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ABSTRACT 

Traffic incidents cause severe problems on roadways. About 6.3 million highway crashes are 

reported annually only in the United States, among which more than 32,000 are fatal crashes. 

Reducing the risk of traffic incidents is key to effective traffic incident management (TIM). Quick 

detection of unexpected traffic incidents on roadways contribute to quick clearance and hence 

improve safety. Existing techniques for the detection of freeway incidents are not reliable. 

This study focuses on exploring the potential of emerging connected vehicles (CV) technology in 

automated freeway incident detection in mixed traffic environment. The study aims at developing 

an automated freeway incident detection algorithm that will take advantage of the CV technology 

in providing fast and reliable incident detection. Lee Roy Selmon Expressway was chosen for this 

study because of the THEA CV data availability.  

Findings of the study show that the emerging CV technology generates data that are useful for 

automated freeway incident detection, although the market penetration rate was low (6.46%). The 

algorithm performance in terms of detection rate (DR) and false alarm rate (FAR) indicated that 

CV data resulted into 31.71% DR and zero FAR while HERE yielded a 70.95% DR and 9.02% 

FAR. Based on Pearson’s correlation analysis, the incidents detected by the CV data were found 

to be similar to the ones detected by the HERE data. The statistical comparison by ANOVA shows 

that there is a difference in the algorithm’s detection time when using CV data and HERE data. 

17.07% of all incidents were detected quicker when using CV data compared to HERE data, while 

7.32% were detected quicker when using HERE data compared to CV data.  
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CHAPTER 1 INTRODUCTION 

Traffic incidents such as crashes, vehicle breakdowns and spilled loads cause severe problems on 

roadways. They are a source of traffic delays, traffic congestion, environmental pollution, 

vehicular damage, personal injury, and secondary accidents (Yang et al., 2017). They deteriorate 

traffic safety and operational conditions. About 6.3 million highway crashes are reported annually 

only in the United States, among which more than 32,000 are fatal crashes (NHTSA, 2016). In 

2014, motorists spent about 6.9 billion hours and 3.1 billion gallons of fuel, equivalent to 

approximately $160 billion, because of traffic congestion in the United States (Schrank et al., 

2015). Traffic incidents also account for more than a half of all urban traffic delays and almost all 

rural traffic delays (Baykal-Gürsoy et al., 2009). Furthermore, traffic incidents increase the chance 

of occurrence of secondary crashes (SCs) (Karlaftis et al., 1999). For every additional minute an 

incident is present on the freeway during a peak travel period, the chance of secondary crash 

occurrence increases by 2.8% and result into a 4-minute delay to the traffic using the freeway 

(Owens et al., 2010).  

Reducing the risk of traffic incidents is key to effective traffic incident management (TIM) (Owens 

et al., 2009). There has been a growing interest by transportation agencies in addressing traffic 

incidents once they occur. In practice, many TIM agencies have adopted quick clearance policy 

for minimizing the traffic flow disruption and reduce the potential for secondary incidents (Xie et 

al., 2018). An aggressive clearance strategy plays a big role on incident management and incident 

duration. However, implementation of this strategy depends on how fast the incidents are detected. 

Delay in detection increases traffic congestion and the chance of another crash hence making hard 
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for the responders to reach the incident scene. Quick detection of unexpected traffic incidents on 

roadways contribute largely to quick clearance and hence reduce traffic delays and increase safety. 

Fast and reliable freeway incident detection guide the traffic flow toward smooth operation by 

communicating relevant information to travelers entering the freeway upstream of the incident 

(Stephanedes et al., 1992).  

Different techniques have been used to detect freeway incidents as quick as they occur. These 

include cellular telephone call-ins, navigation applications such as WAZE, closed-circuit 

television (CCTV) cameras, road sensors/detectors, automatic freeway incident detection (AID) 

algorithms and freeway service patrol such as road rangers. After the initial detection, the incident 

is verified using the traffic monitoring video cameras, or a freeway service patrol in areas that do 

not have video coverage, or areas outside of the planned coverage.  

Existing techniques for the detection of freeway incidents do not provide the necessary reliability 

for freeway operations. For instance, telephone call-in is not applicable in some condition as the 

use of telephone while driving is against the law, navigation application tends to produce a lot of 

false alarms and location inaccuracy. Majority of AID algorithms generates high level of false 

alarms and poor detection rate that operators are unable to rely on. Lastly CCTV cameras, sensors 

and highway service patrol cover only some areas and hence make freeway incident detection 

unreliable in many areas. 

Recent technology advancements, especially in the areas of information and communication, 

enables vehicles to sense their environment, communicate with other entities, such as other 

vehicles, drivers, pedestrians, and roadside units, and eventually to be self-navigating, without 
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human input. Connected Vehicles (CVs) have potential of improving transportation incident 

management, given the capability of CVs to communicate important information between 

themselves and the surrounding infrastructure (Iqbal et al., 2018). This potential, coupled with 

roadside equipment, can subsequently provide the ability to alert drivers about downstream 

incidents, which can lead to enhanced safety and mobility. A notable benefit of such technology 

could be an automated freeway incident detection. 

Study Objective 

Although the CV technology seems to have potential of improving transportation incident 

management, its usability in an automated freeway incidents detection in mixed traffic 

environment is not yet investigated. This study focuses on exploring the potential of the emerging 

CV technology in automated freeway incident detection in mixed traffic environment. The study 

aims at developing an automated freeway incident detection algorithm that will use the CV 

technology in providing fast and reliable freeway incident detection. 

Thesis Organization 

This thesis contains six chapters. Chapter 1 gives the general introduction and study objective. 

Chapter 2 provides an extensive literature review on the CV technology and automated freeway 

detection algorithms. Chapter 3 discusses the framework of the study methodology and the 

proposed algorithm. Chapter 4 describes the study site and the data collection effort. Chapter 5 

discusses the analysis and results, and finally, Chapter 6 outlines the conclusions and 

recommendations for future work.  
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CHAPTER 2 LITERATURE REVIEW 

This chapter provides a summary of an extensive literature review on automated incident detection 

(AID) algorithms and connected vehicles (CVs) technology. A critical review of the most widely 

accepted conventional incident detection algorithms are presented and their limitations discussed. 

Some emerging incidents detection techniques are also reviewed and lastly the CV technology is 

reviewed and its potential for use in automated incident detection. 

