2 6.71 X2 6.67 
w ≤ x w > x w ≤ x w > x 

Angle ≤ 65 8 16 0 4 
Angle > 65 12 5 6 2 

 

Previously it was found that EOF6 does not does not affect storm frequency, however, as shown 

in Table 20, it appears to have a possibly significant effect on the storms’ heading. While the 

weighting of EOF(6) is negative, storms tend to follow higher heading angles paths, and while it 

is positive storms tend to follow lower  heading angles.  Although the statistical significance test 

for intense storms is reduced by a zero in the table, this does show that there is a much higher 

prominence of storms heading influence by EOF6 while storms are higher intensity.  
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5.7 DISCUSSION OF THE RELATIONSHIP OF CLIMATE AND TROPICAL CYCLONES 

It is clear from many previous studies that large scale circulation plays an important role in the 

steering of TC’s (Xie 2005; Wang et al 2011). Similar to large scale features, semi-permanent, 

synoptic scale features, tend to control airflow in regions which they inhabit.  For example, air 

flow near a region of high pressure is directed in an outward spiral because air flows from high 

towards low pressure.  These features can also steer other synoptic scale systems (TC’s etc.) 

away from the high.  When an area contains a low pressure region, the airflow is directed into the 

area and around by the Coriolis Effect.  This can cause tropical cyclones to be pushed around it 

and slightly into it with a clockwise direction. 

 

The EOF’s describe semi-permanent pressure features of the large scale circulation within this 

thesis’ study region in a reduced number of dimensions.  Weightings on these EOF’s depend on 

the similarity of a given pressure field in time to these functions.  Thus, the weightings represent 

the deviations from the mean overall pressure field and can be positive or negative.  For 

example, the pattern shown in Figure 13 with a negative weighting would produce larger than 

average pressures in the area southeast of Nova Scotia, while a positive weighting would 

produce lower than normal pressures in this region that are larger with higher magnitude 

weightings.  Therefore the weightings of each EOF can be used effectively to represent the 

atmospheric state and make a good tool for analysis.  

 

Analyzing storm frequency and intensity for each EOF’s weightings provides useful information 

for quantifying how atmospheric pressure patterns influence storm behavior and is used here as 

an objective means to identify specific atmospheric pressure patterns affecting the steering 

currents of synoptic scale features.  It is hypothesized that a pressure deviation off the east coast 
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of the U.S. would be present in the EOF’s which affect storm frequency for the BAV because the 

associated steering would be toward this region.  EOF(3) and EOF(7) presented in Figures 12 

and 13 are both found to relate with storm frequencies in the BAV and will be discussed in the 

paragraphs below as to why they may be affecting storm frequency. 

 

Figure 12: Contours of EOF(7) Showing Semi-Permanent Circulation Aspects 
 

In general, the major storm events in the BAV occurred while there was a negative weighting on 

EOF(7).  This state is associated with higher than average pressures over the Atlantic Ocean off 

the northeast coast of North America. Counterclockwise flow around this high-pressure, large-

scale system would tend to steer storms toward United States coastal areas.  If a storm is 

traveling north along the Atlantic Coast of the US, this region of higher pressure would tend to 

steer it toward the New York region.  The statistical significance of the relationship between 

storms entering the BAV and negative weightings on EOF(7) supports the existence of important 

impacts on storm frequency produced by the atmosphere.  This is more apparent during intense 

storms which have larger potential coastal impacts.   
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Figure 13: Contours of EOF 3 Showing Semi-Permanent Circulation Aspects  
 

Local pressure perturbations of EOF(3) in the region off the northeast U.S. coast are similar to 

those of EOF(7), therefore it is also likely this pressure field would have a similar effect over 

TCs during times of a negative weighting.  While a negative weighing exists for EOF(3), there is 

a high pressure region just off the Nova Scotia and Maine as well as a high covering a large 

majority of the eastern U.S.  This atmospheric pattern would tend to influence storms into the 

BAV because there is a space between the two highs directly over the New York area. The 

relationship between storm probability and the negative weighting is consistent with the 

statistically significant relationship found between the weighting of EOF(3) and storm frequency 

and intensity.   

