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Abstract 

 

The mechanisms of transepithelial absorption of dietary sucrose in the American lobster, 

Homarus americanus, were investigated in this study to determine whether sugars can be 

transported across an animal gut intact or as monosaccharides following hydrolysis. Lobster 

intestine was isolated and mounted in a perfusion chamber to characterize the mechanisms of 

mucosal to serosal (MS) 
14

C -sucrose transport across the intestine MS fluxes were measured by 

adding varying concentrations of 
14

C-sucrose to the perfusate which resulted in a hyperbolic 

curve following Michaelis-Menten kinetics.  The kinetic constants of the proposed sucrose 

transporter were KM = 15.84 ± 1.81 µM and Jmax = 2.32 ± 0.07 ρmol cm
-2

min
-1

. The 

accumulation of 
14

C-sucrose in the bath in the presence of inhibitors, phloretin, phloridzin, and 

trehalose was observed. Inhibitory analysis showed that phloridzin, an inhibitor of Na
+
-

dependent mucosal glucose transport, decreased MS 
14

C-sucrose transport suggesting that MS 

14
C-sucrose radioactive flux may partially involve an SGLT-1-like transporter. Phloretin, a 

known inhibitor of Na
+
-independent basolateral glucose transport, decreased MS 

14
C-sucrose 

transport, suggesting that some 
14

C-sucrose radioactivity may be transported to the blood by a 

GLUT 2-like carrier. Decreased MS 
14

C-sucrose transport was also observed in the presence of 

trehalose, a disaccharide containing D-glucose moieties.  Thin-layer chromatography (TLC) was 

used to identify the chemical nature of radioactively labeled sugars in the bath following 

transport. TLC revealed 
14

C-sucrose was transported across the intestine largely as an intact 

molecule with no 
14

C-glucose or 
14

C-fructose appearing in the serosal bath or luminal perfusate. 

Bath samples evaporated to dryness and resuspended disclosed only 15% volatile metabolites.  

Results of this study strongly suggest that disaccharide sugars can be transported intact across 



viii 
 

animal intestine and provide support for the occurrence of a disaccharide membrane transporter 

that has not previously been functionally characterized.   
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Introduction 

The transport of sugars, both complex and simple, from within the intestine to the 

bloodstream of vertebrates and invertebrates has been studied for many years. Complex 

carbohydrates are converted into smaller molecules to be transported across the phospholipid 

bilayer of intestinal plasma membranes following digestion. Because of their permeability 

coefficients and size, complex sugars require integral proteins for facilitated diffusion or active 

transport to enter cells (Walter, 1986 and Finkelstein, 1976). As primary carbon sources, most 

heterotrophs utilize carbohydrates, specifically D-glucose, D-fructose, and D-galactose for 

energy (Walmsley, 1998). Glucose and fructose, both simple sugars, have transporters that have 

a history of evolutionary development to facilitate uptake from the lumen. Transport occurs via 

passive and active mechanisms. Facilitated diffusion transport mechanisms involve mobile carriers 

to allow substances to move down a concentration gradient across a liquid membrane without 

requiring the cell to expend energy (Cussler, 1989). Active transport is a process where a protein 

requires energy to move molecules against their concentration gradients. The sodium-potassium 

ATPase is an example of an energy-dependent primary active transport process in which there is 

an unequal exchange of three sodium ions exported out of the cell for two potassium ions that are 

imported into the cell. Secondary active transport uses a transport protein that indirectly utilizes 

the sodium-potassium ATPase to transport ions and molecules across the plasma membrane. 

Specifically, glucose transporter families are facilitated glucose transporters, GLUT, and 

the sodium-coupled glucose cotransporters, SGLT. The GLUTs are responsible for the downhill, 

passive transport of glucose across cell membranes and SGLT1 is responsible for the secondary 

active transport of glucose across the brush border membrane of the small intestine (Wright, 

2007).  
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The solute carrier 5 (SLC5) co-transporter gene family is a large group of glucose transporter 

proteins that utilize protons or sodium as co-transported substrates. The sodium-glucose 

transpoter1 (SGLT1) is a co-transporter of sodium and glucose or galactose found on the apical 

side of the intestinal cells and plays a dominant role in glucose absorption in the small intestine 

(Gould and Holman, 1993; Ma et al., 2010). Sodium first binds to the negatively charged co-

transporter to make the binding site for glucose available. Once glucose binds to its binding site, 

the co-transporter undergoes a conformational change which causes the release of glucose into 

the cytosol followed by Na
+ 

release into the cytosol. The co-transporter regains its negative 

charge and undergoes a conformational change returning to original state (Sala-Rabanal et al, 

2012). 

The direction and rate of glucose transport by SGLT1 are functions of the direction and 

magnitude of the Na
+
-gradients across the plasma membrane. In normal cells, it is the Na/K-

ATPase that sets the direction and magnitude of the sodium gradient (Wright, 2007). Therefore, 

Na
+
 and sugar co-transport by SGLT1 is referred to as secondary active transport because the 

driving forces and concentration gradients are maintained by the primary active sodium-

potassium pump (Figure 1).  

Another group of sugar transporter proteins are those within the glucose transporter (GLUT) 

family which are sodium independent. Classes I and II consist of glucose transporters 1-4 

(GLUT1-4), and Class III consists of GLUT 6, 8, 10, and 12 (Wilson-O'Brien et al, 2010). The 

overall structure of the GLUT proteins is conserved across classes (Figure 1).  GLUT5 mediates 

the uptake of fructose on the apical side of the intestine (Burant et al., 1992). The GLUT2 

transporter on the basolateral side of the cell allows glucose transport from within the epithelial 

cell to the bloodstream (Goodman, 2010). 
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Figure 1 A model of Na
+
-glucose cotransporters (SGLTs) binding Na

+
 first (step 2) then binding 

glucose (step 3), undergoing a conformational change (step 4), releasing the glucose and 

Na
+
(steps 5 and 6) then returning to the original state (step 1)(A)(Sala-Rabanal et al , 2012). 

GLUT transport proteins are sodium independent and act as a facilitated diffusion system. 

Glucose binds to its binding site on the transporter, the transporter undergoes a conformational 

change releasing glucose in the cytosol. Overall structure of GLUT transporters is conserved 

(Wilson-O'Brien et al, 2010) (B). 

For many higher plants, sucrose is the dominant form of sugar translocation (Lalonde and 

Frommer, 2012). In plants, sucrose is also the major transport form for photoassimilated carbon 

and is both a source of carbon skeletons and energy for plant organs unable to perform 

photosynthesis (Lemoine, 2000). For sucrose to move from its source to various organs of the 

plant, the disaccharide has to be transported across several membranes involving specific sucrose 

carriers called SUTs.  

Like monosaccharide transporters, sucrose transporters also belong to a large gene 

family. The first sucrose transporter gene (SUT1) was identified by expression cloning from 

spinach and potato leaf cDNA libraries (Kuhn et al., 1999). Interestingly, the sucrose transporter 

also mediates transport of the disaccharide maltose and a variety of glucosides. A second sucrose 

A) 
B

Image redacted, paper copy 
available upon request to home 

institution.

Image redacted, paper 
copy available upon 

request to home 
institution.
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transporter, SUT2, is characterized by an extended central loop. This central loop contains 

several conserved domains across species of plants with sucrose transporters present (Lalonde et 

al., 2004).  

Humans also have sucrose transporter homologs known as the solute transporter family 

(SLC45) composed of 4 genes: SLC45A1, SLC45A2, SLC45A3, and SLC45A4. The SLC45 

family is composed of a co-transporter along with 3 orphan transporters, transporters without 

identified substrates. Although only Slc45A1 has been demonstrated to translocate sugars across 

membranes thus far, there is some evidence that the other members of the human SLC45 gene 

family encode sugar transporters. Compared with plant families, the novel SLC45 family is a 

small group which was named a “putative” sugar transporter family because all members exhibit 

an apparent amino acid sequence that is more than 20% similar to plant sucrose transporters 

(Lemoine, 2000). On average, sucrose transporters share approximately 30% similar and 16% 

identical amino acids (Lalonde and Frommer, 2012). 

