
University of North Florida University of North Florida 

UNF Digital Commons UNF Digital Commons 

UNF Graduate Theses and Dissertations Student Scholarship 

2015 

Sindbis Virus Entry of Mosquito Midgut Epithelia...Is NRAMP Sindbis Virus Entry of Mosquito Midgut Epithelia...Is NRAMP 

Involved? Involved? 

Florence Yi Ting Chim 
University of North Florida, n00452021@ospreys.unf.edu 

Follow this and additional works at: https://digitalcommons.unf.edu/etd 

 Part of the Biology Commons 

Suggested Citation Suggested Citation 
Chim, Florence Yi Ting, "Sindbis Virus Entry of Mosquito Midgut Epithelia...Is NRAMP Involved?" (2015). 
UNF Graduate Theses and Dissertations. 614. 
https://digitalcommons.unf.edu/etd/614 

This Master's Thesis is brought to you for free and open 
access by the Student Scholarship at UNF Digital 
Commons. It has been accepted for inclusion in UNF 
Graduate Theses and Dissertations by an authorized 
administrator of UNF Digital Commons. For more 
information, please contact Digital Projects. 
© 2015 All Rights Reserved 

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.unf.edu%2Fetd%2F614&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/614?utm_source=digitalcommons.unf.edu%2Fetd%2F614&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/


 SINDBIS VIRUS ENTRY OF MOSQUITO MIDGUT EPITHELIA… 

IS NRAMP INVOLVED? 

By  

Florence Chim 

 

A thesis submitted to the Department of Biology  

in partial fulfillment of the requirements for the degree of  

Master of Science in Biology 

UNIVERSITY OF NORTH FLORIDA 

COLLEGE OF ARTS AND SCIENCES 

Date 11/30/2015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ii 

The thesis of Florence Chim is approved:      Date 

 

 

Dr. Doria F. Bowers 

 

Dr. David S. Waddell 

 

Dr. Paul J. Linser 

 

 

Accepted for the Biology Department: 

 

 

Dr. Cliff Ross 
Chair 

 

Accepted for the College of Arts and Sciences: 

 

 

Dr. Barbara Hetrick 
Dean 

 

Accepted for the University: 

 

 

Dr. John Kantner 
Dean of the Graduate School 

 

  



 iii 

Acknowledgements 
 

 I would like to thank Dr. Doria Bowers for this wonderful opportunity to work on my 
thesis in your lab.  Without you, none of this would be possible.  Thank you for your guidance 
and having faith in me.  You have constantly demonstrate that having passion in your work will 
take you far in life.  You are like an aunt to us in the lab, always watching out for us.  You 
always ensured we had all the resources possible for our investigations.  I am very proud to say 
that I earned my Master’s in the Bowers’ lab! 
 Thank you Dr. David Waddell and Dr. Paul Linser for your guidance in this 
investigation.  When I first started the M.S. program, I had absolutely no idea what to expect.  
Except that I knew I wanted to surround myself with mentors that would provide the best advice.  
That is why I am honored that you agreed to be on my committee.  

To my friends in the lab, Zoe Lyski and Michael Stephens, I really appreciate your 
support and advice!  Thanks for allowing me to discuss ideas, shadow you, and figuring out 
assays with me!  Jason Saredy, thanks for running assays with me, showing me how to use the 
fancy confocal microscope with a bagillion buttons/knobs, and ImageJ!  My scale bars will be all 
over the place if it were not for you!  Most of all, thank you everyone for catching my tears when 
assays just will not cooperate! 
 Thank you Rachel for supporting me and showing me how to BLAST!!!  Your niche in 
genetics really helped! Pretty soon, we will be wearing matching lab coats! 
 To my parents, thank you for being supportive in my journey as a perpetual student and 
for letting me be who I want to be and do what I want to do.  You have never once told me I am 
not to do something because you disapproved.  You allowed for me to make my own decisions 
while providing guidance and that is the best parenting a child could hope for.  
 To my grandma, uncles, aunt Elsa, Ervis, and Brandi, also thank you for supporting me in 
my journey as a perpetual student.  Not one of you ever asked, “why is it taking you so long to 
graduate?!”. To which I would have replied, “because I am trying to identify a protein that may 
or may not be present!”.  I am almost done!  Thanks for never rushing me! 
 To my parents-in-law, I appreciate your support and allowing me to focus solely on my 
research! Ti je shuma mer! Pese lart!!!  Tani ha book, biskote, torte me akullore!!! 
 Last but never least, my husband.  Thank you Arbi for your support.  Without you, this 
journey would have been really difficult.  You have filled my life with so much joy and 
laughter!!!  Thanks for putting up with me during times of stress and taking such good care of 
me and our fur babies, Milo and Marsi!  More dogs? Yay? Nay? JK?  Oh, and thanks for tuition, 
food, shelter…all that good stuff! 
   

  



 iv 

Table of Contents  

 

Title Page    i 

Certificate of Approval  ii 

Acknowledgements   iii  

Table of Contents   iv 

List of Figures and Tables  v-vi 

Abstract    vii 

Chapter 1: Introduction  1-5 

Chapter 2: Materials and Methods 6-11 

Chapter 3: Results   12-27 

Chapter 4: Discussion   28-31 

References    32-35 

Vita     36 

 

 

  



 v 

List of Figures 

Figure 1  Plaques were traced and counted for calculating virus titers.  
 
Figure 2  Glass microscope slide with well, composed of hand-cut glass coverslip sidings (→) 
attached with valap. 
 
Figure 3  NRAMP was not detected in the median lobe (ML) or the lateral lobes (LL) of the 
salivary glands of Ae. aegypti when labeled with anti-NRAMP2 and TX-Red-conjugated 
secondary antibody; epifluorescent microscopy, 100µm scale bar.   
 
Figure 4  (A) Multiple foci-like immunofluorescence labeling of NRAMP2 in midgut of Ae. 

aegypti fixed with acetone; epifluorescent microscopy 10X, 100µm scale bar. (B) Magnified 
(40X, 50µm scale bar) foci-like labeling of NRAMP2 by box indicated in (A).   
 

Figure 5  Immunofluorescence labeling of NRAMP2 in midgut of Ae. aegypti fixed with 
acetone; epifluorescent microscopy.  (A) Note punctate and clustered fluorescent signals, 50µm 
scale bar.  (B) Labeling confined to muscle bands, 10µm scale bar. (C) Negative control, 100µm 
scale bar.  
 
