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Abstract: 

Klebsiella pneumoniae is an opportunistic pathogen responsible for lobar pneumoniae, 

liver abscess, and septicemia. Clinical isolates are found to be extended spectrum beta lactamase 

positive with differential expression of the two classical porins, OmpK35 and OmpK36. Porin loss 

is associated with increased minimum inhibitory concentrations of beta lactam, cephalosporin, and 

carbapenem antibiotics that target the peptidoglycan. However, little is known about how porin 

loss affects other aspects of the cell envelope. The focus of this study was to characterize clinical 

isolates exhibiting differential porin expression and determine if the cumulative changes altered 

the resistance to phagocytosis by macrophages. The results support the hypothesis that porin loss 

significantly impacts the overall cell envelope composition, which in turn alters interactions with 

macrophages. 
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Outer membrane composition and permeability can lead to increased antibiotic 

resistance 

Gram-negative bacteria are distinguished as having both an inner and an outer plasma 

membrane that is separated by a thin layer of peptidoglycan within the periplasmic space (Figure 

1). This creates a stable cell envelope with two selectively permeable membranes that separate the 

inside of the cell from the environment.  Maintenance of the cell envelope is crucial to the survival 

of the organism. The outer membrane is chemically distinct from the inner membrane. The 

phospholipids of the outer leaflet are modified and are known as the immunogenic 

lipopolysaccharide (LPS). It is also known as endotoxin due to its toxic nature in mammalian hosts 

and interactions with LPS and host immune cells have been well documented 1–3.  

 

 

 

Figure 1. Gram-negative bacteria cell envelope consists of an inner and outer plasma membrane separated by a thin 

layer of peptidoglycan. The outer leaflet of the outer membrane consists of lipopolysaccharide (LPS) and is surrounded 
by capsular polysaccharide. Embedded within the outer membrane are proteins including porins that allow the passive 
diffusion of small molecules into the periplasmic space4.  
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 The other major components of the outer membrane encountered by host immune cells are 

outer membrane proteins which are potentially important virulence factors. The functions of these 

proteins include adherence to surfaces, cell to cell communication, and transport of molecules 

across the membrane. Non-specific transport of molecules from the exterior environment to the 

periplasmic space is handled by outer membrane proteins that create pores in the membrane and 

are thus called outer membrane porins5–9. Porins have recently been shown to also be important to 

interactions between the bacteria and the host immune system, particularly the evasion of 

phagocytosis2,10.  

Major, common porins OmpC and OmpF have been well characterized in Escherichia 

coli9,11. These porins have several homologues in various Gram-negative species, including 

Klebsiella pneumoniae which are denoted as OmpK36 and OmpK35 respectively7,8. Porins are 

beta barrel proteins that form a homotrimer in the outer membrane (Figure 2). This creates a 

central pore that allows for the passive diffusion of small hydrophilic molecules into the 

periplasmic space.  

OmpK35 and OmpK36 are both non-specific porins of slightly different molecular weight 

(35kDa and 36kDa respectively). The two major porins are highly similar in function, but have 

been shown to differ in permeability. In E. coli, OmpF (OmpK35 homologue) has a higher rate of 

influx for large solutes and is in general more permeable than OmpC (OmpK36 homologue). Using 

liposome swelling assays, OmpC was shown to have 15-20% of the permeability to β-lactam 

antibiotics compared to OmpF. However, OmpC also retained 50% of the permeability for small 

molecules like glucose12.  Based on sequence homology, crystal structures, and permeability to β-

lactam antibiotics; it is assumed that the permeability of OmpK35 and OmpK36 of K. pneumoniae 

are similar to their E. coli homologues7,8,13,14.  X-ray crystallography structures of both porins have  
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Figure 2. OmpK35 and OmpK36 are β-barrel proteins that form a homotrimer within the outer membrane. This creates 

a central pore through which small molecules can traverse the outer membrane. A) Proposed structure of OmpK36 
monomeric subunit7. B) 3D modeling of OmpK36 homotrimer featuring the central pore8.  
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shown a similar pore geometry. Interestingly, it was shown that the increase in charge density of 

OmpK36 in comparison to OmpK35, and not pore size, was responsible for the slower influx rates 

of solutes8,12.  

This difference in the rate of influx of molecules from the exterior of the cell to the 

periplasmic space between OmpK35 and OmpK36 could be an evolutionary advantage for the 

expression of one porin over the other in contrasting conditions15. While porins play an important 

role in nutrient acquisition6,16 the nonspecific nature of these porins also allows the passage of 

small antibiotics as well6,7,12. It has been shown in K. pneumoniae that loss of one or both porins 

can have a dramatic increase on the organism’s resistance to β-lactam antibiotics. This is because 

the target of these antibiotics is the peptidoglycan found in the periplasmic space between the two 

membranes5,17–19.   

It has been noted during investigations into several clinical outbreaks that decreased outer 

membrane porin expression is correlated with an increased minimum inhibitory concentration 

(MIC) to multiple classes of antibiotics. More specifically, loss of one or both porins is often 

observed in many clinical isolates that can be classified as Extended Spectrum Beta Lactamase 

(ESBL) positive or multidrug resistant (MDR)5,15,20–22.  Extended spectrum beta lactamase 

enzymes target most β-lactam antibiotics including penicillin and cephalosporin, neutralizing the 

antibiotic5. 

Surveillance studies on antibiotic resistant clinical isolates have shown that in Klebsiella 

pneumoniae, and other enteric species, most ESBL producing isolates have some form of porin 

loss. It is more likely to observe the loss of OmpK35 or both porins than it is to observe the loss 

of only OmpK36. However, ESBL negative bacteria typically express both porins5,17,23–25. In one 

specific study using 52 clinical isolates from a hospital outbreak in Iran, it was shown that 30 
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isolates were ESBL negative and maintained expression of both porins. However, of the 22 ESBL 

positive isolates, 9 were deficient in OmpK35 only, 4 were deficient in OmpK36 only, and 5 of 

the isolates were deficient in both porins26.  Another study using 57 carbapenem resistant isolates 

(KPC) showed that dual porin loss acted synergistically with carbapenemase to increase 

resistance17, and a third showed that of 12 KPC producing isolates, there was no detectable 

expression of OmpK3524. Although OmpK36 mutants have been identified in K. pneumoniae, it 

still seems apparent that loss of OmpK35 or both porins is more common in antibiotic resistant 

clinical isolates than loss of OmpK36 alone6,17,24,27. This is most likely due to the fact that OmpK35 

is transcriptionally depressed in environments similar to those found in a human host as well as 

when exposed to antibiotics in vitro6,24,26,28. 

Infections classified as ESBL positive or MDR caused by Gram-negative bacteria are 

common place in hospitals and clinics throughout the world23,29. The rapid adaptation of bacteria 

to environmental pressures, including antibiotics and the harsh conditions of the mammalian gut, 

have resulted in many alterations to the Gram-negative cell envelope30. This includes loss of one 

or both of the major porins, OmpK35 and OmpK365. Expression of the porins is tightly regulated 

by multiple environmental response pathways that can be activated by antibiotic stress5,6,30. 

Regulation of OmpK35 and OmpK36  

 Regulation of OmpK35, OmpK36, and other outer membrane proteins occurs through the 

coordinated efforts of several regulatory systems. This includes the major two-component stress 

response regulators EnvZ/OmpR31,32, and CpxA-CpxR28,32,33. Extensive research on the regulation 

of each of these systems has revealed complex pathways that result in transcriptional and post 

transcriptional regulation of the porins, resulting in the dominant expression of one porin over the 

other, depending on the environmental stressors present.  
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 EnvZ/OmpR regulation of OmpC and OmpF is based on promoter affinity for the 

transcriptional regulator OmpR (Figure 3)34–36. The promoter for ompF has a high affinity for 

OmpR and requires lower concentrations to activate transcription. Conversely, the ompC promoter 

has a low affinity for OmpR and requires increased concentrations to activate transcription35. The 

environmental sensor kinase EnvZ is activated by increased osmolality, higher temperatures, and 

low pH37. Activation of EnvZ results in the phosphorylation and activation of OmpR, and an 

increased transcription of both ompC and a small inhibitory RNA. This RNA, micF, binds to the 

5` end of the ompF transcript and depresses translation35. There is also evidence to support the 

hypothesis that at increased levels of activated OmpR, a low affinity binding site close to the ompF 

promoter binds OmpR and causes the DNA to fold into a hairpin loop and block transcription of 

the porin.35 This allows for the differential expression of OmpF over OmpC in environments low 

in nutrient availability, neutral pH, and low temperature like those of the natural environment. 

However, in environments similar to those of the host, with high nutrient availability, lower pH, 

and increased temperature, OmpC becomes the dominant porin31,35.  

The two component CpxA-CpxR envelope stress response system also differentially 

regulates the expression of OmpK35 and OmpK36. Similarly, to EnvZ/OmpR, CpxA serves as a 

membrane associated sensor kinase and CpxR acts as the regulator of transcription. It has been 

shown that CpxA is activated by stress to the outer membrane to include osmolality, pH, surface 

adhesion, detergents, and presence of misfolded proteins. Activated CpxA in turn begins a 

phosphorylation cascade ultimately resulting in phosphorylation of CpxR (CpxR-P), which then 

regulates transcription of target genes. Overexpression of CpxA has been shown to increase the 

transcriptional expression of OmpK36 and significantly decrease OmpK35 expression in K. 

pneumoniae33.  
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Figure 3. EnvZ/OmpR regulation of ompC/ompF transcription occurs through promoter affinity for the 
transcriptional regulator, OmpR. Image is based on previous work by Mattison et al38. A) In low osmolarity 

conditions OmpR levels are low. The high affinity ompF promoter binds available OmpR and the low affinity ompC 
promoter does not. This promotes transcription of ompF over ompC. B) In high osmolarity conditions, the high 
affinity ompF promoter and an upstream response regulator bind OmpR, causing a bend in the DNA and blocks 

transcription of ompF. However, the low affinity ompC promoter binds OmpR and activates transcription of ompC. 
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CpxA-CpxR has also been shown to be required for K. pneumoniae survival in 

environments that mimic the host gastrointestinal tract (GI). This regulatory system is important 

in environments containing bile salts, high NaCl concentration, oxidative stressors (hydrogen 

peroxide), or disinfectants (chlorohexidine). When CpxA-CpxR was knocked out, survival in the 

presence of these materials decreased significantly28. This is fundamentally important for 

pathogenicity within a host as colonization within the GI tract is required to establish a K. 

pneumoniae infection.39 It was also shown that this stress response system was important for 

antibiotic resistance as minimum inhibitory concentrations of several β-lactam antibiotics were 

decreased in cpxA-cpxR mutants. Notably, this same study also concluded that the promoter region 

of OmpK36 contains a conserved CpxR binding motif that is a transcriptional regulatory site28. 

Collectively, these studies indicate the importance of porin regulation in the host environment and 

add to the evidence that OmpK36 is an important virulence factor.   

 This dual regulation of OmpK35 and OmpK36 may have arisen from the evolutionary 

advantage of expressing one porin over the other under contrasting conditions as the two porins 

allow for different rates of diffusion across the outer membrane8,12. The central pore of OmpK35 

is notably more permeable than that of OmpK36 and may be more beneficial for nutrient 

acquisition in environments naturally low in salt and carbon sources6,8,12. However, the increased 

rate of influx of molecules would be detrimental in environments like the human gut where toxic 

components (like bile salts/ proteolytic enzymes/ antibiotics) may be more abundant. Therefore, it 

is likely more constructive for the bacteria to down regulate OmpK35 expression and upregulate 

OmpK36 as the OmpK36 central pore is less permeable than that of OmpK35. This difference in 

pore permeability may decrease the influx of larger molecules that may be harmful to the cell while 

still allowing passage of small nutritive molecules like glucose5,7,12,17.  
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Porin loss can change the cell surface by impacting expression of other outer membrane 

proteins 

 Porin loss does not only affect the permeability of the outer membrane. Expression of other 

outer membrane proteins could also be affected. Specifically, proteins that are involved in nutrient 

acquisition, adherence, and outer membrane stability have the greatest potential to be affected. 

