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ABSTRACT 

Asphondylia borrichiae is a gall-inducing insect that attacks its ancestral host plant 

Borrichia frutescens: through ovipositional mistakes it has acquired two additional hosts, Iva 

frutescens and Iva imbricata. Oviposition results in the formation of a gall, a tumor-like growth 

of plant tissue within which immature A. borrichiae develop. During development, immature A. 

borrichiae, are attacked by a suite of four generalist hymenopteran parasitoids. Of these, 

Galeopsomyia haemon and Torymus umbilicatus are facultative hyperparasitoids, more common 

and exhibit non-random attack patterns. In the present study, soil quality was manipulated 

through bi-weekly application of either ammonium nitrate fertilizer or sodium chloride rock salt: 

resulting in variation in host plant quality. Bottom-up manipulation cascaded upwards through 

trophic levels and indirectly shifted the composition of the parasitoid guild community. 

Decreases in host plant quality significantly decreased available leaves (64%), reduced stem 

growth (17%) and limited growth of the plant and galls when compared to vigorous, higher 

quality plants. Galls produced from salt-treated plots had significantly lower gall diameter 

(20%), fewer gall chambers (30%) and significantly increased attacks by G. haemon when 

compared to control galls (56%). Increasing plant quality significantly increased total leaf size 

(21%), retained more leaves, and increased growth of the host plant when contrasted with poorer 

quality plants. Fertilized plants produced galls with significantly greater gall diameter with 

increased number of T. umbilicatus when compared to controls (12%). Results support the gall-

diameter hypothesis as present parasitoids were distributed across gall diameter. This study was 

successful in changing the natural enemies present within a system through indirect effects of 

soil quality, these bottom-up effects could potentially shape future top-down control by the 

parasitoids. Specifically, in instances of potential host-range expansion in which parasitoid 
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composition as mediated by lower trophic levels can either increase or decrease the availability 

of enemy free space. 
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INTRODUCTION 

For many years ecologists have argued over top-down vs bottom-up control as the dominant 

mechanism in shaping populations as well as community structure. Proponents of bottom-up 

control such as Ohgushi and Sawada (1985), argued that local populations of lady beetles 

Henosepilachna niponica (Lewis), were density-dependent and stable during periods of 

abundance of their host plants. The implicit importance of bottom-up regulation led Schultz 

(1988) to argue in favor of increasing studies of plant chemistry and its impact on herbivore 

diets. Over time, disparities between the role of density dependent vs quality in shaping 

communities further widened the divide in proponents for bottom up control. Root (1973) 

concluded that density-dependent bottom-up factors were the driving force for the organization 

of plant-arthropod associations in simple and diverse habitats. Conversely, others supported the 

importance of quality as the driving force for regulation of herbivores in which selection of host 

plant quality in maximization of fitness was crucial in shaping communities (White, 1978; 

White, 1984; Price, 1991). Oppositely, proponents had gathered in support of regulation of 

herbivores in which natural enemies (i.e. top-down) control had a far-greater impact than any 

bottom up effects. Instances in which the removal of a keystone predator resulted in the 

unchecked growth of prey, and their potential and/or realized ramifications are well-known and 

well documented (see Hairston et al., 1960; Paine, 1969; Ripple & Beschta, 2004). Yet, 

measures of top-down control do not need to reach the levels of a keystone species but may 

simply alter or shift the trophic levels beneath them. (Hairston et al., 1960; Stiling et al., 1992; 

Moon & Stiling, 2004). According to Lawton and Strong (1981) natural enemies in conjunction 

with autecological factors (species’ response to the threat of natural enemies) are reasons behind 

shifts in community structures as opposed to the established notion of natural enemies culling the 
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spread of their prey. Thus, study of multi-trophic level interactions has resulted in a more holistic 

approach rivaling and revealing limitations of previously established dichotomous thinking 

regarding factors that regulate populations and shape communities. For instance, Hunter and 

Price (1992) proposed that populations and communities are influenced by a host of biotic and 

abiotic factors, and the classical models of bottom-up and top-down regulation must be utilized 

in an integrative framework to fully understand community structure. Multi-trophic level studies 

recognize the need for investigation of both direct and indirect effects that may occur within a 

food web and the importance of interactions between levels. Plants form the macrobiotic basis of 

most terrestrial food webs and plant heterogeneity acts as the foundation upon which the 

resulting trophic levels are built upon. Therefore, shifts in abiotic factors such as soil nutrients 

may have cascading effects that influence top-down regulation. 

If abiotic factors do influence both bottom-up and top-down control, then an already stressed 

natural system that exhibits these multi-trophic interactions would be a viable source for further 

study. Modification of plant quality or heterogeneity caused by shifts in abiotic factors could 

therefore alter interactions between the plant, its herbivores, their pathogens and even natural 

enemies of the herbivores. Salt marshes have been important ecosystems for studying plant-

herbivore (especially insects) interactions because of their heterogeneity in nitrogen and 

phosphorous compared to other terrestrial ecosystems (Pigott, 1969; Valiela & Teal, 1974; Kiehl 

et al., 1997; see Van Wijnen & Bakker, 2001). Moreover, salt marshes, which typically exhibit a 

range of tidal variations, also experience a wide range of salinity, in turn, leading to further 

changes in heterogeneity. Plants, vary in their responses to salt stress and osmoregulation, 

potentially adding further abiotic influences on higher trophic levels (see Antlfinger, 1981; 

Munns, 2002; Richards et al., 2010). Recent changes in rising sea levels in conjunction with 
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increases in practical salinity units(p.s.u.) in the Atlantic Ocean could likely present with another 

potential abiotic factor to help shape coastal salt marsh communities (Curry et al., 2003; see 

Beckett et al., 2016). Changes in tidal regimes or salinity could interact with plant quality or 

heterogeneity through complex interactions; for instance, availability and uptake of nitrogen may 

be reduced by plants under highly saline conditions in their effort to prevent or reduce salt uptake 

(Jefferies & Perkins, 1977; Osgood & Zieman, 1993; Bowdish & Stiling, 1998). 

Measures of plant quality can be expressed in a myriad of ways; including growth rates, C:N 

ratios, leaf symmetry, etc. (Bagchi et al., 1989; Møller & Swaddle, 1998; Møller & Elm, 1999; 

Cornelissen & Stiling, 2005). Plants of higher quality exhibit greater and faster growth maintain 

higher levels of nitrogen, lower C:N ratios, maintain more leaves and, interestingly, may 

overcompensate for growth lost by herbivores (Coley et al., 1985; Price, 1991). For example, 

Maschinski and Whitham (1989) reported that Ipomopsis arizonica (Greene) Wherry that 

received nutrient supplementation and were subsequently attacked by herbivores (rodents and 

ungulates) overcompensated for the damage and produced greater overall biomass through 

increased fruit and seed production. Incidences of grazing by a snow goose Anser caerulescens 

caerulescens L. reportedly increased the net above-ground primary production of vegetation 

within a tundra salt marsh (Cargill & Jefferies, 1984). The beneficial effects of some limited 

types of herbivory on vigorously growing plants may also result in higher regrowth. For 

example, the biennial, scarlet gilia Ipomopsis aggregata (Pursh) V.E. Grant, reportedly increased 

their relative fitness 2.4-fold upon instances of mammalian herbivory over non-grazed scarlet 

gilia (Paige & Whitham, 1987). Furthermore, in the salt-marsh halophyte, Borrichia frutescens 

(L.) de Candolle (Asteraceae), exhibited faster growth of stems after attack on their apical 

meristems by the gall midge, Asphondylia borrichiae Rossi and Strong (Diptera:Cecidomyiidae) 
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(Spirko & Rossi, 2015). Alternatively, plants experiencing stress, tend to exhibit stunted growth, 

produce fewer leaves and exhibit greater rates of leaf senescence. Internally, stress in plants is 

often characterized by the breakdown and mobilization of soluble nitrogen away from impacted 

or damaged sites, and exhibit higher levels of leaf asymmetry (Jefferies & Perkins, 1977; White, 

1984; Bagchi et al., 1989; Osgood & Zieman, 1993; Bowdish & Stiling, 1998; Møller & Elm, 

1999).  