2.1 Automated Incident Detection Algorithms 

The automated incident detection (AID) is a method for quickly detecting potential incidents once 

they occur (Li et al., 2013). AID has been researched, and tested since the 1970s (Martin et al., 

2001). During that time, many incident detection methods and algorithms were developed. There 

are several comprehensive studies focusing on or containing a state-of-the-art literature review of 

existing incident detection algorithms (Parkany et al., 2005; Stephanedes et al., 1992b; Martin et 

al., 2001). Each of the above studies had slightly different evaluation scopes, classification 

schemes, and performance results.  Although the algorithms have different structural complexities, 

data requirements, calibration and implementation methods, most of them use data from fixed in-

road or roadside sensors on freeways and their performance is heavily affected by the data quality, 

which is a function of the detection accuracy and reliability of sensors. Based on the data collection 

techniques used, the automated incident detection algorithms can be classified into; roadway-based 

algorithm, probe-based algorithms and video image processing. The following section discusses 

the mentioned algorithm categories in detail. 
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Roadway-Based Algorithms 

Roadway-based algorithms relies on the traffic data that are usually collected from roadway-based 

sensors such as inductive loop detectors, magnetic sensors, microwave sensors, infrared sensors, 

ultrasonic sensors, acoustic sensors and laser sensors. Studies by Parkany et al., (2005) and Martin 

et al., (2001) categorized roadway-based incident detection algorithms into four classes: (1) pattern 

recognition, (2) catastrophe theory, (3) statistical, and (4) artificial intelligence. While pattern and 

statistical based algorithms were first created in the 1970s, artificial intelligence is the latest and 

least mature of the four. The brief summary of these categories and their corresponding algorithms 

are given in the following section followed by a brief summary of their performance. 

Currently, pattern-based algorithms are the most commonly used. They use occupancy, traffic 

volume, and traffic flow data. Potential incidents are recognized by identifying abnormal patterns 

in the data for a stretch of a roadway. This method requires preset thresholds that define normal 

interrupted flow. Anything outside of ‘normal flow’ should set off an alarm. Setting these 

thresholds is difficult and time consuming as they play an important role in the algorithm 

performance. Algorithms that fit into this category include the California Algorithm, Traffic 

Services Corporation (TSC) Algorithm 7, Traffic Services Corporation (TSC) Algorithm 8, All 

Purpose Incident Detection (APID), and Pattern Recognition Algorithm (PATREG). 

The catastrophe theory adopts its name from sudden discrete changes that occur in one variable of 

interest while other related variables exhibit smooth and continuous change. These variables are 

speed, flow, and occupancy. When speed drops dramatically without a corresponding increase in 

occupancy and flow, an alarm sounds. Catastrophe algorithms can differentiate between incidents 
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and recurring congestion, congestion builds up slowly, while incidents cause a sudden queue to 

develop and drastic changes in speed to occur. The only type of algorithm that fits into this 

classification is the McMaster algorithm. 

Statistical methods compare real-time traffic data with data forecasts. These algorithms model the 

actual traffic patterns, using time series data, and create a forecasted range of values. Any 

unexpected changes in traffic are compared to the forecasted traffic flows for use in classifying 

incidents. The advantage to this method is that it does not require large amounts of data. 

Algorithms that fit into this category are a High Occupancy (HIOCC) algorithm, a Double 

Exponential Smoothing (DES) algorithm, a Bayesian algorithm, Auto-Regressive Integrated 

Moving-Average (ARIMA) time series algorithm, Single-Station Incident Detection (SSID) 

algorithm, Standard Normal Deviates (SND) and filtering models. 

Artificial Intelligence (AI) is a recent development of AID algorithms. These algorithms detect 

incidents by either a rule-based algorithm or an algorithm that has learned to recognize incident 

patterns. Neural Networks and a Fuzzy Set Logic are the main AI applications that have been 

applied to AID.  

Table 2.1 gives a summary of the existing AID algorithms, traffic parameters used and number of 

detector stations. Traffic variables used most frequently are speed, volume, and occupancy. Single-

station algorithms are based on traffic data obtained from only one traffic detector located either 

upstream or downstream of a traffic incident. Dual-station algorithms adopt traffic data obtained 

from detectors located at both the upstream and downstream of a traffic incident. Detection rate 
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(DR), false alarm rate (FAR), and mean time to detect (MTTD) are the three parameters that have 

been mostly used to measure the performance of AID algorithms. 

Table 2.1: The reported performance of existing incident detection algorithms (Source: 

Parkany & Xie, 2005, Martin et al., 2001) 

 

Based on literature, when most of these traditional AID systems were installed, the number of false 

alarms became a problem causing the transportation agencies to stop using them. Moreover, other 

systems have a poor detection rate that operators were unable to rely on them as the primary 

method of incident detection. The tendency of frequently malfunction of the majority of roadway-

based detectors makes traffic data unreliable, and hence lead to poor performance of the 

algorithms. In additional to that, the installation and maintenance of roadway sensors is costly 

hence only available in a few targeted areas. 

 

Volume Occupancy Speed Single Dual DR (%) FAR (%) MTTD (min)
California Algorithm * * 82.00 1.73 0.85
TSC Algorithm 7 * * 67.00 0.13 2.91
TSC Algorithm 8 * * 68.00 0.18 3.04
APID Algorithm * * 89.00 0.05 2.50

Catastrophe Theory McMaster Algorithm * * * * * 100.00 0.04 1.50

HIOCC Algorithm * * 96.00 2.60 2.50
ARIMA Algorithm * * 100.00 1.50 0.40
SND Algorithm * * 92.00 1.30 1.10
DES Algorithm * * * * 92.00 1.87 0.70
Filtering Models * * 80.00 0.35 3.00
Bayesian Algorithm * * 100.00 0.00 4.00
SSID Algorithm * * 100.00 0.20 3.00
Neural Networks * * * * * 89.00 0.92 0.96
Fuzzy Set Algorithm * * * * * N.A N.A N.A

Artificial Intelligence

Number of StationsTraffic Variables
AlgorithmType of Algorithm

Measure of Performance

Pattern Recognition

Statistical
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Probe-Based Algorithms 

Probe-based algorithms derive traffic data from probe-based sensors. Probe-based sensors refer to 

vehicle-mounted sensors that have positioning or identification functions and have the capability 

of transmitting real-time individual probe data to roadside readers or to a remote base station 

through wireless communication. Compared to roadway-based sensors, this type of sensor is 

mobile and hence can sense the spatial variation of traffic flow over a wide area (Parkany & Xie, 

2005). Probe-based sensor technologies include automatic vehicle location (AVL), cellular 

positioning systems, and automatic vehicle identification (AVI). Automatic vehicle location 

(AVL) systems are designed to determine the location of a vehicle at a particular point in time 

using long-range communication (Hellinga & Knapp, 2000).  The most widely used AVL 

technology is the global positioning system (GPS). Automatic Vehicle Identification (AVI) is 

designed to identify a vehicle that is situated at a specific location at a specific time using short-

range communication (Bernstein & Kanaan, 1993).  AVI systems have two primary components, 

the transponder and the reader, with a wireless communication link between them. Some of the 

applications of the AVI technology include electronic toll collection (ETC), electronic congestion 

pricing (ECP), and fleet control. The following algorithms belong to probe-based group; 

ADVANCE algorithm, The Texas Transportation Institute (TTI) algorithm, TRANSMIT 

algorithm and Waterloo algorithm. Most of these algorithms make use of travel time to detect 

traffic variations in order to judge whether an incident has occurred or not. ADVANCE and 

Waterloo algorithms were based on simulation experiments while TTI and TRANSMIT were 

based on the field data obtained from Texas and New York City (NYC) respectively. Probe-based 

algorithms are highly controlled by the penetration rate of vehicles equipped with sensors in a 
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traffic network, the lower the penetration the lower the performance of these algorithms. 

