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Abstract

 

Chronic inflammation is a hallmark of many neurodegenerative disorders. Although the 

central nervous system (CNS) can stave peripheral pathogens from crossing the blood-brain 

barrier (BBB) through a network of continuous endothelia, astrocytes, and pericytes, prolonged 

exposure to a pathogen can comprise this barrier. Basigin, a cell adhesion molecule, is found on 

the surface of endothelial cells and has been demonstrated to interact with toll-like receptor 4 

(TLR4). TLR4 recognizes lipopolysaccharide (LPS), found on the outer membrane of Gram-

negative bacteria. The activation of TLR4 produces pro-inflammatory cytokines, like IL-6. The 

present study aims to address the expression pattern of Basigin gene products and TLR4 in brain 

and retinal tissue stimulated with LPS for a variation of time to mirror acute and chronic 

inflammation, as well as different life stages to determine whether the expression pattern is 

dynamic. Isolated brain tissue and neural retina from mice at postnatal day 7, 30 and 180 were 

incubated in DMEM ± LPS for 3, 6, 12, or 24 hrs. Total RNA and protein were purified from the 

isolated tissue and used in quantitative reverse transcription PCR (qRT-PCR) and direct enzyme-

linked immunosorbent assay (ELISA). Basigin, TLR4, and IL-6 were localized in brain tissue via 

immunohistochemistry. The results of the study suggest Basigin is highly expressed on 

microvasculature endothelial cells. The expression pattern of Basigin was not only dependent on 

length of exposure to LPS, but also age. Basigin’s differential expression in 7- and 180-, but not 

30-day old animals suggest pathogenic influence is more likely in neonatal and adult, but not 

adolescent mice. The pattern of TLR4 expression did not mirror that of Basigin gene products, 

indicating Basigin’s role may not be to associate with TLR4, but may associate with other pro-

inflammatory proteins, or may be acting in its role as an inducer of matrix metalloproteinases. 
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Chapter 1 – A Review of Basigin and Inflammation 

The immune system, a pathogenic defense mechanism, consists of two response 

pathways known as innate immunity and adaptive immunity. The innate immune system is the 

first line of defense and plays a critical role in activating and regulating the adaptive immune 

system.1,2 The innate immune response is activated by biochemical signatures known as 

pathogen associated molecular patterns (PAMPs) within bacterial and fungal cell walls, which 

are detected by pattern-recognition receptors (PRRs) expressed on antigen presenting cells 

(APCs).3 Four classes of PRRs have been characterized: Toll-like receptors (TLRs), C-type 

lectin receptors (CLRs), RIG-I-like receptors (RLRs), and nucleotide-binding oligomerization 

domain (NLRs) such as leucine-rich repeat–containing receptors. PAMP-mediated PRR 

induction leads to the activation of genes that express molecules such as cell adhesion molecules, 

immunoreceptors, cytokines and chemokines.4 

As the first line of defense, the innate immune response is characterized as non-specific. 

The PRRs on granulocytes, dendritic cells, and macrophages (APCs) recognize and eliminate 

pathogens in a non-specific manner. However, if the innate response cannot eliminate the threat, 

the adaptive immune response is activated. Adaptive immunity acts in an antigen-specific 

response when presented with a pathogen.5 The adaptive immune response utilizes small 

lymphocytes known as T cells and B cells. These lymphocytes originate in fetal bone marrow. T 

cells then migrate to the thymus for further development, followed by migration through the 

circulatory and lymphatic systems to secondary lymphoid tissues. These cells, now mature naïve 

T cells, wait until presented with specific antigens by APCs. B cells have a slightly different 

development in that these cells mature in the bone marrow. They also travel to secondary 

lymphoid tissues, but do not need formal antigen presentation to become active.  
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T lymphocytes and innate immune cells house TLRs along their plasma membrane. 

TLR4, specifically, recognizes lipopolysaccharide (LPS), of Gram-negative bacteria.6 TLR4 

consists of a single transmembrane alpha-helix and an extracellular domain that exhibits a 

leucine-rich horseshoe-like structure, characteristic of the leucine-rich repeat protein family 

(LRR).7 The extracellular domain can be divided into three subdomains: N-terminal, central and 

C-terminal. The N-terminal and central domains play a role in charge pairing with lymphocyte 

antigen 96 (MD2), forming a heterodimer.8 Cluster of Differentiation 14 (CD14) and LPS 

binding protein (LBP) are accessory proteins that enhance the detection of LPS by the TLR4-

MD2 complex (Figure 1.1). As LPS forms aggregates in aqueous environments due to their 

amphipathic structure, LBP recognizes, binds and splits the aggregate into monomeric molecules 

prior to CD14 presentation.   

The bound LPS is then transferred to the TLR4-MD2 heterodimer at the large 

hydrophobic binding pocket found within the β-cup fold structure of MD2.9-11 Upon LPS transfer 

to the TLR4-MD2 complex, dimerization with a proximal TLR4-MD2 extracellular domain is 

achieved, triggering the recruitment of adaptor proteins to the intracellular domains and 

activating the transcription factors NF-κB and IRF3.12 Each transcription factor is activated by 

the specific interaction of the adaptor proteins, MyD88, TIRAP, TRIF, and TRAM with each 

other and TLR4. The MyD88 pathway is mediated by TIRAP associating with TLR4, while the 

TRAM pathway is mediated by TRIF-TLR4 association (Fig. 1.1).13-16 Though both pathways 

elicit transcription of cytokines, the focus will remain on the MyD88 pathway. Once MyD88 is 

activated, it interacts with several members of the IL-1 receptor-associated kinase (IRAK) 

family. IRAK4 is primarily activated, subsequently phosphorylating IRAK1.17,18 Upon 

phosphorylation, IRAK4 and -1 dissociate from MyD88 and associate with TRAF6, an E3 
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ubiquitin ligase.19,20  TRAF6 promotes polyubiquitination of itself, activating the I-kappa B 

kinase complex (IKK) which activates TAK1, resulting in the phosphorylation and degradation 

of inhibitory kappa B proteins (IκB), allowing NF-κB, a RelA–p50 heterodimer, to translocate 

into the nucleus and begin transcription of cytokines like IL-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Signaling cascade of TLR4. TLR4 activates two pathways that mediate the production of inflammatory 
cytokines. The MyD88-dependent pathway requires the accessory protein TIRAP, while the TRIF-dependent 
pathway requires TRAM. MyD88 recruits IRAK proteins and TRAF6 for activation of the TAK1 complex by 
ubiquitination (Ub). TAK1 activates the IKK complex. The IKK complex phosphorylates IkappaB proteins, 
initiating their degradation and allowing NF-κB to dimerize and translocate into the nucleus. NF-κB translocation 
activates transcription of inflammatory cytokines.59 
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Cell adhesion molecules (CAMs) are proteins that line the surface of cells and play a role 

in cell-cell binding and communication. Four major superfamilies of CAMs have been identified 

and can be separated into two groups - calcium dependent and calcium independent CAMs. 

Cadherins, integrins, and selectins are those dependent on calcium, while the immunoglobulin 

superfamily is independent.21 The immunoglobulin superfamily (IgSF) comprises cell surface 

and soluble proteins that contain a distinct immunoglobulin (Ig) domain. The domain possesses 

an immunoglobulin fold of 70-110 amino acids that form two opposing antiparallel β-sheets 

linked by a disulfide bridge which make up the core.22 Beyond the core are constant (C-type) and 

variable (V-type) regions of immunoglobulins. The C-type domain can be further divided into 

C1- and C2-type domains.23 Although C1-type domains can be found in immunoglobulins, T-cell 

receptors and major histocompatibility complex (MHC) proteins, C2-type domains are found in 

non-immunoglobulin-related molecules. 

Basigin gene products are highly glycosylated transmembrane proteins and members of 

the IgSF. The Basigin gene contains eight exons which form two isoforms due to alternative 

splicing.24 While both splice-variants contain an immunoglobulin-like extracellular domain, a 

single-pass transmembrane domain and short cytoplasmic tail, splice-variant-2 (B-v2) contains 

two immunoglobulin-like domains, encoded by exons 1-7.25 Basigin-variant-1 (B-v1) contains 

three immunoglobulin-like domains and includes exon 1A (located between exon 1 and 2) within 

its coding region.24 Although B-v2 is ubiquitously expressed, the B-v1 isoform is solely 

expressed on photoreceptor cells in the retina.24 The role of B-v2 as a cell adhesion molecule is 

well characterized. However, studies have shown B-v2 also plays a role in behavior regulation, 

pro-inflammatory cytokine production, tumor metastasis, and regulation of cyclophilin signaling 

cascades.26 
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Both isoforms are capable of cis- and trans-recognition of molecules. Monocarboxylate 

transporters (MCTs), glucose transporter 1 (GLUT1), and cluster of differentiation 44 (CD44) 

are examples of proteins Basigin gene products associate with in cis. MCTs are expressed as 14 

isoforms, though only MCT1-4 have been characterized to translocate energetically important 

monocarboxylates such as lactate, pyruvate, and ketone bodies.27 Each isoform has been shown 

to have affinities for distinct substrates and inhibitors, in mammals.27 The transmembrane 

domain and cytoplasmic tail of B-v2 tightly bind to and promote the expression of active MCT1, 