Plant quality can affect both attractiveness or suitability of the plant to herbivores and, as a 

result, bottom-up factors typically have a strong influence of herbivore community composition.  

Interestingly, phytophagous insects have been shown to favor both plants of poor quality (i.e. 

stressed or damaged), or conversely, those of high quality (i.e. nitrogen-rich, vigorously 

growing) (White, 1978; White, 1984; Price, 1991) Stressed plants may increase the abundance of 

soluble nitrogen, especially as it is transported away from stressed or senescing tissue (Beevers, 

1976; Hill, 1980; Stewart & Larher, 1980; see White, 1984) making more nitrogen available for 

herbivore growth (White, 1969). One such example, a scale insect Icerya seychellarum Maskell 

appeared to infest an evergreen bush Scaevola taccada (Gaertner) and preferentially fed on their 

weakened senescent leaves. As the infestation grew, coccids further reduced the growth of leaves 

and increased the likelihood of leaf senescence. Thus, initiating a negative feedback loop in 

which increasing coccid numbers further inhibited biomass production and decreased the quality 

of the plant (Newbery, 1980). Price (1991) provided evidence of insects that prefer to feed on 

high quality plants; for example forest insects appeared to preferentially attack younger more 

vigorous trees (Craighead, 1950), instances of heavy herbivory by invertebrates on vigorously 

growing plant species (Coley et al., 1985), and preference by galling insects to attack larger than 

average plant modules (see Bernays, 1990). Due to the complex intimate association with their 
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host plants, galling insects provide ideal systems for studying multi-trophic level interactions 

(Craig et al., 1986; Price & Clancy, 1986; Roininen et al., 1988; Stiling & Rossi, 1997; Moon & 

Stiling, 2002). These plant-galler systems exhibit non-random attacks by the galling insect and/or 

their natural enemies. Two such examples, which both involve stem-galling sawflies, Euura 

lasiolepis Smith (Hymenoptera: Tenthredinidae) and Euura mucronata (Hartig), preferred to 

attack long rapidly growing shoots across both species of their respective plant hosts Salix 

lasiolepis Bentham (Salicaceae) and Salix cinerea L. (Price & Clancy, 1986; Roininen et al., 

1988); this preference for long rapidly growing shoots has provided them with a temporary 

means of escaping their natural enemies (in this instance parasitoids).  

Although galls are a product of the host plant, they represent an interaction between the 

insect and their host (i.e. interaction between an herbivore and the plant). Galls are exclusively 

plant tissue, and gall induction involves an interaction that results from a signal or stimulus 

produced by the insect, and subsequent response of the plant (Mani, 1964; Weis & Abrahamson, 

1985; Weis & Abrahamson, 1986; Raman, 2011; see Miller & Raman, 2019). Stimuli for gall 

induction can vary amongst gall-inducing taxa, although, a common stimulus is an oviposition, 

eclosion of the egg, and damage caused by first-instar larval feeding on plant tissue, which 

results in a wounding response by the plant and eventual gall development (Rohfritsch, 1992; see 

Raman, 2011; Miller & Raman, 2019). Gall-inducing insects continue to develop and feed from 

within the gall, although, some members of the tribe Asphondyliini within the family 

Cecidomyiidae feed upon fungal conidia deposited during the initial ovipositional event 

(Rohfritsch, 2008; Tokuda, 2012). Gall shape or structure is partially directed by the gall-

inducing insect, with the shape and form believed to represent an extended phenotype of the 

insect as expressed through the plant (Dawkins, 1982; Tokuda, 2012; Miller & Raman, 2019). 
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However, because the gall tissue is derived from the plant, expansion and growth of the gall (i.e. 

size) is entirely dependent on the quality of the plant as galls act as physiological sinks drawing 

in resources from the supporting tissues near the galled site. A study by Larson and Whitham 

followed the movement of 14C radiocarbons and discovered that gall-inducing aphids Pemphigus 

betae Doane(Hemiptera: Aphididae) acted as non-mobilizing sinks and regularly intercepted 

carbons flowing from plant source tissue (Larson & Whitham, 1991). If galls act as a 

physiological sink and draw upon the resources of the host plant upon which they are 

developing, it would stand to reason that galls developing on higher quality plants will produce 

larger galls of higher quality.  

Due to the highly specific nature of these plant-insect interactions it has been suggested that 

gall-inducing insects exhibit some manner of host-plant selection (see Miller & Raman, 2019). 

Variations in galling characteristics such as thickness, overall diameter, and within gall crowding 

have all been purported to increase or decrease the fitness of the developing gall-inducer. For 

instance, Rossi et al. (2001) found that larger, less crowded galls produced significantly larger A. 

borrichiae that had a higher potential fitness (i.e. more eggs of similar size at emergence) 

compared to midges from smaller galls. Weis and Abrahamson (1985) suggested that 

interactions between host plant, gall-maker and natural enemies (i.e. birds and parasitoids) have 

led to potential stabilizing selection. This is because the gall-inducer Eurosta solidaginis 

Cocquillet (Diptera: Tephritidae) appeared to suffer from higher avian predation in large galls 

while smaller galls were more likely to suffer from increased rates of attack by a parasitoid wasp 

Eurytoma gigantea Walsh (Hymenoptera: Eurytomidae). Gall size and shape may be a 

potentially heritable trait in gall-inducers as well as mitigating attacks by the natural enemies 

within the system. Gall-diameter may be a primary determinant in its suitability for oviposition. 
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For instance Price and Clancy (1986) reported that for another gall-inducing sawfly E. 

lasiolepis,the Pteromalus sp. (Hymenoptera: Pteromalidae) parasitoid that attacks it were 

actively searching for and attacking smaller galls, because they have relatively short ovipositors 

and have difficulty attacking larvae in large galls on the arroyo willow S. lasiolepis (Price & 

Clancy, 1986).  