A phylogenetic analysis of a sucrose transporter (SCRT) identified in Drosophila 

melanogaster found the transporter to be a sister to a clade comprising SLC45A1, SLC45A2, and 

SLC45A4 (Fig 2). The H
+
/sucrose symporter was termed by FlyBase as Slc45-1 and shows a 

significant similarity to members of the human SLC45 family (Vitavska and Wieczorek, 2013). 

Figure 2 indicates the apparent phylogenetic relationship of the animal proteins not only with 

their  plant counterparts, but also with those found in bacteria and fungi.  
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Figure 2 Phylogenetic tree of SLC45 family of animal proteins and similar proteins from plants, 

fungi and bacteria. SLC45A1–4: Homo sapiens; Slc45-1:Drosophila melanogaster; DP: Daphnia 

pulex; ZP: Zunongwangia profunda; Gn: Glaciecola nitratireducens; Am: Alteromonas 

macleodii; Pi: Piriformospora indica; Ao: Aspergillus oryzae; Ao: Ajellomyces capsulatus; 

AtSUC2-4: Arabidopsis thaliana. Substitutions per position are indicated by the scale bar. 

(Vitavska and Wieczorek,  2013). 

 

The evolutionary history of  SCRT reveals that it, like SLC45, has a highly conserved 

sucrose transporter signature (R-X-G-R-R). This transmembrane protein has 12 domains, an 

elongated N-terminus, and an extended central loop (Figure 3). However, since the expression of 

this gene was not tested in the organism from which it was isolated, its potential nutritional role 

still remains to be shown.  

 

 

 

 

 

Image redacted, paper copy 
available upon request to home 

institution.
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Figure 3 Hypothetical topology membrane spanning model of the Drosophila Slc45-1 sucrose 

transporter. Each circle represents one amino acid. Black circles are sites of serines or threonines 

which may be targets for phosphorylation by the protein kinases. Gray circles with asterisks: R-

W-G-R-R (in circle), correspond to the signature sequence for sucrose transporters (Vitavska and 

Wieczorek, 2013). 

The first animal membrane disaccharide transporter gene for a sucrose transporter, 

SCRT, from the genome of the fruit fly, Drosophila melanogaster, facilitating the absorption of 

the disaccharide sugar in Saccharomyces cerevisiae as a heterologous expression system, was 

recently reported (Meyer et al., 2011). The gene was identified in Schizosaccharomyces pombe 

to test the uptake of disaccharide sugars then expressed in in Saccharomyces cerevisiae (Meyer 

et al., 2011).  Immunostaining of the late embryonic fly hindgut indicated the localization of 

SCRT and suggested the nutritional involvement of the sucrose transporter.     

The disaccharide sugar, sucrose, is a complex sugar containing 1 glucose and 1 fructose 

joined with a glycosidic bond. It was historically accepted that disaccharides were hydrolyzed 

Image redacted, paper copy available upon 
request to home institution.
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before passing through absorptive gut epithelial cells since a disaccharide transporter was not 

known to be present in mammals (Alvarado, 1984). Furthermore, in mammals, extracellular 

hydrolases split complex sugars into their monomers, although there remained a question 

concerning the amount of sucrase present versus the disappearance rate of disaccharides (Miller 

and Crane, 1963)(Figure 4). In the hamster intestine, sucrose is hydrolized along the wall of the 

intestine and the remaining glucose and fructose move into the cell using SGLT1 and GLUT 5, 

respectively. This is the accepted model in other mammals as well (Miller and Crane, 1963). In 

humans, sucrose hydrolysis was studied and compared to monosaccharide absorption to reveal 

sucrose hydrolysis rates that exceeded the monosaccharide product absorption rates (Gray, 

1966). Therefore, in animal cells sucrose was accepted to be hydrolyzed into glucose and 

fructose which subsequently passed across the plasma membrane. 

 Figure 4 Sucrose hydrolyzed into glucose and fructose by sucrase to pass across mammalian 

intestinal membranes as monosaccharides (Gray,1975). 

 

Disaccharide transport has never been observed in animal cells, meaning sucrose has never 

been shown to be transported as an intact, whole molecule. Sucrase is the specific hydrolase 

present to cleave the glycosidic bond between glucose and fructose (Miller and Crane, 1963). 

Image redacted, paper copy 
available upon request to 

home institution.
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Sucrase does not exist free within the lumen but bound to the brush border membrane via a 

hydrophobic polypeptide segment of the intestinal cell to hydrolyze sucrose efficiently then 

release glucose and fructose for absorption (Reiser et al., 1974 and Brunner, 1979).  

Beginning around 1990, studies of membrane transport proteins facilitating cellular uptake of 

di- and tripeptides from protein digestion by gastrointestinal epithelial cells showed that a 

considerable fraction of dietary proteins are absorbed as larger molecular units than as simple 

amino acids (Thamotharan et al., 1996). These studies argued that, under certain conditions, a 

variety of nutrients might be transported across intestinal epithelia as polymers.  With this in 

mind, a hypothesis was formulated that proposed polysaccharide transport, specifically sucrose 

transport, might also occur in some animal species (Meyer, 2011).  

The experimental organism used in the present study was the American lobster, Homarus 

americanus.  Although sugar transport has been studied extensively in mammals, very little is 

known regarding sugar transport in crustaceans. In crustaceans, the digestive tract consists of 

three major divisions: the foregut, the midgut, and the hindgut (Wright and Ahearn, 1997). The 

foregut and hindgut are lined with a chitinous cuticle and are understood to play a minimal role 

in nutrient absorption compared to the midgut (Wright and Ahearn, 1997). Although the primary 

source of energy for crustaceans is not carbohydrates, the amount of carbohydrates available to 

crustaceans have a direct effect on growth and survival (Verri et al. 2001).  

Crustaceans are a very diverse group of organisms, living in a wide variety of habitats, 

including freshwater, marine, and terrestrial. The large numbers of species found in these very 

different environments are largely a function of the physiological plasticity of the group as a 

whole (Ahearn et al., 1999). The American lobster, Homarus americanus, is an economically 

important crustacean harvested from the wild catch fishery. Functional challenges to organisms 
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inhabiting these markedly dissimilar environments often involve specialized adaptations of 

epithelial cell layers found in the gills, integument, gut, and antennal glands, which allow the 

animals to regulate the passage of molecules. Although the lobster diet is mainly protein, 

carbohydrates are encountered through marine plants (Conklin, 1995) and complex carbohydrate 

storage molecules such as glycogen in prey orangisms. Obi et al., (2011) reported transport of 

glucose and fructose across lobster intestine is qualitatively similar to sugar uptake in 

mammalian intestine, suggesting evolutionarily conserved absorption processes.  

The crustacean midgut consists of the hepatopancreas and intestine, with the primary roles of 

dietary digestion and absorption. The hepatopancreas is a major site of sugar absorption (Ahearn 

and Maginniss, 1977) and is located bilaterally in the thoracic cavity consisting of E, F, R, B, and 

M cells (Verri, et al. 2001). The variety of cells in the hepatopancreas reflects the variety of 

hepatopancreatic functions in digestion and absorption. In the crustacean hepatopancreas,  

sucrase is one of several digestive enzymes (Saxena, 1982).  The intestine is comprised of a 

single epithelial cell type with various transport proteins in the membranes of these cells and is 

considered to be a scavenger organ since it is secondary in nutrient absorption to the 

hepatopancreas (Wright and Ahearn, 1997). The intestine plays a significant role in the 

absorption of D-glucose and D-fructose (Verri et al., 2001 and Obi et al, 2011).  
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Figure 5 A dissected lobster showing the bilobed hepatopancreas (HP) and the intestine (I). 

Part of the intestine lies underneath the hepatopancreas and runs through the tail of the 

lobster. This picture was taken at the University of North Florida Physiology Research 

Laboratory, Jacksonville, Fl. 