OmpK26, LamB, OmpA, and Lpp have been determined to be important in the maintenance of the 

cell envelope. 

OmpK26 is a 26kDa porin similar in structure to OmpK35 and OmpK3640. However, this 

porin is specific for oligo galacturonate and will not allow the passage of antibiotics. Under normal 

conditions, expression of this porin is inactive and does not appear on an SDS-PAGE gel. 

However, OmpK26 was shown to be essential for survival in an OmpK36 deficient strain. 

Expression of this porin in the absence of OmpK36, along with the presence of beta lactamase, 

confers resistance to carbapenem and β-lactam antibiotics in vitro. This also causes a decrease in 

the virulence of the organism in a mouse model40.  

LamB is a maltose-specific porin that is permeable to β-lactam antibiotics, but to a lesser 

degree than OmpK35 or OmpK3641. It is suspected to be significantly upregulated with dual porin 

loss. LamB has been shown to be. In a study using two clinical isolates, one expressing only 

OmpK36 and the other expressing neither porin, transcript level of lamB was 2 fold higher in the 

dual porin loss isolate41. However, transcriptional expression of lamB has yet to be determined in 

comparison to a strain expressing only OmpK35 or both porins.  

The outer membrane protein OmpA has shown to be multifunctional and important for 

outer membrane stability, pathogenicity, and antimicrobial resistance. The main function of OmpA 
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is to link the outer membrane and peptidoglycan via a C-terminal peptidoglycan binding domain. 

Linkage of the outer membrane to the peptidoglycan by OmpA has shown to be important to 

resistance of tensile stress on the peptidoglycan and support overall integrity of the cell envelope42. 

Mounting evidence also suggests OmpA acts as an adhesin and is important for invasion into 

epithelial cells and phagocytes43,44. The progression of infection to bacteremia and meningitis 

infections in vivo are also OmpA dependent 2,45. In E. coli, OmpA deletion showed an increase in 

OmpC on an SDS-PAGE gel46. K. pneumoniae outer membrane vesicles also showed increased 

OmpA expression when OmpK35 is lost47. However, the change in transcriptional expression of 

OmpA due to porin loss has yet to be determined.  

Murein (peptidoglycan) lipoprotein (Lpp) is highly abundant within the outer membrane 

and serves to stabilize the cell envelope. The fatty acid moiety is embedded in the outer membrane 

and the protein is also covalently linked to the peptidoglycan. Lpp mutants have been shown to 

increase production of outer membrane vesicles and leak periplasmic enzymes. This indicates the 

importance of Lpp to the outer membrane and the stability of the cell envelope6,27,48. Lpp has also 

been indicated in pathogenesis of bacterial infection because Lpp mutants are more susceptible to 

serum killing and phagocytosis in vitro48. Although Lpp is essential for membrane stability, no 

correlation between porin loss and Lpp expression has been investigated.   

Capsular polysaccharide may be altered due to porin loss 

Capsular polysaccharide is another important virulence factor for K. pneumoniae. It is 

composed of a poly-KDO linker moiety that is associated with the outer membrane, and a K-

antigen repeating polysaccharide unit that is serotype specific49. There are approximately 77 

known K. pneumoniae capsular serotypes that are highly suggestive of pathogenicity.  K1-K6 are 

more often associated with respiratory infections and septicemia than others50. Serotypes K1 and 
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K2 are the most common culprits for invasive infections51 and K2 is the most prevalent serotype 

of clinical isolates52.  

All K. pneumoniae serotypes contain the monosaccharide glucuronic acid as a component 

of its K-antigen polysaccharide49. The amount of glucuronic acid within a sample can be quantified 

and used as an indirect method of determining capsule production53. Srinivasan et al. 2012 showed 

that a K. pneumoniae ompK36 knockouts from strain NTUH K2044 of K1 serotype had a 

significantly decreased production of glucuronic acid compared to the wildtype25. Conversely, Tsai 

et al. 2011 noted a more mucoid appearance of colonies indicative of increased capsule production 

for ompK36 mutants for K. pneumoniae NVT1001 of K2 serotype10.  This alteration to capsule 

production due to porin loss could potentially impact the bacterial resistance to phagocytosis by 

macrophages in vitro2 and requires further investigation as it may be serotype dependent. 

Klebsiella pneumoniae pathology 

Since porins are surface antigens that interact with immune cells, loss of either porin due 

to environmental selective pressures can ultimately result in altered interactions with the immune 

system. Before this can be considered, it is important to understand normal pathology for K. 

pneumoniae. 

Klebsiella pneumoniae is an enteric bacterium that is also an opportunistic pathogen. 

Initial colonization of the gut is an important step in K. pneumoniae pathogenesis that is required 

for the establishment of other infections39. This includes pneumonias, liver abscesses, urinary 

tract infections, and bacteremia. Klebsiella pneumoniae is part of a group of bacteria referred to 

as the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter species)54. 
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These bacteria are known for being highly adaptable to environmental pressures. This is 

especially true for rapid adaptation to antibiotics and the immune system during respiratory 

infection54,55.  

Klebsiella pneumoniae possesses numerous virulence factors that have developed during 

co-evolution alongside the host innate and adaptive immune systems18,54,56. This includes 

production of a protective layer of capsular polysaccharide, referred to as the capsule. The 

capsule is essentially a slimy layer that surrounds the bacteria, making the bacteria difficult for 

professional phagocytes to ingest50,57. It can also act as a protective layer against complement-

mediated killing by masking other bacterial surface antigens like the LPS or outer membrane 

proteins that trigger the complement cascade in vitro.58 Certain serotypes of capsule can be 

especially dangerous as they incorporate sugars, like sialic acid, that are typically expressed by 

mammalian cells. The expression of sialic acid in the capsule can then be recognized by the 

immune system as “self” and will not be targeted as a pathogenic invader59.  

Colonization of epithelial cells or indwelling abiotic surfaces, such as catheters, is an 

important step in K. pneumoniae pathology54,55. Studies have shown that for K. pneumoniae 

infections to persist, colonization of the gut is also necessary39. Adherence to surface, whether 

epithelial lining of the lung, gut, or a catheter, is dependent on bacterial proteins that anchor the 

bacteria to the surface. This attachment must be strong enough to withstand mechanical forces 

such as coughing, blood flow, and peristalsis23,39,55. Fimbriae are the proteins that are primarily 

responsible for this attachment in K. pneumoniae54,60. The outer membrane protein OmpA has 

also been indicated as an adhesin involved in attachment and invasion of epithelium2,44,45.  

Like most Gram-negative bacteria, K. pneumoniae is also adept at evading the 

inflammatory response. Lipopolysaccharide is a highly immunogenic molecule that activates 
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toll-like receptor 4 (TLR-4) and elicits a strong inflammatory response55. However, K. 

pneumoniae can avoid this activation by genetic switching of antigenic determinants within the 

LPS. Attenuated inflammatory responses can allow for the establishment and maintenance of 

more severe infections LPS 1,2,58,61.  

 Evasion of the innate immune system and attenuation of the inflammatory response are 

two of the most efficient tactics for the successful infection of the host used by K. 

pneumoniae23,54,56. Recent studies have focused on understanding the mechanisms involved. 

Frank et al. 2013 showed K. pneumoniae targets a PI3-kinase signaling pathway that blocks the 

transcription factor NF-ᴋB from entering the nucleus to mediate the inflammatory response of 

A549 lung epithelial cells in vitro. The suppression of the inflammatory response was dependent 

of capsule production, as capsule mutants did invoke an inflammatory response55.  

Another study from the same lab showed that K. pneumoniae survives phagocytosis by 

macrophages by activation of another PI3-kinase signaling pathway that causes the subversion of 

phago-lysosomal maturation and ultimately results in induction of apoptosis in vitro. The 

bacteria can then escape the macrophage during apoptosis and begin to proliferate 

extracellularly. This was not dependent on capsule production, however, as capsule mutants were 

still able to survive within macrophages in vitro62.  

Clinical studies have also revealed an emergence of hypervirulent mucoviscous K. 

pneumoniae56 as well as an increase in the prevalence of carbapenem resistant K. pneumoniae 

(KPC)18,54. The current hypothesis is that the rapid adaptation to antibiotics and to the innate 

immune system together have resulted in a more dangerous pathogen18,56,63. This is especially 

true in areas with unrestricted use of antibiotics as community acquired infections in healthy 

children are becoming more prevalent64. This pathogen is constantly adapting and evolving to 
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environmental pressures, making a full understanding of its interactions with the immune system 

both difficult and necessary. 

Vaccine potential for OmpK35 and OmpK36 

 Multiple studies have shown the potential for OmpK35 and OmpK36 as vaccine 

candidates, because both porins elicit an immune response that confers protection against lethal 

challenge of live bacteria in vivo10,65. Research looking at the vaccine potential for both OmpK35 

and OmpK36 homologues span across multiple Gram-negative species including E. coli, K. 

pneumoniae, Salmonella, Shigella, Aeromonas hydrophila, Psuedomonas aeruginosa and Vibrio 

cholera15,65–72.   

To assess the immunogenicity of OmpC and OmpF in vivo, Liu et al. 2012 injected purified 

recombinant OmpF and OmpC into mice and measured the IgG1 and IgG2 antibody titers. After 

both the first and second injections of recombinant protein, IgG1 and IgG2 titers were higher in 

both OmpF and OmpC treated mice than in the adjuvant injected mice. OmpF had higher IgG1 

and IgG2 titers than OmpC, and both OmpF and OmpC showed higher titers for IgG1 over IgG2. 

This indicates that both OmpF and OmpC can produce a mixed cell-mediated and humoral immune 

response. Mice immunized with the recombinant proteins were protected against lethal challenge 

with live bacteria as well, making the case for OmpC and OmpF as vaccine candidates.15  

Interestingly, in contrast to other Gram-negative enteric species, OmpK36 DNA vaccines 

from K. pneumoniae promote a pro-inflammatory Th1 immune response over a Th2 response in 

vivo, indicating a cell-mediated response. However, Th2 indicators were also increased during 

immunization with OmpK36 so a humoral response is also possible. Immune sera containing anti-

OmpK36 antibodies increased opsonophagocytic killing assays in vitro (95.2% intradermal 
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administration, 82.4% intramuscular administration) and mice immunized against OmpK36 also 

conferred 100%  protection via intradermal vaccination in vivo65.      

Collectively, these studies show immune cell recognition of recombinant OmpC, OmpF 

and OmpK36 and the ability of these proteins to induce an immune response. The vaccine potential 

of the porins is increased by the protective effect vaccination with recombinant porins had on lethal 

challenge in vivo. However, ESBL positive clinical isolates that are both resistant to antibiotics 

and pose a threat in a hospital setting are likely to exhibit porin loss to some degree. Therefore, it 

is important to investigate how loss of one or both porins will alter the bacterial interaction with 

the host.  