Asphondylia borrichiae is a small mosquito-sized gall-inducing insect of varying shades of 

brown with black eyes. Like other members of the supertribe Asphondyliidi, A. borrichiae is an 

ambrosia galler; that is, oviposition by the female results in a fungal-lined gall within which the 

immature stages of the midge feed and develop. Female A. borrichiae alight on the apical 

meristems of their host plants B. frutescens where they oviposit near the meristematic tissue, and 

deposit fungal conidia. Unlike other gall-inducers, it is believed that a combination of attacks by 

the developing gall midge, coupled with expansive growth of fungal hyphae cause the induction 

of the gall (Rohfritsch, 2008). These galls lack nutritive tissue, instead immature stages of A. 

borrichiae feed on the fungal mycelium that bear cytochemical features of typical nutritive tissue 

(Meyer, 1987; Bronner, 1992; Rohfritsch, 2008). Asphondylia borrichiae possess a membranous 

sac or mycangium located dorsally on the seventh sternite (Borkent & Bissett, 1985) used to 

house and transport the symbiotic fungal conidia. As previously mentioned, growth of the fungal 

hyphae causes the meristematic tissue to become hyperactive, resulting in the formation of a 

tumor-like gall. Most of A. borrichiae’s life cycle (approximately 95%) occurs within the gall, 

the midge undergoes several larval instars until developing into a pupa (Gagné, 1989; Rossi & 

Stiling, 1995). At the conclusion of the pupal stage, mature pupae use a pair of ventrally curved 

antennal horns to bore through the gall (Gagné, 1989). Spines present along the length of the 

puparium anchor it to the gall, allowing for emergence by the imago along the anterior of the 
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puparium. The spent puparium is oft found attached to the gall alongside a ragged emergence 

hole (Stiling & Rossi, 1997). The life cycle within the gall averages five to nine weeks 

(depending upon host plant and season), with the imago life cycle lasting 24-48 hours (Gagné, 

1989; Stiling et al., 1992). Should the shed puparium be dislodged from the surface of the gall, 

emergences leave behind a significantly ragged exit hole and can be used to determine the 

successful development and subsequent emergence of a midge. Galls senesce within one to two 

weeks (Stiling et al., 1992) after successful insect emergence, which typically kills the apical 

meristem of B. frutescens. 

Galls induced by A. borrichiae are largely spherical in structure (Stiling et al., 1992; Craig, 

1994; Stiling & Rossi, 1997; Rossi et al., 2001; Rossi et al., 2006) and may be found year-round 

because A. borrichiae is a multivoltine insect and can have several overlapping generations in a 

year (Stiling & Rossi, 1994), with peak galling events during the summer months of May 

through August (Rossi & Stiling, 1995). Galls normally contain on average one to four 

chambers, within which, a single midge larva develops (Rossi et al., 2001). Natural enemies (e.g. 

the guild of parasitoids) are the primary source of mortality for juvenile midges with 

insignificant events by bird predation. During gall development, immature stages of A. 

borrichiae are attacked by a guild of four generalist hymenopteran parasitoids. The parasitoid 

guild or community includes Rileya cecidomyiae Ashmead (Hymenoptera: Eurytomidae), 

Tenuipetiolus teredon (Walker)(Hymenoptera: Eurytomidae), Galeopsomyia haemon 

(Walker)(Hymenoptera: Eulophidae), and Torymus umbilicatus (Gahan)(Hymenoptera: 

Torymidae). All four species of parasitoids use their ovipositors to penetrate the gall and 

parasitize the developing midge larvae and pupae. Rates of parasitism have been reported to 
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reach 100% causing temporary local extinction events of A. borrichiae (Stiling et al., 1992; 

Stiling & Moon, 2005). 

Two guild members G. haemon and T. umbilicatus are of note because in addition to 

attacking immature stages of A. borrichiae they are facultatively hyperparasitic, that is, they may 

also parasitize other members of the parasitoid guild. Studies conducted within this system 

(Stiling & Rossi, 1994; Rossi & Stiling, 1998; Rossi et al., 2006) suggested non-random 

distributions of parasitoids across gall size classes and stem lengths. Incidentally, during a 

bagging study, T. umbilicatus the largest parasitoid, represented 75% parasitism events as galls 

matured and grew, with a mean gall diameter of 0.707cm (Stiling & Rossi, 1994). These 

parasitism events increased to 100% after 21 days of development with a mean diameter of 

0.97cm. Due to its significantly longer ovipositor ( a 2-fold increase), it appears as though T. 

umbilicatus has a selective advantage over other guild members in larger galls. This advantage is 

two-fold, larger and older galls have larger more developed hosts and second, T. umbilicatus can 

reach larval chambers that are inaccessible to the other parasitoid species (Rossi et al., 2001; 

Rossi et al., 2006). Conversely, the smallest member of the parasitoid guild, G. haemon, is 

gregarious, parasitism by G. haemon typically involves multiple larvae/pupae found within the 

same gall chamber; no other member of the parasitoid guild is gregarious (Stiling et al., 1992). 

As a result, G. haemon can therefore overwhelm their host and/or competitors in small galls that 

it can reach with its relatively short ovipositor. In younger smaller gall cohorts, G. haemon has 

been shown to account for more than 50% of parasitism events (Rossi et al., 2006).  

Borrichia frutescens is a perennial wildflower with bright yellow flowers commonly referred 

to as sea oxeye daisy. This coastal halophyte typically grows in warm temperate subtropical 

coastal habitats extending from Maryland to Florida along the Atlantic Coast and westward 
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along the Gulf Coast towards Texas and areas in Mexico (Antlfinger, 1981; Stiling et al., 1992; 

See review on B. frutescens Lonard et al., 2015). This coastal halophyte can survive relatively 

high salinity gradients ranging from 20-130 ppt including growth in salt pans (Antlfinger, 1981; 

Richards et al., 2004; Richards et al., 2010). Borrichia frutescens exhibits both euhalophytic and 

pseudo-halophytic adaptations to minimize the effects of increasing salinity in the form of leaf 

succulence and salt ion exclusion from the roots to the shoots respectively (see Antlfinger, 1981; 

Antlfinger & Dunn, 1983; Munns, 2002; Meng et al., 2018). Salt pans are normally bereft of 

nitrogen, potassium, phosphorus, and covered in wrack (Drawe et al., 1981; Profitt et al., 2005) 

and presence in coastal habitats leads to infrequent tidal action events (e.g. storm surges). Sea 

oxeye daisy is believed to be the host plant for A. borrichiae alongside two other members of the 

Asteraceae family marsh elder Iva frutescens (L.; Walter) and dune elder Iva imbricata 

(L.;Walter)(Stiling & Rossi, 1994; although see Clouse, 1995; Rossi & Stiling, 1998; Rossi et 

al., 2001). Instances of galling events occurring within the two Iva species is considerably rarer 

than B. frutescens, with B. frutescens widely considered to be the original host due to increased 

natal host fidelity by emergent gall midges (although see Clouse, 1995; Rossi et al., 2001), and 

movement unto the two Iva species is largely due to ovipositional mistakes. Galls produced on 

either Iva species are significantly smaller than galls formed on B. frutescens and confer negative 

fitness effects on reared midges. This decrease in gall size in conjunction with similar total 

number of chambers, increases the larval crowding present within both Iva species. However, the 

trade-off in reduced fitness allows for temporary refuge from predation (parasitism) during 

localized extinction events (Rossi et al., 1994). 

It is essential for the survival of B. frutescens to mitigate potential damage caused by 

increasing salinity. Borrichia frutescens achieves a modicum of salt tolerance through salt-
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induced succulence within the leaves, salt sequestration within the vacuole, as well as the 

removal of salts within the root system (Antlfinger, 1981; Munns, 2002; Lonard et al., 2015) 

These however, do not grant immunity to salt stress damage but allows for greater mitigation. A 

common response to salt compartmentalization within the vacuoles of the leaves, is the synthesis 

of N-rich compatible solutes such as proline and glycine-betaine (Cavaleiri & Huang, 1979; 

Antlfinger & Dunn, 1983; Moon & Stiling, 2000; Richards et al., 2010). Although, the 

accumulation and synthesis of these compatible solutes incurs a heavy energy cost (Raven, 

1985). A study by Richards et al. 2010 proposed that B. frutescens exhibits phenotypic plasticity 

regarding salinity among local conditions. Therefore, susceptibility to salt-stress among B. 

frutescens appears to be highly dependent upon already present abiotic conditions. Any shifts in 

abiotic heterogeneity to promote nitrogen uptake, or increase salinity, would likely increase or 

decrease host plant quality respectively. 