  

Carbohydrate digestion for these animals begins in the gastric chamber by secretion of a 

digestive enzyme mixture including α-amylase, glycosidases, maltase, and α-glucosidase 

(Johnson, 2003). Food is pulverized and recirculated between chitinous foregut chambers and   

tubules of the hepatopancreas for digestion and initial absorption, followed by final nutrient 

uptake by the intestine. Crustaceans have the strongest ability to degrade carbohydrates 

compared to other classes of invertebrates (Glass and Stark, 1995). The α-amylase in decapod 

crustaceans has been shown to be similar to amylolytic activity associated with mammals. Food 

passed through the foregut and midgut for digestion and some absorption continues to the 

intestine for final handling. The epithelial cells of the heptopancreas and intestine are lined with 

transporters on the apical and basolateral sides of the cells to ensure digested carbohydrates and 

other nutrients are transferred from the lumen of the organs to the bloodstream.  
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Sucrose, as an intact molecule, has been shown to pass across single cell membranes in vitro 

in cell culture, but trans-membrane or trans-intestinal transport has not previously been reported 

in vivo for animal intestinal epithelial cells.  The low concentration of disaccharides, and high 

concentration of monosaccharides during intestinal adsorption in humans, suggested that either 

disaccharides entered cells and were hydrolyzed internally or were hydrolyzed by a membrane-

bound enzymes before entering the cells (Gray, 1966).  

Because the initial description and expression of the SCRT transporter in Drosophila was not 

followed by the functional characterization of this carrier system, the present study was 

undertaken that utilizes another arthropod species to assess the physiological properties of a 

putative intestinal sucrose transporter.  Key methods used in this study included transport 

inhibition to slow or eliminate transport. Drugs and other sugars were presented as inhibitors of 

the proposed transporter. By using the transport-blocking drugs, phloridzin and phloretin, which 

respectively block glucose uptake across the apical membrane, and glucose and fructose  efflux 

across the basolateral membrane of the intestinal epithelium, the resulting experiments  helped 

establish whether 
14

C-sucrose, or its hydrolyzed products (
14

C-glucose and 
14

C-fructose), passed 

through the lobster intestine.  Phloridzin is a competitive inhibitor of SGLT1 that acts in a two-

step process. Initially, instead of glucose binding, phloridzin binds with SGLT1, followed by a 

slow isomerization that results in phloridzin bound to the receptor-site of the SGLT (Raja et al., 

2003). With phloridzin blocking the receptor, glucose cannot bind to the symporter and uptake is 

blocked on the apical side of the intestinal cell (Zheng et al., 2012).  Phloretin has been observed 

to strongly inhibit monsaccharide transport by orienting itself in the opposite direction as the 

monosaccharide on GLUT2 that releases glucose or fructose to the serosa (Verkman and 

Solomon, 1982 and Zheng et al., 2012).  
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 A similarly structured sugar was also used as a potential inhibitor of sucrose transport 

(Figure 6). Trehalose (α-D-glucopyranosyl-(1→1)-α-D-glucopyranoside) is a sugar containing 

two glucose monomers attached by a glycosidic bond. Due to its similarity in nature to sucrose 

and increased potential to be part of the natural lobster diet, it was used as an alternative 

disaccharide to act as a possible competitive inhibitor. Trehalose is a non-reducing disaccharide 

that is used as an osmolyte, transport sugar, carbon reserve, and stress protectant in a wide range 

of organisms including bacteria, fungi and invertebrates and also in algae, mosses and liverworts 

in very low levels (Carillo, 2013). Because trehalose is found in a lobster’s natural diet, trehalose 

is more apt to be digested by a lobster than sucrose.   

 

Figure 6 Similar structures of trehalose (A) and sucrose (B) (Vilen 2013) 

 

 Thin layer chromatography (TLC) is an accepted chemical analysis method that was used 

for separating and identifying small quantities of compounds in a mixture and was used in the 

present study to assess whether the disaccharide, sucrose, was hydrolyzed into the constituent 

monosaccharides, glucose and fructose, during trans-intestinal transit. TLC is simple yet widely 

used for the analysis of synthetic organic molecules and natural products including carbohydrates 

because of their polarity (Zhang , 2009). Chromatography uses a stationary phase and a mobile 

liquid phase. The mobile phase flows through the stationary phase and carries the components of 

Image redacted, paper copy available upon request 
to home institution.
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the mixture with it based on polarity and molecular weight. TLC uses a thin, uniform layer of 

silica gel coated on a piece of glass or plastic as the stationary phase and the mobile phase being 

the developing solvent which is chloroform and methanol for carbohydrates.  

The overarching purpose of this research was to investigate the presence of a potential 

SCRT-like transporter located in the intestine of the American lobster. The existence of a SCRT-

like transporter would identify a possible nutritional purpose for the transporter. These results 

would be unique because sugar transport across animal membranes is widely believed to be 

restricted to monosaccharides  



22 
 

Materials and Methods 

Animals 

Male H. americanus lobsters were purchased from a local seafood dealer (Fisherman’s Dock, 

Jacksonville, Florida) and were maintained unfed at 15 °C for no more than 1 week in an 

aquarium containing filtered seawater. The portion of the intestine that was used was cut from 1 

cm posterior to the stomach to about two-thirds of the length of the tail. In vitro transmural 

mucosal to serosal (MS) transport of 
14

C-sucrose (American Radioactive Chemicals, St. Louis, 

Missouri) was investigated using a perfusion apparatus as previously described (Ahearn and 

Maginniss, 1977) (Figure 7). The midgut tissue from the intestine was flushed with physiological 

saline (410 mM NaCl, 15 mM
 
KCl, 5 mM

 
CaSO4, 10 mM MgSO4, 5 mM

 
Hepes/ KOH at pH 7.1) 

and  mounted on a 18 gauge needle at both ends of the perfusion apparatus using surgical thread. 

The length and diameter of the experimental intestine were measured and the intestinal surface 

area was calculated using the equation A = πld, where l and d represent the length and diameter 

of the intestine, respectively. The perfusion bath (serosal medium) was filled with 35 mL of 

physiological saline. The experimental perfusate (the experimental saline plus appropriate 

experimental treatments) was pumped through the intestine using a peristaltic pump (Instech 

Laboratories Inc., Plymouth Meeting, PA,) at a rate of 0.38 mL min
-1

 (Figure 7). This rate was 

previously shown to provide constant transmural transport in lobster intestine for more than 3 hr 

of incubation without added oxygen at 23°C (Conrad and Ahearn, 2005).  
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Figure 7 Example perfusion set up with perfusate containing the [
14

C] sucrose and saline 

serosal bath (Ahearn and Maginniss, 1977). 

 

Mucosal to Serosal (MS) Transport 

Prior to the start of experimentation, 
14

C-sucrose (400-700µCi/mmol) was purchased 

from Perkin-Elmer Biotechnology Company (Waltham, MA). Triplicate aliquots of each 

experimental perfusate (200 µL) were collected in separate Falcon tubes to determine the total 

counts of radioactively labeled sugar in each tube, and from the bath to determine the amount of 

background radioactivity at the beginning of an experiment. Experimental solutions were then 

perfused through the intestine for varying times, but not more than 3 hr. All experimental 

procedures were carried out at 23°C and timed with a laboratory timer. Triplicate aliquot 

radioactive samples (200 µL) were collected from the serosal medium after passage across the 

intestine every 10 min for the duration of each experimental treatment. An equal amount of 

physiological saline was added back to the serosal medium in order to maintain a constant 

volume in the bath.  

Data Analysis 

The radioactive experimental samples collected were placed in a 7 mL tube containing 3 

mL scintillation cocktail and counted for radioactivity in the Beckman LS6500 scintillation 

counter. The mean background count was subtracted from each triplicate sample at each time 

Image redacted, paper copy available upon 
request to home institution.
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point. The specific activity of the perfusate was used to convert sample cpm to ρmol of sugar 

transported. Radioactive counts obtained from bath samples (200 µL) were corrected for 

radioactivity in the full volume of the bath (35 mL).   Transmural mucosal to serosal transport 

rates were expressed in ρmol cm
-2 

min
-1

. Slopes of the data were determined by linear regression 

analysis and data curve fitting procedures using Sigma Plot 10.0 software (Systat Software Inc. 