Moreover, GPS-based incident detection scheme may suffer from weakening or even blockage of 

the GPS satellite signals caused by high buildings in the area. 

Video Image Processing  

Video Image Processors (VIP) employ machine vision techniques to automatically analyze traffic 

data collected with Closed Circuit Television (CCTV) systems or other video cameras (Martin et 

al., 2001). A VIP system consists of one or more video cameras, a microprocessor-based computer 

for digitizing and processing the video imagery, and software for interpreting the images and 

converting them into traffic flow data (Parkany & Xie, 2005). Video image technology can provide 

information about traffic flow at a higher level, it can measure travel times, average speed, and 

detect stalled or stopped vehicles within the detection zone. The image-processing program 

interprets the entire video image to find stationary or slow-moving vehicles, to detect an incident. 

An Autoscope incident detection algorithm (AIDA) is an example of the image processing 

algorithms. The AIDA algorithm takes advantage of temporal variations of traffic characteristics 

in addition to spatial ones, it looks for rapid traffic breakdowns, comparing speed and occupancy 

with the preset thresholds for determining congestion levels (Mahmassani et al., 1998). AIDA has 

been reported to have DR of 80% with only a 3% FAR and MTTD of 63 sec (Martin et al., 2001). 

One of advantages of the image processing-based incident detection technique is that a detected 

incident in the field of view of a video camera can be verified visually in a short time.  It is also 

capable of monitoring traffic and detecting incidents outside of through lanes, e.g., shoulders, 

intersections, or ramps, and under both low and high-volume traffic conditions (Parkany & Xie, 
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2005). Although the image processing technology shows promising results, it only applicable 

within the range of the camera’s vision. Video image processing algorithms also degrade as 

visibility decreases. It is highly affected by weather and lighting conditions.  

2.2 Application of Smartphones  

Freeway incidents have been detected by cellular telephone for decades using emergency calls 

from drivers. The emerging of smartphones lead to the rise of navigation applications such as 

WAZE. WAZE is a navigation application that leverages crowdsourced user reports for providing 

service. This system allows users to create and send highway advisory messages from their 

smartphone at the incident scene. The use of this communication technology helps motorists know 

what is happening on the road, alerts them instantly about the traffic, incidents, police, 

construction, and even detour suggestions to save time (Waze, 2006). 

A study by Amin-Naseri et al., (2017) evaluated the reliability, coverage, and added value of 

crowdsourced traffic incident reports from WAZE in Iowa. The study concluded that the 

crowdsourced data stream from WAZE is an invaluable source of information for broad coverage 

traffic monitoring, covering 43.2% of Iowa’s Advanced Traffic Management System (ATMS) 

crash and congestion reports. The WAZE application also offered timely reporting, 9.8 minutes 

earlier than the probe-based alternative, on average, and with reasonable geographic accuracy. 

WAZE reports currently make significant contributions to incident detection and were found to 

have potential to further complement the ATMS coverage. 
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Although crowdsourced data are usually relatively inexpensive, there are challenges in 

understanding and interpreting this type of data. Crowdsourced data may be slightly inaccurate in 

time and/or location of an incident. For example, for users traveling on a freeway at 60 miles per 

hour, a 30 second delay in reporting an incident will result in a 0.5-mile error in the incident 

location. Moreover, users may assume irregular congestion may be due to a crash event and report 

a crash when none exists. For less crowded hours of the day (12 a.m. to 6 a.m.), WAZE reports 

are not a reliable source for monitoring road conditions.  

2.3 Traffic Managing Software  

The traffic managing software such as SunGuideTM offers a comprehensive set of tools to the 

traffic management centers (TMCs), including managing Intelligent Transportation Systems (ITS) 

devices, incident detection, and assisting with event management. TMCs manage traffic flow along 

the roadway network by monitoring closed-circuit television (CCTV) cameras, road 

sensors/detectors, video wall, and other ITS devices, and coordinating with law enforcement 

agencies, and Road Ranger service patrols. Since SunGuideTM is an open architecture-based 

software, it enables users to manage multiple subsystems. Operators can use the software to 

perform incident management tasks, obtain real-time traffic data from vehicle detection systems, 

and display videos from roadside cameras, and then alert motorists using DMS messages and the 

highway advisory radio.  

These activities are fairly time consuming. If the roadway network has too few ITS devices, TMC 

operators have to depend heavily on law enforcement officers and Road Rangers, spending a 

significant portion of their time in coordination. However, if the roadway network has a significant 
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penetration of ITS devices, then TMC operators could be overwhelmed with information from 

each of these devices. Installing and managing this system is costly hence only covers some 

targeted areas and make freeway incident detection unreliable in many areas. 

2.4 Connected Vehicle Technology 

Recent technology advancements, especially in the areas of information and communication 

enable vehicles to sense their environment, communicate with other entities, such as other 

vehicles, pedestrians, and roadside units, and eventually to be self-navigating, without human 

input. CVs have the potential of improving transportation incident management, given the 

capability of CVs to communicate important information between themselves and the surrounding 

infrastructure (Iqbal et al., 2018). This potential, coupled with roadside equipment, can 

subsequently provide the ability to alert drivers of downstream incidents, which can lead to 

enhanced safety and mobility. A notable benefit of such technology could be the automated 

freeway incident detection on mixed traffic environment.  

Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications are key aspects of 

CV technology. V2V communication allows CVs to essentially “speak” with each other, by 

transmitting basic safety messages (BSMs) through Vehicle Ad-hoc Network (VANETs) and most 

often using the Dedicated Short-Range Communication (DSRC) protocol (Yang et al., 2017). 