This study proposes that changes in abiotic soil conditions within a salt marsh would trigger 

upwards and/or downwards cascading effects. These effects as exhibited by the tritrophic system 

of interactions of a host plant (B. frutescens), its herbivore (A. borrichiae), and the suite of 

parasitoids that attack them. Manipulation of soil quality (bottom-up influences) through 

treatment should result in variations in plant quality or heterogeneity. Interactions between 

quality and successful attacks by the herbivore within the system hereafter galling events, and 

the characteristics expressed by these produced galls would allow for further investigation of 

host plant quality on the development of herbivores. Morphometric changes of the galls as 

regulated by plant quality could in turn cause shifts in availability of attack by the natural 

enemies of the system as precluded by galling characteristics such as gall diameter. By 

establishing plant heterogeneity through assessing plant quality, this study monitored the upward 
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cascade of plant quality and the resulting interactions of herbivores and their natural enemies, 

specifically, the resulting composition of two hymenopteran hyperparasitoids and their potential 

top-down regulation. 

METHODS 

This experimental field study was conducted at Round Marsh within Timucuan Ecological 

and Historical Preserve (N30°22’42.6”, W81°28’47.7”). Fifteen 1-m2 plots were established 

along the edge of a transect at Round Marsh on 21 March, 2019. The transect was situated along 

the upper tidal region in a near monoculture of B. frutescens with sparse growth of I. frutescens. 

Plots were kept one meter apart to minimize any potential cross of treatments and were marked 

by four polyvinylchloride (pvc) stakes placed at the corners of each plot. Plots were randomly 

assigned to one of three treatments: 1) control; 2) salted or 3) fertilized and a corresponding 

colored/numbered survey flag was placed in the center of each plot. To ensure that plots had 

been effectively randomized, several plant characteristics were recorded at the time of plot 

establishment. Variables measured included mean number of galls per 100 stems, number of 

flowering terminals per 100 stems, mean stem length, and gall diameter. Gall and flower counts 

were assessed using multiple analysis of variance (MANOVA), while initial stem length and gall 

diameter were compared using analysis of variance (ANOVA). Additionally, due to the potential 

for flowering terminals to preclude galling events (Rossi et al., 2001) a chi-square with Yates’ 

correction was conducted on 300 haphazardly selected stems to determine observed frequency of 

the co-occurrence of galls on flowering terminals (see results for details).  

Fertilized plots received 500g of a commercially available 6-6-6 ammonium nitrate fertilizer 

(Sunniland, Longwood, FL), while salted plots received an equivalent amount of sodium 

chloride rock salt (Morton Salt, Chicago, Illinois) biweekly as a press study. Due to the pressed 
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nature of the study, along with smaller plot sizes, treatments were kept low, to minimize any 

potential chemical damage to the plants. Tidal inundations in the current study were infrequent 

and diminished the likelihood of treatments washing away between applications. Treatments 

were broadcast evenly throughout the plots by hand to minimize any potential concentration of 

treatment. 

Determining treatment effects on Borrichia frutescens 

Effects of treatments were assessed by host plant quality through comparisons of gall density, 

gall diameter, stem heights, leaf thickness, total leaf size, leaf asymmetry, and presence of leaf 

pairs. Each week the number of A. borrichiae galls per 100 B. frutescens terminals per plot were 

recorded. Similarly, number of flowering terminals per 100 stems were also recorded for each 

plot bi-weekly. To ascertain the extent of treatment effects on maximal gall diameters, five 

young incipient galls were identified during the onset of one of the larger A. borrichiae pulses in 

late May. Incipient galls were marked by wrapping numbered tape gently between the pair of 

apical leaves below the galled terminal. Maximal gall diameter per gall was measured weekly 

using digital dial calipers (nearest 0.1mm), lost galls through death or other means were not 

replaced and instead used for survivorship rates across treatments. Galling and flowering rates of 

B. frutescens terminals were conducted until the conclusion of the study on 6 September 2019.   

To determine the soil treatment effects on the growth and survival of nascent B. frutescens 

stems, five young ramets per plot were haphazardly selected in early May. All selected B. 

frutescens ramets exhibited green non-wooded stems, suggesting new growth (Moon et al., 2001; 

Moon & Stiling, 2002). Each stem was banded using numbered tape marked with its respective 

treatment, plot number and stem number. Stem heights were measured from the tip of the highest 

apical meristem to the ground using a long tape measure (accurate to nearest 0.1cm). These same 
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marked stems were remeasured at the conclusion of the study, survivorship rates and increase in 

growth was calculated and expressed as a percentage for statistical comparison (see below). 

Changes in leaf characteristics due to treatment effects as an indicator of host plant quality 

were determined by comparing leaf thickness, leaf size, crude leaf asymmetry, and number of 

terminal leaf pairs present upon conclusion of the study. Five similar-sized stems per plot per 

treatment were selected haphazardly and the number of leaf pairs present within 50cm of the 

apical meristem on each stem was recorded. Reduction of leaf pairs may suggest stress and 

reduction in the quality of the plant, a natural response to the accumulation of salt ions within 

leaves during transpiration is to eventually shed salt-stressed leaves (Munns, 2002). However, it 

has been argued that despite the halophytic nature of B. frutescens these shed leaves are not salt 

sinks (Antlfinger, 1981). To determine the effects of treatments on leaf characteristics, ten 

mature, fully expanded leaves per plot per treatment were haphazardly collected, placed in 

plastic bags, placed on ice, and returned to the lab. Leaf thickness was measured at the leaf’s 

midpoint using digital calipers (nearest 0.1mm) to assess succulence. Leaf succulence has been 

purported to increase in high salinity (Longstreth & Nobel, 1979; Romero-Aranda et al., 1998; 

Flowers & Colmer, 2008) with salt-stress indicative of diminished host plant quality. 

Individualized measurements of leaf size were taken using a leaf area meter (accurate to 0.01cm2 

CID Bio-Science Cl-202 Camas, WA). Afterwards, each leaf was divided along the midrib using 

a scalpel and the resulting halves measured separately for leaf asymmetry. Total leaf size and 

leaf asymmetry (calculated as the absolute difference between the two halves) were compared as 

a measure of host plant quality.  

