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ABSTRACT 
 
 
 

According to some researchers, a hybrid approach can help optimize the software 

development lifecycle by combining two or more methodologies. RUP and Scrum are 

two methodologies that successfully complement each other to improve the software 

development process. However, the literature has shown only few case studies on exactly 

how organizations are successfully applying this hybrid methodology and the benefits 

and issues found during the process. To help fill this literature gap, the main purpose of 

this thesis is to describe the development of the Lobbyist Registration and Tracking 

System for the City of Jacksonville case study where a hybrid approach, that integrates 

RUP and Scrum, was implemented to develop a major application to provide additional 

empirical evidence and enrich the knowledge in this under-investigated field.  

 

The objective of this research was fulfilled since the case study was described in detail 

with the specific processes implemented using RUP and Scrum within the context of the 

IBM Rational Collaborative Lifecycle Management Solution. The results may help 

researchers and practitioners who are looking for evidence about conducting a hybrid 

approach. However, more case studies that successfully combine RUP and Scrum need to 

be developed in order to have enough empirical evidence.   
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Chapter 1 
  

INTRODUCTION 
 
 
 

To stay competitive in the current market and gain market share, software development 

companies need to deliver high-quality products that meet or exceed customers’ 

expectations within budget and schedule. For this purpose, companies are constantly 

looking for ways to improve their software development process. Currently, there are 

many software methodologies from which to choose. However, all have strengths and 

weaknesses because they focus on different aspects of the software development life 

cycle. As a consequence some academics and practitioners have proposed different 

hybrid approaches that combine two or more software methodologies with the purpose of 

leveraging respective strengths thereby improving the entire development process. 

 

Some frameworks that combine different methodologies have been proposed and some of 

them have been implemented in organizations to prove their effectiveness.  

 

For instance, Batra et al. mention that by combining Scrum and the Project Management 

Body of Knowledge (PMBOK) concepts a cruise company was able to deliver a large 

distributed project whose previously development attempt had failed [Batra10]. Another 

company was able to improve its productivity by combining Scrum practices with its 

RUP process [Carvalho11]. Del Nuevo et al. proposed a framework that combines Scrum 

and RUP for distributed software development. This framework was successfully 
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implemented in an organization, and, as anticipated, some adjustments were needed to fit 

the organization’s practices [del Nuevo11].  

 

These researchers’ results validate the statement “one size does not fit all,” which means 

that every project may require a different approach to allow its goals to be achieved. 

From these research results the need to describe the implementation of different hybrid 

approaches to add knowledge in this effort and to reveal other aspects that influence the 

successful delivery of a product that meets the customer expectations are clearly 

warranted.  

 

The aforementioned cases motivated research to provide a detailed description of the 

hybrid approach implemented at the University of North Florida for the graduate 

Software Engineering I and II courses during the academic year 2012-2013. This 

implementation was special because it was used to deliver a major real-world application 

(Lobbyist Registration and Tracking System) for the City of Jacksonville, Florida. Also, 

another important aspect was that the UNF team had direct interaction with the customer 

during the course of the project which is not common for most of the school projects, 

where the students are sometimes isolated from real meaningful customer interaction and 

information. In many of these cases, critical information is passed through the professor, 

who frequently may not possess the level of detail that users of an application have.  

The objective of the above hybrid approach is to integrate within a collaborative lifecycle 

tool, namely IBM’s Collaborative Lifecycle Management Solution, two widely used 
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methodologies, the RUP and Scrum. This integration supports the software development 

activities from the inception to implementation.    

 
 
1.1   Background 
 
 
 
Until the mid-1990s traditional methodologies such as the waterfall and the spiral model 

among others dominated the software development landscape [Williams12]. They were 

characterized by up-front requirements and design which followed a plan and document-

driven process [Cho09, Boehm04, Nerur05,Williams12]. Also, these methodologies 

allowed a disciplined and structured process that permitted complying with the many 

policies and rules placed inside an organization. However, the arrival of the agile 

methodologies in the late 1990s, introduced a different approach based on the agile 

manifesto and the principles behind it [Williams12]. These agile methodologies besides 

utilizing an iterative and incremental approach, promoted the continuous delivery of 

software, constant interaction with the customer, and elaborating only the documentation 

needed. 

 

According to Nerur et al., the introduction of agile methodologies divided the software 

community in two main groups—traditionalists and agilists. Each group claimed that its 

approach was better than the other. However, there were other researchers and 

practitioners who believed that both approaches had their own strengths and could be 

used accordingly in an organization to fit a particular project [Nerur05].  
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In their book, Boehm and Turner suggested the need for balancing agility and discipline, 

especially for this evolving Internet economy that demands software that is more 

complex due to the size of the applications, the rate of changing requirements, and the 

quality and usability expected of the product [Boehm04]. 

 

Recently, some practitioners and academics have developed or proposed different process 

frameworks that combine two or more methodologies [Batra10, Carvalho11, Cho09, 

Bashir12, Nisa12, del Nuevo11, Nortier11]. The objective of these hybrid approaches 

was to create a process that maximized the strengths of the involved methodologies while 

at the same time reducing their weaknesses to improve the software development 

lifecycle and produce high-quality products [Cho09, Bashir12]. 

 

Two methodologies sometimes used in the above mentioned hybrid approaches are the 

Rational Unified Process (RUP) and Scrum, both of which embrace an iterative and 

incremental approach and have been widely used with long successful track records of 

their own [Ionel08, del Nuevo11]. RUP, which is commonly misunderstood as a 

traditional methodology because of its many roles and artifacts, can be adapted to a 

particular project or organization to provide discipline, structure, and guidance 

throughout the entire software development lifecycle [Collaris10, Krutchen03]. Scrum, 

on the other hand, is an agile management process that helps steer a project with an 

iterative and incremental approach during the software development lifecycle [Krebs05].  
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In the literature, there is a lack of empirical research that addresses different approaches 

on how to combine two or more methodologies and the issues found during this process. 

For example, Batra et al. claim that more case studies are needed to address the different 

issues when combining methodologies and to obtain a better understanding of how to 

combine their processes [Batra10]. In addition, Del Nuevo et al. state that the research 

about hybrid approaches only mention techniques and practices applied successfully in 

real cases without giving a more detail of the activities and tasks performed [del 

Nuevo11]. Further, in the literature there are very few case studies developed by 

practitioners or academics that combine RUP and Scrum [Carvalho11, Bashir12, Nisa12, 

del Nuevo11, Nortier11]. 

 

1.2   Problem Statement  
 
 
 
According to the hybrid approach school of thought, software development practitioners 

can optimize their software development lifecycle by combining traditional and agile 

methodologies. Particularly, it is claimed that RUP and Scrum are compatible and 

successfully complement each other to improve the software development process 

[Collaris10]. However, the literature has shown that there is a scarcity of empirical 

research on exactly how organizations are applying a hybrid methodology and the 

benefits and issues found during the process. Further, there are only few case studies that 

show how a hybrid methodology implementing RUP and Scrum can be successfully 

combined.  
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Another question arises as to whether there is just one way or there are more ways of 

combining several methodologies. Recognizing that no one size fits all, there is an 

industry-wide need for developing more case studies to add knowledge in this area and to 

provide a database of hybrid strategies. 

 

Given the above information, the main purpose of this thesis is to develop a case study 

where a hybrid approach, which integrates RUP and Scrum, is implemented to develop a 

major development application to provide additional empirical evidence and enrich the 

knowledge in this under-investigated field. Thus, this thesis will supplement existing case 

studies developed and published in the literature to provide additional insight on the 

different contexts where a hybrid approach can be successfully applied to address the 

needs coming from diverse environments and projects. 

 
 
1.3   Overview of the Research Methodology 
 
 
 
From the literature review of this study, multiple gaps in studying hybrid approaches 

were found; however, two gaps were identified that are relevant to the field of hybrid 

technologies and specifically the one combining RUP and Scrum. For the purpose of this 

research one area clearly in need of additional research was chosen, which is related to 

the process of combining both methodologies successfully. Very little empirical evidence 

was found in the literature.  
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In the research design of this study, the research purpose and objective, two inquiry 

questions, and the research methodology were stated. To address the inquiry questions, 

initially two guiding propositions were defined. However, this research was focused on 

the first guiding proposition that is related to the processes used to combine the best 

features of RUP and Scrum. 

 

Then, to support this guiding proposition a case study combining RUP and Scrum to 

validate and/or add new information to previous cases studies was undertaken. To 

address this purpose, a research objective was established as: “develop a case study to 

describe the process of combining both RUP and Scrum methodologies.” To fulfill this 

research objective, the Lobbyist Registration and Tracking System for the City of 

Jacksonville (COJ) was selected for this study. Once the research objective was 

established, a descriptive and single case study research methodology that uses a 

qualitative approach was selected as the research methodology.  

 

The case study is described in detail with the specific processes implemented using RUP 

and Scrum within the context of the IBM Rational Collaborative Lifecycle Management 

solution (IBM-CLM). This description was carried out using data collection protocols 

and multiple data sources from a wide variety of stakeholders with varied interests. Using 

the combination of these multiple sources ensured the validity of the data collected. This 

increased the level of confidence of the findings obtained and reduced possible bias from 

a single source or protocol. 
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The data analysis followed the phases stated in the research design of this study. For this 

research, the first step in data analysis was to focus on “within-case analysis” as a 

standalone entity and to distinguish the unique patterns of this lobbyist case study. In 

these terms the lobbyist case study was described with the specific RUP and Scrum 

processes within the IBM-CLM environment and how they were conducted.  

 

The follow-on “cross-case examination” indicated that when comparing the above 

within-case results with findings from previous published studies, results may vary for 

different projects and organizations. Finally, the results of this data analysis were 

summarized, conclusions were derived, and further research is suggested. 
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Chapter 2  
 

LITERATURE REVIEW 
 
 
 

2.1   The Need for Hybrid Approaches  
 
 
 
According to Dyck and Majchrzak a possible case for project failures may be the 

improper choice of a software methodology. These authors state that every methodology 

has its own characteristics that make it suitable for a type of project or organization. 

However, Dyck and Majchrzak add that an organization using a software methodology 

may follow ideas from other methodologies or may even combine conventional 

methodologies with agile approaches. This is done with the purpose of tailoring a 

development strategy for the organization and the project [Dyck12]. 

 

Thus, for the past decade researchers and practitioners recognize the need for combining 

software development methodologies to improve the software development process. 

Also, they realize that every methodology has its own advantages and disadvantages and 

that by combining the strengths and mitigating the weaknesses of two or more 

approaches a better software development process can be achieved [Cho09, Batra10, 

Nisa12]. 

 
 
 
 
 
 



 - 10 -  
 

2.2   Hybrid Methodologies  
 
 
 
This section describes several proposed hybrid methodologies and case studies that reveal 

how these methodologies were implemented inside an organization. Also, a critical 

review is added at the end of each case study. 

 

2.2.1   A Proposal for a Hybrid Methodology Combining RUP and Scrum 

 

Cho proposed a hybrid software development method that is suitable particularly for 

large-scale projects in the business software industry. This method integrates the Rational 

Unified Process (RUP) and Scrum to maximize their strengths while reducing the 

weaknesses of both methodologies.  RUP is used to give structure to the hybrid method 

by following its four phases Inception, Elaboration, Construction, and Transition; 

however, only seven (Business Modeling, Analysis, Design, Implementation, Testing, 

Deployment, and Configuration) of the nine disciplines are carried out to make the 

process faster and more efficient— the Project Management and the Environment 

disciplines are not considered in this framework [Cho09]. 

 

On the other hand, Scrum’s roles, artifacts, and events are integrated into the RUP 

phases. For example, Cho explained that each RUP phase can consist of one or several 

sprints depending on the size of the project. The daily Scrum meeting, the daily Scrum of 

Scrums, the sprint planning meeting, and the sprint review meeting can be carried out 

iteratively in each RUP phase, where the daily Scrum meeting will serve to monitor each 
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of the seven RUP disciplines. The roles for the Scrum master and the product backlog 

owner can be played as defined in the Scrum process. The product backlog can be created 

during the business modeling discipline and later, the tasks from the product backlog and 

the sprint backlog can be carried out during the sprints and monitored through the daily 

Scrum meeting [Cho09]. 

 

Critical Review: Cho does not mention any organizations implementing this approach, so 

challenges or issues on implementing this approach are not discussed. 

 

2.2.2   A Hybrid Methodology for a Small Project Using RUP, Scrum, and XP 
 

 

 

Nisa and Qureshi stated that some studies have indicated that a number of agile models 

have been carried out by combining them with conventional software development 

models with the goal of optimizing the strengths and weaknesses of both agile and 

conventional models. However, they added that there are many combinations that have 

not been carried out.  Therefore, they claimed that integrating Scrum, XP and RUP 

models is a good combination to accommodate the features of both conventional and 

agile models.  For this objective they proposed a hybrid model named SPRUP that 

combines the strengths of Scrum, XP, and RUP and eliminates their weaknesses to 

produce high quality software with a low defect rate [Nisa12].  

 

This model is validated through a controlled case study on a small scale project during a 

five week period. During the case study, four releases called SPRUP versions were 
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produced where the first version lasted two weeks and the subsequent versions lasted 

only one week. The SPRUP model adopts the four phases of RUP which are executed in 

sequence during each sprint cycle. This model adds the anticipation, crafting, execution, 

and assessment activities to execute the work that is carried out in the planning, 

designing, coding, and testing activities of the XP model. These activities are performed 

according to the RUP phase. For example, the anticipation activity is performed during 

the inception phase; the crafting activity is carried out during the Elaboration phase; the 

execution activity is completed during the construction phase, and the assessment activity 

is executed during the transition phase. Also, the Scrum practices such as the product 

backlog, sprint backlog, sprint review meetings, daily Scrum meetings, and Scrum roles 

were incorporated into the SPRUP. The Scrum management practices and XP 

engineering practices were integrated into the SPRUP model to reduce rework, cost, and 

effort [Nisa12].  

 

During the case study some data were collected from the four sprint versions. Among the 

most important attributes measured during the software development were work effort, 

customer involvement, customer satisfaction, team productivity, and number of interfaces 

built [Nisa12]. 

 

Nisa and Quereshi [Nisa12] concluded that further research can be applied to the SPRUP 

model on a large scale project and in an outsourcing development environment. Also, 

they mentioned that there is a need for more case studies with different combinations of 

RUP and agile methods [Nisa12]. 
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Critical Review: This research is important as a first effort for this combination of RUP 

and agile methods. However, more case studies are needed where the SPRUP model is 

implemented in different environments that may not be controlled, and for projects with 

longer duration as well as for large-scale projects. 

 

2.2.3   A Hybrid Approach for Up to Medium Scale Projects Using RUP, Scrum, and XP 
 
 
 
Bashir and Qureshi proposed an integrated framework to combine the strengths of RUP, 

XP, and Scrum in order to achieve high quality software and enhance the team 

productivity. A case study for the Online CIIT Library Management System was 

developed by a team composed of six members to validate such proposed integrated 

framework. The team members were trained before the starting of the project to have a 

better understanding of the proposed hybrid model and to be acquainted with the 

management practices of Scrum, the engineering practices of XP, and the RUP process. 

This case study required four iterations to be completed [Bashir12].  

 

In this framework, the four phases of RUP were reduced to three major phases and the 

nine major disciplines were reduced to six to streamline the process. The three phases are 

Domain Analysis and Design, Production and Validation, and Evolution and all of the six 

activities can be performed in each of the phases. Thus, Business Investigation and 

Design are the major activities in the Domain Analysis and Design phase. The 

Implementation and Testing activities play the main role during the Production and 

Validation phase, and the Deployment and Configuration activities are the main players 
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in the Evolution phase. The authors mentioned that the Scrum practices such as roles 

(Scrum Master, Developers and Product Owner), artifacts (Product Backlog, Sprint 

Backlog, and Burn down Chart), and ceremonies ( Daily Scrum Meeting, Sprint Planning 

Meeting, and Sprint Review Meeting) can be part of the proposed model without 

difficulty and the ceremonies can be organized iteratively in every phase. Also, the XP 

engineering practices can be performed during the logical activities of each phase without 

a problem [Bashir12].    

 

Bashir and Qureshi concluded that this proposed framework combines the strengths of 

Scrum, RUP and XP while narrowing their weaknesses. They claimed that Scrum 

provides best managerial practices throughout the software development, and RUP 

delivers a structured and disciplined approach throughout the software development and 

reinforces the XP practices through its philosophy. Also, the authors stated that this 

framework emphasizes some very useful practices of RUP, which can be applied 

according to the project [Bashir12].  

 

Critical Review: This is a case study developed for a very small project where the 

proposed framework was carried out for a specific objective. However, there is a need for 

more case studies to validate such a framework.  Also, the authors provided a very 

general description of the framework and they did not give details about how or what 

activities are executed during the development process.   
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2.2.4   A Hybrid Approach Using RUP and Scrum to Address Modern Challenges 
 

 

 

Nortier et al. proposed a framework, which combines RUP and Scrum. The main 

objective of this hybrid approach was to deliver a development process that handled 

uncertain requirements and adapted to changing requirements late in the development 

cycle while delivering high quality products within budget and schedule.  This 

framework was applied in an organization that is a subsidiary of a global organization. 