3, and 4 within the plasma membrane.27,28 The interaction between Basigin gene products and 

MCTs were demonstrated as essential for proper rod and cone function in the retina.29 In the 

retina, lactate is used by photoreceptor cells for oxidative phosphorylation.30 Excess lactate is 

transported out of the retina by MCT1 and MCT3 expressed on the retinal pigmented epithelium 

(RPE).31 MCT1 is also highly expressed in Müller glial cells, photoreceptor cells, and vessels 

that form the blood-retina barrier.32 Basigin gene products appear to be essential for proper 

metabolic processes necessary for retinal function. A lactate shuttle formed by the interaction of 

the B-v1/ MCT1 complex on the surface of photoreceptor cells and the B-v2/MCT1 complex 

expressed on the surface of Müller glial cells is thought to provide lactate to photoreceptor 

cells.33 Without Basigin gene expression, MCT1 does not translocate to the plasma membrane 

and transport does not occur.28 

Recent studies suggest that B-v2 plays a role in the innate immune system. A study 

conducted by the Fryer Laboratory at the Mayo Clinic Florida, showed that delivery of LPS to 

mice resulted in a two-fold increase in expression of Basigin-v2 in endothelial cells (John Fryer, 

personal communication).  Further, a study conducted by Josephine Brown in the Ochrietor 

Laboratory at the University of North Florida determined the transmembrane domain of Basigin 
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gene products bind to TLR4 and is stabilized by both hydrophilic and hydrophobic interactions.34 

Although the transmembrane domain of Basigin gene products is mainly comprised of 

hydrophobic amino acids, a single glutamate residue also lies within the domain and is highly 

conserved among species.35 It is thought that this residue interacts with the two histidine residues 

that lie within the transmembrane domain of TLR4.34 It is possible that Basigin can stimulate the 

production of pro-inflammatory cytokines by its association with TLR4. Although the production 

of pro-inflammatory cytokines in an acute manner is not harmful, prolonged production, or 

chronic inflammation, can have deleterious effects on tissues - as in the case of chronic 

neuroinflammation. 

Neuroinflammation can be brought on by many factors such as trauma, autoimmunity, or 

toxic metabolites. Within the central nervous system (CNS), microglia are the resident innate 

immune cells. The CNS is comprised of the brain, spinal cord, and the neural retina, which are 

protected by a specialized barrier, referred to here as the blood-CNS barrier (BCB). The BCB 

protects the CNS from circulating peripheral pathogens by a layer of endothelial cells contiguous 

by way of tight junction proteins.36 Pericytes and astroglial end-feet form a second layer 

separating blood vessels from central nervous tissue and mediating the contact between tissue 

and circulating peripheral molecules.37 These two layers are not in direct contact, rather there is 

some space separating them, known as the Virchow-Robin space.38,39 Within the Virchow-Robin 

space, perivascular macrophages move about the interstitial fluid. The interaction and signaling 

that occurs between each cellular component is known as the neurovascular unit.  

 Endothelial cells are joined by tight junction proteins, which exhibit specific transport 

mechanisms and pinocytic vesicles, thoroughly regulating the molecules that enter the central 

nervous system from the periphery. The transmembrane proteins that form cell-to-cell tight 
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junctions include claudins, occludin and junctional adhesion molecules (JAMs).40 Cytoplasmic 

plaque proteins, such as cingulin and 7H6, provide a link between transmembrane proteins and 

the cytoskeleton of the cell. Additionally, they participate in intracellular signaling.41 Though the 

tight junctions between endothelial cells inhibit the diffusion of polar solutes, the endothelial 

barrier is permeable to O2, CO2, N2 and some gaseous anesthetics. Adsorptive and receptor-

mediated transcytosis is used to regulate the entry of larger molecules that cannot freely cross the 

endothelial barrier.41 Components of the innate immune system are also regulated by this barrier. 

Leukocyte recruitment and entry are mediated by a set of adhesion molecules expressed on the 

surface of leukocytes and endothelial cells, such as ICAM-1, VCAM-1 and PECAM-1.42,43 

The integrity of the BCB can be disrupted through the upregulation of VCAM-1, induced 

by binding to very late antigen 4 (VLA-4) on activated T cells44,45 or in response to peripheral 

IL-6.46 IL-6 and transforming growth factor beta (TGF-β) have a dichotomous role in generating 

IL-17 producing T-helper 17 (Th17) cells from naïve T cells.47,48 Disruption of the BCB allows 

for the infiltration of both naïve T cells and Th17 cells, and IL-6 into the CNS. As IL-6 

concentration increases, T-cells become activated and shed their IL-6Rs through a 

metalloproteinase-mediated proteolytic cleavage, specifically by ADAM17.49 The shedding of 

IL-6Rs leads to an increase in soluble IL-6Rs (sIL-6R).50 This pool of soluble receptors provides 

an opportunity for trans-signaling and subsequent activation of microglia and astrocytes. 

Activation of microglia results in the release of reactive oxygen species (ROS), while activation 

of astrocytes results in an increased production of IL-6 as well as the production of ROS (Figure 

1.2).51 ROS ultimately leads to demyelination and degradation of neurons - the characteristic of 

neurodegenerative diseases such as Alzheimer’s Disease, Parkinson’s Disease, and Multiple 

Sclerosis.52-55 
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Essential polar molecules, such as glucose and amino acids, that cannot diffuse through 

the endothelial cell membrane are transported into the CNS via carrier-mediated transport. 

GLUT1, for example, is a crucial insulin independent glucose transporter that is expressed on 

endothelial cells, astrocytes and the choroid plexus.56 Regulation of GLUT1 expression is 

necessary to maintain proper glucose concentration within neural tissue. Polar amino acids are 

also necessary to synthesize neurotransmitters such as serotonin and dopamine. The 

concentration and synthesis of these molecules have been correlated to the rate at which they 

cross the endothelial barrier.57 Solute carriers (SLCs), expressed on the cell membrane of 

Figure 1.2. IL-6 mediated pathogenesis. (1) In the periphery, naïve T-cells are differentiated into Th17-cells after 
IL-6 stimulation. sIL-6R is released from the surface. (2) IL-6 stimulation of VCAM-1 increases the permeability of 
the blood brain barrier (BBB), allowing T-cells and IL-6 to cross into the central nervous system (CNS). (3) 
Differentiation of naïve T-cells and shedding of IL-6R in the central nervous system. (4) IL-17 secretion from Th17-
cells resulting in a feedback loop with astrocytes as they produce IL-6 and reactive oxygen species (ROS). (5) 
Microglia and astrocyte activation by trans-signaling from IL-6 and sIL-6R. (6) ROS inducing demyelination of 
neurons.60 
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endothelial cells, provide the transport mechanism to preserve the delicate balance of glucose 

and amino acids neural tissue needs to sustain its function.58 

The introduction of a peripheral pathogen can pose a detriment to the CNS by disruption 

of the BCB or to crucial metabolic mechanisms that sustain the central environment. This study 

aims to investigate the role of Basigin gene products and its potential association to TLR4 in 

response to an inflammatory stimulus, lipopolysaccharide (LPS). Upon varying lengths of 

exposure to LPS, the expression pattern of Basigin gene products, TLR4, and IL-6 was 

determined in the brain and neural retina, ex-vivo. Additionally, this study aims to determine 

whether these expression patterns change throughout the lifespan using a murine model, as the 

proteins of interest are highly similar to those in humans. Investigating the role Basigin plays in 

neuroimmunity will expound the complexity of neurodegenerative disorders. 
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Chapter 2 – The Dynamics of Basigin in Response to LPS Through the Lifespan 

 About one third of Americans suffer from one of the more than 600 neurological 

disorders at some point in their life, according to the National Institute of Neurological Disorders 

and Stroke. As the life expectancy of the United States population increases61, so do the number 

of cases of late-onset neurological disorders, like neurodegenerative diseases.62-64 

Neurodegenerative diseases are categorized as the progressive loss of neuronal structure and 

function, resulting in neuronal cell death. The majority of neurons, the primary cells of the 

central nervous system (CNS), are nonmitotic, thus damage to these cells are detrimental to the 

organ system and require protection from peripheral pathogens. Additionally, maintenance of the 

central metabolic and ionic environment is highly important to ensure proper function. 

Chronic inflammation is a hallmark of many neurodegenerative diseases. Glial cells, 

thought of as the supporting cells of the CNS, provide a means of clearance for infections or 

toxins.65 The introduction of these harmful stimuli activates the resident macrophages of the 

CNS, microglial cells. Activated microglia have a phagocytotic phenotype and release 

inflammatory mediators like chemokines and cytokines.65 Though the acute onset of these innate 

immune cells does not lead to long-term detriments, their sustained activation does.66,67 

Microglia produce reactive oxygen species (ROS) through peroxidases inside the cell, 

oxidative processes of mitochondria, or most commonly, NADPH oxidase on the membrane 

surface.68,69 Interestingly, NADPH oxidase is not presented on the cell surface until the 

phagocyte has been exposed to specific stimuli, such as bacteria and inflammatory peptides.70 

Once on the cell surface, the active enzyme complex transports electrons from NADPH within 

the cytoplasm to extracellular oxygen, generating superoxide (O2
-).71 The increasing 

concentration of O2
- allows for membrane lipid peroxidation to occur.72 The damaged neuron 
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then releases neuroglial activators, such as µ-calpain, matrix metalloproteinase 3, α-synuclein, 

and neuromelanin, perpetuating the cycle of neuronal degradation.73-75 This cycle of microglia 

activation and subsequent neuronal attack is referred to as microgliosis. 