Effects of host plant quality on the parasitoid guild community 
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Ten mature galls per plot per treatment were haphazardly collected on 6 September 2019, 

placed on ice and returned to the lab. For each gall, maximal diameter was measuring using 

digital dial calipers (nearest 0.1mm). Galls were then observed for emergences using a hand-held 

lupe and subsequently placed in small plastic dram vials. Midge pupae use ventral horns to bore 

their way out of the galls causing a noticeably ragged emergence hole along with a shed 

puparium. Conversely, the parasitoids chew their way out from within the gall chambers leaving 

clean exit wounds. Emergence holes were further subdivided by parasitoid, G.haemon. as the 

smallest member of the parasitoid guild community leaves pinhole sized emergence holes 

(personal observations) while the largest members of the community T. umbilicatus leave 

considerably larger emergence holes. If any parasitoid larvae or pupae could not be identified to 

species, they were scored as an unknown but used for comparison of overall parasitism rates 

between treatments. Galls were monitored for emergences daily with emergences recorded, any 

emerged insects were placed in 70% EtOH. After 2-3-weeks galls that had begun to senesce were 

dissected and any trapped parasitoids or midges left within the rotting galls were similarly and 

preserved in 70% EtOH. During this dissection process individual chambers present within each 

gall were also recorded for statistical analysis. Observations and dissections of the senescing 

galls were conducted daily until the exhaustion of collected gall samples. Resulting number of 

gall chambers per treatment and known parasitism events were used to determine the percentage 

and relative abundance of the parasitoids; but especially T. umbilicatus, G. haemon which are the 

primary parasitoids attacking A. borrichiae (Stiling et al., 1992; Stiling & Rossi, 1994; Rossi and 

Stiling, 1995, Moon & Stiling, 2002; Rossi et al., 2006). Further statistical analysis on the 

relationship between percent parasitism of both hyperparasitoids across gall diameter were used 

to assess the likelihood of parasitoid presence by gall diameter. 
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Except as noted, all statistical analyses performed passed normality and homogeneity of 

variances, however values are presented untransformed for clarity. Analyses on gall density, gall 

diameter, percent difference in stem heights and mean number of gall chambers were compiled 

using ANOVA. Following a significant main effect, treatment means were compared using a 

Tukey’s post-hoc test. Repeated measures ANOVA of treatment effects on gall and flowering 

densities, however, did not pass Mauchly’s Test of Sphericity, so resulting analyses were 

reported by Greenhouse-Geisser. Initial homogeneity of plots were established for gall density 

and flowering terminals as well as leaf characteristics: leaf thickness, total leaf size, leaf 

asymmetry (left and right leaf size) using MANOVA. Survivorship of incipient galls as well as 

stem tips were determined by G-tests of association. 

RESULTS 

Initial treatment on Borrichia frutescens plots 

Plots used for the study were effectively randomized, the a priori analysis found no 

significant differences in initial gall (F(2,12) = 0.061 p = 0.941) or flowering densities (F(2,12) = 

2.600 p = 0.115; Table 1). Initial gall densities averaged 5-6 galls per 100 B. frutescens 

terminals, while flowering rates were very low for all three treatments (Table 1). During the gall-

flower co-occurrence comparison, although 21% (63/300) and 38% (114/300) of terminals 

possessed either a gall or flower respectively, only 3.3% (10/300) terminals had both. Thus, 

frequency of gall and flowers occurred 59% less often than expected (Χ2
(1,300) = 7.513 p < 0.01). 

Effects of treatments on Borrichia frutescens 

Monthly gall densities per 100 stem terminals varied significantly by time, treatment and 

produced a significant interaction effect (Time F(1.7, 20.353) = 64.151 p < 0.001; Treatment F(2,12) = 
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21.792 p < 0.001; Interaction F(3.392,20.353) = 5.599 p = 0.005; Figure 1). However, flowering 

densities only varied significantly by time (Time F(2.447,29.366) = 35.263 p < 0.001; Treatment 

F(2,12) = 1.133 p = 0.354; Interaction F(4.894,29.366) = 0.634 p = 0.672). Moreover, maximal gall-

diameter showed significant differences across treatments (F(2,57) = 5.333 p < 0.01); specifically, 

maximal gall diameter was significantly larger for fertilized plants compared to salted ones 

(Figure 2). Survivorship on incipient galls over the field study showed no significant association 

with treatments and gall presence (Gcalc = 2.68 df = 2 0.1 < p < 0.5; Table 2). Although, initial 

heights of B. frutescens stems showed no significant differences (F(2,72) = 0.765  p = 0.469; Table 

1). Treatment did significantly effect percent stem growth (F(2,63) =7.017 p = 0.002; log10(10+x)-

transformed data to meet homogeneity of variance; Figure 3). Stems growing in fertilized plots 

grew 8.75% more than controls and 16.87% more than salted plots relative to pre-treatment 

levels. Borrichia frutescens stem survival was high across all treatments and showed no 

significant association (Gcalc = 0.771 df = 2 0.5 < p < 0.9; Table 2). However, effects of treatment 

on leaf thickness (F(2,144) = 0.865 p = 0.423), total leaf size (F(2,144) = 7.807 p = 0.001; Figure 4), 

leaf symmetry (left and right halves cut along midrib respectively) (F(2,144) = 8.159 p < 0.001; 

F(2,144) = 6.665 p = 0.002) and absolute difference of left and right halves (F(2,144) = 0.192 p = 

0.825) only found significant effects of total leaf size and leaf symmetry (Table 3). Although not 

significant, B. frutescens leaves in salted plots were found to be thicker than both control (3%) 

and fertilized leaves (6%), suggesting potential salt-induced succulence of the leaves. Fertilized 

plots exhibited the greatest total leaf size(cm2) (F(2,144) =7.807 p = 0.001; S𝑥̅= 3.8 𝐶𝑥̅ = 3.7 𝐹𝑥̅ =

4.5; Figure 4) generating leaves that were 18% and 21% larger than salt and control leaves 

respectively. Interestingly, these leaves were also found to be lower in absolute differences (i.e. 

more symmetrical) than salted leaves, although these differences were not significant. 
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Significance in total leaf size as expressed by fertilized leaves persisted upon dividing the leaves 

along the midrib, with 23% and 18% increases in left half leaf size across salt and control leaves 

respectively and 19% increase in right halves. Number of leaf pairs was significantly affected by 

treatment, with a 64% decrease in number of leaf pairs between salt and control plots (Figure 5). 

Effects of host plant quality on gall size and parasitoid guild 

Gall diameter differed among treatments with smaller mean gall diameter on salt-treated 

B. frutescens based on post hoc analysis (F2,132 = 18.288 p <0.001; ln-transformed data to 

maintain homogeneity of variance) compared to fertilized plots. Not surprisingly, differences in 

gall diameter led to differences in mean gall chambers (F(2,132) = 18.563 p < 0.001; Figure 6). 

Mean number of gall chambers shows significant differences between all three treatments. In 

untreated control, an almost equal distribution between G. haemon, T. umbilicatus and 

unidentifiable unknowns coupled with R. cecidomyiae and T. teredon across known parasitism 

events is exhibited. Highly significant differences are observed in the salt-treatment with a 56% 

increase in known parasitism events being attributed to G.haemon and a 61% decrease in T. 

umbilicatus when compared to controls. However, this trend was almost reverted in the fertilized 

groups when compared to controls, with an increase in T. umbilicatus parasitism (12%) and a 

significant drop-off of G. haemon (30%) (Figure 7) from salt-treated galls to fertilized galls. 

Analysis to determine a correlation if any, between gall diameter and percent parasitism by both 

G. haemon and T. umbilicatus on known parasitism events found a moderately positive 

correlation between known T. umbilicatus parasitism events on maximal gall diameter and found 

non-significance between G. haemon parasitism events and gall diameter. (r(133) = 0.33 p < 

0.001; r(133) = -0.084 p = 0.335). 
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DISCUSSION 

For the gall midge, A. borrichiae, changes in plant quality altered gall characteristics 

resulting in a strong interaction with the parasitoid guild community exerting top-down 

regulation of the midge population. Gall characteristics such as diameter, symmetry and number 

of chambers are a combination of plant genotype, insect genotype, and their interactions with the 

environment (Price and Clancy, 1986; Weis and Abrahamson, 1986). Gall characteristics, as an 

extension of host-plant quality, provide partial bottom-up regulation of the midge population. 

