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ABSTRACT

The variability of the nearshore wave climate is investigated via the analysis of over 10 years of
Acoustic Doppler Current Profiler (ADCP) data from a gauge deployed at Melbourne Beach, FL.
Examples of large yearly variability in the significant wave height, peak period, mean direction
and energy distribution are found in the data. Estimates of the averaged spectra for the entire
record show that the average wave energy is distributed almost symmetrically with the peak
being close to shore-normal. It was expected that the peak would be shifted towards the north of
shore-normal considering net north to south longshore sediment transport at this location. Further
analysis of the directional spectra partitioned into three directional windows reveals that waves
from the southeast (avg. Hyo = 0.78 m) are less energetic than those from the northeast (avg. Hy,

= 0.87 m), but they arrive from the south 53% more often.

Additionally, energy-based significant wave height (Hn,), peak period (T;) and mean period

(Tmean) distributions are studied and modeled with notable success.

Radiation stress (S.y) estimates are computed using both rigorous integration as well as
parameter-based approximations. These two estimates are correlated but the parameter-based
approximation over predicts Sy, by 42%, because this method assigns all the wave energy into

one direction (Ruessink et al., 2001).

Finally, it is shown by the Sy, total average that the net longshore forcing at this location is
indeed north to south, but yearly and seasonal variability were quite high. The results indicate

that short-term wave records may not provide accurate information for planning purposes. For



example, if only 3 months of data were collected at this site, there would be a 33% chance that

the mean longshore forcing would be erroneously directed from south to north.
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Chapter 1:

INTRODUCTION

It is well-established, based on historical shoreline change near inlets in the region, that the net
long-term longshore transport in the east coast of Florida (FL) is predominantly north to south
(Absalonsen and Dean, 2010). If this is the case, it stands to reason that the net longshore wave
forcing should be north-to-south. Figure 1.1 and 1.2 show accretion on the north (updrift) side
and erosion on the south (downdrift) side reconciling with the fact that longshore sediment
transport is north to south in east FL.This coastal process was examined with a long-term dataset
consisting of ten years of nearshore wave measurements. This dataset is very valuable because it
is a relatively long record of high-resolution directional spectra measured in the nearshore. This
rich dataset was also used to perform the following analyses: 1) to explore the variability in the
nearshore wave climate, 2) to quantify the nearshore distribution of energy flux according to the
direction and frequencies of waves, 3) to model the energy-based significant wave height, mean
period and peak period distributions, 4) to examine the seasonal and annual variability of the

radiation stress, and 5) to establish the importance of long-term records.

The Florida Coastal Forcing Project (FCFP) (Leadon, Dally, and Osiecki, 2002) collected
slightly more than ten years of nearshore wave data in Melbourne Beach, Florida using an
Acoustic Doppler Current Profiler (ADCP). The FCFP dataset is very valuable because it is a
relatively long record of high-resolution, directional spectra measured in the nearshore, with
nearly a 94% capture rate. Located ~39.3 km south to the entrance of Cape Canaveral Port and

~23.6 km north of Sebastian inlet, the waves measured by the ADCP are an indication of the



coastal processes in these two locations. Figure 1.3 presents a picture with the three locations
labeled. The FCFP dataset will give valuable insight in regard to the nearshore processes in east

Florida.

<— FErosion South Side

Google earth

08" W elev 1ft eyealt 7906 ft €

Figure 1.1: Entrance to Port Canaveral, Florida, showing accretion on the updrift (north) side and
erosion on the downdrift (south) side as commonly occurs at jettied inlets on Florida’s east coast.
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Figure 1.2: Sebastian Inlet, Florida, showing accretion on the updrift (north) side and erosion on
the downdrift (south) side

Some of the things that will be learned from this study/analysis are: 1) better information for
coastal management, 2) better assessment of wave directionality for wave energy collection in
the nearshore, 3) better quantification and understanding of wave climate and longshore forcing
and its variability along the coast, 4) better understanding of wave force for sediment movement,
5) long-term modeling of wave parameters, and 6) a better understanding of the importance of

maintaining a long-term record.

Currently millions of dollars are being invested annually in our coasts by the construction and
maintenance of jetties and inlets, construction and maintenance of ports and other coastal
structure, dredging of inlets and channels and beach nourishment projects. There is currently a
need of more long-term nearshore wave records. Long-term datasets are needed in order to

optimize these investments.
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Figure 1.3: East coast of Florida, showing Port Canaveral entrance north of Spessard, the
Spessard ADCP in the middle and Sebastian inlet south of Spessard.

1.1 Background on the Spessard Station

The FCFP began in late August of 2001 with the installation of an Acoustic Doppler Current
Profiler (ADCP) and a weather station at Spessard Holland North Beach Park in Brevard County,
on the coast of east-central Florida (see Appendix A). The wave gauge was located offshore of
Spessard Holland Park, approximately 640 m from the dune at a mean depth of ~8.5, m as shown
in Figures 1.4 and 1.5 (note the shoreline orientation of 73°). The ADCP collected data for ten
years (8/28/01-10/28/11), whereas the weather station instrument (directional anemometer)
collected data for six years (9/12/02-10/7/08). A shore station shed was installed at the park,
from which a double-armored steel cable ran under the dune and then along the sea floor to the

ADCP and was used to power the ADCP and upload collected data.



' Spessard ADCP

Figure 1.5: Melbourne Beach, showing the location where the ADCP was deployed.

A special mounting structure was designed and fabricated specifically for the ADCP wave
gauge. The anchoring/mounting system consisted of a 10 ft. long, 4 in, diameter stainless steel

pipe (‘spud’) that was fitted with a coupling flange on one end. The coupling enabled it to be



attached to a boat-based pumping system so that the spud could be jetted into a sand or mud
bottom (Figure 1.6). The wave instrument was clamped inside a specially designed aluminum
‘hat’, which is bolted to the top of the jetted spud. With the spud jetted in place, a diver could
retrieve the instrument and replace it with a fresh one, generally requiring only a few minutes of

bottom-time.

Photo courtesy of W.R. Dally

Figure 1.6: ADCP attached to the jetted spud at Spessard

A jetted spud was used so that the instrument could be located sufficiently above the bed to
avoid burial by sediment. The mounting hat and relatively thin spud presented a minimal drag
surface, thereby reducing scour potential. As opposed to a bottom-resting frame, the spud always

maintained its vertical orientation and did not settle into the bed.



1.2 Data Collection

Two different spud locations, approximately 180 ft. apart, were used during the data collection

through the years. Spud 1 was located at N28° 32.672; W80° 32.672’, while spud 2 was located

at N28° 3.355; W80° 32.701°. Figure 1.7 shows the location of the spuds.

Spud #1

Spud#2 &
P 4

Googleearth

Figure 1.7: Location of the two spuds used for the FCFP.

The ADCP wave gauge has the capability to collect data in cabled and self-recording mode. The
FCFP wave record was collected using both modes. In cabled mode, the wave gauge needs to be
connected to a power supply and a computer through a special cable, whereas in self-recording
mode the gauge needs a battery to be installed internally to operate. The only difference between

these two modes, besides the source of energy, is that in cabled mode the data can be acquired



and processed instantaneously (real-time) while in self-recording mode the wave gauge needs to
be retrieved to acquire and process the data. The wave gauge was programmed to record

measurements for 20 minutes once every two hours.

The FCFP data collection process went smoothly for the majority of the time. The few times
when the instrument did not collect data was because of cable failure, power outage, converter
failure, gauge malfunction, lightning strikes, and weak batteries. Overall, the wave gauge had a

data return rate of approximately 94%.

1.3 Data Processing

The first task was to organize and compile the data onto one hard drive. After compiling the data,
some of the files were concatenated in order to reduce the number of files that had to be handled.
These files had to be sent to a Teledyne RD Instruments engineer, who concatenated them by

year.