Though microgliosis can be maintained by sustained inflammatory responses within the 

CNS, immune mediators from the periphery can also contribute to neuronal damage. Under 

normal homeostatic conditions, the blood-CNS barrier (BCB) mediates the movement of 

molecules and ions from the periphery into the CNS. However, peripheral cytokines, like 

interleukin-6 (IL-6) can upregulate the expression of vascular cell adhesion molecule-1 (VCAM-

1), found on the surface of leukocytes and endothelial cells40,41,44, resulting in the disruption of 

the BBB. Infiltration of IL-6 subsequently activates microglia.76 

A number of cell adhesin molecules are expressed on the surface of endothelia forming 

the BBB, including Basigin.77,78 The immunoglobulin glycoprotein has been demonstrated to 

have both neuroprotective and neurodegenerative function.26 Basigin acts a signaling receptor for 

cyclophilin A (CypA), mediating the recruitment of leukocytes to injured or infected tissues.79 

However, a rapid influx of leukocytes, due to the chemotactic potency of CypA, can contribute 

to inflammation.80 Moreover, Basigin associates with a variety of proteins involved in 

inflammation like E-selectin, Toll-like Receptor 4 (TLR4) and Cluster of Differentiation 44 

(CD44), a lymphocyte homing receptor.34,81-83  

TLR4 is a member of the toll-like receptor class of proteins that recognize invading 

organisms possessing pathogen associated molecular patterns (PAMPs). TLR4 has been 

demonstrated to specifically recognize lipopolysaccharide (LPS) of Gram-negative bacteria6, and 

is expressed on T lymphocytes, macrophages, and endothelial cells.84-86 Upon LPS recognition, 
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TLR4 dimerization occurs, followed by a phosphorylation cascade that results in the 

transcription of pro-inflammatory cytokines, such as IL-6.  

A previous study conducted by this laboratory has shown an association between Basigin 

and TLR4, in vitro.34 To further elucidate Basigin’s role in neuroinflammation, this study aims to 

quantify and localize the expression of Basigin and TLR4 within neonate, adolescent, and adult 

brain tissue after acute and chronic inflammation. It is hypothesized the Basigin gene expression 

increases in response to LPS, as seen by the Fryer Laboratory at the Mayo Clinic Florida (John, 

Fryer, personal communication). 

Materials and Methods 

Animals 

All experiments described in the present study were approved by the University of North 

Florida Institutional Animal Care and Use Committee (IACUC) under protocols #17-003 and 

#19-008 and were conducted in accordance with the American Veterinary Medicine Association 

(AVMA). Mice were housed at the University of North Florida vivarium in accordance with 

institutional requirements for animal care and were maintained under a standard 12:12 h 

light/dark cycle and were allowed ad libitum access to 8604 Harlan Teklad Rodent Chow 

(Harlan Research Models and Services, Indianapolis, IN) and water.   

Treatment of Tissue 

Brain tissue was dissected from female and male wild-type C57/129 hybrid mice87 at 

postnatal days (PD) 7, 30, and 180. Three brains were collected for each age group. Dissected 

brains from PD 7 mice were sectioned along their midsagittal plane, while PD 30 and 180 brains 

were sectioned into four equal sagittal parts. Each section was incubated in DMEM + PBS or 

LPS (10 µg/mL; InvivoGen, San Diego, CA) at 37°C with 5% CO2 for 3, 6, 12, or 24 hours. 
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Incubation periods for each treatment were performed in triplicate for all age groups. Following 

incubation, half of each brain sample was preserved by immersion-fixation in 4% 

paraformaldehyde in phosphate-buffered saline for 24 hours at 4°C, followed by incubation in 

100% ethanol at -20°C, while the other half was directly frozen at -80oC. 

RNA and Protein Isolation 

Frozen brain tissue was homogenized in extraction solution (TRI Reagent; Molecular 

Research Center, Cincinnati, OH). A 500 µL sample was used to isolate total RNA, following 

the instructions of the manufacturer and solubilized in Milli-Q water. The concentration of RNA 

was determined spectrophotometrically at 206 nm (Biotek Instruments, Winooski, VT).  

Proteins were then isolated from the organic phase and solubilized in 1% SDS, following 

the instructions of the manufacturer. A Bradford Coomassie protein assay (Pierce Biotechnology, 

Rockford, IL, USA) was used to determine the concentration of isolated protein. A standard 

curve was generated using serial dilutions of bovine serum albumin (BSA) from 0.2 mg/mL to 

2.0 mg/mL. Spectrophotometric analysis was performed at 595 nm (Biotek Instruments, 

Winooski, VT). 

Quantification of Basigin and TLR4 mRNA Expression 

The isolated total RNA was used to quantify the expression of Basigin and TLR4 in PD 7 

and 30 mouse brain tissue. Amplification of reverse-transcribed cDNA was detected in one-step 

using a nucleic acid fluorogenic dye (SYBR Green; iUniversal, Bio-Rad, Inc.) and primers 

complementary in sequence to the cDNA of Basigin, TLR4 and mouse 18S ribosomal RNA. The 

RNA isolated from PD180 mice was reverse transcribed to cDNA (iScript™ cDNA Synthesis 

Kit, Bio-Rad, Inc.), which was then used to perform quantitative PCR (SsoAdvanced Universal 

SYBR Green Supermix, Bio-Rad, Inc.), including the aforementioned primer sets. The primer 
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sequences used are as follows: Basigin Fwd 5’ – CTGCGCGGCGGCGGGCACCAT; Basigin 

Rvs 5’ – GCTGTTCAAAGAGCAGGTAAGCT; TLR4 Fwd 5’ – CACCGTGATTGTG-

GTATCCACTGT; TLR4 Rvs 5’ – GTCCTCATTCTGACTCGAGTAGAT; 18S Fwd 5’ – AGT-

CCCTGCCCTTTGTACACA; 18S Rvs 5’ – CCGAGGGCCTCACTAAACC. Although Basigin 

and 18S sequences were already established24, the primer sequence complimentary to TLR4 was 

designed using NCBIs Primer-BLAST software in conjunction with the GenBank TLR4 

sequence (accession: NM_021297.3). All runs were performed in triplicate using a CFX Connect 

Real-Time PCR Detection System (Bio-Rad, Inc.) and included standard melt curve analyses. 

Thermal cycling protocols were set according to the manufacturer. The amount of each amplified 

product was calculated using a standard curve generated for each primer set. Expression of 

Basigin and TLR4 were normalized to 18S ribosomal RNA expression. Prior to analysis via a 

two-way ANOVA, the quantified mRNA was transformed by taking the square-root to ensure 

normality. 

Protein Expression of Basigin 

Protein expression of Basigin was determined by performing a direct enzyme-linked 

immunosorbent assay (ELISA), using the total protein isolated from mouse brains. Wells of a 

clear, flat-bottom 96-well plate were coated with serial dilutions of recombinant Basigin (Mouse 

Basigin Protein Recombinant, LifeSpan BioSciences, Inc., Seattle, WA) from 500 ng/mL to 

7.8125 ng/mL or 10 µg of isolated mouse brain protein, in duplicate. The plate was incubated 

overnight at 4°C. All protein was then removed, and each well was washed 3 times with 

approximately 200 µL of PBS containing 0.05%Tween-20 (PBS-T). The wells were then 

incubated at 37°C for 30 minutes with 100 µL of a BSA solution, diluted 1:10 in PBS. The BSA 

solution was removed and the wells were washed 3 times with PBS-T. A 100 µL volume of 
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affinity-purified rabbit anti-Basigin24 (diluted 1:500 in PBS) was added to the wells and 

incubated at 37°C for 30 minutes. The primary antibody was removed, and the wells were 

washed 3 times with PBS-T. The wells were then incubated with 100 µL of alkaline 

phosphatase-conjugated goat-anti-rabbit secondary antibody (AP-GAR; 

Pierce/ThermoScientific; diluted 1:1000 in PBS) at 37°C for 30 minutes, followed by a removal 

of the unbound secondary antibody from the wells and washing of the wells with PBS-T 3 times. 

One hundred microliters of AP substrate (PNPP; Thermo Fisher Scientific, Rockford, IL) was 

added to each well and incubated at room temperature for 30 minutes. The reaction was stopped 

by the addition of 2N NaOH and the absorbance at 405 nm was measured on a Bio-Tek plate 

reader (Biotek Instruments). The duplicate measurements were averaged. The average 

recombinant Basigin measurements were then used to create a standard curve, which was used to 

determine the concentration of Basigin within brain tissue samples. A two-way ANOVA was 

used to determine the influence of incubation period and age on the expression of Basigin.  

Immunohistochemistry 

Paraformaldehyde-fixed tissues were processed into paraffin-embedded blocks, followed 

by preparation of 5 µm thick sagittal sections using a rotary microtome, adhered to microscope 

slides coated with 0.01% poly-l-lysine (Sigma Aldrich, St. Louis, MO).  