Figure 6  Optical cross-section of midgut of Ae. aegypti fixed with 4% paraformaldehyde/0.2% 
Tween20 and immunofluorescence labeled for NRAMP2 (green) and counterstained with 
DRAQ5 (blue; nuclear stain); confocal microscopy, 100µm scale bar. (B) Magnified image of 
(A) with interest on the midgut epithelia. NRAMP labeling was localized to the basal aspect of 
epithelial cells.  
 
Figure 7  Immunofluorescence labeling of NRAMP2 (→) in Malpighian tubules of An. 

quadrimaculatus fixed with acetone; epifluorescent microscopy, 50µm scale bar.  
 
Figure 8  Proteins from triturated mosquito midguts were separated via PAGE. The gel was 
stained with Coomassie Brilliant Blue and counterstained with silver. Lane A (4 MGs) and lane B 
(8 MGs) contain Ae. aegypti tissue. Lane D (4 MGs), lane E (8 MGs), and lane F (16 MGs) 
contain An. quadrimaculatus tissue. Lane C corresponds to molecular ladder. NRAMP2 is 
63.7kDa (area indicated by white lines).  
 
Figure 9  Proteins from triturated mosquito midguts were separated via PAGE. Gel was stained 
with Coomassie Brilliant Blue and counterstained with silver. Lane A corresponds to protein 
ladder and lane B (8 MGs) contain Ae. aegypti tissue.  Arrows pertain to protein bands of 
interests with molecular weights ranging between 55-70kDa.   
 
Figure 10  Confocal analysis (100µm scale bar) of midgut from Ae. aegypti fixed with 4% 
paraformaldehyde at day 3 p.i. with TR339-TaV-eGFP.  (A) Localized virus foci in the midgut 
of Ae. aegypti using light and laser microscopy.  (B) Confocal analysis of (A) stained with 
DRAQ5 (blue; nuclear stain).    
 



 vi 

Figure 11  Confocal analysis (100µm scale bar) of midgut from Ae. aegypti fixed with 4% 
paraformaldehyde at day 9 p.i. with TR339-TaV-eGFP.  (A) Localized virus foci in the midgut 
of Ae. aegypti using light and laser microscopy.  (B) Confocal analysis of (A) stained with 
DRAQ5 (blue; nuclear stain).    
 
Figure 12  Optical cross-section of midgut of Ae. aegypti fixed with 4% paraformaldehyde/0.2% 
Tween 20 at day 9 p.i. with TR339-TaV-eGFP; confocal microscopy, 100µm scale bar. (A-C) 
Localized virus foci at anterior midgut and infected peristaltic muscles. (D) Midgut of (A-C) 
stained with DRAQ5 (blue; nuclear stain). Fluorescence of peristaltic muscles indicates that 
TR339-TaV-eGFP has disseminated from the midgut epithelia.  
 
Figure 13  Optical cross-section of midgut of Ae. aegypti fixed with 4% paraformaldehyde/0.2% 
Tween 20 at day 9 p.i. with TR339-TaV-eGFP; confocal microscopy, 100µm scale bar. (A-D) 
Localized virus foci at midgut and infected peristaltic muscles. (E) Midgut of (A-D) labeled with 
an antibody against NRAMP2 and TX-Red-conjugated antibody; (→) indicate proposed 
NRAMP localization.  
 
Figure 14  Midgut of Ae. aegypti fixed with 4% paraformaldehyde/0.2% Tween 20 at day 5 p.i. 
with TR339-TaV-eGFP; confocal microscopy, 100µm scale bar, Z projection. Localized virus 
foci at front portion of midgut and infected peristaltic muscles at the rear portion of midgut. 
 
Table 1  TR339-TaV-eGFP infection and dissemination in midguts of Ae. aegypti females. 
 
Figure 15  Protein sequence alignment of An. gambiae NRAMP (query) and natural resistance-
associated macrophage protein 2 isoform 3 of Homo sapiens (subject).  NRAMP of An. gambiae 
share a 57% identity and 74% similarity with NRAMP2 of H. sapiens.   
 

 

 

 

 

 

 

  



 vii 

Abstract 
 
Sindbis virus (SINV) is an arthropod-borne Alphavirus in the family Togaviridae.  Sindbis virus 
has a broad host range that includes avian, mammalian, and human hosts; therefore, its 
receptor(s) is/are highly conserved.  When the mosquito imbibes a viremic blood meal, the virus 
infects the midgut cells, disseminates into the hemolymph, and eventually infects the salivary 
glands.  The midgut is an organ of transmission and the virus must overcome the midgut 
epithelia infection- and escape-barriers.  Sindbis virus infection is determined by the chance 
collision of the glycoproteins with a compatible receptor.  Research has supported the 
involvement of high-affinity laminin receptor and heparan sulfate in SINV binding to host cells.  
However, it has been suggested that not all strains of SINV are dependent on heparan sulfate for 
attachment/entry and that SINV could be utilizing multiple receptors.  A study using Drosophila 
demonstrated that, of the nine genes that encode for proteins that enhance SINV infection, only 
natural resistance-associated macrophage protein (NRAMP) was conserved.  A symporter of 
divalent metals and hydrogen ions, NRAMP is ubiquitously expressed.  Overexpression of 
NRAMP led to an increase in SINV infection of human cells while deletion of NRAMP in 
mouse and Drosophila decreased SINV infection.  Sindbis virus could be utilizing this protein to 
overcome the infection barriers of mosquito midgut epithelia.  In this study, NRAMP was 
localized to Aedes aegypti and Anopheles quadrimaculatus tissues via immunofluorescence 
assay and TR339-TaV-eGFP was detected in the midgut epithelia and visceral muscles.  We 
suspect that NRAMP was detected on midguts and/or Malpighian tubules of Aedes aegypti and 
Anopheles quadrimaculatus.  The similarities between the pattern of NRAMP labeling and 
TR339-TaV-eGFP infection of the midgut suggest that SINV infection is influenced by NRAMP 
in the midgut epithelia.  Because NRAMP is ubiquitously expressed, this research provides 
insight into the attachment and entry phase of the arbovirus lifecycle.
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Chapter 1: Introduction 

Arthropod-borne viruses (arboviruses) are maintained in the environment by the 

continuous cycle between invertebrates and vertebrates (Fields 2007).  Due to the lack of 

protective vaccines, invertebrate resistance to insecticides, and the difficulty of containing 

transmission of pathogens, arboviruses remain a global health concern to humans and animals 

(Villarreal et al., 2000).  The key to preventing outbreaks due to arboviruses is the understanding 

of the biology of arthropods and the virus interactions with the host.   