This organization was facing problems such as trouble meeting datelines and budget, 

uncertain requirements at the beginning of the project, organization not able to adapt and 

change to fast trends, difficulty in organizing and coordinating distributed development 

teams, needed to adhere its development strategy to a higher management process, not 

very experienced development team, and lack of time for testing activities [Nortier11]. 

 

Their framework is aligned to the four RUP phases and their milestones, which provide 

the skeleton for this framework. Scrum provides project management practices and 

tracking mechanisms through its ceremonies, roles, and artifacts. The RUP disciplines are 

applied in the different iterations inside a phase. The Daily Scrum meetings, the Sprint 

Planning meetings, and the Sprint Review meetings are used to monitor that the activities 

performed during the process adhere to the six main RUP disciplines. The product 

backlog is used as a high-level software requirement specification which takes 

information from use case to create the user stories, and also includes non-functional, 

architectural, and technical requirements. Also, it is used for iteration planning. The 
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sprint backlog is used as a detailed software requirement specification and the rest of the 

artifacts that are produced come from executing the RUP disciplines [Nortier11]. 

 

The software development framework has five phases that are aligned to the four phases 

of RUP [Nortier11]. These five phases are: 

 The Feasibility Phase. This phase is aligned to the RUP’s inception. During this 

phase the business case and the customer vision are developed. The business case 

includes high-level requirements and a project plan. Also, a risk analysis is 

performed during this time and the initial product backlog and the high-level 

architecture is produced. 

 The High-Level Planning and Design Phase. In this phase the use case model and 

the business model are created. To follow the Scrum methodology the product 

backlog requirements are defined 60% of the total and will be further elaborated 

in the next iterations when they are implemented. Also, at this time the high-level 

architecture design is produced. During this phase a project plan is produced 

which contains the phases with their milestones and iterations. 

 The Development Phase. This phase is based on iterations, which include the 

elaboration of the product backlog’s requirements and the high-level architecture, 

development, testing and a Sprint Review. During this phase the validation and 

verification activities are concerned only with the software product and the 

system. 

 The Customer Validation and Stabilization Phase. This phase concentrates on the 

validation and verification of the software product against customer’s 
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requirements. All software and supporting documentation are ready to be 

deployed when they reach an acceptable level and customer’s approval is attained. 

 The Commissioning Phase. During this phase the software is deployed to the user 

community and users and maintenance people are trained. 

 

According to the authors, this software development framework can be tailored to suit 

any project within an organization. 

 

Critical Review:  In this paper the authors provided an overview of the proposed 

methodology and how this was incorporated into the process of the organization.  This is 

an approach that can be implemented in an organization that deals mostly with distributed 

teams and large projects. However, there is a need to develop case studies where this 

proposed methodology may be tailored for different projects in different types of 

organizations. 

 

2.2.5   The Impact on Process Productivity Using a Hybrid Approach that Combines RUP 
and Scrum 

 

 

 

According to Carvalho et al., this research was carried out in a Brazilian CMMI Maturity 

Level 2 medium size company. This company has a reliable maturity process and its 

software development is based on a RUP-customized and CMMI-adherent process in a 

traditional fashion, with upfront cost and schedule formal agreement.  Since 2008 this 

company began developing projects using a hybrid approach that incorporates Scrum 

practices through the RUP process [Carvalho11].  



 - 18 -  
 

Their hybrid approach is organized in different sub-processes. The life cycle model starts 

with the Initial Concept sub-process in which the focus is to elicit software requirements 

and customer expectations. In this model the Architecture is elaborated early in the 

process. According to the authors, the Architecture, the Initial Concept, and the 

Requirements Management must be performed in strict accordance with traditional 

principles and should embrace principles of process capability, verification, and 

validation. On the other hand, the Design, Code, Test & QA, Transition, and Backlog 

Management sub-processes take advantages of the dynamics of the agile principles. Also, 

the product evolutions are divided into sprints to deliver product increments 

[Carvalho11]. 

 

The authors recommended that the Architecture should be performed early in the process 

to enable the analysis and detailed design tasks as opposed in the agile methodologies 

where this is done in increments. Further, they recommended that the specifications and 

validations which occur throughout the life cycle should focus on the early iterations of 

the project to prioritize the requirements that impact the architecture development. Also, 

they mentioned that Backlog management is the interface between the agile development 

tasks and the Architecture and Requirement sub-processes which are performed 

according to the traditional model principles. The Backlog Management is performed 

through the whole life cycle and gets input from the information generated by the 

Requirements and Architecture sub processes [Carvalho11]. 
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In order to accomplish this research, they used a sample of a set of projects performed in 

accordance with their hybrid approach. The duration for these projects was 18 months 

during the period of July/2008 to December/2009. For the control group, they used the 

same data from another set of projects developed from January/2008 to June/2009—18 

months durations as well—with an overlap of one year. Thus, the experiment lasted for 

two years [Carvalho11]. 

 

This experiment was based on a set of development metrics that the company gathers by 

automation software. Also, there is a quality department responsible for managing and 

monitoring metrics for process and quality. This company uses function points as a way 

to measure their software project’s functionality. Thus, the effort of a particular 

requirement is calculated based on its functional size, technology, risk, and historical 

productivity knowledge. Therefore, the project functionality effort estimation is the sum 

of all its requirements effort [Carvalho11].  

 

In their paper the authors described the measures and metrics adopted by the company 

and how they are calculated. At the end of their study, it was concluded that there was a 

16% increase in productivity in projects developed using this hybrid approach. They 

believed that this increase was due to the advantages and benefits that the agile principles 

incorporated in this hybrid approach. Also, they recognized the importance of conducting 

rigorous requirements management and architecture according to the traditional process. 

Further, they said that the structure and artifacts used in the RUP customization were 
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similar to those proposed in the hybrid approach, suggesting that the integration of the 

Scrum practices was critical to increase the productivity of the process [Carvalho11]. 

 

The authors stated that this study was carried out in small and medium projects. Thus, 

further studies have to be made for large projects. However, they indicated that the hybrid 

approach proved to be useful in the environment where it was applied and can increase 

productivity [Carvalho11]. 

 

Critical Review:  This case study revealed how the process productivity increased by 

introducing Scrum practices, which allowed for daily micro planning, controlling work, 

and enhancing team communication. As the authors indicated, more case studies are 

needed where this methodology is implemented in large projects. 

 

2.2.6   A Hybrid Approach for Distributed Software Development: scRumUP 

 

In this case study Del Nuevo et al. proposed a methodology named scRumUP. This 

methodology integrates the Scrum management practices into the software development 

process of RUP and is designed to be applied in a distributed environment. Also, during 

the development the agile practices of test-driven development (TDD) and continuous 

integration (CI) are applied as they allow for continuous testing and integration which is 

critical in a distributed environment [del Nuevo11].  

 



 - 21 -  
 

One of the goals of their methodology is to describe which activities and tasks are carried 

out during its application. As a part of this methodology, some guidelines are given for 

the formation of the distributed teams and propose different ways of communication 

among the teams. Their methodology consists of two parts—the Release Planning phase 

and the Sprint. In these two phases the Scrum roles, artifacts, and ceremonies are 

incorporated to perform and coordinate the activities in the project and enhance 

communications among the teams. The RUP is mainly used for its established software 

development process and to provide the necessary documentation to facilitate the 

distributed development environment [del Nuevo11].  

 

The Release Planning phase involves three activities: Requirements Elicitation, General 

release Planning Meeting, and the Local Release Planning Meeting. During this phase the 

requirements are gathered, the product vision is defined, and the Product Backlog is 

created and prioritized by the Product Owner. Also, at this time the Product Backlog is 

divided into sections which are assigned to the different teams. Each team estimates the 

features of its assigned section [del Nuevo11].  

 

The Sprint is an iteration that is considered a very important element of the process 

because it results in a potentially shippable product increment. The sprint involves four 

phases: Sprint Planning, Development Work, Sprint Review, and a Sprint Retrospective 

[del Nuevo11]. 

 The main objective of Sprint Planning is to identify which part of the Product 

Backlog will become part of the working increment.  
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 The Development Work phase involves several activities that have as an objective 

the delivery of the shippable product increment which consists of executable code 

and documentation. The activities carried out during this phase are: Analysis and 

Design, Implementation and Testing, Deployment, Daily Scrum, and Weekly 

Meetings.   

 The target of the Sprint Review is to ensure the teams have met the goal and 

demonstrate the results to the stakeholders. Three activities are performed in this 

phase: Team Demo, Product Owner Demo, and Stakeholders Demo. 

 The main objective of the Sprint Retrospective is to analyze the sprint and learn 

what was done correctly and what needs to be changed for the next sprint. 

 

The authors also defined a list of artifacts that are produced and maintained during the 

process.  

 

This proposed methodology was adapted to fit the software development methodology of 

a software development company in Spain and was applied in a pilot project. At the time 

of the paper development, the authors were waiting for results on the performance and 

utility of the application [del Nuevo11].  

 

Critical Review: The authors provided very detailed information of the process including 

the activities followed and artifacts produced in each part of the process. However, at the 

time of the realization of this paper, there was insufficient information about the benefits 

or challenges found during the application of scRumUP. 
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2.2.7   Implementation of a Hybrid Methodology for a Large Distributed Project Using 
the Project Management Body of Knowledge (PMBOK) and Scrum  

 

 

 

Batra et al. presented a case study from a cruise line company that demonstrates that 

balancing agility and discipline in a project can be a critical factor for the success of a 

project. This project consisted of creating a web site for this cruise line. This was an 

important large distributed project with limited risks that became strategically important. 

The project faced several challenges such as extended scope and changes on 

requirements, executive sponsors, and project structure. In addition, it was clear that the 

initial cost and budget estimation of the project was far from reality. However, over 

budget could be accepted but over schedule needed to be minimized and the project 

needed to be successful in terms of meeting requirements and delivering results such as 

increasing web traffic and revenues [Batra10].  

 

The leaders of the project thought of integrating Scrum into the PMBOK framework. 

Their rationale was that the PMBOK’s management practices will provide the necessary 

structure to deal with a large project and Scrum’s agile practices will provide the 

adaptability and flexibility to deal with the evolving scope and changing requirements 

[Batra10].  

 

First, Batra et al. described the characteristics of the project and their challenges based on 

thirteen dimensions from which nine were taken from the nine management areas of the 

PMBOK [Batra10, PMBOK04] such as Scope, Cost, Schedule, Quality, 

coordination/integration management, communications management, risk management, 
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procurement management, and human resources management. The other four dimensions 

—objective, size, changes in top management, and outsourcing— were added to consider 

the dynamic environment of the project. Second, the authors indicated which of the 

twelve agile principles and key characteristics of the structured approach were supported 

to deal with the challenges faced by the project. Third, Batra and his colleagues described 

how each challenge faced by the projects was handled by the agile and structured 

approach. Further, the authors defined that if a project is strategically important, is 

distributed, involves some outsourcing, has some new and changing requirements, faces 

organizational and technology changes, and requires incremental delivery of the product 

then using a hybrid approach will be critical for the success of a project. As a 

consequence, requirement specifications will be met and budget and schedule can be 

controlled [Batra10].  

 

This project was considered successful even though the cost of the project was five times 

more of the initial estimation and the length of the project doubled. This decision was 

based on the facts that the requirements were met and the increased revenues and benefits 

of the project outweighed the cost of the project.  Some paradoxical findings in this case 

study were that the agile method brought discipline to the project and can be used on 

large projects [Batra10]. 

 

Critical Review: Although these case study results are relevant for large distributed 

projects using PMBOK and Scrum, more case studies are needed to understand how 

hybrid approaches behave in different distributed software development environments. 
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2.2.8   Combining Extreme Programming (XP) Agile Methodology with a Stage-Gate 
Project Management Model 

 

 

 

Karlström and Runeson studied the feasibility of applying agile methods in the 

development of large software that use stage-gate project management models. This 

study was undertaken as a response to questions raised at an industrial seminar on 

Extreme Programming (XP) and agile development methods sponsored by the Software 

Engineering and Research Group at Lund University held in 2003. The seminar included 

representatives from more than 20 different software companies. The questions raised in 

this seminar were if agile development might coexist with their existing project 

management models and how [Karlström05]. 

 

According to the authors, a state-gate project management model describes a work 

process from the product’s inception to its delivery. The stage-gate model is connected to 

a software development methodology such as waterfall or an iterative software 

development process. Two stages of the software methodology are connected through a 

gate, where top management decides whether to continue investing in the project and 

move to the next stage. The milestones of the software methodology are connected to a 

gate [Karlström05]. Figure 1 shows the Cooper stage-gate model.  

 

In this research Karlström and Runeson developed three case studies on three large 

software development projects at three different large companies. They described the 

benefits and pitfalls of integrating agile methodologies such as XP with state-gate project 

management models. Their results showed not only the feasibility but also the benefits of 
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this approach as well as issues that must be addressed to ensure its success. The 

development teams in all three companies were enthusiastic about introducing agile 

methodologies to the process and the company management in all three companies saw 

the need for making process changes. However, the question was what to change and 

how to introduce change in an environment of higher-priority delivery deadlines 

[Karlström05].  

 

Gate 1 Gate 2 Gate 3 Gate 4
Gate 5

Stage 1 Stage 2 Stage 3 Stage 4

Scoping
Build 

Business
case

Development 
Testing &
validation

Launch

Stage 5

Post-
launch
review

Delivery

 

Figure 1:  Cooper Stage-Gate Project Management Model [Cooper01, 
Karlström05] 

 
 
 
As a first step in their study, the authors found that there was a lack of information on the 

research literature on how to integrate agile methodologies into stage-gate models. The 

three companies studied belong to a global, product-driven market environment and they 
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used stage-gate models to manage development projects of which their objective is 

functionality. By contrast, the authors found that agile methods are derived from small-

scale, contract-driven software development projects, and their objective is time 

[Karlström05].  

 

Thus, the objective of their research was “focused on investigating the integration of agile 

teams into stage-gate software product development, adhering to a strict qualitative 

research process [Karlström05].” This qualitative approach was based on semi-structured 

interviews and analyses of official documentation in the three companies. For this study, 

18 semi-structured interviews were conducted at the three companies among different 

employees, including engineers, managers, product managers, and project managers. The 

interviews were recorded, transcribed, and analyzed and several techniques were used to 

validate the study [Karlström05]. 

 

The findings of this analysis were in four areas: planning and prioritization, 

communication and follow-up, process model and roles, and project management 

[Karlström05]. 

 Planning and prioritization. Agile teams were working and completing most 

important features first. Therefore, there was earlier feedback in the most 

important features and this kept the project deadline from affecting their scope. 

Also, it is easy to make trade-offs of features, but there is little support for long-

term plans. 
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 Communication and follow-up. There was improved communication among team 

members and person-to-person communication proved to be more effective than 

documentation-based communication. Also, partial working software has more 

effect on customers, developers, and management than documentation. The agile 

practice of breaking down tasks made it easier for the teams to focus, gave them a 

sense of control, and a better understanding of the technical working of the 

system. As a consequence the quality of the product increased dramatically.  

 Process model and roles. Agile methodologies require identifying a customer 

representative and this requirement helped increase the feedback on the performed 

work and having a quick feedback earlier in the stage of the software 

development. Also, documentation tasks were scheduled as any other tasks since 

they consume the same resources as code development. This helped prioritize the 

tasks more effectively. 

 Project management. Management in the three companies acknowledged the need 

to change the traditional way of developing software, but they did not know what 

changes to make. After the study, the three companies are considering seriously 

agile methodologies to influence their processes. Also, agile methodologies 

helped the team members focus on past and current releases while managers 

focused on current and future releases.  

 

The authors concluded that some adjustments need to be made to engineering and project 

management to ease the integration as the agile team must be prepared to interface with 

the gate model. Also, they added that while the technical staff generally is ready for a 
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change and welcomes agile methods, management sometimes fears them. Thus, they 

suggested that it is important for everybody to accept this change, which can be 

accomplished in small steps over a longer time [Karlström05]. 

 

Critical review: The research is very informative for using XP and stage-gate models. 

Other interesting research effort would include different agile methodologies other than 

XP. Also, the authors used multiple case studies to validate their findings and 

conclusions. 

 

2.2.9   The Challenge of Implementing Scrum in a Traditional Development Environment 
 
 
 

In this study Nishijima and Dos Santos compared agile methodologies against traditional 

methodologies. Also, the authors provided an overview of the advantages and 

disadvantages of implementing agile methods in a traditional development environment 

[Nishijima13]. 