Indirect immunofluorescence detection was performed to localize Basigin, TLR4, and IL-

6. Prior to incubation with the protein-specific antibody, the sections were incubated in a 

limonene-based xylene substitute (CitriSolv™, Fisher Scientific, Fair Lawn, NJ) 2 times for 10 

minutes to remove the paraffin wax. The sections were rehydrated by incubation in each 

concentration of ethanol for 5 minutes, 100%, 95%, and 70%, followed by tris-buffered saline 

(TBS). Each section was encircled using a hydrophobic barrier pen (Super PAP Pens: Liquid 
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Blocker, Ted Pella, Inc.). The tissue sections were then incubated in a blocking solution of TBS 

containing 2% normal goat serum and 1.5% Triton X-100 in a humidified chamber overnight at 

4°C. An antibody solution containing either rabbit anti-Basigin24, rabbit anti-TLR4 (Thermo 

Fisher Scientific, Rockford, IL), or rabbit anti-IL-6 (Thermo Fisher Scientific, Rockford, IL), 

diluted 1:100 in the blocking solution was incubated with the tissue for 30 minutes in a 

humidified chamber at 37°C, followed by an overnight incubation at 4°C. The tissue sections 

were washed 10 times in TBS and incubated in a FITC-conjugated goat anti-rabbit secondary 

antibody (Thermo Fisher Scientific, Rockford, IL) diluted 1:250 in blocking solution for 30 

minutes in a humidified chamber at 37°C. The tissues were incubated with DAPI (Thermo Fisher 

Scientific, Rockford, IL) diluted 1:1000 in TBS for 5 minutes at room temperature and then 

washed with several changes of TBS. Coverslips were mounted with TBS/glycerol (1:1) 

containing p-phenylenediamine (Sigma-Aldrich, St. Louis, MO). An Olympus FV1000 

microscope was used to visualize the tissue. Software associated with the instrument was used to 

perform densitometry analyses by quantifying the fluorescence of each protein tested. A two-

way ANOVA was used to determine the influence of incubation period and age on the 

expression of those proteins. 

Results 

Expression of Basigin 

To determine whether Basigin expression varies in brain tissue of neonatal, adolescent, 

and adult mice when subjected to an acute and chronic inflammatory stimulus, transcripts and 

proteins were analyzed.  Basigin transcripts in mouse brain tissue collected at PDs 7, 30, and 180 

and incubated for several time points indicated that in all age groups, Basigin transcripts were 

most abundant at the 3-hour time point, then decreased as incubation time increased, regardless 
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of treatment (Figure 2.1).  Statistical analyses indicated that incubation time, but not treatment, 

affected Basigin transcript expression for mice at PDs 7 and 30. A similar trend was observed for 

mice at PD 180. No statistical significance between PBS and LPS treated groups at both PD 7 

and 30 (p = 0.976; 0.978) was observed. However, Basigin transcription of PD 7 tissues 

incubated for 3 hours was significantly higher (p = 2.59 x 10-5) than that of transcript levels for 

tissues of the same age incubated at other time points. Similarly, mice at PD 30 showed 

significant differences in Basigin transcript levels for incubation periods (p = 0.002), in which 

tissues incubated for 3 hours expressed Basigin significantly more than that of tissues incubated 

for 12 and 24 hours, while tissues incubated for 6 hours expressed significantly more Basigin 

than tissues incubated for 24 hours. No statistical significance was determined for the P180 data. 

Protein expression of Basigin in mouse brain tissue at different ages, post treatment was 

quantified by ELISA. A trend was observed in which Basigin protein was elevated in brain tissue 

of PD 7 and 30 mice incubated in PBS for 24 hours. This was not observed in PD 180 mice. No 

significant difference in Basigin expression was observed between tissues treated with PBS or 

LPS (p = 0.168) for mice at PD 7 (Figure 2.2A; n = 3). Further, incubation periods did not 

produce significant differences in Basigin expression (p = 0.145), nor was there a significant 

interaction effect for this age group (p = 0.123). Similar results were observed for mice at PD 30, 

and PD 180 (Figure 2.2B and C, respectively; n = 3), where neither treatment (p = 0.43; 0.947) 

nor incubation period (p = 0.205; 0.996) showed significant differences in Basigin expression. 

An interaction effect was not observed for either age group (p = 0.078; 0.844).  
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Figure 2.1 Quantitative analyses of Basigin transcripts in neonate, adolescent, and adult mice. Quantitative 
reverse transcription PCR was performed on RNA isolated from brain tissue incubated in DMEM ± LPS for 3, 6, 
12, or 24 hours of mice at PD 7 (A), PD 30 (B), and PD 180 (C) using primers complementary to Basigin. White 
bars represent tissue incubated with PBS as a control, while dashed bars represent tissue incubated in LPS. Error 
bars represent the coefficient of variation. * indicates a p-value < 0.05 by Tukey’s HSD test, following a two-
way ANOVA. 
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Figure 2.2 Quantitative analyses of Basigin protein in neonate, adolescent, and adult mice. A direct ELISA 
for Basigin protein expression was performed using protein isolated from brain tissue incubated in DMEM ± 
LPS for 3, 6, 12, or 24 hours of mice at PD 7 (A), PD 30 (B), and PD 180 (C). White bars represent tissue 
incubated with PBS as a control, while dashed bars represent tissue incubated in LPS. The runs were performed 
in duplicate. Error bars represent the standard error.  
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Expression of TLR4 
 To determine whether TLR4 transcript expression was similar to that of Basigin, TLR4 

mRNA was quantified. In mice at PD 7 the highest amount of TLR4 transcripts were quantified 

in tissues incubated for 3 hours (Figure 2.3A). A significant decrease was observed at the 6-hour 

time point, followed by an upregulation in transcript levels after 24 hours. The time for which the 

tissues were incubated showed a significant main effect on the expression of TLR4 (p = 3.05 x 

10-8). The Treatment did not have an observable main effect on TLR4 expression (p = 0.861), 

nor was there a significant interaction effect within this age group (p = 0.466). 

 Mice at PD 30 displayed a different pattern of TLR4 expression than those at PD 7 

(Figure 2.3B). After 3 hours of incubation, PBS treated tissue expressed less TLR4 when 

compared to 6- and 24-hour incubated issue within the same treatment group. The 6- and 24-hour 

PBS treated tissue also expressed a greater amount of TLR4 transcripts when compared to LPS 

treated tissue of the same incubation periods. Incubation time did not have as much of an effect 

(p = 0.053), as tissues incubated for 6 hours had only a slight increase in TLR4 transcript levels. 

However, treatment was determined to have a significant main effect (p = 2.81 x 10-5). On 

average, tissues incubated in LPS expressed significantly less TLR4 than those incubated in 

PBS. Additionally, a significant interaction effect was observed (p = 6.69 x 10-3).  

Quantification of TLR4 mRNA of mice at PD 180 revealed that TLR4 expression did not 

change between the 3- and 6-hour incubation period, but steadily increased thereafter (Figure 

2.3C).  In PBS treated tissue, TLR4 increased in expression from the 6- to 12-hour time point, 

while in LPS treated tissue, TLR4 did not significantly increase until the 24-hour incubation 

period. Incubation time had a significant effect (p = 3.14 x 10-8), regardless of treatment. 

Treatment did not have an observable main effect (p = 0.204), but a significant interaction effect 

was found (p = 8.55 x 10-5).  
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Figure 2.3 Quantitative analyses of TLR4 transcripts in neonate, adolescent, and adult mice. Quantitative 
reverse transcription PCR was performed on RNA isolated from brain tissue incubated in DMEM ± LPS for 3, 6, 
12, or 24 hours of mice at PD 7 (A) and PD 30 (B), using primers complementary to TLR4. White bars represent 
tissue incubated with PBS as a control, while dashed bars represent tissue incubated in LPS. Error bars represent 
the coefficient of variation. * indicates a p-value < 0.05 by Tukey’s HSD test, following a two-way ANOVA. 
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Localization 

Immunohistochemical analyses were performed to localize and quantify the expression of 

Basigin within mouse brain tissue sections. In mice at PD 7, the antibody that recognizes Basigin 

produced a signal on microvascular endothelial cells (Figure 2.4A). Comparing the average 

fluorescence of 20 regions of interest (ROIs) taken from each treatment group per time point  

revealed that although, on average, tissue treated with LPS expressed significantly less Basigin 

than tissue incubated with PBS (p = 0.002), Basigin expression significantly increased in tissues 

of both treatment groups as incubation time increased (p =1.7 x 10-34; (Figure 2.4B). Further, a 

significant interaction effect was also observed (p = 1.03 x 10-7). Basigin expression significantly 

increased in tissues incubated with PBS for each time period, while only significantly increasing 

from hour 6 to 12 within the group of brain tissues treated with LPS. Basigin expression was 

significantly higher in brains treated with LPS when incubated for 3 hours, but significantly 

lower when incubated for 24 hours, compared to those treated with PBS. 
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Basigin expression was localized to the microvasculature in mice at PD 30, like that of 

mice at PD 7 (Figure 2.5A). However, the average fluorescence emitted differed (Figure 2.5B). 