First isolated in 1952 from mosquitoes in Sindbis, Egypt, Sindbis virus (SINV) is an 

Alphavirus that is a member of the Togaviridae family (Fields 2007).  Sindbis virus is a hybrid 

structure composed of products originating from viral genetic information and a lipid membrane 

acquired during egress from its host.  Its plus sense, single stranded RNA genome consists of 

11,703 nucleotides, a methylated cap on its 5’ end, and a 70 nucleotide long polyadenylated tail 

on its 3’end (Fuller 1987).  The genome is housed in an icosahedral nucleocapsid, which is 

enveloped by a host-derived lipid bilayer studded with 240 heterodimers of E1 and E2 

glycoproteins that aid in attachment to host cells.  The virion contains four non-structural 

proteins primarily involved in enzymatic actions that are translated from genomic RNA.  The 

three structural proteins, capsid, E1, and E2, are translated from subgenomic RNA.  During 

translation, the capsid protein auto-cleaves from the polypeptide chain and binds to the 

packaging signal region of genome RNA.  The growing polypeptide chain translocates to the 

endoplasmic reticulum where it is glycosylated and proteolytically cleaved by host’s cellular 

signal peptidase to produce PE2, 6K, and E1.  During transport to cell surface in Trans-Golgi 

vesicles, cleavage of PE2 by furin protease produces E2 and E3; the latter is discarded prior to 

encapsidation (Fields, 2007). 
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Entry and infection of host cells could occur by either receptor-mediated endocytosis 

(Helenius et al., 1980) or by fusion at the plasma membrane (Paredes et al., 2004).  Sindbis virus 

attachment to host cells is determined by the amino acid sequence of the E2 glycoprotein (Pierro 

et al., 2007).  Primarily, transmission of SINV occurs horizontally between the mosquito and the 

vertebrate host.  Sindbis virus has a broad host range that includes avian, insects, mammalian, 

and human hosts; therefore, its receptor(s) is/are highly conserved (Bowers et al., 1995; Byrnes 

and Griffin 1998).  Although SINV does not cause life-threatening infections in humans, several 

other Alphaviruses such as Ross River virus, Chikungunya virus, as well as eastern, western, and 

Venezuelan equine encephalitis viruses are fatal to humans and other lower vertebrates (Byrnes 

and Griffin 1998, Gubler, 1998; Weaver et al., 2012).  Due to SINV’s lack of pathology in 

humans and its persistent infection in mosquitoes, it is the prototypic Alphavirus (Fields 2007).   

The SINV consensus sequence TR339, which is derived from ancestral strain AR339, was used 

for this investigation. 

Mosquito models used were Aedes aegypti (Orlando) and Anopheles quadrimaculatus 

Say.  Ae. aegypti, the yellow fever mosquito, is a container-breeding mosquito that is endemic to 

the United States and dominates in urban areas of south Florida (O’Meara et al., 1995).  Viruses 

that have been isolated from Aedine mosquitoes include dengue, yellow fever, West Nile, eastern 

equine encephalitis, to name a few (Benedict et al., 2007; CDC 2011).   

Transmission of malaria parasite from mosquitoes to humans is only vectored by female 

Anopheline mosquitoes.  Anopheles quadrimaculatus is widely distributed throughout the 

eastern United States and southeastern Canada.  Malaria occurrences are rare in the United 

States, however, the distribution of An. quadrimaculatus and the 1850 distribution of malaria 

transmission suggest that it is the primary malaria vector in the United States (Levine et al., 
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2004).  While Ae. aegypti is a primary vector of SINV, An. quadrimaculatus is not; however, 

their susceptibility and widespread distribution in Florida make both species applicable for this 

investigation.  

 When mosquitoes imbibe blood, the insect directly acquires the energy and proteins 

needed for reproduction while incidentally transmits arboviruses.  Ingested pathogens from a 

viremic blood meal initiate infection in the midgut, disseminate into the open hemocoel plasma 

(hemolymph), and then infect secondary organs.  Sindbis virions must overcome the midgut 

infection barrier (MGIB) and midgut escape barrier (MGEB) for replication, amplification, 

development, and transmission (Paulson et al., 1989).  Aside from the peritrophic membrane that 

forms during blood digestion, most of the cells that compose the simple columnar epithelium in 

the gut are covered in microvilli, contributing to the MGIB (Weaver and Scott 1990).   The 

complex infoldings of the basement membrane, visceral muscles, and surrounding tracheoles 

contribute to the MGEB (Zieler et al., 2000; Vo et al., 2010).  In addition to the morphological 

hindrances, the host would also have cellular responses to the virus, such as RNAi (Oviedo et al., 

2011).  Stresses caused by non-viremic or viremic blood meal include distention of the midgut, 

apoptosis, ejection of infected epithelial cells into the lumen, and/or nucleoli enlargement 

(Weaver and Scott 1990; Okuda et al., 2005, 2007).  When Sindbis virions disseminate from the 

gut, they are free in the hemolymph or maintained by hemocytes while traveling and bathing 

other organs (Parikh et al., 2009).   

Similar to the gut, SINV must overcome the salivary gland infection barrier (SGIB) and 

salivary gland escape barrier (SGEB) prior to transmission by bite.  Once SINV emerges in the 

saliva, the mosquito is able to transmit the virus to permissive vertebrate hosts (Almeras et al., 

2010).  Salivary glands are located bilaterally in the mosquito thorax; in females, each salivary 
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gland is comprised of two lateral lobes and one median lobe (Janzen and Wright 1971).  

Enzymes produced in the proximal lateral lobes are essential to sugar digestion while those 

produced in the distal portion of the lateral lobes and median lobe are essential to blood feeding 

(Moreira-Ferro et al., 1999; Siriyasatien et al., 2005; Smartt et al., 1995).  Mosquito saliva also 

contains proteins that impair host immune responses to arboviruses (Sim et al., 2012).  Although 

a portion of the lateral lobes and the median lobe function similarly, unknown differences 

between the lobes permit the median lobe to be refractory to SINV infection (Bowers et al., 

1995, 2003; James 2003; Janzen and Wright 1971; Juhn et al., 2011).   

Mechanisms by which SINV infect mosquito tissues are unclear.  In the 1990’s, research 

supported high-affinity laminin receptor as a SINV receptor (Ubol and Griffin 1991; Wang et al., 

1992) and heparan sulfate’s involvement in SINV binding to permissive host cells (Byrnes and 

Griffin 1998; Klimstra et al., 1998).  However, Byrnes and Griffin as well as Klimstra and 

colleagues both published in 1998 that not all strains of SINV are dependent on heparan sulfate 

for attachment/entry and suggested that SINV could be utilizing multiple receptors and multiple 

receptors or attachment factors could even be on the same cell type.   