 

Figure 14 shows the sea surface pressure during the 1938 storm.  The yellow line shows the 

tropical cyclone’s predicted path, and the green shows its actual path.  The storm was forced into 

the New York area by the combined effects of the high pressure systems to either side.  Based on 

the statistically significant relationships between EOF(3) and EOF(7) and storm frequency and 
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intensity, it is probable that many of the other storms which came into the BAV occurred while 

sea surface pressure was similar to that shown in Figure 14 which depicts similar features to 

those of EOF(3) and EOF(7).  

 

 

Figure 14: 1938 Storm Track and Sea Surface Pressure (Byers 1944) 
 

While EOF(7) and EOF(3) drive storms into the region, the storms are being directed further 

along a more specific path by EOF(6) (Figure 15).  This pressure variation is significantly 

affecting the direction which storms follow and should be considered within hazard probabilities 

because it would greatly affect surges in the region due to the large dependence of setup on angle 
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of incidence for land-falling storms (Irish and Resio 2010).  This relationship presents another 

aspect of the natural influence of large scale circulation on storm behavior for the BAV that 

should be used within hazard probabilities.    

  

Figure 15: Contours of EOF(6) Showing Semi-Permanent Circulation Aspects 
 

Also in this thesis, sea surface temperature variations, represented by a five-year time centered 

average, are investigated because SST is known to be a factor in storm intensity and is used to 

calculate maximum potential intensity (MPI) (Holland 1997; Emanuel 1997).  Tropical cyclones 

acquire their fuel from the latent heat of the ocean surface, therefore higher temperatures, induce 

higher intensity storms.  Only one out of the twelve intense storms (Storms with Cp below 

980mb) occurred when the temperature was below average (20.5˚C), and that SST was not close 

to the lowest it has been in recorded history for this region. Figure 16 displays the time centered 

sea surface temperature at the Battery tide gauge.  During many of the years with the major 

storms in the region, the SST’s were at local maximum temperatures.  Since 1995, the sea 

surface temperature at the BAV has not fallen below 21˚C which coincides with the beginning of 

the period which NOAA declared there would be heightened storm activity for the Atlantic Coast 
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of the U.S (Goldenberg et al 2001). The SST for this region combines with EOF(3) and EOF(7) 

to drive intense tropical cyclones into the BAV supported by a statistically significant 

relationship.   

 

Figure 16: Seasonal, Time-Centered, Five-Year Average SST at Battery Park 
 

The significant relationships with storm probability of EOF(3) and EOF(7) for the BAV can  

assist with storm probability estimation and EOF(6) for storm angle probability estimation for 

the BAV.  The Poisson frequency estimation and omnidirectional probability are leading to 

misestimation in storm probabilities which can be improved using variable hazards based on 

atmospheric and oceanic influences characterized by the weightings on EOF(3), EOF(7) and 

EOF(6) and SST.  Because SST and the weightings of EOF(3) and EOF(7) are related, it is likely 
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that the climate works in various ways (potentially caused by one another) determining the 

intensity and paths which storms can take during a given period which can be quantified into 

hazards.  The atmosphere does not behave independently and neither should the probabilities of 

natural phenomenon within it. 
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CHAPTER 6 RESULTS OF PART 2: EVALUATION OF PARAMETER RELATIONSHIPS 
RELATIVE TO HAZARD ESTIMATES 

6.1 STORM INTENSITY VS. ANGLE 

The dataset used here cuts off many of the storms exhibiting low heading angles (almost all 

below 45˚) because of the 45˚ angle which the storms must pass into to be included in this study.  

A histogram is made to illustrate the heading angles which the storm tracks follow, as shown in 

Figure 17. 