Porin loss impact host-pathogen interactions  

Porin loss in clinical isolates is a common phenomenon and significantly changes the way 

the bacteria interact with cells of the immune system as seen in many Gram-negative opportunistic 

pathogens. Isogenic porin knockouts created in the lab show a correlation of porin loss with a 

decrease in overall virulence both in vitro and in vivo2,10,20. Porin loss alters the way the pathogen 

interacts with phagocytic cells, activates the classic complement pathway, elicits an immune 

response, and reduces the ability of the bacteria to cause fatal infection in a mouse model2,10,47,73.  

 Complement mediated killing of K. pneumoniae begins with the binding of OmpK36 to 

the C1q complement protein. This activates the classic complement pathway and results in 

destruction of the bacteria. Alberti et al. 1993 showed that outer membrane porins (OmpK36 in 

particular) but no other outer membrane components (LPS or CPS) activate this particular pathway 

in human sera in vitro that leads bacterial killing13. In a similar study involving E. coli it was shown 

that loss of the OmpC porin lead to increased survival in human serum in vitro by evading 
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activation of the antibody dependent classic complement pathway. All assays using OmpC 

deficient E. coli were inefficient at bacterial killing. This demonstrates the possible ability of 

clinical isolates without OmpC expression to evade complement mediated killing in the host74. 

   In K. pneumoniae multiple independent studies have shown that loss of OmpK36 results 

in a decreased resistance to phagocytosis. Tsai et al. 2011 used neutrophil phagocytosis assays in 

vitro to determine the percent phagocytosis of OmpK35 and OmpK36 isogenic mutants and 

observed lethal effects of the bacteria in a peritonitis mouse model in vivo. The results concluded 

that loss of OmpK36 or both porins significantly reduced phagocytic resistance to neutrophils. 

Interestingly, loss of only OmpK36 (compared to the wildtype) resulted in a significantly increased 

survival time and slightly decreased death rate (10% survival compared to 0% survival by mice 

infected with wildtype); while loss of only OmpK35 had no effect on lethality. However, loss of 

both porins resulted in a significantly increased survival time and decreased death rate of the mice 

(50% compared to 0 %)10. This indicates an overall importance of OmpK36 as a virulence factor 

with a lesser emphasis on OmpK35. 

 Importance of OmpK36 in K. pneumoniae pathogenesis was also discussed by March et 

al. 2013.  Both Dictyostelium discoideum (an amoeba) and murine macrophages demonstrated 

increased phagocytosis of bacteria lacking OmpK36 as opposed to those expressing it in vitro. 

This study also looked at the role of OmpK36 in infection and dissemination in vivo in a mouse 

model. Mice were infected intranasally and 24 or 72 hours post infection the mice were sacrificed. 

Bacterial load in peripheral organs was used to determine dissemination. Although the mutants 

could colonize the trachea and cause infection in the lungs, bacterial load in the lungs was 

significantly decreased after 72 hours post infection. The mutants were also able to migrate to the 

spleen and liver but were significantly lower in bacterial load after 72 hours post infection2. This 
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study made it clear that although porin loss does decrease virulence, porin loss isolates would still 

be able to establish an infection in the host and pose a problem for immune compromised 

individuals. 

 Klebsiella pneumoniae OmpK36 has also been indicated as being potentially important for 

survival in the harsh conditions of the host environment. When bacterial growth was examined in 

vitro in the presence of increasing concentrations of bile salts, hydrogen peroxide (reactive oxygen 

species), and two different reactive nitrogen species it was evident that loss of OmpK36 resulted 

in a decrease in survival. As these conditions mimic those found in a host (gut or phagolysosome) 

this study pointed out possible reasons for decreased virulence and pathogenicity of OmpK36 

mutants observed when incubated with Caenorhabdits elegans infection model in vivo25. 

All Gram-negative species of bacteria secrete outer membrane vesicles (OMVs), the 

contents of which mimic that of the outer membrane. Klebsiella pneumoniae OMVs purified from 

strains exhibiting differential expression of OmpK35 and OmpK36 elicited unique immune 

responses in a macrophage tissue culture model in vitro. Loss of OmpK36 or both porins showed 

a significant decrease in production of Mip2 which is important for the chemotaxis of neutrophils. 

Dual porin loss also resulted in significant depression of the TNF-α inflammatory response. These 

data indicate a significant impact on the immune response, particularly for strains exhibiting loss 

of both porins, that may result in suppression of the inflammatory response47.  

Thesis Aim 

Porin loss in Klebsiella pneumoniae is a clinically important phenomenon that has been 

shown to alter both antibiotic resistance as well as pathogenicity of the organism. There is a lack 

of information surrounding the impact porin loss has on transcriptional expression of other outer 
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membrane proteins, capsule production, and LPS content. These factors have been previously 

implicated as important virulence factors, therefore alterations due to porin loss could contribute 

to the diminished pathogenicity previously observed. Therefore, the hypothesis is that loss of 

OmpK35 and/or OmpK36 will alter the cell surface and result in altered resistance to phagocytosis 

by macrophages. The present study aimed to determine the downstream effects porin loss had on 

other aspects of the outer membrane. Utilizing clonally related clinical isolates exhibiting 

differential porin expression (Figure 4A), the impact porin loss has on growth, capsule, LPS, and 

transcriptional expression of other outer membrane proteins was determined. These aspects were 

chosen as previous investigation has implicated that these components could potentially confer 

resistance or susceptibility to phagocytosis.  
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Figure 4. A) Outer membrane from each strain was purified and proteins were visualized on a 12% SDS-PAGE gel 
using SYPRO Ruby stain. Outer membrane profiles of clinical isolates exhibiting differential porin expression of 
OmpK35 and OmpK36 and a lab strain (ATCC 43816) used in this study. Transcriptional expression of outer 

membrane proteins by qPCR and analyzed using the ΔΔCt method. Genes are normalized to gapA and clinical 
isolates are normalized to the lab strain 43816. B) ompK35 and C) ompK36 transcriptional expression corresponds to 

protein profiles of SDS-PAGE gels. *p<0.01 **p<0.0001 compared to 10S+16K  n≥7 from at least 2 independent 
cultures. 
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It was expected that porin loss would have an impact on the production of capsular 

polysaccharide. The assay showed that loss of a single porin decreased the overall amount of 

capsule produced, but loss of both porins increased capsule production. The amount of LPS was 

also expected to be altered by loss of one or both porins, which was also supported by the data. 

Previous study has indicated that loss of OmpK35 or OmpK36 has a significant impact the 

expression of other outer membrane porins in a compensatory fashion but there is insufficient 

evidence for the impact porin loss has on structural proteins. The present study showed that loss 

of one or both porins is compensated for by increased expression of oligo galacturonate specific 

ompK26 or the maltoporin lamB. The expression of the structural proteins, ompA and lpp, were 

also modified in response to porin loss. Surprisingly, there was a significant impact on resistance 

to phagocytosis by loss of a single porin, but not both. Based on these findings and others we 

conclude that although porin loss has a large impact on the cell envelope of K. pneumoniae, these 

cumulative changes do not necessarily predict resistance to phagocytosis. However, other aspects 

of macrophage-pathogen interactions may be more affected by porin loss and requires further 

study. 
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Chapter 2 

Porin loss affects the cell envelope of Klebsiella pneumoniae and overall resistance to 

phagocytosis by macrophages 
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Methods 

Bacterial strains, plasmids, and media 

Clonally related clinical isolates were cultured from a single patient during a clinical 

outbreak and were provided by Dr. Sebastian Alberti (University of the Balearic Islands, Palma de 

Mallorca, Spain). Isolates CSUB10R (10R) expressed neither porin and CSUB10S (10S) 

expressed only OmpK365. A plasmid carrying the ompK35 gene (pSHA16K) was transformed into 

CSUB10R and CSUB10S to create CSUB10R+ pSHA16K (10R+16K) which expressed only 

OmpK35 and CSUB10S + pSHA16K (10S+16K) which expressed both porins. These clinical 

isolates have been previously characterized as extended spectrum β-lactamase positive (ESBL) 

and have high minimum inhibitory concentrations for several β-lactam antibiotics5. All isolates 

were grown in Luria-Bertani broth at 37°C with 16µg/mL cephalothin to maintain the antibiotic 

selective pressure present when isolated. Isolates 10R+16K and 10S+16K were also grown with 

50µg/mL kanamycin for plasmid maintenance.  

The lab strain ATCC 4381675 contains no known antibiotic resistance plasmids and has 

been characterized as ESBL negative. This strain was used as a basis for comparison of the clinical 

isolates against a less antibiotic resistant and virulent strain expressing both porins. It was grown 

in Luria-Bertani broth at 37°C.  

Growth 

Growth curves were performed by inoculating 50mL of fresh Luria-Bertani broth 

(supplemented with antibiotics when appropriate) with a 1:1000 dilution of overnight culture. The 

OD600 was determined using an Eppendorf Bio photometer every 30 minutes for 6.5 hours.  
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Overnight cultures (approximately 15 hours) were serially diluted and plated onto Luria-

Bertani agar plates and incubated at 37°C overnight. Colony forming units (CFUs) were counted 

and CFUs/mL were calculated to determine the effect porin loss has on the concentration of an 

overnight culture. Colony morphology was visualized by streak plating onto Luria-Bertani agar 

plates. The plates were observed approximately 15 hours after plating.  

Outer membrane isolation 

The outer membrane was isolated using previously described methods 3. Cultures were 

grown overnight; 1 mL of overnight culture was used to inoculate 100mL of fresh Luria-Bertani 

with the appropriate antibiotic and grown to an OD600 between 1.5-2.0. Cultures were then 

centrifuged at 10,000xg for 10 minutes. The cell pellet was resuspended in Tris-sucrose solution 

(20mM Tris, 20% sucrose, pH 8.0). The cell wall was digested using lysozyme (15mg/mL) in 

0.1M EDTA solution for 40 minutes and then 0.5M MgCl2 was added to the lysate. The mixture 

was centrifuged for 20 minutes at 12,000xg and the supernatant decanted. The pellet was dissolved 

in 10mM Tris (pH 8.0) and sonicated on ice. Cellular debris was pelleted and the supernatant 

containing the membranes was further centrifuged at 40,000xg for 60 minutes. The pellet was 

resuspended in DI water. The membrane fractions were treated with Sarkosyl solution at room 

temperature for 20 minutes and centrifuged at 40,000xg for 90 minutes. The pellet containing outer 

membrane was resuspended in 1X PBS. Protein concentration was determined using a standard 

Bradford assay (Coomaisse Plus, Thermofisher). Proteins were visualized on a 12% SDS-PAGE 

gel using the SYPRO Ruby stain from Molecular probes76. Minimum Inhibitory Concentration 

Overnight cultures were diluted to a suspension containing approximately 103 CFUs/mL in 

LB media in a 96 well microtiter plate. Bacteria were treated with 500, 250, 125, 62.5, 31.25, 16, 

8, 4, 2, 1, and .5 µg/mL of cephalothin, gentamicin, or colistin. Wells containing only LB were 
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used as controls for normal growth. The absorbance of each well at OD600 was measured using a 

Biotek Gen5 plate reader. The minimum inhibitory concentration was determined as the lowest 

concentration at which growth was significantly inhibited (by at least 90%) as defined by the 

Clinical and Laboratory Standards Institute (CLSI)77.  

Capsular polysaccharide characterization 

Capsular polysaccharide (CPS) was extracted using the protocol outlined by Domineco et 

al53. From an overnight culture, 500µL was mixed with 100µL of 1% Zwittergent 3-14 in 100mM 

citric acid, pH 2.0. The mixture was vortexed vigorously, incubated at 50°C for 20 minutes, and 

centrifuged for 5 minutes at 14,000 rpm. The supernatant was transferred to a 2mL Eppendorf tube 

and mixed with 1.2mL of absolute ethanol and incubated for 90 minutes at 4°C. Precipitate was 

collected after centrifugation at 14,000 rpm for 10 minutes and then dissolved in 200µL DI water.  