In 2011, Rose et al.’s work with Drosophila supported natural-resistance associated 

macrophage protein (NRAMP) as a receptor for SINV and suggested that laminin receptor and 

heparan sulfate promote infection (“pre-receptors”) but are not necessary.  Of the nine genes that 

encode for proteins that enhance SINV infection, NRAMP was highly conserved.  A symporter 

of divalent metals and hydrogen ions, NRAMP is ubiquitously expressed at the organismal level.  

NRAMP has 12 transmembranal domains and 6 extracellular and 5 intracellular loops with its N- 

and C-termini in the cytoplasm (Nevo and Nelson 2006).  In mammals, there are two members of 

the NRAMP gene family, NRAMP1 and NRAMP2; NRAMP1 is localized to phagosomal 
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membrane of macrophages and NRAMP2 colocalizes with transferrin at the plasma membrane, 

transporting iron into the cytoplasm (Gruenheid et al., 1999).  Human cells that were treated with 

a high concentration of iron attenuated SINV infection while overexpression of NRAMP led to a 

2-fold increase in SINV infection.  Drosophila NRAMP (dNRAMP, malvolio, and MVL) 

transports manganese and iron, which are metals involved in signal transduction of taste 

perception.  Deletion of NRAMP in Drosophila decreased SINV infection (Rose et al., 2011).  

Similar to Drosophila, NRAMP was also detected in the heads of An. albimanus suggesting that 

this protein may also play a role in taste perception in mosquitoes (Martinez-Barnetche et al., 

2007).  Sindbis virus may be utilizing this transmembrane protein as a receptor to overcome the 

infection barriers of mosquito midgut and salivary gland epithelia.  In this investigation, 

immunofluorescence labeling of NRAMP and infection of mosquito midguts with TR339-TaV-

eGFP (Sun et al., 2014) were observed to determine the correlation between SINV and its 

putative receptor.  
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Chapter 2: Methods and Materials 

Hatching and Maintaining Mosquitoes 

Colonized Aedes aegypti and Anopheles quadrimaculatus eggs (USDA, Gainesville, FL) 

were hatched and reared in the University of North Florida insectary under standard 

environmental conditions (25.5±.5°C, 70-80% humidity, lighting with 30 minutes of “sunrise” 

and 30 minutes of “sunset” bracketing a 16:8 light/dark photoperiod).  Aedes aegypti eggs were 

hatched in a 1% nutrient broth (Becton Dickson Microbiology Systems, Spanks, MD) and 

approximately 300 first instar larvae were transferred to each plastic pan of 1.5L tap water 

(Bowers et al., 1995).  Anopheles quadrimaculatus eggs were hatched directly in plastic pans of 

1.5L tap water.  Larvae were fed thrice weekly with a 2% aqueous beef liver powder suspension 

(ICN Biochemicals, Cleveland, OH).  Pupae were transferred to plastic cups housed in white 

plastic cage topped with mosquito netting.  For the carbohydrate source, honey-soaked 

cellucotton was placed on top of each cage; cups containing water saturated cotton balls were 

supplied as the hydration source.  Female mosquitoes 5-15 days post-emergence were used for 

experiments.  

Adult female mosquitoes were isolated and deprived of a carbohydrate source for 24 

hours prior to blood feeding.  At 5 days post-emergence, mosquitoes were offered 10mL of 

warmed defibrinated bovine blood (Colorado Serum Company, Denver, CO) through a bovine 

collagen sausage casing (22mm; The Sausage Maker Inc., Buffalo, NY) hung vertically for 1 

hour (Lyski et al., 2012).  When proffering a viremic blood meal, 1mL of TR339-TaV-eGFP 

(1.67 x 108) was diluted in 9mL of blood.  Fully engorged female mosquitoes were gently 

isolated.  Tissues from mosquitoes that imbibed on the viremic blood meal were resected at days 

3-9 post-infection. 



 

 7 

Cell culture, virus amplification, and plaque assays 

 Cultured C7-10 (Ae. albopictus) cells were grown in 25 cm2 flasks at 28˚C, 5% CO2 in 

Eagle’s minimum essential medium (EMEM) supplemented with 10% fetal bovine serum (FBS; 

Gibco, Carlsbad, CA), 5% tryptose phosphate broth (TPB; Becton Dickinson Microbiology 

Systems), and 20µL/mL gentamycin (Gibco).  Cells were supplemented with EMEM once a 

week and, when preconfluent, lifted by shearing agitation and passaged.   

Cultured BHK-21 (baby Syrian hamster kidney) cells were grown in 25 cm2 flasks at 

37˚C, 5% CO2 in EMEM supplemented with 5% FBS, 5% TPB, and 20µL/mL gentamycin.  

Cells were lifted with 0.25% trypsin and passaged every 72 hours; cells were supplemented with 

fresh EMEM between passages.   

 When cultured BHK-21 cells were approximately 95% confluent, TR339-TaV-

eGFP/virus growth media (VGM; 3% fetal bovine serum in PBS) was applied and allowed to 

adsorbed for 1 hour on rocker at room temperature.  Virus solution was replaced with 8mL of 

EMEM and cells were returned to 37˚C for 24 hours.  Cell media was centrifuged and 

supernatant was collected and transferred to -80˚F for 24 hours prior to storing at -20˚F until 

needed. 

 To quantify stock virus titer, plaque assays were performed on BHK-21 cells.  Tenfold 

serial dilutions of virus were prepared using warmed (37˚C) VGM.  Preconfluent monolayers 

were inoculated with virus and placed for 1 hour on a rocker at room temperature.  An 

agarose/EMEM overlay was applied to each flask, allowing budded virions from infected cells to 

infect only neighboring cells.  Cells were checked for cytopathic effects (CPE) every 12 hours. 

 Virus plaques, which are areas of lysed cells, were visualized by staining with a 0.015% 

neutral red solution (Gibco).  Because neutral red is a vital dye, dead cells could not take up this 
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dye, thus plaques are areas of clearing.  At low dilutions, plaques were accurately counted and 

calculated for plaque forming units (PFU) to determine the virus titer (Figure 1). 

 

Figure 1  Plaques were traced and counted for calculating virus titers.  