 

The authors summarized from the literature traditional methods such as waterfall, spiral, 

iterative and incremental, RUP, and PMBOK. They also described briefly the background 

of agile methodologies, and gave an overview of the Scrum methodology. Then, the 

authors made a comparison of the traditional models versus agile methodologies. Later, 

the authors compared Scrum versus RUP and finally, they drew some conclusions 

[Nishijima13].  
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What methodology is more suitable, traditional or agile? The authors explained that it 

depends on many factors. They stated that according to Soares, traditional methodologies 

should be used where requirements are stable and future requirements can be predicted. 

On the other hand, they mentioned that agile methodologies are more flexible and allow 

to evaluate and to respond to frequent changing requirements [Nishijima13, Soares09].  

 

When comparing RUP and Scrum, the authors stated that both methodologies are based 

on an incremental and iterative approach. However, they explained that RUP is 

frequently used for large projects even though it can be used for small projects. Also, 

they commented that RUP is a heavy-weight methodology with emphasis in 

documentation and well-defined roles, but slow to changing requirements [Nishijima13].  

 

On the other hand, the authors stated that the Scrum methodology is based on the Agile 

Manifesto where the focus is on delivering increments of executable software rather than 

delivering comprehensive documentation, and responding faster to customer’s 

requirements. Also, they explained that Scrum is more flexible in the size of the 

iterations, is based on small teams (5-9 team members) and has only three roles—Scrum 

Master, Product Owner, and Development Team. Also, Scrum is adaptable to different 

situations and can complement traditional methodologies such as RUP among others 

[Nishijima13]. 

 

However, the authors indicated that when implementing Scrum in a traditional 

environment three factors need to be considered: culture, people, and communication. 
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Also, they added that once the challenges are overcome, the advantages of Scrum are: 1) 

it is a good communication tool, 2) it strengthens the relationship with the customer, and 

3) it provides a great motivation among the development team [Nishijima13]. 

 

Critical review: This article is an introduction for agile and traditional methods. However, 

it lacks substantial evidence to support their point of challenges that organizations face in 

the implementation of both methodologies. Therefore, this article needs more sources, 

cases, and examples to strengthen the original goal of this research. 

 
 
2.3   Hybrid Methodologies Summary 
 
 
 
Table 1 contains a summary of the hybrid methodologies described in the literature 
review.  
 
 
 

Authors Description Critical Review 

 
Cho A hybrid software development method 

that is suitable particularly for large-
scale projects in the business software 
industry. This method integrates the 
Rational Unified Process (RUP) and 
Scrum to maximize their strengths 
while reducing the weaknesses of both 
methodologies. 

 
Does not mention any organizations 
implementing this approach, so challenges 
or issues on implementing this approach 
were not discussed. 

 
Nisa 
and 
Qureshi 

A hybrid model named SPRUP that 
combines the strengths of RUP, Scrum, 
and XP and eliminates their weaknesses 
to produce high quality software with a 
low defect rate. 

More case studies are needed where the 
SPRUP model is implemented in different 
environments that may not be controlled, 
and for projects with longer duration as well 
as for large-scale projects. 

 
Bashir 
and 
Qureshi 

An integrated framework that combines 
the strengths of RUP, Scrum, and XP in 
order to achieve high quality software 
and enhance the team productivity. 

A very general description of the 
framework is provided and details about 
how or what activities are executed during 
the development process are not mentioned.  
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Nortier 
et al. 

A framework that combines RUP and 
Scrum to deliver a development process 
that handles uncertain requirements and 
adapts to changing requirements late in 
the development cycle while delivering 
high quality products within budget and 
schedule. 

This is an approach that can be 
implemented in an organization that deals 
mostly with distributed teams and large 
projects. However, there is a need to 
develop case studies where this proposed 
methodology may be tailored for different 
projects in different types of organizations. 

 
Carvalho 
et al. 

A hybrid approach that incorporates 
Scrum practices through the RUP 
process. This hybrid approach was 
carried out in small and medium 
projects and it proved to be useful in the 
environment where it was applied and 
increased productivity. 

This case study reveals how the process 
productivity increased by introducing 
Scrum practices, which allowed for daily 
micro planning, controlling work, and 
enhancing team communication. As the 
authors indicated, more case studies are 
needed to be developed for large projects. 

 
Del 
Nuevo  
et al. 

scRumUP integrates the Scrum 
management practices into the software 
development process of RUP and is 
designed to be applied in a distributed 
environment. Also, during the 
development the agile practices of test-
driven development (TDD) and 
continuous integration (CI) are applied. 

The authors provided very detailed 
information of the process including the 
activities followed and artifacts produced in 
each part of the process. However, at the 
time of the realization of this paper, there 
was insufficient information about the 
benefits or challenges found during the 
application of scRumUP. 

 
Batra 
et al. 

A hybrid methodology that integrates 
the Project Management Body of 
Knowledge (PMBOK) and Scrum 
practices. The PMBOK’s management 
practices provide the necessary structure 
to deal with a large project and Scrum’s 
agile practices provide the adaptability 
and flexibility to deal with the evolving 
scope and changing requirements. 

Although these case study results are 
relevant for large distributed projects using 
PMBOK and Scrum, more case studies are 
needed to understand how hybrid 
approaches behave in different distributed 
software development environments. 

 
Karlström 
and 
Runeson 

The benefits and pitfalls of integrating 
XP with a state-gate project 
management model. 

The research is very informative for using 
XP and stage-gate models. Other interesting 
research effort would include different agile 
methodologies other than XP. Also, the 
authors used several case studies to validate 
their findings and conclusions. 

 
Nishijima 
and Dos 
Santos 

A comparison between agile 
methodologies and traditional 
methodologies. Also, an overview of 
the advantages and disadvantages of 
implementing Scrum in a traditional 
development environment such as RUP. 

This article is an introduction for agile and 
traditional methods. However, it lacks 
substantial evidence to support their point 
of challenges that organizations face in the 
implementation of both methodologies. 
Therefore, this article needs more sources, 
cases, and examples to strengthen the 
original goal of this research. 

 
Table 1: Summary of the Hybrid Methodologies  
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2.4   Literature Gaps 
 
 
 
The literature review presented in the previous section permit us to conclude that there 

are multiple literature gaps in several areas on hybrid methodologies. For instance, the 

need for hybrid methodologies is increasing due to their potential benefits in software 

development in different organizations such as in the academic area as well as public and 

private. However, there is a lack of empirical research and only few case studies have 

been published in the literature on hybrid methodologies. As a consequence, there is 

insufficient evidence related to their elements, issues, and findings to make them valid 

and reliable for users. Also, in the previous research there is no general methodology that 

integrates the interacting elements of hybrid methodologies. Neither there is a hybrid 

approach that presents a general process for combining two or more methodologies that 

has been proven successful.  This suggests that different projects require different 

management practices [Shenhar01].   

  

In particular, there is very limited research on combining specific hybrid methodologies 

as RUP and Scrum and even fewer case studies developed and published. This narrows 

even further potential empirical evidence for users. 

 

Specifically, two gaps relevant to this field have been identified in the literature review: 

 

Gap 1: At the present time there is limited empirical research reported in the literature on 

the process of successfully combining RUP and Scrum.   



 - 34 -  
 

Rationale 1: The process of combining RUP and Scrum successfully is recognized as the 

activity undertaken to ensure proper combination of their respective phases on a software 

development project. There is a lack of evidence in the literature as to exactly how this 

linking process has to be carried out. 

 

Gap 2: At the present time there is limited empirical research reported in the literature on 

the nature of combining RUP and Scrum.   

 

Rationale 2: The nature of combining RUP and Scrum can be defined as the 

interrelationship of managerial elements in a software development project using RUP 

and Scrum such as strategy, organization, culture, metrics, issues, and people. Further, 

according to the existing literature review, different projects may need different 

management practices to manage such elements in order to be successfully delivered— 

one size does not fit all projects [Shenhar01]. However, in the literature there is little 

evidence as to exactly what managerial elements and activities are interrelated, and how 

these interrelationships are used to obtain good results. 
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Chapter 3 
 

RESEARCH DESIGN 
 
 

 
The purpose of this chapter is to present the research design process, which includes the 

research questions and objective, the research methodology to be implemented, and the 

data collection process.  

 
 
3.1   Research Questions and Objective 
 
 
 
The literature review presented in chapter 2 revealed some relevant research gaps that 

were identified in relation to hybrid methodologies in general and specifically for RUP 

and Scrum. The current empirical evidence is insufficient to be reliable and valid. 

Further, only few case studies have been documented, which creates the need to carry out 

and document more case studies to strengthen limited findings. 

 

Thus, to help fill these gaps, the main purpose of this research is to develop a new case 

study that combines RUP and Scrum to validate and/or add new information from 

previous cases studied. Therefore, a research objective is established as: “develop a case 

study to describe the process of combining both RUP and Scrum methodologies.” This 

case study will embody a lobbyist software development application that was developed 

for the City of Jacksonville, Jacksonville, FL.  
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To fulfill this research objective, two research questions associated with the two gaps 

identified in the literature review for this study are defined as follows. Related to the first 

gap: “The process of combining RUP and Scrum successfully does not have sufficient 

empirical research,” the first research question is stated as: 

 

Research Question 1: How should the process of combining RUP and Scrum be carried 

out for achieving a successful implementation? 

 

Then for the second gap: “The nature of combining RUP and Scrum has insufficient 

empirical research,” the next question is stated as:  

 

Research Question 2: Which are the important managerial elements such as strategy, 

organization, culture, metrics, issues, and people that should be considered when 

combining RUP and Scrum for delivering a successful project? 

 
 
3.2   Research Methodology 
 
 
 
Research methods are generally classified into two major categories: Quantitative and 

Qualitative methods [Yin94]. Both are inquiry processes that investigate a human or 

social problem. The former is built on the observation of the natural phenomena and a 

whole view is formed with words, reporting detailed of informants, and is carried on a 

natural setting [Creswell94, Denzin94]. The latter is based on testing a theory composed 
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of variables, measured with numbers, and analyzed with statistical procedures to validate 

if the proposed theory is true [Creswell94]. 

 
 
There are major differences between qualitative and quantitative methodologies. To 

define which method is more appropriate for a research objective there are different 

aspects to take into consideration [Yin94]: 

 Aspect 1. Reliance on existing literature and prior evidence: qualitative methods 

have less reliance.  

 Aspect 2. The nature of the research objective and question: qualitative methods 

ask how and why rather than what and how many. 

 Aspect 3. Extent of control over actual behavior extents: qualitative methods have 

less or no control. 

 Aspect 4. Rigor and Validity: same level for both qualitative and quantitative 

methods. 

 Aspect 5. Amount of data: not determined until saturation is reached. 

 

Moreover, there are other methodologies to carry out research such as a case study 

research, which may also use quantitative and/or qualitative approaches. The criteria to 

select a case study research using qualitative and/or quantitative approaches, are similar 

to the above-mentioned aspects [Yin94].  

 

Generally there are several types of approaches needed to carry out case study research 

[Yin94, Baxter08]. Yin categorizes case studies as explanatory, exploratory, and 
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descriptive. Also, Yin differentiates them as single, holistic, and multiple case studies 

[Yin94]. Thus, according to the above information, for this research study the best fit was 

to select a descriptive and single case study research methodology that uses a qualitative 

approach. This research may also use building theories from case study research 

[Eisenhardt89] as the core methodology to draw valid and reliable results and 

contributions from carrying out the lobbyist case study. 

 

A typical qualitative case study research consists of an overview or introduction of the 

research, a literature review, a research design, data collection, results, and conclusions. 

In this type of research, guiding propositions are suggested to assist data collection and 

data analysis by identifying the important prior concepts or constructs with references to 

existing literature. Thus, guiding propositions will help direct attention to something that 

will be examined within the scope of the research. Without these propositions a 

researcher may be tempted to collect everything [Yin94, Eisenhardt89]. Similarly, Yin 

suggests these propositions as an option to organize the research. 

 

Based on the existing literature, this study develops two initial propositions: Guiding 

proposition 1 supports Research Question 1, whereas Guiding Proposition 2 supports 

Research Question 2. Table 2 contains these two guiding propositions with their 

rationale. 
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Guiding Propositions Rationale 

Guiding Proposition 1. Specific 
processes are used to combine the 
implementation of RUP and Scrum 
for different projects in different 
organizations. 
 

This guiding proposition suggests that processes 
carried out with RUP and Scrum during the software 
development life cycle may vary for different projects 
in different organizations. This implies that different 
mechanisms or tools are needed at different phases of 
the project life cycle to ensure synchronization of both 
processes for delivering a project successfully. 

Guiding Proposition 2. Combining 
Hybrid methodologies like RUP and 
Scrum influences different 
managerial elements that need to be 
addressed to successfully deliver a 
software development application. 
 

This guiding proposition implies that emphasis on 
strategy, organization, culture, people, tools, and 
metrics, among others may differ from one type of 
project to other, thus requiring a different approach or 
style to implement this particular hybrid methodology 
implementation. This is consistent with Shenhar, who 
suggests that different projects may need different 
management practices to be successful [Shenhar01]. 

 
Table 2: Guiding Propositions and Rationale 

 
 

It is important to emphasize that these guiding propositions are only used as guiding 

propositions for empirical research, which may develop more detailed propositions that 

may help better answer the proposed research questions [Yin94, Eisenhardt89]. 

 
 
3.3   Data Collection 
 
 
 
To carry out the data collection, the following phases are identified: case selection 

criteria, data collection process, data sources, and data analysis. 
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3.3.1   Case Study Selection Criteria 
 
 
 
The selection criteria for this case study included:   

 The length of the project to be accomplished with no more than two academic 

terms.  

 Some team members with experience in participating and managing software 

development projects. 

 Commitment to the project where participants are willing to share in-depth 

information. 

 Geographical location in Jacksonville area to facilitate customer and students 

interaction.  

 An organization interested in developing an application using a hybrid 

methodology integrating RUP and Scrum. 

 
 
3.3.2   Data Collection Process 
 
 
 
A data collection process needs to ensure that the information obtained during this 

process is reliable and valid for further research and practical purposes [Yin94].  For this 

purpose, in this research the data was collected from: development team’s meetings, 

meetings with customers and feedback, and other data produced during the development 

of the project and other relevant activities. 
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3.3.3   Data Sources 
 
 
 
The data sources for this research originated from the stakeholders in the lobbyist 

software development project such as participants with different roles as business 

analysts, software developers, customers, and managers. Another data source came from 

the quality assurance activities and the documentation produced during the software 

development life cycle phases such as requirements, analysis and design, implementation, 

testing, and deployment. Also, other major sources of evidence for this research include 

documentation generated during the software development project such as memos, 

emails, meeting minutes, conference calls among members and customers, and templates 

for required documentation coming from customer’s organization standards, among 

others.  

 

Thus, using the combination of these multiple sources ensures the validity of the data 

collected, because it increases the level of confidence of the findings obtained and 

reduces possible bias [Yin94]. 

 
 
3.3.4   Data Analysis 
 
 
 
During the data analysis phase several steps may be carried out like: within-case analysis, 

cross-case analysis, and conclusions [Eisenhardt89]. For this research, the first step in 

data analysis was to focus on within-case analysis as a standalone entity and to 

distinguish the unique patterns of our lobbyist case study. Next, the research compared 
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within-case results with other case studies’ findings already developed and published for 

cross-case examination purposes. Finally, the results of this data analysis process and 

therefore, the conclusions of the Lobbyist case study analysis were delivered. 
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Chapter 4 
 

OVERVIEW OF RUP, SCRUM, AND THE IBM-CLM TOOL 
 
 
 

4.1   Introduction 
 
 
 
As mentioned in the research design, the main purpose of this research is to show the 

results of implementing a hybrid approach in the development of the Lobbyist 

Registration and Tracking System for the City of Jacksonville. This hybrid approach 

integrated the RUP and Scrum methodologies within the IBM Rational solution for 

Collaborative Lifecycle Management (CLM). Therefore, to address this objective, this 

section includes a general introduction to this collaborative tool, an overview of the RUP, 

and the Scrum processes. 

 
 
4.2   The IBM Rational Solution for Collaborative Lifecycle Management  
 
 
 
The IBM Rational solution for Collaborative Lifecycle Management integrates several 

tools that work together as one in a transparent way and can be used efficiently for a 

traditional or agile development team. This solution is built in the Jazz platform and its 

main components are the Rational Requirements Composer, the Rational Team Concert, 

and the Rational Quality Manager. These three products are linked together to provide a 

collaborative environment for the different roles in a development team (Figure 2). 
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Figure 2: The IBM Rational Solution for a Collaborative  
Lifecycle Management [IBMDeveloperWorks11] 

 
 
 

The Rational Requirements Composer (RRC): This tool utilizes the Requirements 

Management (RM) application, which provides tools to capture, organize, collaborate, 

and manage requirements for any size development team. These tools help teams to 

capture sketches and storyboards, use cases, glossaries, and process models. Because of 

this, “project teams can manage their requirements, write good use cases, improve 

traceability, increases stakeholders collaboration, reduce project risk, and increase quality 

[Chawla13].”  