Point Richmond, CA, USA). Experiments were repeated a minimum of three times using three 

separate animals providing similar results between animals. Significance of slopes apart from 

one another were obtained and determined using paired t-tests with SPSS Statistics 19 software 

(IBM. Armonk, NY, USA). 

Thin Layer Chromatography 

Prior to the start of experimentation, triplicate aliquots of each experimental perfusate 

(200 µL) were collected in separate Falcon tubes to determine the total counts of radioactively 

labeled sugar in each tube, and from the bath to determine the amount of background 

radioactivity at the beginning of an experiment. Experimental solutions were then perfused 

through the intestine for 3 hr. All experimental procedures were carried out at 23°C and timed 

with a laboratory timer. At the end of each hour, three 200 µL samples were collected from the 

serosal medium after passage across the intestine and placed in a 7 mL tube containing 3 mL 

scintillation cocktail and counted directly for radioactivity. At each hour, two 200 µl samples 

were taken from the bath, dried then resuspended in water to be counted in the Beckman LS6500 

scintillation counter. One 200 µl sample was removed and placed in a 10mL test tube to be used 

to spot on a silica gel sheet. An equal amount of physiological saline was added back to the 

serosal medium in order to maintain a constant volume in the bath.  
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The TLC procedure was adapted from Farag (1978) and Young (1970).  The 

conventional silica gel sheets (Analtech Inc., Newark, DE) were 20 x 20 cm. which were 

subdivided into lanes. The sheets remained grease-free and thoroughly clean before use. The 

glass developing chamber used was approximately 25 x 25 x 10 cm. with a lid that was sealed 

with petroleum jelly. To prepare the sheet for development, an origin line was marked 1.75cm 

from the bottom of the sheet and the solvent front was marked 14cm from the origin. The 

composition of individual samples on each separate lane was 15µl of 
3
H-glucose, 

3
H-fructose,

 

14
C-sucrose standards, bath samples at 1hr., 2hr, and 3hr (respectively), 3hrs dry and 

resuspended, and perfusate effluent. Standards were created by combining 2 µL of 
3
H-glucose, 

3
H-fructose, or

 14
C- sucrose with 1mL of physiological saline. Lanes were labeled and marked, 

then 15 µL of each sample was applied to the origin 5 µL at a time. The spots were dried with a 

Conair (18755 watt) hair dryer between spotting. The solvent consisted of choloroform and 

methanol (80:20) by volume respectively. The solvent was poured into the developing chamber, 

then the silica gel sheet was allowed to develop until the solvent reached the solvent front after 

approximately 1hr. The TLC sheet was removed and the solvent allowed to evaporate for 15min. 

The sheet was then placed back into the chamber to be developed a second time. Once the sheet 

had developed twice, it was allowed to air dry for 15min. The sheets were visualized by cutting 

each lane into 2.5cm strips vertically then 0.5cm horizontally and placed separately in 7 mL 

tubes containing 3 mL scintillation cocktail and counted for radioactivity in the Beckman 

LS6500 scintillation counter. The mean background count was subtracted from each sample. The 

experiment was repeated a minimum of 3 times using different lobsters (Figure 8). 



26 
 

 

Figure 8 TLC sheet with origin and solvent front marked. Distance of each dot was measure 

from the starting point to the middle of the spot (a). The solvent front (b) was consistent for each 

silica gel sheet.  

 

Volatilization 

Prior to the start of experimentation, triplicate aliquots of each experimental perfusate (200 

µL) were collected from separate Falcon tubes to determine the total counts of radioactively 

labeled sugar in each tube, and from the bath to determine the amount of background 

radioactivity at the beginning of an experiment. Experimental solutions were then perfused 

through the intestine for 1 hr. At the end of 1 hr, at least two 200 µL samples were removed from 

the serosal bath and counted directly. Two additional 200 µL samples were placed in test tubes to 

be evaporated in a drying oven for 5hrs at 85°C. The dried samples were then resuspended in 200 

µL de-ionized water and counted. 
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Results 

 

Time course of 
14

C-sucrose transport across perfused intestine 

Figure 9 illustrates a 2 hr time course of 0.1 mM 
14

C-sucrose transport across perfused 

lobster intestine.  Values displayed on this figure were collected at 10 min intervals and are 

displayed as means ± 1 SEM of 3 animals. Each time point sample for each experiment was 

collected in triplicate. All intestines were perfused with radiolabelled saline for 8 min without 

taking bath samples prior to initiating the 2 hr transport interval in order to equilibrate intestinal 

tissues with perfusate radioactivity.  The calculated transmural rate of transport, determined from 

linear regression, was 6.96 +/- 0.58 pmol/cm
-2

 min
-1

, assuming all serosal radioactivity was 

present as the original 
14

C-sucrose molecule.  These results suggest that over the time period 

selected, 
14

C-sucrose transport was a linear function of time and did not show a tendency toward 

equilibration or reduced flux due to depletion of intracellular energy reserves. 
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Figure 9 Transmural MS transport of radioactivity from 
14

C-sucrose as a function of incubation 

time. Estimated sucrose transport was 6.96 ± 0.58 in ρmol cm
-2 

min
-1

 assuming all radioactivity 

in bath was in the form of 
14

C-sucrose and not as its metabolites. Each experiment was 

conducted a total of three times. The slope was obtained using linear regression analysis (Sigma 

plot 10.0 software). 

 

Effect of Inhibitors of 
14

C-sucrose Transport 

Transport blocking drugs, phloridzin and phloretin, were introduced separately into the 

experimental system as transport inhibitors. For the phloridzin experiments, 25 mL of 0.1 mM 

14
C-sucrose was perfused through the intestine for 1hr (bath samples taken every 10 min).  After 

1hr, the perfusate was changed to 25 mL of 0.1mM 
14

C-sucrose with 0.5 mM phloridzin. The 

intestine was first perfused for 8 min, the bath being stirred consistently for 30 seconds every 
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min, with no samples being taken. After 8 min, the intestine was perfused for 1hr under the 

phloridzin conditions and bath samples were collected every 10 min during this perfusion. This 

experiment was performed in quadruplicate using four separate animals. In Figure 10, transmural 

transport of 0.1 mM 
14

C-sucrose from mucosa to serosa under control conditions (no drug) was 

29.95 ± 2.83 ρmol cm
-2 

min
-1

. Transport of 
14

C-sucrose from mucosa to serosa in the presence of 

0.5mM phloridzin was 20.82 ± 1.77 ρmol cm
-2 

min
 -1

. Using a paired samples t-test, these slopes 

were statistically different (p = 0.04, t(3) = 3.23).  Phloridzin inhibited approximately 36% of the 

perfused 
14

C-sucrose from being transported across the intestinal wall. 
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Figure 10 Effect of luminal 0.5 mM phlordizin on transmural transport of 0.1 mM 

14
C-sucrose. 

During the first 60 min control interval, no phloridzin was added to the perfusate (29.95 ± 2.83 

ρmol cm
-2 

min
-1

). During the second 60 min interval, 0.5 mM phloridzin was added to the 

luminal perfusate along with 0.1 mM 14C-sucrose (20.82 ± 1.77 ρmol cm
-2 

min
-1

). These slopes 

are significantly different using a paired samples t-test (p < 0.05).  Each experiment was 
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conducted a total of four times. Slopes were obtained using linear regression analysis (Sigma 

plot 10.0 software). 

 

The next experiment was designed to determine if the efflux process of 
14

C-radioactivity 

from intestinal epithelium to serosal medium was affected by phloretin, a known inhibitor of 

basolateral glucose-transporting GLUT2 transporters. For 1 hr, 25 mL of 0.1mM 
14

C-sucrose 

was perfused through the intestine. After 1hr, 0.5mM phloretin was added to the serosal bath. 

