
University of North Florida University of North Florida 

UNF Digital Commons UNF Digital Commons 

UNF Graduate Theses and Dissertations Student Scholarship 

2020 

Harmonic Morphisms with One-dimensional Fibres and Milnor Harmonic Morphisms with One-dimensional Fibres and Milnor 

Fibrations Fibrations 

Murphy Griffin 
University of North Florida, n00676351@unf.edu 

Follow this and additional works at: https://digitalcommons.unf.edu/etd 

 Part of the Algebraic Geometry Commons, and the Geometry and Topology Commons 

Suggested Citation Suggested Citation 
Griffin, Murphy, "Harmonic Morphisms with One-dimensional Fibres and Milnor Fibrations" (2020). UNF 
Graduate Theses and Dissertations. 977. 
https://digitalcommons.unf.edu/etd/977 

This Master's Thesis is brought to you for free and open 
access by the Student Scholarship at UNF Digital 
Commons. It has been accepted for inclusion in UNF 
Graduate Theses and Dissertations by an authorized 
administrator of UNF Digital Commons. For more 
information, please contact Digital Projects. 
© 2020 All Rights Reserved 

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/176?utm_source=digitalcommons.unf.edu%2Fetd%2F977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=digitalcommons.unf.edu%2Fetd%2F977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/977?utm_source=digitalcommons.unf.edu%2Fetd%2F977&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/


University of North Florida

College of Arts and Sciences

Harmonic Morphisms with One-dimensional

Fibres and Milnor Fibrations

by

Murphy Griffin

A Thesis submitted to the Department of Mathematics

and Statistics in partial fulfillment of the requirements

for the degree of Master of Science in Mathematics



Contents

1 Introduction 5

2 Harmonic Morphisms between Euclidean Spaces 6

2.1 Definitions and Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Jacobi’s Problem 13

3.1 A Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 An Implicit Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 A Very Special G Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Harmonic morphisms from R3 to R2 . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Distributions and Vector Bundles 22

4.1 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Connection induced on H by (M, g,∇) . . . . . . . . . . . . . . . . . 24

4.2 The Second Fundamental Form of H . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Symmetry of B(X, Y ) and Integrability . . . . . . . . . . . . . . . . . 25

4.3.2 Mean Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Connections Over Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.1 Induced Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Second Fundamental Form of a Map and the Tension Field . . . . . . . . . . 28

5 Harmonic Morphisms over Riemannian Manifolds 29

5.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Horizontally Weakly Conformal Maps (HWC) . . . . . . . . . . . . . . . . . 30

5.3 Harmonic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1



5.4 Characterization of Harmonic Morphisms over Riemannian Manifolds . . . . 34

5.5 The Fundamental Equation of Harmonic Morphisms . . . . . . . . . . . . . . 35

5.5.1 Additional Characterization of Harmonic Morphisms . . . . . . . . . 40

6 Harmonic Morphisms with One-Dimensional Fibres 41

6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Killing Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.2 Through the Lens of the Fundamental Equation . . . . . . . . . . . . 45

6.3 Warped Product Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.1 Warped Product Manifolds . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.2 Warped Product Type Harmonic Morphisms . . . . . . . . . . . . . . 46

6.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.4 Another Characterization of Warped Product Type Harmonic Mor-

phisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3.5 Through the Lens of the Fundamental Equation . . . . . . . . . . . . 50

6.4 Transnormal/Third Type (T Type) . . . . . . . . . . . . . . . . . . . . . . . 51

6.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5 Global Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6 Useful Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Milnor Fibration Application 54

7.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 A Sketch of the Proof of the Milnor Fibration Theorems . . . . . . . . . . . 56

7.3 Simple  L-maps and HWC maps . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Milnor Fibrations and Homogeneous Polynomial Harmonic Morphisms . . . 61

7.5 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.6 Implications for Harmonics Morphisms and Milnor Fibrations . . . . . . . . 63

2



References 65

List of Figures

3.1 Folation of the Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Orthogonal Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Radial Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 HWC Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Minimizing the Energy Functional . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Killing Type Harmonic Morphism . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Warped Product Type Harmonic Morphism . . . . . . . . . . . . . . . . . . 48

6.3 T Type Harmonic Morphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 Interrelation of Three Types of Harmonic Morphisms with One-dimensional

Fibres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1 Simplified Examples of Milnor Fibration Commutative Diagram . . . . . . . 56

7.2 Milnor Fibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 Submersion induced by Milnor Vector Field . . . . . . . . . . . . . . . . . . 59

7.4 What if G is not homogeneous? . . . . . . . . . . . . . . . . . . . . . . . . . 64

3



Abstract

We study a problem at the intersection of harmonic morphisms and real analytic

Milnor fibrations. In [9], Baird and Ou establish that a harmonic morphism from

G : Rm \ VG → Rn \ {0} defined by homogeneous polynomials of order p retracts

to a harmonic morphism ψ| : Sm−1 \ Kε → Sn−1 that induces a Milnor fibration

over the sphere. In seeking to relax the homogeneity assumption on the map G, we

determine that the only harmonic morphism ϕ : Rm \ VG → Sm−1
ε that preserves

argG is radial projection. Due to this limitation, we confirm Baird and Ou’s result,

yet establish further that in fact only homogeneous polynomial harmonic morphisms

retract to harmonic-morphism Milnor maps over the sphere.
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1 Introduction

Recall that a function f that mapsan n-dimensional Riemannian manifold N to R is con-

sidered harmonic if it satisfies the Laplace equation: ∆f = 0. A harmonic morphism

ϕ : (Mm, g) → (Nn, h) between Riemannian manifolds M and N is a map that pulls back

germs of harmonic functions on an open subset of N to germs of harmonic functions on an

open subset of M . In other words, harmonic morphisms are maps that preserve the harmonic

structure of a given harmonic function: ∆(f ◦ ϕ) = 0.

Baird and Ou in [9] prove that a harmonic morphism G : Rm \ VG → Rn \ {0} that is

both defined by homogeneous maps and which possesses an isolated singularity (dG = 0)

at the origin can be retracted to a harmonic morphism that constitutes a Milnor map from

Sm−1 \Kε to Sn−1, where VG is the variety of G and Kε = Sm−1
ε ∩VG. It was our hope in this

work to potentially relax the requirement that the maps defining the harmonic morphism

G need be homogeneous. The viability of such a weakening of the homogeneity assumption

we discovered was not, however, tenable and have thus solidified that the class of harmonic

morphisms which also retract to Milnor maps is limited to those defined by homogeneous

maps.

Before addressing the relationship between harmonic morphisms and Milnor fibrations,

we must start by thoroughly laying out the requisite theory of harmonic morphisms. We first

look at harmonic morphisms between Euclidean manifolds. We then look at the historically

significant case of harmonic morphisms from R3 to C which was originally investigated by

Jacobi in [6]. We are particularly interested in harmonic morphisms of codimension 1, of

which the harmonic morphisms that arise in Jacobi’s investigation are prime examples. In

[6] Jacobi completely characterized harmonic morphisms from R3 to C. His characterization

can be shown to have an interesting overlap with the theory of minimal surfaces developed

by Weierstrass and Enneper. Ultimately, all harmonic morphisms from R3 to C are pa-

rameterized by the same meromorphic functions that turn up in the Weierstrass-Enneper

parameterization of minimal surfaces.

Following our discussion of Jacobi’s problem, we then generalize the theory of harmonic
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morphisms as maps between Riemannian manifolds. This requires a close look at the basic

theory of distributions, curvature, vector bundles, and connections. This discussion culmi-

nates in the derivation of the fundamental equation of harmonic morphisms (see [13]) which

can be used to completely characterize harmonic morphisms with one-dimensional fibres. In

the following section, we survey the three types of harmonic morphisms with one-dimensional

fibres: Killing type, warped product type, and T type, respectively.

Finally, we return to the original question concerning the relationship between harmonic

morphisms and Milnor fibrations, confirming that the class of harmonic morphisms which

retract to Milnor fibrations from the sphere to the sphere are limited to those defined by

homogeneous maps.

2 Harmonic Morphisms between Euclidean Spaces

To serve as an introduction to harmonic morphisms, we start by considering harmonic mor-

phisms between Euclidean spaces. The mathematics in the Euclidean case falls out more

simply, making it easier to immediately appreciate the implications.

2.1 Definitions and Characterization

Definition 2.1. Let f : Rn → R be a C2 function. We say f is a harmonic function if the

Laplacian of f is identically zero:

∆f = 0

Definition 2.2. (Harmonic Morphism on Euclidean Spaces) A map ϕ : Rm → Rn is called

a harmonic morphism if for any harmonic function f : U → R, defined on an open subset U

of Rn with ϕ−1(U) ⊆ Rm non-empty, f ◦ ϕ : ϕ−1(U)→ R is a harmonic function.

Thus, let ϕ : Rm → Rn be a harmonic morphism and let f : Rn → R be a harmonic

function. Then one basic characterization of ϕ as a harmonic morphism is that it should
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satisfy the following PDE:

∆m(f ◦ ϕ) = 0 (2.1.1)

where ∆m represents the m-dimensional Laplacian. Note that on a Euclidean space the

Laplacian takes the familar form:

∆mf =
m∑
k=0

∂2f

∂x2
i

(2.1.2)

otherwise it depends expressly on the metric associated to the underlying manifold (see

Remark 5.1.1).

What Equation 2.1.1 essentially means is that ϕ pulls back harmonic functions on Rn

to harmonic functions on Rm. In general, precomposition of a harmonic function with any

given map does not preserve the harmonic structure of f . Thus, a map that does preserve

the harmonic structure is special and is given the name “harmonic morphism”.

For further insight into the defining properties of a harmonic morphism which maps

between Euclidean spaces, lets work out a closed form expression for Equation 2.1.1.

First, we assume that ϕ = (ϕ1, . . . , ϕn), where each component function is such that

ϕi : Rm → R. Then,

∆m(f ◦ ϕ) =
m∑
i=1

∂2

∂x2
i

(f ◦ ϕ)

=
m∑
i=1

∂

∂xi

(
∂

∂xi
(f ◦ ϕ)

)

=
m∑
i=1

∂

∂xi

(
n∑
k=1

∂(f ◦ ϕ)

∂ϕk

∂ϕk
∂xi

)

=
m∑
i=1

(
n∑
k=1

∂

∂xi

[
∂(f ◦ ϕ)

∂ϕk

∂ϕk
∂xi

])

=
m∑
i=1

 n∑
k=1

n∑
j=1

∂
(
∂(f◦ϕ)
∂ϕk

)
∂ϕj

∂ϕj
∂xi

∂ϕk
∂xi

+
n∑
k=1

∂(f ◦ ϕ)

∂ϕk

∂2ϕk
∂x2

i


=

m∑
i=1

n∑
k,j=1

∂2 (f ◦ ϕ)

∂ϕj∂ϕk

∂ϕj
∂xi

∂ϕk
∂xi

+
m∑
i=1

n∑
k=1

∂(f ◦ ϕ)

∂ϕk

∂2ϕk
∂x2

i
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Thus Equation 2.1.1 gives us the following:

m∑
i=1

n∑
k,j=1

∂2 (f ◦ ϕ)

∂ϕj∂ϕk

∂ϕj
∂xi

∂ϕk
∂xi

+
m∑
i=1

n∑
k=1

∂(f ◦ ϕ)

∂ϕk

∂2ϕk
∂x2

i

= 0 (2.1.3)

In and of itself Equation 2.1.3 does not immediately grant any insight, however, through

an appropriate selection of basic harmonic functions, we may arrive at the following theorem:

Theorem 2.1. Let ϕ : Rm → Rn such that ϕ = (ϕ1, . . . , ϕn) and let λ : Rm → R+ be

the dilation of function of the map ϕ. Then ϕ is a harmonic morphism if and only if the

following conditions are satisfied:

(a) ∆mϕi = 0 for each component function of ϕ

(b) ∇ϕi · ∇ϕj = λ(x)δij where x ∈ Rm

Proof. (⇒) : (a) Let ϕ be an harmonic morphism. Then ∆m(f ◦ ϕ) = 0 for every f a

harmonic function. Consider the following harmonic function:

f : Rn → R

(x1, . . . , xi, . . . , xn) 7→ xi

where 1 ≤ i ≤ n. Hence,

∆m(f ◦ ϕ) = ∆mϕi

therefore

∆mϕi = 0

since i is arbitrary, this must hold for all the component functions of ϕ. Thus, all component

functions are harmonic.