 

The Rational Team Concert (RTC): This product facilitates team collaboration through 

the software development lifecycle. This collaborative development system provides a 

Graphic redacted, paper copy available upon request to home 
institution.
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repository where teams can manage and organize their work allowing for a clearer view 

of the project progress. RTC integrates work item management and iteration planning, 

source control management, build management, and team health [Göthe08]. Rational 

Team Concert provides agile projects with tools to create the product and sprint backlogs, 

and allows teams to track their progress during an iteration. 

 

The Rational Quality Manager (RQM): This product allows quality assurance teams to 

track the activities of the quality assurance effort to ensure the application will meet the 

business objectives. The main artifact of this tool is a customizable test plan that contains 

business objectives, requirements, test environment, tests cases, test schedules, builds, 

reports, strategy, and the quality process [Göthe08]. Further, these activities can be linked 

to the requirements and development work items to allow for full traceability.  

 

4.3   The Rational Unified Process 
 
 
 
The Rational Unified Process (RUP) is a process framework based on software 

engineering principles with the goal of producing high-quality software that meets the 

customer needs under a predictable schedule and budget. RUP takes an iterative, user-

case driven, architecture centric approach and incorporates many of best practices in 

software development [Kruchten03].  
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4.3.1   RUP Six Best Practices 

 

RUP’s process framework can be easily adapted or extended to fit the needs of a project 

and provides guidelines, tool mentors, templates, and concepts so that the development 

team can take advantage of  its six best practices [Rational01]. These six best practices 

are explained according to [Kruchten03].   

 

Iterative Development. By following this approach, the development process is divided in 

iterations. Each iteration follows the four phases of the sequential approach in which 

teams can address some requirements and risks, design, implementation, and integration 

and testing. As a result, at the end of each iteration the team will have a working product 

that is evolved in the next iterations. This allows teams to take into account changing 

requirements and address risks early in the process.   

 

Manage Requirements. Since having up-front requirements is almost impossible for most 

of the projects, it is important to expect new or changing requirements. Thus, as the 

product evolves and changes or new requirements are integrated into the product, it is 

necessary to manage requirements. This means that it is important to have a well-defined 

process to elicit, organize, and document the original requirements; evaluate changes to 

these requirements and assess their effects on the budget and schedule; and track and 

document trade-offs and decisions.  
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Use Component-based Architectures. This approach allows building a resilient software 

architecture that is flexible, accommodates changes, and enables reuse [Rational01]. This 

concept together with an iterative approach permits to identify components gradually and 

helps decide which components can be developed, reused, or customized from available 

commercial products during the whole development process.  

 

Visually Model Software. A model helps have a better understanding of the system. 

Therefore, using modeling helps visualize how the different elements of the software 

development process fit together; helps identify, create, and document the structure and 

behavior of the software’s architecture; ensures consistency between the design and 

implementation; and avoid misunderstandings [Rational01].  

 

Continuously Verify Software Quality. This approach is based on continuously verifying 

the product with respect to its functional and non-functional requirements. Thus, the 

increment should be tested in each iteration so that defects can be identified earlier in the 

project.  

 

Control Changes to Software. In an iterative process work items are updated frequently. 

Because of this it is important to keep track of changes that occur during requirements, 

design, and implementation. Managing changes ensures that everybody is in synch and 

has the latest version of the work item. Therefore, embracing, controlling, tracking, and 

monitoring changes is vital in an iterative process.  
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4.3.2   RUP Process Description 
 
 
 
Roles, artifacts, activities, workflows and disciplines are the five primary elements used 

to represent the process [Kruchten03].  

 Roles: A role describes the behavior (activities) and responsibilities (artifacts) of 

an individual or group of individuals working in a team. 

 Activities: Activities define the work a role performs. 

 Artifacts: Artifacts are the concrete products of a process. They are the input and 

the output of an activity performed by roles. 

 Workflows. A workflow is a sequence of activities that produces a valuable result. 

 Disciplines: Disciplines are used to organize and group the roles, activities, 

artifacts, and workflows of the process.   

 

The RUP process covers the entire software development lifecycle and is represented by 

two dimensions as shown in Figure 3.  The horizontal axis represents time and shows 

how the process moves forward through the different phases, iterations, and milestones. 

The vertical axis represents the static aspect of the process and contains the main nine 

disciplines. Thus, the four phases are performed sequentially while the disciplines are 

executed iteratively throughout the four phases [Kruchten03, Rational01].  
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Figure 3: RUP Process [Rational01] 
 

 
 

4.3.3   RUP Disciplines 
 
 
 
The RUP nine disciplines are represented on the vertical axis and they are divided into 

six technical disciplines and three supporting disciplines which are explained as follow 

based on [Kruchten03].  

 

The six technical disciplines are: 

 Business Modeling. The goals of this discipline are to understand the 

organization, identify stakeholders, learn about the currents process, roles, and 

deliverables, and understand what the currents problems are and how they can be 

improved. This information helps identify how the application will fit in the 

organization and how the users will ultimately benefit from this.  

Graphic redacted, paper copy available upon request to home 
institution.
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 Requirements. One of the main goals of this discipline is to gather the user’s 

requirements with the objective of defining user’s needs and the high-level 

features for the system which will be contained in the vision of the product. These 

features are later translated into more detailed requirements, which are captured in 

use cases. These activities help establish a better understanding of what the 

systems should do and thus be able to define the scope of the system.  

 Analysis and Design. During this discipline the requirements are converted into 

specifications that describe how to implement the system. First, the analysis, 

which is driven by the use cases, transforms the requirements into a set of classes 

and subsystems and concentrates on the functional requirements. Later, the design 

adapts the output of the analysis to the non-functional requirements constraints 

and the output of the design is the solution to be implemented.   

 Implementation. The goal of this discipline is essentially the realization of the 

design which is performed in iterations. One of the objectives in each iteration is 

to have a plan that describes which subsystem will be implemented and the order 

of the classes to be implemented. The activities performed during this discipline 

include coding, fixing code defects, and performing unit tests and code reviews to 

ensure its quality. Then, every implemented component is integrated and tested 

into a new version of the subsystem, and later the subsystem is integrated and 

tested into the system. 

 Test. The purpose of this discipline is to assess the quality of the product by 

validating that the requirements are implemented appropriately, detecting defects 
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or problems, and validating that the product works as designed. The main focus of 

this discipline is to have the right approach to find defects in the product.   

 Deployment. The goal of this discipline is to deliver the finished software to the 

user community. Some of the activities performed during the software 

deployment include beta testing which involves testing the software in the user’s 

site, preparing the software for final delivery, installing the software, and training 

end users.  

 

The three supporting disciplines are: 

 Configuration and Change Management. The purpose of this discipline is to 

maintain control of the different artifacts created during the software development 

process. Since during an iterative process artifacts are updated, it is important to 

maintain control of the different version of the artifacts, keep information on why 

these artifacts were modified and who is responsible for each artifact. Another 

important activity in this discipline is to capture and maintain control of the 

change requests and what artifacts were affected by these. 

 Project Management. The goals of this discipline are to provide a structure that 

allows managing software projects, specifically projects involving an iterative 

software development process; to offer guidelines to execute and monitor the 

progress of the project; and to provide a framework to manage risks.  

 Environment. The main activities during this discipline involve helping the 

organization select and acquire the tools to support the development software 
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process, configure the RUP process according to the organization’s needs and the 

project’s needs, and describe this chosen configuration in the Development Case.  

 

4.3.4   The Four Phases of RUP 
  
 
 
According to Kruchten [Kruchten03], the RUP process is divided in four phases which 

are represented on the horizontal axis and are described as follows: 

 The Inception Phase. This phase concentrates on reaching an agreement among all 

the stakeholders on the initial project concerns such as defining the project’s 

scope, estimating the schedule and cost of the entire project, and evaluating the 

project’s feasibility. Also, this phase aims to identify the critical use cases that 

will drive the system’s functionality and will help establish at least one candidate 

architecture. 

 The Elaboration Phase. The objective of the Elaboration phase is to establish, 

validate, and baseline the architecture, address the major risks, and evolve the 

project plan. Therefore, during this phase it is necessary to have a good 

understanding of the critical requirements to ensure that have been covered in the 

architecture. Also, designing, implementing and testing the initial architecture 

helps mitigate major risks early in the project. These activities allow having   

detailed information about what needs to be done so that the project plan can be 

updated to reflect better estimates.  

 The Construction Phase. Some of the goals for this phase are to complete the 

requirements, elaborate or expand the design, develop the rest of the components 
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and features, test them and integrate them to the rest of the application, and asses 

the product against the defined acceptance criteria. Also, during this phase it is 

important to achieve an acceptable level of quality and develop useful versions of 

the product as rapidly as practical.  

 The Transition Phase. The purpose of this phase is to deploy the software to the 

user community when the software has reached an acceptable level of quality and 

user documentation has been prepared. During this transition some activities are  

carried out which include performing some beta testing to validate that the 

product meets users’ expectations; making corrections and enhancements to 

ensure good performance and usability; training users and maintenance people; 

and evaluating the deployed version against the product’s vision and acceptance 

criteria. Sometimes during this phase issues will emerge that will require future 

evolutions of the product. 

 

The four phases represent a development cycle which results in a product. Sometimes this 

is referred to as one evolution of the product.  The duration of each phase varies 

according to the project therefore they can consist of one or several iterations.  

 

4.4   Scrum Framework Overview 
 
 
 
Scrum is an agile management process that helps manage and organize the software 

development process. This process uses an incremental and iterative approach that 

provides the practices to respond to changing requirements and the feedback to build the 
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product that is needed. Because of this, risks are controlled and mitigated early in the 

process. Scrum provides a structure through its roles, events, and artifacts and a 

collaborative environment so that team can solve complex problems little by little.  

 
 
4.4.1   Scrum Process Description 
 
 
 
Scrum organizes the development process into sprints, which have a duration of up to 

four weeks. At the beginning of each sprint there is a Sprint Planning Meeting in which 

the length of the sprint is decided and the Development Team selects a set of features 

from the Product Backlog. The Product Backlog is a prioritized list of the features 

established by the clients needed to develop the product from the business standpoint. 

The set of features is what the Development Team commits to or forecasts to finish 

during the sprint. This set of features is broken down into tasks to form the Sprint 

Backlog. No one is allowed to make changes to the Sprint Backlog or add items except 

for the Development Team. When a sprint begins, a Daily Scrum Meeting is held at the 

start of the day. The length of this meeting is no more than fifteen minutes. During this 

meeting each member of the Development Team has to answer three questions: What did 

you do yesterday? What are you doing today? What impediments do you have? The 

Scrum Master is in charge of removing impediments to facilitate the progress of the 

project. At the end of the sprint, the Development Team has a potentially shippable 

product which is demonstrated to the stakeholder in a Review Meeting with the purpose 

of obtaining feedback. After this meeting, the Development Team holds a Retrospective 
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Meeting, where the process is inspected. The goal of this meeting is to discuss what is 

working and what needs to be improved if that is the case.   

 

Each sprint typically follows this pattern where an evolving product  is created by 

successively adding increments of workable software. Figure 4 summarizes the Scrum 

process. 

 
 
4.4.2   Scrum Roles, Events, and Artifacts 
 
 
 
According to Schwaber, this process consists of Scrum teams and their associated roles, 

events, artifacts, and rules that bind them together. The following sections describe these 

roles, events, and artifacts based mainly on [Schwaber11, Schwaber09]. 

 

Figure 4: Scrum Process [Deemer10] 

Graphic redacted, paper copy available upon request to 
home institution.
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4.4.2.1   Scrum Roles 
 
 
 
Scrum teams consist of three roles: the Scrum Master, the Product Owner, and the 

Development Team.  

 

The Product Owner is responsible for obtaining the highest value of the product and the 

work of the Development Team. The Product Owner is in charge of the Product Backlog 

and is in charge of prioritizing or ordering the list according to which has the highest 

business value or highest business risk .   

 

The Development Team is self-organizing and cross-functional. As such, the size of the 

Development Team needs to be optimized to remain agile and to deliver work. Also, the 

Development Team decides what to commit to and how to achieve this commitment 

[Deemer10]. 

 

The role of a Scrum Master is different from the role of a project manager because the 

Scrum Master does not manage the project and the team. The Scrum Master ensures that 

Scrum’s theory, practices, and rules are used and understood as intended. Thus, the 

Scrum Master supports the Product Owner to obtain the highest business value and 

coaches the Development Team to create a high-value product and removes any 

impediments that prevent reaching these objectives [Deemer10]. 
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4.4.2.2   Scrum Events  

 
 
The sprint is a time-boxed event that lasts four weeks or fewer and starts immediately 

after the previous sprint has concluded. A sprint includes the followings events: Sprint 

Planning Meeting, Daily Scrum, the Sprint Review, and the Sprint Retrospective.  

 

The goal of the Release Planning Meeting is to create a release plan that defines the goal 

of the release, general features and functionality for this release, the major risks, and the 

estimated delivery date and cost. This release plan will change according to the progress 

made during each Sprint. The product is released when enough increments have been 

created for the product to have value.  

 

The Sprint Planning Meeting takes place at the beginning of each sprint and it is time-

boxed. It will typically last no more than eight hours for a four-week sprint. This meeting 

includes the Product Owner, the Scrum Master, and the Development Team. This Sprint 

Planning Meeting consists of two parts: the Sprint Planning Part One and the Sprint 

Planning Part Two [Deemer10]. 

 

The purpose of the Sprint Planning One is to decide what will be achieved during the 

sprint. The Development Team understands and selects the items that can be 

accomplished during the sprint and discusses the goal for this sprint. Also at this time, 

they review the Definition of Done. 
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The Definition of Done describes what the Scrum team understands for the work to be 

complete. For example, what are the code standards the items must meet, the testing 

activities that should be performed on the items, and which documentation is required 

[Deemer10]. This ensures that when an item is “done,” it complies with the expected 

quality.  

 

During the Sprint Planning Two, the Development Team focuses on how to implement 

the features selected from the Product Backlog to convert them into a working increment.   

The Daily Scrum is a meeting that will take no more than fifteen minutes. Its purpose is 

to know what the Development team has achieved until this moment, what is stopping its 

progress, and what work will be achieved until the next Daily Scrum. Therefore, the 

Daily Scrum helps assess how the team is progressing to achieve the sprint goal.  

 

The Sprint Review is a meeting held at the end of the sprint where the Scrum Team gets 

feedback from the stakeholders. In this meeting the Development Team demonstrates the 

product increment and discusses what has been accomplished and what has not been 

accomplished. Also, from this meeting come new ideas of how to improve the product 

and those ideas go into the product backlog. 

 

The Sprint Retrospective is a meeting that takes place after the Sprint Review and prior to 

the next Sprint Planning Meeting. In this meeting the Development Team does a review 

about the process. Also, they agree on what is working and what is not and what needs to 
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be changed to be more effective so that new improvements can be incorporated into the 

new sprint.  

 

According to Deemer [Deemer10] the Sprint Review represents an opportunity to inspect 

and adapt the product while the Sprint Retrospective provides the opportunity to inspect 

and adapt the process. 

 
 
4.4.2.3   Scrum Artifacts 
 
 
 
Scrum artifacts include the Product Backlog, Sprint Backlog, Sprint Burndown, and 

Release Burndown. 

 

The Product Backlog is the business perspective of the list of requirements needed to 

create the product and is the Product Owner’s responsibility. Therefore, the Product 

Owner is in charge of the Product Backlog’s contents and also of ordering this by 

business value, risk, priority, and necessity. The Development Team is in charge of 

implementing the items in this list and because of this, of providing an estimate of the 

effort needed to develop each item.  The Product Backlog is a dynamic list that evolves 

during the process to reflect new features or changing requirements. 

 

The Release Burndown chart shows the total estimated effort remaining from the Product 

Backlog using the sprints as units of time.  
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The Sprint Backlog is a subset of the Product Backlog items. These are the items with the 

highest priority or order that the Development Team forecasts or commits during the 

Sprint Planning. These items are broken down into tasks and become the Sprint Backlog. 

This artifact reflects all the necessary work to complete the product increment and 

achieve the sprint goal. The Sprint Backlog belongs and can only be updated by the 

Development Team [Schwaber11, Seikola10].  

 

According to Deemer, the purpose of the Sprint Burndown chart is to show the progress 

toward the goal instead of how much time was spent on the tasks. Thus, this chart is 

updated every day to reflect the estimated remaining work in hours for the entire team 

until all the tasks are finished. Therefore, with this chart is easy to see total hours of work 

remaining for the whole team [Demmer10].   
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Chapter 5 
 

LOBBYIST CASE STUDY 
 
 
 

5.1   Background 
 
 
 
In the UNF School of Computing curriculum for the Masters in Computer and 

Information Sciences degree, the graduate course of Engineering of Software is offered in 

two semesters. One of the objectives of this course is to provide the students the 

opportunity to work on real-world projects, while learning software engineering 

principles. For this purpose, at the beginning of the course during the Fall 2012 a project 

from the City of Jacksonville (COJ) was presented to the software engineer students. This 

project was presented by the director of the Office of Ethics, Compliance and Oversight, 

who will be referred as the project sponsor throughout this paper.  