Brain tissue incubated for 6 and 12 hours expressed significantly more Basigin than those 

incubated for 3 and 24 hours, regardless of treatment. Treatment did not have an observable main 

effect (p = 0.677), but time in which tissues were incubated did (p = 8.74 x 10-24). No significant 

interaction effect was observed (p = 0.491). 

 

 

 

 

 

 

Figure 2.4 Localization and quantification of Basigin in PD 7 mouse brain tissue. (A) 
Immunohistochemistry was performed on brain tissue sections of mice at PD 7 to localize the expression of 
Basigin (green). DAPI was used to stain nuclei (blue). Magnification bar, 50 µm. (B) Quantification of the 
average fluorescence for each treatment is shown as a bar graph. White bars represent tissue incubated with PBS 
as a control, while dashed bars represent tissue incubated in LPS. Error bars represent standard error. * indicate a 
p-value < 0.05 via a two-way ANOVA followed by a Tukey’s HSD test. 
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In mice at PD 180, the localization of signal produced from immunostaining had a similar 

profile to that of mice at PD 7. The fluorescence was concentrated around the brain’s 

microvasculature (Figure 2.6A). Upon analysis of the average fluorescence emitted, it was 

determined that Basigin expression for brains incubated in PBS fluctuated significantly 

beginning at 6 hours to 24 hours. Brain tissue incubated in LPS also showed a fluctuation in 

Figure 2.5 Localization and quantification of Basigin in PD 30 mouse brain tissue. (A) 
Immunohistochemistry was performed on brain tissue sections of mice at PD 30 to localize the expression of 
Basigin (green). DAPI was used to stain nuclei (blue). Magnification bar, 50 µm. (B) Quantification of the 
average fluorescence for each treatment is shown as a bar graph. White bars represent tissue incubated with PBS 
as a control, while dashed bars represent tissue incubated in LPS. Error bars represent standard error. * indicate a 
p-value < 0.05 via a two-way ANOVA followed by a Tukey’s HSD test. 
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Basigin expression but was inverse to that of PBS-incubated tissue. That is, LPS treatment of 

tissues incubated for 6 and 24 hours expressed significantly more Basigin than tissues incubated 

with PBS but expressed significantly less at the 12-hour timepoint (Figure 2.6B), Treatment did 

not have an observable main effect (p = 0.147), while incubation period did (p = 1.2 x 10-12; 

Figure 2.6B). Further, a significant interaction effect was observed within this age group (p = 

2.95 x 10-18).  

 

 

 

 

 

 

 

Figure 2.6 Localization and quantification of Basigin in PD 180 mouse brain tissue. (A) 
Immunohistochemistry was performed on brain tissue sections of mice at PD 180 to localize the expression of 
Basigin (green). DAPI was used to stain nuclei (blue). Magnification bar, 50 µm. (B) Quantification of the 
average fluorescence for each treatment is shown as a bar graph. White bars represent tissue incubated with PBS 
as a control, while dashed bars represent tissue incubated in LPS. Error bars represent standard error. * indicate a 
p-value < 0.05 via two-way ANOVA followed by a Tukey’s HSD test. 
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A previous study by this laboratory suggested that the Basigin-TLR4 interaction is 

stabilized through both hydrophilic and hydrophobic interactions, in vitro.34 To determine 

whether this interaction occurs ex vivo when presented with an inflammatory stimulus, an 

immunohistochemical analysis of TLR4 was performed on the same tissues that underwent 

treatment as described above. The signal produced by an antibody specific to TLR4 

demonstrated sparse distribution of the protein within the tissue at all ages and was not consistent 

with the immunohistochemistry of Basigin (Figure 2.7). Distribution changes due to treatment 

incubation were not quantified, but there appeared to be no change in the expression of TLR4 

across all tissues. 
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To further investigate the hypothesis that Basigin may play a role in mediating an 

inflammatory response through TLR4, immunohistochemistry was used to localize the 

expression of the cytokine, IL-6. In mice, IL-6 production was like that of TLR4, rather than 

Figure 2.7 Localization of TLR4 in neonate, adolescent, and adult mouse brain tissue. 
Immunohistochemistry was performed on brain tissue sections of mice at PD 7 (A), PD 30 (B), and PD 180 (C) 
to localize the expression of TLR4. The staining of TLR4 is shown in green (AF-488) was distributed sparingly 
within the tissue. DAPI (blue) was used to stain nuclei. Magnification bar, 50 µm. 
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Basigin and did not increase with incubation time in either treatment group across all ages 

(Figure 2.8).  
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Discussion 

Basigin is a widely distributed gene product that has diverse function, dependent on its 

expression within the tissue and cell type. Basigin’s association with MCTs and GLUT proteins 

have been illustrated as essential for spermatozoa88, photoreceptor cells33,89 and neurons.90 

However, Basigin has also been implicated in pathogen recognition, infiltration, and cytokine 

production.91,92 Further, Basigin is upregulated in activated human vein endothelial cells and 

spurs angiogenesis.93 Considering endothelial cells are an integral component of the BCB, this 

study aimed to characterize Basigin expression in brain endothelium when exposed to an 

inflammatory stimulus for a varying degree of time in neonatal, adolescent, and adult mice. 

Immunohistochemical techniques indicated that Basigin is indeed expressed on blood 

vessels in mice within all age and treatment groups. Quantification of the average fluorescence 

revealed that in the neonatal (PD 7) brain, Basigin expression steadily increased from 3 to 24 

Figure 2.8 Localization of IL-6 in neonate, adolescent, and adult mouse brain tissue. Immunohistochemistry 
was performed on brain tissue sections of mice at PD 7 (A), PD 30 (B), and PD 180 (C) to localize the 
expression of IL-6. The distribution of IL-6 (pseudo colored red, AF-488) was not found in abundance.  DAPI 
(blue) was used to stain nuclei. Magnification bar, 50 µm. 
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hours, post dissection, without the addition of LPS. However, LPS induced an increase in 

Basigin expression only from the 6- to 12-hour incubation period. The continuous upregulation 

of Basigin in PBS treated tissue could be a result of the hypoxic condition the tissue was under, 

as it has been suggested an upregulation of the Basigin-MCT4 complex under hypoxic 

conditions may be a means of adaptation.94 Interestingly, the addition of an inflammatory 

stimulus suppressed the degree to which Basigin was upregulated in the long-term.  

The analysis of Basigin transcripts in neonatal brain tissue indicated transcription 

occurred most abundantly during the first 3 hours of incubation in both treatment groups. A steep 

decline in the rate of transcription occurred at the 6-hour time point and did not recover for the 

remainder of the time in which the tissue was incubated. These data taken with the 

immunohistochemical data suggest either a delay in protein synthesis95, or a delay in the 

degradation of the protein synthesized.96 The copious amounts of Basigin transcripts in the 3-

hour incubated tissue is potentially due to the change in nutrient environment. Additionally, 

these data may differ from that of those obtained via immunohistochemical techniques due to a 

small sample used from a homogenous pool of half the brain tissue, rather than from one section 

of brain tissue.  

 In an effort to quantify the amount of Basigin protein within the brain, direct ELISAs 

were performed. The analyses of the assay indicated no change in Basigin expression during any 

incubation period or within treatment groups at PD 7. As it was revealed that Basigin is highly 

localized to brain vasculature, the limited concentration of Basigin in relation to all other protein 

within brain tissue could account for the negligible shifts in concentration.  

 Although immunohistochemistry of adolescent (PD 30) brain tissue also indicated 

Basigin to be highly localized to blood vessels, the pattern in expression of Basigin after varying 
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degrees of incubation with LPS varied from neonatal brain tissue. The increase in Basigin 

expression in either treatment group was marginal as incubation time reached 12 hours. 

However, a steep decline in expression at the 24-hour time point of both treatment groups 

indicates the inflammatory stimulus is not the cause in downregulation. Further, the lack of 

variance in tissues incubated with LPS compared to those without suggests this age group is 

more resilient to an inflammatory stressor.  

 Transcript and protein analyses of Basigin in adolescent mice indicated similar trends in 

expression as neonatal mice, in that transcript levels were the most abundant during the 3-hour 

incubation period, though the transcript abundance was maintained into the 6-hour time point. 

The sustained level of transcripts and no change in protein expression among treatment groups 

support the notion that adolescent mice are less susceptible to pathogenic disturbance.  

 Basigin expression in the adult (PD 180) brain differed from the other age groups in 

immunohistochemical and transcriptional analyses. The quantification of the average 

fluorescence, localized to blood vessels, determined a fluctuation in Basigin expression in PBS 

treated mice. That is, a decrease in expression was observed from 3 to 6 hours of incubation, 

followed by a recovery at 12 hours and a slight decline at 24 hours. Conversely, LPS induced a 

steady decline in Basigin expression from 3 to 12 hours, followed by an increase at 24 hours. 

These data suggest LPS alters the regulation of Basigin in the adult brain. 

 Though transcript analyses for this age group determined a steady decline in Basigin 

transcripts from 3 to 12 hours, with a slight recovery after 24 hours, these shifts were negligible 

in comparison to transcript levels in neonatal and adolescent brain tissue. Further, the trends 

observed in Basigin transcription did not mirror what was observed in immunohistochemical 

analysis.  
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TLR4 is a well characterized recognition receptor of LPS.6 A previous study, by this 

laboratory, has demonstrated TLR4’s association with Basigin, in vitro.34 Therefore, we sought 

to quantify the level of transcripts and localize the protein in brain tissue in the presence of LPS. 