(⇒) : (b) Now, consider a new harmonic function f , defined as follows:

f : Rn → R

(x1, . . . , xl, . . . , xp, . . . , xn) 7→ xlxp

8



where 1 ≤ l, p ≤ n and l 6= p. So observe,

∆m(f ◦ ϕ) =
m∑
i=1

n∑
k,j=1

[
∂2 (ϕlϕp)

∂ϕj∂ϕk

∂ϕj
∂xi

∂ϕk
∂xi

]
+

m∑
i=1

n∑
k=1

[
∂(ϕlϕp)

∂ϕk

∂2ϕk
∂x2

i

]
The double sum over k and j will only produce non-zero terms whenever k and j equal some

combination of l and n. Thus,

m∑
i=1

[
∂ϕl
∂xi

∂ϕp
∂xi

+ ϕl
∂2ϕp
∂x2

i

+
∂ϕp
∂xi

∂ϕl
∂xi

+ ϕp
∂2ϕl
∂x2

i

+ ϕl
∂2ϕp
∂x2

i

+ ϕp
∂2ϕl
∂x2

i

]
= 2

m∑
i=1

∂ϕl
∂xi

∂ϕp
∂xi

+ 2ϕl

m∑
i=1

∂2ϕp
∂x2

i

+ 2ϕp

m∑
i=1

∂2ϕl
∂x2

i

= 2 (∇ϕl · ∇ϕp) + 2ϕl (∆
mϕp) + 2ϕp (∆mϕl)

= 2 (∇ϕl · ∇ϕp) + 0 + 0

= 2 (∇ϕl · ∇ϕp)
!

= 0

therefore

∇ϕl · ∇ϕp = 0

Next, we consider yet another harmonic function

f : Rn → R

(x1, . . . , xl, . . . , xp, . . . , xn) 7→ x2
l − x2

p

where 1 ≤ l, p ≤ n and l 6= p.

Also, notice from (i) the general equation for ∆m(f ◦ ϕ) simplifies:

∆m(f ◦ ϕ) =
m∑
i=1

n∑
k,j=1

∂2
(
ϕ2
l − ϕ2

p

)
∂ϕj∂ϕk

∂ϕj
∂xi

∂ϕk
∂xi

Again, the double sum over k and j only produces non-zero terms whenever k and j equal

some combination of l and n. Thus,
m∑
i=1

[
(2ϕl − 2ϕp)

∂ϕl
∂xi

∂ϕp
∂xi
− 2ϕp

∂2ϕp
∂x2

i

+ (2ϕl − 2ϕp)
∂ϕp
∂xi

∂ϕl
∂xi

+ 2ϕl
∂2ϕl
∂x2

i

+ 2

(
∂ϕl
∂xi

)2

− 2

(
∂ϕp
∂xi

)2
]

= 4(ϕl − ϕp) (∇ϕl · ∇ϕp) + 2 (∇ϕl · ∇ϕl −∇ϕp · ∇ϕp)

= 0 + 2
(
|∇ϕl|2 − |∇ϕp|2

) !
= 0

9



therefore

|∇ϕl|2 = |∇ϕp|2

The implication of the above result is important. Since, by assumption l 6= p, the above

result says that for every x ∈ Rm and for each i, j ∈ N, 1 ≤ i, j ≤ n

|∇ϕi(x)|2 = |∇ϕj(x)|2

Notice that this is indeed equivalent to the statement:

∇ϕi · ∇ϕi = λ(x)

Since by definition ∇ϕi · ∇ϕi = |∇ϕi|2, and |∇ϕj|2 can be viewed as a scalar function of

x ∈ Rm. Since again i is arbitrary the above statement says that for any given x ∈ Rm, all

gradients for all component functions of ϕ have the same length.

So the implication in total means that while the lengths of the gradients may change as

we pass from one point to another, they all change together in such a way that their lengths

remain the same and their directions remain mutually orthogonal. As will be seen in later

sections, these properties of the component functions of ϕ characterize it as a horizontally

weakly conformal map with λ the so-called dilation function.

(⇐) : Assume the component functions of ϕ are harmonic ∆mϕi = 0 and assume they

are mutually orthogonal ∇ϕi · ∇ϕj = λ(x)δij

Consider:

∆m(f ◦ ϕ) =
m∑
i=1

n∑
k,j=1

[
∂2 (f ◦ ϕ)

∂ϕj∂ϕk

∂ϕj
∂xi

∂ϕk
∂xi

]
+

m∑
i=1

n∑
k

[
∂(f ◦ ϕ)

∂ϕk

∂2ϕk
∂x2

i

]

10



Commuting the sums,

∆m(f ◦ ϕ) =
n∑

k,j=1

m∑
i=1

[
∂2 (f ◦ ϕ)

∂ϕj∂ϕk

∂ϕj
∂xi

∂ϕk
∂xi

]
+

n∑
k

m∑
i=1

[
∂(f ◦ ϕ)

∂ϕk

∂2ϕk
∂x2

i

]

=
n∑

k,j=1

[
∂2 (f ◦ ϕ)

∂ϕj∂ϕk

m∑
i=1

∂ϕj
∂xi

∂ϕk
∂xi

]
+

n∑
k=1

[
∂(f ◦ ϕ)

∂ϕk

m∑
i=1

∂2ϕk
∂x2

i

]

=
n∑

k,j=1

[
∂2 (f ◦ ϕ)

∂ϕj∂ϕk
(∇ϕj · ∇ϕk)

]
+

n∑
k=1

[
∂(f ◦ ϕ)

∂ϕk
(∆mϕk)

]

=
n∑
j=1

∂2 (f ◦ ϕ)

∂ϕ2
j

|∇ϕj|2 +

p∑
k=1

∂2 (f ◦ ϕ)

∂ϕ2
k

|∇ϕk|2 + 0

Then for a fixed x ∈ Rn , we have |∇ϕi|2 = λ ∈ R constant, for each i ∈ N, 1 ≤ i ≤ n. Thus,

∆m(f ◦ ϕ) = 2λ
n∑
j=1

∂2 (f ◦ ϕ)

∂ϕ2
j

Since f ◦ ϕ = f(ϕ1, . . . , ϕn) means

∆m(f ◦ ϕ) = 2λ∆nf

Then since by assumption f is harmonic, we finally get:

∆m(f ◦ ϕ) = 0

Hence, ϕ is a harmonic morphism.

One of the immediate consequences of Theorem 2.1 is a that the possible dimensions m

and p are limited when looking for non-trivial (non-constant) harmonic morphisms.

Theorem 2.2. Let ϕ : Rm → Rn be a harmonic morphism with n > m. Then ϕ is a

constant function.

Proof. Let ϕ : Rm → Rn be an harmonic morphism with n > m. Then for any i, j ∈ N such

that 1 ≤ i, j ≤ n with i 6= j, we have ∇ϕi · ∇ϕj = 0. Hence, ∇ϕi ⊥ ∇ϕj. Thus, we have
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n-many linearly independent vectors in Rm. But since, n > m means at least (n−m)-many

of them must be 0, for each x ∈ Rm. However, since ϕ is an harmonic morphism, means

that |∇ϕi|2 = |∇ϕj|2, for all i, j ∈ N such that 1 ≤ i, j ≤ n and for each x ∈ Rm. Thus, if

at least one ∇ϕi = 0 for every x ∈ Rm, means this must be true for each ϕi. Thus ∇ϕi = 0

for 1 ≤ i ≤ n. This means ϕi
!

= αi a constant, for each i. Therefore, ϕ = (α1, . . . , αn) is a

constant function.

2.2 Examples

Below are provided a few essential and informative examples of harmonic morphisms between

Euclidean spaces.

Example 2.2.1. Let ϕ be a constant function. Then ϕ is a harmonic morphism.

Proof. Let ϕ : Rm → Rn be a constant function. Then this implies all of its components are

constant, ϕ = (α1, . . . , αn). Let f : Rn → R be a harmonic function (or really any function),

then f ◦ ϕ = f(α1, . . . , αn) a constant. Hence, ∆(f ◦ ϕ) = 0.

Example 2.2.2. Let ϕ : C→ C be ±-holomorphic. Then ϕ is a harmonic morphism.

Proof. In order for ϕ =
(
u(x, y), v(x, y)

)
to be a harmonic morphism, it must constitute a

solution to the following system of PDE’s:

(a) ∇u · ∇v = uxvx + uyvy
!

= 0

(b) |∇u|2 = |∇v|2

(c) ∆u = 0 and ∆v = 0

Now, notice as a special case, that holomorphic maps from C to C satisfy the above

system of PDE’s (bearing in mind the standard isomorphism C ∼= R2).
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So, if ϕ is holomorphic, then it must satisfy the Cauchy-Riemann equations

ux = vy

uy = −vx

Thus, the PDE (a) is satisfied:

uxvx + uyvy = (vy)vx + (−vx)vy

= vyvx − vxvy

= 0

and PDE (b)

u2
x + u2

y = (vy)
2 + (−vx)2

= v2
y + v2

x

Lastly, since ϕ is holomorphic means its components are harmonic conjugates: ∆u = 0

and ∆v = 0. Hence, PDE (c) is also satisfied. This shows that all holomorphic maps from

C to C are harmonic morphisms. Finally, notice that the proof follows exactly the same if

we assume ϕ is anti-holomorphic.

Example 2.2.3. As a generalization of Example 2.2.2, any ±-holomorphic map from Cn to

C is a harmonic morphism.

Example 2.2.4. Let f : Rm → Rn and g : Rp → Rm be a harmonic morphisms. Then

f ◦ g : Rp → Rn is a harmonic morphism.

3 Jacobi’s Problem

The original study of those maps that we now call harmonic morphisms is traced back to

Jacobi’s study of the following question: Let ϕ : U → C by a C2 function on an open subset

of Euclidean 3-space R3 which is harmonic (satisfies Laplace’s equation):
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∆ϕ ≡
3∑
i=1

∂2ϕ

∂x2
i

= 0

Then the questions is: Under what conditions on ϕ is the composition f ◦ ϕ harmonic

for an arbitrary holomorphic map f : V → C defined on an open subset of C?

3.1 A Solution

Now, notice that if we let ϕ = ϕ1 + iϕ2 where ϕi : R3 → R then we can derive a formula

that is essentially equivalent to that previously derived in Equation 2.1.3 only simplifying

the notation to reflect that we are now looking at maps over C. Thus, using the chain rule

to expand ∆(f ◦ ϕ) we get:

∂

∂xi
(f ◦ ϕ) =

2∑
j=1

∂(f ◦ ϕ)

∂ϕj

∂ϕj
∂xi

then letting

df

dz
:=

2∑
j=1

∂(f ◦ ϕ)

∂ϕj

we get

∆(f ◦ ϕ) =
df

dz
∆ϕ+

d2f

dz2

3∑
i=1

(
∂ϕ

∂xi

)2

(3.1.1)

It is clear from Equation 3.1.1 that if we require f ◦ ϕ to be harmonic, then we must

require that ϕ itself be harmonic (which we have assumed) and that

3∑
i=1

(
∂ϕ

∂xi

)2

= 0 (3.1.2)

Thus, it follows that for any harmonic map ϕ : R3 → C, satisfying Equation 3.1.2 we get

∆(f ◦ ϕ) = 0. Such a ϕ we call a harmonic morphism.

Remark 3.1.1. Notice that Equation 3.1.1 and Equations 3.1.2 are invariant under isome-

tries of the domain, meaning they are independent of choice of coordinate system for R3 and
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can be written more generally in terms of gradients of the component functions ϕ1 and ϕ2.

Thus:

|∇ϕ1| = |∇ϕ2| and 〈∇ϕ1,∇ϕ2〉 = 0 (3.1.3)

A Euclidean map that satisfies Equation 3.1.3 is called horizontally weakly conformal.

Hence, a map ϕ is horizontally weakly conformal (see § 5.2) if and only if the gradients of its

real and imaginary parts are mutually orthogonal and have the same norm for each x ∈ Rm.

3.2 An Implicit Definition

Theorem 3.1. Let G : A → C be a smooth function on an open subset of R3 × C which is

holomorphic in the second variable. Suppose that

∇G ≡
(
∂G

∂x1

,
∂G

∂x2

,
∂G

∂x3

)
6= 0

∀(x, z) ∈ A with G(x, z) = 0. Then a smooth solution ϕ : U → C on an open subset of R3

to the equation

G(x, ϕ(x)) = 0 (3.2.1)

for x ∈ U , satisfies

(a)
3∑
i=1

∂2ϕ

∂x2
i

= 0, and (b)
3∑
i=1

(
∂ϕ

∂xi

)2

= 0 (3.2.2)

if and only if G satisfies the corresponding equations:

(a)
3∑
i=1

∂2G

∂x2
i

= 0, and (b)
3∑
i=1

(
∂G

∂xi

)2

= 0 (3.2.3)

Proof. Suppose that ϕ : U → C is a solution to Equation 3.2.1 on some open subset U ⊂ R3.