Immunofluorescent microscopy  

Tissues from naïve, bloodfed, and TR339-TaV-eGFP-bloodfed mosquitoes were resected 

in PBS and either fixed onto microscope slides or transferred to wells of a 96-well plate for 

fixation.  Tissues were fixed with 4% paraformaldehyde in 0.1M cacodylate buffer for 1 hour at 

room temperature.  To permeabilize, tissues were incubated in 0.2% Tween 20 for 15 minutes 

following paraformaldehyde fixation or alone in 70% acetone for 2 minutes.  After three washes 

with PBS (5 minutes each), fixed tissues were blocked with SuperBlockTM (Life Technologies, 

Grand Island, New York) for 1 hour at room temperature.  Tissues were incubated with primary 

antibody overnight on rocker at room temperature and washed three times in PBS; primary 

antibodies included 1:100 dilution of rabbit polyclonal anti-actin (H-196) and 1:50 dilution of 

rabbit polyclonal anti-NRAMP2 (H-108).  The secondary antibody, FITC-conjugated goat anti-

rabbit IgG (sc-2012) or TX-Red-conjugated goat anti-rabbit IgG (sc-2780), was applied to tissues 

at a 1:100 dilution for 2 hours on rocker at room temperature.  All antibodies used were from 

Santa Cruz Biotechnology, Inc (Dallas, TX).  After 3 washes with PBS, slides were mounted 
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with VECTASHIELD antifade medium (Vector Laboratories, Burlingame, CA); tissues that were 

fixed and labeled in wells of a 96-well plate were transferred to microscope slides containing 

wells hand-made with glass coverslips and valap (1:1:1 of vaseline, lanolin and paraffin) and 

mounted in 60% glycerol in PBS (figure 2).  The areas of fluorescence were analyzed using an 

epifluorescent and/or confocal microscope.  

  

Figure 2  Glass microscope slide with well, composed of hand-cut glass coverslip sidings (→) 
attached with valap. 
 
Protein analysis  

 Salivary glands, midguts, and Malpighian tubules (number of organs ranged from 1-8) 

were resected from Ae. aegypti and transferred to glass trituration vials each containing 10 glass 

beads, 300µL of calcium-deficient PBS (PBS-D), and 100µL each of N-α-tosyl-L-lysinyl 

chloromethylketone (TLCK) and N-tosyl-L-phenylalaninyl-chloromethylketone (TPCK).  

Samples were vortexed for 2 minutes at high speed in a biosafety laminar flow hood.  The 

trituration solution (100µL) was denatured with 5µL of 5% sodium dodecyl sulfate (SDS); the 

supernatant was collected and stored at -80˚C until needed.   

 Nitrocellulose membranes (Protran® BA85, Sigma-Aldrich, St Louis, MO) were 

immersed in Milli-Q® (EMD Millipore, Billerica, MA) purified water for 2 minutes and 
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equilibrated in 1X transfer buffer (Boston BioProducts Inc., Ashland, MA) with 10% methanol 

for 2 minutes.  Each sample (100µL) was blotted individually onto membrane with the Minifold 

II slot-blot system (Schleicher & Schuell, Keene, NH). 

 Blotted samples were blocked with SuperBlockTM blocking buffer for 30 minutes at room 

temperature and washed 3 times with PBS (5 minutes each) before incubating in a 1:200 dilution 

of primary antibody, rabbit polyclonal anti-NRAMP2, overnight at room temperature.  After 

three rinses in PBS, the secondary antibody, HRP-conjugated goat anti-rabbit IgG (sc-2301; 

Santa Cruz Biotechnology), was applied to the membrane at a 1:5000 dilution for 1 hour at room 

temperature.  The membrane was rinsed three times with PBS and the presence of HRP was 

detected using 3,3’,5,5’ tetramethylbenzadine (TMB) stabilized chromogen (Life Technologies).  

The reaction was terminated using a sulfuric stop solution (Life Technologies) when the desired 

color intensity was observed. 

To identify the presence of NRAMP in mosquito midguts, the Catch and Release® v2.0 

reversible immunoprecipitation system (EMD Millipore) was used.  Actin antibody was used as 

the positive control.  Midguts were resected in PBS and transferred to 300µL of homogenizing 

buffer (1:1000 protease inhibitor cocktail, 10mM tris-base, 1%SDS, and 10% glycerol; Sigma-

Aldrich, St. Louis, MO) for at least 30 minutes.  Organ samples (total number: 4, 8, 16, 32, and 

64 midguts) were triturated with 5 glass beads (3mm); samples were vortexed after each midgut 

resection.  Cell lysate and antibody, 1:100 dilution of rabbit polyclonal anti-actin or 1:50 dilution 

of rabbit polyclonal anti-NRAMP2, were incubated overnight on a rocker at 4˚C.  Flow-throughs 

were collected and proteins were eluted in its denatured form for SDS-PAGE.   

Resections of mosquito tissues for SDS-PAGE were conducted as previously described.  

After incubating in homogenizing buffer for 30 minutes, sample solutions were centrifuged 
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(3500g) for 15 minutes at 4˚C.  The sample loading buffer (3µL) was added to sample solutions 

(12µL each) and warmed in a dry bath maintained at 95˚F for 7 minutes.  Using a 7.5% resolving 

gel, proteins were separated for 4 hours at a constant current of 25mA.  The gel was stained or 

blotted onto polyvinyl difluoride (PVDF) membrane (Bio-Rad Laboratories, Inc., Hercules, CA). 

 To increase the sensitivity of silver stain, the gel was first stained with 0.003% 

Coomassie Brilliant Blue R-250 (Life Technologies) for 45 minutes.  The stained gel was washed 

with destaining solution (45% methanol/ 45% deionized water/10% glacial acetic acid) at 30 

minute intervals until the background of the gel was clear.  Bio-Rad silver stain (Bio-Rad 

Laboratories, Inc.) was used to detect the presence of actin and NRAMP2 in mosquito tissues.   

 The proteins were transferred in Towbin buffer (Towbin et al., 1979) onto PVDF 

membranes at 50mA for 1 hour.  Blotted proteins were blocked with SuperBlockTM for 1 hour 

and probed with primary antibodies, 1:100 dilution of rabbit polyclonal anti-actin or 1:50 

dilution of rabbit polyclonal anti-NRAMP2, overnight on rocker at room temperature.  After 

three rinses in PBS (5 minutes each), the secondary antibody, HRP-conjugated goat anti-rabbit 

IgG, was applied to the membrane at a 1:5000 dilution for 2 hours at room temperature.  The 

proteins of interest were detected using 1-Step™ TMB-Blotting Substrate Solution (Life 

Technologies).   
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Ch. 3 Results 

NRAMP localization in mosquito tissues  

 An antibody against NRAMP2 of human origin was used for the detection of NRAMP.  