The raw data files were then processed using the ADCP manufacturer’s (RD Instruments)
proprietary software called WavesMon. This software is equipped with a multitude of user-
selectable options, which include frequency bands, frequency thresholds, bin selection, number
of angles, number of Iterative Maximum Likelihood Method (IMLM) iterations, correction for
currents, and wave parameter and spectral output, to name a few. The wave analysis can be
performed from several methods including water particle velocity, surface tracking, and pressure,
or a combination of the three. Most of the data were processed using measurements of the water
particle velocity, but when a beam went bad during the deployment then pressure or surface track

would be used. Also, there were a few times when the pressure gauge clogged during a



deployment so surface track had to be used. A comprehensive analysis of all the options and
methods available in this software is beyond the scope of this thesis. Thus far all of the data were
processed using default values except for: frequency bands were changed from 64 to 128,
altitude of the ADCP above the bottom was adjusted depending on the spud (spud #1 altitude= 1

m, spud #2 altitude: 1.5 m) and the IMLM iterations were set to 3.

The raw data files were processed using ‘Format 8’ of the WavesMon software, which generated
both a wave parameter file and a directional spectra file. Appendix B shows a sample wave
parameter file and directional spectra file. For consistency, all of the raw data was processed

using Format 8.

1.4 Other Available Long-Term Records

The US Army Corps of Engineers Field Research Facility (FRF), located in Duck, NC, was
established in 1977. This is one of the few facilities in the US with a long-term wave database.
One part of the FRF program consists of a linear array of pressure transducers installed at the 8
m depth contour (U.S. Army, 2014). This methodology is good for measuring directional wave
spectra except when currents are present, because pressure gauges do not recognize the currents.
Unlike the pressure gauges, the ADCP can measure the current depth profile as well as the

directional wave spectra.

Thanks to this database many different processes have been studied and much advancement has
been made. Numerical models have been validated and calibrated and our understanding of the
coastal processes has increased. To keep increasing the knowledge and the advancement within

this field more accurate studies have to be made with small margins of error. This is one of the



reasons why the FRF and FCFP databases are so valuable. Currently there is a need in Florida for

more long-term datasets to better understand the processes that take place on the coast.
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Chapter 2:

DATA PROCESSING RESULTS

Chapter 2 presents the data processing results from the Spessard station, in which the focus is to
explore the variability in the wave record. The first part of the chapter will present an overview
of the entire data record via the energy-based significant wave height, Hy,,. Two sample years
were chosen (2002-2003 and 2004-2005) to be compared and contrasted according to their
significant wave height (Hp,), peak period (T,) and mean direction (Omean). An explanation on
how these years were chosen is provided in section 2.1. Time series for the whole record are also
presented in Appendix C so that the reader can examine them fully. Finally, this chapter presents
an averaged 2D spectrum and directional distribution analysis for the selected years and the

entire record.

2.1 Analysis of Basic Wave Parameters

Figure 2.1 presents a time series of energy-based significant wave height, Hy, measured at
Spessard Holland North Beach Park between August 28, 2001 and October 28, 2011. The few
gaps of significance in the record are noted and the cause of each is provided. The record
includes data from Hurricane Jeanne (9/25/04) and Hurricane Wilma (10/24/05), but not
Hurricane Francis (9/04/04) due to a power outage. Furthermore, some of the years have active
storm seasons while others do not, suggesting significant variability in the wave forcing from

one year to another.

11
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Figure 2.1c: Record of energy-based significant wave height (Hy,,) from the Spessard Station (concluded).
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Cumulative total wave power was computed for each year, starting Sept. 1 and ending Aug. 30

of the subsequent year, using the full spectrum. Cumulative wave power is defined as.
ty, po0 T
Wave Power = f f f E(f,0)cy(f)dO df dt (2.1)
tl 0 -1t

in which E(f, 8) is the frequency-direction energy spectrum, c,(f) is the frequency dependent
group velocity and t; and t; are the start and stop dates that define a period. By calculating power,
active and calm years can be identified. Table 2.1 presents the results ranked from largest to
smallest cumulative power. The time period of 2004-2005 (referred to as 04-05 hereafter) had
the largest cumulative wave power of 85,912 MW per unit length of beach, whereas 2002-2003
(referred as 02-03 hereafter) had the smallest cumulative power of 42,776 MW per unit length of
beach. The difference in cumulative wave power between these two periods is large [43,135

MW], indicating very different wave climates, which that can be compared and contrasted.
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Table 2.1: Cumulative Wave Power

Ranking] Time Period MW per unit length of beach
1 9-01-04 to 9-01-05 85,912
2 [9-01-06 to 9-01-07 81,281
3 9-01-01 to 9-01-02 80,152
4 |9-01-08 to 9-01-09 73,876
5 9-01-03 to 9-01-04 70,389
6 [9-01-05to 9-01-06 68,309
7 9-01-07 to 9-01-08 63,686
8 9-01-10to0 9-01-11 63,364
9 [9-01-09to 9-01-10 52,134

10 |9-01-02 to 9-01-03 42,776

Figures 2.2, and 2.3, present time series of some of the wave parameters measured by the ADCP
during 02-03 and 04-05, respectively. The top panel in each figure contains the energy-based
significant wave height, the middle panel presents the dominant wave period, and the bottom

panel provides the mean wave direction.
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Figure 2.2: Record of energy-based significant wave height (Hy,,), Peak Period (T,,) and Mean Direction (Opmean) from the Spessard
Station 2002-2003.
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Florida Coastal Forcing Project 2004-2005
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Figure 2.3: Record of energy-based significant wave height (Hp,), Peak Period (T;) and Mean Direction (Opmean) from the Spessard
Station 2004-2005.
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By inspecting the panels of significant wave height, it can be noted that 02-03 was a relatively
calm year, e.g. five storms occurred in which the significant wave height in the nearshore
exceeded 1.5 m. The average significant wave height was 0.69 m. with a standard deviation of
0.29 m and with a skew of 1.16. Figure 2.4a presents the wave height distribution for this year
with the calculated statistics. The maximum wave height for this year was 2.6 m, while the

minimum was 0.12 m.

In distinct contrast, the 04-05 year was a very active year. A total of fifteen storms occurred in
which the significant wave height in the nearshore exceeded 1.5 m, and one of these had waves
greater than 4 m (Hurricane Jeanne in October of 2004). The average significant wave height
was 0.89 m with a standard deviation of 0.51 m and with a skew of 1.53. Figure 2.4b presents the
wave height distribution for this year with the calculated statistics. For this year the maximum
wave height was 4.01 m, while the minimum was 0.17 m. The maximum wave height was
recorded during hurricane Jeanne. It is important to note that the maximum wave height during
hurricane Francis was comparable to that of hurricane Jeanne. Averages would increase if

measurements from Francis were included.
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The second panels of Figures 2.2 and 2.3 present peak periods for the two years being compared.
The instability of peak periods is due to the short period waves generated by the local wind
competing with the long period waves that approach from distant sources. For 02-03 the average
T, was 8.21 s with a standard deviation of 2.58 s and skew of 0.3. On the other hand, 04-05 had
an average T, of 8.87 s with a standard deviation of 3.05 and skew of -0.02. Almost half of the
measurements fell between 8 and 9 seconds for these two years as shown in Figure 2.5.,

indicating useful ‘typical’ values for this region.