 

During this time the project sponsor expressed the needs of her office, which had an 

outdated, error-prone system to register, track, monitor, and validate the lobbyist 

activities. These activities were carried out manually which was a cumbersome task for 

the COJ employees and delivered an inefficient service to lobbyists and citizens.  

 

This process will be described according to the three different users involved in the 

lobbyist activities (Lobbyists, COJ employees, and Citizens): 
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Lobbyists. They are required to register every year to perform lobbyist activities. Also, 

they need to provide information about their clients and the issues represented by them. 

To initiate this process, a lobbyist follows the next two steps: 

1. Fill out a registration form. This form can be downloaded from the COJ Ethics 

Office website following a link to the COJ City Council website. This form 

contains four sections—A, B, C, and D. 

 Section A (Figure 5). The purpose of this section is to gather the lobbyist’s 

personal information, lobbyist status (active or inactive), if the registration 

is a renewal, and date of initial registration. This section needs to be 

renewed once a year.  

 
 

 
 

Figure 5: Lobbyist Registration Form, Section A 
 
 
 

 Section B (Figure 6). This section contains the client information such as 

client type, name, address, and phone number. 
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Figure 6: Lobbyist Registration Form, Section B 
 
 
 

 Section C (Figure 7). The purpose of this section is to register an issue. If 

lobbyists are registering only the issue, their personal information and 

their client information must already be on file with the Council Secretary. 

This section contains information such as description of the issue, status 

(active or inactive), type, fee disclosure, and other information concerned 

with the issue.  
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Figure 7: Lobbyist Registration Form, Section C 
 
 
 

 Section D (Figure 8). In this section the lobbyist signs to certify that 

he/she reviewed and understands Chapter 602, Part 8, Jacksonville Ethics 

Code, which is annexed to the form or can be seen in the same web page 

where the registration form was found.  
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Figure 8: Lobbyist Registration Form, Section D 
 
 
 

2. Print and submit the form via mail or personally to the Office of the City Council 

Legislative Services Division. 

 

Once the registration form is received, the COJ employees follow the next steps: 

1. The form is revised and approved or rejected by the Council Secretary. 

2. If the form is rejected, the legislative assistant sends the form back by mail to the 

lobbyist for correction. 

3. If the registration form is approved, the legislative assistant enters the lobbyist 

name; client name; a brief issue description; and expiration date into an Excel 

document.  This Excel document contains a list of all the active lobbyists and is 

updated each day, if necessary, with new information.  

4. Every time this document is updated, it is converted into a PDF document and 

uploaded to the lobbyist registration area in the City Council web page. This site 

contains all the past versions of this document. 

5. The registration forms are filed on binders and kept on-site for any inquires.  
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Citizens interested in lobbyist activities can either: 

1. Download the PDF files posted on the City Council web page, which contain 

general information as described above; or, 

2. For more detailed information, citizens can visit the COJ Legislative Services 

Division office in downtown and browse the binders that contain the lobbyist 

registration forms.  

 

Thus, this office was in need of automating its lobbyist registration system to provide a 

more efficient service. Exacerbating this need was the City of Jacksonville IT 

department’s inability to develop this system due to the lack of financial resources. 

However, if this project were to be carried out by the UNF software engineering students, 

they would need to coordinate with the IT department and make certain that the system 

would be developed using technologies in use by this department in the City of 

Jacksonville.  

 

A team of UNF software engineering students took the challenge of designing, 

developing, validating, and delivering a simpler, more efficient, and reliable system to 

keep track of the lobbyist activities. This project was carried out under the direction of 

the software engineering professor who served as a mentor and project manager for the 

execution of the project and also acted as a liaison between the team and the sponsor of 

the project who was the Director of the Office of Ethics, Compliance, and Oversight. 
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5.2   Hybrid Approach Conception 
 
 
 
One of the objectives for this course was to follow a structured approach during the 

software development lifecycle. For this reason, the execution of the project was divided 

into two stages. The first stage would involve the Requirements Analysis and 

Architectural Design phases and would be executed during the first semester. The second 

stage of the project would include the Construction and Testing and Transition phases 

and would be carried out during the second semester as shown in Figure 9. Another 

objective was to provide the students with the experience of working in an incremental 

and iterative environment through an agile-hybrid approach within the context of a 

collaborative tool. 

 
 

 
 Figure 9: The Four Phases of the Software Development Cycle 

 
 
 
To accomplish the first objective, the software development lifecycle would follow a 

RUP cycle. This would mean that the first stage would include the Inception and 

Elaboration phases and the second stage would include the Construction and Transition 

phases.  

 

 
First Semester – Stage I 

 
Second Semester – Stage II 

Requirements Analysis           Architectural Design           Construction & Testing          Transition 
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For the second objective, RUP and Scrum elements would be integrated under the 

umbrella of the IBM Rational CLM solution. RUP’s activities, roles, and artifacts would 

guide the project through the first stage, while Scrum’s agile practices would drive the 

second stage to enhance and manage the software development. The collaborative tool, 

then, would serve to enhance team collaboration, provide visibility of the project 

activities and project progress, provide a repository for the project deliveries during the 

first stage using the Rational Requirements Composer, and support the agile process 

during the second stage using the Rational Team Concert.  However, using the full 

capabilities of the CLM tool would entirely depend on the team’s familiarity with this 

tool and the available time to learn it. 

 

Following the above, the first stage of the project was divided into six iterations and the 

second stage was divided into eight iterations called sprints. Each iteration or sprint was 

defined to have a duration of two weeks and accompanied by a set of deliverables. Figure 

10 shows the conceptualization of the hybrid approach. 
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Figure 10: Hybrid Approach Conceptualization 
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5.3   Stage I Using RUP 
 
 
 
The goal for the first stage was to learn about the organization and the environment 

where the application will operate, understand the user’s needs and expectations, gather 

requirements, define the project scope, have an initial risk assessment, and establish an 

initial baseline for the software architecture.  

 
 
5.3.1   Inception Phase  
 
 
 
The main goal of the Inception phase was to have an agreement among stakeholders 

about what were the objectives of the project such as what would be or would not be 

included in the product. For this reason, it was important to understand the structure and 

dynamics of the organization as well as to learn how the application will be used and 

what the user’s expectations were toward this. To meet this goal, the activities performed 

during this phase were to determine the scope of the product and share a vision with the 

most important requirements and constraints for the end product and to identify how the 

software solution will interact with the end user. Also, a preliminary software 

development and an initial list of risks were created at the beginning of this phase. These 

activities were performed through three iterations, which will be described with more 

detail in the following sections. 

  

The output produced during these activities were the following artifacts largely 

subscribing to RUP artifacts: the business vision, the business use-case model, the 
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business rules, the domain model, a glossary, the product vision, an initial use case 

model, a software development plan, and the initial risks list. Figure 11 shows the 

activities and artifacts that guided the process during this phase.  

 
 

Buisness Vision

Start Inception

Business
AnalystStakeholders

Participate in 
Outlining Objectives

Define 
Acceptance Criteria 

And Strategy

Agree on Objectives
and a Strategy

for Reaching Them

Understand 
the Target Organization

Develop 
a Shared Vision

Capture a Common
Vocabulary

Identify and Outline
How the System is Used

Buisness Rules

Business Use-
Case Model

Glossary

Domain Model

Product Vision

Use Case 
Model

Objectives 
Reached

 
 

Figure 11: Inception Phase Workflow (Adapted from [ScrumUP14]) 
 
 
 

Iteration #0. The main purpose of this iteration was to craft an initial assessment of the 

project scope, risks, and organize the team essentially according to the RUP roles. Thus, 

after the initial presentation given by the director of the City of Jacksonville’s Office of 
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Ethics, Compliance, and Oversight the high-level requirements were identified and the 

following activities were performed: 

 

Identify Roles. As mentioned before, the software engineering professor served as the 

Project Manager for the development team. Therefore, the purpose of this activity was to 

identify the roles that the different team members, which include students only, would 

play while performing the required activities. These roles would be modified as team 

members would take on new roles through the project. Also, the team was required to 

identify a Team Leader and Backup and a Quality Assurance (QA) Manager. The Team 

Leader was responsible for bringing the team together, making sure that the activities for 

the iteration were completed, and submitting an executive summary for each iteration. 

This executive summary included the list of activities undertaken during the iteration, 

changes or revisions performed to any artifact, and comments about what worked and 

what did not during the iteration. The team QA Manager was responsible for ensuring 

that all the artifacts were properly reported, formatted, and uploaded to the CLM tool. 

Figure 12 shows a sample of the roles and responsibilities played during this project. The 

output for this activity was a team formation document in which it is described the roles 

and responsibilities for each member.  
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Resources Roles Responsibilities 

 
 

 

Team 
member 1 
 

 
Team 
member 2 
 
 
Team 
member 3 
 
 
Team 
member 4 
 
 
Team 
member 5 
 

Team Leader / 
Backup 

Provides the team with a vision of the 
project’s objectives; motivates and inspire 
team members; facilitates problem solving 
and collaboration; schedules meetings and 
submits periodic reports to the project 
manager. 

QA Manager 

Assumes the responsibility of monitoring the 
team’s quality control method; ensures the 
quality of the team’s deliverables; reports 
work items to the CLM tool. 

Business Analyst 
Establishes the system’s services, constraints 
and goals with help of the users; identifies 
problems and needs. 

Application 
Designer 

Determines the best programming solution 
for the system’s requirements; establishes the 
overall system’s architecture; designs the 
software system abstractions and their 
relationships; designs the user-interface. 

Application 
Programmer 

Implements the system’s components; 
develops, supports, and maintains the 
software application for the project. 

Database Specialist Designs the database. 

 
Tester Tests the complete system to ensure that the 

software requirements have been met.  

 
Figure 12: Team’s Roles and Responsibilities (Adapted from [Kruchten03]) 

 
 
 

Develop a Software Development Plan.  The main objective of this activity was to create 

an initial software development plan to identify the scope of the project, number of 

iterations, date lines for deliverables, and environment constraints for the new system.  

 

Identify Risks. During the initial risk assessment of the project some risks were 

identified, quantified, and prioritized. This activity followed a model for judging risk 

assessment where the overall range for any item of risk equals between 0 and 5. This 
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overall range was obtained using the following formula, where the probability of this 

item of risk is multiplied by its potential impact. The probability of an item of risk to 

occur ranges from 0.0 to 1.0 and its potential impact ranges from 1 to 5.  

 
 
 
 
 
 
 
 
 
 
Some of the major risks identified during this time were the technical risks with respect 

to the COJ IT Division limitations. This risk was identified with a magnitude of 4.5, 

which was very significant and needed to be addressed early in the process. One of the 

issues was that the development team was planning to use Microsoft technologies for the 

development of the application. Therefore, it was necessary to identify the consequences 

of this decision early in the process. This issue needed to be addressed early in the first 

meetings with the client and IT stakeholders. Also, another issue was that if the 

application were to “live” on the COJ website, it was essential to find what technical 

tasks were needed to be accomplished to have the finished product published to the 

website. To address these issues the development team needed to develop a strong 

relationship with the COJ IT staff to be able to deliver a product on time.  

 

Other two items of risks were identified and documented in the list of risks artifact, which 

cover some important aspects for each item of risk such as the risk magnitude, impacts, 

mitigation strategy, and a contingency plan.  
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CLM Tool. During this iteration, the area for this project was setup in the CLM tool. For 

the first stage of the project every artifact produced, also called deliverable or work item, 

would reside in the Requirements Management (RM) area, which is part of the Rational 

Requirements Composer (RRC). This would allow that every artifact produced during 

each iteration be accessed with the latest version for further reference or update. Ideally, 

the client should be able to receive this information through the tool, but it was 

considered that this tool would be used primarily for the development team. However, 

this tool would allow the team to deliver the latest version of the artifacts to the clients 

when necessary. Once the artifacts for this iteration were produced, the team QA 

Manager reviewed them and uploaded them to the project’s RM area, where they would 

be inspected by the team Project Manager. 

 

By the end of this iteration the team had identified the major roles the team members 

would be playing during the full life cycle of the project, had made an initial assessment 

of the risks, had created an initial scope of the project which would grow as the team 

learned more about the requirements for the project, and had developed an initial 

software development plan. 

 

Iteration #1. The main objective of this iteration was to understand the structure and 

dynamics of the organization within which the application would operate. Therefore, the 

activities performed during this iteration were centered on the RUP’s Business Modeling 

discipline. Thus, as a first step to understand the organization and its current needs a 

meeting was setup. The purpose of this meeting was to identify all primary stakeholders 
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involved in the process as well as others stakeholders who will be affected by the new 

system.  

 

Before the meeting, a questionnaire was created and sent to all the stakeholders involved 

in the project so they could have an idea about what was going to be covered during the 

meeting. The purpose of this questionnaire was to find detailed information about the 

current process, the users involved in the process, the environment where the new system 

will operate, the IT Division’s requirements for the new system, and who will be the 

point of contact between  the development team, the IT Division, and the Office of 

Ethics, Compliance, and Oversight. 

 

During this meeting, the development team met with the staff that supported the lobbyist 

activities; the Director/Council Secretary who would ensure that the system met the needs 

for the registration and tracking of lobbyist activities and conformed to the Council 

Office requirements; and a representative from the COJ IT department. As a result of this 

meeting, the team was able to understand more about the Ethics Office and its 

relationship with other offices, the current process involved to track the lobbyist activities 

and its goals, what were the current needs, and how they expected the application to 

facilitate the process. Also, the development team was able to identify some of the 

technical requirements and standards that the application needed to meet to be able to live 

in the COJ web site. After this meeting, the development team was ready to analyze the 

information and the following artifacts were produced: 
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The Business Vision Document. On this document the development team was able to 

define the goals of the Office of Ethics and its environment and relationships with other 

offices, as well as to identify the stakeholders and level of interest in the project. Also, a 

description of the current process concerned to the lobbyist activities was elaborated and 

an initial description of how this process could be improved was provided.  

 

The Business Rules Document. One of the objectives of this document was to describe 

the business rules for the entire organization. However, for this project the main purpose 

of this document was to identify the business rules that affected the lobbyist activities. 

The process of the lobbyist activities was divided into three groups: the lobbyist 

registration process, handling of the documentation produced during this process, and the 

disclosure of this information to the citizens. Thus, the business rule document was 

divided into these three sections that addressed the procedures and rules followed in this 

process. Figure 13 shows a sample of the business rules for the lobbyist registration 

process. 

 



 - 77 -  
 

 

 

 
Figure 13: Sample of the Business Rules Document 

 
 
 
The Business Use-Case Model. The intended function of this model was to identify the 

business use-cases, roles, and deliverables with respect to the lobbyist activities. Thus, 

each business use case described a sequence of activities performed for this office that 

delivered a valuable result to the business actor.  In this activity five business use-cases 

were identified: the lobbyist registration form, approval of the issues, update of the list, 

upload of the list, and the browsing of the records. For each business use-case a diagram, 

a description, goals, and a workflow of the process were provided. Figure 14 shows a 

sample of the business use-case for the lobbyist registration form.   
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Figure 14: Sample of the Business Use-Case for the Lobbyist  
Registration Form 

 
 
 
The Business Glossary. The business glossary contained the definitions of important 

terms related to the lobbyist activities. Some of these terms corresponded to the entities 

of the process that were graphically represented in the Domain Model during the next 

iteration. Figure 15 shows a sample of the business glossary. 
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Figure 15: Sample of the Business Glossary for the Lobbyist Activities 
 
 
 
The Updated Risks List. After the meeting, the development team had a clearer 

understanding of the process involved in the registration and tracking of the lobbyist 

activities and also of requirements and constraints for the application. Thus, the 

development team was able to identify new potential risks, which were added to the risks 

list.  

 

CLM Tool. Once the artifacts were produced, they were reviewed by the team QA 

Manager and uploaded to the Requirement Management area for further review by the 

team Project Manager.  

 

At the end of this iteration the development team had a better understanding of the 

organization and its lobbyist processes, and the importance of this project for the Office 

of Ethics. This project was strategically important because it would help meet one of the 

goals of this office, which is to provide a more efficient and transparent service to its 

employees, lobbyists, and citizens.  
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Iteration #2. One of the purposes of this iteration was to continue with the business 

modeling to have a better understanding of the elements and their interactions with each 

other during the lobbyist process. Also, one of the goals for this iteration was to define 

the needs and requirements for the new system; thus, the requirements discipline played 

an important role during this iteration. The artifacts produced during these activities were 

the Domain Model and the Product Vision. In addition the Business Glossary was 

updated to add terms missed in the last iteration. A description of these artifacts is 

provided next:   

 

The Domain Model. This model (Figure 16) was created to identify all the key entities 

involved in the lobbyist process. Also, this model helped illustrate the entities’ attributes, 

the relationships among them, and their associations.  
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Figure 16: Domain Model for the Lobbyist Process 

 
 
 

The Product Vision. Another essential artifact produced during this iteration was the 

Product Vision. The main objective of this artifact was to define the scope and to provide 

a complete vision of the system. The product vision document provided the problem 

statement and the product position statement. Also, it included a summary of the 

stakeholders involved in the project, a summary of the users of the system, a description 

of the current process, and the product perspective (Figure 17). In addition, this document 

listed at a higher level of abstraction the user needs of which a sample is shown in Figure 
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18 and the features required for the system. The list contained a description of the feature, 

the need addressed, its benefit, and its development risk (A sample of the feature list is 

shown in Figure 19). The list of features was especially important because it drove the 

development of the use cases for the next iteration.  