DSRC systems typically involve vehicle on-board units (OBUs) with transceivers and 

transponders to receive and broadcast relevant information. The OBUs provide situational 

awareness to drivers, giving them the opportunity to make travel decisions in response to abnormal 

conditions downstream, intersection approach queues, and incident sites. Unlike V2V 
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communication, V2I involves communication between vehicles and infrastructure equipment. 

Through this communication system, CVs share information with road side units (RSUs) linked 

to ground servers and traffic control centers (Yang et al., 2017). V2I communication could convey 

various real-time traffic information, including the presence of downstream congestion, advisory 

speed limits on sharp curves, traffic signal status, stop sign warnings, and pedestrian crosswalk 

warnings. Such real-time information promotes driver awareness, which may improve safety for 

motorists (Marshall et al., 2016). 

One of the largest CV deployments in the nation is in Ann Arbor, Michigan. In this initiative, also 

known as Safety Pilot Model Deployment (SPMD), more than 3,000 OBUs have been installed in 

vehicles and are used to collect and send various data, including Signal Phasing and Timing (SPaT) 

and Basic Safety Messages (BSM) (Xie et al., 2018).  BSMs, known globally as messages 

containing safety information of a vehicle and transmitted periodically to surrounding vehicles, 

are a subset of the SPMD dataset (Henclewood & Rajiwade, 2015). Several studies have explored 

the potential of CVs by using this dataset. One study by Liu & Khattak (2016) investigated the 

potential of instantaneous driving decisions contained in BSMs, such as hard accelerations or 

braking and quick lane changes, in identifying critical events. The study indicated that BSMs can 

inform drivers about their driving behaviors or dangers in surrounding roadway environment. The 

study also pointed out that the information is simple and informative, and helps drivers make 

informed decisions. Another study by Xie et al. (2018) explored the potential of using CV data to 

identify high-risk locations in a more proactive manner, without relying on the historical crash 

data that often takes considerable time to collect. The study concluded that high-risk locations 
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identified by CV data were found to be similar to the ones identified by historical rear-end crash 

data.  

Another CV pilot deployment program was launched in September 2015 to deploy, test and 

operationalize cutting-edge mobile and roadside technologies and to enable multiple connected 

vehicle applications. This program was sponsored by the Intelligent Transportation Systems (ITS) 

Joint Program Office (JPO), under USDOT which awarded cooperative agreements to three 

agencies; New York City Department of Transportation, Tampa Hillsborough Expressway 

Authority and Wyoming Department of transportation. Tampa-Hillsborough Expressway 

Authority (THEA) owns and operates the Selmon Reversible Express Lanes (REL), which is a 

first-of-its-kind facility to address urban congestion. THEA pilot has deployed a variety of vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I) applications to relieve congestion, reduce 

collisions, and prevent wrong-way entry at the REL exit. The THEA CV Pilot uses DSRC to enable 

transmissions among approximately 1,600 cars, 10 buses, 10 trolleys, 500 pedestrians with 

smartphone applications, and approximately 40 roadside units along city streets (THEA, 2018). 

Currently no study has explored the potential of CVs by using this dataset. 

CV technologies collect point-to-point traffic data over a road section. Point-to-point traffic data 

such as travel time better describe traffic conditions over a road section (Hellinga & Knapp, 2000). 

This advantage seems to solve the detector/sensor spacing which was reported as a major challenge 

of majority of the AID algorithms. Currently there is no study that has explored the potential of 

CVs in automated freeway incident detection by using any of CVs pilot dataset. Therefore, this 

study explores the usability of CVs technology on automated freeway incident detection. 
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CHAPTER 3 METHODOLOGY 

Different traffic parameters such as volume, speed and occupancy respond to traffic incidents 

differently in time and magnitude (Corby et al., 1997). It is therefore important to select the proper 

traffic parameters inputs to the proposed algorithm. The proposed algorithm relies on the principle 

of pattern recognition and the statistical method, by identifying patterns in the data that are 

considered ‘normal’ for a stretch of a roadway and use the statistical approach to create a forecasted 

bound of normal flow. To detect incidents, real-time traffic speed is compared to the predefined 

thresholds.  

Traffic speed has seldom been used in automated incident detection algorithms due the reason that 

the majority of previous AID algorithms retrieved data from roadway-based sensors such as 

inductive loop detectors. These detectors collect traffic flow and occupancy only. With 

advancement of technology, traffic speed can be collected with even more accurate nowadays. 

Therefore, this study adopts traffic speed as the metric used for the proposed algorithm. 

Traffic speed is one of the most commonly used traffic parameter as an indicator of traffic incidents 

(Lee et al., 2003). When traffic incidents block traffic lanes, vehicles tend to decelerate and others 

change lanes, and the traffic stream at the upstream of a traffic incident may change from the 

homogeneous pattern to the stop-and-go pattern. Thus, there is an abrupt change in traffic speed 

before an incident and just after the incident. Therefore, traffic speed just before an incident and 

immediately after an incident can be used to detect incident-induced traffic disturbances. 

 



16 

 

3.1 Input Data to the Proposed Algorithm 

Mean Travel Speed (MTS) 

MTS is simply the average speed, calculated by Eq. (1). In the previous algorithms, the traffic data 

were aggregated in the range of 30 seconds to 3 minutes intervals and the threshold values were 

established for the past 3 to 5 minutes (Parkany et al., 2005). However, the study by Guo et al., 

(2018) observed lack of stability in traffic flow data for short time intervals, and 15 minutes had 

been suggested as the time interval to obtain stable traffic flow rates (Smith et al., 2003). Different 

studies have adopted 15-minutes interval as traffic flow measurement interval. One study by Haule 

et al., (2018) aggregated the traffic data in 15-minutes intervals to estimate the incident impact 

duration and the results were promising. Therefore, this study adopted 15-minute interval as the 

measurement interval. The speed profiles were plotted by considering the mean speed aggregated 

in 15-minute intervals. 

Bounds of Flows 

To consider the variations in the recurrent travel speed profiles, the 95% confidence interval was 

used to define the upper and lower bounds. Upper and lower bounds were calculated by using 

standard deviation approach. Standard deviation is the measure of the amount of variation of a 

value from the mean speed. It is simply the square root of the variance as shown on Eq. (2). The 

standard deviation is commonly used to measure confidence in statistical analyses. The confident 

limits (margin of error) are computed from the standard error of the mean or alternatively from the 
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product of the standard deviation of the population and the inverse of the square root of the sample 

size, as illustrated on Eq. (3).  