Mosquito tissues were fixed with 4% paraformaldehyde in 0.1M cacodylate buffer and 

permeabilized with 0.2% Tween 20 following paraformaldehyde fixation or alone with 70% 

acetone.  Areas of fluorescence were observed using an epifluorescent and/or confocal 

microscope.  NRAMP was not detected in the salivary glands of Ae. aegypti (figure 3).  

NRAMP2 labeling of midguts were punctate and speckled; patterns of labeling were clustered, 

resembling SINV infection foci (figure 4).   Aside from the clustered labeling of NRAMP, the 

punctate labeling occasionally resembled a grid; this suggests that NRAMP was detected on the 

peristaltic muscles (figure 5). 

 

Figure 3  NRAMP was not detected in the median lobe (ML) or the lateral lobes (LL) of the 
salivary glands of Ae. aegypti when labeled with anti-NRAMP2 and TX-Red-conjugated 
secondary antibody; fixed with acetone, epifluorescence microscopy, 100µm scale bar.   
 

ML 

LL 

LL 
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Figure 4  (A) Multiple foci-like immunofluorescence labeling of NRAMP2 in midgut of Ae. 

aegypti fixed with acetone; epifluorescence microscopy 10X, 100µm scale bar. (B) Magnified 
(40X, 50µm scale bar) foci-like labeling of NRAMP2 by box indicated in (A).   
 

 

 

 

A 
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Figure 5  Immunofluorescence labeling of NRAMP2 in midgut of Ae. aegypti fixed with 
acetone; epifluorescence microscopy.  (A) Note punctate and clustered fluorescent signals, 50µm 
scale bar.  (B) Labeling confined to muscle bands, 10µm scale bar. (C) Negative control, 100µm 
scale bar.  

A 

B 
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NRAMP is ubiquitously expressed at the organismal level and highly conserved.  Sindbis 

virus has evolved to utilize NRAMP as a receptor for internalization into host cells (Rose et al., 

2011).  NRAMP has been identified by Western blot in the head, midgut, and Malpighian tubules 

of Anopheles albimanus; AnaNRAMP was suggested to play an important role in iron 

metabolism (Martinez-Barnetche et al., 2007).  With the midgut being the organ that directly 

receives and processes the blood meal, it was expected that NRAMP would be localized to the 

apical aspect of the midgut.  Nevo and Nelson (2006) suggested that NRAMP is the main 

transporter of iron into the duodenum.  However, NRAMP was detected on the basal side of the 

midgut epithelia of Ae. aegypti (figure 6).  According to Martinez-Barnetche et al.’s study 

(2007), a 42% reduction in NRAMP concentration was observed in the midguts of An. albimanus 

24 hours after a blood meal.  This decrease in concentration was observed when labeling for 

NRAMP in midguts of Ae. aegypti females that imbibed on a blood meal; fluorescence was faint 

or could not be observed.   
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Figure 6  Optical cross-section of midgut of Ae. aegypti fixed with 4% paraformaldehyde/0.2% 
Tween 20 and immunofluorescence labeled for NRAMP2 (green) and counterstained with 
DRAQ5 (blue; nuclear stain); confocal microscopy, 100µm scale bar. (B) Magnified image of 
(A) with interest on the midgut epithelia. NRAMP labeling was localized to the basal aspect of 
epithelial cells.  
 

A 

B 
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 NRAMP was detected in Malpighian tubules of unfed An. quadrimaculatus by 

immunofluorescence labeling with a polyclonal antibody against NRAMP2; NRAMP was not 

localized in Malphighian tubules of Ae. aegypti.  Malpighian tubules were resected directly onto 

glass microscope slides and fixed in acetone for 2 minutes.  Similar to NRAMP labeling in 

midguts, fluorescence was punctate and localized (figure 7).  However, labeling in the 

Malpighian tubules did not occur as often as in the midguts.  

 
 
Figure 7  Immunofluorescence labeling of NRAMP2 (→) in Malpighian tubules of An. 

quadrimaculatus fixed with acetone; epifluorescent microscopy, 50µm scale bar.  
 
Protein analysis 

 The slotblot assay was used to assess the presence of NRAMP in mosquito tissues.  

Salivary glands, midguts, and Malpighian tubules from female Ae. aegypti were triturated, 

blotted onto nitrocellulose membranes, and probed with primary antibody.  When TMB 

stabilized chromagen was applied, the reaction did not yield a color change. 

 Midguts of female Ae. aegypti and An. quadrimaculatus were used for SDS-PAGE.  

Midguts were triturated in homogenizing buffer; samples were either denatured and applied 

directly to the gel or immunoprecipitated for NRAMP, with actin as the positive control.  
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Immunoprecipitants and the flow-throughs were collected and denatured prior to SDS-PAGE.  

Based on the molecular weight of AnaNRAMP (63.7kDa) and actin (41.7kDa), a 7.5% 

polyacrylamide gel was used for this assay.   

Straight denatured samples, denatured immunoprecipitants, and denatured flow-throughs 

were assessed with SDS-PAGE, enhanced with 0.003% Coomassie Brilliant Blue, and stained 

with Bio-Rad silver stain.  There were 2 protein bands located in the region of interest with 

molecular weights between 55-70kDa (Figure 8 & 9).  Lanes containing immunoprecipitants and 

flow-throughs did not yield a band with a molecular weight similar to AnaNRAMP or actin. 

The presence of NRAMP was not detected by Western blot using polyclonal anti-

NRAMP2.  Aside from the protein ladder, the proteins from midgut samples failed to transfer 

onto PVDF membranes.  When TMB stabilized chromogen was applied, the membrane became 

splotchy after the reaction. 
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Figure 8  Proteins from triturated mosquito midguts were separated via PAGE. The gel was 
stained with Coomassie Brilliant Blue and counterstained with silver. Lane A (4 MGs) and lane B 
(8 MGs) contain Ae. aegypti tissue. Lane D (4 MGs), lane E (8 MGs), and lane F (16 MGs) 
contain An. quadrimaculatus tissue. Lane C corresponds to molecular ladder. NRAMP2 is 
63.7kDa (area indicated by white lines).  
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Figure 9  Proteins from triturated mosquito midguts were separated via PAGE. Gel was stained 
with Coomassie Brilliant Blue and counterstained with silver. Lane A corresponds to protein 
ladder and lane B (8 MGs) contain Ae. aegypti tissue.  Arrows pertain to protein bands of 
interests with molecular weights ranging between 55-70kDa.   
 