In neonatal mice, TLR4 transcription is similar to Basigin transcription at this age, in that the 

highest expression was quantified at the 3-hour incubation period, with a decline at 6 hours. 

Unlike Basigin transcripts, TLR4 recovered at the 24-hour time point. No difference of 

expression among treatment groups was observed, suggesting the regulation of TLR4 was not 

influenced by LPS at this age.  

 In adolescent mice, TLR4 expression notably increased from the 3- to 6-hour incubation 

period in tissues treated with PBS, but not with LPS. Further, transcript levels were considerably 

lower in LPS treated tissue at the 6- and 24-hour time point, compared to control, indicating a 

suppressive regulatory effect of LPS on TLR4 upon specific degrees of exposure.  

 The most notable differences in TLR4 expression was observed in adult brain tissue. In 

control tissue, an increase in TLR4 transcripts was observed from the 6- to 12-hour incubation 

period and maintained through 24 hours. While in tissues incubated with LPS, the increase in 

expression was observed at the 24-hour incubation period. Additionally, TLR4 expression was 

higher in LPS treated tissue at the 6-hour time point, but lower at the 12-hour time point, 

compared to control. This is indicative of the potential influence LPS has on the regulation of 

TLR4. The variability in response seen, dependent on age, suggests pathogen susceptibility 

increases as age increases. 

 Immunohistochemical analyses of TLR4 did not mirror the transcript analyses. The 

localization of TLR4 was sparse in all age groups across all incubation periods and did not 

appear to vary. Additionally, no labeling of the blood vessels was observed. These data are not 
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consistent with the literature, as a previous study demonstrated TLR4 was expressed on 

endothelial cells and upregulated in response to LPS.97 The inconsistency in our findings could 

be due to a masking of the epitope recognized by the antibody used in this experiment.  

 The activation of TLR4 by LPS initiates the production of IL-6.16-20 Therefore, IL-6 

expression was characterized by immunohistochemistry in brain tissue stimulated with LPS. The 

analyses indicated a distribution much like that of TLR4. Labeling of IL-6 was sparse in all age 

groups and among treatment groups, with very little change across all samples. The lack of 

variation between treatment groups could be due to the release of IL-6 in the media, rather than 

sequestered to the tissue. Given that no shift in labeling of TLR4 was observed, it is also possible 

that TLR4 was not activated, thus no IL-6 was produced. 

 The results herein conclude Basigin is highly expressed on blood vessels within the 

mouse brain. The exposure to LPS affected the level of expression in a time-dependent manner, 

but not in the same way at each age. The change in expression in neonates and adults, but not in 

adolescent mice, suggests the former age groups are more vulnerable to an inflammatory 

stressor, and perhaps more susceptible to peripheral infiltration. The unmatched pattern of 

expression between Basigin and TLR4 suggest these gene products are not regulated in the same 

manner. It is possible Basigin’s role in inflammation is not to associate with TLR4, but 

potentially CD44, a lymphocyte homing receptor implicated in angiogenesis.98  

 The localization of Basigin to endothelial cells partially confirmed our hypothesis based 

on the findings from the Fryer Laboratory at the Mayo Clinic Florida. However, our findings 

differed in that we did not see a two-fold increase in Basigin expression after long-term exposure 

to LPS. These differences could be due to way in which each experiment was conducted. The 

Fryer Laboratory delivered LPS in-vivo and subsequently isolated RNA immediately after 
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dissection. Although the 18S rRNA data did not indicate degradation of the tissue used in this 

experiment, other unknown factors could have contributed to the observed effects. 
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Chapter 3 – The influence of LPS on Basigin and TLR4 Transcription in the Retina 

In 2018, the Center for Disease Control and Prevention estimated that 10.5% of 

Americans had diabetes mellitus. Patients who suffer from diabetes mellitus often also develop 

diabetic retinopathy (DR).99 The first stage of DR is known as non-proliferating and is marked 

by damage to retinal vasculature, increased vascular permeability, and loss of pericytes.100 As the 

pathology progresses into the proliferating stage, angiogenesis, vitreous hemorrhaging, and 

tractional retinal detachment occurs, resulting in vision loss.101 Diabetic macular edema (DME) 

is an occurrence of both DR stages in which vascular permeability and protein leakage increases. 

The increase in extracellular fluid is collected by Müller cells, resulting in swelling and death of 

Müller cells, exacerbating vision loss.102,103  

During embryonic development bilateral optic vesicles are formed by the evagination of 

the ventral forebrain neuroepithelium.104 The distal portion of the vesicle interacts with the lens 

ectoderm, resulting in invagination and the formation of a bilayered optic cup. Because the retina 

develops from the layer of the optic cup originating from the diencephalon, it is considered to be 

part of the central nervous system (CNS).105 The neural retina can be divided into ten layers 

consisting of various cell types, including photoreceptor cells, Müller cells, and endothelial cells. 

The arrangement of these cell layers allows for proper light transmission, but may also leave the 

retina susceptible to developing DR. For instance, the low distribution of blood vessels is 

necessary for proper light transmission, as they absorb light and interfere with retinal function. 

Consequently, there is a low distribution of oxygen, with a decline in partial pressure in the distal 

retinal.106  

Photoreceptor cells demand high amounts of oxygen and glucose for proper function. The 

majority of these necessary nutrients are provided by the choroid vasculature, which lies 
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proximal to the retinal pigmented epithelium (RPE).107 Tight junctions between retinal epithelial 

cells form the outer blood-retinal barrier (BRB), which regulates solute and nutrient movement 

from the choroid to the sub-retinal space.108 Epithelial, choroidal and Müller cells, along with the 

outer segments of photoreceptor cells, express glucose transporter 1 (GLUT1) to facilitate the 

passive movement of glucose for metabolism by photoreceptors.109,110 Glucose is transported 

from photoreceptor cells to Müller cells via GLUT1 and metabolized to lactate for use in 

anaerobic glycolysis.111 Excess lactate is shuttled out of the retina by a family of proton-coupled 

monocarboxylate transporters (MCTs), expressed on the same cells. The lactate shuttled to 

photoreceptors can also be used to fuel oxidative phosphorylation.30 

It has been proposed that a lactate metabolon is formed by the interaction of MCTs and 

Basigin gene products.33,112 The Basigin gene expresses two glycoprotein isoforms, Basigin-

variant-1 (B-v1) and Basigin-variant-2 (B-v2).24 Both gene products are members of the 

immunoglobulin super family (IgSF) and are identical in amino acid sequence, except for the 

extra immunoglobulin domain expressed by B-v1. B-v1 is specifically expressed by 

photoreceptor cells, while B-v2 has a wide distribution within many tissues and highly expressed 

on endothelial cells.24 The expression of Basigin gene products in the retina is critical for proper 

development, as demonstrated by complete blindness and subsequent retinal degeneration in 

Basigin null mice.113,114 Though necessary for the developing retina, B-v2 induces the production 

of matrix metalloproteinases, and vascular endothelial growth factor, spurring angiogenesis.26 

Further, studies by this laboratory have demonstrated B-v2 interacts with Toll-like receptor 4 

(TLR4), potentially promoting an inflammatory response.34  

As the progression of DR is marked with chronic inflammation, this study aimed to 

address the potential role Basigin gene products play in retinal pathogenesis by way of its 
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association to TLR4. TLR4 is a well characterized recognition receptor of the endotoxin, LPS. 

Thus, the purpose of the present study was to quantify Basigin gene and TLR4 transcripts in the 

neural retina after varying degrees of exposure to LPS. Further, the dynamics of expression due 

to age were characterized. 

Materials and Methods 

Animals 

All experiments described in the present study were approved by the University of North 

Florida Institutional Animal Care and Use Committee (IACUC) under protocols #17-003 and 

#19-008 and were conducted in accordance with the American Veterinary Medicine Association 

(AVMA). Mice were housed at the University of North Florida vivarium in accordance with 

institutional requirements for animal care and were maintained under a standard 12:12 h 

light/dark cycle and were allowed ad libitum access to 8604 Harlan Teklad Rodent Chow 

(Harlan Research Models and Services, Indianapolis, IN) and water.   

Treatment of Tissue 

Eyes were dissected from female and male wild-type C57/129 hybrid mice87 at postnatal 

days (PD) 7, 30, and 180. Three pairs of eyes were dissected per age group and incubated in 

DMEM + PBS or LPS (10 µg/mL; InvivoGen, San Diego, CA) at 37°C with 5% CO2 for 3, 6, 

12, or 24 hours. Following incubation, retinal tissue from one eye per animal was dissected and 

directly frozen at -80°C, while the other eye was preserved by immersion-fixation in 4% 

paraformaldehyde in phosphate-buffered saline for 24 hours at 4°C, followed by incubation in 

100% ethanol at -20°C. 
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cDNA Isolation 

cDNA was produced without RNA isolation from dissected retinal tissue using the Cells-

to-cDNA™ II Kit (Thermo Fisher Scientific Inc., Waltham, Massachusetts). Retinal tissue was 

first washed with 100 µL of PBS (pH 7.4), then homogenized in 100 µL of Cell Lysis II Buffer. 