𝑠௧̅ =
෌ ௦೔

೔స೙

೔సభ

௡
                                                                                                                                       (1) 

𝜎௧ = ට෌ (௦೔ି௦೟̅)మ೔స೙

೔సభ

௡ିଵ
                                                                                                                                        (2) 

Confident interval 𝑠௧̅ ± 𝑧
ఙ೟

√௡
                                                                                                                             (3) 

where 𝑠௧̅ and 𝜎௧ = the mean traffic speed and standard deviate at current time interval t, 

respectively; 𝑠௜= the traffic speed at time i; n = the number of time intervals over the sampling 

period prior to the current time interval t. The Z value at 95% confidence interval (1.96), was used, 

hence, the upper bound and lower bound were calculated as 𝑠௧̅ + 1.96
ఙ೟

√௡
   and 𝑠௧̅ − 1.96

ఙ೟

√௡
 , 

respectively.    

3.2 Detection Logic of the Proposed Algorithm 

The historical traffic flow pattern and real-time traffic flow condition just prior to a traffic incident 

and just after a traffic incident have significant influence on the performance of automatic incident 

detection algorithms. In this proposed algorithm, real-time traffic data are used for preliminary 

detection while historical traffic flow pattern are used for the persistence test. The persistence test 

is used to reduce false alarms, due to its ability to distinguish between incident and bottleneck 

congestion, compression shock-waves, and random fluctuations in the data. If the conditions in 

both the preliminary test and the persistence test are met, an incident alarm is triggered.  
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Preliminary test 

In the preliminary test, MTS are calculated in 60-second intervals and compared with the bound 

of flow established in the past 15-minute interval. Traffic incidents are regarded as preliminarily 

detected if the MTS value calculated in 60-second intervals fall below the threshold values 

established in the past 15 minutes. These threshold values are different under various traffic flow 

conditions. 

Persistence test 

The persistence test is conducted to confirm the preliminarily detected traffic incident and to 

improve the algorithm performance. If the MTS values calculated in 60-sec interval still fall below 

the established threshold values using incident-free historical traffic data, an alarm is finally 

triggered. The threshold values used for the persistence test are established using incident-free 

historical traffic data, in which the bounds of normal flow are established in 15-minute intervals 

for each segment of roadway at each time of the day. 

Figure 3.1 show a typical speed profile and bound of normal flow. The speed profiles and bound 

of normal flow are established on every segment of the roadway at each day of the week. The 

bounds of normal flow are established by the speed data aggregated over 15-minute interval. 

Bounds of flow (upper and lower bound) are established by using the 95% confident interval of 

the recurring speed. Real-time speed data aggregated over 60-second interval are compared against 

the established threshold value. If the aggregated speed data over 60 seconds fall below the 
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established threshold value, an incident alarm is triggered as shown on Figure 3.2 (see the speed 

drop at about 13:30 hours). 

Figure 3.3 summarizes the detection logic of the proposed algorithm. The right part of the chart 

describes the preliminary detection while the left part illustrates the persistence test. In the 

preliminary test the threshold values ‘bound of flow’ are established by using real-time traffic data 

aggregated in the past 15-minute intervals while in the persistence test the threshold values ‘bound 

of normal flow’ are established by using historical data aggregated over 15-minute intervals. 

 

Figure 3.1: Typical speed profile ‘normal bound of flow’ 
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 Figure 3.2: Detection of incident from normal speed profile  
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Figure 3.3: Proposed algorithm flow chart  



22 

 

3.3 Measures of performance  

Three parameters have been used to measure the performance of incident detection algorithms. 

These parameters are the detection rate (DR), false alarm rate (FAR), and mean time to detect 

(MTTD) (Li et al., 2013). This study adopts these three parameters as the measures of the proposed 

algorithm’s performance. The following section describes the three parameters in details. 

Detection Rate (DR) 

The detection rate is the ratio of the number of correctly detected incidents to the total number of 

incidents known to have occurred during the observation period (Jiang et al., 2010). This varies 

according to the definition of an incident, some studies count any stalled vehicle to be an incident, 

regardless of location, while others only count lane-blocking incidents. Lane-blocking incidents 

generally have reported higher detection rates than shoulder incidents because shoulder incidents 

often do not cause sufficient disruption in traffic flow to trigger an alarm (Li et al., 2013).  

Mean Time to Detect (MTTD) 

Mean time to detect is defined as the time from when the incident occurs until it is detected (Li et 

al., 2013). This does not include the time taken to verify the incident.  

False Alarm Rate (FAR) 

The false alarm rate is most often defined as the percentage of incorrect detection signals relative 

to the total number of algorithm decisions (Martin et al., 2001). This is calculated to determine 

how many incident alarms were falsely set.   



23 

 

CHAPTER 4 STUDY SITE AND DATA COLLECTION 

4.1 Study Site 

The Lee Roy Selmon Expressway was chosen for this study (Fig. 4.1) because of the THEA CV 

data availability. Lee Roy Selmon Expressway, also known as State Road 618, is a 15-mile limited 

access toll road in Hillsborough county, Florida. It connects the South Tampa neighborhood 

near MacDill Air Force Base with downtown Tampa and Brandon. For most of its length, the 

expressway has four lanes (two in each direction) with a small portion of a six-lane segment (three 

lanes in each direction). The posted speed limit of this road section ranges from 55 to 70 mph with 

one-direction average daily traffic of about 76,275 vehicles (THEA, 2019).  

 

Figure 4.1: Tampa-Hillsborough Expressway, Tampa, Florida (THEA, 2018) 
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4.2 Traffic Data 

Real-time recorded traffic data were the main input for this study. These data were retrieved from 

the Regional Integrated Transportation Information System (RITIS) database and THEA CV pilot 

study for the entire study period from February, 2019 to June, 2019. The following sections   

provide further details of data sources; 

RITIS 

RITIS is a data sharing, dissemination, and archiving system that includes real-time data feeds and 

data analysis tools such as probe, detector, and transit data analytics. From the RITIS database, 

HERE traffic speed data were collected. HERE GPS technology collect speed data by recording 

the time when a vehicle passes the known segment, then this information is used to deduce the 

travel time of the vehicle on that segment and the speed is calculated from the obtained travel time 

and a known segment length. The following information were retrieved from the HERE data; 

traffic speed, date and time, segment location and segment length. Real-time traffic speed data 

were extracted in 1-minute intervals for an entire Selmon Expressway with a total of 33 data 

collection segments. The 33 data collection segments used have different lengths, with the 

maximum segment length of 1.82 miles and minimum segment length of 0.01 miles.  

THEA CV Data 

Tampa-Hillsborough Expressway Authority (THEA) CVs Pilot study generates data from the 

interaction between vehicles (V2V) and between vehicles and infrastructure (V2I). The dataset 

consists of BSMs generated by vehicle onboard units (OBUs) and transmitted to road-side units 
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(RSUs) located throughout the study area. The CV technologies collect point-to-point traffic data 

over a roadway section. 