 

Figure 17: Histogram of Storm Angles  
 

Hazard calculations for this area are estimated using a normal distribution with mean direction of 

22 degrees east from north and 10 degree standard deviation (or 68 degrees from the horizontal, 

which is the system used here) (FEMA 2012).  According to these assumptions for the storm 

heading, 99% of the storms should be within three standard deviations, therefore between 38 and 

98 degrees.  There are 47 storms used within this set, therefore less than 1 of these storms should 
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be out of this region, yet 7 storms are outside of three standard deviations, as illustrated in Figure 

17. 

   

After sorting the storms based on angle, it was found that about 50% of the storms within the 

study region were below 65 degrees and about 50% were above; it was not a perfect split, but to 

split at a whole number it was the best option; 15 storms fell below this value and 13 fell above.  

This set is limited to 28 storms because the minimum central pressure values were not available 

for all of the storms, especially in the earlier years.  The average Cp for each of the sets is 

displayed in Table 21.   

Table 21: Central Pressure Statistics by 
Direction 

Angles < 65 degrees Angles > 65 Degrees 
Average 

Cp 990.867 
Average 

Cp 972.2308 
S(Cp) 16.2343 S(Cp) 20.33123 

n 15 N 13 
 

The average of the minimum Cp of the storms is lower (more intense) for the storms which 

traveled with higher heading angles.  The values are separated by about 18 mb, which is 

substantial considering the consequences of the two different storm intensities.  These means are 

tested for a significant difference through the Student’s t test resulting with a t value of 2.70 to be 

compared to a critical t value of 2.056 for a two-tailed t test based on 26 degrees of freedom and 

a 95% certainty.  Because the calculated t is higher than the critical value, the null hypothesis 

that the means are equal is rejected therefore concluding that there is a difference between the 

sets.  This finding implies an inter-connectivity between storm heading and intensity therefore 
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the two parameters are plotted against each other in Figure 18.  The data appears to follow a 

linear with a regression formed where 

                          ……………..………………………………………Equation 35 

with a correlation coefficient of R=0.5 which is must be above the value, 0.42, to be considered 

significant for 26 degrees of freedom.  Therefore, with statistical significance with 95% 

certainty, there is a relationship between higher heading angles and higher intensity of storms.  

This information would lead to a difference in the hazard assessment for the region because the 

estimated joint probability is considered to be independent.  Higher heading angles for this area 

result in higher surges because of the set up this coastal geometry causes, so if the higher angles 

are also higher intensity, the surge risk would rise significantly.   

     

Figure 18: Angle of Direction vs. Central Pressure  
 

To quantify the influence of this difference in risk, a Gumbel ranking (Figure 19), is plotted for 

the three different datasets: one with heading above 65 degrees, one with heading below 65 

degrees, and one with both sets included into one.   Each of the regressions trend with different 
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slopes, and although it is hard to visualize in a log scale, the graph shows a difference in trend 

between the sets, causing an exponential difference for higher return periods.  This suggests that 

analyses done assuming one population of storms without separating by angles traveled, causes 

an underestimation in intensity hazard and a resulting inability to properly mitigate. 

 

Figure 19: Gumbel Ranking for Central Pressures Differentiated by Angles  
 

A plot of the return periods for each of the three sets (above 65, below 65, and the set consisting 

of all the storms) in Figure 20 is based on the Gumbel ranking regression (Figure 19). 
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Figure 20: Return Period of Central Pressure based on Storm Angle 
 

The values of return period are significantly different for the three different datasets.  For the 

high angle return, this graph suggests a 70 year return period, while the low angle suggests a 

return period of 380 years for a storm of Sandy’s intensity.  This return period represents storm 

angle, intensity and Poisson frequency, which are the most significant factors in determining 

storm surge hazard.  Thus, these results suggest that not separating storm by angle causes an 

underestimation in storm surge return periods and will result in an inability to properly mitigate 

the risks associated.   