CPS was quantified following previously established protocol by Lin et al78. Samples were 

vortexed vigorously with 1.2mL of 12.5mM sodium tetraborate in concentrated sulfuric acid and 

heated for 5 minutes at 95°C. The samples were allowed to cool before the addition of 20µL of 

0.15% m-hydroxydiphenyl. The absorbance at 540nm was measured with a Biotek Gen5 plate 

reader. A standard curve was generated using D-glucuronic acid in order to determine the 

concentration of glucuronic acid of the CPS samples. To ensure quantification of CPS from the 

same number of bacteria, CFUs/mL were determined and strains were normalized to 108 

CFUs/mL. Each assay was performed in triplicate from 6 individual cultures.  

To determine the molecular weight distribution of the capsule, a sample of the capsule 

containing 10µg of glucuronic acid was run on a 12% SDS-PAGE gel. Polysaccharide was 

visualized using the ProQ Emerald 300 staining kit by Molecular probes79.  
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 Capsule was stained using overnight cultures and a 10% nigrosin solution. An inoculation 

loop was used to add bacteria to the slide and mixed with 1µL of nigrosin. The solution was spread 

across the slide and allowed to air dry. The slide was visualized at 1000x total magnification with 

a compound light microscope.   

Lipopolysaccharide Quantification 

To quantify LPS of whole cell bacteria,  a previously described purpald assay method was 

used47,80. This assay detects the 3-deoxy-D-manno-oct-2-ulopyranosonic acid (KDO) molecule of 

the LPS. Cultures were grown overnight, washed in 1X PBS, and 50µL of suspension in 1X PBS 

was mixed with 50µL of 32mM sodium periodate. After 25 minutes of incubation at room 

temperature, 50µL of 136mM purpald in 2N NaOH was added to each well of a 96 well plate. This 

was incubated at room temperature for 20 minutes and 50µL of 64mM sodium periodate was 

added. After 20 minutes of incubation at room temperature, air bubbles were removed using 10µL 

isopropanol. Samples were read at 540nm using a Biotek Gen5 plate reader. A standard curve was 

generated using purified K. pneumoniae LPS. To ensure quantification of LPS from the same 

number of bacteria, CFUs/mL were determined and strains were normalized to 108 CFUs/mL. 

Isolated outer membrane samples were used to visualize the LPS with a 12% SDS-PAGE 

gel using approximately 4µg of LPS as determined by the purpald assay. Polysaccharide was 

stained using the ProQ Emerald 300 staining kit by Molecular Probes79. High molecular weight 

polysaccharide indicates smooth LPS, while low molecular weight polysaccharide indicates rough 

LPS. 
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Transcriptional expression of outer membrane proteins by qPCR 

RNA was extracted from cultures in the exponential phase using the RNeasy kit by Qiagen 

with DNase treatment. Complimentary DNA (cDNA) was reverse transcribed from 1µg of total 

RNA using random hexamer primer and the ProtoscriptII reverse transcriptase kit (New England 

Biolabs). Quantitative polymerase chain reaction (qPCR) was performed using LuminoCt SYBR 

green on an Eppendorf Mastercycler Realplex 2. Data was analyzed using the ΔΔCT method81. 

Gene expression was normalized to that of gapA and clinical isolates were normalized to the lab 

strain 43816. Primers used are listed in Table 1. 

Table 1. Primers used for qPCR.  

Gene Forward primer Reverse primer 
gapA TTGACCTGACCGTTCGTCTGGAAA AGCATCGAACACGGAAGTGCAAAC 
OmpK35 TTCGACAACGCTATCGCACTGTCT AGTACATGACGGCCGCATAGATGT 
OmpK36 CCGTCAACCAGACCGAAGAA CAGGCCTGAAATTTGGCGAC 
ompK26 GAACAACGCCCGGCAAGATGATGA AGCTGCGGGCATAGACATAGTTCA 
lamB GCGGGTAAACGCTTCTATCA GGTCAACGTTTTCCAGACCT 
ompA ACGTGCTCAGTCCGTTGTTGACTA AGTAACCGGGTTGGATTCACCCAT 
Lpp CGGTAATCCTGGGTTCTACTCT TGCTCAGCTGGTCAACTTTAG 

 

Phagocytosis assay 

Murine macrophage cell line RAW 264.782 was maintained in 1640 RPMI media 

supplemented with 10% fetal bovine sera and penicillin, streptomycin, and amphotericin B at 37°C 

in 5% CO2. Macrophages were seeded into a 24 well tissue culture plate at 7.5x105 cells/mL and 

incubated overnight. Overnight bacterial cultures were suspended in a 1X PBS solution to contain 

approximately 1x109 CFUs/mL. Macrophages were treated with bacteria at a multiplicity of 

infection (MOI) of 50:1, infection was synchronized using centrifugation at 200xg for 5 minutes, 

and incubated at 37°C for 15 minutes. Macrophages were washed with 1X PBS to remove non-

macrophage associated bacteria and then lysed with 0.1% Triton X-100 in 1X PBS. Solution was 
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serially diluted, plated on LB agar plates, and incubated overnight at 37°C. To determine the 

number of macrophage-associated bacteria, colony forming units were counted and CFUs/mL 

were calculated. Percent phagocytosis was determined by dividing the number of CFUs/mL 

recovered by the CFUs/mL of the original inoculum. 

Statistical Analysis 

All experiments were performed with n≥3. Statistical significance was determined using a 

one-way ANOVA and Tukey’s post hoc test using XLSTAT software. Significance compared to 

10S+16K is determined at p values of <0.01 (*) and p<0.0001 (**).  

Results 

Rate of growth, colony morphology, and cell density of Klebsiella pneumoniae clonally 

related clinical isolates 

Porins are partially responsible for nutrient acquisition required for the growth and division 

of the cell. Therefore, porin loss could potentially impact bacterial cultures at all stages of growth. 

To determine this, standard bacterial growth curves were performed. However, growth curves 

determined there was no significant difference in growth during the lag, exponential, or stationary 

phases between any of the strains. (Figure 5A). However, clinical isolate 10R+16K did 

demonstrate a slightly depressed cell density during the stationary phase at 6 and 6.5 hours when 

compared to 10S+16K (p=.015 and p=.027 respectively). Isolate 10R+16K also exhibited 

alterations to colony morphology on LB agar streak plating. Colonies were visibly smaller and less 

mucoid in appearance than those of the other isolates and the lab strain (Figure 5C). To determine 

whether this depressed growth and colony morphology affected cell concentration of an overnight 

culture, CFUs/mL were found. The 10R+16K strain had similar CFUs/mL as all other strains 
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indicating that loss of OmpK36 in this strain did not affect bacterial cell concentration of overnight 

cultures (Figure 5B). 

Minimum inhibitory concentration is increased with loss of one or both porins in an ESBL 

background 

The clinical isolates showed minimum inhibitory concentrations above the CLSI defined 

clinical resistance level for both cephalothin (32µg/mL) and gentamicin (8µg/mL) (Table 2). The 

lab strain, with no known antibiotic resistance mechanisms associated with it, was below that 

threshold for all tested antibiotics. This was predicted as the clinical isolates have previously been 

characterized as ESBL positive and are expected to be clinically resistant5. However, porin loss 

within the clinical isolates did show an increase in minimum inhibitory concentrations for 

cephalothin and gentamicin. 10S+16K had an MIC of 125µg/mL for cephalothin and 62.5µg/mL 

for gentamicin. Loss of OmpK36 resulted in a 2-fold increase in MIC for both cephalothin and 

gentamicin compared to 10S+16K. Loss of OmpK35 increased the MIC for cephalothin by at least 

4-fold compared to 10S+16K but did not alter resistance to gentamicin. Loss of both porins caused 

a greater than 4-fold increase in the MIC of cephalothin and a 2-fold increase for gentamicin 

compared to 10S+16K. All clinical isolates and the lab strain were susceptible to colistin.  
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OmpK35        -                     +                   -                   +                  + 
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Figure 5. Loss of OmpK36 depresses the stationary phase and alters colony morphology, but does not significantly 
impact cell density of an overnight culture. A) Standard growth curves of clonally related clinical isolates and a lab 

strain of Klebsiella pneumoniae. OD600 was measured every 30 minutes for 6.5 hours. No significant difference among 
the strains was found using an ANOVA. n=3. Error bars indicate one standard deviation from the mean. B) Overnight 

cultures were serially diluted, plated onto LB agar plates, and grown overnight at 37°C. Colony forming units were 
counted and CFUs/mL calculated. Porin loss does not affect CFUs/mL of an overnight culture. n≥5. Error bars indicate 

one standard deviation from the mean. C) Overnight cultures were streak plated on LB agar plates and grown overnight 
at 37°C. 10R+16K has visibly smaller and less mucoid colonies than 10S+16K.  
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Table 2. Minimum inhibitory concentrations were determined using a standard microdilution method. Breakpoint 
MIC is defined as the concentration at which growth is first inhibitted by at least 90%. Resistance is determined as 

suggested by the Clinical and Laboratory Standards Institute29. Loss of both porins resulted in a 4 fold increase in MIC 
for cephalothin and a 2 fold increase for gentamicin.  

Breakpoint MIC Porin Expression 
Strain Cephalothin Gentamicin Colistin OmpK35 OmpK36 
10R >500 125 2 - - 
10R+16K >500 62.5 1 + - 
10S 250 125 2 - + 
10S+16K 125 62.5 <.5 + + 
43816 2 4 1 + + 
CLSI 
Resistance 

>32 >8 >2   

 

Capsule production is affected by loss of one or both porins 

Capsular polysaccharide was extracted and the production of capsule was indirectly 

quantified by glucuronic acid concentration (Figure 6A). Both 10R +16K and 10S produced 

significantly less capsule than 10S+16K. Interestingly, loss of both porins in clinical isolate 10R 

had a contrasting effect on capsule production and had a significant increase. The lab strain 43816 

produced similar amounts of capsule as the clinical isolate 10S+16K. 

Capsule was also visualized on a 12% SDS-PAGE gel and stained with ProQ Emerald 300 

for polysaccharide (Figure 6B). There did not appear to be any major differences between isolates, 

other than a slight decrease in staining for lower molecular weight polysaccharides for 10R+16K. 

Further investigation into the molecular makeup of the capsule would need to be done to determine 

whether this absence of staining is due to a decrease in glucuronic acid or another monosaccharide.  

Negative staining using 10% nigrosin was used to physically observe the size of the capsule 

surrounding the bacteria. Visualization at 100X under oil immersion revealed a less distinct 

capsule for 10R+16K compared to the other isolates (Figure 6C). 
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Figure 6.  Quantification and visualization of capsular polysaccharide. A) Capsule was extracted and glucuronic acid 

was quantified (µg/108 CFUs) using a standard curve. Loss of OmpK35 and OmpK36 alone resulted in significantly 

decreased capsule production while loss of both porins resulted in significantly increased capsule production. *p<0.01, 
**p<0.0001 compared to 10S+16K n≥9. B) Extracted capsule was ran on a 12% SDS-PAGE gel and stained using 

ProQ Emerald stain. 10R+16K shows a decrease in staining for lower molecular weight polysaccharides compared to 
10S+16K. C) Overnight cultures were stained using 10% nigrosin to visually observe capsule at 1000X total 

magnification. Red line equals 0.58µm. 
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Lipopolysaccharide content is increased with porin loss 

Bacteria were assayed for LPS using the Purpald assay to determine whether porin loss 

impacted the LPS content (Figure 7A). There was a significant difference in the amount of LPS 

between clinical isolate 10S+16K and the lab strain 43816. Compared to 10S+16K, the isolates 

with loss of one or both porins exhibited increased LPS content.  