A Python script was used to download the THEA CV data from USDOT ITS datahub data sandbox 

stored in AWS S3. THEA CV dataset has about 54 variables, but this study uses the following key 

data variables: datasets contain data generation (date, time and vehicle id), geographic position 

(latitude, longitude, and elevation) and motion (speed and acceleration). Data quality check was 

performed before using the datasets for further analysis. Python was used for data manipulation 

and ArcGIS software was used for spatial analysis. In the first step of the data cleaning procedure, 

duplicated records were removed. Unavailable fields and erroneous data points were removed 

based on the criteria given on metadata, and lastly all observations were formatted and converted 

into required units. Then the ArcGIS software was used for mapping and sorting out observations. 

The buffer tool and selection by location tool were used to sort observations at the selected study 

corridor as shown in Figure 4.2. The section of Selmon Expressway in which CV pilot study was 

deployed starts from South Franklin Street to Channelside Drive and is a total of 1.12 miles.  



26 

 

 

Figure 4.2: ArcGIS geoprocessing and selection by location process 

The CV one-direction average daily traffic (CV ADT) was calculated based on average trips 

generated for the entire study period and the value of 4924 vehicles was obtained. The penetration 

rate of CVs was calculated by comparing the CV directional ADT and the Selmon Expressway 

directional ADT (76,275 vehicles) recorded near the study corridor (at West Plaza Group Gantry). 

Based on those figures, an estimated CV penetration rate of 6.46% was obtained. 

4.3 Incident Data 

Traffic incident data were required for testing and comparison of the proposed algorithm 

performance. Incident data were retrieved from Signal Four Analytics (crashes only) and Road 

Rangers reports for the entire study period from February, 2019, to June, 2019. Due to the Road 
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Ranger operating hours, the incident data were collected only from Monday through Friday, 6:00 

am through 6:00 pm. The following sections provide further details of incident data sources; 

Signal Four Analytics 

Signal Four Analytics is a statewide interactive, web-based geospatial crash analytical tool in the 

state of Florida. Crash data were extracted from this tool and the ArcGIS software was used for 

mapping and data reduction. A total of 60 crashes were found to fall within study site for the study 

period. Crash occurrence time, location, levels of severity namely; fatal, injury, and property 

damage only (PDO), and other characteristics were extracted from the crash database.  

Road Ranger Reports 

The Road Ranger Service Patrol in Florida is a freeway service patrol that provides free highway 

assistance services to motorists. The Road Rangers provide assistance to motorists by quickly 

clearing traffic incidents. Services can include providing a limited amount of fuel, assisting with 

tire changing and other types of minor emergency repairs, and providing support at crash sites. 

This study extracted traffic incident data from the road ranger reports. A total of 292 incidents 

were reported by Road Rangers for the study period within the study area. Time of arrival to the 

scene, location, levels of severity, and other characteristics were included in the incident reports.  

Table 4.1 gives the summary of the collected incident data. Reporting sources include Road Ranger 

and Signal Four Analytics (one incident may be reported by both agencies). Incident type was 

categorized into crashes, vehicle problems (disabled or abandoned vehicles, emergency vehicles, 

fire and police activity), and traffic hazards (debris, flooding, and spillage). Incident severity was 
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categorized into minor, and moderate/severe. Lane closure included left/right lane blockage, and 

shoulder/median accidents included all incident that were not lane-blocking. Peak hours included 

morning peak (0600 to 1000 hours) and evening peak (1500 to 1800 hours).  

Table 4.1: Descriptive statistics of incident data 

Incident Attributes Categories Frequency 
Percentage  

(%) 

 

Reporting Agency 

Road Rangers  292 89.30 

Signal Four Analytics 60 18.35 

Both 25 7.65 

Incident type 

Crash 90 27.52 

Vehicle problems 210 64.22 

Traffic hazards 27 8.26 

Severity 
Minor 231 70.64 

Moderate/Severe 96 29.36 

Lane closure 
Lane-blockage 212 64.83 

Shoulder/median 115 35.17 

Time of the day 
Peak hours 187 57.19 

Off-peak hours 140 42.81 

 

The traffic and accident data were divided into two groups in order to test the proposed AID 

algorithm. One group consist of the HERE data and all the recorded incidents summarized in Table 
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4.1 and another group consists of the THEA CV data and incidents that were only found to fall 

within CV pilot study corridor. The first group comprises of a total of 327 incidents while the 

second group comprises of 41 incidents. Table 4.2 gives the summary of the incidents that found 

to fall within the CV pilot study corridor. 

Table 4.2: Descriptive statistics of incident data 

Incident Attributes Categories Frequency 
Percentage  

(%) 

 

Reporting Agency 

Road Rangers  33 80.49 

Signal Four Analytics 12 29.27 

Both 04 9.76 

Incident type 

Crash 19 46.34 

Vehicle problems 17 41.46 

Traffic hazards 05 12.20 

Severity 
Minor 22 53.66 

Moderate/Severe 19 46.34 

Lane closure 
Lane-blockage 26 63.41 

Shoulder/median 15 36.59 

Time of the day 
Peak hours 32 78.05 

Off-peak hours 09 21.95 
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CHAPTER 5 ANALYSIS AND RESULTS 

5.1 Testing of the Proposed Algorithm using HERE Data 

HERE speed data were used for testing the proposed algorithm. Real-time speed data was extracted 

for the entire Selmon Expressway from a total of 33 data collection segments. Speed data were 

extracted in 1-minute intervals from February, 2019, to June, 2019. The analysis included all 

incidents that were found to fall within the study corridor for the entire study period. A total of 

327 incidents were used in this section.   

The first part of the analysis was to obtain incident-free days as indicated in Table 5.1. These were 

days that did not have any recorded incidents in the selected study period for a duration of 6 am to 

6 pm. 

Table 5.1: Incident-free days 

 

Establish the Bounds of Normal Flow 

The historical traffic data recorded during the incident-free days were used to establish the 

threshold values. The speed data were aggregated in 15-minute intervals. The 95% confidence 

interval of the mean speed was calculated to define the upper and lower bounds of the recurrent 

Day Date
Monday Feb 04, April 29, May 13, June 17 
Tuesday March 12, March 19, May 07
Wednesday Feb 06, March 06, April 10, April 24, May 01
Thursday March 14, March 28, April 18, May 23, May 30
Friday Feb 01, May 17, June 07
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speed profile. This 95% confidence interval accounted for the variation in speeds on a roadway 

segment. For each segment, a total of five speed profiles were generated, one for each day of week 

(Monday through Friday). The speed profiles were established for every segment of the 

expressway at each time of the day from Monday through Friday. The mean travel speed (MTS) 

values were calculated in 15-minute intervals, and the upper and lower bounds of the recurrent 

speed profile was established and adopted as the threshold value. 