Gall size has been shown to have effects on the size and potential fitness of A. borrichiae (Rossi 

et al., 2001). However, gall diameter can also affect the suitability of galls to attacking 

parasitoids, thereby potentially shifting the composition of the guild of natural enemies (suite of 

parasitoids). Previous research within the system has suggested non-random attacks by two 

parasitoids and successfully shifted parasitoid guild composition through bagging studies (Stiling 

& Rossi, 1994; Rossi et al., 2006). However, the present study achieved shifts in the parasitoid 

guild through the application of salt and fertilizer treatments. These treatment effects cascaded 

upwards through the lower trophic levels and indirectly shaped the parasitoid guild community. 

It is imperative in fostering greater understanding of population and community dynamics to 

identify and explore how biotic and abiotic factors interact amongst all trophic levels to influence 

a system.  

As expected, over the course of this seven-month press experiment, gall densities varied 

seasonally. Gall densities were shown to significantly vary by treatment and time. Gall densities 

within salt-treated plots were consistently lower, compared to significantly greater density found 

within fertilized plots. Gall densities varied significantly by time due to the multivoltine nature 

of the galling insect (Stiling & Rossi, 1994), coupled with their five-to-nine week developmental 
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period (Stiling et al., 1992). It is expected for galling events to rise and fall over the course of 

this study as pulses of the gall midges peter out or begin anew. Therefore, it is unsurprising that 

gall densities were decreasing steadily into the beginning of June and summarily sharply 

increased by the months end across all three treatments. This seasonal effect was seen across all 

three treatments equally. Over time, (approximately ten weeks) changes in plant quality began to 

affect gall densities between treatments, a distinct bottom-up effect. 

Although flowering of B. frutescens occurs year-round, flowering rates vary seasonally 

and peak from May to July (Duncan and Duncan, 1987; Lonard and Judd, 1989; Rossi et al., 

2001). In the present study, treatment had no effect on flowering rates of B. frutescens however, 

salt and fertilizer treatment has been shown to increase and decrease rates of flowering 

respectively in similar studies (Stiling et al. 1992; Moon and Stiling 2002). Reduced rates of 

flowering may be caused by prolonged apical dominance caused by induction of galls which 

maintains the apical meristem (and suppresses lower stem buds) until gall senescence. Spirko 

and Rossi (2015) found galled ramets of B. frutescens produced 50% fewer flower buds 

compared to fully intact or clipped ones. Moreover, galling may partially regulate stem 

morphology, thereby preventing flowering and maintaining the terminal as a potential 

ovipositional site for the midge; a similar phenomenon has been reported in stem galling sawflies 

(Craig et al., 1986; Roininen et al., 1988). Co-occurrence of galls and flowers occurred on 10 of 

the 300 haphazardly selected stem tips (3%), this was 59% less than expected, indicating that 

flowering may prevent the terminal from galling events (Rossi and Strong, 1990; Stiling et al., 

1992).  

Not surprisingly, percent growth of B. frutescens was nearly 50% higher in fertilized 

plots when compared to salt treated plants. Nitrogen is considered the limiting element for 
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growth within salt-marsh ecosystems (Valiela and Teal, 1974; Profitt et al., 2005). Limiting 

nitrogen has been shown to decrease biomass production within coastal barrier salt-marsh 

ecosystems (Van Wijnen & Bakker, 2001) and the positive effects of nitrogen on plant growth is 

well established (Jefferies & Perkins, 1977; Kiehl et al., 1997, Opik et al., 2005). Nitrogen is an 

important macromolecule for plant growth, and is also an essential component of necessary 

biological molecules (e.g. proteins, nucleic acids, etc), and supplemental nitrogen may also 

increase cell metabolism through greater production of vitamins, cofactors for enzymatic 

processes, hormones, photosynthetic pigments (e.g. chlorophylls, phycobillins),and phytochrome 

photoreceptors (Opik et al., 2005) Nitrogen-rich soluble compounds may play an important role 

in plant salt tolerance and osmoregulation (see below). 

Halophytes, such as B. frutescens express a variety of adaptations for surviving in 

increasingly saline conditions. One of the most important adaptive features is regulating internal 

salt concentrations (i.e. minimizing entry of salt ions). Salinity effects in plants are magnified 

due to the accumulation of ions throughout the water column, plants transpire 30-70 times more 

water than is used for growth (Munns, 2002). It is believed that B. frutescens may selectively 

exclude salts at the roots (see Antlfinger, 1981; Antlfinger and Dunn, 1983) and therefore 

minimizes many of the deleterious effects of drawing water in a salt-marsh ecosystem (Munns, 

2002). These effects will nevertheless accumulate over time, of which the common response is 

the abscission of the leaf. Leaf loss is particularly detrimental in perennial halophytes as leaves 

must be maintained over extended periods of time, and any loss will reduce biomass production 

(Munns, 2002). Although the implication of salt-stress on leaf loss is apparent, this physiological 

mechanism has yet to be determined (see Antlfinger, 1981; Heinsch et al., 2004). Another 

adaptive feature in regulating salt concentrations is minimizing the concentration of salt ions 
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within the cytoplasm. Despite the propensity for halophytes to grow in areas of increasing 

salinity, their enzymes are equally as vulnerable as glycophytic-enzymes to salt damage (Flowers 

et al., 1977; Zhu, 2001). Sodium and chlorine ions are normally sequestered within the vacuole 

of leaves, and as a means of balancing this irregular osmotic pressure, leaves either accumulate 

or synthesize organic solutes (Munns, 2002). Organic solutes such as proline and glycine-betaine 

have reportedly been produced by B. frutescens (see Cavalieri & Huang, 1979; Moon & Stiling, 

2000) although the salinity thresholds necessary for production as reported by Cavalieri and 

Huang appear to be well outside the ranges observed in our study, and their synthesis incur a 

heavy energy cost (Raven, 1985). Both salt exclusion and compartmentalization act to prevent 

the negative effects of salt stress that leads to; inhibited plant growth, production of reactive 

oxygen species, decreases in chloroplast structures and lowered rates of photosynthesis due to 

stomatal closures, reduced growth, less leaves, woody stems and decreased flowering 

The constant application (pressed) of salt to these halophytes appeared to have 

successfully stressed B. frutescens. Richards et al. 2010 purported that B. frutescens expresses 

high phenotypic plasticity in salt-stress responses, this in turn allows for growth in highly saline 

conditions such as salt pans. However, if surrounding abiotic conditions are kept relatively low, 

it is likely, that consistent application of treatments met and surpassed the average salinity in the 

local environment. Furthermore, it has been suggested that stem morphology of B. frutescens 

may be indicative of the plant’s local abiotic conditions because the transition from non-woody 

to woody stems appears affected by nitrogen availability (Moon et al., 2001). At the onset of this 

study 75 haphazardly selected ramets, exhibited green non-woody morphology, however, at the 

conclusion of the study all surviving stems had become woodier regardless of treatment. The 

overwhelming extent of woody stems across treatments suggests that transition of B. frutescens 
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ramets to woody stems may be partially associated with age, and/or in part due to the already 

present poor abiotic conditions (see Moon et al., 2001). 