Finally the third panel of Figures 2.2 and 2.3 presents mean wave direction, which appears to be
very stable for both years. For 02-03 the average Omean was 75° with a standard deviation of 28°
and skew of 4.4, whereas for 04-05 the average Omean of 78° with a standard deviation of 30° and
skew of 3.9. Slightly less than half of the waves during these two years are shore normal (~73°
+4°). Comparing the results from these years reveals that based on the distributions of Opean,
waves approach the nearshore from the southeast more often than from the northeast, regardless

of the storm/wave activity. Figure 2.6 presents histograms of Omean for these two periods.
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2.2 Analysis of Averaged Spectra

From the FCFP record, 39,759 fully 2D (i.e. frequency-direction) spectra are available. Figure
2.7 presents the average of these spectra as both a contour plot and a mesh plot. The contour plot
indicates that the peak of the average of the 2D spectrum occurs at a frequency of 0.125 Hz (i.e.
period T=8 s) and at a direction of ~74° (direction from which waves approach, referenced to
magnetic north), indicating a neutral long-term net forcing The average energy density is

distributed almost symmetrically between 40° and 110°.
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Figure 2.7: Average of all 39,759 directional spectra from the Spessard record.
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For further analysis of the directional characteristics, the spectra can be divided into three
directional windows, ‘shore-normal’, ‘northeast’, and ‘southeast’. Based on directions measured
by the ADCP at Spessard, the shore-normal direction, relative to magnetic north, was estimated
by Kennedy and Dean (2005) to be 73°+ 4°. Therefore, a measured spectrum with a peak in its
directional distribution within this window is categorized as shore-normal. A peak at a value less
than 69° is categorized as northeast, and a peak at a value greater than 77° is categorized as

southeast.

Figure 2.8 presents the average spectrum of the 8,151 directional spectra that fell within the
shore-normal window. Strong symmetry can be observed with only slightly more energy from
the southeast. The peak frequency of the average is around 0.1 Hz. Figure 2.9 presents the
average of the 20,892 directional spectra that fall within the southeast window. The peak
frequency of the average is at 0.125 Hz. The peak direction for the southeast window is at ~81°.
Figure 2.10 presents the average of the remaining 10,716 directional spectra that fall within the
northeast window. The peak frequency of the average is at 0.110 Hz, but a secondary peak is
present at 0.125 Hz. The peak direction for the northeast window is at ~61°. Figures 2.11 and
2.12 present the direction distribution and frequency spectra plots for the entire record,

respectively.
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Useful information can be extracted by contrasting the results from the three windows. Energy
can be calculated by integrating the average spectrum across frequency and direction. Then
equation 2.2 can be used to calculate the average Hp,,. Table 2.2 presents the H,,, averages for
every window. The northeast window was the most energetic, with an average Hy,, of 0.87 m..
The shore-normal window was the second most energetic, with an average energy of 0.83 m
followed by the southeast window, with an average energy of 0.78 m. Finally, waves coming
from the southeast window arrived more often than from the other two windows combined. That

is, about 53% of all the waves came from the southeast.

Hpo = 4VE (2.2)

Table 2.2: Average H,,, Calculated for each Window

Average H,,, (m)

Window 02-03 Period 04-05 Period | All Data
Southeast 0.64 0.79 0.78
Northeast 0.70 1.01 0.87
Shore-Normal 0.73 0.87 0.83
All Windows 0.69 0.89 0.83

As one means of further analyzing the wave climate at Spessard during 02-03 and 04-05, Figure
2.13 presents the average of 3,721 spectra for 02-03 and 3,967 spectra for 04-05, as contour
plots. The peak frequency for 02-03 is 0.125 Hz and the peak direction is at~73°. For 04-05 the

peak frequency occurs at 0.09 Hz and the peak direction is at ~73°. Both years have the average
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energy distributed symmetrically between 40° and 110°. The total average energy (Hy,,) for 02-

03 was 0.69 m while for 04-05 it was 0.89 m.

It can be noted from Figure 2.14 that during 02-03 all three windows were less energetic than 04-
05. During 04-05 shore-normal (avg. Hy,, = 0.87 m) and northeast (avg. Hy,, = 1.01 m) waves
were very energetic, increasing the total average energy for this period. Table 2.2 presents the
average energy from each window. Both years appear to have neutral forcing because of the high

percentage of waves approaching from the southeast, 46% and 52% for 02-03 and 04-05,

respectively.
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Figure 2.13: Average ADCP Spectra for all Windows.
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2.3 Discussion

The wave climate was analyzed based on wave parameters and the average spectra. High yearly
and seasonal variability were found in the data. The expectation was to find a north to south
forcing during 04-05, since it was a very active year; but results indicate that there was a neutral
net longshore forcing for both of the years compared (02-03 and 04-05). The high percentages of

southeast waves are the main factor contributing to a balance in the longshore forcing.

If only the averaged spectrum was considered, wave energy in this area is slightly dominated by
southerly waves; the energy for the entire record is distributed almost symmetrically with the
peak being at ~74° (73° being shore-normal). It was expected to find the peak at a direction less
than 73° since all the inlets in this area indicate a strong north to south transport. Reconciling this
with the fact that net longshore transport is known to be north to south will be addressed in

Chapter 4.

To increase efficiency of wave energy collection devices in east Florida, the device must be at
peak productivity when the waves are approaching from the northeast because the majority of the
energy comes from the northeast (avg. Hyo = 0.87 m) and shore-normal (avg. Hp, = 0.83m)
windows. But, even though waves coming from the southeast (avg. Hy, = 0.78 m) are less
energetic, they arrive 52% more often than the other two windows combined. Considerable

amounts of energy can also be extracted from the southeast window.
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Chapter 3:

PROBABILITY MODELING OF THE WAVE DATA

To characterize the overall wave climate at the Spessard station, the development of probability
models is beneficial. This chapter develops probability models for energy-based significant wave
height (Hmo), mean period (Tmean) and peak period (Tp) utilizing the shifted gamma, shifted
lognormal and Gaussian distributions. These models are used because of their success in

previous studies including Lawson and Abernethy (1975), Ochi (1978), Rossouw (1988) and

Leyden and Dally (1996). Computations of the root mean square error (€,,y,5) Will be used to

compare the accuracies of the different models. The following equation calculates €,,¢ in terms

of percentage:

G.1)
ZIIV(XModel - XData)2

& =
rms lev(XData)z

3.1 Probabilistic Models

3.1.1 Shifted Gamma Distribution

The gamma distribution has been commonly used in civil engineering applications (Benjamin &

Cornell, 1970, pp. 482-483). Leyden and Dally (1996) found success with the shifted gamma
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distribution in modeling eight years of wave measurements from the U.S Army Corps of

Engineers Field Research Facility in NC.

Although several probability distributions were considered, the present study found that the
shifted gamma distribution provided the best representation of the H,, dataset. For the random

variable x, the shifted gamma distribution is given by

pdf (x) = % [A(x — a)]* e~ D) x>a (3.2)

where k is a shape parameter, A is a scaling parameter, a is a shifting parameter and I'(k) is the
gamma function defined by I'(k) = foooe_y y¥=1dy. To calculate the best-fit parameters, the

method of moments was used. This method utilizes the mean ( ), the standard deviation (o) and

the skew (s) of the dataset to solve the following equations:

_2 23
s—& (2.3)
c:%( (3.4)
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3.1.2 Shifted Lognormal Distribution

The Lognormal distribution has also been used within the civil engineering field (Benjamin &
Cornell, 1970, pp. 483-486). Studies made by Lawson and Abernethy (1975) found that the
lognormal distribution provided a good fit to significant wave height data from Botany Bay,
Australia. Leyden (1997) found that the shifted lognormal distribution successfully represented
the eight years of Hy,, data from the FRF’s linear array and an offshore buoy. The shifted

lognormal distribution for the random variable x is given by

pdf (x) =

Afpeammal |

1
ex
V2o, (x — a) p{ 2

Oiny

where Y = x — a, and my,y is the mean of InY and g,y is the standard deviation of InY .
Once again the method of moments was used to determine the best-fit parameters. The following

equations are solved using the first three moments of the data ( , o, and s):
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s=32 4 (i)s 3.7)

a=X—my (3.8)