The python programming language was used to implement the proposed algorithm. The results of 

the analysis are summarized in Table 5.2.  

Table 5.2: Performance of the proposed algorithm using HERE data 

 

Figure 5.1 summarizes the algorithm’s performance by using HERE data. The chart illustrates the 

algorithm’s DR under different incident attributes. 

Incident Attributes Categories Total Detected Detection rate (DR) %
Peak hours 216 139 64.35
Off peak hours 111 93 83.78
Lane blocking 212 212 100.00
Shoulder 115 20 17.39

Crash 90 84 93.33

Vehicle problem 210 131 62.38
Hazards 27 17 62.96

327 232 70.95

Time of the day

Incident type

Lane closure

Overall performance
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Figure 5.1: Algorithm’s performance using HERE data 

Results of the Algorithm Performance using HERE Data 

The overall performance of the proposed algorithm shows the DR of 70.95% and FAR of 9.02% 

using traffic data obtained from the HERE database. Moreover, the proposed algorithm detects 

64.35% of all incidents that occurred during peak hours and 83.78% of all incidents that occurred 

during off peak hours. Also, the algorithm detected 93.33% of all crashes, 62.38% of all vehicle 

problems and 62.96% of all hazards. Again, the algorithm detected 100% of all lane-blocking 

incidents and 17.39% of all shoulder incidents. This finding is consistent with results reported by 

previous studies that observed high DR when considering lane-blocking incidents only. Lane-

blocking incidents have generally reported higher detection rates than shoulder incidents because 
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shoulder incidents often do not cause sufficient traffic flow disruption to trigger an alarm (Li et 

al., 2013).  

This study faced challenges in analyzing MTTD, as the reported time is sometimes not the same 

as the real incident occurrence time. Road Ranger reports did not include incident occurrence time, 

while Signal Four Analytics data have incident occurring time. Nevertheless, the analysis shows 

that the reported occurrence time may not be the actual incident occurrence time. Surprisingly, 

with respect to crashes extracted from Signal Four Analytics Database, more than 60% had 

recorded occurrence times that were rounded to the nearest 5 minutes. This imply that the 

personnel reporting these incidents may not report actual time. Due to this observation, the MTTD 

was considered unreliable. 

5.2 Testing of the Proposed Algorithm using THEA CV Data 

The proposed algorithm was also tested by using THEA CV generated data. This section included 

only the incidents that were found to fall within the CV pilot study corridor for the entire study 

period. A total of 41 incidents were used in this section.  

The same incident-free days used for the previous section were also adopted in this section. To 

simplify the analysis, the minimum segment length of 0.01 mile used for HERE data was also 

adopted for CV data. Therefore, the study corridor was divided into 112 equal sections with the 

length of about 0.01 mile.  The speed profiles were established for every section at each time of 

the day from Monday through Friday. The mean travel speed (MTS) values were calculated in 15-

minute intervals, and the upper and lower bounds of the recurrent speed profile were established 

and adopted as the threshold value. 
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The python programming language was used to implement the proposed algorithm. The results of 

the analysis are summarized in Table 5.3.  

Table 5.3: Performance of the proposed algorithm using THEA CV data 

 

Figure 5.2 summarizes the algorithm’s performance by using CV data. The graph illustrates the 

algorithm’s DR under different incident attributes. 

 

Figure 5.2: Algorithm’s performance using CV data 

Incident Attributes Categories Total Detected Detection rate (DR) %
Peak hours 32 11 34.38
Off peak hours 9 2 22.22
Lane blocking 26 10 38.46
Shoulder 15 3 20.00

Crash 19 8 42.11

Vehicle problem 17 3 17.65
Hazards 5 2 40.00

41 13 31.71

Time of the day

Lane closure

Incident type

Overall performance
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Results of the Algorithm Performance using CV Data 

The proposed algorithm shows DR of 31.71% and FAR of 0.00% using traffic data obtained from 

the HERE database. Moreover, the proposed algorithm detects 34.38% of all incidents that 

occurred during peak hours and 22.22% of all incidents that occurred during off peak hours. Also, 

it detected 42.11% of all crashes, 17.65% of all vehicle problems and 40.00% of all hazards. Again, 

the algorithm detected 38.46% of all lane-blocking incidents and 20.00% of all shoulder incidents. 

However, the market penetration rate was very low, study findings show high DR when 

considering lane-blocking incidents only, which is consistent to the findings of the previous studies 

(Li et al., 2013).  

5.3 Algorithm Performance Comparison Between HERE Data and CV Data  

Comparison Between DR and FAR 

The algorithm performance in terms of DR and FAR indicated that CV data resulted into 31.71% 

DR and zero FAR while HERE data gave 70.95% DR and 9.02% FAR. Figure 5.3 illustrates the 

algorithm’s performance difference between two data sources. Although the CV penetration rate 

was low (6.46%), the generated data provide promising results in terms of automated freeway 

incident detection. This means that once the CV market penetration increases, CVs will generate 

data that will provide reliable results for automated freeway detection. The fact that CV data 

resulted into zero FAR proves the accuracy of CV data compared to HERE data. Hence, there is 

high potential of using CVs in incident management. 
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Figure 5.3: Algorithm’s performance comparison between HERE data and CV data 

Correlation Analysis of the Algorithm’s Detection Times 

Statistical comparison between algorithm’s detection time using HERE data and CV data was 

conducted. The statistical analysis was conducted to observe the correlation between the two 

detection times. A correlation coefficient depicts the strength of the link between two quantitative 

variables. Since data consist of continuous variables, the Pearson correlation coefficient was 

adopted and the test was conducted at 95% significance level. The test was conducted to determine 

whether there is a statistical relationship between the algorithm’s detection time using HERE data 

and CV data. Correlation significance tests were also performed and the Pearson’s correlation 

coefficient between algorithm’s detection time using HERE data and CV data was calculated. 
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Results of Correlation Analysis 

The Pearson’s correlation coefficient between the two detection times was found to be 0.99 and 

the p-values of the Pearson’s correlation coefficient was found to be less than 0.001. Figure 5.4 

shows a scatter plot of the correlation between the two detection times, as shown on the graph, 

there is high correlation between the algorithm’s detection time using HERE data and CV data. 

Therefore, the incidents detected by the CV data were similar to the one detected by the HERE 

data, despite of the lower CV market penetration rate. 