 While leaves from plants in salted plots tended to be thicker than those from the other 

treatments this difference was not significant. Leaves from salt-treated plots were 3% and 6% 

thicker than control and fertilized plots respectively. Moreover, the lack of significant salt 

induced succulence of the leaves may be attributed to less effective accumulation of leaf water 

content in B. frutescens. For instance, other halophytes found growing within these marshes such 

as Salicornia virginica L., and Batis maritima L. expressed 93-98% water-content retention as 

compared to only ~73% for B. frutescens (Antlfinger, 1981). Our results suggest that retention of 

water within the leaves as a means of diluting salt ions accumulated during transpiration in salt-

treated B. frutescens leaves may be lower than these other halophytes or it was not greatly 

skewed by addition of salt. A common adaptation by halophytes to mitigate salt stress is the 

accumulation of salt ions within the vacuole, which acts as a sink for the ions, until the leaf is 

abscised (Munns, 2002). In the present study B. frutescens leaf pairs were significantly reduced 

by 60% for B. frutescens within salt-treated plots. Increased leaf drop was reported in B. 

frutescens during periods of high salinity caused by drought and/or tidal inundations (Heinsch et 

al., 2004). However, it is still unclear whether leaf drop occurs due to the accumulation of salt 

and subsequent abscission of the leaves, due to aging, or both (Antlfinger, 1981).  

Increases in average leaf size showed that fertilized plots grew significantly broader 

leaves when compared to leaves from salted and control plots. Unsurprisingly, these significant 

effects were maintained upon measuring the individualized leaf halves (i.e. measurements of the 

left and right portions cut along the midrib). Not only did salted plots produce smaller leaves, 

they also exhibited the greatest absolute difference between leaf halves (i.e. they were the most 
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asymmetrical) which suggests the plant was stressed, although values for absolute differences 

were not significant. It has been suggested that reducing asymmetry has been shown to increase 

metabolism, fecundity, and susceptibility to parasitism (Møller & Swaddle, 1998; Møller & 

Thornhill, 1997).  

Bottom-up effects of plant quality significantly affected gall diameter. Fertilized plots 

produced galls with larger gall diameter, compared to galls reared from salted plots (Stiling et 

al., 1992; Rossi et al., 2001; Rossi & Stiling, 1995; Rossi & Stiling, 1998; Stiling & Rossi, 1994; 

Stiling & Rossi, 1998; Moon & Stiling, 2004) Galling enacts a toll on the plant, due to acting as 

a physiological sink that draws nutrients from nearby sources as a means of sustaining and 

increasing its abnormal growth (McCrea et al., 1985; Larson & Whitham, 1991). Thus, changes 

in host plant quality, altered gall size and structure, which in turn cascaded through the gall 

midge and, ultimately, the parasitoid community. Increases in plant quality, via the application of 

fertilizer provided additional resources resulting in larger galls with more chambers (Stiling et 

al., 1992; Clouse, 1995; Rossi and Stiling, 1995). Previous studies determined that minimizing 

larval crowding, through increased gall diameter, produced larger female gall midges with 

greater potential fecundity by means of increased egg production without a reduction in egg size 

(Rossi et al., 2001). Increased gall development rates and/or gall diameter may also alter the 

“window of vulnerability” of A. borrichiae to attack to the guild of parasitoids (Stiling & Rossi, 

1994). Previous research has shown that of the parasitoids that attack developing midges, only 

one, T. umbilicatus has an ovipositor that is significantly longer than other members of the 

parasitoid guild (Stiling & Rossi 1994). This longer ovipositor allows for T. umbilicatus to take 

advantage of its hyperparasitic nature to target and attack larger galls later in development that 

are too thick for the other members to effectively penetrate. 
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Salt-treated plots produced significantly smaller galls when compared to galls from either 

controlled or fertilized plots in both lab-returned and marked field-study galls. This significant 

difference in size can most likely be attributed to decreases in available nitrogen due to salt 

stress, as gall size appears to be mediated by the quality of the plant. It is likely that B. frutescens 

within salt-treated plots were not only exhibiting signs of salt stress such as inhibited plant 

growth, production of reactive oxygen species (ROS) (leading to damage to DNA, proteins, and 

lipids), potential damage to chloroplasts, and diminished rates of photosynthesis (Meng et al., 

2018; Zhu, 2001), but also interference, as increasing soil salinities likely inhibited B. frutescens’ 

ability to absorb nitrogen (Jefferies & Perkins, 1977; Osgood & Zieman, 1993; Bowdish & 

Stiling, 1998). While this study did not actively measure the production of proline and glycine-

betaine, two compatible solutes oft synthesized as a means of combatting increasing salinity 

levels and potentially used for ROS scavenging (Shen et al., 1997). Previous research as 

conducted by Moon and Stiling reported increased frequency of Pissonotus quadripustulatus 

(Homoptera: Delphacidae) a sap-sucking herbivorous insect on salt-stressed B. frutesces and 

were believed to be a good indicator for the accumulation of organic solutes (Moon & Stiling, 

2000). Further suggesting that this study was successful in pushing the boundaries of salt 

tolerance past the phenotypic plasticity normally expressed within the system. This lowered host-

plant quality appeared to negatively affect all plant characteristics leading to smaller more 

asymmetrical leaves, lowered gall densities, significantly reduced stem heights, and significantly 

fewer leaves. 

Mean number of gall chambers was determined to significantly vary across both 

treatments and unmanipulated controls. Fertilizer and control groups had significantly larger 
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galls, with significantly more chambers, as seen in previous studies of this Asphondylia-

Borrichia system (Stiling et al., 1992; Clouse, 1995; Rossi & Stiling, 1995).  

Other studies have found a correlation between gall diameter and frequency of attacks by 

parasitoids. For instance, Pteromalus sp. parasitoids preferentially attack the sawfly Euura 

lasiolepis, in small galls on an arroyo willow Salix lasiolepis (Price & Clancy, 1986). It is 

possible that the Borrichia-Asphondylia system may also follow a similar non-random attack 

hypothesis dependent upon the diameter of the galls. The current study is consistent with 

previous ones that suggest that G. haemon, which is gregarious, can overwhelm the midge or 

other parasitoids in small galls (0.7-0.9mm); after this, its short ovipositor prevents it from 

reaching hosts in large galls (Stiling & Rossi, 1994; Stiling & Rossi, 1996). 

 In the current study, presence of T. umbilicatus increased (significantly) in fertilized 

plots. In addition, T. umbilicatus exhibited a moderately significant positive correlation with gall 

diameter across treatments. Conversely, while the smallest parasitoid, G. haemon increased in 

salted plots that produced smaller galls, it exhibited a very weak non-significant negative 

correlation to gall diameter. This difference in response of the largest and smallest parasitoids 

may have resulted because a previous study using artificial galls, found that G. haemon was 

significantly affected by stem length: G. haemon was significantly more common at the top of 

the B. frutescens canopy and less common on short stems (Rossi et al., 2006). In the current 

study, galls were chosen regardless of stem length. 

Over 60% of the known parasitism events within galls reared from salted plots can be 

attributed to the gregarious nature of G. haemon. A striking contrast when compared to the 

almost equal distribution of known events within controlled plots, as well as the marked decrease 

in G. haemon within fertilizer-reared galls, a roughly 55% decrease in their presence. These data 
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are indicative of bottom-up effects indirectly altering the parasitoid guild community. As gall 

characteristics change dependent upon abiotic factors, so too does the suite of natural enemies 

within this tritrophic system.   