By solving the following equation the coefficients o,y and m;,y can be calculated as

o

my
alzny =In(VZ+1) (3.10)
My = Inmy — Eazzny (3.11)

3.1.3 Gaussian Distribution

Wave period is a very important parameter to consider when, e.g., designing a coastal structure.
Many numerical models require wave height, wave period and wave direction as an input. After
testing the shifted gamma, shifted lognormal and Gaussian distributions for both mean and peak

wave period, the probability density function that found the most success in representing the
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mean wave period is the Gaussian. The Gaussian distribution is one of the most commonly used
models in applied probability theory (Benjamin & Cornell, 1970, pp. 249-261). The Gaussian

distribution for the random variable x is given by

(x — %)? (3.12)

3.2 Statistics and Models of Energy-Based Significant Wave Height for the Spessard Data

Figure 3.1 presents the histogram of Hp, for the entire record at Spessard. The dataset has an
average Hp, of 0.82 m, a standard deviation of 0.44 m, and skew of 1.32. The maximum
significant wave height observed in the record is 4.1 m, occurring during Hurricane Jeanne as

mentioned previously.
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Figure 3.1: Histogram of energy-based significant wave height (H,,,) from Spessard.

Figure 3.2 shows the capability of the shifted gamma and shifted lognormal distributions to
model the Spessard H,, data. Both models provide a good fit for the data, but they
underestimating the peak of the data slightly. The shifted gamma distribution underestimates the

peak of the histogram by 1.36%, while the shifted lognormal by 1.86%. The root mean square
error (€,yy,s) for the shifted gamma model is 3.00%, whereas for the shifted lognormal model the

root means square error is 7.84%. Table 3.1 shows the root mean square error and the best-fit
parameters for both distributions. Overall, the shifted lognormal model is slightly superior to the
shifted lognormal, given the fact that it goes to zero at 0.1 m. The shifted gamma model diverged

from the data both near the peak of the histogram and with wave heights of less than 0.2 m.
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Figure 3.2: Comparison of the shifted gamma and shifted lognormal models to the Hy,, data
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Table 3.1: Best-fit model parameters and root mean square errors (€;,,5) for the Hy,, data

Shifted Gamma Model Shifted Lognormal Model
a(m) k Am™Y) € (%) a(m) Olny M,y Erms (%)
Spessard H,,,Data 0.171 2.31 3.46 3.00 -0.236 0.398 -0.0198 7.84
33 Statistics and Model of Mean Period (Ty,) for the Spessard Data

The histogram of Tpe.n Was best represented by the lognormal distribution. The shifted gamma
could not be used because a bin size greater than 2.5 s had to be used (see equation 3.2, a= 2.3).
Figure 3.3 presents the histogram of Tyean for the entire record. The dataset has an average Tiean
of 5.46 s, with a standard deviation of 1.70 s and skew of 1.01. Table 3.2 presents the best-fit

parameters and root mean square error for the shifted lognormal distribution.
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Table 3.2: Best-fit model parameters and root mean square error (€,y,) for the T data

Shifted Lognormal Model
a(m) G my,y €rms (%)

Spessard T,,e., Datal] 0.232 0.316 1.60 9.34

Figure 3.4 shows the capability of the shifted lognormal distribution to model the Spessard Tean
data. Overall, the model represents the data fairly well, but deviates with wave periods between
4-7 seconds and under-estimates the peak of the distribution. The root mean square error for the

shifted lognormal model is 9.34%.
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Figure 3.4: Comparison of the shifted lognormal model to the Tpean data.
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3.4 Statistics and Model of Peak Period (T}) for the Spessard Data

Before attempting to model the distribution of T, the bin size had to be doubled (from 1 s to 2 s)
to remove the irregular behavior of the histogram. Figure 3.5 presents the histogram of T, for the
entire record. Note the almost symmetric structure in the distribution. For this reason, the
Gaussian distribution was selected for modeling. The dataset has an average T, of 8.24 sec, with
a standard deviation of 2.82 sec and skew of 0.18. Table 3.3 presents the best-fit parameters and

root mean square error for the Gaussian distribution.
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Figure 3.5: Histogram of peak period (T)).
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Table 3.3: Best-fit model parameters and root mean square error (€,,s) for the T,, data

Gaussian Model

X (m) 6 (m)  Ems (%)

Spessard T, Data| 8.24 2.82 229

Figure 3.6 presents a comparison of the Gaussian distribution model to the Spessard T, data.
Overall, the model captures the shape of the distribution but misses the peak. Consequently, the

root mean square error for this model is 22.9%.
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3.5 Discussion

Both the shifted gamma and shifted lognormal distributions had success in modeling the
Spessard significant wave height data, with the shifted gamma being slightly better. Although
both models missed the peak of the data, the root mean square error for both distributions, shifted

gamma distribution (3.00%) and shifted lognormal (7.84%), was relatively small.

The shifted lognormal distribution had some success in representing the Tpe.n data. However, the
model did not fit the middle of the histogram well, and perhaps another means of selecting the
parameters, such as the maximum likelihood method, would improve agreement.. The root mean
square error for this distribution was 9.34%. The shifted lognormal distribution can be used to

model long-term mean period datasets.

Finally, a coarse bin width was important to for the development of the T, histogram. The
Gaussian distribution had only marginal success modeling the T, histogram, notably
underestimating the peak. The root mean square error was found to be 22.9% for this
distribution. One issue is that the ADCP reports its measurements in terms of peak frequency
rather than peak period, and it may be better to model the peak frequency and then invert the

result by transformation of random variables to model Ty,
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Chapter 4:

RADIATION STRESS TENSOR CROSS-COMPONENT Sxy

As mentioned previously, the Spessard dataset is very valuable because it is a relatively long
record of high-resolution directional spectra measured in the nearshore. This presents an
opportunity to compute the Radiation Stress Tensor cross-component S, using the nearshore
spectra with high directional resolution, in contrast to using bulk parameters and directional
estimates as in common practice in coastal engineering. This parameter is important because it
provides an indication of the forcing of the longshore current due to obliquely incident waves.
This chapter presents and compares the results of integrating Sy, from the fully directional
spectrum versus a parameter-based computation of S,,. Furthermore, the variability of S,y is
analyzed on a yearly and seasonal basis by presenting yearly averages and time series plots. This
chapter will also use the Spessard dataset to establish long-term estimates of the radiation stress
climate for the east coast of Florida by seeking patterns in the behavior of S,y. Finally, the

importance of long-term datasets is going to be established.