 
 

 

 

 
Figure 17: Product Perspective 
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Figure 18: Sample of the User Needs 
 
 
 

 
 

Figure 19: Sample of the List of Features 
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The Business Glossary. This artifact was updated to include some of the definitions of the 

attributes included in the Domain Model.   

 

CLM Tool. Once the artifacts were created, they were reviewed and uploaded to the RM 

area by the team QA Manager for further inspection by the team Project Manager. 

 

At the end of this iteration the development team had a better understanding of the 

elements involved in the lobbyist process, the user needs, and a list of the system’s 

features needed to accommodate the user needs.  

 

Iteration #3. One of the fundamental characteristics of RUP is that it is a use-case-driven 

approach. The use cases were created to describe the functionality of the system based on 

the features list captured in the Product Vision. Thus, the main activity for this iteration 

was to develop a use-case model that contained the main interactions of the system with 

the actors. Another activity that took place during this iteration was the creation of the 

traceability matrices. The outputs of this iteration were the following artifacts: 

 

The Use-Case Model. The first step of this activity was to create a set of façade use cases. 

This set of façade use cases was created as a placeholder of the main interactions of the 

system with the actors. Basically, the façade use cases contained a use-case number, a 

use-case name, the actors, a brief description of the use case, and assumptions for this 

event. Figure 20 shows a sample of a façade use case. During this activity fifteen use 

cases were identified. 
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Figure 20: A Façade Use Case to Generate a Report on the Lobbyist 
 Activities 

 
 
 

The second step was to create a use-case index to keep track of the developed use cases. 

This index listed the basic information found in the façade use cases and the level 

(façade, filled or focused) and the date of the last update as shown in Figure 21. 

 

 
 

Figure 21: A Sample of the Use-Case Index 
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The third step was to create the filled use cases; however, before starting this activity, the 

set of façade use cases was reviewed. After reviewing the use cases, the development 

team found that the interaction of the user with the system was duplicated in two use 

cases so that those two cases were removed and the list was reduced to thirteen use cases.  

Following this revision, the filled use cases were created and for each use case some 

items were added such as a use case diagram, the basic course of events, the triggers, and 

the pre and post-conditions as shown in Figure 22. Once the filled use cases were created 

a peer review was performed and some use cases were modified according to the 

feedback obtained.  



 - 87 -  
 

 

 
 

Figure 22: Filled Use Case to Update the Lobbyist Status 
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Traceability Matrices. During this activity two traceability matrices were created, one 

was created to map the user needs to the features (Figure 23) and the second one to map 

the features to the use cases (Figure 24). 

 
 

 
 

Figure 23: Traceability Matrix to Map Features to Needs 
 
 
 

 
 

Figure 24: Traceability Matrix to Map Features to Use Cases 
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CLM Tool.  Once the artifacts for this iteration were finished, the team QA Manager 

reviewed them and uploaded them to the RM area to be reviewed and obtain feedback 

from the team Project Manager. 

 

By the end of this iteration the development team had created a set of use cases that 

described the main interactions of the system with actors according to the requirements. 

Also, the team had ensured that the use cases mapped to the features and the features 

mapped to meet the user needs.  

 

Until this point the team had fulfilled most of the Inception phases objectives, which aim 

to define the project scope, understand and agree on the user’s needs and features for the 

product, and have an initial assessment of the risks.   

 
 
5.3.2   Elaboration Phase    
 
 
 
One of the first activities during this phase was to finish up the elaboration of the use 

cases and to have a better understanding of the most critical use cases that would drive 

the software architecture. This was important so that the team could elaborate an initial 

baseline of the architecture. For this purpose, one of the first steps was to create an initial 

design of the database and the construction of a prototype that contained the main 

interaction of the system with the users.  
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These activities were performed through two iterations, which will be described with 

more detail in the following sections.  

 

Iteration #4. The analysis and design discipline played a part in this iteration as the 

development team was completing the use cases. Therefore, the first step for this iteration 

was to complete the use cases. After this activity was completed, the next step was to 

translate the requirements into a design that described how to implement the system. One 

of the first steps into the analysis and design was to create an initial database design 

based on the requirements and constraints for the system and a prototype that contained 

the main functionality of the system as described in the use cases. However, in this 

iteration the development team focused on completing the filled use cases, designing the 

initial database model, and reviewing and preparing the artifacts into a package to be 

submitted to the stakeholders for their revision and feedback. The package was planned 

to be submitted along with the user-interface prototype, which was planned to be ready 

for the next iteration. The outputs for this iteration were: 

 

Complete Filled Use Cases. The goal of this activity was to add the alternate paths and 

exceptions to each use case. These two events refer to the interaction of the system and 

the actors when the basic course of events is not followed as explained in [Kulak03]. 

Therefore, the exceptions were used to describe the steps to execute when an error has 

occurred and the alternatives to describe a path that is not the most likely to occur. After 

the exception and alternatives paths were added to each use case, there was a peer review 

to validate the completeness of the use cases and to find any vague points that would 
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need clarification with the stakeholders. After the review the development team found 

that the interaction described in one of the used cases would be part of another use case, 

therefore, this use case was removed and the list was reduced to 12 use cases. Figure 25 

shows an example of a filled use case with exceptions and alternatives paths. 

 
 

 
 

Figure 25: Filled Use Case with Alternative and Exception Paths 
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Database Design. An initial database (Figure 26) was created based on the elements that 

the development team had identified from the domain model, features, and use cases.  

 

CLM Tool. Once these artifacts were completed and reviewed by the team and the team 

QA Manager, they were uploaded to the RM area to be inspected by the team Project 

Manager.  

 

After the team Project Manager’s inspection and feedback, a package was prepared to be 

submitted to the COJ stakeholders with the purpose of obtaining some feedback.  

 
 

 

 
 

Figure 26: Initial Database Design for the Lobbyist System 



 - 93 -  
 

Iteration #5. This iteration had a short duration and its goal was to design and produce a 

user-interface prototype that had the main interactions of the system with the actors based 

on the functionality described in the use cases and the list of features. 

 

At the end of this iteration the user-interface prototype was presented to the team Project 

Manager and after his approval, the user-interface prototype along with the package 

prepared in the last iteration was submitted to the COJ stakeholders.  

 

After this iteration the development team was preparing to enter the second phase of the 

project. For this purpose a meeting was scheduled to meet with the COJ stakeholders to 

demonstrate the user-interface prototype, clarify certain points, and obtain feedback. In 

addition, this meeting would be important to prioritize the customer’s needs in the 

product backlog, which would be the starting point for the next phase.  

 
 
5.3.3   Stage I Artifacts 
 
 
 
This section summarizes the RUP artifacts produced or updated during the Inception and 

Elaboration phases during this stage of the project as shown in Table 3.    

 
 
These artifacts were created by following RUP templates which were adjusted to the 

project. Also, they provided the means to document the process without producing long 

tedious documentation.  
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Artifacts RUP Phases and Iterations 

Software Development Plan Inception, iteration #0 

Initial Risks List Inception, iteration #0 

Business Vision Inception, iteration #1 

Business Rules Inception, Iteration #1 

Business Use-Case Model Inception, iteration #1 

Business Glossary Inception, iteration #1 

Domain Model Inception, iteration #2 

Product Vision Inception, iteration #2 

Use-Case Index Inception, iteration #3; 
Elaboration, iteration #4 

Use-Case Model Inception, iteration #3; 
Elaboration, iteration #4 

Traceability Matrices Inception, iteration #2 and #3; 
Elaboration, iteration #4 

Database Model Elaboration, Iteration  #4 

User-Interface Prototype Elaboration, Iteration  #5 

 
Table 3: Stage I Artifacts 

 
 

 
By the end of this stage, the development team had been able to complete the selected 

activities and artifacts and had a clearer idea of the user’s requirements, the vision of the 

product, and had established the baseline architecture to support this vision.  
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5.4   Stage II Using Scrum 
 
 
 
One of the goals during this stage was to ensure that the development team had a clear 

and detailed understanding of the user’s requirements, so that the development team 

could validate and baseline the architecture of the system and could refine the 

development plan to reflect more precisely what needed to be done until the delivery of 

the project. Therefore, it was important to have an executable architecture where some of 

the risks had been addressed so that the team could concentrate on implementing the rest 

of the functionality and performing the necessary tasks to deliver the project.  

 

To accomplish these tasks, the Scrum practices were integrated to the process during this 

stage and the Rational Team Concert was used as a collaborative tool so that the team 

would plan, organize, and collaborate to reach a tangible goal. 

 
 
5.4.1   Elaboration Phase  
 
 
 
At the end of the first stage the development team had accomplished some specific goals 

and created some artifacts that helped the development team have a better understanding 

of the organization, user needs, expectations for the new system, and also to establish an 

initial baseline of the software architecture. Also, these artifacts were sent to the COJ 

stakeholders for their revision. 
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The goals for this phase during the second stage of the project were to validate and 

baseline the architecture and to create a more fine-grained development plan. Also, to 

prepare the development environment, process, and tools.  

 

To meet these goals, it was essential to get feedback from the COJ stakeholders to ensure 

the success of the project. Also, as the Scrum process indicates, it was necessary to create 

the product backlog with the list of features and prioritize them according to the Office of 

Ethics, Compliance and Oversight needs. To accomplish this objective a third meeting 

was set up to initiate the process. 

 

The attendees for this meeting were the project sponsor, the project sponsor’s IT 

consultant, a lobbyist, and the development team.  In this meeting the development team 

obtained some feedback with respect to the artifacts and also had the opportunity to 

demonstrate the user-interface prototype to the COJ stakeholders. The demonstration of 

the user-interface prototype elicited feedback that included the addition of some nice-to-

have features, some small changes so that the information requested from the lobbyists 

could comply with the city council lobbyist law, and other additional changes to improve 

the lobbyist registration process.  

 

During this meeting the project sponsor who would play the role of the product owner 

helped identify the features that had more priority for her office. This helped the 

development team prioritize the list of features that would form the product backlog. 

Scrum rules indicate that the product owner should be responsible for the product 
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backlog however, in this case due to time conflicts from both parties, the development 

team took responsibility for this. 

 

Therefore, after the meeting, the development team created the product backlog using the 

list of features, which was updated first to reflect the COJ stakeholders’ feedback. Later,  

these features were prioritized in two ways, first, they were ordered as they were going to 

be developed and second they were assigned a priority of high, medium, or low. High 

priority was assigned to those features that delivered the main functionality, medium 

priority was assigned to those features that give detail to the high priority features, and 

low priority was assigned to the nice-to-have features.  

 

After the product backlog was prioritized, the development team began to estimate the 

effort needed to implement each feature in the product backlog.  This effort estimate was 

given in story points even though this term may be confusing since the development team 

was working with features instead of user stories. This effort estimate was based on the 

Fibonacci series; thus, the development team assigned 3, 5, 8, or 13 story points to each 

feature depending on the effort. For example, 3 meant the least effort and 13 the greatest 

effort needed. Also, the development team ensured that each feature was traced to a use 

case. The development team created two versions of the product backlog. The first 

version showed the priority level for each feature/activity within a sprint and the other 

version showed the estimate effort in story points (see Figure 27 and Figure 28).  
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Figure 27: Sample of the Product Backlog with Priorities Levels  
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Figure 28: Sample of the Product Backlog with Story Points  
 
 
 

After this activity, the development team elaborated a development plan based on the 

product backlog and other activities needed to accomplish the project. The development 

plan included the number of sprints undertaken during this stage of the project with a 
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detailed plan for the first sprint and a decreasing level of granularity for the subsequent 

sprints. This document also described the development environment for the application.  

 

According to the development plan, the second stage was organized to have five sprints 

and two releases. The first release was planned at the end of the second sprint and the 

second release was planned at the end of the fifth sprint.    

 

Since the project was executed as a part of the Software Engineering course, the Scrum 

ceremonies such as the Sprint Planning Meeting, Daily Scrum, the Sprint Review, and the 

Sprint Retrospective were adapted to the course. Therefore, a time was assigned during 

the class for team meetings and working time. The Daily Scrum meetings for the 

development team were at the beginning or before the class started. During this time the 

development team talked about their progress and/or difficulties found, and what was left 

to do for the rest of the sprint. Later, this was communicated to the professor, who during 

this stage played the role of the Scrum Master.  At the end of each sprint the team leader 

wrote a retrospective summary about what the team achieved, any difficulties found and 

how they were going to be solved.  

 

Sprint #1. At the beginning of the sprint the development team revisited the software 

development plan and the product backlog to select the features that were going to form 

the sprint backlog. Also, some of the work items or tasks included in the sprint backlog 

included the user interface tests and test scenarios from the use cases. Also, the 

development team needed to set up the development environment for the application, and 
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to create a project area in the Rational Team Concert (RTC) under Change Management. 

The work items undertaken during this sprint were:  

 

Sprint Backlog. At the beginning of the sprint this artifact was formed with some of the 

highest priority features in the Product Backlog and other tasks that the development 

team needed to complete such as creating the project area in the RTC, setting up the 

development environment, setting up the application visual style, creating the manual test 

scripts, defining the validation criteria for the implemented features, and updating the 

documentation.   

 

RTC. During this activity the development team set up the project under the Change 

Management area and created the product backlog, the sprint backlog as well as the 

project timelines as shown in Figures 29, 30, and 31. Also, this area served as a 

repository for any documents created during this stage of the project. Further, the 

development team would use the dashboard to have visibility of the team progress and 

productivity through some charts such as the team velocity, current sprint burndown, and 

the release burndown.  

 

One more activity under RTC was to set up the development environment. However, it 

was not possible to upgrade RTC to make it compatible with Visual Studio 2012.  
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Figure 29: The Product Backlog under RTC 
 
 
 

 
 

Figure 30: The Sprint Backlog under RTC 
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Figure 31: Project Timelines under RTC 
 
 
 
Development Environment Set up. The project environment was set up using Team 

Foundation Server and Visual Studio 2012. The solution was uploaded to Team 

Foundation Server, which served as the version control system and code repository. 

 

Delivered Increment. At the end of this sprint the development team had created an initial 

visual style for the application based on the COJ website and had implemented some 

basic functionality for the features undertaken in this sprint. These features were not 

finalized because the development environment set up took longer than planned. 

Therefore, the completion of these features was moved to the next sprint. 

 

Testing Activities. For this sprint some basic manual test scripts were created to test the 

functionality of the product increment. These manual test scripts outlined the necessary 

steps to validate the output correctness of the increment based on an input (Figure 32). 
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Figure 32: Manual Test Scripts 
 

 
 
Documentation Update. Also, during this sprint the list of features in the product vision 

was updated to reflect the new requested features originated from the stakeholders’ 

feedback. In addition, the traceability matrices were updated to ensure that the new 

features mapped to the user needs and the use cases. 

 

Retrospective. At the end of this sprint the development team had accomplished all of the 

tasks except for completing all the functionality of the committed features. However, the 

development team was confident that the functionality of these features would be 

finalized during the next sprint.  

 

5.4.2   Construction Phase  
 
 
 
During the past sprint the development team had met with the COJ stakeholders and had 

demonstrated the user-interface prototype which had elicited good response from them.  

As a result of this meeting there were some small requests for changes and additions of 
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nice-to-have features and the development team was able to add more detail to the 

development plan for the project. Thus, most of the activities for the next sprint would be 

focused on implementing the main functionality of the system and any new requests.  

 

Sprint #2. The goal for this sprint was to deliver the first release. Thus, one of the first 

activities carried out during this sprint was to add more detail to the development plan 

about the tasks needed to be carried out in this sprint. Also, the plan for the next sprint 

was updated during this time.  The additional activities performed in this sprint were:  

 

Sprint Backlog. This artifact was created under RTC and contained all the tasks for the 

new features and the ones needed to complete the features from last sprint. Also, other 

tasks that were included were the correction of bugs found during the testing activities 

and the initial elaboration of the user guide.  

 

RTC. This tool helped maintain up-to-date record of the completed features in the 

product backlog. Also, it helped visualize the progress of the work items in the sprint 

backlog because it was easier to track which activity had started, which one was 

completed, who has in charge of it, and the time it took to complete it. In addition, any 

document produced from this activity could be linked to it. Moreover, it helped the 

Scrum Master evaluate the performance of the development team. However, this tool was 

generating neither the burndown chart nor the velocity chart. Therefore, these artifacts 

were created manually in an Excel document until the problem was solved. The 
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development team was able to solve the issue for the burndown chart in the next sprint, 

but the issue related to the velocity chart was not solved. 