The homogenized solution was incubated at 75°C for 10 minutes, followed by an addition of 2 

µL of DNase I, and a subsequent incubation at 37°C for 15 minutes. Inactivation of the DNase 

was achieved by incubating the tissue homogenate at 75°C for 5 minutes. A 5 µL sample of the 

homogenate was combined with 4 µL dNTP mix and 2 µL of Oligo(dT)18 primer, then incubated 

for 3 minutes at 70°C. Finally, 2 µL of RT buffer, 1 µL of M-MLV reverse transcriptase, and 1 

µL of RNase inhibitor was added to the reaction mixture and incubated at 42°C for 1 hour then 

92°C for 10 minutes. 

Quantification of Basigin and TLR4 mRNA Expression 

The isolated cDNA was used to quantify the expression of both Basigin gene products 

and TLR4 in retinal tissue of mice at PDs 7, 30, and 180. Amplification of cDNA was detected 

using a nucleic acid fluorogenic dye (SYBR Green; iUniversal, Bio-Rad, Inc.) and primers 

complementary in sequence to the cDNA of B-v1, B-v2, TLR4 and mouse 18S ribosomal RNA.   

The primer sequences used are as follows: B-v1 Fwd 5’ – TGGACCGTGTTCACATCCAT; B-

v1 Rvs 5’ – CCCATC-AACAGAGAGCGAACT; B-v2 Fwd 5’ – 

CTGCGCGGCGGCGGGCAC-CAT; B-v2 Rvs 5’ – GCTGTTCAAAGAGCAGGTAAGCT; 

TLR4 Fwd 5’ – CACCGTGATTG-TGGTATCCACTGT; TLR4 Rvs 5’ – 

GTCCTCATTCTGACTCGAGTAGAT; 18S Fwd 5’ – AGTCCCTGCCCTTTGTACACA; 18S 

Rvs 5’ – CCGAGGGCCTCACTAAACC. Although Basigin and 18S sequences were already 

established24, the primer sequence complimentary to TLR4 was designed using NCBIs Primer-
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BLAST software in conjunction with the GenBank TLR4 sequence (accession: NM_021297.3). 

All runs were performed in triplicate using a CFX Connect Real-Time PCR Detection System 

(Bio-Rad, Inc.) and used standard melt curve analyses. Thermal cycling protocols were set 

according to the manufacturer. The amount of each amplified product was calculated using a 

standard curve generated for each primer set. Expression of Basigin and TLR4 were normalized 

to 18S ribosomal RNA expression. The square root of each gene product was taken prior to 

analyses by a two-way ANOVA and subsequent Tukey’s HSD test, to ensure normality of the 

data. 

Results 

Expression of Basigin Gene Products and TLR4 

To quantify the expression of Basigin gene products in the neural retina in response to a 

well characterized endotoxin, LPS, cDNA isolated from mice at PDs 7, 30, and 180 was 

analyzed. In PD 7 mice, the average B-v1 expressed in tissue incubated with LPS was higher 

than that of tissue incubated in PBS (p = 2.3 x 10-14, Figure 3.1A). Tissues incubated for 12 

hours yielded the highest expression of B-v1 transcripts, while tissues incubated for 6 hours 

yielded the lowest, regardless of treatment. In tissues incubated with PBS, a decline in B-v1 

expression was observed from the 3- to 6-hour time point, followed by nearly a two-fold increase 

at the 24-hour time point. Treatment of LPS induced an increase in B-v1 expression during the 3-

hour incubation period, compared to PBS. This was followed by a notable decline at the 6-hour 

time point, returning expression back to control. At the 12-hour incubation period, LPS induced 

another spike in B-v1 transcripts, followed by another decline after 24 hours. 
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The time which the tissues were incubated had an effect on the quantity of B-v1 

transcripts produced (p = 1.6 x 10-12). Further, a significant interaction effect was observed (p = 

7.6 x 10-15).  

B-v1 expression in retinal tissue of mice at PD 30 did not resemble that of PD 7 mice 

(Figure 3.1B). While the tissue incubated in LPS also expressed more B-v1, on average, than 

PBS-treated tissue (p = 0.02), the incubation periods affected expression differently (p = 2.1 x 

10-5). Retinal tissue incubated for 3 hours expressed significantly more B-v1 compared to all 

other time points. A significant increase in expression was also observed from the 12- to 24-hour 

incubation period, regardless of treatment. No significant interaction effect was observed (p = 

0.6). 

Though significant differences in B-v1 expression was observed in mice at PD 180, these 

differences did not follow the same trend as the other age groups (Figure 3.1C). After 3 hours 

post-treatment, B-v1 expression was the most abundant. It then significantly declined at 6 hours 

and did not significantly increase again until the 24-hour incubation period. On average, B-v1 

expression was greater in retinal tissue incubated in PBS (p = 1.6 x 10-8). The time in which the 

tissue was incubated also affected the amount of B-v1 expressed (p = 2.4 x 10-10). A significant 

interaction effect was observed (p = 2.1 x 10-12). The trend of B-v1 expression in PBS treated 

tissue was similar to that of the effect seen for incubation time. B-v1 expression was highest at 3 

hours, declined at 6 hours, and did not significantly increase again until the 24-hour time point. 

Tissues incubated with LPS fluctuated throughout the duration of the experiment. A significant 

decline in expression was observed from 3 to 6 hours of incubation, followed by a spike at 12 

hours and another decline after 24 hours. Compared to PBS treated tissue, those treated with LPS 
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expressed lower B-v1 transcripts at the 3- and 24-hour time point, but more at the 12-hour time 

point. 
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The more ubiquitous form of Basigin, B-v2, was also quantified to determine whether the 

expression pattern was similar to that of B-v1, as it has been proposed the two isoforms associate 

to stabilize a lactate metabolon. A similar trend in B-v2 expression was observed, compared to 

B-v1 in all age groups, though some differences exist. In mice at PD 7, LPS treated tissue 

expressed more B-v2 than PBS treated tissue, on average (p = 4.2 x 10-4; Figure 3.2A). The time 

in which the tissue incubated post-treatment had a significant effect of the expression of B-v2 (p 

= 1.2 x 10-6). That is, tissue incubated for 6 hours expressed significantly more B-v2 than other 

time points, while tissue incubated for 24 hours expressed significantly less than other time 

points, regardless of treatment. A significant interaction effect was also observed (p = 5.4 x 10-

11). The expression of B-v2 in LPS treated tissue was inversely related to that of B-v2 expression 

in PBS tissue throughout all incubation periods. An increase in B-v2 was observed for LPS 

treated tissue at 3- and 12-hour incubation periods, compared to PBS. However, the inverse was 

observed at the 6- and 24-hour time points. 

Figure 3.1 Quantitative analyses of Basigin-variant-1 transcripts in neonate, adolescent, and adult mice. 
Quantitative PCR was performed on cDNA isolated from retinal tissue incubated in DMEM ± LPS for 3, 6, 12, 
or 24 hours of mice at PD 7 (A), PD 30 (B) and PD 180 (C), using primers complementary to B-v1. White bars 
represent tissue incubated with PBS as a control, while dashed bars represent tissue incubated in LPS. Error bars 
represent the coefficient of variation. * indicates a p-value < 0.05 by Tukey’s HSD test, following a two-way 
ANOVA. 
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LPS induced expression of B-v2 in mice at PD 30 was higher than PBS treated tissue (p = 

2.1 x 10-6; Figure 3.2 B). Similarly, to B-v1 expression in mice at PD 30, B-v2 transcripts were 

the most abundant after the 3-hour incubation period (p = 9.5 x 10-10), though no other incubation 

period indicated a significant response. Additionally, a significant interaction effect was 

observed (p = 7.3 x 10-6). The expression of B-v2 transcripts were significantly higher in retinal 

tissue incubated with LPS after 3 and 12 hours, when compared to tissues incubated in PBS for 

those time points. 

In mice at PD 180, B-v2 transcript levels were, on average, more abundant in PBS treated 

retinal tissue (p = 2.1 x 10-6; Figure 3.2 C). Incubation period showed significant effects (p = 8.1 

x 10-8) on B-v2 expression in that at the 3-hour time point transcript levels were the highest, with 

a significant decline after 6 hours and a significant increase at the 24-hour time point, regardless 

of treatment. As with most of the treated tissue, a significant interaction was observed in this age 

group (p = 1.6 x 10-9). B-v2 expression was significantly lower in LPS treated tissue compared to 

PBS treatment after all incubation periods, except at 12 hours.  
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To identify whether TLR4 transcripts are regulated in the same manner as Basigin gene 

products in response to an inflammatory stimulus, qPCR was performed to quantify TLR4 

cDNA. In mice at PD 7 tissues incubated for 12 hours expressed the highest amount of TLR4, 

while tissues incubated for 24 hours expressed the least compared to other time points, regardless 

Figure 3.2 Quantitative analyses of Basigin-variant-2 transcripts in neonate, adolescent, and adult mice. 
Quantitative PCR was performed on cDNA isolated from retinal tissue incubated in DMEM ± LPS for 3, 6, 12, 
or 24 hours of mice at PD 7 (A), PD 30 (B) and PD 180 (C), using primers complementary to B-v2. White bars 
represent tissue incubated with PBS as a control, while dashed bars represent tissue incubated in LPS. Error bars 
represent the coefficient of variation. * indicates a p-value < 0.05 by Tukey’s HSD test, following a two-way 
ANOVA. 
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of treatment (Figure 3.3A). TLR4 was expressed more, on average, in tissue incubated with LPS 

than those incubated with PBS (p = 1.6 x 10-6). The time in which the retinal tissue was 

incubated also had a significant main effect on the expression of TLR4 (p = 1.1 x 10-4). A 

significant interaction was also observed (p = 7.5 x 10-10). TLR4 transcripts were more abundant 

in LPS treated tissue after 3 hours of incubation, relative to PBS. However, transcript levels were 

significantly lower in LPS treated tissue after incubation for 6 and 24 hours, relative to PBS 

treated tissue. A similar trend was observed in B-v1 and B-v2 expression. 