Then by the chain rule, we have at all point (x, z) = (x, ϕ(x)) with x ∈ U ,

∂G

∂z

∂ϕ

∂xi
+
∂G

∂xi
= 0 (3.2.4)
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for i = 1, 2, 3. Then since ∇G 6= 0 implies ∂G
∂z
6= 0. Then squaring and adding the three

cases i = 1, 2, 3, we get

3∑
i=1

(
∂G

∂xi

)2

=

(
∂G

∂z

)2 3∑
i=1

(
∂ϕ

∂xi

)2

fr5 (3.2.5)

Then differentiating Equation 3.2.4 with respect to xi gives us

∂2G

∂z2

(
∂ϕ

∂xi

)2

+
∂2G

∂xi∂z

∂ϕ

∂xi
+
∂G

∂z

∂2ϕ

∂x2
i

+
∂2G

∂x2
i

= 0 (3.2.6)

for i = 1, 2, 3. Now, adding up the three cases and applying 3.2.2, we get:

3∑
i=1

∂2G

∂xi∂z

∂ϕ

∂xi
= 0 (3.2.7)

Then differentiation with respect to z in congress with Equation 3.2.4 gives:

∂G

∂z

3∑
i=1

∂2G

∂xi∂z

∂ϕ

∂xi
= −

3∑
i=1

∂G

∂xi

∂2G

∂xi∂z
= −1

2

∂

∂z

3∑
i=1

(
∂G

∂xi

)2

= 0 (3.2.8)

So Equation 3.2.7 along with Equation 3.2.5 shows that Equation 3.2.2(b) holds ⇔ Equa-

tion 3.2.3(b) holds. Summing Equation 3.2.6 for i = 1, 2, 3 and using Equation 3.2.2(b) and

the fact that since ∂G
∂z
6= 0 implies

∑3
i=1

∂2G
∂xi∂z

∂ϕ
∂xi

= 0 from Equation 3.2.8.

Then summing Equation 3.2.6

3∑
i=1

∂2G

∂x2
i

= −∂G
∂z

3∑
i=1

∂2ϕ

∂x2
i

(3.2.9)

Which shows Equation 3.2.2(a) ⇔ Equation 3.2.3(a).

Remark 3.2.1. Note that the properties (a) and (b) in Theorem 3.1 correspond to G being

harmonic and horizontally weakly conformal, respectively. These directly correspond to the

properties of general harmonics on Euclidean spaces (see Theorem 2.1).

3.3 A Very Special G Map

It can be shown that the fibres of the map G of Theorem 3.1 must be straight lines. In this

section, we start by presuming this is the case, however, this is in fact the only case. We call

this G very special because it serves to characterize all harmonic morphisms from R3 to C.
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Definition 3.1. Let V be an open subset of C. By a (nowhere zero) null holomorphic map

ξ : V → C3, we mean a triple ξ = (ξ1, ξ2, ξ3) of holomorphic function ξi : V → C such that

(a)
3∑
i=1

ξi(z)2 = 0, and (b)
3∑
i=1

|ξi(z)|2 6= 0 (3.3.1)

for all z ∈ V .

Given such a triple, consider the equation

ξ1(z)x1 + ξ2(z)x2 + ξ3(z)x3 = 1 (3.3.2)

Now define G as follows:

G(x, z) ≡ G(x1, x2, x3, z) = ξ1(z)x1 + ξ2(z)x2 + ξ3(z)x3 − 1 (3.3.3)

Note that G satisfies the conditions of Theorem 3.1. Then notice that as z varies in V , Equa-

tion 3.3.2 defines a two parameter family of straight lines, the two parameters corresponding

to Re(z) and Im(z), respectively. if ∂G/∂z 6= 0 at a point (x, z), the congruence forms a

smooth foliation in a neighbourhood of that point. Any smooth local solution ϕ : U → C

to Equation 3.2.4 has these lines as fibres. Furthermore, by taking the modulus of Equa-

tion 3.2.4, the dilation λ of ϕ can be shown to be,

λ =
|∇G|√

2|∂G/∂z|
(3.3.4)
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Figure 3.1: Foliation of the Domain: Here you can see that the preimages (fibres

of ϕ) of points in N are disjoint lines in M .

3.4 Harmonic morphisms from R3 to R2

In developing a complete characterization of the harmonic morphisms between R3 to C, an

intersection occurs with Weierstrass and Enneper’s theory of minimal surfaces. The same

canonical meromorphic functions that parameterize minimal surfaces in R3 can be used to

define harmonic morphisms between R3 to C.

First, we must loosen the conditions on our special G of § 3.3 to the case when the ξi

are meromorphic functions instead of strict holomorphic functions. In this case, each ξi = ηi
ζ

where both ηi and ζ are holomorphic and ζ is zero exactly at all the points where ξi have

poles, a set we call Z. Then restricting ourselves to V \Z and going back to Equation 3.3.2,

we get

η1(z)x1 + η2(z)x2 + η3(z)x3 = ζ(z) (3.4.1)

Triples of meromorphic functions ξi satisfying Equation 3.4.1 occured in the Enneper-

Weierstrass representation of minimal surfaces. This is classically given as follows:

ξ =
1

2h

(
− 2g, 1− g2, i(1 + g2)

)
(3.4.2)
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So letting ξ1(z) = −2g(z), ξ2(z) = 1 − g(z)2 and ξ3(z) = i(1 + g(z)2), we get the following

variant of Equation 3.3.2

G(x, z) = −2g(z)x1 + (1− g(z)2)x2 + i(1 + g(z)2)x3 − 2h(z) (3.4.3)

Theorem 3.2. (Local representations of harmonic morphisms on R3) Let g and h be mero-

morphic functions on V which are not identically infinite and which satisfy:

lim
z→z0

h(z)/g(z)2 = L (3.4.4)

Where z0 is a pole of h and L ∈ R. Then

1. any smooth local solution ϕ : U → C, z = ϕ(x) to the equation

−2g(z)x1 + (1− g(z)2)x2 + i(1 + g(z)2)x3 = 2h(z) (3.4.5)

on a convex open set is a submersive harmonic morphism with connected fibres not all

in the direction of the negative x1 axis;

2. each such harmonic morphism is given in this way for unique g and h;

3. let (x0, z0) ∈ R3×V . Then local solution z = ϕ(x) to Equation 3.4.5 exists if and only

if at (x0, z0)

∂G/∂z ≡ g
′
(z)(−2x1 − 2g(z)x2 + i2g(z)x3)− 2h

′
(z) 6= 0 (3.4.6)

3.4.1 Examples

Example 3.4.1. (Orthogonal Projection) Let g ≡ 0 and h = 1
2
z, then Equation 3.4.5 looks

like:

x2 + ix3 = z (3.4.7)

The solution ϕ : R3 → C is clearly

z = ϕ(x1, x2, x3) = x2 + ix3

As a map, ϕ constitues orthogonal projection of points in R3 on the x1 = 0 plane.
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Figure 3.2: Orthogonal projection (i) The map ϕ mapping a point (x1, x2, x3)

orthogonally onto the x1 = 0 plane. (ii) The preimage (fibre) under ϕ of a point

(x2, x3) is a line in R3

Example 3.4.2. (Radial Projection) Let g, h : C ∪ {∞} → C ∪ {∞} such that

g(z) = z , h ≡ 0

Then equation 1.3.5 looks like

−2zx1 + (1− z2)x2 + i(1 + z2)x3 = 0 (3.4.8)

This can be written as a quadratic in z, yielding

(x2 − ix3)z2 + 2x1z − (x2 + ix3) = 0 (3.4.9)

The solution ϕ(x) is
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ϕ(x) =
−2x1 ±

√
4x2

1 + 4(x2 + ix3)(x2 − ix3)

2(x2 − ix3)

=
−x1 ±

√
x2

1 + x2
2 + x2

3

x2 − ix3

=
−x1 ± |x|
x2 − ix3

Choosing the positive solution, it can be seen that

ϕ(x) =
−x1 + |x|
x2 − ix3

= σ

(
x

|x|

)
(3.4.10)

where σ : S2 → C ∪ {∞} is stereographic projection from the south pole. Since σ−1 is

a conformal map it is clear σ−1 ◦ ϕ is a harmonic morphism and x 7→ x
|x| i.e. σ−1 ◦ ϕ is

equivalent to radial projection to the origin.

Figure 3.3: Radial Projection: (i) The map σ−1◦ϕ is equivalent to radial projection

about the origin (ii) The preimage (fibre) under σ−1 ◦ ϕ of a point x
|x| ∈ S

2 is a line in

R3 projecting radially from the origin and containing the lift of the point x
|x| .
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4 Distributions and Vector Bundles

Here we develop some of the machinery of manifold calculus, addressing the theory of dis-

tributions, curvature, vector bundles, and induced connections. A good deal of the theory

of distributions is laid out in [8], here only modified to suit its application to harmonic

morphisms and their associated horizontal and vertical distributions. As seen in [8], all the

theory below can be developed for a more general distribution D and its orthogonal com-

plement D⊥. The discussion of vector bundles and their induced connections furthermore is

drawn primarily from [13].

4.1 Distributions

Definition 4.1. (Distribution) Let M be a smooth manifold of dimension m. Let n ≤

m. For each x ∈ M we assigned a subspace Dx ⊆ TxM . Choose a neighborhood U

of x and n-many linearly independent vector fields X1, . . . , Xn such that for each y ∈ U

span{X1(y), . . . , Xn(y)} = Dy. Define D as the collection of all such Dx for x ∈ U . We call

D an n-dimensional distribution of M . Furthermore, the set {X1, . . . , Xn} is called a local

basis of D.

Remark 4.1.1. D is essentially a subbundle of the tangent bundle TM .

An important property of distributions is involutivity.

Definition 4.2. A distribution D on M is called involutive if for each x ∈ M there exists

a local basis {X1, . . . , Xm} in a neighborhood of x such that for all 1 ≤ i, j ≤ m the Lie

bracket [Xi, Xj] is in the span {X1, . . . , Xm}. This is often denoted [D,D] ⊂ D.

Remark 4.1.2. The involutivity of a distribution is in some sense synonymous with its

integrability. The Frobenius theorem links the integrability (involutivity) of a distribution

(subbundle) to the fact that the distribution arises from a regular foliation. A foliation is

essentially a decomposition of a manifold into submanifolds called ”leaves” which are all of

equal dimension. A regular foliation of a manifold M is a foliation where each leaf is the

fibre of a map f : M → N where N is generally a submanifold of M .
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In the context of harmonic morphisms, there are two distributions of key importance:

Definition 4.3. (Horizontal and Vertical Distributions) Let ϕ : (M, g) → (N, h) be a

harmonic morphism between Riemannian manifolds M and N . First, notice that there

exists an orthogonal splitting TxM = ker dϕx ⊕ (ker dϕx)
⊥ of the tangent space at each

x ∈ M . Let Hx = (ker dϕx)
⊥ be the horizontal space at x and Vx = ker dϕx the vertical

space at x. Then the horizontal distributionH is the collection of all suchHx and the vertical

distribution the collection of all such Vx for each x ∈ M , where H = V⊥ is a distribution

orthogonal to V .

Moving forward in this section, the definitions are mostly phrased in reference to the

horizontal and vertical distributions so as to make their connection to harmonic morphisms

more explicit.

Definition 4.4. (Affine Connection) Let M be a smooth manifold and let Γ(TM) denote

the sections (vector fields) of the tangent bundle over M . An affine connection is a bilinear

map

Γ(TM)× Γ(TM)→ Γ(TM)

(X, Y ) 7→ ∇XY

with the following properties:

1. ∇fXY = f∇XY

2. ∇X(fY ) = df(X)Y + f∇XY

Remark 4.1.3. The first property indicates that the affine connection is C∞(M,R)-linear

in the first slot and the second property indicates that the affine connection follows a Leibniz

rule.

Definition 4.5. (Levi-Civita Connection) Let (M, g) be a Riemannian manifold with metric

g. An affine connection is called a Levi-Civita connection if it satisfies the following two

properties:
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1. the connection preserves the metric: ∇g = 0

2. the connection is torsion-free: ∇XY −∇YX = [X, Y ], where X, Y ∈ Γ(TM) and [·, ·]

is the Lie bracket.