6.2 RELATIONSHIP BETWEEN CENTRAL PRESSURE AND FORWARD VELOCITY 

Within the FEMA calculations of hazard, the forward velocity is a function of the pressure 

differential (peripheral pressure – central pressure) with a linear relationship; here, this 

relationship is tested (FEMA 2012).  Here central pressure instead of the difference in pressure 

assuming that the outside pressure is similar for each of the storms which is assumed to be 1012 
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through FEMA’s analysis (FEMA 2012).  A plot of Cp verse Vf was formed and displays no 

linear relationship visually as well as no statistically significant relationship present (Figure 21).   

 

Figure 21: Forward Velocity vs. Surface Pressure Regression 
 

Although this dataset is not a random sample of the storms in the region, it should generally 

follow the relationship presented or show some form of correlation between the two parameters 

if a relationship does exist.  The objective criteria used here for storm selection was done to 

represent the storms presumed to have the most detrimental impact on the BAV.  This lack in 

relationship between hazardous storms’ forward velocity and central pressure suggests that the 

probabilities should not be calculated using this dependence.   

6.3 HAZARDOUS STORM DISTRIBUTION  

The frequency of the time in years between all storms is compared to a theoretical exponential 

distribution based on the Poisson frequency to test the validity of the assumption that TCs follow 

a Poisson distribution.  A graph of the observed frequency is overlaid by the theoretical, 

exponential frequency is shown in Figure 22.   
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Figure 22: Frequency of Time Between All Observed Storms Compared to Theoretical Poisson   
 

There appears to be a relative consistency between the two distributions which is tested for 

significance using the Chi Squared test statistic.  The contingency table was separated into four 

year intervals to eliminate a large number of zero’s which can control the results.  Chi Squared is 

shown in the Table 22 to be 4.38, which is not a high enough value to reject the null hypothesis 

that the two values are equal based on four degrees of freedom and a 95% certainty (critical 

value=7.81) suggesting that the frequency follows this relationship, but not with statistical 

significance.  
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Table 22: Contingency Table of Frequency of All Storms 
Observed Compared to Theoretical Exponential Frequency 

 
0-3 Y 4-7 Y 8-11 Y 12-15 Y 16-19 Y 

Observed 28 11 7 0 1 
Theoretical 26.47885 13.29573 4.240095 1.352194 0.431224 
((O-E)^2)/E 0.087387 0.396395 1.79644 1.352194 0.750206 

X2 4.382622819 
 

To determine if the intense storms behave with a different assumed return period, they are tested 

using a separate distribution based on only the number of intense storms in this time period.  The 

observed frequency and theoretical frequency are shown in Figure 23.  These two appear to be 

less similar than the time occurrence between all storms distribution and its theoretical 

exponential distribution.  

 

Figure 23: Observed Frequency of Time Between Intense Storms Compared to Theoretical 
Poisson Frequency 
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The contingency table of these two distributions is shown in Table 23.  For this case, we also do 

not reject the null hypothesis that the two sets are not equal.  Although it visually appears that the 

two distributions differ significantly, there is not enough statistical evidence to support this 

statement.   

Table 23: Contingency Table of PDF of Intense Storms Compared to Theoretical 
Exponential Distribution 

Years Bet 
Events 0-1 Y 2-3 Y 4-5 Y 6-7 Y 8-9 Y 10-11 y 12-13 Y 

Observed 2 0 2 2 2 1 2 
Theoretical 1.099036111 2.150408 1.661225 1.345854 1.090354 0.883359 0.71566 
((O-E)^2)/E 0.738588951 2.150408 0.069087 0.317944 0.758886 0.015402 2.304905 

 X2 6.355220831 
 

6.4 PROBABILITIES OF SANDY AND IRENE  

As discussed in the introduction, Hurricanes/ Tropical Cyclones Sandy and Irene are associated 

with extremely low probabilities for some of their parameters when these probabilities are 

quantified from the assumed distributions found in Table 1 (FEMA 2012).  Each of the 

parameters is quantified as discussed in the methodology section 4.2.3.  The associated 

parameter probabilities are presented in Table 24 where F(x) is the cumulative probability up to 

parameter associated with each storm, E(x) is the exceedance probability and T(x) is the return 

period in years.   
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Table 24: Probabilities of the Individual Parameters of Sandy and 
Irene 