The peristaltic pump remained off for 8 min as the bath was stirred occasionally.  After 8 min, 

the intestine was perfused 1hr with 25 mL of 0.1mM 
14

C-sucrose. In Figure 11, the results from 

the phloretin experiment showed that the slopes were significantly different (p = 0.006, t(2) = 

13.20) with the control slope being 20.99  ± 2.10 ρmol cm
-2 

min
-1

, and under the phloretin 

conditions the slope was 14.26  ± 3.04 ρmol cm
-2 

min
-1

. Transport in the presence of phloretin 

was 38% less than it was under control conditions. This experiment was performed in triplicate 

(three separate animals). 
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Figure 11 Effect of serosal 0.5 mM phloretin on transmural transport of 0.1 mM 

14
C-sucrose.  

During the first 60 min control interval, no phloretin was added to the bath (20.99 ± 2.10 ρmol 

cm
-2 

min
-1

). During the second 60 min interval, 0.5 mM phloretin was added to the bath and 0.1 

mM 
14

C-sucrose was perfused through the lumen (14.26  ± 3.04 ρmol cm
-2 

min
-1

).These slopes 

are significantly different using a paired samples t-test (p < 0.05). Each experiment was 

conducted a total of three times. Slopes were obtained using linear regression analysis (Sigma 

plot 10.0 software). 

 

To test the ability of the putative lobster SCRT-like transporter to transport disaccharides 

in addition to sucrose, trehalose was used as an alternative disaccharide.  The experiment was 

perfused using 25 mL of 0.1mM 
14

C-sucrose perfused through the intestine for 1hr as a control 

condition.  After 1hr, 5 mM trehalose was added to the perfusate, and the intestine was perfused 

for a second 1hr interval. Bath samples were collected and counted continuously over the 2 hr 
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perfusion period. In Figure 12, the results from the experiment with trehalose showed that the 

control slope was 24.11  ± 3.29  ρmol cm
-2 

min
-1

 and trehalose  treatment slope was 14.14  ± 1.84 

ρmol cm
-2 

min
-1

. Based on a paired samples t-test, the control and trehalose slopes were 

significantly different (p = 0.001,  t(3) = 6.46).  The average of 4 experiments indicated trehalose 

inhibited sucrose transport by approximately 52%. 
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Figure 12 Effect of 5 mM luminal trehalose on transmural 0.1 mM 
14

C-sucrose transport.  

During the first 60 min control interval, no trehalose was added to the perfusate (24.11  ± 3.29  

ρmol cm
-2 

min
-1

). During the second 60 min interval, 5 mM trehalose was added to the perfusate 

and 0.1 mM 
14

C-sucrose was perfused through the lumen (14.14  ± 1.84 ρmol cm
-2 

min
-1

). These 

slopes are significantly different using a paired samples t-test (p < 0.05, t(3) = 6.46). Each 

experiment was conducted a total of four times. Slopes were obtained using linear regression 

analysis (Sigma plot 10.0 software). 
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14
C-Sucrose Transport Kinetics 

 

To determine the presence and characteristics of a putative sucrose transporter, 

transmural 
14

C-sucrose was studied in the presence of increasing mucosal concentrations of 

sucrose. Perfusate saline containing 2.5µM, 5.0µM, 10µM, 25µM, 50µM, and 250µM sucrose 

was labeled with tracer amounts of 
14

C-sucrose. After the standard 8 min perfusion with the 

selected 
14

C-sucrose concentration prior to beginning each test period, respective 
14

C-sucrose  

concentrations were subsequently perfused through the intestine for 1 hour stirring the serosal 

bath every 15 min then taking three 200µL samples at the end of each hour.  Because the 

intestinal transporters were only usable for approximately 4hrs in in vitro experimental 

conditions, only 3 concentrations were sequentially tested at a time. The 2.5µM, 5.0µM, 10µM 

sucrose concentrations were sequentially tested for 1 hr each in 1 experiment in triplicate, and 

the 25µM, 50µM, and 100µM sucrose concentrations were sequentially tested for 1 hr each in a 

second experiment in triplicate. The individual transport rates at each concentration were 

obtained by linear regression analysis of the uptake over 60 min. at each concentration (Figure 

13). Resulting transport rates of 
14

C-sucrose at each concentration were plotted as a function of 

varying mucosal sucrose concentrations, resulting in a hyperbolic curve (Figure 14).  

The hyperbolic curve followed the Michaelis-Menten equation for carrier-mediated 

transport given below: 

J = 
        

          
   Equation 1 

 

Where J is transmural 
14

C-sucrose transport in pmol/cm
-2

 min
-1

, Jmax is the maximum 

transport velocity in pmol/cm
-2

 min
-1

, KM is the concentration at half maximal transport velocity 

in µM 
14

C-sucrose, and [S] is substrate concentration in µM 
14

C-sucrose. The kinetic constants of 
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the proposed sucrose transporter, computed from curve-fitting analysis of the hyperbolic curve in 

Fig. 14, are: KM = 15.84 ± 1.81 µM and Jmax = 2.32 ± 0.07 ρmol cm
-2

min
-1

.  These findings of  

hyperbolic 
14

C-sucrose transport suggest that the movement of this disaccharide across the 

lobster intestine is mediated by a saturable, carrier-mediated process.   
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Figure 13 Transmural MS transport of radioactivity from 
14

C-sucrose as a function of incubation 

time was obtained by linear regression analysis of uptake over 60 min and was computed using 

Sigma plot 10.0 software. 
14

C-sucrose  that was transferred from M to S during the 8 min tissue 

equilibration period was subtracted from each time point before plotting the sequential 10 min 

MS transport rate for each concentration. The experiments were repeated in triplicate (3 separate 

animals) and values represent means ± 1SEM. 
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Figure 14 An experiment showing the effect of increasing mucosal 
14

C-sucrose 

concentration on transmural MS flux of 
14

C-sucrose transport. Each experiment was conducted a 

total of three times with three replicates each. The kinetic constants of the proposed sucrose 

transporter are: KM = 15.84 ± 1.81 µM and Jmax = 2.32 ± 0.07 ρmol cm
-2

min
-1

.  The hyperbolic 

curve was obtained using Sigma plot 10.0 software.  

 

Thin Layer Chromatography 

Thin-layer chromatography (TLC) was used to characterize the chemical form of 
14

C-

radioactivity present in the serosal bath after transit of 
14

C-sucrose across intestinal tissues.  In a 

preliminary experiment, 0.1 mM 
14

C-sucrose was perfused through an intestine for 1 hr and 200 

µL samples were taken of the bath, applied to a chromatogram sheet, and following 

development, the separation path was cut into 1 cm pieces which were counted for radioactivity 

alongside 
14

C-sucrose and  
3
H-D-fructose controls.  At this 

14
C-sucrose concentration, 



36 
 

insufficient radioactivity from any sugar was observed along the disaccharide separation path on  

the silica gel sheet.  Therefore, transport of 
14

C-sucrose at a higher concentration was tested in 

quadruplicate experiments.  
14

C-sucrose concentration was increased from 0.1 mM to 5 mM and 

the perfusion time was increased from 1 to 3 hr.   

Following perfusion of 5 mM 
14

C-sucrose for 3 hrs, triplicate 200 L samples of the 

serosal bath and 200 L of the collected perfusate effluent were spotted on a silica gel TLC sheet 

along with 
14

C-sucrose and 
3
H-D-fructose standards to assess the chemical nature of the 

14
C-

radioactivity on both sides of the transporting intestine. As displayed in Figure 15A, the 
14

C-

sucrose standard localized near the chromatogram origin, while the 
3
H-D-fructose localized 

around 8 cm from the origin.  Figure 15B indicates that after 1, 2, or 3 hrs of isotope perfusion, 

essentially all of the serosal isotope localized at the 
14

C-sucrose standard position near the origin, 

with only a faint trace of isotope at the 
3
H-D-fructose location. Figure 15C shows that during the 

perfusion period, only 
14

C-sucrose could be identified in the perfusion effluent collected over the 

entire 3 hr experiment. These results suggest that during transport across the intestine 
14

C-

sucrose was not significantly converted into 
14

C-glucose and 
14

C-fructose metabolites which 

would have appeared either in the serosal bath and/or the perfusate effluent.   
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Figure 15 TLC of  
14

C-sucrose and 
3
H-D-fructose standards (A), sample of the serosal bath after 

a 3 hr perfusion (B), and sample of the perfusate effluent after a 3hr perfusion (C). Each 

experiment using 5mM 
14

C-sucrose at a bilateral pH of 8.5 was conducted a total of four times (4 

separate animals). Identification of  radioactive counts per centimeter of silica gel sheet were 

obtained by cutting individual pieces of the separation path, placing them is scintillation cocktail, 

and counting in a scintillation counter. 