4.1 Radiation Stress Estimates: Integrated S, vs Parameter-Based S,y

On an open coast, the radiation stress component Sy, is one of the two forces responsible for
driving longshore currents in the surf zone (Longuet-Higgins and Stewart, 1964), the other being

the local wind stress. For random waves, Sy, can be computed using either 1) an integration of
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the complete, directional spectrum, or 2) computation using only spectral parameters. Battjes

(1972) showed that, according to linear wave theory, Sy, can be computed from the integral:

Sy = fooo f_n E(f,0) Cf((]f)) sin @ cos 6 dO df 4.1)

where E(f,0) is the frequency-direction energy spectrum, c,(f) and c(f) are the frequency
dependent group and phase velocities, respectively. However, it is common practice in coastal
engineering to approximate the value of Sy, by the use of spectral parameters as show in the

following equation

1 Hz Cg(fp)

= ind cosf 4.2
Sxy 16pg o c(ﬁ,) sinf@ cos 6 (4.2)

in which f, is the peak spectral frequency, and 0 is the mean direction. The coordinate system
for making the Sy, estimates is rotated and aligned to the shoreline orientation at Spessard.
Positive values of Sy, indicate north-to-south longshore forcing, while negative values indicate

south to north longshore forcing.
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Figure 4.1 presents a time series of S,, estimates for the entire record using both equations.
Figure 4.2 presents the results from Figure 4.1 in a scatter plot, showing that the integrated Sy is
in general only 42% of the parameter-based estimate. The correlation between these methods
was 0.73. The parameter-based approximation over-predicts the value of Sy, because all energy is
assigned to a single direction (Ruessink et al., 2001). Ruessink (2001) found the over-prediction
to be 60% by using data from a linear array of pressure transducers, at Duck FRF. Consequently,
this indicates the importance of using high-resolution, fully directional spectra in coastal
engineering applications including radiation stress computations and longshore currents

estimates.
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Figure 4.1: Time series of integrated-based vs parameter-based Radiation Stress (Sxy) estimates at Spessard.
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Figure 4.2: Scatter plot of integrated-based vs parameter-based Radiation Stress (Sxy) estimates
at Spessard.
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Table 4.1 presents a comparison of the yearly averages between the two methods. It can be noted
that both methods agree on the sign of the averge estimates in all the years except 2003-2004.
Nevertheless, during some years the difference between the averages of the two methods varies
greatly. Table 4.2 presents a comparison of the standard deviations calculated for both methods.
Parameter-based standard deviations are much higher than those from the integrated-based

method.

Table 4.1: Comparison of average radiation stress (Syy) between integrated-based and parameter-
based estimates

Time Period|Integrated S,, (N/m) [Parameter Based S,, (N/m)
2001-02 11.4 7.30
2002-03 10.3 6.74
2003-04 4.22 -9.00
2004-05 13.4 2.13
2005-06 -0.09 -17.0
2006-07 -8.79 -19.1
2007-08 5.50 0.78
2008-09 31.0 36.8
2009-10 -11.0 -24.0
2010-11 16.2 19.4
Average 7.22 0.41
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Table 4.2: Comparison of the standard deviation of radiation stress (Sy,) between integrated-
based and parameter-based estimates

Time Period|Integrated Sxy (N/m) |Parameter Based Sxy (N/m)
2001-02 78.7 146.4
2002-03 48.7 87.1
2003-04 67.9 119.2
2004-05 93.7 186.0
2005-06 79.3 157.0
2006-07 96.3 128.5
2007-08 72.7 119.7
2008-09 90.5 141.6
2009-10 65.9 108.5
2010-11 57.9 100.2
Average 77.2 1334
4.2 Behavior of Integration-Based Radiation Stress Sy at Spessard Holland Park

The behavior of the radiation stress component, Sy, in the nearshore is highly variable from year
to year. Appendix D presents yearly time series of integrated-based S,y estimates. Some of the
years have active Sy, seasons while others do not, suggesting significant variability in the

longshore current forcing from one year to another.

Figure 4.3 presents a histogram of Sy, estimates from the Spessard dataset. The average Sy, was
7.22 N/m with a standard deviation of 77.2 N/ m and with a skew of 1.81. A positive S,y average
for the entire record indicates net north-to-south forcing at this location, which is commonly
assumed for the east coast of Florida. However, the fact that Sy is nearly balanced is somewhat

surprising, given the distinct indication of net north-to-south transport at east coast jettied inlets.
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Figure 4.3: Histogram of Integrated-Based Radiation Stress (Sy) Estimates at Spessard.

4.2.1 Analysis of the Years with the Highest and Lowest Average S,y

Net longshore sediment transport in the east coast of Florida is known to be north-to-south.
Nevertheless, three out of the ten years had a negative yearly average. As a means to further
investigate these results, an average-spectra analysis was performed between the years with the

lowest and highest S,y average, 2009-10 and 2008-09, respectively.

57



Figure 4.4 presents the average of 3,964 and of 3,671 fully 2D spectra for 08-09 and 09-10,
respectively. Figure 4.5 presents the average spectrum separated into the three different
windows. Top plots in this figure display the average of the directional spectra that fall within
the southeast window, for 08-09 and 09-10 respectively. The middle and bottom plots display the
average spectra from the northeast and shore-normal windows, respectively. During 08-09 39%
of the waves came from the southeast compared to 62% during 09-10. Also 36% and 19% of the

waves came from the northeast during 08-09 and 09-10, respectively.
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Figure 4.4: Average ADCP Spectra for all Windows for 08-09 and 09-10.
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Figure 4.5: Average ADCP Spectra divided into separate windows for 08-09 and 09-10.
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Table 4.3 presents the average energy for each window. During 08-09 the average energy is
greater in each window than 09-10. Figures 4.6 and 4.7 present the average direction distribution
for 08-09 and 09-10 respectively. The peak of the average of the 2D spectrum occurs at a
direction of ~70° (north-to-south forcing) and ~82° (south-to-north forcing) for 08-09 and 09-10,
respectively. It can be concluded that 08-09 had the largest positive Sy, average because it had a
very energetic northeast window and a high percentage of waves (36%) approached from the
northeast. On the other hand, 09-10 had the smallest S,, average because the difference in
average Hp, between the northeast and southeast window is small (0.05 m) and a high

percentage of waves (62%) came from the southeast.

Table 4.3: Average H,,, Calculated for each Window

Average H,,, (m)

Window 08-09 Period | 09-10 Period | All Data
Southeast 0.74 0.73 0.78
Northeast 0.91 0.78 0.87

Shore-Normal 0.84 0.72 0.83
All Windows 0.83 0.74 0.83
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422 Analysis of Integration-Based Radiation Stress (Sxy) Variability

Figure 4.8 presents a time series of integrated-based Sy, annual average. The average was done
in the following manner: 1) daily averages were calculated and, 2) each day was averaged with
the corresponding date in the subsequent years (e.g. Jan. 1, 2002 was averaged with Jan.1, 2003,
2004, 2005...etc.). It can be noted that during the winter season (Sept.-May.) S,, average
estimates came up mostly positive, while during the summer (May.-Sept.) they came up as
negative for the most part indicating seasonal patterns in S,y. It is also important to point out that
during the months of April and May there were times where the value of S,y spiked. This might
indicate that during the change of seasons, longshore currents might be at their peak forcing. It is
important to note that the average of this time series plot is equal to the total average of S, (7.22

N/m) stated previously.
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Figure 4.8: Syy Daily Almanac
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To further explore the variability of Sy, a 2-month running average was calculated and is
presented in Figure 4.9. Yearly and seasonal variability can be noted. Also, it can be noted from
the figure that seasonal Sy, patterns are present in the data. S, is predominantly positive between
the months of October and April (7 out of 10 times) and negative between April and October (7

out of 10 times).

4.3 Importance of Long-term Datasets

Figure 4.10 presents a comparison of different time scale averages of Sy, averages. It is
important to keep in mind that the average Sy, for the entire record was 7.22 N/m and that short-
term wave measurements may not provide accurate information for coastal analyses. If 3 months
of data were collected at this site, then there would be a 33% chance that the net forcing would
be directed south-to-north. This percentage increases as the time scale averaging decreases. Not
only you can get a higher or lower average, but you can also get an incorrect direction.

Individual plots comparing each time scale average are presented in Appendix E.

Figure 4.11 presents a comparison of the calculated standard deviation between the four different
time scale averages. The standard deviation increases by more than a factor of two between 12-
month and 1-month averages. It can be concluded that results based on long-term measurements

analysis have smaller margins of error than those from short-term measurements.
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4.4 Discussion

It is very important to use high-resolution, fully directional spectra in coastal engineering
applications. A comparison was done of S, estimates between the integration-based calculation
and parameter-based approximations. The results indicate that the parameter-based
approximation over-predicts Sy, by 42%, because this method assigns all the wave energy into
one direction (Ruessink et al., 2001). Figure 4.1 clearly shows this discrepancy. Also, the

parameter-based method had a much higher yearly standard deviation than the integrated-based.