To address whether LPS composition was affected by porin loss, purified outer membrane 

samples were analyzed by SDS-PAGE and stained for polysaccharides using ProQ Emerald stain 

(Figure 7B). The clinical isolates all exhibited lower molecular weight polysaccharide LPS that is 

synonymous with less virulent strains, however, the lab strain had higher molecular weight LPS 

that is indicative of a more virulent strain. This indicates potential differences in LPS structure and 

composition between the clinical isolates and the lab strain. Clinical isolate 10R+16K did have 

visibly decreased staining for LPS than all other strains and may have modifications to the LPS 

due to porin loss.  

Transcriptional expression of outer membrane proteins in response to porin loss 

 Quantitative PCR showed that loss of one or both porins can have a significant impact on 

the transcriptional expression of other outer membrane proteins. Genes assayed were chosen due 

to individual importance in compensation for porin function (ompK26 and lamB) or cell envelope 

stability (ompA and lpp). Transcriptional expression of ompK35 and ompK36 were also assayed 

and were consistent with porin expression seen in SDS-PAGE gels (Figure 4B and 4C). Clinical 

isolates 10S, 10R+16K and 10R all showed a significant increase in expression of ompK26 

compared to 10S+16K (Figure 8A), however only 10R+16K showed a significant increase in 

expression of lamB (Figure 8B).  
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Figure 7. Quantification and visualization of lipopolysaccharide. A) Whole bacteria were assayed for LPS by 

quantifying the KDO molecule of the LPS through the purpald assay. LPS was measured in µg LPS/108 CFUs.  
*p<0.01, **p<0.0001 compared to 10S+16K. n= 18 from 3 independent cultures. B) LPS composition from isolated 

outer membrane samples was observed by staining for polysaccharide using ProQ Emerald stain on a 12% SDS-PAGE 
gel. Clinical isolates exhibit rough LPS synonymous with less virulent form of LPS and the lab strain exhibits smooth 
LPS more indicative of virulent LPS. 
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Figure 8.  Transcriptional expression of alternative outer membrane proteins by qPCR and analyzed using the ΔΔCt. 

Genes are normalized to gapA and clinical isolates are normalized to the lab strain 43816. A) ompK26 expression is 
increased for loss of one or both porins. B) LamB transcriptional expression is increased for loss of OmpK36 only. 
*p<0.01 **p<0.0001compared to 10S+16K n≥7 from at least 2 independent cultures. 
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This indicates that loss of OmpK35 or both porins is compensated for by OmpK26, but loss of 

OmpK36 alone is primarily compensated for by the maltoporin LamB and supplemented with 

OmpK26. 

Both OmpA and Lpp have been previously characterized as being crucial for the 

maintenance of outer membrane and cell envelope integrity, but have not been thoroughly 

investigated for their roles in porin loss. The transcriptional expression of ompA was decreased for 

both 10S and 10R+16K when compared to 10S+16K but no significant difference was found for 

10R (Figure 9A). Interestingly, expression of lpp was significantly increased for 10R+16K, but 

significantly decreased for 10S and 10R compared to 10S+16K (Figure 9B).  

Phagocytosis is affected by loss of a single porin 

 Phagocytosis assays were performed to determine how porin loss alters resistance to 

phagocytosis by murine macrophages. First, the number of macrophage associated bacteria were 

determined by counting CFUs recovered from each well. The percent phagocytosis was calculated 

by dividing the number of recovered bacteria by the number of bacteria in the original inoculum 

(Figure 10). The clinical isolate 10S+16K and the lab strain 43816 showed similar resistance to 

phagocytosis as there was no significant difference in percent phagocytosis between them. 

However, 10R+16K and 10S had increased phagocytosis by macrophages compared to 10S+16K. 

None of the clinical isolates were significantly more resistant to phagocytosis than 10S+16K.   
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Figure 9. Transcriptional expression of structural outer membrane proteins using qPCR and analyzed using the ΔΔCt. 

Genes within each isolate were normalized to gapA and isolates were normalized to 43816. A) Loss of a single porin 
resulted in a decrease in expression of ompA. B) Loss of OmpK36 resulted in a significant increase in lpp expression, 

but loss of OmpK35 or both porins resulted in a significant decrease. n≥7 from at least 2 independent cultures. *p<0.01 
**p<0.0001 compared to 10S+16K. 
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Porin Expression      

OmpK35                -               +             -             +             + 

OmpK36                -               -              +            +             + 

 

Figure 10. Phagocytosis assays were performed using an MOI of 50:1. Colony forming units from macrophage 
associated bacteria were counted and CFUs/mL determined. Percent phagocytosis was found by dividing the number 

of recovered CFUs/mL by the number of CFUs/mL of the original inoculum. The percentage of phagocytosis was 
increased by loss of OmpK35 (p<0.0001) and OmpK36 (p=0.012) but not both porins (p=0.776) compared to 
10S+16K, n=9.   

 

 

 

 

 

0.00

10.00

20.00

30.00

10R 10R+16K 10S 10S+16K 43816

P
er

ce
nt

 p
h

ag
oc

yt
os

is
 (

%
)

**                 *



39 
 

Discussion 

 This study hypothesized that the loss of OmpK35 and/or OmpK36 would alter the cell 

surface and result in altered resistance to phagocytosis by macrophages. These isolates adapted to 

environmental pressures of antibiotics that resulted in loss of one or both porins. Previous studies 

have focused on the role porin loss plays in antimicrobial and phagocytic resistance, but there is 

insufficient research looking at the effect porin loss has on other aspects of the cell. Here, it is 

demonstrated that porin loss has a significant impact on capsule and LPS content, and affects the 

transcriptional expression of other outer membrane porins. In addition, these cumulative changes 

alter phagocytic resistance by murine macrophages and may, therefore, impact other aspects of the 

immune response.  

 Growth, cell density, and colony morphology were determined to first assess the clinical 

isolates. While there was a slightly lower OD600 in the stationary phase and visibly smaller colonies 

for loss of OmpK36 (10R+16K), CFUs/mL of an overnight culture (within the stationary phase) 

were no different than the strain with both porins. This indicates something else is contributing to 

the differences in colony size and absorbance/cell density for this strain. Capsule production within 

this strain is also severely decreased compared to 10S+16K (expresses both porins) so it is possible 

that these differences are due to a decrease in the capsular polysaccharide surrounding the bacteria.  

Glucuronic acid quantification and negative staining showed that the amount of capsule 

produced by each strain was significantly decreased by loss of either porin (10R+16K and 10S), 

but significantly increased by loss of both (10R). Previous studies of the relationship between porin 

loss and capsule production are contradictory. One study showed that capsule production 

decreased in an ompK36 knockout25 and another described an ompK36 knockout as being more 

mucoid in appearance, indicating an increase in capsule production10. Interestingly, these 
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contrasting studies used K. pneumoniae strains with different capsular serotypes (K1 and K2 

respectively) than the strains tested here (unknown). Capsule serotype is based on the specific 

structure of the capsular polysaccharide for each strain. This structure is antigenic and can be 

recognized by specific antibodies50,51,57. It is therefore possible that the impact porin loss has on 

the production of capsule could be dependent on serotype.  

The serotypes of the strains used in this study were unable to be determined by PCR using 

previously published primers for K1, K2, and K5 serotypes (data not shown)51. Further analysis of 

the capsule using antigenic serotyping51 would need to be performed to determine the specific 

serotype of these isolates. However, it does appear that the effect of porin loss in these clinical 

isolates is similar to those of the K1 serotype seen by Srinivasan et al.25. The direct relationship 

between capsule and porins has yet to be investigated.  It is unknown whether porins are 

responsible for the uptake of the specific monomeric sugars responsible for the creation of the 

polysaccharide of the K-antigen. Therefore, it is possible that porin loss could directly impact the 

ability of the capsule to be synthesized. This could be tested by treating strains of different 

serotypes that exhibit porin loss with radiolabeled sugars. The capsule could be extracted and the 

amount of radiolabeled sugars within the capsule determined. If porin loss affects the import of 

sugars used in capsule synthesis, then these strains will contain less radiolabeled capsule. 

However, data collected in this investigation does not seem to support this as loss of a single porin 

decreased capsule and loss of both porins increased the amount of capsule. For this hypothesis to 

have been supported, loss of both porins would need to have further decreased capsule production.  

Capsular polysaccharide has been identified as a primary indicator for low levels of 

phagocytosis. The presence and serotype of the capsule decreases the ability of the phagocytic cell 

to recognize, attach, and internalize bacteria. Non-capsule producing K. pneumoniae are 
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phagocytosed at higher rates than strains that produce a capsule83,84. The capsular serotype can 

also have a dramatic effect on strain virulence as well. K1 and K2 serotypes are notably more 

virulent and resistant to phagocytosis than other serotypes50,51,78,84. The clinical isolates used in 

this study were unable to be serotyped based on PCR methods and are likely not of the K1, K2, or 

K5 serotype. The lab strain 43816 was previously characterized as K2 serotype57. The 

phagocytosis assays performed here showed no difference between the lab strain and the clinical 

isolate expressing both porins (10S+16K). The capsular polysaccharide assays from this study also 

showed no significant difference between the clinical isolate expressing both porins and 43816. 

This indicates the capsular serotype of the clinical isolates confers equal protection to phagocytosis 

as the K2 serotype.  

It was hypothesized that porin loss related capsule production would correlate with 

resistance to phagocytosis. This was partially supported as loss of a single porin decreased the 

amount of capsule produced by the clinical isolates and increased the percent phagocytosis. In 

contrast, the strain 10R that expressed neither porin produced significantly more capsule, but was 

not more resistant to phagocytosis than the isolate that expressed both porins (10S+16K). If capsule 

was the primary factor for the resistance to phagocytosis, then the increase in capsule for 10R 

would have been expected to decrease the percent phagocytosis. However, this was not the case, 

indicating that other factors were impacting phagocytosis. This is most likely porin expression as 

10R expresses neither porin. In previous studies using K. pneumoniae  clinical isolate NVT2001, 

loss of both porins led to an increase in phagocytosis by human neutrophils in vitro10. Therefore, 

it is possible that in this study the increase in capsule produced by 10R provided some protection 

against phagocytosis even with the dual porin loss background. However, the capsule was not 

sufficient to further decrease percent phagocytosis.  
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Capsule is not the only polysaccharide-based molecule altered by porin loss. The data 

presented here demonstrate that loss of one or both porins also significantly increases the LPS 

content in cells. Bacteria have a preferred surface area to volume ratio that is maintained for 

optimum acquisition and distribution of nutrients throughout the cell85. OmpK35 and OmpK36 are 

two of the most abundant proteins of the outer membrane. Therefore, loss of one or both porins 

would likely result in a decrease in the surface area of the bacteria. The increase in LPS content in 

the outer membrane could be a compensatory mechanism for maintaining a preferred surface area 

to volume ratio in response to porin loss.  

The purpald assay quantifies the content of the LPS by measuring the KDO molecule, but 

does not provide any information regarding the composition of the core antigen or the O antigen 

of the LPS. Therefore, the LPS was also analyzed using SDS-PAGE to test for polysaccharide. 

There was a visible difference in the molecular weight of the LPS between the clinical isolates and 

the lab strain 43816 that is likely due to genetic differences between the lab strain and the clinical 

isolates. The clinical isolates exhibited a lower molecular weight polysaccharide that is indicative 

of rough LPS, while the lab strain exhibited higher molecular weight indicative of smooth LPS. 