4.1.1 Connection induced on H by (M, g,∇)

Using the Levi-Civita connection ∇ in (M, g) and the projection πH : TM → H, one can

define a covariant derivative between sections of H in the following way:

∇H : Γ(H)× Γ(H)→ Γ(H)

(X, Y ) 7→ πH(∇XY )

this covariant derivative is called the intrinsic connection of the distribution H in the Rie-

mannian manifold (M, g). The intrinsic connection satisfies the standard properties of an

affine connection

1. ∇HfXY = f∇HXY

2. ∇HX(fY ) = df(X)Y + f∇HXY

Remark 4.1.4. Notice that the intrinsic connection is not torsion-free with respect to the

Lie bracket in the manifold M . The torsion of ∇H for X, Y ∈ Γ(H) is given by:

T (X, Y ) = ∇HXY −∇HYX − [X, Y ] = −πV([X, Y ])

4.2 The Second Fundamental Form of H

Definition 4.6. The second fundamental form of H is the map

B : Γ(H)× Γ(H)→ Γ(TM) (4.2.1)

(X, Y ) 7→ ∇XY −∇HXY = πV(∇XY ) (4.2.2)

The second fundamental form satisfies the following properties:
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1. B is C∞(M)−bilinear and takes values in Γ(V)

2. By the above definition, we get the Gauss formula

∇XY = ∇HXY +B(X, Y )

3. Let {ei}m−ni=1 be a local orthonormal basis of Γ(V), then:

B(X, Y ) =
m−n∑
i=1

g
(
B(X, Y ), ei

)
ei

4.3 Curvature

4.3.1 Symmetry of B(X, Y ) and Integrability

The second fundamental form of H given by Equation 4.2.1 can be decomposed into sym-

metric and anti-symmetric components:

Bs(X, Y ) =
1

2
(B(X, Y ) +B(Y,X)) (4.3.1)

Ba(X, Y ) =
1

2
(B(X, Y )−B(Y,X)) (4.3.2)

where X, Y ∈ Γ(H). Thus, B(X, Y ) = Bs(X, Y ) +Ba(X, Y )

Corollary 4.0.1. The distribution H is involutive if and only if its second fundamental form

B is symmetric.

Proof. (⇒) Let H be involutive. Then it’s closed under the Lie bracket. Hence, ∀X, Y ∈

Γ(H), we have [X, Y ] ∈ Γ(H). Then observe that

Ba(X, Y ) =
1

2
πV([X, Y ])

Hence, since [X, Y ] is horizontal, gives πV([X, Y ]) = 0. Thus B(X, Y ) is symmetric.

(⇐) Similarly, assuming B(X, Y ) is symmetric means [X, Y ] ∈ Γ(H) for all X, Y ∈ Γ(H).

Thus, H is involutive by definition.
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Thus, by virtue of the Frobenius theorem, we can see that the distribution H is integrable

⇐⇒ B(X, Y ) is symmetric.

4.3.2 Mean Curvature

Definition 4.7. Let BV be the second fundamental form of the distribution V (cf: 4.2.1,

4.2.2). Then by the mean curvature of V , is meant the vector field

µV =
1

q
Tr BV =

1

q

q∑
r=1

πH(∇erer) (4.3.3)

where {e1, . . . , er} is a local moving frame for V .

Definition 4.8. A distribution V on M is said to be

(i) minimal, if, for each x ∈M , the mean curvature vanishes.

(ii) totally geodesic, if, for each x ∈M , the symmetric component of the second fundamen-

tal form BV,sx vanishes.

(iii) umbilic if, for each x ∈M , the normal curvature BVx (V, V ) in direction V is independent

of V ∈ Vx for |V | = 1.

Definition 4.9. A distribution V on M is said to be conformal if for each x ∈M ,

g(∇VX, Y ) + g(X,∇V Y ) = f(V ) g(X, Y ) (4.3.4)

where X, Y ∈ Hx and V ∈ Vx and f(V ) is a real number that depends on V .

if f ≡ 0 then V is called Riemannian.

The following proposition proves useful in typifing harmonic morphisms:

Proposition 4.3.1. (Orthogonal Distribution) A distribution V on a Riemannian manifold

M is conformal (Riemannian, respectively) as accordingly the distributionH = V⊥ is umbilic

(totally geodesic, respectively).
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4.4 Connections Over Vector Bundles

Now that we have presented the theory of connections over the tangent bundle TM
π−→M

as well as those induced on the distributions H and H⊥ = V , we now aim to generalize the

process even further, looking at connections induced over more general vector bundles.

Definition 4.10. Let E
π−→M be a smooth vector bundle over a smooth manifold M (i.e.

E has a vector space structure). A connection ∇ = ∇E on E is a map ∇ : Γ(TM)×Γ(E)→

Γ(E) such that for X ∈ Γ(TM) and σ ∈ Γ(E) :

(X, σ) 7→ ∇Xσ (4.4.1)

This connection over the vector bundle has the usual properties of a connection. Thus, given

f ∈ C∞(M) we have:

∇fXσ = f∇Xσ , ∇X(fσ) = X(f)σ + f∇Xσ (4.4.2)

4.4.1 Induced Connections

Given connections ∇E and ∇F on vector bundles E
πE−→ M and F

πF−→ M , we can define

connections over various other vector bundles which are derived from these original bundles.

Example 4.4.1. (Connection on dual bundle) Let E∗ = hom(E,R) be the dual space of

E. Then we can define the dual bundle as E∗
πE
∗

−→ M and its associated connection ∇E∗ as

follows: Let θ ∈ Γ(E∗) and σ ∈ Γ(E), then

(∇Xθ)σ = X(θ(σ))− θ(∇E
Xσ) (4.4.3)

Example 4.4.2. (Connection on bundle of linear maps) Consider the vector bundle

hom(E,F )
π−→M . Then for θ ∈ Γ(hom(E,F )) and σ ∈ Γ(E), the induced connection is as

follows:

(∇Xθ)σ = ∇F
X(θ(σ))− θ(∇E

Xσ) (4.4.4)

Remark 4.4.1. Notice that equation Equation 4.4.4 follows naturally from the product rule:

∇F
X(θ(σ)) = (∇Xθ)σ + θ(∇E

Xσ)
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Example 4.4.3. (Connection on the pull-back bundle) Let ϕ : M → N be a smooth map

between smooth manifolds and let W
π−→ N be a vector bundle over N . Then the pull-

back bundle is the vector bundle ϕ−1W
π−→ M with typical fibre (ϕ−1W )(x) = (W ◦ ϕ)(x)

for x ∈ M . The induced pull-back connection ∇ϕ is the unique linear connection on the

pull-back bundle such that, for each σ ∈ Γ(W ),

∇ϕ
X(ϕ∗σ) = ∇W

dϕ(X)(σ) (4.4.5)

where ϕ∗(σ) = σ ◦ ϕ ∈ Γ(ϕ−1W ).

4.5 Second Fundamental Form of a Map and the Tension Field

Using the connections developed in § 4.4.1, we can derive a corresponding second fundamental

form for the map ϕ.

Definition 4.11. Let M := (Mm, g) and N := (Nn, h) be Riemannian manifolds and let

ϕ : M → N be a smooth map. Note that the differential of ϕ can be viewed as a section

of T ∗M ⊗ϕ−1TN (tensor product bundle) over M . There is a connection associated to this

bundle derived from the Levi-Civita connection ∇M on M and the pull-back connection ∇ϕ

(see § 4.4.1), which we simply refer to as ∇. After applying this connection to the differential

of ϕ, we obtain the second fundamental form of ϕ. So let X, Y ∈ Γ(TM) then:

∇dϕ(X, Y ) = ∇ϕ
X(dϕ(Y ))− dϕ(∇M

X Y ) (4.5.1)

With the second fundamental form of ϕ, we can now define the tension field of ϕ, which

in some sense is a generalization of the Laplacian, but now defined for a general higher

dimensional manifold map ϕ as opposed to just a scalar function.

Definition 4.12. Let ϕ : M → N be a smooth map between Riemannian manifolds. Then

the tension field τ(ϕ) viewed as a section of the pull-back bundle ϕ−1TN is defined as

τ(ϕ) = Tr ∇dϕ =
m∑
i=1

∇dϕ(Ei, Ei) (4.5.2)

where {Ei} is an orthonormal frame of M , Tr is the trace, and∇dϕ is the second fundamental

form of ϕ.
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5 Harmonic Morphisms over Riemannian Manifolds

In this section we generalize the theory laid out in § 2 to maps between Riemannian man-

ifolds. An important distinction between the Euclidean and Riemannian cases is that, due

to underlying curvature of manifolds involved, the conformality (angle-perserving property)

of the map ϕ plays a more conspicuous role. We look at horizontally weakly conformal

maps and harmonic maps, detailing how they relate to harmonic morphisms over Rieman-

nian manifolds. We then finally arrive at the fundamental equation of harmonic morphisms,

which allows us to posit a few insightful characterizations of harmonic morphisms.

5.1 Basic Definitions

Definition 5.1. (Harmonic Morphism between Riemannian manifolds) Let (M, g) and (N, h)

be manifolds with their associated Riemannian metrics (symmetric, positive-definite). A map

ϕ : M → N is called a harmonic morphism if for any harmonic function f : U ⊆ N → R,

defined on an open subset U of N with ϕ−1(U) ⊆ M non-empty, f ◦ ϕ : ϕ−1(U) → R is a

harmonic function.

This is precisely the same definition seen in § 2, simply generalized to Riemannian man-

ifolds. Despite the seeming lack of reference to the metrics on M and N , it’s important to

note that the Laplacian is metric dependent:

Remark 5.1.1. For instance, if M = Rm then the expression for the Laplacian is the

familiar:

∆f =
m∑
k=0

∂2f

∂x2
i

Otherwise, the expression for the Laplacian depends on the metric g on M . Thus given

a coordinatization of M (x1, . . . , xm), the Laplacian can be generally expressed (using the

Einstein summation convention):

∆f =
1√
|g|
∂i

(√
|g|gij∂jf

)
where ∂i := ∂

∂xi
, | · | denotes the determinant, and gij is the inverse metric.
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5.2 Horizontally Weakly Conformal Maps (HWC)

As mentioned above, the conformality of ϕ : M → N plays a more conspicuous role in the

Riemannian case. Nonetheless, we do not require ϕ be conformal with respect to the entirety

of the tanget bundle TM , but rather only on the horizontal subbundle H =: (ker dϕ)⊥ which

we identify with the orthogonal complement of the kernel of the differential map.

Definition 5.2. (Horizontally Weakly Conformal) For m ≥ n, a non-constant map ϕ :

(Mm, g) → (Nn, h) and x ∈ M , let Vx := ker dϕx ⊂ TxM be the vertical distribution

and Hx := V⊥x ⊂ TxM be the horizontal distribution. If Cϕ := {x ∈ M | dϕx = 0} and

M̂m := M − Cϕ, then ϕ : (M, g) → (N, h) is said to be horizontally (weakly) conformal if

there exists a function λ : M̂ → R+ such that

λ2(x)g(X, Y ) = h(dϕ(X), dϕ(Y ))

for all X, Y ∈ Hx and x ∈ M̂ . The function λ is then extended to the whole of M by setting

λ|Cϕ ≡ 0. The extended function λ : M → R+
0 is called the dilation of ϕ.

Figure 5.1: HWC Map: A horizontally weakly conformal map ϕ : M → N is shown.

Here X,Y ∈ Γ(H) are horizontal vector fields. Notice first the orthogonal splitting of

TM = ker dϕ⊕ (ker dϕ)⊥. Next, notice that while the lengths of the vectors in Tϕ(x)N

are scaled by 1/λ that the angle θ is preserved under the differential map dϕ.
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Remark 5.2.1. ~∇λ2 ∈ Γ(TM), where by Γ(TM) is meant the set of sections of the tangent

bundle. On (M̂m, g),V := {Vx | x ∈ M̂} and H := {Hx | x ∈ M̂} are smooth distributions

or subbundles of TM̂ . πV and πH are used to denote the natural projections onto V and

H at each point x ∈ M̂ . On M̂ there exists a unique orthogonal splitting of the ~∇λ2 into

vertical and horizontal components:

~∇λ2 = πH(~∇λ2) + πV(~∇λ2)

A map ϕ whose dilation λ is such that its level sets are horizontal submanifolds are

special in the typification of harmonic morphisms (see § 6.3).

Definition 5.3. (Horizontally Homothetic) A non-constant map ϕ : (M, g)→ (N, h) is said

to be horizontally homothetic if it is horizontally conformal and πH(~∇λ2) ≡ 0 on M̂ .