Parameter 
Irene Sandy 

F(x) E(x) T(x) F(x) E(x) T(x) 
θ 0.4043 0.5957 1.6787762 0.9998 0.00015 6578.9474 

Rp 0.8044 0.1956 5.1124744 0.9948 0.00523 191.02197 
vf 0.9541 0.0459 21.805257 0.9998 0.0002 5089.0585 
Δp 0.6236 0.3764 2.6567481 0.8745 0.1255 7.9681275 

 

A joint probability for the parameters can be calculated using a computer model, but inferring the 

probabilities observing that Irene is not an uncommon storm, but to occur the year before a storm 

with parameters similar to Sandy is extremely improbable and may be considered seemingly 

impossible.   

6.5 DISCUSSION OF CURRENT HAZARD ESTIMATES FOR TROPICAL CYCLONES 

Current hazard estimates include a large amount of bypassing storms which pose no major threat 

to the BAV, therefore should be excluded from the storm population used to estimate surge 

hazards.  Conventional hazards are calculated to prepare for the expected surge within a given 

100 year period.  This calculation of previous storm probabilities appears to be biased because of 

the inclusion of a large population of storms that did not threaten NYC which caused the 

distributions and relationships to be misrepresented in this region.  The storms within the 

objective dataset here based on the most hazardous impact to the BAV, appear to behave in a 

different manner than the bypassing storms.  Filtering the dataset shows relationships which exist 

in the land-falling, intense storms that were previously neglected and allows for more accurate 

probability calculations based on the storms which do pose a major threat, in turn allowing for 

proper mitigation.  
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As a whole, TC occurrences appear to follow a Poisson distribution based on statistical analysis 

which is further supported by the visual representation of the data.  However, the intense storms 

do not appear visually to mimic this distribution, but there is not enough statistical evidence to 

claim otherwise.  Based on the findings here, it is hypothesized that this lack in statistical 

evidence is due to epistemic uncertainty caused by a lack in data.  If the sample followed the 

same pattern, but had double the amount of storms, the contingency table would change 

dramatically as shown in Table 25. 

Table 25: Contingency Table of Intense Storms’ Distribution if the Data were Doubled 

Years Bet 
Events 0-1 Y 2-3 Y 4-5 Y  6-7 Y  8-9 Y  10-11 y  12-13 Y  

Observed  4 0 4 4 4 2 4 

Theoretical  2.198072222 4.300817 3.322451 2.691709 2.180709 1.766718 1.43132 

((O-E)^2)/E 1.477177903 4.300817 0.138173 0.635888 1.517773 0.030803 4.60981 

 X2 12.71044166 

  

This table would represent enough statistical evidence to reject null hypothesis that the two 

distributions are not equal.  Based on the data currently possessed for the BAV of intense storms, 

these storms may follow a Poisson distribution, but need to continue to be investigated as more 

data is accumulated because if they continue on this trend, it will be clear that storms do not 

follow this assumed distribution.   
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CHAPTER 7 CONCLUSION  

Atmospheric circulation is affecting storm behavior in the New York region, as shown here by 

the statistically significant relationship found between storm frequency and intensity in the BAV 

that exists for both atmospheric states characterized by a negative weighting on EOF’s 3 and 7. 

These relationships increase in significance while coupling with sea surface temperatures that are 

related to these circulation patterns.  EOF6 also possesses a statistically significant relationship 

with the heading tropical cyclones are directed in upon entering the New York region.  These 

relationships were determined using objective representations of surface pressure to analyze their 

influence and display a significant variability of storm behavior dependent on the climate.  

Proper mitigation is dependent upon using this variability to quantify a more accurate probability 

of storms entering the BAV, otherwise the hazard estimates will continue to underestimate 

hazard causing a lack of preparedness and resilience for the largest city in the United States.   