It is assumed in the east coast of Florida that the net longshore forcing is north-to-south. The
average S,y for the Spessard record was 7.22 N/m indicating a net north-to-south longshore
forcing, as it was hypothesized. A larger average was expected, given the offsets present in all
the inlets in east coast of FL. Nevertheless, offsets have been formed by many years of sediment

transport, so even a 7.22 N/m average can make a big difference over, e.g. 50 years.

Results showed that the annual and seasonal variability of Syy was very high but some seasonal
patterns were present in the data. Figures 4.8 and 4.9 indicate that there are seasonal patterns in
the behavior of Syy. Sy 1s predominantly positive between the months of October and April (70%
of the time) and negative between April and October (70% of the time). Finally, results indicate
that short-term wave records may not provide accurate information for planning purposes. For
example, if only 3-months of data were collected at this site, there would be a 33% chance that
the longshore forcing would be directed from south-to-north. Figure 4.11 shows that the standard
deviation decreases with longer-term datasets, indicating that the margin of error decreases when

long-term datasets are analyzed.
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Chapter 5:

WIND STRESS ANALYSIS

A higher average of longshore forcing was expected at this particular location, given that the Port
Canaveral entrance and Sebastian Inlet, Figures 1.1 and 1.2 respectively, display significant
offsets which indicate a strong net north-to-south transport from year to year. In searching for a
plausible explanation, this chapter presents the analysis of six years of wind data from the

Spessard station collected from September 12, 2002 until October 7, 2008.

5.1 Wind Stress Estimates

As mentioned before, wind is also a force responsible for driving longshore currents in the
nearshore. Wind transfers a momentum to the sea surface that generates currents. The wind stress

vector can be represented from the following relation

‘?:pcdﬁlolﬁlol (51)

where p is the air density, C,4is the drag coefficient, |l710| is the norm of the wind speed vector at

10 m elevation and l_flois the wind speed vector. C; can be calculated from the following

equation proposed by Garratt (1977)
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oo 1 (15+ 40 ’ ) (5.2)
27 1000\20 ' 600 1

Table 5.1 was developed using both equation 5.1 and 5.2. It presents yearly averages of wind
stress at Spessard. During the entire record, 4 out of the 7 years had a positive average, but the

total average came out as negative.

Table 5.1: Yearly averages of wind stress at Spessard

Yearly Averages

Year |Wind Stress (N /mz)

2002 0.00132

2003 0.00179

2004 0.00215

2005 0.00096

2006 -0.00652

2007 -0.0104

2008 -0.00832
Average -0.00272

The expectation was to find a positive wind stress average. Positive average would indicate a net
north-to-south longshore forcing. Even if the surf zone was 100 m width, this would not change
much the average forcing. When long period waves approach the shore from the northeast
(during nor’easters); they refract and break almost at a shore-normal direction (73°). It was
assumed that currents, during nor’easter storms, would be generated by the winds directed from
the north. Further study of this subject is required to better understand wind generated currents
during storm events. It can be concluded that currents generated by oblique waves are the main

contributor for longshore sediment transport.
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Chapter 6:

CONCLUSIONS

Over ten years of ADCP data collected at Melbourne Beach, FL were analyzed. The data show
large examples of yearly variability in the nearshore wave climate. The two years compared (02-
03 and 04-05) showed a clear example of the variability in the energy-based significant wave
height (Hmo), peak period (T,), mean direction (Omean ) and energy distribution from year to year.

The results show that wave climate is very unpredictable from year to year.

Analysis of the average spectrum for the entire record indicates a neutral net forcing for this
location. The energy for the entire record is distributed almost symmetrically, with the peak
being at ~74° (73° being shore-normal). Analysis of the averaged spectrum by itself might not be
a good indicator of the net longshore forcing. Further analysis on the directional spectra revealed
that waves from the northeast (avg. Hy,, = 0.87 m) were much more energetic than those from the
southeast (avg. Hpo = 0.78 m) and shore-normal (avg. Hy,, = 0.83m). Nevertheless, 53% of the

waves arrived from the southeast, more than the other two windows combined.

Energy-based significant wave height (Hn,), peak period (Tpe) and mean period (Tmean)
distributions were studied and modeled. The method of moments was used to calculate the best
fit parameters for all distributions. The shifted gamma and shifted lognormal distributions

provided a good fit to the Spessard Hp, data. A slightly better fit was accomplished by the shifted
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gamma model (3.00% error) compared to the shifted lognormal (7.84% error). The shifted
gamma model can be used to model long-term Hy,, distributions.
The shifted lognormal model had success modeling Tpnean data. The model got into trouble in the

4-7 sec range of the data, therefore missing the two peaks of the distribution. The root mean
square error (€,,¢) for this distribution was 9.34%. The shifted lognormal distribution can be
used to model long-term mean period datasets. Lastly, the Gaussian distribution provided the
best fit to the T, data (22.9%). One of the reasons for a high &, 1s because the ADCP reports

its measurements in terms of peak frequency rather than peak period.

Radiation stress (Syy) estimates were computed using the integration-based and parameter-based
approximations. Results revealed that the parameter-based approximation over-predicts the
integrated Sy, by 42% (Figure 4.1 and 4.2). Ruessink (2001) concluded that the parameter-based
approximation assigns all the wave energy into one direction, therefore over-predicting the value
of Sxy. The use of use of high-resolution, fully directional spectra in coastal engineering

applications is highly recommended.

It was hypothesized that net longshore forcing in the east coast of Florida is north-to-south, as it
is commonly assumed. The calculated S, average of 7.22 N/m” for the entire record indicates a
net north-to-south forcing of the longshore current at this site. There is clear agreement between

our results and the stated hypothesis.

Furthermore, the S,y analysis showed yearly and seasonal variability. Also Figures 4.8 and 4.9

show seasonal S,y patterns. Sy, was mostly positive between the months of October and April
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(70% of the time) and negative between April and October (70% of the time). Finally; results
indicate that short-term wave measurements may not provide accurate information for planning
purposes. For example, if only one-month of data were collected at this site, there would be a
41% chance that the longshore forcing would be directed from south-to-north. Figure 4.11

clearly shows that the standard deviation decreases with longer-term records.

Finally, a higher average of longshore forcing of the currents was expected at this particular
location. To further analyze longshore currents, wind stress estimates were calculated at
Spessard. The calculated wind stress average of 2.7 X 1073 N/m’ indicate a south-to-north
longshore forcing due to winds. Further analysis is recommended on this subject to better
understand the wind generated currents. It can be concluded that sediment transport is mostly

driven by wave generated currents.
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APPENDIX A

Shore Station at Spessard Holland Park, Melbourne Florida

Photo courtesy of W.R. Dally

Figure A.1: Spessard Holland Park, Brevard County (Photographer: W. Dally).
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APPENDIX B

WaveMon Format 8 Sample Output Files and Parameters

,

File Edit Format View Help

% 90 Directions and 128 Frequencies
% units are mmA2/(Hz) per degree
% Frequency Bands are 0.00781250 Hz
% The first direction slice begins at 192 degrees

2853 2185 1624 1184 851 605 424 292 195 124 72 33 5000000000000 00000 14 48 93 153 234 342 483
665 B94 1170 1483 1804 2086 2274 2327 2236 2032 1765 1483 1219 987 794 638 513 414 337 276 229 192 163 141 125
113 105 100 99 101 106 116 129 148 173 206 249 306 381 481 612 786 1017 1323 1720 2222 2825 3483 4088 4482 4520
4175 3562