5.3 Harmonic Maps

In this section, we outline the basic theory of harmonic maps. Moving forward, it is neces-

sary to make a distinction between harmonic functions and harmonic maps. In particular,

harmonic functions are scalar maps which solve the Laplace equation, whereas harmonic

maps are maps to higher dimensional manifolds that in a sense solve a higher dimensional

analog to the Laplace equation. The problem, of course, is that the Laplacian of a higher

dimensional map is not a scalar, but a tensor. This issue is obviated by looking rather at

the trace of the second fundamental form of the map as opposed to the Laplacian itself (see

§ 4.5).

Definition 5.4. Let ϕ : M → N be a smooth map between Riemannian manifolds and let

x ∈M . Then the Hilbert-Schmidt norm ||dϕx|| of its differential at x is defined by

||dϕx||2 =
m∑
i=1

h(dϕx(Ei), dϕx(Ei)) (5.3.1)

where {Ei} is an orthonormal basis for TxM .
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Alternatively, if we define the pull-back ϕ∗h of the metric h by

ϕ∗h(E,F ) = h(dϕ(E), dϕ(F )) (5.3.2)

where E,F ∈ Γ(TM), then we can rewrite the Hilbert-Schmidt norm as

||dϕx||2 = Tr ϕ∗h =
m∑
i=1

ϕ∗h(Ei, Ei) (5.3.3)

With this theory in place, we now work toward a definition of a harmonic map.

Definition 5.5. The energy density of ϕ at a point x ∈M is given by the following:

e(ϕ) =
1

2
‖dϕ‖2 (5.3.4)

where dϕ is the differential map of ϕ and where again ‖ · ‖2 is the Hilbert-Schmidt norm

with respect to the induced metric on the bundle T∗M ⊗ ϕ−1(TN)

Definition 5.6. The total energy of ϕ is given by integration over M of the energy density

of ϕ

E(ϕ) =
1

2

∫
M

‖dϕ‖2dV (5.3.5)

where dV is the volume element over M .

Let C∞(M,N) denote the space of all smooth maps from M to N . A map ϕ ∈ C∞(M,N)

is said to be harmonic if it is an extremal of the energy functional E(·;D) : C∞(M,N)→ R

over any compact domain D of M .

More specifically, let {ϕt} be a family of smooth mappings from M to N which depends

smoothly on a parameter t ∈ (−ε, ε) for some ε ∈ R such that ϕ0 = ϕ. Then the following

defines a harmonic map:

Definition 5.7. Let ϕ : (M, g)→ (N, h) be a smooth map between Riemannian manifolds.

Then ϕ is harmonic if

d

dt
E(ϕt;D)

∣∣∣∣
t=0

= 0 (5.3.6)

for all compact domains D and all smooth variations {ϕt} of ϕ supported in D.
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Figure 5.2: Minimizing the Energy Functional A simplified depiction of how the

variation of a map ϕ on a compact domain D relates to the total energy E.

Now, it can be shown that the left hand side of Equation 5.3.6 can be written equivalently

as follows:

Proposition 5.3.1. (First variation of the energy) Let ϕ : M → N be a smooth map and

{ϕt} be a smooth variation of ϕ supported in D. Then

d

dt
E(ϕt;D)

∣∣∣∣
t=0

= −
∫
M

〈v, τ(ϕ)〉 dV (5.3.7)

where v(x) := ∂ϕt
∂t

(x)
∣∣
t=0
∈ Γ(ϕ−1TN) and 〈·, ·〉 is the metric on the pullback bundle.

Thus, observing that in Proposition 5.3.1, 〈·, ·〉 as a metric is positive-definite, and as-

suming ϕ non-constant implies v is non-zero, means the only way the energy functional is

identically zero over all compact domains D ⊆ M is for τ(ϕ) to be identically zero. This

leads to the following theorem:

Theorem 5.1. (Harmonic Equation) Let ϕ : M → N be a smooth map. Then ϕ is harmonic

if and only if

τ(ϕ) = 0 (5.3.8)

33



The result of Theorem 5.1 is the most useful characterization of harmonic maps and is

used extensively in the derivation of the fundamental equation of harmonic morphisms (see

Equation 5.5.5).

5.4 Characterization of Harmonic Morphisms over Riemannian

Manifolds

The following theorem attributed to Fuglede and Ishihara (see [3] and [5]) we state here

without proof. This characterization of harmonic morphisms over Riemannian manifolds

is incredibly useful and ties together all the abovementioned theory of HWC maps and

harmonic maps.

Theorem 5.2. A map ϕ : (Mm, g) → (Nn, h) is a harmonic morphism if and only if both

of the following conditions hold:

1. ϕ is an harmonic map

2. ϕ is horizontally weakly conformal

Remark 5.4.1. The proof essentially follows the same track as that of Theorem 2.1 in the

Euclidean case, but requires slightly more advanced mathematical machinery beyond the

scope of this thesis.

The following theorem, again stated without proof, relates the dimensions of the mani-

folds M and N to the submersivity of the map ϕ.

Theorem 5.3. Let ϕ : Mm → Nn be a non-constant horizontally weakly conformal mapping

of finite order. Then,

(i) if m < 2n− 2 then ϕ is submersive.

(ii) if m = 2n−2 then either ϕ is submersive, or (m,n) = (2, 2), (4, 3), (8, 5) or (16, 9) and

ϕ has isolated critical points, and the first non-constant term in its Taylor expansion

is a Hopf polynomial map (up to homothety).
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5.5 The Fundamental Equation of Harmonic Morphisms

Lemma 5.4. (Second fundamental form of an HC submersion [13]) Let ϕ : M → N be a

horizontally conformal submersion. Then, for any horizontal vector field X, Y ∈ Γ(H),

∇dϕ(X, Y ) = X(lnλ)dϕ(Y ) + Y (lnλ)dϕ(X)− g(X, Y )dϕ(∇ lnλ) (5.5.1)

Proof. Let {Ei} be an orthonormal frame on an open set of N ; lift each Ei to a horizontal

vector field Ei on M , then λEi is an orthonormal frame for the horizontal distribution of M .

Let X and Y be vector fields on an open subset of N , and X and Y their associated horizontal

lifts to M . Then, looking at the horizontal projection of the Levi-Civita connection on M ,

we have:

πH (∇XY ) =
n∑
i=1

g(∇XY, λEi)λEi

= λ2

n∑
i=1

g(∇XY,Ei)Ei

We first develop the right hand side of this equation. So, we use the Koszul formula to

rewrite the metric expression:

λ2

2

n∑
i=1

{
X
(
g(Y,Ei)

)
+ Y

(
g(Ei, X)

)
− Ei

(
g(X, Y )

)
− g(X, [Y,Ei])− g(Y, [X,Ei]) + g(Ei[X, Y ])

}
Ei

Now, using the fact that ϕ is horizontally conformal (i.e. g(X, Y ) = (1/λ2)h(X,Y ) ) and

the naturality of the Lie Bracket (i.e. dϕ([X, Y ]x) = [dϕ(X), dϕ(Y )]ϕ(x) = [X,Y ]ϕ(x) ), we

get:

λ2

2

n∑
i=1

{
X
(

(1/λ2)h(Y ,Ei)
)

+ Y
(

(1/λ2)h(Ei, X)
)
− Ei

(
(1/λ2)h(X,Y )

)
− (1/λ2)h(X, [Y ,Ei])− (1/λ2)h(Y , [X,Ei]) + (1/λ2)h(Ei, [X,Y ])

}
Ei

35



Using the product rule on the first three terms, we get:

λ2

2

n∑
i=1

{
X
(

1/λ2
)
h(Y ,Ei) + (1/λ2)X

(
h(Y ,Ei)

)
+ Y

(
1/λ2

)
h(Ei, X) + (1/λ2)Y

(
h(Ei, X)

)
− Ei

(
1/λ2

)
h(X,Y )− (1/λ2)Ei

(
h(X,Y )

)
− (1/λ2)h(X, [Y ,Ei])− (1/λ2)h(Y , [X,Ei]) + (1/λ2)h(Ei, [X,Y ])

}
Ei

regathering the terms,

λ2

2

n∑
i=1

{
X
(

1/λ2
)
h(Y ,Ei) + Y

(
1/λ2

)
h(Ei, X)− Ei

(
1/λ2

)
h(X,Y )

}
Ei

+
1

2

n∑
i=1

{
X
(
h(Y ,Ei)

)
+ Y

(
h(Ei, X)

)
− Ei

(
h(X,Y )

)
− h(X, [Y ,Ei])− h(Y , [X,Ei]) + h(Ei, [X,Y ])

}
Ei

Now, observing that λ2

2
X(1/λ2) = λ2

2
(− 2

λ3
X) = − 1

λ
X = −X(lnλ) and using the Koszul

formula on the second portion, gives,

n∑
i=1

{
−X

(
lnλ
)
h(Y ,Ei)− Y

(
lnλ
)
h(Ei, X) + Ei

(
lnλ
)
h(X,Y )

}
Ei

+
n∑
i=1

h(∇XY ,Ei)Ei

Using horizontal conformality once again,

n∑
i=1

{
−X

(
lnλ
)
(λ2g(Y,Ei))− Y

(
lnλ
)
(λ2g(Ei, X)) + Ei

(
lnλ
)
(λ2g(X, Y ))

}
Ei

+
n∑
i=1

{
λ2g
(
(∇XY )∧, Ei

)}
Ei

=
n∑
i=1

{
−X

(
lnλ
)
g(Y, λEi)− Y

(
lnλ
)
g(λEi, X) + (λEi)

(
lnλ
)
g(X, Y )

}
(λEi)

+
n∑
i=1

g
(
(∇XY )∧, λEi

)
(λEi)

Now performing the sums,

−X(lnλ)Y − Y (lnλ)X + g(X, Y )(~∇ lnλ) + (∇XY )∧
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Finally, combining the horizontal lift of the connection in N with the horizontal projection

of the connection in M , we arrive at:

(∇XY )∧ − πH(∇XY ) = X(lnλ)Y + Y (lnλ)X − g(X, Y )(~∇ lnλ)

The left hand side of the equation is equivalent to the horizontal lift of the second funda-

mental form:

(∇XY )∧ − πH(∇XY ) = (∇dϕ(X, Y ))∧

Hence applying the differential map dϕ to the above equation gives the result:

∇dϕ(X, Y ) = X(lnλ) dϕ(Y ) + Y (lnλ) dϕ(X)− g(X, Y )dϕ(~∇ lnλ)

Proposition 5.5.1. Let ϕ : Mm → Nn be a smooth horizontally conformal submersion

between Riemannian manifolds of dimensions m,n ≥ 1. Let λ : M → (0,∞) denote the

dilation of ϕ and let µV denote the mean curvature vector fields of it fibres. Then the tension

field of ϕ is given by

τ(ϕ) = −(n− 2) dϕ(~∇ lnλ)− (m− n) dϕ(µV) (5.5.2)

Proof. Let {Ei}ni=1 be a local orthonormal frame for the horizontal distribution H. Then

the horizontal trace (the trace restricted to H×H) of the second fundamental form can be

computed as follows (using Equation 5.5.1):

TrH ∇dϕ =
n∑
i=1

∇dϕ(Ei, Ei)

=
n∑
i=1

{
Ei(lnλ) dϕ(Ei) + Ei(lnλ) dϕ(Ei)− g(Ei, Ei)dϕ(~∇ lnλ)

}
Observe that since the Ei are orthonormal that g(Ei, Ei) = 1 and that by linearity of the

differential map we may write:

dϕ

(
n∑
i=1

{
2 Ei(lnλ) Ei − ~∇ lnλ

})
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Observing that
∑n

i=1 Ei(lnλ) Ei = ~∇ lnλ , we get the result:

(2− n) dϕ(~∇ lnλ) = −(n− 2) dϕ(~∇ lnλ) (5.5.3)

Now, looking at the vertical trace (the trace restricted to V ×V) of the second fundamental

form and letting {Ui}m−ni=1 be a local orthonormal frame for the vertical distribution V :

TrV ∇dϕ =
m−n∑
i=1

∇dϕ(Ui, Ui)

=
m−n∑
i=1

{
∇N

dϕ(Ui)
dϕ(Ui)− dϕ(∇M

Ui
Ui)
}

Then, looking at the second term in the above summand, since by definition each Ui ∈ ker dϕ

(dϕ(Ui) = 0 ∈ TN) and since the differential is a linear map, we get:

−dϕ

(
m−n∑
i=1

∇M
Ui
Ui

)

Since only the horizontal components of the vector fields ∇M
Ui
Ui survive the differential map,

means:

−dϕ

(
m−n∑
i=1

∇M
Ui
Ui

)
= −dϕ

(
m−n∑
i=1

πH(∇M
Ui
Ui)

)

Then by Equation 4.3.3, we have

m−n∑
i=1

πH(∇M
Ui
Ui) = (m− n)µV

Then the linearity of the differential map gives us our result:

−(m− n) dϕ(µV) (5.5.4)

Finally, by summing Equation 5.5.3 and Equation 5.5.4, we get the trace of the second

fundamental form in M which by Equation 5.5.2 gives us the final result:

τ(ϕ) = −(n− 2) dϕ(~∇ lnλ)− (m− n) dϕ(µV)

38



From the above expression for the tension field, we derive the so-called fundamental

equation of harmonic morphisms:

Theorem 5.5. (Fundamental Equation) Let ϕ : Mm → Nn be a smooth non-constant

horizontally weakly conformal map between Riemannian manifolds of dimensions m,n ≥ 1.