 

Figure 5.4: Pearson’s correlation scatter plot  
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Algorithm’s Detection Time Difference 

The algorithm performance in term of difference between the two detection times was also 

analyzed. The analysis was performed to determine how faster algorithm performs when using one 

data source compared to another. To achieve this, algorithm’s detection time difference was 

calculated by taking algorithm’s detection time using HERE data minus CV data. The results were 

recorded as summarized in Figure 5.5. The positive time difference implies algorithm detect an 

incident earlier when using CV data than HERE data and the negative difference implies the vice 

versa. Zero-time difference implies algorithm’s detection time is the same for both CV data and 

HERE data. Based on recorded data shown in Figure 5.5 and summarized in Table 5.4, the 

proposed algorithm can detect an incident 2 minutes earlier when using CV data compared to 

HERE data, also the proposed algorithm can give 2 minutes delay in detection when using the 

same data compared to HERE data. This means that the proposed algorithm can either detect an 

incident faster or delays when using CV data as compared to HERE data and vice versa is true. 

Moreover, algorithm shows no difference in detection most of time, this implies that the proposed 

algorithm can also give same result when using either CV or HERE data. 
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Figure 5.5: Algorithm’s detection time difference between CV data and HERE data 

Table 5.4: Summary of Statistics 

 

The hypothesis test was also conducted with null hypothesis (Ho): there is no difference between 

the two detection times and alternative hypothesis (Ha): there is difference between the two 

detection times. 

Null hypothesis: H₀: μ_difference = 0 

Alternative hypothesis: H₁: μ_difference ≠ 0  

Variable Observations
Obs. with 

missing 
Obs. 

without 
Minimum Maximum Mean

Std. 
deviation

CV 41 0 41 0.000 2.000 0.220 0.525
HERE 41 0 41 0.000 2.000 0.098 0.374
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Where: μ_difference = difference between algorithm’s detection time using HERE and CV data. 

Since the test involves the comparison between the two detection times, analysis of 

variance (ANOVA) was adopted. ANOVA is a collection of statistical models and their associated 

estimation procedures used to analyze the differences among group means in a sample. It provides 

a statistical test of whether two or more population means are equal. The results of analysis are 

summarized in Table 5.5. 

Table 5.5: Analysis of Variance 

 

Results of the Detection Time Difference  

Since the p-value (0.01) is small than significance level (0.05) then the null hypothesis is rejected, 

and hence there is difference between the two detection times. The results show that the proposed 

algorithm can detect 17.07% of all incidents earlier when using CV data compared to HERE data. 

This is due to the reason that CV data are point-point hence more accurate than the HERE data 

which are collected as average segment data. Although the proposed algorithm shows earlier 

detection when using CV data, it also shows delay in detection. About 7.32% of all incidents were 

detected earlier by HERE data when compared to CV data. The reason might be the small market 

penetration rate of CVs.    

Source DF
Sum of 
squares

Mean 
squares

F-Value P-Value

Model 1 1.737 1.737 7.296 0.010
Error 39 9.287 0.238
Corrected Total40 11.024
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  CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

This study presents a newly developed automated freeway incident detection (AID) algorithm 

based on the available data collected in Tampa, Florida. The proposed algorithm was tested by 

using THEA CV data and HERE data in conjunction with incidents data obtained form Signal Four 

Analytics and Road Rangers reports. The study was based on Selmon expressway due to the CV 

data availability. 

Based on the algorithm’s performance, by using THEA CV data the proposed algorithm detected 

31.71% of the traffic incidents and no false alarm was reported. Again, by using HERE data the 

proposed algorithm detected 70.95% of the traffic incidents. The false alarm rate (FAR) was about 

9.02%, which equal to one false alarm per month. Although the DR by using CV data seemed to 

be very small compared to the one obtained from HERE data, the results are promising due to 

small CV market penetration rate (6.46%). The fact that CV data resulted into zero false alarm 

rate, this prove that the connected vehicles data are more accurate as they are point-to-point records 

compared to HERE data. 

An automated freeway incident detection algorithm only can be effective when flows are heavy 

enough that traffic is substantially interrupted by an incident. Incidents that occur during low traffic 

volume and shoulders incidents do not usually cause enough disturbance to the flow to be 

recognized. This is acknowledged by several studies (Li et al., 2013; Parkany et al., 2005) and 

consequently leave out all shoulder incidents from the reported detection rates. Considering lane-

blocking incidents only, the proposed algorithm gave DR of 100% by using HERE data and 
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38.46% using THEA CV data. Hence proposed algorithm shows high performance under lane-

blocking incidents as they cause high traffic disturbance compared to shoulder incidents. 

The Pearson’s correlation analysis show that the incidents detected by the CV data were similar to 

the one detected by the HERE data, despite of the low CV market penetration rate. Moreover, the 

performance comparison of the proposed algorithm’s detection times using ANOVA shows that 

there is a difference in the algorithm’s detection time when using CV data and HERE data. About 

17.07% of all incidents were detected earlier when using CV data compared to HERE data, while 

7.32% were detected earlier when using HERE data compared to CV data. Furthermore, in 75.61% 

of all incidents the proposed algorithm shows the same detection time when using the two data 

sources, CV and HERE data.  

Although the CV market penetration rate was low, the algorithm performance as tested using real-

time CV data provides a promising result. The algorithm shows low DR due to missing data caused 

by the low CV market penetration rate. Data availability was challenging as there were missing 

data in a lot of days and also in most of times. The proposed algorithm gave no FAR, perhaps 

because of the accuracy of the CV data, when available. Therefore, the proposed algorithm has 

good potential for application of automated freeway incident detection by using CV data. 

Since the market penetration rate is low and CV technology will take time until high penetration 

rate for full detection rate, the proposed algorithm can be used with other backed up technologies 

like WAZE, CCTV cameras, highway patrol services and other ITS technologies. 
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Findings from this thesis will not only add to the body of knowledge related to CV technology, 

but also will be useful to transportation agencies as the CV technology becomes increasingly more 

utilized in transportation management strategies. Traffic engineers and other traffic related 

agencies may also apply the research findings in planning and traffic operations efforts that involve 

CV technology. 

This study has several limitations that are worth mentioning. First, the CV market penetration rate 

was low, hence data collection and availability were challenging. The second limitation relates to 

a short study period (only 5 months), which resulted in having only a small number of incidents 

for analysis. Lastly, actual incident occurrence time was a significant limitation. Road Ranger 

reports that were obtained from THEA did not include this attribute (showed only the time Road 

Ranger arrived on scene) hence the study faced a challenge in calculating algorithm’s mean time 

to detect incident.  Lastly, further research is suggested to validate the proposed algorithm when 

the CV market penetration rate is increased, and more incident data are collected.  
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