Sindbis virus foci in mosquito midgut 

 Female Ae. aegypti mosquitoes were exposed to TR339-TaV-eGFP through a blood meal 

5 days post-emergence.  Individuals that successfully imbibed on the viremic blood meal were 

isolated and dissected on days 3-9 post blood meal.  The midguts were placed in wells of a 96-

well plate and fixed with 4% paraformaldehyde in 0.1M cacodylate buffer; midguts that were 

immunofluorescence labeled for NRAMP were permeabilized with 0.2% Tween 20 after fixation 

with paraformaldehyde.  The midguts were analyzed using confocal microscopy.  Sites of 

infection were indicated by the GFP produced by TR339-TaV-eGFP (figure 10).  The TR339-
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TaV-eGFP foci in midguts of day 3 p.i. were small while TR339-TaV-eGFP foci were large in 

midguts of day 9 p.i.; foci could be made up of multiple focus that have grown in size and 

overlapped (figure 11).  Fluorescence was detected in the midgut epithelia and visceral muscles 

at days 5, 6, and 9 post-infection, suggesting that SINV has disseminated from the midgut (figure 

12, 13, & 14).  TR339-TaV-eGFP foci were observed on every experimental date (Table 1).  

Virus antigens were not detected in the midguts of female Ae. aegypti that were proffered a non-

viremic blood meal.   

 Infected midguts were labeled with an antibody against NRAMP2 and a TX-Red-

conjugated antibody to investigate the correlation between SINV and NRAMP2 with regards to 

localization.  NRAMP2 labeling on Ae. aegypti midguts was faint but was in the same area of the 

midgut infection focus. 
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Figure 10  Confocal analysis (100µm scale bar) of midgut from Ae. aegypti fixed with 4% 
paraformaldehyde at day 3 p.i. with TR339-TaV-eGFP.  (A) Localized virus focus in the midgut 
of Ae. aegypti using light and laser microscopy.  (B) Confocal analysis of (A) stained with 
DRAQ5 (blue; nuclear stain).    
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Figure 11  Confocal analysis (100µm scale bar) of midgut from Ae. aegypti fixed with 4% 
paraformaldehyde at day 9 p.i. with TR339-TaV-eGFP.  (A) Localized virus focus in the midgut 
of Ae. aegypti using light and laser microscopy.  (B) Confocal analysis of (A) stained with 
DRAQ5 (blue; nuclear stain).    
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Figure 12  Optical cross-section of midgut of Ae. aegypti fixed with 4% paraformaldehyde/0.2% 
Tween 20 at day 9 p.i. with TR339-TaV-eGFP; confocal microscopy, 100µm scale bar. (A-C) 
Localized virus focus at anterior midgut and infected peristaltic muscles. (D) Midgut of (A-C) 
stained with DRAQ5 (blue; nuclear stain). Fluorescence of peristaltic muscles indicates that 
TR339-TaV-eGFP has disseminated from the midgut epithelia.  
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Figure 13  Optical cross-section of midgut of Ae. aegypti fixed with 4% paraformaldehyde/0.2% 
Tween 20 at day 9 p.i. with TR339-TaV-eGFP; confocal microscopy, 100µm scale bar. (A-D) 
Localized virus focus at midgut and infected peristaltic muscles. (E) Midgut of (A-D) labeled 
with an antibody against NRAMP2 and TX-Red-conjugated antibody; (→) indicate proposed 
NRAMP localization.  
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Figure 14  Midgut of Ae. aegypti fixed with 4% paraformaldehyde/0.2% Tween 20 at day 5 p.i. 
with TR339-TaV-eGFP; confocal microscopy, 100µm scale bar, Z projection. Localized virus 
focus at front portion of midgut and infected peristaltic muscles at the rear portion of midgut. 
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Table 1  TR339-TaV-eGFP infection and dissemination in midguts of Ae. aegypti females. 
 

Day of 
Dissection 

#  bloodfed 
females 

Mortality post-
blood meal 

# infected MG/ 
# resected MG 

# MG with infected muscles/ 
# infected MG 

Negative 
control 

77% 
50/65  

0% 
0/50 

0% 
0/50 

0% 
0/50 

3 days p.i. 80% 
68/85  

0.01% 
1/68 

13% 
8/61 

0% 
0/61 

4 days p.i. 79% 
81/102  

0% 
0/81 

 13% 
9/70 

 0% 
0/70 

5 days p.i. 78% 
59/76  

 0% 
0/59 

 19% 
10/52 

 0.02% 
1/52 

6 days p.i. 89% 
63/71 

0% 
0/63 

17% 
10/58 

 0.03% 
2/58 

7 days p.i. 79% 
68/86  

0% 
0/68 

4% 
3/68 

0% 
0/68 

8 days p.i. 88% 
95/108  

0% 
0/95 

5% 
3/65 

0% 
0/65 

9 days p.i. 78% 
61/78  

0% 
0/61 

 4% 
2/53 

0% 
0/53 

Total   9% 
45/477 

7% 
3/45 
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Chapter 4: Discussion 

 In this investigation, NRAMP was localized in midguts of Ae. aegypti and virus antigens 

were detected in the peristaltic muscles.  Punctate and speckled labeling of NRAMP was 

observed in this research.  This pattern of labeling was similar to that seen in Gruenheid and 

colleagues’ (1999) labeling of CHO (Chinese hamster ovarian) cells using a monoclonal 

antibody against NRAMP2 and Roig et al.’s (2002) labeling of HL-60 (human leukemia) cells 

with a polyclonal antibody against NRAMP1.   

 There are several different mechanisms by which the mosquito could possibly avoid 

infection: apoptosis of stressed epithelial cells (Weaver and Scott 1990), dense microvilli-

associated network on the brush-border (Zieler et al., 2000), and binding of cytotoxic heme by 

the peritrophic membrane (Pascoa et al., 2002), subsequently preventing pathogens from coming 

into contact with epithelial cells.  NRAMP labeling of mosquito midguts resembled SINV 

infection foci, suggesting that the reason SINV does not infect all epithelial cells of the midgut 

prior to dissemination was due to the lack or low density of suitable receptor(s).   

 When compared with unfed An. albimanus females, NRAMP concentration was reduced 

24 hours after a blood meal.  Subsequently, a 117% increase in NRAMP expression in 

Malpighian tubules of An. albimanus females was observed with Western blot, suggesting that 

iron from the blood in the midguts was further processed in the Malpighian tubules while 

NRAMP in the midguts has been utilized and recycled (Martinez-Barnetche et al., 2007).  Since 

the immunofluorescence labeling of Malpighian tubules in this investigation was conducted with 

unfed An. quadrimaculatus, NRAMP detection was minimal.   