Then ϕ is harmonic, and thus a harmonic morphism, if and only if, at every regular point,

the mean curvature vector field µV of the fibres and the gradient of the dilation λ of ϕ are

related by

(n− 2) πH(~∇ lnλ) + (m− n) µV = 0 (5.5.5)

Proof. (⇒): Let ϕ be a harmonic morphism. Then as stated above, ϕ is considered a

harmonic map if the tension field vanishes. Notice that by linearity of the differential map,

we may write Equation 5.5.2 equivalently as:

τ(ϕ) = dϕ
{
− (n− 2) ~∇ lnλ− (m− n) µV

}
Recalling that µV ∈ Γ(H), notice that

dϕ
{
− (n− 2) ~∇ lnλ− (m− n) µV

}
= dϕ

{
πH
(
− (n− 2) ~∇ lnλ− (m− n) µV

)}
= dϕ

{
− (n− 2) πH(~∇ lnλ)− (m− n) µV

}
Since we are interested τ(ϕ) ≡ 0 means that non-trivial solutions occur only on the horizontal

component of the vector field. In addition, since the differential dϕ is an isomorphism

between H and TN implies that the differential dϕ is only zero at zero. Hence, we are

strictly interested in the case when:

−(n− 2) πH(~∇ lnλ)− (m− n) µV ≡ 0

(⇐): Let (n−2) πH(~∇ lnλ) + (m−n) µV = 0. Then by applying the differential map dϕ we

get τ(ϕ) = 0 which follows from proposition Equation 5.5.2. Hence since the tension field

vanishes implies by definition that ϕ is harmonic and hence by theorem Theorem Theorem 5.2

we have ϕ is a harmonic morphism.
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5.5.1 Additional Characterization of Harmonic Morphisms

An immediate consequence of the Equation 5.5.5 is the following theorem attributed to Baird

and Eels (see [1]):

Theorem 5.6. Let m > n ≥ 2 and let ϕ : (Mm, g) → (Nn, h) be a horizontally conformal

submersion. if

1. n = 2, then ϕ is a harmonic map if and only if ϕ has minimal fibres.

2. n ≥ 3, then two of the following conditions imply the other:

(a) ϕ is a harmonic map,

(b) ϕ has minimal fibres,

(c) ϕ is horizontally homothetic.

Proof. The proof follows quite naturally from following the various consequences of Equa-

tion 5.5.5.

(n− 2) πH(~∇ lnλ) + (m− n) µV = 0

Case 1: Let n = 2. Then the fundamental equation reduces to

(m− 2) µV = 0

Since m > 2 implies the mean curvature of the fibres µV = 0 which means the fibres are

minimal.

Case 2: [(a) and (b) ⇒ (c)] Let n ≥ 3. Let ϕ be a harmonic map with minimal fibres.

Then by Theorem 5.2 ϕ is a harmonic morphism. Thus, in applying Equation 5.5.5, it

reduces to

(n− 2) πH(~∇ lnλ) = 0

Thus πH(~∇ lnλ) = 0 which means the map is horizontally homothetic in accordance with

Definition 5.3 since clearly πH(~∇ lnλ) = 0 ⇐⇒ πH(~∇λ2) = 0.
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Case 3: [(a) and (c)⇒ (b)]: Let ϕ be a harmonic map and be horizontally homothetic.

Then since ϕ is harmonic implies τ(ϕ) = 0 by Theorem 5.1. Thus, Equation 5.5.5 must equal

zero. Hence, since the map ϕ is horizontally homothetic implies the fundamental equation

reduces to

(m− 2) µV = 0

Hence, µV = 0 which again means ϕ has minimal fibres.

Case 4: [(b) and (c) ⇒ (a)] Let ϕ have minimal fibres and be horizontally homothetic.

Then clearly, πH(~∇ lnλ) = 0 by definition of horizontal homothety, and µV = 0 by defintion

of ϕ having minimal fibres. Thus,

(n− 2) πH(~∇ lnλ) + (m− n) µV = 0

which implies ϕ is a harmonic morphism, and thus also a harmonic map.

6 Harmonic Morphisms with One-Dimensional Fibres

We now turn to harmonic morphisms whose fibers have a one-dimensional relative dimension.

While no complete characterization of harmonic morphisms with higher-dimensional fibres

currently exists, harmonic morphisms with one-dimensional fibres have been completely typ-

ified. One-dimensional fibrations are particularly important for our investigation into the

intersection between harmonic morphisms and Milnor fibrations, and so we develop all the

required theory to lay out their characterization.

Thus, we take a cursory look at the three types of harmonic morphisms with one-

dimensional fibres: Killing type, warped product type, and T type. It is important to

appreciate from the outset that the three types are not mutually exclusive. There are exam-

les of one-dimensionally fibred harmonic morphisms which are both of Killing and warped

product type, or of warped product and T type, however, it is not feasible to have one that

is both Killing and T type. Nevertheless, these three types are all three differentiated by
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the geometric relationship between the level sets of the dilation function, and the integral

manifolds of the horizontal and vertical distributions induced by the map ϕ.

6.1 Definitions

Definition 6.1. (One-dimensional fibres) Let ϕ : Mn+1 → Nn for n ≥ 1 be a non-constant

harmonic morphism. Then, at regular points, the fibres are of dimension 1. Thus, ϕ is a

harmonic morphism with one-dimensional fibres.

Remark 6.1.1. Recall from Theorem 5.3, that the relationship between the dimensions of

M and N indicate the submersivity of ϕ. So in the one-dimensional fibre case, if n + 1 <

2n− 2⇒ n > 3 then ϕ is submersive. If n = 3 then ϕ has at most isolated singularities.

A useful tool in classifying harmonic morphisms with one-dimensional fibres is by means

of the so-called fundamental vertical vector field of ϕ.

Definition 6.2. (Fundamental vector field) Let U ∈ Γ(V) be such that |U | = 1. Then the

fundamental (vertical) vector field of ϕ is a a vector field V ∈ Γ(V) such that |V | = λn−2.

In other words, V = λn−2U .

6.2 Killing Type

The first type of harmonic morphism with one-dimensional fibres we discuss is the Killing

type. In this type, the fundamental vertical vector fields are Killing vector fields.

Definition 6.3. Let X ∈ Γ(TM). We say X is Killing if for any Y, Z ∈ Γ(TM)

g(∇XY, Z) + g(Y,∇XZ) = 0 (6.2.1)

In an intuitive sense, what it means for a vector field X to be Killing is that if we take

two vectors at point p on the manifold M and displace them infinitesimally in the direction

of X, that their geometric relationship to one another is preserved (angles and lengths).
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Definition 6.4. Let ϕ : Mn+1 → Nn be a non-constant harmonic morphism with dilation

λ. Say that ϕ is of Killing type if, in a neighborhood of each regular point, the fibres are

tangent to a Killing vector field

The following proposition makes the implications of the above definition more clear:

Proposition 6.2.1. A non-constant harmonic morphism is of Killing type if and only if one

of the following equivalent conditions holds on the set of regular points:

(i) the fundamental vertical vector field V is a Killing vector field.

(ii) the gradient of the dilation is horizontal (i. e. πV(~∇λ) = 0).

(iii) the associated foliation is Riemannian.

Remark 6.2.1. Notice that in the one-dimensional fibre case the condition for a distribution

to be Riemannian (see Equation 4.3.4) is equivalent to the condition that the fundamental

vector field be Killing [Cf Equation 6.2.1].

Another equivalent way of thinking about πV(~∇λ) = 0 is to consider the level sets of the

dilation function, which we here denote Λα := {x ∈M | λ(x) = α, α ∈ R+}. In this case, the

level sets of λ define submanifolds of M . We can think of Λα as corresponding to a certain

vector field. With Killing type harmonic morphisms, the fibres of the map are parallel with

the level sets of the dilation function λ(x), so that if you flow along a fibre of a Killing type

harmonic morphism, you remain on the same level set of the dilation function. Hence, we

can equivalently say that for Killing type harmonic morphisms, Λα ∈ Γ(V) when viewed as

a vector field.
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Figure 6.1: Killing Type: A simplified depiction of the geometric relationships be-

tween the level sets of the dilation function Λα, horizontal hypersurfaces H, and fibres

Fp := {x ∈ M | ϕ(x) = p , p ∈ N} for a Killing type harmonic morphism. Note that

each individual ray corresponds to either a different fibre (blue) or a different level set

of λ (red).

6.2.1 Examples

Example 6.2.1. Orthogonal projection is a canonical Killing type harmonic morphism (see

Examples 3.4.1)

Example 6.2.2. The canonical Hopf fibration S3 → S2 is of Killing type.

Example 6.2.3. The Hopf polynomial map ϕ : R4 → R3:

(z0, z1) 7→ (|z0|2 − |z1|2, 2z̄0z1)

is of a Killing type with dilation λ = 2
√
|z0|2 + |z1|2.
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6.2.2 Through the Lens of the Fundamental Equation

If we look at the Killing type through the lens of Equation 5.5.5, we can make the following

observation about the mean curvature of the fibres:

First, in order that we have a harmonic morphism, the fundamental equation must hold

(n ≥ 3):

(n− 2) πH(~∇ lnλ) + µV = 0

Since, in the Killing type, πV(~∇ lnλ) = 0 implies πH(~∇ lnλ) = ~∇ lnλ. Hence,

(n− 2) ~∇ lnλ+ µV = 0

Which gives us,

µV = ~∇(− lnλn−2)

This shows that in general the mean curvature of the fibres µV for a Killing type harmonic

morphism is not constant (and non-zero) and therefore the fibres are not in general minimal.

6.3 Warped Product Type

We now look at the so-called warped product type of harmonic morphisms. As will be

shown, these arise in a natural way as the projection to the second factor of a warped product

manifold, inheriting in turn a metric scaled by the associated warping function. In addition,

warped product type harmonic morphisms are typified by being both horizontally homothetic

and having minimal fibres. In the case of harmonic morphisms with one dimensional fibres,

having minimal fibres requires that they be totally geodesic as well (straight lines with

respect to the manifold).

6.3.1 Warped Product Manifolds

Definition 6.5. (warped product Manifold) Let (M, g) and (N, h) be Riemannian manifolds,

and let f be a positive function on M . Consider the product manifold M × N with the
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projection maps πM : M×N →M and πN : M×N → N . The warped product W = M×fN

is the manifold M ×N equipped with the warped product metric given by

w = g + f 2h (6.3.1)

The function f : M → R+ is called the warping function of the warped product and the pair

(W,w) is called a warped product manifold.

6.3.2 Warped Product Type Harmonic Morphisms

Proposition 6.3.1. (Characterization of Warped Products) Let M×f N be a warped prod-

uct manifold with associated warping function f : M → R+. Then,

(i) The projection πN on to the second factor is a horizontally homothetic submersion with

totally geodesic fibres and integrable horizontal distribution. Its dilation at (x, y) ∈

M ×f N is 1/f(y)

(ii) Conversely, any horizontally homothetic submersion (M, g) → (N, h) with totally

geodesic fibres and integrable horizontal distribution is locally the projection of a

warped product. In fact, if (M, g) is complete, and M and N are simply connected, it

is globally such a projection.

6.3.3 Examples

The following three examples are considered canonical examples. There are three more simi-

lar examples for warped product type harmonic morphisms that map from hyperbolic space.

But while these are also considered canonical, they will not be discussed here.

Example 6.3.1. (Orthogonal projection) Consider the map ϕ : Rn+1 → Rn that for each

x0 ∈ R maps (x0, x̃) ∈ Rn+1 to x̃ ∈ Rn. Then ϕ may be viewed as the projection from the

warped product R×f Rn−1 where f ≡ 1. Orthogonal projection is the one canonical example

whose dilation is constant 1/f = 1. It thus defines a Riemannian submersion and hence is

also of Killing type.
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Example 6.3.2. (Radial projection to a sphere) Next, consider ϕ : Rn \ {0} → Sn−1 that

maps x̃ ∈ Rn \ {0} to x̃/|x̃| ∈ Sn−1. Then ϕ may be viewed as the projection from the

warped product R+ ×f Sn−1 where f = |x̃|. Here the dilation is non-constant and hence ϕ

is not Killing.