261 242 227 215 208 203 202 205 211 221 234 252 274 300 332 369 411 460 515 577 646 721 801 886 975 1064 1150
1232 1305 1366 1413 1443 1455 1449 1427 1390 1342 1286 1224 1159 1095 1032 972 917 B67 B22 784 751 724 702 687
677 672 673 680 691 708 730 757 789 B25 865 908 953 999 1044 1086 1124 1154 1175 1184 1182 1166 1137 1097 1046
987 921 853 783 714 647 5B4 526 472 424 382 344 312 284

88 75 65 58 54 53 54 58 64 73 84 98 115 135 158 184 213 245 279 315 350 383 413 437 453 461 459 447 426 398
364 327 289 251 214 180 149 122 98 77 59 45 32 23 15 10 6 4 5 7 12 19 28 41 58 79 106 139 181 233 297 374 469
583 717 B72 1045 1231 1417 1588 1724 1804 1818 1762 1646 1489 1310 1127 953 795 657 540 441 359 292 237 193 157
129 106

1555 1445 1346 1259 1183 1118 1065 1023 993 975 969 974 991 1019 1059 1110 1172 1245 1329 1422 1523 1632 1747
1865 1986 2107 2224 2336 2440 2532 2612 2676 2724 2756 2770 2768 2752 2722 2682 2633 2578 2520 2461 2404 2349
2299 2256 2219 2192 2174 2166 2168 2181 2205 2240 2286 2343 2411 2488 2575 2670 2771 2878 2988 3098 3208 3312
3410 3497 3571 3628 3666 3682 3676 3647 3595 3519 3424 3309 3179 3036 28B4 2726 2565 2404 2246 2092 1945 1806
1675

000000000000 31 173 354 584 875 1240 1689 2233 2870 3580 4313 4982 5470 5666 5517 5058 4390 3636
2893 2222 1649 1175 793 490 252 66 0 0000 0000000000000 000O0O0 2147 325 539 793 1089 1423
1785 2152 2496 2775 2952 2998 2907 2698 2404 2064 1715 1380 1075 808 578 385 225 92 0 0 0 O
0000000000000 O0O0O0O0O0 97 309 562 863 1219 1634 2115 2661 3271 3931 4622 5308 5944 6478 G859 7048
7031 6817 6441 5947 5387 4802 4228 3687 3194 2755 2371 2042 1763 1531 1341 1190 1073 988 931 901 895 913 951
1010 1087 1181 1290 1412 1542 1676 1810 1937 2049 2140 2202 2229 2215 2160 2064 1930 1764 1575 1370 1159 947
742 548 367 202 52 000000

5355 6002 6746 7577 8474 9400 10301 11104 11725 12078 12099 11761 11083 10128 BO9BE 7757 6520 5340 4256 3289
2445 1719 1103 585 154 000 0000000000000 0000000O0O0O0O012 205 414 640 883 1143 1419 1710
2011 2319 2629 2935 3229 3502 3748 3959 4127 4249 4321 4345 4322 4258 4161 4038 3900 3757 3618 3494 3392 3322
3292 3309 3380 3512 3714 3992 4354 4806

1217 1269 1319 1371 1426 1485 1552 1629 1719 1825 1950 2097 2270 2472 2707 2976 3283 3630 4016 4441 4901 5393
5905 6426 6938 7420 7848 8195 B435 8549 8521 8350 BO43 7617 7097 6512 5890 5256 4632 4032 3469 2948 2473 2045
1662 1321 1020 756 526 326 154 6 00 0000000000000 O0O0CO0O0O0O0O0 35 111 190 271 354 438 522 605 687
766 842 914 983 1047 1107 1164

0000000000000 0O0O0 621732 3747 6159 9016 12350 16160 20392 24903 29445 33653 37093 39347 40132
39396 37324 34272 30649 26825 230B1 19596 16468 13735 11393 9422 7789 6459 5400 4582 3982 3582 3368 3330 3464
3768 4244 4895 5726 6739 7933 9301 10825 12470 14182 15881 1?464 1880? 19776 202534 20157 19461 18208 16497
14465 12257 10005 7817 5765 3895 2227 763 0000 00 00O

7484 11763 16874 22948 30105 38425 47BE7 58294 69168 79675 88635 94?2? 96867 94631 BB441 79379 68770 57792

% Directional Spectrum (}

Figure B.1: Example of Directional Spectrum File.
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" | Format 8 Output File - Notepad =
File Edit Format View Help

\ i
1,09,02,06,15,00,10,31,1.12,11.10,54.0,?165.000,1.42,5.20,51.0,40,0.215,141,0.203,149,0.214,152,0.185,148,0.205,15|—|
1,0.198,157,0.221,161,0.207,157,0.201,157,0.208,159,0.203,156,0.224,163,0.212,167,0.230,161,0.221,167,0.221,168,0. —
226,162,0.234,167,0.226,163,0.229,164,0.233,167,0.258,177,0.228,184,0. 247 ,168,0. 346,174,0. 588,175,0.495,173,0.479,
170,0.334,172,0.401,179,0.312,173,0.299,185,0.184,196,0.197,198,0.162,188,0.148,165,0.137,213,0. 210,
99,0.172,100,-32768.000,-32768

2,09,02,06,17,00,10,31,1.14,12.10,77.0,7307.000,1.44,5.60,75.0,40,0.144,140,0.155,148,0.144,148,0.156,141,0.173,14
8,0.173,147,0.167,153,0.168,153,0.170,155,0.151,157,0.162,159,0.178,153,0.154,156,0.137,150,0.160,147,0.173,147,0
146,150,0.164,152,0.163,150,0.150,146,0.175,153,0. 202,161,0.212,168,0.179,176,0.231,149,0. 383,167,0.405,172,0. 344,
168,0.294,163,0.353,176,0.261,154,0. 241,168,0.235,160,0.170,167,0. 237,148,0. 224,140,0.124,135,0.133,136,0.418,
88,-32768.000,-32768

3,09,02,06,19,00,10,31,1.01,11.10,89.0,6901.000,1. 29, 5. 80,74.0,40,0.127,141,0.133,139,0.133,145,0.124,143,0.141,14
6,0.130,153,0.135,160,0.130,165,0.120,150,0.141,160,0.150,165,0.124,168,0.126,158,0.133,168,0.132,161,0.119,168,0

143,165,0.146,167,0.143,165,0.145,165,0.168,181,0. 214,188,0. 235,182,0. 232,180,0. 337,182,0. 322,182,0. 323,185,0. 245,
175,0.220,177,0.197,179,0. 206,183 ,0. 211,187,0.187,170,0.137,197,0.178,216,0. 086,110,0.034,116,0.104,,262,0. 329,322,
~32768.000,-32768

4,09,02,06,21,00,10,31,0.99,11.10,70.0,6408.000,1.25,6.20,70.0,40,0. 083,146,0. 068,150,0. 074,153 ,0. 078,148 ,0. 087,17
1,0.076,157,0.062,159,0.091,158,0.084,148,0.087,169,0.096,141,0.095,143,0.091,153,0.096,138,0.102,137,0.099,125,0.
091,139,0.105,148,0.131,161,0.176,178,0.189,153,0. 331,154,0.447,177,0.426,172,0. 240,165,0. 218,178,0. 216,186, 0. 185,
183,0.187,181,0.152,169,0.126,177,0.150,194,0.125,210,0.094,179,0. 098,208 ,0.126,203,0.079,234,0.068,197,0. 075,178,
~32768.000,-32768