Volatilization 

An analysis of 
14

C-sucrose metabolism into serosal bath volatile cpm and non-volatile 

cpm was conducted following a 3 hr transport experiment using 0.1mM and 5mM 
14

C-sucrose 

(experiment was conducted in triplicate). Following the transport period, a 200 L bath sample 

was counted for radioactivity directly and another 200 L sample was evaporated to dryness, 

resuspended in distilled water, and subsequently counted for total cpm.   Table 1 presents total 

cpm values for samples counted directly without evaporation, non-volatile cpm remaining after 

evaporation, and computed volatile cpm as the difference between the first two. In addition, 

Table 1 also presents the percent of total cpm due only to volatile counts.  Results suggest that 

only a minor fraction of original 
14

C-sucrose radioactivity passing through perfused intestines 

was metabolized to a volatile molecule, most likely 
14

CO2. As shown in Table 1 and Figure 15, 

the great majority of radioactivity in the serosal bath following trans-intestinal transit was 

unchanged 
14

C-sucrose. 
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Table 1 Comparison of volatile fraction to non-volatile fraction when intestines were perfused 

with 0.1mM 14
C-sucrose and 5mM 14

-sucrose 

0.1 mM 
14

C-Sucrose 

 

Animal Total Bath Cpm Non-Volatile Cpm Volatile Cpm % Volatile Fraction 

1 10,267 5,833 4,433 55.07 

     
2 24,675 24,442 233 0.95 

     
3 10,967 9,100 1,867 18.60 

     
 

5 mM 
14

C-Sucrose 

 

Animal Total Bath Cpm Non-Volatile Cpm Volatile Cpm % Volatile Fraction 

1 76,417 74,492 1,925 2.55 

     
2 180,425 157,150 23,275 13.79 

     
3 174,592 152,483 22,108 13.52 

     
4 58,100 46,200 11,900 22.82 

     
5 44,683.33 38,908.33 5,775.00 13.82 

     
6 112,642 98,583 14,058 13.31 

 

 

A bath sample analysis of 0.1 mM and 5 mM 
14

C-sucrose metabolism into volatile and non-

volatile fractions following 3 hr perfusions. The 0.1mM sucrose experiment was repeated 3 times 

and the 5mM sucrose experiment was repeated 6 times and individual values for the replicate 

experiments are displayed in respective rows. Using a paired samples t-test (p < 0.05, t(3) = 

0.21), the 0.1mM 
14

C-sucrose non-volatile fraction cpm was not significantly different from the 

total bath cpm. However, using a paired samples t-test (p < 0.05, t(6) = 0.048), the 5mM sucrose 

non-volatile fraction cpm was significantly different from the total bath cpm.  
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Discussion 

Carbohydrates are major sources of energy for numerous organisms across the planet. 

Because of their importance for several biological processes, sugar transport has been studied 

across a wide variety of life forms. The finding of an SCRT-like gene in Drosophila 

melanogaster and expressed in Saccharomyces cerevisiae that transports sucrose is what led to 

this study. This study was conducted by investigating the transport of 
14

C-sucrose across the 

Homerus americanus intestine in physiological saline that mimics the ionic composition of the 

lobster hemolymph. Until now, sucrose transport has not been shown to occur by a sucrose 

transporter in animals. The proposed work strongly suggests that sucrose is able to be transported 

as an intact molecule across crustacean intestine epithelium.  

Comparative Sugar Transport 

 

Sugar absorption in the lobster digestive tract occurs sequentially as food travels from 

stomach to rectum with transport characteristics being determined by substrate and ion 

concentrations in each organ to fully remove glucose and fructose from the lumen. The apparent 

binding affinities for sugars in lobster and prawn intestines are reported to be in the low M 

range (Ahearn and Maginniss, 1977; Obi et al., 2011). It was noted that the crustacean intestine 

(posterior) is considered a scavenger organ that is resonsible for absorbing excess dietary sugars 

that were not otherwise absorbed by the hepatopancreas (anterior).  As a result, the transport 

proteins located in the intestine should have a higher affinity for the uptake of sugars than in the 

hepatopancreas. This point is supported by comparing the kinetic constants of sugars in the 

hepatopancreas and in the intestine. The KM for both D-glucose and D-fructose in the 

hepatopancreas is in the high M or low mM range in comparison to the low µM range in the 

intestine supporting a higher affinity binding protein (Ahearn et al., 1985; Verri et al., 2001). 
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Crustaceans do the posterior organs have higher affinities for sugars, and  also in a teleost fish. In 

the rockfish (Sebastes caurinus) pyloric caeca (anterior organ) D-glucose transport had a glucose 

binding affinity four times lower than the D-glucose transporters in the upper intestine (posterior 

organ) (Ahearn et al., 1992). In the hepatopancreas (anterior organ) luminal substrate 

concentrations are high, and the cells employs low affinity sugars transporters; while in the 

intestine (posterior organ) where luminal substrate concentrations are depleted, intestinal 

epithelial cells employ high-affinity sugar transporters to mediate maximum sugar removal from 

the lumen.  

In Table 2, kinetic constants are compared across various species and absorptive organs 

to reinforce the higher affinity for sugars in posterior organs than anterior organs across various 

species. Also, similar substrates have similar kinetic constants across organisms. The current 

findings on intestinal 
14

C-sucrose transport are comparable to previous research of apparent 

binding affinity (KM) and maximal transport rate constants.  A comparison of MS KM values for 

glucose and fructose in the lobster intestine also reveals a similar high affinity transport protein 

for sucrose as well. The KM values represent the concentration of substrate available to the 

transporter and the efficiency of the transporter. The monosaccharide transporters in lobster 

intestine had a KM  = 15.2 ± 3.5 µM
 
for D-glucose and KM = 10.1 ± 1.9 µM for D-fructose (Obi, 

et. al, 2011). The SCRT-like transporter observed in this study had a KM = 15.82 ± 1.81 µM, 
 

indicating a high affinity system for sucrose uptake across the intestine similar to that of D-

glucose and D-fructose. The apparent maximal transport velocity for D-fructose, Jmax = 5.75 ± 

0.4 ρmol cm
-2

 min
-1

 compared to sucrose, Jmax = 2.32 ± 0.13 ρmol cm
-2

 min
-1

, are very similar 

and also support the hypothesis of a high binding affinity of intestinal transport system working 

at low substrate concentrations for sucrose.   
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By comparison,  plant sucrose transporters, as in Beta  vulgaris, type I SUT, AtSUC2, 

which are responsible for loading high concentrations of sucrose into phloem, has a ten-fold 

higher KM (affinity) for sucrose of  2,000 µM with a wide substrate specificity for α and β 

glucosides (Reinders, 2012). Data from Table 2, including the present study, confirm  efficient 

sugar transporters based on the kinetic constants indicating increased transport across absorptive 

organs that is comparable to the present SCRT-like kinetic constants.  
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Table 2 Comparable kinetic constants of sugars in absorptive organs across various species. 