Example 6.3.3. (Radial projection from a sphere) Finally, consider ϕ : Sn\{(±1, 0, . . . , 0)} →

Sn−1 that maps a point (x0, x̃) ∈ Sn\{(±1, 0, . . . , 0)} to x̃/|x̃| ∈ Sn−1. Then ϕ may be viewed

as the projection from the warped product (−π, π)×f Sn−1 where f = sin(θ) where θ is the

angle in (−π, π) that corresponds to x̃.

Example 6.3.4. (Riemannian Product) A warped product with f ≡ 1 is called a Rie-

mannian product. The projection of a Riemannian product onto either of its factors is a

Riemannian submersion with totally geodesic fibers and integrable horizontal distribution.

Conversely, each Riemannian submersion is locally of this form.
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Figure 6.2: Warped Product Type: A simplified depiction of the geometric rela-

tionships between the level sets of the dilation function Λα, horizontal hypersurfaces

H, and fibres Fp := {x ∈ M | ϕ(x) = p , p ∈ N} for a warped product type harmonic

morphism. Note that each individual blue-colored ray corresponds to a different fibre

and each separate red circle corresponds to a different level set of λ.

By virtue of being horizontally homothetic, another important property of warped prod-

uct type harmonic morphisms (proven by Fuglede in [2]) is the following:

Proposition 6.3.2. A horizontally homothetic map has no critical points of finite order.

Remark 6.3.1. All warped product type harmonic morphisms are horizontally homothetic

maps, hence, Proposition 6.3.2 could be read equivalently to say: A warped product harmonic

morphism has no critical points of finite order.

Let ϕ : Mn+1 → Nn be a non-constant horizontally homothetic harmonic morphism. If

~∇λ is non-zero on a dense subset of M , then ϕ is of warped product type.
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6.3.4 Another Characterization of Warped Product Type Harmonic Morphisms

We may also relate warped product type harmonic morphisms to geometry of the integral

submanifolds of the horizontal distribution H.

Definition 6.6. We say that a family of oriented hypersurfaces is parallel if they form a

Riemannian foliation

Proposition 6.3.3. A family of oriented hypersurfaces is parallel if any of the following

equivalent conditions holds:

(i) any two nearby hypersufaces are a constant distance apart

(ii) moving along geodesics normal to one of the hypersurfaces by a (small enough) constant

distance locally produces another hypersurface of the family

(iii) the integral curves of the unit vector field normal to the hypersufaces are geodesics

(iv) parallel transport along these integral curves maps the tangent space of one hypersur-

face to the tangent space of another.

Definition 6.7. A family of oriented hypersurfaces is called isoparametric if they are all

parallel and each hypersurface has constant mean curvature.

Proposition 6.3.4. Let ϕ : Mn+1 → Nn (n ≥ 1) be a harmonic morphism of warped

product type. Then the leaves of H form an isoparametric family of hypersurfaces with each

hypersurface umbilic.

A useful result that echoes the above conclusion of Proposition 6.3.4 is the following:

Theorem 6.1. Let Nn−1 be a submanifold of codimension 1 in Rn. Let ϕ : X ⊂ Rn → N

be an HWC map and a submersion such that ϕ(x)− x is orthogonal to N at ϕ(x). Then N

is either a hypersphere, hyperplane, or part of one.

Proof. Let s : U ⊂ Rn−1 be a parametrization of N . Let n(u) be a normal vector field on

N . Our subset X can be parametrized by s(u) + tn(u). With these parametrizations, ϕ is
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the map ϕ(u, t) = u, and so dϕ = [In−1|0]. Clearly ∂t spans the kernel of dϕ, and so the

row vectors of ds span the horizontal space. If v and w are vectors in Rn−1, then the metric

applied these vectors give us:

g(v,w) = (dsv + tdnv) · (dsw + tdnw)

= (dsv · dsw) + t(dsv · dnw + dnv · dsw) + t2(dnv · dnw)

= (dsv · dsw)− 2t(n · d2svw) + t2(dnv · nw)

= I(v,w)− 2tII(v,w) + t2(dnv · dnw)

On the hypersurface s, the metric is just h(v,w) = dsv · dsw = I(v,w). Since I, II and

dn · dn do not depend on t, the only way the metrics will be multiples is if I, II, and dn · dn

are all multiples of each other. In particular, the second fundamental form is a multiple

of the first fundamental form, and so we have an umbilic on N . Since this formula was

arbitrary, all points on N are umbilics, and so N must be a hypersphere, a hyperplane, or a

portion of one of these.

Note that if N is a hyperplane, then n is constant, so dn · dn = 0, and our metrics

are multiples with scaling factor always equal to one. If N is a hypershere, then n = λs,

and so our expression for g reduces to (1 − λt)2I. In particular, if our hypersphere was the

unit sphere at the origin, then the scaling factor would be the distance squared from the

origin.

6.3.5 Through the Lens of the Fundamental Equation

A defining property of warped product harmonic morphisms is that they constitute horizon-

tally homothetic maps. Hence, starting with Equation 5.5.5,

(n− 2) πH(~∇ lnλ) + µV = 0

we set πH(~∇ lnλ) = 0 since ϕ is horizontally homothetic. The fundamental equation reduces,

µV = 0
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Hence, since the mean curvature must be zero implies the fibres are minimal. Then since

the fibres are one-dimensional means they must be geodesics in M .

6.4 Transnormal/Third Type (T Type)

The third and final type of harmonic morphism is the so-called T type. Here the defining

features are that the vertical component of gradient of the dilation function πV(~∇λ) is

non-zero and that the fibres are transversal to the level sets of λ. It’s necessary to make

a distinction between pure T type and T type/warped product type harmonic morphisms.

Pure T type are relatively rare and do not exist for harmonic morphisms from space forms for

n ≥ 4, while there are many examples of T type/warped product type harmonic morphisms.

Figure 6.3: T Type: A simplified depiction of the geometric relationships between the

level sets of the dilation function Λα, horizontal hypersurfaces H, and fibres Fp := {x ∈

M | ϕ(x) = p , p ∈ N} for a T type harmonic morphism. Note that each individual

blue-colored ray corresponds to a different fibre and each separate closed red curve

corresponds to a different level set of λ.
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Definition 6.8. Let ϕ : Mn+1 → Nn (n ≥ 1) be a non-constant harmonic morphism. We

say that ϕ is of type T on M if, on M \ Cϕ,
∣∣∣πV(~∇λ)

∣∣∣ is a non-zero constant along each

component of the level surfaces of λ.

Remark 6.4.1. (i) The condition πV(~∇λ) 6= 0 implies that the level surfaces of λ are

transversal to the fibres of ϕ

(ii) A harmonic morphism is simultaneously of warped product type and of type T if and

only if ~∇λ ∈ Γ(V) and non-zero.

Lemma 6.2. Let ϕ : Mn+1 → Nn for n ≥ 1 be a harmonic morphism with πV(~∇(λ) 6= 0 on

M \Cϕ where Cϕ is the set of critical points of ϕ. Then ϕ has non-compact fibres. Further,

if n ≥ 3, then ϕ is submersive.

6.4.1 Examples

As mentioned before, the examples of pure T type harmonic morphisms are rare. One

well-studied example is the so-called Eguchi-Hanson metric.

Example 6.4.1. (Eguchi-Hanson metric) Let i : S3 ↪→ R4 be the canonical inclusion of the

3-sphere in R4. Define A = i∗(−y2dy1 + y1dy2 − y3dy4 + y4dy3), where (y1, y2, y3, y4) are the

basic coordinates on R4. Now, define a Riemannian metric on S3 × (0,∞)

ga = s2h(ỹ) + (ds+ s−1aA(ỹ))2 (6.4.1)

where h is the canonical metric on S3 and (ỹ, s) ∈ S3 × (0,∞). Then for any a 6= 0, the

canonical projection ϕ : (S3 × (0,∞), ga)→ (S3, h) is a harmonic morphisms of T type.

6.5 Global Extensions

An important aspect to the above typification of harmonic morphisms is that once you

determine that a given harmonic morphism is one of the three types locally, then it must

remain of that type globally. A harmonic morphism can not be of one type in one region of

52



the manifold, and then of another type elsewhere. This result is summed up in the following

proposition:

Proposition 6.5.1. (Global extension) Let ϕ : Mm → Nn for n ≥ 1 be a non-constant

harmonic morphism from a real analytic manifold.

(i) if ϕ is of Killing type on a open subset of M , then ϕ is of Killing type on all of M .

(ii) if ϕ is of warped product type on an open subset of M \ Cϕ where Cϕ is the set of

critical point of ϕ, then Cϕ is empty and ϕ is of warped product type on all of M .

(iii) If ϕ is of T type on an open subset of M , then ϕ is of T type on M̃ = M \{x ∈M \Cϕ |

πV(~∇λ)x = 0}.

Figure 6.4: Interrelation of Three Types: Here notice that harmonic that warped

product type harmonic morphisms can be essentially viewed as two seperate groups.

The warped product-T type with πH(~∇λ) = 0 and πV(~∇λ) 6= 0 or the warped product-

Killing type with πH(~∇λ) = 0 and πV(~∇λ) = 0. Otherwise, there it is not feasible to

be both of T type and Killing type simultaneously.
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6.6 Useful Results

As will be seen in § 7, the manifolds involved in the setup for Milnor’s fibration theorems

are Cn and Sn, both of which qualify as as space forms.

Definition 6.9. A space form is a complete Riemannian manifold with constant sectional

curvature

The three canonical examples of space forms corresponding to when the sectional curva-

ture is −1, 0 and 1, are Hn (hyperbolic space), Rn, and Sn, respectively.

The following theorem shows that for space forms, the possible types of harmonic mor-

phisms are limited:

Theorem 6.3. Let ϕ : Mn+1 → Nn be a harmonic morphism with M a space form. Then

for n ≥ 3, ϕ is either of Killing type or warped product type.

Furthermore, if we restrict our attention to those one-dimensonally fibred harmonic mor-

phisms of warped product type which are defined over space forms, then the following the-

orem shown in [4] provides a full characterization:

Theorem 6.4. Let U be a domain of a space form Sn+1,Rn+1, or Hn+1 for n ≥ 1. Let ϕ :

U → Nn be a submersive horizontally homothetic harmonic morphism which has integrable

horizontal distribution. Then, up to isometry, ϕ is one of the six canonical examples alluded

to in § 6.3 [Cf Examples 6.3.1, 6.3.2 and 6.3.3].

7 Milnor Fibration Application

This section addresses the overlap between Milnor fibrations and harmonic morphisms. In

[9] it is shown that a homogeneous harmonic morphism G of degree p retracts to a harmonic

morphism Milnor map over the sphere (described in § 7.4). In § 7.1 we outline our original

aim in studying the overlap of Milnor fibrations and harmonic morphisms, seeking ultimately

to relax the homogeneity assumption on G which is defined in § 7.4. We then in § 7.2 follow
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this by a brief sketch of the proof of Milnor’s fibration theorems. In § 7.4 we recount the

known connection between Milnor fibrations and harmonic morphisms. Following this, in

§ 7.3 we show the interesting connection between simple  L maps and HWC maps and under

what circumstances a  L analytic map (and therefore an HWC map) guarantees the existence

of a Milnor fibration. In § 7.5 we prove a proposition useful to our final result discussed in

§ 7.6 where we return to the problem presented in § 7.1.

7.1 The Problem

Let G : Rm → Rn with m ≥ n ≥ 2, be a map with isolated critical point at the origin. Let

VG := G−1(0) be the variety defined by the preimage of the zero set of G. Let Kε := VG∩Sε,

the intersection between the variety defined by the preimage of the zero set of G with a

sphere Sm−1
ε of radius ε, where ε is chosen such that the only critical point of G contained

in Sm−1
ε is the origin. Suppose G is such that the following diagram commutes with ϕ a

submersion and Ψ| a fibration.

Rm \ VG Rn \ {0}

Sm−1
ε \Kε Sn−1

G

Ψϕ π

Ψ|

The fibration Ψ| is often called a Milnor fibration map.

The question we originally investigated was as follows: Under what assumption could

one assert that if G is a harmonic morphism, then Ψ| is also a harmonic morphism.