5,09,02,06,23,00,10,31,0.98,11.10,77.0,6259.000,1. 24 ,6.40,78.0,40,0.072,170,0.059,173,0.053,164,0. 050,175 ,0. 075,17
5,0.069,182,0.055,175,0.071,173,0.054,144,0.073,171,0.072,171,0. 068,158 ,0.067,155,0.057,161,0.050,155,0. 051,155, 0.
067,156,0.000,184,0.134,192,0.153,178,0. 285,149,0. 308,137,0. 355,154,0. 302,153,0.183,156,0.150,103,0. 079,203, 0. 080,
174,0.079,181,0.112,176,0.067,205,0. 038,233,0. 091,244 ,0. 070,169,0. 038, 338,0.079,171,0.103,297,0.004,187,0.130,
31,-32768.000,-32768

6,00,02,07,01,00,10,31,1.11,11.10,58.0,6615.000,1.41,7.10,57.0,40,0.071,143,0.071,156,0. 068 ,158,0. 051,151 ,0. 040,17
4,0.067,158,0.054,165,0.040,153,0.034,173,0.048,179,0.056,165,0.068,171,0. 056,157 ,0.053,168,0.053,168,0.083,145,0

045,167,0.063,143,0.056,153,0.150,199,0.118,197,0.175,135,0.446,128,0.488,141,0. 387,138,0.257,135,0.219,137,0.199,
144,0.178,151,0.204,130,0.167,131,0.221,160,0.201,146,0.172,140,0.147,131,0.488,115,0.354,110,0.218,231,0. 765,158,
-32768.000,-32768

7,09,02,07,03,00,10,31,0.95,10.20,12.0,7326.000,1.21,6.70,24.0,40,0.102,146,0.074,139,0. 065,155,0.079,171,0. 066,17
1,0.094,165,0.067,150,0.060,151,0.071,170,0.067,182,0.076,172,0.085,161,0.059,161,0.054,177,0.042,187,0.072,145,0.
045,176,0.051,184,0.052,173,0.045,190,0.063,192,0.125,197,0.151,208,0.144,168,0.272,135,0. 380,143,0.309,155,0. 320,
168,0.219,158,0.153,163,0.150,190,0.165,183,0.191,181,0.191,188,0.160,198,0.225,193,0.418,184,0.935,138,0. 205,218,
-32768.000,-32768

Figure B.2: Example of Format 8 Output Parameter File.
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Format 8

Waves Parameters Log: Format 8

String

Description

Burst#

Burst number

YY MM, DD HH, mm,ss5.cc Date and time field. Leading zeros are always included to maintain

Hs

Tp

Dp
Depth

Mo

Tmean

Dmean

#bins
depthlevel1Magnitude
depthlevel10irection
depthlevelMMagnitude
depthlevelMDirection

fixed length.

YY = 2 fixed digits for year, MM= 2 fixed digits for month, and DD=
2 fixed digits for day.

HH = 2 fixed digits of hours, mm = 2 fixed digits of minutes, ss =2
fixed digits of seconds, and cc = 2 fixed digits of 1/100th seconds.

Significant Wave Height {(meters) Hi=4u'f-

Peak Wave Period (seconds) - period associated with the largest
peak in the power spectrum

Peak Wave Direction (degrees) - peak direction at the peak period.
Water level (from pressure sensor) (millimeters)

H1f’1[] (10% highest waves) =127 *Hs

—_y _M

L=
Mean Period (seconds) ™ = AL

Mean Peak Wave Direction (degrees)
Mumber of bins

Depth Level 1 Magnitude (m/s)

Depth Level 1 Direction (deg)

Depth Level M Magnitude (m/s)
Depth Level M Direction (deg)

Figure B.3: List of Format 8 Wave Parameters
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APPENDIX C

Yearly Time Series of Energy-Based Significant Wave Height, Peak Period, Mean Direction,
Wind Direction and Wind Velocity
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Figure C.1: Record of energy-based significant wave height (Hy,), peak period (T}), mean
direction (Oean), wind direction and wind velocity from FCFP Station Spessard 2001-2002.
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Figure C.2: Record of energy-based significant wave height (Hyo), peak period (Tp), mean
direction (Bmean), wind direction and wind velocity from FCFP Station Spessard 2002-2003.
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Figure C.3: Record of energy-based significant wave height (Hyo), peak period (T}), mean
direction (Bmean), wind direction and wind velocity from FCFP Station Spessard 2003-2004.
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Figure C.4: Record of energy-based significant wave height (Hy,), peak period (T}), mean
direction (Oean), wind direction and wind velocity from FCFP Station Spessard 2004-2005.
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Figure C.5: Record of energy-based significant wave height (Hy,), peak period (T}), mean
direction (Oean), wind direction and wind velocity from FCFP Station Spessard 2005-2006.
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Figure C.6: Record of energy-based significant wave height (Hyo), peak period (Tp), mean
direction (Bmean), wind direction and wind velocity from FCFP Station Spessard 2006-2007.
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Figure C.7: Record of energy-based significant wave height (Hy,), peak period (T}), mean
direction (Oean), wind direction and wind velocity from FCFP Station Spessard 2007-2008.
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Figure C.8: Record of energy-based significant wave height (Hpo), peak period (Tp), mean
direction (Bmean), wind direction and wind velocity from FCFP Station Spessard 2008-2009.
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Figure C.9: Record of energy-based significant wave height (Hyo), peak period (Tp), mean
direction (Bmean), wind direction and wind velocity from FCFP Station Spessard 2009-2010.

&9



Height (m)

Mar Apr Sep

Period (sec)

Sep

Wave Dir (deg)

Sep Oct Nov  Dec Jan Feb Mar Apr May Jun Jul Aug Sep
P T T T T T T T T T T T
8300_ ....... B e PEPRRRREE: EERERRRER REPRRREE e e ERERRE ERERRREE Deee =
T - ! : : . : : 3
= 200 .
o ' : : : : : : ; : : :
'5100_ ........ ........ ........ ........ ........ ....... o
= 5 ; A L L L ;

Sep  Oct Nov  Dec Jan Feb Mar Apr May Jun Jul Aug Sep
- T T T T T T l T T T T
0 : : : : : : :
510_ ....... ........ ........ ........................................... ......................... ™
) : : : ; :
> . . F . 3
o] 5_ ....... o SRR AR O R e e e e ek =
= ; : : ! : :
I ; ; i i - i . i . i

Sep Oct Nov  Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Figure C.10: Record of energy-based significant wave height (Hp,), peak period (T}), mean
direction (Omean), wind direction and wind velocity from FCFP Station Spessard 2010-2011.
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APPENDIX D

Record of Radiation Stress Estimates
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Figure D.1a: Radiation stress (Sxy) estimates from the Spessard Station (continue).
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Figure D.1b: Radiation stress (Sy) estimates from the Spessard Station (continue).
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Figure D.1c: Radiation stress (Syy) estimates from the Spessard Station (continue).
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Figure D.1d: Radiation stress (Syy) estimates from the Spessard Station (concluded)
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APPENDIX E

Comparison of Time Scale Averages

—All Record Average
—1-Month Averages
—12-Month Averages

100

(N/m)

S
xy

' - ] i i
Aug. 09 Aug. 10’ Aug. 11'

i | i i | | |
Aug. 01" Aug. 02 Aug. 03' Aug. 04' Aug. 05' Aug. 06"  Aug. 07 Aug. 08'

Figure E.1: Comparison Between 1-Month and 12-Month Radiation Stress (Sy,) Averages. The All Record Average is 7.22 (N/m).
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Figure E.2: Comparison Between 3-Month and 12-Month Radiation Stress (Sy,) Averages. The All Record Average is 7.22 (N/m).
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Figure E.3: Comparison Between 6-Month and 12-Month Radiation Stress (Sy,) Averages. The All Record Average is 7.22 (N/m).
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