Species Tissue Substrate KM Reference 

Invertebrates     

Homarus americanus 

(lobster) 

Hepatopancreas D-glucose 620 ±50 μM Wright and Ahearn, 1997 

  D-fructose 325 ±81 μM Sterling et. al, 2009 

 intestine D-glucose 15.2 ± 3.5 μM Obi et. al, 2011 

  D-fructose 10.1 ± 1.9 μM Obi et. al, 2011 

  sucrose 15.8 ± 1.81 μM  

Callinectes sapidus (Blue 

crab) 

intestine D-glucose 87 ± 19µM Chu, 1986 

Macrobrachium 

rosenbergii (Freshwater 

prawn) 

intestine D-glucose 170 µM Ahearn and Maginniss, 

1977 

Fishes     

Sebastes caurinus (Copper 

Rock Fish) 

pyloric caeca D-glucose 580±120 µM Ahearn et al., 1992 

 intestine D-glucose 140 ± 20 µM Ahearn et al., 1992 

Oreochromis mossambicus 

(Tilapia) 

Upper intestine 

Lower intestine 

D-glucose 

D-glucose 

670 ± 150 μM 

390 ± 50 μM 

Reshkin and Ahearn, 

1987 

Mammals     

Rattus norvegicus (Rat) intestine D-glucose 31,400 ± 11,800 

μM 

Kellett and Helliwell, 

2000 

Homo sapiens (Human) small intestine D-fructose 

D-glucose 

1,120 ± 110 μM 

3,600 ± 600 μM 

Gould and Holman, 1993,  

Read et. al., 1977 

Plants     

Beta vulgaris (sugar beet) root sucrose 2,200 ± 150 μM Willenbrink and Doll, 

1979 

Saccharum officinarum 

(sugar cane) 

phloem sucrose 826  ± 203  μM Reinders, et al., 2006 
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The SCRT-like transporter in crustacean cells has a lower KM than those of plants 

understandably for two reasons. First, the intestine is a scavenger organ and would require the 

uptake of very specific for carbohydrates necessary for energy storage and creation. Second, 

plants have disaccharides readily available in their lumen that would require transport; whereas, 

the crustacean has the use of hydrolases to break down any remaining complex sugars into 

monomers for transport. The use of a disaccharide transporter would be greater in plants than 

crustaceans; however, the transport system can still be used to remove any remaining carbon 

sources to aid in the animal’s energy and growth. The concentrations of monosaccharide to 

disaccharide in the lumen can also affect sucrose transport across the epithelium. After sucrose 

hydrolysis by sucrase, the glucose product by a feedback inhibition system saturates the glucose 

transporter’s active transport mechanism (Gray, 1966). Therefore, as glucose was being 

produced, the intestinal sucrase enzyme reacted at a reduced rate increasing the amount of intact 

sucrose molecules available for MS transport. 

Effects of Inhibitors on MS Transport of Sucrose 

The results of TLC suggest no hydrolysis of sucrose into glucose and fructose monomers 

(Figure 15). Phloridzin is a competitive inhibitor of SGLT1 by using the glucose moiety in its 

structure to bind on the SGLT1 to prevent glucose from binding. Phloridzin is hypothesized to 

bind similarly to the glucose binding position on the SCRT-like transporter on the brush border 

membrane of the lobster intestine. Phloridzin prevented 34% of luminal sucrose from being 

transported across the intestinal epithelium (Figure 10). A mechanism to account for the sucrose 

that was not transported to the bath is the structural similarity of phloridzin to glucose (Figure 

16). The glucose portion of phloridzin may bind to the SCRT-like transporter and inhibit the 

binding of the glucose portion of the sucrose molecule. This competitive binding of phloridzin to 
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the SCRT-like transporter likely accounts for 34% inhibition of the radioactivity being 

transferred to the serosal bath.   

 Figure 16 Comparison of structure of Phlorizin and D-glucose noting the presence of a 

glucose in the phloridzin molecule.  

 

Phloretin data (Figure 12) suggest that at least some of the perfused 
14

C-sucrose 

radioactivity  was prevented from being transported across the epithelial cell. The efflux of this 

radioactivity from epithelial cell to serosal medium was being blocked by serosal phloretin as a 

result of GLUT2-like inhibition. Again, phloretin has been observed to strongly inhibit 

monosaccharide transport by orienting itself in the opposite direction of the monosaccharide on  

GLUT2 during release of glucose or fructose to the serosa. Phloretin does not have a glucose 

moiety like phloridzin to bind to the glucose active site on the transporter. Instead, phloretin 

orients itself on the active site of GLUT2 to prevent glucose or fructose release from the cell 

(Krupka, 1985). It is being suggested that phloretin acts the same way with the presumptive 

SCRT-like transporter. Phloretin is able to bind to the transporter on the basolateral membrane to 

prevent sucrose from exiting the cell. In the presence of phloretin, 40% of the sucrose was not 

able to exit the cell. Approximately 60% of the 
14

C-radioactivity originally appearing in the 

serosal bath during control perfusions still took place in the presence of these two drugs, 

D-Glucose 

Phloridzin 
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suggesting that at least one other mechanism of trans-intestinal transport of 
14

C-radioactivity 

occurred when these drugs were used.   

The ability of the putative lobster SCRT-like transporter was tested for specificity using 

trehalose. Trehalose is a disaccharide, very similar to sucrose, in its molecular weight and 

structure (Figure 6). If the SCRT-like transporter has a proposed glucose and fructose binding 

site, trehalose would be able to easily bind. Trehalose was able to inhibit 52% of sucrose 

transport. These results suggest that trehalose, as a disaccharide, was a more effective inhibitor 

of the SCRT-like transporter than phloretin and phloridzin. Trehalose is also a substrate of SCRT 

in plants and could be also in the SCRT-like transporter in lobster (Meyer, 2011). These results 

provide evidence toward a disaccharide transporter with glucose as one or both monomers since 

the 2 glucose molecules of trehalose can effectively inhibit the sucrose binding site on the 

SCRT-like transporter. 

Phloridzin and trehalose have glucose in their structures, and phloretin is able to orient 

itself in the glucose binding site of a transporter. This information leads to the assumption that 

the SCRT-like transporter has sugar binding sites. Since sucrose has fructose and glucose both as 

monomers, the binding sites on the SCRT-like transporter are proposed to be able to bind 

glucose and fructose alike. The inhibitors were able to bind to the SCRT-like transporter 

competitively to decrease sucrose transport across the cell. 

The TLC showed that there was only sucrose present in the serosal bath and effluent over 

a 3 hr perfusion. The molecular weight of fructose and glucose is the same; therefore, in TLC, 

glucose and fructose would separate at the same place on the chromatography sheet. There were 

no observed sugar metabolites in the serosal bath or effluent. A reason why metabolites were not 

observed in the bath or effluent could be because of their rate of conversion. The glucose and 
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fructose may have been produced by sucrase on the brush border membrane then transported into 

the cell, but then used for the cell’s own cellular respiration instead of being transported. The 

amount that was not used for the cell’s energy could have been transported, but at a rate that was 

undetectable by TLC.  

The volatilization results indicate steady directionality of 
14

C-sucrose transport across 

each intestine with non-volatile activity consistently greater than volatile activity (Table 1). The 

non-volatile fraction indicates sucrose; while the volatile fraction would likely indicate the 

metabolism of sucrose to volatile metabolites. On average, transmural 0.1mM sucrose transport 

produced an approximate 25% volatile fraction; while the 5mM sucrose perfusate had an 

approximate 13% volatile fraction.  

Animal 1 (Table 1) that was tested with a perfused 0.1mM sucrose concentration had a 

55% a volatile fraction which was higher than the other animals (Table 1). This phenomenon 

may be explained by a starved condition as the history of each experimental animal prior to its 

purchase is unknown.  If the lobster was in a starved state, the sucrose present in the lumen may 

have been metabolized at a higher rate than would occur in a normally fed animal. Under this 

condition, intestinal hydrolases may have rapidly broken down the disaccharide into monomers 

to create energy for its own cell instead of transporting the monomers to the blood.  