Rough LPS has modified O-antigen or has completely lost the O-antigen. Loss of the O-antigen 

has been shown to be irreversible in some strains and disables antigenic switching. This decreases 

the ability of the bacteria to change its surface structure as a way to evade the immune system86. 

Rough LPS has also been described to be more sensitive to complement-mediated killing. This is 

because the C3-b complement protein will bind closer to the membrane, which allows for the 

formation of the membrane attack complex and the cell is lysed87. Smooth LPS positions the C3-

b complement protein farther away from the outer membrane and the membrane attack complex 

is not formed58.  
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Staining for polysaccharide from an outer membrane sample of showed a visible decrease 

for the loss of OmpK36 in strain 10R+16K compared to 10S+16K (expresses both porins). The 

gel was loaded with equal amounts of LPS as per the purpald assay, therefore a decrease in staining 

for polysaccharide indicates alterations to the core antigen or O antigen segments. 

Lipopolysaccharide has been well documented as a virulence factor for K. pneumoniae2,3,58, and 

the presence of LPS has been shown to aid in evasion of phagocytosis as well. LPS core 

polysaccharide core mutants were shown to be more susceptible to phagocytosis than wildtype, 

however, O-antigen mutants were not2. In this study, loss of one or both porins (10R+16K, 10S, 

and 10R respectively) resulted in a significant increase in the amount of LPS of each strain, and 

loss of OmpK36 (10R+16K) resulted in decreased polysaccharide staining. These trends do not 

correlate with those seen for resistance to phagocytosis here, so it is unlikely that alterations to the 

LPS due to porin loss altered the resistance to phagocytosis. However, alterations to the O-antigen 

or core antigens could potentially impact other interactions with the immune system. Specifically, 

activation of the classic complement cascade and toll-like receptor 4 (TLR-4) which would 

increase secretion of pro-inflammatory cytokines by the macrophages. Activation of TLR-4 would 

likely increase for 10R+16K (loss of OmpK36) if alterations to the O-antigen or core antigens 

made the pathogen associated molecular pattern for the lipid A portion of the LPS more 

accessible88.  Further inquiry into the makeup of the O-antigen of these strains using mass 

spectrometry would be helpful to determine where the molecular differences lie between the LPS 

of the porin loss isolates. This would also give more evidence as to whether alterations to the LPS 

due to porin loss contributed to the decrease in resistance to phagocytosis observed by loss of 

OmpK36 (10R+16K). 
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The transcriptional expression of other outer membrane proteins was also significantly 

different between isolates exhibiting porin loss (10R+16K, 10S, and 10R) and the isolate 

expressing both porins (10S+16K). This study demonstrated that loss of one or both porins was 

compensated for by the upregulation of other specific porins. Transcriptional expression of 

ompK26, which is specific for oligo galacturonate (sialic acid) and is impermeable to large β-

lactam antibiotics, was significantly increased for isolates with loss of OmpK35 (10S), OmpK36 

(10R+16K), or both porins (10R). However, loss of OmpK36 (10R+16K) did not result in 

upregulation of ompK26 to the same degree as loss of OmpK35 (10S) or both porins (10R) did. 

Previously, OmpK26 was shown to be essential for compensation of OmpK36. The Alberti lab 

attempted to create an ompK26 knockout in the strain 10R (expresses neither porin) used in this 

study, but were unsuccessful without the reversion of OmpK36. This demonstrates that OmpK26 

may indispensable when both OmpK35 and OmpK36 are lost40. Therefore, the significant 

upregulation of ompK26 seen here was to be expected. 

Alberti et al. 2011 also showed that expression of OmpK26 without expression of OmpK36 

reduced the virulence of K. pneumoniae. Experiments testing the lethality in a mouse 

intraperitoneal infection model revealed the strain that expressed OmpK36 but not OmpK26 was 

significantly more fatal. This indicates that OmpK36 is significantly more important for survival 

of the bacteria in a mouse model than OmpK26 is. In the data presented here, the isolates exhibiting 

loss of either one or both porins also had increased transcriptional expression of ompK26, however, 

the expression of OmpK26 was not indicative of evasion of phagocytosis. It would be expected 

that strains with upregulation of ompK26 would also have the highest percent phagocytosis. 

However, the strains with the highest expression of ompK26, 10R (expresses neither porin) and 
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10S (loss of OmpK35), were not the most susceptible to phagocytosis. Therefore, it is unlikely that 

ompK26 expression is a good indicator for the resistance to phagocytosis. 

LamB is a porin that primarily imports the sugar maltose, although other sugars can also 

diffuse through this channel. The strain expressing only OmpK35 (10R+16K) had a significant 

increase in lamB expression. Previous experiments have shown a lamB knockout in an 

ompK35/ompK36 negative background triggers the expression of ompK26 and increases the 

resistance to meropenem (a carbapenem antibiotic)41. It was therefore concluded that LamB may 

compensate for the loss of OmpK36. The current study supports this hypothesis (Table 3). The 

clinical isolate 10R+16K (loss of OmpK36), expressed ompK26 to a lesser degree than 10R (loss 

of both porins) and 10S (loss of OmpK35) and also expressed lamB more than 10R and 10S. This 

study provides evidence that OmpK35 and OmpK36 each have individual compensatory porins, 

OmpK26 and LamB respectively.  

Table 3. Transcriptional expression of porins in clinical isolates. 

Strain ompK35 ompK36 ompK26 lamB 

10R - - ++ - 

10R+16K + - + ++ 

10S - + ++ - 

10S+16K + + - - 

 

LamB has not been previously characterized as a virulence factor. Interestingly, the strain 

expressing the highest relative transcription of lamB, 10R+16K (loss of OmpK36), was also the 

strain that had the greatest susceptibility to phagocytosis. Further inquiry into the role LamB plays 

in pathogenicity should be done. The specific focus should be to determine whether loss of 

OmpK36 or increased LamB on the cell surface increases susceptibility to phagocytosis. 
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The structural outer membrane protein, OmpA, is a highly-characterized protein that has 

been shown to be multifunctional. This protein has some porin functionality89, is important for the 

stability of the cell envelope27, acts as an adhesin to attach the cell to surfaces43, and acquires iron 

within the host46. Turner et al. 2016 noted that OmpA content was enriched for outer membrane 

vesicles from isolates with loss of OmpK35 (10S), but not for loss of OmpK36 (10R+16K) or both 

(10S+16K). This study was performed using the same clinical isolates from the present study47. 

Outer membrane vesicles are derived from the outer membrane and can be representative of the 

outer membrane4. The data from this study contrasts this finding, as loss of either porin (10R+16K 

or 10S) showed a significant decrease in ompA transcription, which is not necessarily indicative 

of protein content. However, previous literature has confirmed selective sorting mechanisms for 

proteins into outer membrane vesicles and a distinct difference between protein content of the 

outer membrane and outer membrane vesicles3,4. Therefore, it is possible that although 

transcription of ompA decreases due to loss of a single porin, OmpA is still enriched in outer 

membrane vesicles due to this selective sorting mechanism. 

OmpA is perhaps the most studied outer membrane protein of Gram-negative species. It 

has been well documented for its role in virulence. March et al. showed that K. pneumoniae ompA 

knockouts were susceptible to phagocytosis to the same degree as ompK36 knockouts2. Previous 

work from the same lab also showed that OmpA deficient bacteria were more likely to induce an 

inflammatory response necessary to clear an infection than the strain that expressed OmpA both 

in vitro  by A549 lung epithelial cells and in vivo in a mouse model45. Together these results 

indicate that OmpA contributes to the evasion of the immune response. The current data agree 

with this finding because the clinical isolates 10R+16K (loss of OmpK36) and 10S (loss of 

OmpK35), which expressed significantly less ompA than 10S+16K (expresses both porins), were 
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also the most susceptible to phagocytosis. The isolate 10R (loss of both porins), which expressed 

similar amounts of ompA in comparison to 10S+16K (expresses both porins), also showed similar 

percent phagocytosis. Therefore, the expression of OmpA observed in this study may be a driving 

factor in whether the bacteria would be more resistant or susceptible to phagocytosis by murine 

macrophages.  

The transcriptional expression of lpp showed that loss of OmpK35 (10S) or both porins 

(10R) resulted in decreased expression of lpp, but loss of only OmpK36 (10R+16K) resulted in a 

significant increase in expression. This indicates that lpp expression may be sensitive to OmpK35. 

While the role of lpp has been well documented for cell envelope stability27, information on Lpp 

expression under harsh conditions is lacking. This includes the role Lpp plays in response to porin 

loss, exposure to antibiotics, or other toxic compounds. A more in-depth analysis regarding the 

impact of porin loss on the expression of proteins such as OmpA and Lpp should be done to 

determine the overall effect of porin loss on the stability of the cell envelope.  

Previous literature indicates that Lpp expression confers protection from phagocytosis by 

neutrophils in vitro and may be important for maintaining cell envelope integrity within the host48. 

However, in the present experiments the clinical isolate with the highest lpp expression was also 

the least resistant to phagocytosis. This isolate, 10R+16K, was also deficient in OmpK36 and 

capsule, which are both indicators of resistance. It is likely then, that OmpK36 and capsule are 

better indicators of resistance or susceptibility to phagocytosis than Lpp.  

Lastly, this study showed that loss of either porin individually correlated with a significant 

increase in percent phagocytosis. This data contrasts slightly with previous literature. Tsai et al. 

2011 created isogenic knockouts of ompK35, ompK36, and both porins. Exposure to phagocytic 

human neutrophils in vitro showed that loss of OmpK36 or both porins significantly increased 
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phagocytosis while loss of only OmpK35 had no effect10. A similar study by March et al. 2013 

showed that loss of OmpK36 resulted in an increase in phagocytosis by murine macrophages in 

vitro, but did not look at the effect of the loss of OmpK35 or that of both porins2. Here it was 

demonstrated that the loss of OmpK35 (10S) or OmpK36 (10R+16K) showed an increase in 

phagocytosis by murine macrophages, with the loss of OmpK36 having a greater increase in 

phagocytosis than loss of OmpK35 did. The loss of both porins (10R) did not have any effect on 

phagocytosis though, which is different from the study done by Tsai et al 2011. The differences 

seen between this and previous studies could lie in the other changes observed in the bacteria due 

to porin loss or could be due to the differences between the human neutrophils and murine 

macrophages used in each study. 

 The clinical isolates with loss of only one porin (10R+16K and 10S) also exhibited a 

decrease in capsule production and expression of the virulence factor ompA. Previous literature 

indicates that these strains should also have been more susceptible to phagocytosis based on these 

specific changes2,50,90,56. The data on single porin loss from this study supports this. However, the 

clinical isolate 10R which expressed neither porin should have been more susceptible to 

phagocytosis based on porin expression, but this isolate also exhibited increased capsule 

production and equal ompA expression to the isolate with both porins (10S+16K). Both factors 

could have compensated for the loss of both porins and provided some protection from 

phagocytosis.  

 The research performed here sheds light on the makeup of the cell envelope in porin loss 

clinical isolates, as well as the effect porin loss has on virulence. Here, it is demonstrated that 

capsule production, expression of OmpK35 and OmpK36, as well as transcriptional expression of 

ompA are the most likely indicators for resistance to phagocytosis by macrophages. However, this 
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study also points out some gaps in knowledge that should be addressed in future research. First 

and foremost, the role porin loss plays in capsule production across serotypes should be 

determined.  Assays should be specifically designed to determine how porin loss affects the 

amount of capsule produced and the composition of the capsule amongst different serotypes.  