 

Testing Activities. The development team continued elaborating the manual test scripts 

for the new features implemented during this sprint. Once the new functionality was 

finished, the regression testing was performed to ensure the correctness of the outputs. 

The bugs found at this time were corrected before the first release was deployed.  

 

User Guide. By the end of this sprint the team had created a user guide that contained 

screen-shots of the user interface and step-by-step instructions of the current functionality 

of the application. This document was ready to be sent to the stakeholders along with the 

first release.   

 

First Release. The purpose of the first release was to show to the COJ stakeholders the 

advances the development team had achieved so far. Also, this first release would 

provide an opportunity for the COJ stakeholders to try and test the application and 

provide new feedback. With this purpose, the first release was deployed to an area of the 

development server so that it could be easily accessed by the COJ stakeholders. 

 

Retrospective. At the end of this sprint most of the features had been completed and some 

had been left with some basic functionality, which needed to be polished in the following 

sprint. Nevertheless, the development team had achieved the first milestone, to deliver 
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the first release. In addition, new test scripts for the new functionality had been created 

and tested and a user guide had been created to include the completed features. 

 

Sprint # 3. The development team continued to implement the following features from 

the product backlog while awaiting the COJ stakeholders’ feedback.  The following work 

items were carried out as part of this sprint: 

 

Sprint Backlog. The development team committed to the next features from the product 

backlog and added some work items related to the testing and documentation activities.  

 

RTC. The development team had found that in order to generate the burndown chart, it 

needed to create tasks as child elements to the features. Thus, the sprint backlog was 

created with these tasks and other work items needed during this sprint. However, the 

development team was not able to solve the problem of generating the velocity chart. 

 

Testing Activities. Some test scenarios and a traceability matrix were elaborated to map 

the test scripts and test the current functionality of the application. The bugs found were 

added as tasks in the RTC to be corrected in the next sprint. 

 

Delivered Increment. At the end of this sprint the development team had added new 

functionality that was added to the first release and deployed to the development server 

for the COJ stakeholders’ review and feedback. 
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User Guide. The elaboration of the user guide continued to cover the new completed 

features. 

 

Retrospective. During this sprint only one task needed to be pushed to the next sprint 

since it took longer than the estimated effort. Also, the new functionality had been added 

to the deployment server so that it could be tested by the COJ stakeholders. 

 

Sprint #4. At the beginning of this sprint the development team together with the Scrum 

Master took a decision based on the features left in the product backlog and the velocity 

of the team. The decision was that the development team was going to be able to deliver a 

functional system that included all the core requirements as part of the second release. 

However, more sprints needed to be added so that all those nice-to-have features left in 

the product backlog could be implemented. Since there was still time left in the academic 

semester, the extra time for the additional sprints was not an issue. Also, there were other 

activities that the development team needed to schedule in order to deploy the application 

to the operational environment. Therefore, this decision needed to be communicated to 

the COJ stakeholders in the first opportunity since the additional sprints would impact the 

final delivery date.  

 

As the dateline for the second release was approaching, the project sponsor contacted the 

development team for any new updates and also to inquire if it was possible to do a 

product demonstration in front of the COJ Ethics Commission. The development team 
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and the Scrum Master agreed to perform this demo, which was scheduled at end of this 

sprint.  

 

Also, during this period the COJ Information Technology Division (COJ ITD) had 

recently assigned a project manager to oversee the last phases of the project and 

coordinate the transition of the software to the COJ operation environment. The COJ ITD 

Project Manager had requested a phone conference at the end of the sprint to learn about 

the status and datelines of the project and to coordinate a meeting with the COJ ITD staff 

to discuss the technical aspects of the handover. 

 

Most of the activities performed in this sprint were in consideration with the 

demonstration. Thus, the following work items were carried out during this period: 

 

Sprint Backlog. The tasks for two more features were included. Also, some tasks were 

included to improve the styling of the application in preparation of the demonstration and 

to correct bugs found in the last and current sprint. Other work items were included to 

continue the elaboration of the manual scripts, testing activities, and documentation.   

 

RTC. The sprint backlog was added to the RTC which contained all the scheduled tasks 

which needed to be carried out and also included the links to any deliverable produced in 

the sprint. Even though this tool was not used to its full capability, it helped the 

development team track the progress and duration of the tasks.   
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Testing Activities. Besides the continuous elaboration of the manual scripts, the 

development team performed exhaustive testing and corrected all the bugs found.   

 

User Guide. The elaboration of this document continued as new functionality was added 

to the software. 

 

Additional Delivered Increment. The team had been able to add two more features to the 

product and improved the application styling. This increment had been integrated and 

tested with the rest of the application and was ready for the demonstration. 

 

Retrospective.  During the conference call with the COJ ITD Project Manager, the 

development team informed her about the project status and the delivery date for the 

second release. Also, they discussed the extension of the project and the delivery date for 

the final product. In addition, the development team requested a teleconference with the 

COJ ITD personnel to discuss technical issues before the second release. Further, a 

meeting was scheduled with the COJ ITD personnel after the delivery of the second 

release to discuss the deployment aspects such as the operational environment for the 

application, the handover process and documentation, and the ongoing handling of 

remedial and adaptive maintenance.  

 

Also, the development team had performed the product demonstration in front of the COJ 

Ethics Commission which was impressed with the excellent work the team had 

performed until this point. This product demonstration was especially important for the 
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Project Sponsor because it had shown how the COJ Ethics Office had partnered with the 

University of North Florida to develop a product that would bring benefits to the City of 

Jacksonville. The benefits of this partnership were that the product would provide a more 

efficient process for the lobbyists, the COJ staff, and the citizens and would save the City 

of Jacksonville around $100,000 since this software was to be donated.  Overall, this 

demonstration had elicited an excellent response and evoked great motivation for all the 

stakeholders involved in the project.   

 

At the end of this sprint the development team was confident that the second release was 

on schedule since most of the core features were in place and the rest could be 

implemented in the follow-on sprint.   

 

Sprint #5. For this sprint the development team dedicated all their efforts to complete the 

core requirements and deliver a version of product to the COJ ITD staff for their revision. 

As a result the following activities were carried out during this period: 

 

Sprint Backlog. The tasks to completed last set of features were added to this artifact as 

well as the ongoing testing and documentation activities. Also, other tasks were included 

to cover the correction of bugs, and the implementation of input validation. 

 

Testing Activities. The elaboration of the manual test scripts continued to cover the last 

set of features. After these features were tested, some bugs were corrected. However, any 
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bugs found that did not affect the functionality of the system were scheduled to be 

corrected in the following sprints.  

 

User Guide.  The elaboration of this document continued to cover the last implemented 

functionality and it was delivered along with the latest version of the application. 

 

Delivered Increment. The last set of features that were part of the core requirements were 

implemented, tested, and integrated to the current application. Then, some styling bugs 

were corrected to improve the overall appearance of the application. Also, the input 

validation was implemented to ensure data integrity through the whole application. 

Lastly, some regression tests were performed to validate the correct functionality of the 

whole application. 

 

Retrospective. The development team along with the Scrum Master held a conference 

call with the COJ stakeholders, which included some personnel from the IT Division and 

the City Council and the project sponsor. Some of the items addressed during this time 

were: 

 How the security for the application and database could be handled. 

 The delivery date for the second release and the artifacts produced through the 

software development process.  

 The pickup date for the copy of the application and documentation by the COJ 

ITD Project Manager, and  
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 The date for the next meeting with the COJ ITD staff to set up a schedule for the 

implementation of the last features and the transition and final acceptance of the 

system. However, before the meeting, the COJ ITD staff was going to conduct a 

technical review of the application.  

 

At the end of this iteration the application had all the basic functionality and had been 

tested and released to the COJ ITD staff for their revision. The development team had 

created a document that contained the future development plans and activities for the 

final delivery of the project. 

 

5.4.3   Transition Phase  
 
 
 
After the second release, the project was in the last stage of the construction phase and 

entering the transition phase. In the past sprint the development team had released an 

operational product that fulfilled the core requirements. The main functionality was in 

place, there were some bugs that needed to be corrected, and the nice-to-have features 

were scheduled to be implemented over the next sprints as well as the refinement of the 

whole application.  

 

The second release, which included the application code package, the database schema, 

application installation setup, Visual Studio files, and available documentation, was 

picked by the COJ ITD project manager for a preliminary technical review and the initial 

beta testing of the product.  At this time the application was delivered in the .NET 
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framework version that the development team had been using. Later, the COJ ITD staff 

had requested the development team to downgrade the application to the .NET 

framework currently used in the COJ IT Division and also to format the application 

interface style to fit the standards of the COJ.net web site. 

 

A few days later, the development team had the face-to-face meeting with some of the 

COJ ITD stakeholders. In this meeting the development team performed a walkthrough 

of the entire application and obtained the following feedback:    

 Many technical questions were answered and also new features were added. 

These new features mostly involved changes in how the information was 

displayed.  

 In addition, there were some new requirements on how the COJ employee should 

be authorized to access the application.  

 The COJ ITD staff requested a technical design document and a user guide that 

conformed to their standards. To facilitate the elaboration of these documents, 

they were going to provide templates and guidelines to the development team. 

 During this time the Scrum Master from the City of Jacksonville was added to the 

ITD Project team to facilitate the development and communications during the 

remainder of the project. 

 A preliminary product walkthrough that included the project sponsor and the COJ 

end users was scheduled for the following week. 
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In retrospect, this was an effective meeting for the development team because it was clear 

that the ultimate handover of the product would be compatible to the required operational 

environment.  

 

One week later, the development team met with the project sponsor, COJ end users, and 

the COJ ITD representatives that included the project manager, development, and testing 

teams to conduct the preliminary product walkthrough. The highlights of this meeting 

were the following: 

 Some future enhancements were proposed so that the lobbyists could have links to 

important information governing the lobbyist activities. 

 Other feature enhancements were added such as how to handle lobbyist’s 

confidential information, facilitate user inputs, and display of information. 

 Other issues were clarified such as no need for the application to have 

programmed features for printing web site pages or exporting information.  

 Feature enhancements from the last meeting with the COJ ITD staff were 

revisited again and some were confirmed and others were deleted. 

 The product backlog was reviewed and features were added, changed, deleted, 

and prioritized by all the COJ representatives.  

 It was agreed that future enhancements will be handled by the COJ ITD as new 

Request for Information Technology Services (RFIS). For this purpose, the 

development team needed to provide detailed technical documentation with 

instructions on how to implement changes to the application and database and 

how to upload data from an excel file to the database.  
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 The development team agreed to send a baseline of the product and updated 

documentation that included all the items agreed in this meeting. 

 The COJ stakeholders agreed to send the information necessary to perform the 

new changes and additions to the application. 

 The development team indicated that the rest of the product backlog and 

documentation would be finished in three more sprints as long as there was a 

consistent active participation and feedback from the COJ stakeholders. They also 

committed to deliver a release at the end of each sprint and send it the COJ 

stakeholders for beta testing.   

 The COJ stakeholders agreed that the product acceptance was going to happen at 

the end of the last sprint after the completion of the new requirements, the user 

testing, and the user guide and technical design documents. Also, they added that 

the acceptance might not coincide with the full implementation of the system due 

to several action items that included adjustments in the existing legislation and 

public notification.   

 

Sprint #6. After the meeting with the COJ stakeholders, the development team met to 

start planning the rest of the features and activities needed to complete the product. As a 

result, three sprints were planned with three releases so that the COJ stakeholders could 

start the beta testing of the product. The first release was the baseline of the product and 

was going to be delivered during this sprint with all the updated documentation such as 

the product vision, product backlog, manual test scripts, and user guide. The second and 
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the third releases were scheduled at the end of the second and third sprint. The work 

items for this sprint were:  

 

Product Vision. The list of features in this artifact was updated to include the new 

features requested by the COJ stakeholders. 

 

Product Backlog. This artifact was updated to include all the features and activities that 

the development team needed to implement and perform to deliver the final product. The 

items in this artifact were prioritized based on the COJ stakeholders’ feedback and 

organized by sprints. Also, it showed the complexity and status for each feature/activity 

and mapped each feature to a use case. This artifact was updated at the end of the sprint 

to reflect the status of “Done” for each feature/activity that was completed. This 

definition of “Done” meant the feature has been implemented and tested or that the 

activity has been completed and reviewed it. Figures 33, 34, and 35 show how the 

features/activities in the product backlog were organized by sprints.   
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Figure 33: Product Backlog (Sprint 1) 
 
 

 
 

Figure 34: Product Backlog (Sprint 2) 
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Figure 35: Product Backlog (Sprint 3) 
 
 

Sprint Backlog. This artifact was not created physically during the current and following 

sprints since the development team had organized the features/activities in the product 

backlog by the sprint in which they would be completed as shown in Figures 32, 33, and 

34.  

 

Testing Activities. The manual testing scripts were updated to test all the functionality in 

the product baseline. Also, a bug list was created as a result of the testing activities to 

keep control of what was or needed to be corrected (Figure 36). 
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Figure 36: List of Bugs 
 
 
 
User Guide. This document was updated to follow the COJ ITD’s documentation 

guidelines and to include all the functionality in the product baseline. 

 

Technical Design Document. The development team started the creation of this document 

which required a description of the software architecture; a description, class diagram, an 

activity diagram, and user’s screen for each module; and the database diagram.  

 

Product Baseline. In the middle of this sprint the product baseline was released and was 

ready to be downloaded by the COJ ITD staff with all the updated artifacts described 

above. Later, the COJ ITD staff reported they had been able to download the baseline and 

documentation and were ready to test it.  
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Retrospective. After the last meeting, the project sponsor had been testing the application 

using the application that was uploaded to the development server and had provided some 

feedback. This feedback required the development team to make small changes to the 

user interface to make the user input simpler.  Also, at the end of the sprint the COJ ITD 

staff reported that they hadn’t been able to upload the application to their server due to an 

error, which was due to the different versions of the .NET frameworks used by both 

parties. Because of this, the team scheduled to downgrade the application to the .NET 

version currently used in the COJ IT Division for the next sprint. 

 

With respect to the development team’s activities, all the features included in the sprint 

backlog had been implemented and the elaboration of the documentation had continued 

without problems. Also, at the beginning of this sprint the development team had decided 

to stop using the CLM tool since it was not used to its full potential and the 

implementation activities and source control were carried out using the Team Foundation 

Server.  

 

Sprint #7. The development team continued working on the next set of features/activities 

scheduled for this sprint. Thus, the following work items were performed: 

 

Product Backlog. Besides working on the features/activities already scheduled in this 

artifact for this sprint, the development team included the downgrade of the application as 

well. At the end of the sprint the status of each feature/activity was updated to “Done” 

(Figure 37). 



 - 122 -  
 

 
 

Figure 37: Product Backlog at the End of the Current Sprint 
 
 
 

Testing Activities. The elaboration of the manual test scripts continued to cover the new 

implemented features. Subsequently, the testing activities were performed to ensure the 

necessary functionality was in place and detect any bugs in the software. After this, 

regression tests were performed to ensure the new added features didn’t introduce errors. 

At the end of these activities any bugs found were added to the bug list to be addressed 

later. 

 

Documentation. The development team continued working in the user guide to include 

the new functionality and kept on developing the technical design document ensuring that 

the COJ ITD’s standards were followed.  

 

Second Release. At the end of the sprint, the application had been tested and downgraded 

and a release package had been zipped and sent to the COJ ITD stakeholders. This 

package contained the new added functionality, all the updated documentation, and a list 

of specific instructions on what to change so that the application could run in their 
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operational environment. In addition, the second release had been uploaded to the 

development server, where it could be accessed and tested by the COJ stakeholders. 

 

Retrospective. During this iteration the development team had continued to implement 

the new set of features scheduled for this sprint, corrected all the known bugs, and tested 

the application. The second released had been sent to the COJ ITD staff for their revision 

and testing. The COJ ITD project manager had approved the documentation and reported 

that the COJ ITD staff hadn’t been able to upload the application to the operational 

environment due to an error that needed to be fixed on their side. Therefore, the testing of 

the application in their operational environment had been postponed one week or until the 

problem was fixed. However, a meeting needed to be scheduled to perform a 

demonstration of the final product.  

 

Sprint #8. The development team continued to work in the rest of the tasks needed to 

deliver the final project. Thus, the work items undertaken during this sprint were: 

 

Product Backlog. According to the product backlog, the development team performed the 

tasks needed to implement the last features, the tasks to verify the security of the 

application, the tasks needed to handle the COJ employee authorization to administrate 

the application, and the necessary tasks to perform the final testing and deliver the 

documentation. At the end of this sprint, this artifact was updated to reflect the status of 

“Done” for each feature/activity that was completed (Figure 38). 
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Figure 38: Product Backlog at the End of the Last Sprint 
 
 
 

Testing Activities. The elaboration of the last manual test scripts continued and they were 

performed to test the last added features. After the last features were tested, the regression 

tests were carried out. All outstanding bugs were corrected and tested and the bug list was 

updated to reflect the completion status. 