Despite considerable efforts, NRAMP was not immunoprecipitated when using the 

polyclonal antibody against NRAMP2 of human origin.  AnaNRAMP shares 80% identity to An. 
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gambiae but this antibody was not available commercially.  Aedes aegypti NRAMP and An. 

quadrimaculatus NRAMP amino acid sequences were not available from National Center for 

Biotechnology Information, thus AnaNRAMP and An. gambiae NRAMP sequences were used 

for reference.  Although An. gambiae NRAMP share only a 57% identity to human NRAMP2 

(Figure 15), the extracellular loops of NRAMP are highly conserved and may share a greater 

sequence identity among species since this portion of NRAMP is responsible for iron transport 

(Gruenheid et al., 1999).  Members of the NRAMP family have been identified in a wide range 

of organisms that include plants, fungus, insects, fish, mammals, and humans, to name a few 

(Cellier et al., 1995).  NRAMP is ubiquitously expressed among a group of phylogenetically 

diverse species, allowing SINV to infect a wide range of hosts.   
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Score Expect         Method   Identities Positives Gaps  

375 bits(964)   9e-129         Compositional matrix adjust.          183/320(57%)         239/320(74%)          3/320(0%)  
 
Query  54   IPLYIGVLITVLDTLSFLFLDKYKLRRLELLFGFLITTMAVSFGYQYIVTDIPQINVIEG  113 

            IPL+ GVLIT+ DT  FLFLDKY LR+LE  FGFLIT MA++FGY+Y+     Q  V++G 

Sbjct  180  IPLWGGVLITIADTFVFLFLDKYGLRKLEAFFGFLITIMALTFGYEYVTVKPSQSQVLKG  239 

 

Query  114  MFLPWSSDYRPGTLLQAVGIIGAVIMPHNLYLHSALVKSRTINRNNVKEVKKANRYYFIE  173 

            MF+P  S  R   + QAVGI+GAVIMPHN+YLHSALVKSR +NRNN +EV++AN+Y+FIE 

Sbjct  240  MFVPSCSGCRTPQIEQAVGIVGAVIMPHNMYLHSALVKSRQVNRNNKQEVREANKYFFIE  299 

 

Query  174  ASIALAVSFVINVFVVSVFAHDVYGKTNQDVIDACSNSSFADDIISAFIANNYTADINIY  233 

            + IAL VSF+INVFVVSVFA   +GKTN+ V++ C+N+S        F  +N T  ++IY 

Sbjct  300  SCIALFVSFIINVFVVSVFAEAFFGKTNEQVVEVCTNTSSPH--AGLFPKDNSTLAVDIY  357 

 

Query  234  KGGLVLGCFYGGLSMYVWAIGILAAGQSSTMTGTYAGQFAMEGFLNLQWARWKRVLFTRT  293 

            KGG+VLGC++G  ++Y+WA+GILAAGQSSTMTGTY+GQF MEGFLNL+W+R+ RV+ TR+ 

Sbjct  358  KGGVVLGCYFGPAALYIWAVGILAAGQSSTMTGTYSGQFVMEGFLNLKWSRFARVVLTRS  417 

 

Query  294  VAIMPAFYVAFFSRLEDLTKMNDILNAVMALQLPFAAIPTVAFSSSLALMKADFVNGRLE  353 

            +AI+P   VA F  +E LT MND LN + +LQLPFA IP + F+S   +M +DF NG    

Sbjct  418  IAIIPTLLVAVFQDVEHLTGMNDFLNVLQSLQLPFALIPILTFTSLRPVM-SDFANGLGW  476 

 

Query  354  KIISITLSFTVIGINLYFIV  373 

            +I    L   +  IN+YF+V 

Sbjct  477  RIAGGILVLIICSINMYFVV  496 

 

Figure 15  Protein sequence alignment of An. gambiae NRAMP (query) and natural resistance-
associated macrophage protein 2 isoform 3 of Homo sapiens (subject).  NRAMP of An. gambiae 
share a 57% identity and 74% similarity with NRAMP2 of H. sapiens.   
 

Localized TR339-TaV-eGFP infection foci along with infected visceral muscles indicate 

that only a portion of the midgut epithelia needs to be infected prior to dissemination.  The 

reason(s) for why the entire midgut is not infected is currently unknown.  TR339-TaV-eGFP foci 

were observed in midguts of Ae. aegypti 3-9 days p.i. but infected visceral muscles were only 

observed on days 5, 6, and 9 p.i.  Visceral muscles of the entire gut were infected; however, 

some muscles had a greater expression of GFP while some displayed a faint presence of GFP.  

The area with muscle bundles that fluoresce brighter indicate that a portion of the midgut 

peristaltic muscles was the site of initial SINV muscle infection since SINV had a longer time 

period to produce GFP.  Muscle bundles that fluoresce but were faint suggest that those muscles 

were infected with SINV at a later time.  This pattern suggests that virions disseminated from the 
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midgut epithelia into the hemolymph then infected the peristatic muscles as it does other 

secondary organs.  Initial infection sites of midgut muscle bundles were from virions traveling in 

the hemolymph; infection of remaining peristatic muscles could be from virions that were in the 

hemolymph or virions from neighboring infected muscle cells.  If the steps to dissemination were 

from midgut epithelia to visceral muscles to hemolymph, then only the visceral muscles near the 

TR339-TaV-eGFP focus should be infected, which was not the case in this investigation.   

Prerequisite to vector-borne transmission is the successful transgression of both the 

infection and escape barriers.  In this present investigation, immunofluorescence labeling of 

NRAMP in mosquito midguts suggests that SINV infection of the midgut remains localized 

because NRAMP is not expressed in all the cells of the midgut epithelia.  NRAMP detection and 

TR339-TaV-eGFP infection of gut peristaltic muscles further support that SINV is utilizing this 

transmembrane protein to overcome the MGIB and MGEB.  Future research utilizing a 

polyclonal serum against Ae. aegypti and An. quadrimaculatus NRAMP would allow for further 

investigation into the presence and function of this protein.  Sindbis infection focus was observed 

in the anterior midgut of Ae. aegypti.  Since SINV infection is uncommon in this area of the 

midgut, another goal is to determine if SINV infection occurs more often in a 6specific portion of 

the midgut (anterior midgut or the front, center, or rear portion of the posterior midgut) and what 

mechanisms influence this infection pattern.  This future research will continue to provide insight 

into tissue tropism and host permissiveness.   
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