 Secondly, this study demonstrated that porin loss could potentially affect the LPS content 

and composition. The loss of one or both porins significantly increased the content of LPS 

compared to the isolate expressing both porins (10S+16K). However, loss of OmpK36 (10R+16K) 

showed a decrease in the staining of polysaccharide, indicating alterations to the composition of 

the core or O antigen polysaccharides. This especially should be determined as alterations to the 

O-antigen or core polysaccharides could potentially alter the inflammatory response of the host88 

and alterations to the core polysaccharide could increase susceptibility to phagocytosis2. 

 Lastly, the effect that porin loss has on the virulence factor OmpA should be more closely 

determined. Previous studies done by this lab indicate that loss of one or both porins causes an 

enrichment of OmpA in OMVs47, but the current study shows that transcription of ompA decreases 

with the loss of one porin (10R+16K and 10S). A better quantitative measurement of OmpA 

protein in porin loss species should be constructed to determine what affect porin loss has on the 

amount of OmpA protein in the outer membrane. This would aid in determining whether OmpK35, 

OmpK36, or OmpA contribute more to resistance to phagocytosis than the transcriptional 

expression of ompA does. 

The aim of this study was to investigate if the cumulative changes due to porin loss 

influence the resistance to phagocytosis. It was demonstrated that loss of one or both porins alters 

capsule production, LPS content, and the expression of other outer membrane proteins. These 
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changes to the cell surface in response to porin loss had a cumulative impact on phagocytosis by 

macrophages.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

References 

1  Hsieh P-F, Lin T-L, Yang F-L, Wu M-C, Pan Y-J, Wu S-H et al. Lipopolysaccharide O1 
antigen contributes to the virulence in Klebsiella pneumoniae causing pyogenic liver 
abscess. PLoS One 2012; 7: e33155. 

2  March C, Cano V, Moranta D, Llobet E, Pérez-Gutiérrez C, Tomás JM et al. Role of 
Bacterial Surface Structures on the Interaction of Klebsiella pneumoniae with Phagocytes. 
PLoS One 2013; 8: 1–16. 

3  Cahill BK, Seeley KW, Gutel D, Ellis TN. Klebsiella pneumoniae O antigen loss alters the 
outer membrane protein composition and the selective packaging of proteins into secreted 
outer membrane vesicles. Microbiol Res 2015; 180: 1–10. 

4  Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: 
biogenesis and functions. Nat Rev Microbiol 2015; 13: 605–619. 

5  Ardanuy C, Liñares J, Domínguez MA, Hernández-Allés S, Benedí VJ, Martínez-
Martínez L. Outer membrane profiles of clonally related Klebsiella pneumoniae isolates 
from clinical samples and activities of cephalosporins and carbapenems. Antimicrob 
Agents Chemother 1998; 42: 1636–1640. 

6  Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol 
Mol Biol Rev 2003; 67: 593–656. 

7  Alberti S, Rodriquez-Quinones F, Schirmer T, Rummel G, Tomas JM, Rosenbusch JP et 
al. A porin from Klebsiella pneumoniae: Sequence homology, three-dimensional model, 
and complement binding. Infect Immun 1995; 63: 903–910. 

8  Dutzler R, Rummel G, Albertí S, Hernández-Allés S, Phale PS, Rosenbusch JP et al. 
Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella 
pneumoniae. Structure 1999; 7: 425–434. 

9  Yamashita E, Zhalnina M V, Zakharov SD, Sharma O, Cramer WA. Crystal structures of 
the OmpF porin: function in a colicin translocon. EMBO J 2008; 27: 2171–80. 

10  Tsai YK, Fung CP, Lin JC, Chen JH, Chang FY, Chen TL et al. Klebsiella pneumoniae 
Outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance 
and virulence. Antimicrob Agents Chemother 2011; 55: 1485–1493. 

11  Garavito RM, Rosenbusch JP. Three-dimensional crystals of an integral membrane 
protein: an initial x-ray analysis. J Cell Biol 1980; 86: 327–329. 

12  Nikaido H, Rosenberg EY. Porin channels in Escherichia coli: Studies with liposomes 
reconstituted from purified proteins. J Bacteriol 1983; 153: 241–252. 

13  Alberti S, Marques G, Camprubi S, Merino S, Tomas JM, Vivanco F et al. Clq Binding 
and Activation of the Complement Classical Pathway by Klebsiella pneumoniae Outer 
Membrane Proteins. 1993; 61: 852–860. 

14  Conejo C, Pascual A, Toma JM. Role of Klebsiella pneumoniae Ompk35 porin in 



52 
 

antimicrobial resistance. Society 2003; 47: 3332–3335. 

15  Liu C, Chen Z, Tan C, Liu W, Xu Z, Zhou R et al. Immunogenic characterization of outer 
membrane porins OmpC and OmpF of porcine extraintestinal pathogenic Escherichia coli. 
FEMS Microbiol Lett 2012; 337: 104–111. 

16  Sato M, Machida K, Arikado E, Saito H, Kakegawa T, Kobayashi H. Expression of outer 
membrane proteins in Escherichia coli growing at acid pH. Appl Environ Microbiol 2000; 
66: 943–947. 

17  Zhang Y, Jiang X, Wang Y, Li G, Tian Y, Liu H et al. Contribution of β-lactamases and 
porin proteins OmpK35 and OmpK36 to carbapenem resistance in clinical isolates of 
KPC-2-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2014; 58: 1214–
1217. 

18  Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of 
carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, 
treatment options, and detection methods. Front Microbiol 2016; 7: 1–30. 

19  Dara JS, Chen L, Levi MH, Kreiswirth BN, Pellett madan R. Microbiological and genetic 
characterization of carbapenem-resistant Klebsiella pneumoniae isolated from pediatric 
patients. J Pediatric Infect Dis Soc 2014; 3. doi:10.1093/jpids/pit049. 

20  Liu YF, Yan JJ, Ko WC, Tsai SH, Wu JJ. Characterization of carbapenem-non-susceptible 
Escherichia coli isolates from a university hospital in Taiwan. J Antimicrob Chemother 
2008; 61: 1020–1023. 

21  Poulou A, Voulgari E, Vrioni G, Koumaki V, Xidopoulos G, Chatzipantazi V et al. 
Outbreak caused by an ertapenem-resistant, CTX-M-15-producing Klebsiella pneumoniae 
sequence type 101 clone carrying an OmpK36 porin variant. J Clin Microbiol 2013; 51: 
3176–3182. 

22  Clarke B, Hiltz M, Musgrave H, Forward KR. Cephamycin resistance in clinical isolates 
and laboratory-derived strains of Escherichia coli, Nova Scotia, Canada. Emerg Infect Dis 
2003; 9: 1254–1259. 

23  Bowers JR, Kitchel B, Driebe EM, MacCannell DR, Roe C, Lemmer D et al. Genomic 
analysis of the emergence and rapid global dissemination of the clonal group 258 
Klebsiella pneumoniae pandemic. PLoS One 2015; 10: 1–24. 

24  Hong JH, Clancy CJ, Cheng S, Shields RK, Chen L, Doi Y et al. Characterization of porin 
expression in Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae 
identifies isolates most susceptible to the combination of colistin and carbapenems. 
Antimicrob Agents Chemother 2013; 57: 2147–2153. 

25  Srinivasan VB, Venkataramaiah M, Mondal A, Vaidyanathan V, Govil T, Rajamohan G. 
Functional characterization of a novel outer membrane porin KpnO, regulated by PhoBR 
two-component system in Klebsiella pneumoniae NTUH-K2044. PLoS One 2012; 7. 
doi:10.1371/journal.pone.0041505. 

26  Shakib P, Ghafourian S, Zolfaghary MR, Hushmandfar R, Ranjbar R, Sadeghifard N. 
Prevalence of OmpK35 and OmpK36 porin expression in beta-lactamase and non-beta-



53 
 

lactamase-producing Klebsiella pneumoniae. Biol Targets Ther 2012; 6: 1–4. 

27  Delcour AH. Outer Membrane Permeability and Antibiotic Resistance. Biochim Biophys 
Acta 2009; 1794: 808–816. 

28  Srinivasan VB, Vaidyanathan V, Mondal A, Rajamohan G. Role of the two component 
signal transduction system CPxAR in conferring cefepime and chloramphenicol resistance 
in Klebsiella pneumoniae NTUH-K2044. PLoS One 2012; 7: 1–15. 

29  Franklin R. Cockerill, III M, Jean B. Patel, PhD D. M100-S25 Performance Standards for 
Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. Clin Lab 
Stand Inst 2015; : 44–49. 

30  Harder KJ, Nikaido H, Matsuhashi M. Mutants of Escherichia coli that are resistant to 
certain beta-lactam compounds lack the ompF porin. Antimicrob Agents Chemother 1981; 
20: 549–552. 

31  Bernardini ML, Fontaine A, Sansonetti PJ. The two-component regulatory system OmpR-
EnvZ controls the virulence of Shigella flexneri. J Bacteriol 1990; 172: 6274–6281. 

32  Raivio TL. Everything old is new again: An update on current research on the Cpx 
envelope stress response. Biochim Biophys Acta - Mol Cell Res 2014; 1843: 1529–1541. 

33  Batchelor E, Walthers D, Kenney LJ, Goulian M. The Escherichia coli CpxA-CpxR 
Envelope Stress Response System Regulates Expression of the Porins OmpF and OmpC. J 
Bacteriol 2005; 187: 5723–5731. 

34  Forst S, Delgado J, Rampersaud A, Inouye M. In vivo phosphorylation of OmpR, the 
transcription activator of the ompF and ompC genes in Escherichia coli. J Bacteriol 1990; 
172: 3473–3477. 

35  Yoshida T, Qin L, Egger LA, Inouye M. Transcription regulation of ompF and ompC by a 
single transcription factor, OmpR. J Biol Chem 2006; 281: 17114–17123. 

36  Head CG, Tardy A, Kenney LJ. Relative binding affinities of OmpR and OmpR-
phosphate at the ompF and ompC regulatory sites. J Mol Biol 1998; 281: 857–870. 

37  Maris AE, Walthers D, Mattison K, Byers N, Kenney LJ. The Response Regulator OmpR 
Oligomerizes via β-Sheets to Form Head-to-head Dimers. J Mol Biol 2005; 350: 843–856. 

38  Mattison K, Oropeza R, Byers N, Kenney LJ. A phosphorylation site mutant of OmpR 
reveals different binding conformations at ompF and ompC. J Mol Biol 2002; 315: 497–
511. 

39  Maroncle N, Balestrino D, Rich C, Forestier C. Identification of Klebsiella pneumoniae 
Genes Involved in Intestinal Colonization and Adhesion Using Signature-Tagged 
Mutagenesis. Infect Immun 2002; 70: 4729–4734. 

40  García-Sureda L, Doménech-Sánchez A, Barbier M, Juan C, Gascó J, Albertí S. OmpK26, 
a novel porin associated with carbapenem resistance in Klebsiella pneumoniae. 
Antimicrob Agents Chemother 2011; 55: 4742–4747. 

41  García-Sureda L, Juan C, Doménech-Sánchez A, Albertí S. Role of Klebsiella 



54 
 

pneumoniae LamB porin in antimicrobial resistance. Antimicrob Agents Chemother 2011; 
55: 1803–1805. 

42  Bosshart PD, Iordanov I, Garzon-Coral C, Demange P, Engel A, Milon A et al. The 
transmembrane protein KpOmpA anchoring the outer membrane of Klebsiella 
pneumoniae unfolds and refolds in response to tensile load. Structure 2012; 20: 121–127. 

43  Sukumaran SK, Shimada H, Nemani V, Prasadarao N V. Entry and Intracellular 
Replication of Escherichia coli K1 in Macrophages Require Expression of Outer 
Membrane Protein A. Infect Immun 2003; 71: 5951–5961. 