Proposed sucrose transport model 

Michaelis-Menten kinetics, inhibition of 
14

C-sucrose transport by phloridzin, phloretin, trehalose, 

analysis of serosal bath and effluent by TLC, and metabolite volatilization strongly suggest a 

functional carrier-mediated disaccharide transport system in crustacean epithelium.  An SCRT 

transporter was localized in the brush border membrane of the Drosophila hindgut and present 

data strongly suggests the presence of an SCTR-like transporter on the apical membrane of 



48 
 

crustacean intestine. Phloridzin and trehalose both were able to inhibit sucrose transport 

significantly indicating their binding to a transporter on the brush border membrane where 

sucrose was to bind for transepithelial transport.  Figure 17 is a working model of intestinal sugar 

transport in the American lobster that incorporates results from the present investigation and 

those of other studies of this animal.  The proposed transport model in Homarus americanus 

includes SCRT-like, SGLT1-like, and GLUT5-like carrier systems on the brush border 

membrane and a proposed SCRT-like transporter, Na/K ATPase, and GLUT2-like carrier 

complex on the basolateral membrane.   A GLUT-2 like transporter was found on the basolateral 

membrane to assist glucose and fructose transport from inside the epithelial cell to the blood 

(Obi et al., 2011). Although TLC did not indicate transport of 
14

C-glucose and 
14

C-fructose 

originating from 
14

C-sucrose, the monomers could be formed at a concentration needed to fuel 

the cells themselves, producing the 15% volatile fraction of activity initially associated with the 

disaccharide (Figure 15). Sucrase may be active inside the intestinal cell, but not at a fast enough 

pace to provide the monomers to the blood or even a substantial concentration of monomers to 

be detected through a radiolabelled substrate. Another exit process for sucrose from inside the 

crustacean epithelium is a suggested SCRT-like transporter on the basolateral membrane. The 

proposal of another SCRT-like transporter on the basolateral membrane is supported by phloretin 

being an effective inhibitor of the release of sucrose into the serosa in addition to the lack of 

monomers indicated through TLC (Figures 12 and 15).  

The present data point toward an SCRT-like transporter on both the basolateral and apical 

sides of the intestinal epithelium. In the presence of phloretin, some 
14

C-sucrose could pass out 

of the cell as volatile metabolites after being hydrolyzed inside the cell by sucrase or as an intact 

sucrose molecule. The amount of sucrose that was hydrolyzed by sucrase could be enough to 
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supply the intestinal tissue itself with needed energy. If the cell used a significant portion of 

sucrose for its own cellular respiration, the volatile metabolite produced may be in the form of 

14
CO2. Data in Table 1 indicate about 15% of the sucrose transported into the cell was 

metabolized into CO2.  

The  inhibition data, non-volatile fraction of metabolized radioactivity, and carrier- 

mediated kinetics suggest that 
14

C-sucrose was transported from mucosa to serosa through both 

paracellular diffusion and transcellular transport. An estimate of the relative contributions of 

these two potential transmural pathways can be estimated at 0.1 mM 
14

C-sucrose, the 

concentration used for all time course experiments here.  Using the Michaelis-Menten equation 

(Equation 1) for 0.1mM sucrose, and substituting the values for KM and Jmax obtained from 

Figure 14,   the carrier-mediated component of total transmural flux can be estimated below:  

J = 
                          

                   
 

 

Therefore, the 0.1mM sucrose Jmax = 120.19 ρmol cm
-2

 hr
-1

. The SCRT-like transporter has a Jmax 

= 139.2 ρmol cm
-2

 hr
-1

.   

In Figure 9, 0.1 mM total transmural sucrose transport amounted to 6.69 ρmol cm
-2

 min
-1

, 

which is 401.4 ρmol cm
-2

 hr
-1

; therefore, 
                     

                    
         . Approximately 

30% of the observed sucrose in the serosa was moved via transcellular transport. The remaining 

70% of sucrose observed in the serosa is suggested to have moved through paracellular diffusion.  
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Figure 17 Suggested model of the proposed sucrose transport system alongside glucose 

and fructose transporters in lobster intestinal cells. The proposed model indicates active transport 

of the Na
+
/K

+
 ATPase, the secondary active transporter (SGLT1), fructose transport by GLUT5-

like, transport of glucose and fructose to the blood by GLUT2-like, and the suggested transport 

of sucrose from the lumen to the blood by an  SCRT-like transporter. Paracellular sucrose 

transport is also suggested to contribute to total transmural transport.   

One possible candidate for this residual transport process might be a crustacean analog of 

the Drosophila SCRT disaccharide carrier system. It is possible that BOTH hydrolysis of 

Mucosal Serosal 

Sucrose Sucrose 
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disaccharides to monosaccharides followed by their individual transports may be present on the 

same tissue as is a SCRT-like disaccharide transport protein transferring the complex 

carbohydrate across the intestine intact.  Also, the presence of the GLUT5-like protein from 

previous research indicated the brush border localization of this fructose transport protein to 

provide support for evolutionary transporter conservation of epithelial D-glucose and D-fructose 

transport by digestive organ systems (Obi et al., 2011).  Additional experiments are needed to 

clarify this situation. An SCRT transporter or SCRT-like transport system is expected to be 

present in H.americanus since trehalose is an available sugar and utilized by many invertebrates 

(Meyer et al, 2011). It is possible that both hydrolysis of disaccharides to monosaccharides 

followed by their individual transports may be present on the same tissue as is a SCRT-like 

disaccharide transport protein transferring the complex carbohydrate across the intestine intact.   

Phylogenetic Evaluation 

A phylogenetic analysis of a sucrose transporter (SCRT) in Drosophila melanogaster 

identified the protein as a sister to a clade comprising SLC45A1, SLC45A2, and SLC45A4 

(Figure 2). The SCRT was termed by FlyBase as Slc45-1 because it shows a significant 

similarity to members of the human SLC45 family (Vitavska and Wieczorek, 2013). Fig 2 

indicates the apparent phylogenetic relationship of the animal proteins not only with the plant 

counterparts, but also with those found in bacteria and fungi. The highest resemblance with 

SCRT was found for SUC3 from Arabidopsis thaliana, with a similarity of 38% and an identity 

of 20%. With respect to vertebrates, proteins with high similarities were found among the human 

SLC45 family sharing between 32% to 47% of similar and 18% to 27% of identical amino acids 

with SCRT (Lalonde and Frommer, 2012). SCRT was localized in the apical membrane of 

hindgut epithelial cells of D. melanogaster which suggests a role in transmembrane and/or 
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transepithelial sucrose transport (Meyer, 2011). Since molecular phylogeny reflects the 

evolutionary process, it provides the most reliable guide to the structure, function, and 

mechanism of biological macromolecules (Saier, 2000). Although it is very difficult to predict 

the functional characteristics of sugar transporters based on amino acid sequences because of the 

subtle difference that exist between various transport families, the amino acid sequence can 

indicate a general function exists between sugar transporters in a major facilitator superfamily 

(Kikuta, 2012). 

In summary, the SCRT-like transporter that this investigation suggests to be present in 

crustacean intestinal cells can, like plant SCRT, utilize several disaccharides as substrates. The 

Homarus americanus is very unlikely to come into direct contact with sucrose as table sugar in 

its habitat. However, trehalose, maltose, and other disaccharides are found in numerous marine 

plants that the lobster would use as food in larval and post-larval life stages (Sainte-Marie, 

2002). Halophilic marine cyanobacteria are found in the lobster’s habitat and are part of the 

lobster larval diet.  These cyanobacteria can accumulate sucrose and trehalose which would be 

digested and could potentially use the lobster SCRT transporter (Mackay, 1984).  

As an adult, the lobster’s diet consists mainly of crabs, mussels, clams, starfish, sea urchins, 

and marine worms. Particularly mussels, clams, and starfish can have large stores of glycogen in 

the hepatopancreas, pyloric caeca, and gonads.  As a lobster ingests these animals, α-amylase in 

the lobster hepatopancreas would be able to break the glycosidic bonds of the glycogen stores of 

mussels, clams, and starfish into polysaccharides and monosaccharides some of which could be 

absorbed by the hepatopancreas and intestine by the processes described in Figure 17.  Results of 

the current study, for the first time, provide evidence for the presence of a novel sugar transport 

protein in the animal digestive tract that has not been functionally described previously.   Future 
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studies will be directed at the potential of hepatopancreatic epithelial cells to exhibit an isoform 

of this intestinal transport system with kinetic properties that may be adapted to higher 

concentrations of dietary disaccharides.  
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