In mice at PD 30, TLR4 expression was higher, on average, in LPS treated retinal tissue 

compared to PBS treated tissue (p = 0.02; Figure 3.3 B). In contrast to B-v1 and B-v2 

expression, TLR4 expression was most abundant after the 24-hour incubation period (p = 9.2x 

10-10). A significant interaction was observed (p = 0.02), in which TLR4 was significantly lower 

in tissue incubated for 6 hours, but higher after a 12-hour incubation period, relative to PBS 

treated tissue. 

The trends observed in TLR4 expression of mouse retinal tissue at PD 180 was similar to 

that observed in B-v1 and B-v2 expression at the same age. TLR4 was more abundant in PBS 

treated tissue than LPS treated tissue (p = 1.1 x 10-11; Figure 3.3 C), on average. Moreover, the 

expression of TLR4 transcripts was higher (p = 6.1 x 10-12) at the 3- and 24-hour incubation 

period when compared to the other two time points. A significant interaction was also 

determined (p = 2.3 x 10-15). Much like the B-v1 and B-v2 transcripts, TLR4 was more greatly 

expressed in LPS treated tissue compared to PBS at the 12-hour time point, whereas tissue 

incubated in PBS expressed more TLR4 than LPS treated tissue at every other incubation period. 
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Discussion 

Basigin gene products are essential for the maturation of the eye.113,114 Basigin-variant-1 

(B-v1) is specifically expressed on photoreceptor cells, while Basigin-variant-2 (B-v2) is 

expressed on the surface of Müller cells, blood vessels, and the retinal pigmented epithelium.24 

Both gene products associate with important metabolic transporters, such as MCTs and GLUT1. 

Through this association in cis, and the interaction of Basigin gene products in trans, a lactate 

metabolon is stabilized in the retina.33 The potential association of B-v2 to TLR434 could disrupt 

the metabolon, depleting the retina of necessary nutrients. Further, the association of B-v2 and 

TLR4 could stimulate an inflammatory response, exacerbating the degeneration of the retina. 

Therefore, this study aimed to quantify the expression of Basigin gene products and TLR4 

transcripts in the neural retina exposed to an inflammatory stimulus for a varying degree of time 

in neonatal, adolescent, and adult mice. 

The analyses of B-v1 transcripts in neonatal (PD 7) retinal tissue indicated a change in 

expression when stimulated with LPS. An upregulation in the transcript level was observed 

during the first 3 hours of incubation, when compared to control (PBS). The considerable decline 

in B-v1 expression as the incubation period approached 6 hours was determined to be no 

different to that of PBS treated tissue. However, the over two-fold increase and subsequent 

decline during the 12- and 24-hour time points, suggest a temporal regulation of B-v1 in 

response to an inflammatory stressor.  

Figure 3.3 Quantitative analyses of TLR4 transcripts in neonate, adolescent, and adult mice. Quantitative 
PCR was performed on cDNA isolated from retinal tissue incubated in DMEM ± LPS for 3, 6, 12, or 24 hours of 
mice at PD 7 (A), PD 30 (B) and PD 180 (C), using primers complementary to TLR4. White bars represent 
tissue incubated with PBS as a control, while dashed bars represent tissue incubated in LPS. Error bars represent 
the coefficient of variation. * indicates a p-value < 0.05 by Tukey’s HSD test, following a two-way ANOVA. 
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Some similar patterns of transcript expression were observed for B-v2 and TLR4 for this 

age group in rental tissue incubated with LPS when compared to control, though differences 

should be noted. B-v2 transcripts were the most abundant in LPS stimulated tissue at the 3-hour 

incubation period, rather than 12 hours as seen for B-v1. A rise in B-v2 transcripts were observed 

at the 6-hour time point in PBS retina, with a decline at 12 hours, which was maintained for the 

duration of the experiment. Though the shift in expression in tissues incubated with PBS as the 

incubation period increased suggest an unknown factor is influencing the extent to which B-v2 is 

expressed, the inverse relationship between PBS and LPS treated tissue is suggestive of the 

influence LPS may have on the expression of B-v2.  

In the adolescent (PD 30) retina, B-v1 transcription differed from that of neonates. The 

transcript analyses indicated transcription occurred most abundantly during the first 3 hours of 

incubation in both treatment groups. A continuous decline in the rate of transcription occurred at 

the 6-hour time point and did not recover until 24 hours. Transcript yield in LPS treated tissue 

did not differ from those treated with PBS during any incubation period, suggesting LPS does 

not stimulate the production of B-v1 transcripts at this age. Similarly, B-v2 transcripts were most 

abundant in the 3-hour incubation period of both treatment groups, but a greater transcript 

abundance was quantified in retinal tissue incubated with LPS. Additionally, the increase in B-v2 

transcripts after 12 hours of LPS incubation suggests a temporal influence of LPS on B-v2 at this 

age.  

The analysis of TLR4 transcripts indicated a similar pattern of expression to that of TLR4 

in the neonatal retina, though an increase in both treatment groups was observed at the 24-hour 

time point. The difference in transcript expression of TLR4 compared to Basigin gene products, 
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at this age group, suggests a difference in response to an inflammatory stressor. That is, Basigin 

gene products appear to have a greater response in the short term. 

The most varying degree of B-v1 transcript expression was observed in the adult (PD 

180) retina. Though the transcript pattern for tissues incubated with PBS mirrored the trend 

observed in adolescent mice, B-v1 transcription in LPS treated retina was nearly the inverse. 

During the first 3 hours of incubation, transcripts were considerably lower than that of control 

tissue. As incubation time increased, B-v1 expression fluctuated with the most abundant 

transcript level observed at the 12-hour time point, and the lowest at 24 hours. Interestingly, this 

is the only age group in which B-v2 and B-v1 expression was a direct reflection to that of TLR4. 

Though further analysis is needed, these initial data indicate a correlation in Basigin gene 

products and TLR4 expression under the influence of LPS. 
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Chapter 4 – Conclusion 

Basigin gene products have a dynamic pattern of expression upon stimulation with LPS, 

dependent on age and length of exposure. In the mouse brain, Basigin was localized to blood 

vessels in all age groups. However, variation in expression, relative to control tissue, was 

observed in neonatal and adult, but not adolescent mice, suggesting the adolescent brain may be 

less susceptible to pathogen invasion. Additionally, the changes that were observed in neonatal 

and adult mice did not occur during the same period of incubation with LPS, suggesting that the 

regulation of Basigin due to the length of pathogen exposure is also dependent on age. Due to the 

unparalleled expression pattern of Basigin and TLR4, Basigin’s role in inflammation may be not 

be associated with TLR4, but other proteins known to initiate an inflammatory response, like 

CD44.  

In the retina, the regulation of Basigin-variant-1 was influenced by the exposure to LPS 

in neonatal and adult, but not adolescent mice. These data indicate photoreceptor cells of the 

adolescent retina may be more resilient than these cells at other stages of life. The more 

ubiquitous form of Basigin, Basigin-variant-2 (B-v2) displayed variation in both a temporal, and 

age dependent manner. There are various cell types that express B-v2 in the retina, including 

Müller cells, blood vessels, and the retinal pigmented epithelium.24 The change in regulation of 

B-v2 could be a combined effect of these cell types. Basigin gene expression was a direct 

reflection of TLR4 expression only in the adult retina. Though more analysis is needed, these 

initial data suggest a correlation between Basigin gene products and TLR4 in the adult retia, but 

not in other life stages. 

Though the mechanism by which Basigin gene products alter the inflammatory response 

are not known, the data obtained herein indicate a regulatory change to Basigin expression in 
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response to an inflammatory stressor. It is possible that Basigin is working as a cell adhesion 

molecule on blood vessels, in which case the downregulation of Basigin gene products in 

neonates after long-term exposure to LPS indicates this age group is the most vulnerable to 

attack on the CNS by way of BBB degradation. Another possibility is that Basigin is acting in its 

role as an inducer of matrix metalloproteinases. To this end, the upregulation of Basigin 

observed in long-term exposure to LPS in adult brain tissue could be ameliorative, by way of 

MMP-9 induction and subsequent angiogenesis. The newly formed blood vessels may serve to 

further protect the central environment from the periphery.  
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