44  Prasadarao N V, Wass C a, Weiser JN, Stins MF, Huang SH, Kim KS. Outer membrane 
protein A of Escherichia coli contributes to invasion of brain microvascular endothelial 
cells. Infect Immun 1996; 64: 146–153. 

45  March C, Moranta D, Regueiro V, Llobet E, Tomás A, Garmendia J et al. Klebsiella 
pneumoniae outer membrane protein A is required to prevent the activation of airway 
epithelial cells. J Biol Chem 2011; 286: 9956–9967. 

46  Sandrini S, Masania R, Zia F, Haigh R, Freestone P. Role of porin proteins in acquisition 
of transferrin iron by enteropathogens. Microbiol (United Kingdom) 2013; 159: 2639–
2650. 

47  Turner KL, Cahill BK, Dilello SK, Gutel D, Brunson DN, Albertí S et al. Porin loss 
impacts the host inflammatory response to outer membrane vesicles of Klebsiella 
pneumoniae. Antimicrob Agents Chemother 2016; 60: 1360–1369. 

48  Hsieh PF, Liu JY, Pan YJ, Wu MC, Lin TL, Huang Y Te et al. Klebsiella pneumoniae 
peptidoglycan-associated lipoprotein and murein lipoprotein contribute to serum 
resistance, antiphagocytosis, and proinflammatory cytokine stimulation. J Infect Dis 2013; 
208: 1580–1589. 

49  Cress BF, Englaender JA, He W, Kasper D, Linhardt RJ, Koffas MAG. Masquerading 
microbial pathogens: Capsular polysaccharides mimic host-tissue molecules. FEMS 
Microbiol Rev 2014; 38: 660–697. 

50  Kabha K, Nissimov L, Athamna A, Keisari Y, Parolis H, Parolis LAS et al. Relationships 
among capsular structure, phagocytosis, and mouse virulence in Klebsiella pneumoniae. 
Infect Immun 1995; 63: 847–852. 

51  Turton JF, Baklan H, Siu LK, Kaufmann ME, Pitt TL. Evaluation of a multiplex PCR for 
detection of serotypes K1, K2 and K5 in Klebsiella sp. and comparison of isolates within 
these serotypes. FEMS Microbiol Lett 2008; 284: 247–252. 

52  Fang C-T, Chuang Y-P, Shun C-T, Chang S-C, Wang J-T. A novel virulence gene in 
Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic 
complications. J Exp Med 2004; 199: 697–705. 

53  Domenico P, Schwartz S, Cunha B a. Reduction of capsular polysaccharide production in 
Klebsiella pneumoniae by sodium salicylate. Infect Immun 1989; 57: 3778–3782. 

54  Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR 



55 
 

Bacteria in the Airway. Physiol Rev 2016; 96: 19–53. 

55  Frank CG, Reguerio V, Rother M, Moranta D, Maeurer AP, Garmendia J et al. Klebsiella 
pneumoniae targets an EGF receptor-dependent pathway to subvert inflammation. Cell 
Microbiol 2013; 15: 1212–1233. 

56  Shon AS, Bajwa RPS, Russo T a. Hypervirulent (hypermucoviscous) Klebsiella 
pneumoniae: a new and dangerous breed. Virulence 2013; 4: 107–18. 

57  Wacharotayankun R, Arakawa Y, Ohta M, Tanaka K, Akashi T, Mori M et al. 
Enhancement of extracapsular polysaccharide synthesis in Klebsiella pneumoniae by 
RmpA2, which shows homology to NtrC and FixJ. Infect Immun 1993; 61: 3164–3174. 

58  Merino S, Camprubí S, Albertí S, Benedí VJ, Tomas JM. Mechanisms of Klebsiella 
pneumoniae resistance to complement-mediated killing. Infect Immun 1992; 60: 2529–
2535. 

59  Opal SM. Significance of sialic acid in Klebsiella pneumoniae K1 capsules. Virulence 
2014; 5: 648–649. 

60  Schembri MA, Blom J, Krogfelt KA, Klemm P. Capsule and fimbria interaction in 
Klebsiella pneumoniae. Infect Immun 2005; 73: 4626–4633. 

61  Loos M, Clas F. Antibody-independent killing of gram-negative bacteria via the classical 
pathway of complement. Immunol Lett 1987; 14: 203–208. 

62  Cano V, March C, Insua JL, Aguiló N, Llobet E, Moranta D et al. Klebsiella pneumoniae 
survives within macrophages by avoiding delivery to lysosomes. Cell Microbiol 2015; 17: 
1537–1560. 

63  Low AS, MacKenzie FM, Gould IM, Booth IR. Protected environments allow parallel 
evolution of a bacterial pathogen in a patient subjected to long-term antibiotic therapy. 
Mol Microbiol 2001; 42: 619–630. 

64  Stoesser N, Xayaheuang S, Vongsouvath M, Phommasone K, Elliott I, del Ojo Elias C et 
al. Colonization with Enterobacteriaceae producing ESBLs in children attending pre-
school childcare facilities in the Lao People’s Democratic Republic. J Antimicrob 
Chemother 2015; 70: 1893–7. 

65  Kurupati P, Ramachandran NP, Poh CL. Protective efficacy of DNA vaccines encoding 
outer membrane protein A and OmpK36 of Klebsiella pneumoniae in mice. Clin Vaccine 
Immunol 2011; 18: 82–88. 

66  Turner AK, Stephens JC, Beavis JC, Greenwood J, Gewert C, Randall R et al. Generation 
and characterization of a live attenuated enterotoxigenic Escherichia coli combination 
vaccine expressing six colonization factors and heat-labile toxin subunit B. Clin Vaccine 
Immunol 2011; 18: 2128–2135. 

67  Khan J, Sharma PK, Mukhopadhaya A. Vibrio cholerae porin OmpU mediates M1-
polarization of macrophages/monocytes via TLR1/TLR2 activation. Immunobiology 2015; 
220: 1199–1209. 



56 
 

68  Jarzab A, Witkowska D, Ziomek E, Dabrowska A, Szewczuk Z, Gamian A. Shigella 
flexneri 3a Outer Membrane Protein C Epitope Is Recognized by Human Umbilical Cord 
Sera and Associated with Protective Activity. PLoS One 2013; 8. 
doi:10.1371/journal.pone.0070539. 

69  Serushago B a, Mitsuyama M, Handa T, Koga T, Nomoto K. Role of antibodies against 
outer-membrane proteins in murine resistance to infection with encapsulated Klebsiella 
pneumoniae. J Gen Microbiol 1989; 135: 2259–2268. 

70  Yadav SK, Sahoo PK, Dixit A. Characterization of immune response elicited by the 
recombinant outer membrane protein OmpF of Aeromonas hydrophila, a potential vaccine 
candidate in murine model. Mol Biol Rep 2014; 41: 1837–1848. 

71  Diaz-quin A, Martin-orozco N, Isibasi A. Two Salmonella OmpC K b -Restricted 
Epitopes for CD8 ϩ -T-Cell Recognition. Society 2004; 72: 3059–3062. 

72  Price BM, Legutki JB, Galloway DR, Specht V, Gilleland LB, Gilleland HE et al. 
Enhancement of the protective e ⁄ cacy of an oprF DNA vaccine against Pseudomonas 
aeruginosa. FEMS Immunol Med Microbiol 2002; 33: 89–99. 

73  Insua JL, Llobet E, Moranta D, Perez-Gutierrez C, Tomas A, Garmendia J et al. Modeling 
Klebsiella pneumoniae Pathogenesis by Infection of the Wax Moth Galleria mellonella. 
Infect Immun 2013; 81: 3552–3565. 

74  Liu YF, Yan JJ, Lei HY, Teng CH, Wang MC, Tseng CC et al. Loss of outer membrane 
protein C in Escherichia coli contributes to both antibiotic resistance and escaping 
antibody-dependent bactericidal activity. Infect Immun 2012; 80: 1815–1822. 

75  Name P, Catalog A, Information C, Identitycompany S, Various I, Cultures M et al. S a f 
e t y d a t a s h e e t. 2012; 4: 1–4. 

76  Sypro S, Protein R, Stain G. SYPRO ® Ruby Protein Gel Stain. Glass 2005; : 1–7. 

77  CLSI Breakpoints. 2012; : 20–23. 

78  Lin T-L, Yang F-L, Yang A-S, Peng H-P, Li T-L, Tsai M-D et al. Amino acid 
substitutions of MagA in Klebsiella pneumoniae affect the biosynthesis of the capsular 
polysaccharide. PLoS One 2012; 7: e46783. 

79  Facts Q, Contents K. Pro-Q ® Emerald 300 Lipopolysaccharide Gel Stain Kit (P20495). 
2007; 5: 5–8. 

80  Azad M a K, Baker M a, Thompson PE, Roberts K, Roger L. Klebsiella pneumoniae 
strains with under-acylated lipid A. 2014; 19: 265–277. 

81  Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. 
Nucleic Acids Res 2001; 29: e45. 

82  Identitycompany S, Product I, Animal V, Cultures C, Level B, Catalog A et al. S a f e t y 
d a t a s h e e t. 2014; 5: 1–5. 

83  Hunt JJ, Wang J-T, Callegan MC. Contribution of mucoviscosity-associated gene A 
(magA) to virulence in experimental Klebsiella pneumoniae endophthalmitis. Invest 



57 
 

Ophthalmol Vis Sci 2011; 52: 6860–6. 

84  Yeh KM, Kurup A, Siu LK, Koh YL, Fung CP, Lin JC et al. Capsular serotype K1 or K2, 
rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae 
liver abscess in Singapore and Taiwan. J Clin Microbiol 2007; 45: 466–471. 

85  Harris LK, Dye NA, Theriot JA. A Caulobacter MreB mutant with irregular cell shape 
exhibits compensatory widening to maintain a preferred surface area to volume ratio. Mol 
Microbiol 2014; 94: 988–1005. 

86  Manuscript A, Endotoxins L. NIH Public Access. October 2008; : 1–57. 

87  Clin A, Med E, Tichaczek-goska D, Witkowska D, Cisowska A, Jankowski S et al. 
Original Papers. 2012; : 289–299. 

88  Cahill B. The Effect of O Antigen Loss on the Protein Composition and Inflammatory 
Response Elicited by Klebsiella pneumoniae. 2015. 

89  Ortiz-Suarez ML, Samsudin F, Piggot TJ, Bond PJ, Khalid S. Full-Length OmpA: 
Structure, Function, and Membrane Interactions Predicted by Molecular Dynamics 
Simulations. Biophys J 2016; 111: 1692–1702. 

90  Domenico P, Diedrich DL, Straus DC. Extracellular polysaccharide production by 
Klebsiella pneumoniae and its relationship to virulence. Can J Microbiol 1985; 31: 472–
478. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 
 

Vita 

Debra N Brunson obtained her BS in Microbiology in 2013 from Idaho State University in 
Pocatello, Idaho. While there she published a paper titled “Antigen Detection in Canine 
Blastomycosis: Comparison of Different Antibody-Antigen Combinations in Two Competitive 
ELISAs”. Debra has spent the last 3 years working on her thesis research in pathogenic 
microbiology under mentor Dr. Terri N Ellis and was part of a publication titled “Porin loss 
impacts the host inflammatory response to outer membrane vesicles of Klebsiella pneumoniae”.  
She also presented her research at the national meeting for the American Society for 
Microbiology in May of 2015. After graduation Debra hopes to be accepted into a PhD program 
to continue research on pathogenic bacteria and immunology.  

 

 