Gall diameter and thickness can have a large impact on the “window of vulnerability” 

and suitability for members of the parasitoid guild (Price & Clancy, 1986; Stiling & Rossi, 

1994). Thus, this “window of vulnerability” of the parasitoids may shift under variable abiotic 

conditions, which may in turn shift dominance of the parasitoid guild between the two 

hyperparasitoids. Small galls (like those produced in salted plots) may not be large enough to 

support development of the largest parasitoid, T. umbilicatus while large galls (characteristic of 

fertilized plots) may be too thick for successful penetration by G. haemon (Stiling & Rossi, 

1994; Brown & Rossi, 2013)  Thus, the prevalence of T. umbilicatus and absence of G. haemon 

in large galls is likely due to the significantly longer ovipositor of T. umbilicatus. An 

identification of a breakpoint across known parasitism events will allow for greater use of gall 

diameters within field studies as a means of correctly attributing parasitism events to their 

respective parasitoid. The prevalence of T. umbilicatus is shown to be positively correlated with 

gall diameter, and although a breakpoint was not able to be determined with the generated data, 

percent parasitism on galls reared from salted plots unequivocally showed the increased presence 

of G. haemon in the significantly smaller salted galls.   

The results of this study support the “upward cascading” effects as mentioned in Hunter 

and Price of abiotic factors on plant quality. Shifts in plant quality have been shown to cause 

significant differences in gall characteristics and ultimately influences composition of the 

parasitoid guild attacking A. borrichiae. Within this and similar study systems, environmental 

heterogeneity can be easily manipulated by natural means. Instances of growth within salt pans 
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cause drastic shifts in salinity levels over a distance of a few meters (Antlfinger, 1981), 

frequency of tidal inundations can accumulate or drive away wrack (Drawe et al., 1981; Profitt et 

al., 2005), topography can mitigate or prevent the effects of tidal inundations, these and many 

other factors can all interact in shaping the plant heterogeneity and in turn the herbivores and 

their natural enemies. It is likely that this and similar coastal systems may be further influenced 

by rising tidal regimes in conjunction with increases in salinity. Specifically, salinity within the 

Florida Current has increased by 3% and coastal levels have seen a steady increase over recent 

years (see Beckett, 2016; Szuts & Meinen, 2017). Tidal action in the current system albeit 

infrequent, did inundate most plots. If these trends continue, it is possible that increasing tidal 

events could lead to further salt-stress across the entirety of the system. Except for those B. 

frutescens located upon higher elevation leading to discrete areas with potentially lower salinity 

due to minimized tidal events. These changes could potentially present with a new avenue for 

abiotic heterogeneity in the Borrichia-Asphondylia system. Normally found in high salt marsh 

habitats, B. frutescens exposed to increasingly saline tidal actions may see greater shifts towards 

salt-stressed stunted growth and further increase the prevalence of attack by G. haemon. 

Asphondylia borrichiae is believed to have formed host-associated races that have 

diverged at the level of their host plant genus (i.e. Borrichia- associated and Iva-associated 

populations)(Stiling & Rossi, 1998; Rossi et al., 2001; Stokes et al., 2012). One (temporary) 

benefit the midge acquired when expanding its host range (i.e. from Borrichia to either Iva 

species) was the acquisition of enemy free space on these novel hosts. Trade-offs on the novel 

hosts include lowered available galling terminals due to increased flowering rates (Stiling & 

Rossi, 1994; Rossi & Stiling, 1995; Rossi et al., 2001), significantly smaller galls producing gall 

midges with reduced fitness (Rossi et al., 2001), as well as seasonal variations in development 
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time (Rossi et al., 2001). It is possible that galls grown on novel hosts that are of differing size 

than produced by B. frutescens may potentially prolong the refuge afforded by these novel hosts 

due to an inadequate search image as it appears parasitoids avoid smaller galls further away from 

the established canopy (Rossi & Stiling, 1998; Rossi et al., 2006; Ishii & Shimada, 2010). It is 

also likely, that variations in galling size and growth due to plant quality as seen in this study 

may lead to a similar outcome. These results further emphasize the importance of investigating 

multi-trophic level interactions to understand the ecology and evolution of Asphondylia 

borrichiae and its host plants. Nevertheless, the significance in understanding the extent and 

complexity of abiotic-biotic interactions within systems and their role in shaping communities 

cannot be understated. 
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Table 2.  Survivorship effects of galls and stems. Effects of treatment on  
survivorship of incipient galls from late May 2020 until the conclusion  
of the study in early September 2020. Many of the galls had naturally  
senesced due to the successful emergence of either A. borrichiae or  
parasitoids; ns indicates non-significant differences. Both gall and  
stem survivorship was compared using a G-test of association  
(see text for details). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment Gall Survivorshipns Stem Survivorshipns

Control 40% (10 of 25) 92% (23 of 25)
Salted 60% (15 of 25) 84% (21 of 25)
Fertilized 40% (10 of 25) 88% (22 of 25)
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Figure 1. Gall densities over time. Mean gall densities per 100 stems per treatment of Asphondylia  
borrichiae galls on Borrichia frutescens host plant. Onset of the study occurred near the conclusion  
of one of the multivoltine generational pulses of the gall-inducer. Significant effect of time on gall 
densities as indicated by the asterisk denotes the start of one of the larger gall pulses, with significant  
effects of treatment showing trends. 
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Figure 2. Mean maximal gall diameter of A. borrichiae galls as grown on host plant B. frutescens across  
treatments. Measurements taken along the greatest axis of each individual gall over the course of the study. 
Increasing gall diameter is likely to increase the fitness of developing herbivores and can help shape the  
window of vulnerability to attack by parasitoids. 
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Figure 3. Percent stem growth of nascent B. frutescens relative to pre-treatment levels. Measurements taken  
from the surface of the soil to the highest apical meristem indicative of plant quality as mediated through  
treatments. Increases in available nitrogen as afforded by fertilizer treatments over the length of the study 
improved growth rates while further salt stress diminished growth B. frutescens stems.   
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Figure 4. Mean total leaf size of B. frutescens leaves across treatments. Salted leaves may be exhibiting signs  
of shading effects on leaves prompting expansion of leaf size as previous data shows diminished growth of  
salt-stressed B. frutescens stems, corroborated by increased leaf thickness suggesting potential salt-induced 
succulence of the leaves (not-significant).  
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Figure 5. Presence of leaf pairs within 50cm of the highest apical meristem on haphazardly selected  
B. frutescens. A common response to increased salt-stress in halophytes is the sequestration of salts  
within the vacuole, production of compatible osmotica and the implementation of salt-stressed leaves  
as a salt-sink for abscission. These data show significantly fewer remaining leaves on salt-treated  
B. frutescens although this can be potentially attributed to less overall leaf production due to stunted  
growth as caused by increasing salt stress. 
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Figure 6. Mean number of chambers per A. borrichiae induced gall. Increases in available chambers coupled  
with increases in size likely increased the potential fecundity of A. borrichiae developing within the robust 
galls produced on fertilized B. frutescens. Decreased number of chambers in salted plots are likely indicative  
of aborted chambers early in development of the gall, and potentially increased salinity of gall tissue. Decreasing 
available chambers in conjunction with diminished growth of galls induced on salt-stressed B. frutescens  
will likely decrease the fitness of A. borrichiae imago. 
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Figure 7. Parasitoid community composition across all known parasitism events. Unidentifiable stages in 
development of parasitoids as well as parasitism events attributed to T. teredon and R. cecidomyiae were kept  
as unknowns. Of the known parasitism events of the haphazardly collected galls, galls reared from salted plots  
were dominated by G. haemon due to numerically overwhelming other parasitoids. These advantages decreased  
as gall diameter increased across treatments with shifts towards dominance by T. umbilicatus. As the window  
of vulnerability decreases for other members of the parasitoid guild due to their significantly shorter ovipositor.  
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