 

This thesis shows that a common assumption in hazard quantification (that storms are constant 

through time following a Poisson distribution) may be inaccurate for more intense storms and 

needs to be continually investigated.  There is an underlying interconnectivity in nature which is 

greatly affecting storm hazards for the New York City area.  There is a statistically significant 

relationship between TC heading and intensity for the BAV which is currently being neglected in 

hazard estimates causing an underestimation in probabilities.  Heading and intensity coupling 

together causes a significant rise in storm damages because the associated surges are greatly 

dependent on these characteristics: angle of incidence and central pressure.   This underlying 
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relationship between storm direction and intensity appears to be the result of the dependence of 

storms behavior on large scale climactic variations and is influencing the hazard probabilities.   

  

Atmospheric circulation affects 1) the oceanic currents, along with local heating and cooling of 

the surface water layer, and 2) the atmospheric steering for tropical cyclones.  Heightened sea 

surface temperatures result in more available latent heat for tropical cyclones causing their 

intensity to increase.  As shown here, stronger cyclones are more likely to travel with an angle 

much closer to shore normal which significantly increases the potential surge hazard, drastically 

increasing the damages to the BAV.  This natural behavior brings up nuances which are often 

neglected while quantifying hazard for this region.  Storms within the BAV do not appear to be 

the sum of random coincidences, but instead a result of coupled processes of many scales in 

nature.   

 

To properly quantify and mitigate hazards in this region, the natural coupling must be included 

while determining the probabilities as well as properly filtering the data used for hazardous 

storms. For example, the calculation of parameter distributions and the relationships they follow 

should exclude storms that do not pose a threat to the area in question otherwise the bypassing 

storms will unduly influence these estimates, causing inaccurate relationships and 

underestimated hazard probabilities.  The more comprehensive perspective on hazards adopted 

here should more accurately represent storm hazard for the BAV and will be revisited in future 

work.   
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APPENDIX A 

 

The EOFs were generated by a computer program written by Professor Donald Resio which 

produces EOFs for a covariance matrix which the user inputs. This system identifies the 

organization in a multidimensional structure by identifying axes of maximum variance which are 

orthogonal to all previous axes identified.    

 

The technique utilized here to identify such a coordinate system is called Principal Component 

Analysis.  This technique transforms a covariance matrix, C, by rotating it into diagonal form.  

The diagonal elements, γ1… γn are the only non-zero elements.  The solution of these elements 

remains in fundamental algebra which solves for these values through a setoff homogenous 

linear equations of n unknowns as shown in equation 1.  

      ………………………………………………………………………………...Equation 1 

(C is the covariance matrix, x is a set of orthogonal column vectors (x1 to xn) and γ is a diagonal 

matrix) This equation’s solution is done through a nontrivial solution (Wilkinson 1965). 

Rewriting yields:  

(    )    …………………………………………………………………………Equation 2 

(I is the identity matrix)  If the determinant is singular this simplification can be made: 

         ………………………………………………………………..………… Equation 3  

The eigenvalues are the elements of the diagonal matrix,  .  A set of n column vectors in the 

matrix x are called the eigenvectors which correspond to the eigenvalues.  The eigenvalues 

represent the amount of variance defined by the eigenvector.  Thus, EOF x1 defines the amount 
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of variance of the value  1 (Resio et al 1973).  The table of the EOFs corresponding variance 

percentages is shown below and is followed contours of the 15 EOFs. 

 

Table of Percentage of Variation each Eigenvector defines: 

EIG(n) Variance Cumulative V 
1 38.999 38.999 
2 18.615 57.614 
3 12.595 70.209 
4 7.027 77.236 
5 5.654 82.89 
6 3.54 86.43 
7 2.712 89.142 
8 1.88 91.022 
9 1.576 92.598 
10 1.262 93.86 
11 1.091 94.951 
12 0.861 95.812 
13 0.626 96.438 
14 0.581 97.019 
15 0.462 97.482 

 

Contours of Eigen vectors in order EOF1-EOF15 
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APPENDIX B 

Weightings of Eigenvectors  
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Weightings vs. SST 
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