 

Documentation. The elaboration of the user guide and the technical document continued 

until all the new features were included. These two activities were completed few days 

before the final product delivery.  

 
 

Third Release. After the testing activities were completed for the last features and all 

outstanding bugs were corrected, the third release package was prepared. This package 
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contained all the source code, database files, the latest version of all the documentation, 

and a new set of instructions on what specific environment variables needed to be 

modified for the application to work in the operational environment. This package was 

uploaded to the development server and ready to be downloaded by the COJ ITD staff.  

 

Retrospective. In this sprint the development team had completed all the features 

scheduled for the third release and continued testing the application and correcting any 

issues found. These activities continued until the development team considered the 

testing activities had been completed on their side. The COJ ITD project manager had 

reported that they had been able to download the application to a desktop and it was 

working fine. However, due to scheduling issues, they hadn’t been able to move the 

application to the operational environment. 

 

After the end of the last sprint, a meeting was scheduled to perform a walkthrough of the 

final product to the customers. Also, for the formal handover of the application the COJ 

ITD Project Manager had requested two copies of the application and documentation in 

CDs. The COJ ITD Project Manager had reported that the application was working well 

in one of their personal computers; however, they still needed to solve an issue so that the 

application could be moved to COJ environment and they could start the customer 

testing. 

 

During the meeting, the development team conducted the final product walkthrough in 

front of the customers— project sponsor and COJ end users— and COJ ITD 
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representatives. As a result of this meeting, the final product obtained the approval from 

the project sponsor and the development team delivered two copies of the final product 

package to the COJ ITD Project Manager to formalize the handover of the application.     

  
 
5.4.4   Stage II Artifacts  
 
 
 
This section summarizes the RUP and Scrum artifacts produced or updated during the 

second stage of the project as shown in Table 4.    

 

Artifacts RUP Phases and Sprints 

Software Development Plan Elaboration, sprint# 1 

Product Vision Elaboration, sprint #1; Transition, sprint #6 

Product Backlog Elaboration, sprint #1; Transition, sprint #6, 
sprint #7, and sprint #8 

Sprint Backlog Elaboration, sprint #1; Construction, sprint 
#2, sprint #3, sprint #4, and sprint #5 

Delivered Increment Elaboration, sprint #1; Construction, sprint 
#2, sprint #3, sprint #4, and sprint #5 

Manual Test Scripts 
Elaboration, sprint #1; Construction, sprint 
#2, sprint #3, sprint #4, and sprint #5; 
Transition, sprint #6, sprint #7, and sprint #8 

Release Construction, sprint #2 and sprint #5; 
Transition, sprint #6, sprint #7, and sprint #8 

User Guide 
Construction, sprint #2, sprint #3, sprint #4, 
and sprint #5; Transition, sprint #6, sprint #7, 
and sprint #8 

Technical Design Document Transition, sprint #6, sprint #7, and sprint #8 

List of Bugs Transition, sprint #6, sprint #7, and sprint #8 

 
Table 4: Stage II Artifacts 
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Chapter 6 
 

RESULTS, CONCLUSIONS, AND FURTHER RESEARCH 
 
 
 
6.1   Results 
 
 
 
This chapter includes the results of this research as related to the research methodology, 

hybrid approach, and the implementation and retrospective of the case study. Also, the 

conclusions of the study are derived and further research is suggested. 

 
 
6.1.1   Research Methodology 
 
 
 
The goal of this research was to address major shortcomings discovered during an 

extensive literature review in hybrid methodological approaches to software 

development. Thus, this research was focused on determining the feasibility of 

undertaking a significant hybrid software development effort that combined traditional 

RUP and Scrum within an umbrella of Collaborative Lifecycle Management with the 

added development constraint of first year graduate software engineering students some 

of whom had considerable development experience while others did not. Documenting 

the results of this effort to provide a venue for further research was also critically 

important. 
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In addition to validating this hybrid approach using two industry-wide popular 

development approaches another objective was to supplement existing studies addressing 

similar approaches while pointing out the major differences between them and this effort. 

 

Both the research goal and research objectives for this study were satisfied. The former 

was achieved by supplementing new information to the database of existing similar, yet 

oftentimes quite dissimilar cases presented in earlier chapters. The latter was successfully 

accomplished by describing the developed lobbyist registration and tracking system. 

 

The thesis includes an introduction to the research topic, an extensive literature review, a 

description of the research design, data collection, case study research results, and 

conclusions. 

 

The results of the data collection validated the first guiding proposition defined in the 

research methodology. This guiding proposition states that specific processes are used to 

combine the implementation of the RUP and Scrum methodologies for different projects 

in different organizations.  

 

For this research, the first step in data analysis focused on “within-case analysis” as a 

standalone entity and to distinguish the unique patterns of this lobbyist case study. The 

lobbyist system was thus described with the specific RUP and Scrum processes involved 

and how they were conducted. 
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The “cross-case examination” indicated that when comparing the above within-case 

results with findings from previous published studies, results may vary for different 

projects and organizations. 

 
 
6.1.2   Hybrid Process  
 
 
 
One of the objectives of combining RUP and Scrum was to provide a hybrid approach 

that maximizes RUP and Scrum strengths to deliver a high-quality product that meets 

customer requirements and expectations. RUP strengths provide structure and guidance 

through the entire software development process, allow easily adaption of the process to 

the project needs, and promote customer participation. Although RUP involves project 

management activities, it does not indicate how to organize the daily activities during the 

software development process [Collaris10]. In contrast, Scrum strengths include the 

management of the day-to-day activities to organize the software development process 

especially during the Elaboration and Construction phase [Krebs05] and responding to 

changing requirements and feedback while some Scrum weaknesses are that this assumes 

that there is a vision of the product and it is “not architecture-based [Morampudi13].”  

  

Based on these strengths and weaknesses, the software development process followed a 

full RUP evolution, which gave structure to the software development process and guided 

the process especially during the first stage, which included the essentials of the Inception 

and Elaboration phases. Although many implementations of the RUP do not include all 

classic RUP elements, the software development process followed in this development 
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application adhered to traditional elements such as roles, activities, artifacts, and 

disciplines. The RUP thus provided a framework to the development team to understand 

the business and projects goals, to define the requirements through use cases, and to 

proactively address high risks by establishing the initial baseline architecture before 

commencing the software development activities.   

 

The second stage, which subscribed to RUP’s Construction and Transition phases, was 

realized using Scrum, as the development management process. Scrum practices drove all 

day-to-day activities in which the development team self-organized and self-managed to 

deliver business value. Also, these practices allowed the development team to have a 

more continuous interaction and feedback from the customer to validate that the right 

product was built. Thus, Scrum process started with the elaboration of the product 

backlog based on the artifacts produced in the first stage of the process such as the 

product vision and the use-case model and ended with the delivery of the product to the 

COJ customers.  

 
 
6.1.3   Implementation Results and Lessons Learned – A Retrospective 
 
 
 
This hybrid implementation using the RUP and Scrum was successful in several ways. 

The evolving system was incrementally released by the development team, reviewed by 

the COJ users, and approved by several other COJ stakeholders after several face to face 

meetings. In addition, there was a positive hands-on experience for the students that 
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participated in this project; there is no development experience better than actually 

implementing a real-world solution to a needed business application.  

 

As stated, one of the main goals for this hybrid approach was to integrate RUP and 

Scrum within the context of a collaborative tool, in this case the IBM Rational CLM 

solution. This solution provides a collaborative environment during the requirements and 

analysis, construction, and testing phases. However, the development team was not fully 

aware of all the features of this tool and was thus unable to realize the full benefits of the 

CLM. For example, 

 The RRC area provides the tools to capture use cases, glossaries among others 

and allows teams to manage requirements and maintain full traceability of these 

requirements during the software development. However, due to the lack of 

experience the development team had in order to learn the capabilities of the 

RRC, this area was only used as a repository for all the artifacts produced during 

the first stage and to obtain feedback from the team Project Manager. For 

example, use cases were developed offline using templates in Microsoft Word 

and then imported into the Requirements Management area of the CLM solution. 

The development team later learned that RRC provides templates and much 

guidance for use case development and utilization as a driving component of 

software development. But as time moved on, retrenching was not an option. 

 The RTC area provides the team with the tools to track work items, source 

control, report, and build management. Also, it provides an Eclipse-based client 

interface, Microsoft Visual Studio client interface, and a Web client interface to 



 - 132 -  
 

build and deliver artifacts. Again, due to version incompatibilities between the 

IBM Rational CLM solution and the Microsoft Visual Studio environment used, 

the development team — more familiar with Microsoft team Foundation 

Server— opted to work outside this CLM environment and used Team 

Foundation Server for source control. Although RTC full capabilities for builds 

and tracking were not used, the RTC area was used to plan the agile process and 

track the work items. The project timelines, then, for sprints and releases were 

created in this area as well as the product and sprint backlog artifacts. The 

development team noted that neither the burndown chart nor the velocity chart 

were generated in the dashboard area, only to later discover that tasks as child 

elements to the features needed to be created within the sprint backlog. However, 

this solved the issue for the burndown chart, but it did not solve the problem 

related to the velocity chart. 

 The RQM area provides teams the tools to track the quality assurance activities. 

Because the development activities were accommodated using Team Foundation 

Server, quality assurance features within RQM were not used.  

 

While the CLM solution was used to host many of the development team’s activities and 

artifacts, the dual task of learning software engineering principles and practices while 

trying to take advantage of the CLM solution proved to be somewhat out of synch and 

sometimes incompatible at times. Further iterations of this effort in subsequent software 

engineering classes would certainly benefit with more full use of the many features 

within the CLM solution. 
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One of the goals of an agile process is to have frequent interaction with the customer. 

This goal was at best partially accomplished. Issues included: 

 Schedule Problems. First, the graduate courses at the UNF School of Computing 

are offered in the evenings and the Software Engineering class met twice a week. 

Because of this, most of the graduate students had full time jobs or were engaged 

in other activities during the day. This also made it difficult for the customers to 

schedule meetings during the day.  

 Assigned Times. Even though the COJ stakeholders had great interest in the 

development of this application, they did not have an assigned time to interact 

with the team. (This should be well-established in the future if a similar 

undertaking is to reoccur). Thus, during the first stage of the project, the 

development team only met few times with the COJ stakeholders to gather 

requirements. For questions or clarifications, phone calls or emails served as a 

communication between the two parties.  However, during the second stage of the 

project, the COJ stakeholders appointed a project manager from the COJ IT 

Division to coordinate the transition of the product to the customer environment, 

and this resulted in significantly more interactions with the COJ stakeholders, as 

they slowly started to assume ownership of the product. 

 CLM Tool. One of the many advantages of the CLM solution is that it can be 

used by different stakeholders involved in a project and can serve as a repository 

for all the artifacts produced during the software development. However, for 

simplicity it was decided that only the development team and the team Project 

Manager could have access to this tool. This decision limited having more 
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interaction with the COJ stakeholders and facilitating their feedback. This should 

be changed for subsequent repetitions of such a software engineering project with 

the City of Jacksonville (or other corporate) clients. 

 

This research adds knowledge and may well facilitate other hybrid implementations with 

RUP and Scrum, especially for students carrying out other software projects in software 

engineering courses in a university setting. Lessons learned via this implementation will 

help reduce the gap in how a hybrid approach might be performed in an academic setting. 

Also, the use of the modern CLM tool will ensure students to acquire more skills that 

may help them be more effective in their careers. 

 

Unfortunately, while the system was delivered successfully, it has not yet been 

implemented. The application has not yet been uploaded into the operating environment, 

ostensibly because of some COJ internal policies, which have arisen and are clearly 

beyond project scope. Regardless, the delivery of the system was successful since it was 

reviewed, approved, and it was functioning according to the customer’s expectations and 

requirements.  

 

While extensions and enhancements to the system have been identified, the first step 

would be to upload the system to the operating environment. 
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 6.2   Conclusions 
 
 
 
The research goal and research main objectives were satisfied and successfully 

accomplished. This was achieved by respectively describing the developed lobbyist 

registration and tracking system and adding new information to the database of existing 

cases presented in earlier chapters.  

 

This research thus helps reduce the first gap derived from the literature review: “The 

process of combining RUP and Scrum successfully does not have sufficient empirical 

research.” 

 

Further, the results of the data collection— describing the developed lobbyist registration 

and tracking system processes— validated the first guiding proposition that was defined 

in the research methodology. This guiding proposition states that specific processes are 

used to combine the implementation of the RUP and Scrum methodologies for different 

projects in different organizations.  

 

The data analysis results of within case analysis— the unique patterns of this lobbyist 

case study that included the specific RUP and Scrum processes involved and how they 

were conducted—  and the cross-case examination indicated that when comparing the 

above within-case results with findings from previous published studies results may vary 

for different projects and organizations. 
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These research results also added specific knowledge as how the hybrid RUP and Scrum 

lobbyist project in a particular organization was conducted and what specific processes 

are involved.  Thus, these results may help researchers and practitioners that are looking 

for evidence in how to conduct this hybrid approach.   

 

Also, this agile-hybrid approach offers several strengths. One of them is that by 

subscribing to RUP’s activities, roles, artifacts, and disciplines during the first stage of 

the project, the development team will have a better understanding of the organization 

and will share a vision of the core requirements of the product with the rest of the 

stakeholders to create the product backlog for the second stage of the project. Also, 

RUP’s incremental and iterative approach allows for customer feedback on the different 

documents and models produced ensuring that the development team has a more accurate 

idea of the product needed.  

 

Another strength in this hybrid approach is that by incorporating Scrum practices in the 

second stage, the development is empowered to make decisions to achieve a goal at the 

end of each sprint. Also, there are more frequent releases of a working product that allow 

for continuous customer feedback and engagement. This adds confidence in both sides, 

the customer knows that will get the product that is needed and the development team 

knows that is building the right product. Thus, risks are mitigated early in the project and 

delays on the schedule due to changing requirements late in the project are avoided. In 

fact, reducing these risks helps shorten the duration of the project.  
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One of the weaknesses of this approach is that early and continuous customer interaction 

is critical for the successful of the project. Also, the team members experience and 

knowledge on these methodologies play an important factor to avoid delays in the 

delivery of the project.  

 

Based on the experience and results obtained during this hybrid implementation some 

recommendations may be suggested for new projects using this hybrid approach. First, 

the development team should choose the RUP’s artifacts that add more value to their 

process during the first stage of the project. However, the creation of the product vision 

document and the use-case model are prescribed since they are essential for the creation 

of the product backlog and to drive the main functionality of the system. Next, the early 

involvement of the customer in the project and prompt feedback are essential for the 

success of the project. Thus, assigning times or setting up a schedule for meetings with 

the customer from the beginning of the project and identifying a point of contact on the 

customer side should be done to facilitate customer interaction. Also, selecting the 

appropriate software development technologies and ensuring that all the team members 

have some knowledge or acceptable level of experience using these assures a more 

productive environment and avoids schedule delays on the project.  In addition, the use of 

the full capabilities of the IBM Rational CLM Solution is considered important to 

organize and manage all the deliverables, promote stakeholder collaboration through the 

entire project, and keep track of the project progress. 
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While the results of this research were successful and valid, these findings are not 

sufficient evidence to fill this gap completely. Therefore, more case studies that combine 

RUP and Scrum successfully need to be developed to supplement empirical data to fill 

this gap.   

 

In summary, this research has provided significant evidence that both the RUP and Scrum 

may be successfully used within a CLM solution in an academic environment. This 

research and results may be published in journals since it follows a qualitative research 

methodology to describe a hybrid implementation process and because it helps reduce the 

gap by adding knowledge. Also, it can be published as a case study in books related to 

software engineering technologies. For these reasons we can conclude that the research 

goals of this thesis were successfully achieved. 

 
 
6.3   Further Research 
 
 
 
Future research in hybrid methodologies may include developing more case studies that 

address different ways of successfully combining RUP and Scrum.  This eventually may 

lead to have enough empirical evidence that will help practitioners carry out their new 

implementations more successfully.   

 

To respond to the second question that addresses the managerial elements that may 

influence each step of the process such as quality, culture, and people, a new research 

effort should be developed. In this research these elements may be measured using 
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information from different data collection processes. These findings will add knowledge 

to better understand what managerial elements have the greatest significance in a hybrid 

implementation.   

 

In the software development life cycle, after the product is successfully delivered, the 

software maintenance phase starts. In this phase some activities take place, among them 

new requirements are added, some changes in the operational environment may be 

needed, and errors are corrected. However, this maintenance phase does not receive as 

much attention as the other SDLC phases [Pigoski01]. Also, there is not enough 

information in the literature that addresses how software maintenance would be carried 

out with a hybrid approach. Thus, further research may also look for case studies that 

address how to carry out continuous engineering during the maintenance phase using a 

hybrid approach. 

 

Finally, for the purpose of future software engineering courses at UNF, this study may be 

used as a source to make improvements from this research experience.   
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