Below in figure 7.1 is shown a very simplified picture of how the commutative diagram

in figure 7.1 requires a certain compatibility between the maps G,ϕ, and π. G is shown as

some homogeneous map (mapping a submanifold of Rm to a submanifold of Rn), and ϕ and

π as radial projection down to their respective spheres (Sm−1 and Sn−1).
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Figure 7.1: Simplified Example of Commutative Diagram:

7.2 A Sketch of the Proof of the Milnor Fibration Theorems

In this section we provide a simple sketch of Milnor’s fibration theorems, following closely

the presentation given in [12] and in [10]. The primary utility in going over the basic proof of

Milnor’s fibration theorems is to show the existence of a Milnor vector field X whose integral

curves are the fibres of a important map we examine in the following section.

Remark 7.2.1. Milnor’s original presentation of his now famous fibration theorems is re-

stricted to complex analytic maps from Cn+1 to C. With a considerable amount of work,

these theorems can be generalized to apply for real analytic maps between Euclidean domains

of arbitrary dimension.

Milnor fibrations arose primarily as a tool for finding so called “exotic spheres” which

are also known as a homotopy spheres. In short, an exotic sphere is an object that is

homeomorphic to a standard sphere but not diffeomorphic to a standard sphere. Milnor

showed that an exotic sphere occurs as the intersection of a complex hypersurface singularity

with a (2n+ 1)-dimensional sphere S2n+1
ε of radius ε. This intersection is called the link, Kε.

The Milnor fibration describes a smooth fibration between S2n+1
ε \Kε and the 1-sphere S1.
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Theorem 7.1. (Milnor Fibration, 1st version) Let U be an open neighborhood of the origin

0̃ ∈ Cn+1 and let f : (Cn+1, 0̃) → (C, 0) be a germ of a complex analytic function with an

isolated singularity at 0̃. Let V := f−1(0) and Kε := V ∩S2n+1
ε , where S2n+1

ε is a sufficiently

small sphere about 0̃. Then,

ψ :=
f

|f |
: S2n+1

ε \Kε → S1 (7.2.1)

is a smooth fibre bundle.

Milnor followed up the above theorem with a closely related theorem whose result is

employed in the proof of Theorem 7.1.

Theorem 7.2. (Milnor Fibration, 2nd version) Let δ > 0 be sufficiently small relative to ε

such that for every t ∈ C with |t| ≤ δ the fibre f−1(t) meets the sphere S2n+1
ε transversally.

Let Dδ be the disk in C of radius δ and centered at 0. Let ∂Dδ
∼= S1 be its boundary and let

N(ε, δ) := f−1(∂Dδ) ∩ Bε be the Milnor tube where Bε is the open ball of radius ε in Cn+1

bounded by S2n+1
ε . Then,

f |N(ε,δ) : N(ε, δ)→ ∂Dδ (7.2.2)

is a smooth fibre bundle.

The proofs of Theorems 7.1 and 7.2 start by choosing an open ball of sufficiently small

radius Br so that 0̃ ∈ Cn+1 is the only critical point contained. Br is then equipped with a

Thom stratification such that V is a union of strata and 0̃ is its own stratum. Let S2n+1
ε ⊂ Br

such that every sphere of radius ≤ r intersects each stratum of V transversally. Thus for each

t where |t| ≤ δ, f−1(t) intersects S2n+1
ε transversally, which implies each fibre is a smooth

submanifold. Next we lift via df vector fields on C to vector fields on Bε such that the fields

are normal to the fibre and tangent to S2n+1
ε . We next need to map the tube to the sphere

S2n+1
ε , translating the fibration in the tube to a fibration on the sphere. This depends on

the following lemma.

Lemma 7.3. There exists an integrable vector field X on Bε \ V such that the following are

true:
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Figure 7.2: Milnor Fibration (i) Fibration of Milnor tube over ∂D, (ii) vector field X

whose integral curves define a homeomorphism h between the Milnor tube and S2n+1
ε ,

and (iii) the composition of f | ◦ h defines a fibration of S2n+1
ε over ∂D. The fibre is

shown in green.

(i) its integral lines are transversal to all Milnor tubes f−1(Sδ) .

(ii) its integral lines are transversal to all spheres S2n+1
ε centered at 0̃.

(iii) its integral lines travel along paths where arg f is constant, i.e. if x, y ∈ Bε \ V lie on

the same integral line, then f(x)/|f(x)| = f(y)/|f(y)|.

With such a vector field X, we can define a diffeomorphism between N(ε, δ) and S2n+1
ε

as follows: let γ(t) be an integral curve of X such that for z ∈ N(ε, δ) there exists a t0

with γ(t0) = z and γ
′
(t)|t0 = X(z). Then since the integral lines of X are transversal to

S2n+1
ε implies there exists a later t∗ such that γ(t∗) = z∗ for some z∗ ∈ S2n+1

ε . So, for

each z ∈ N(ε, δ) there exists a unique integral curve γz of X that passes through a unique

z∗ ∈ S2n+1
ε . Thus, we may define a diffeomorphism h : N(ε, δ) → S2n+1

ε establishes an

equivalence relation between each z and z∗. Furthermore, the vector field X on Bε has been

chosen such that for each x ∈ h−1(z), arg f(x) is constant, thus giving us the final result

that f ◦ h−1 = f/|f |. Hence, Theorem 7.1 is shown.
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Figure 7.3: Integral Curves Define a Submersion ϕ: Provided the Milnor vector

field exists in the real case (i.e. ϕ is what is called ρ-regular: see [11]), The Milnor

vector field X which Milnor utilized in the proof of his fibration theorems can also be

used to define a submersion ϕ : U ⊆ Rm \ VG → Sm−1
ε \Kε.

N(ε, δ) ∂Dδ
∼= S1

S2n+1
ε \Kε

f |N(ε,δ)

h
f |◦h−1

Remark 7.2.2. Since integral curves of the vector field X are transversal to all Milnor tubes

f−1(∂Dδ) ∩ Bε implies we can define a map ϕ : Bε \ Kε → S2n+1
ε . Locally, The fibres of

ϕ coincide with the integral curves of the Milnor vector field X, which allows us to assert

(insofar as S2n+1
ε can be viewed as an embedding) that for each z ∈ S2n+1

ε \Kε ⊂ Cn+1 \ Vf

that ϕ(z) = z, or in other words: the map ϕ preserves S2n+1
ε .

7.3 Simple  L-maps and HWC maps

The first hint that harmonic morphisms and Milnor fibrations had any intersection was from

the interesting similarities between simple  L maps and horizontally weakly conformal maps.
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In [7] it is shown that the existence of Milnor fibrations inside a ball of small enough

radius can be guaranteed when a map is  L-analytic.  L-analytic maps are maps which satisfy

the strong  Lojasiewics inequality.

Definition 7.1. (Strong Lojasiewicz inequality) Let F = (f1, . . . , fm) : U ⊆ Rn → Rm

where each fi : U → R is a real analytic function. We say F is  L-analytic at 0 with F (0) = 0

if and only if there exists an open neighborhood W of 0 in U and there exists c, θ ∈ R such

that c > 0 , 0 < θ < 1, and, for all x ∈ W

|F (x)|θ ≤ c · min
|(a1,...,am)|=1

∣∣∣∣∣
m∑
i=1

ai∇fi(x)

∣∣∣∣∣ (7.3.1)

A special case of such a map is a so-called simple  L map.

Definition 7.2. A simple  L map is a map F = (f1, . . . , fm) whose component functions

have the property that their gradients are mutually orthogonal and of equal length at each

point p (i.e. |∇fi|2 = |∇fj|2 for i, j ≤ m, i 6= j and ∇fi · ∇fj = 0). In the case that F is a

simple  L map, the strong Lojasiewicz inequality simplifies:

|F (x)|θ ≤ c |∇f1(x)| (7.3.2)

Remark 7.3.1. Notice that the definition of a simple  L map directly corresponds to the

characterization of HWC maps between Euclidean spaces (see Theorem 2.1).

The next theorem attributed to Massey in [7] connects  L anayltic maps to Milnor fibra-

tions:

Theorem 7.4. Let a map F be  L analytic at 0. Then Milnor fibrations (from sphere to

sphere or inside a ball) for F centered at 0 exist.

Hence, given the commonality between simple  L maps and HWC maps, it stands to

reason that we might substitute harmonic morphisms for simple  L maps while maintaining

the guarantee granted by Theorem 7.4 of the existence of Milnor fibrations.
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7.4 Milnor Fibrations and Homogeneous Polynomial Harmonic

Morphisms

The following is already known vis-a-vis the relation between harmonic morphism and Milnor

fibrations [9]:

Let G : Rm → Rn be a polynomial map which takes the origin to the origin and where

the origin is an isolated critical point. Let Sm−1
ε be a sphere about the origin with radius ε,

where ε is chosen such that the origin is the only critical point contained within the sphere.

Milnor has shown how the complement Sm−1
ε \G−1(0) fibres over the (n− 1)-sphere Sn−1.

For a homogeneous polynomial map G, the Milnor fibration is given as

x 7→ G(x)

|G(x)|
(7.4.1)

Theorem 7.5. Let G : Rm → Rn be a harmonic morphism defined by homogeneous polyno-

mials of the same degree p. Then G retracts to a full submersive harmonic morphism (The

Milnor Fibration)

ψ| : Sm−1 \Kε → Sn−1 (7.4.2)

whose component functions are the restrictions of irrational functions homogeneous of degree

0.

7.5 Main Result

Recall that our initial aim was to relax the conditions placed the harmonic morphism G in

Theorem 7.5. There it is shown that if G is harmonic morphism defined by homogeneous

polynomials of the same degree p, then G retracts to a submersive harmonic morphism on

Sm−1
ε \Kε that defines a Milnor fibration map to Sn−1.

Now, in Remark 7.2.2, it was stated that a map ϕ : Cn+1 \ VG → S2n+1
ε could be defined

whose fibres are at least locally the integral curves of a Milnor vector field X ∈ Γ(Cn+1 \VG)

with the properties outlined in Lemma 7.3. This construction can be extended to a real

analytic ϕ, provided ϕ is ρ-regular which guarantees the existence of a Milnor vector field
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(see [11]). We then, as stated in Remark 7.2.2, require that for each z ∈ S2n+1
ε then ϕ(z) = z.

So, ϕ preserves the sphere S2n+1
ε .

Using the fact that the submersion ϕ needs to preserve the sphere, we prove the following

proposition:

Proposition 7.5.1. Let ϕ : Rm \ VG → Sm−1 be harmonic morphism. Then if for each

z ∈ Sm−1
ε ⊂ Rm \ {0} we have ϕ(z) = z, then ϕ is radial projection.

Proof. Notice, since ϕ preserves Sm−1
ε , that the dilation is constant on the sphere. Now,

observe that the fibre of ϕ|Sm−1
ε

is a single point and hence Sm−1
ε must correspond to a

horizontal submanifold of the horizontal distribution H induced by ϕ since the tangent

space of a point is {0}. Hence, we know ϕ is horizontally homothetic on Sm−1
ε . It follows

that ϕ locally may either be of Killing type or warped-product type. From Theorem 6.5.1,

since ϕ is locally of either Killing or warped product type, means it is globally either Killing

or warped product type.

There are now two distinct possibilities which follow directly from Theorem 6.1. 1) λ is

constant on all of Rm\VG. Then ϕ is Killing and furthermore is a Riemannian submersion and

thus is, up to homothety, orthogonal projection. 2) The second option is λ is non-constant

on Rm \ VG. Then since Sm−1
ε is a level-set of λ and ~∇λ is non-zero on the sphere shows by

Proposition 6.3.3 that ϕ is of warped product type, meaning ultimately by Proposition 6.3.4

that ϕ is radial projection since the horizontal submanifolds must constitute a parallel family

of umbilic hypersurfaces. So either ϕ is orthogonal projection or radial projection. But note

that there is no way to define orthogonal projection from Rm \VG to a sphere. Hence ϕ must

be radial projection.

Proof. (Alternate) The above result can be seen even more immediately once we identify

ϕ is horizontally homothetic. From Theorem 6.3, we can say ϕ is either Killing or warped

product type as a map from a space form. In either case, ϕ is horizontally homothetic. Then

Theorem 6.4 shows ϕ must be radial projection.
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Remark 7.5.1. Since ϕ must be radial projection shows each consecutive sphere constitutes

a submanifold of constant dilation equal to the reciprocal of the chosen radius. Since the

dilation changes as we move from one sphere to another (in other words, as we move along

the fibres of ϕ) shows clearly ϕ is of warped product type. The fibres of ϕ are straight lines

(minimal) in Rm \ {0} projecting radially from the origin. The horizontal submanifolds of

the horizontal distribution H induced by ϕ are a set of nested spheres, which constitute a

isoparametric parallel family of umbilic hypersurfaces in Rn \ {0} (see Proposition 6.3.4).

All of the above clearly demonstrates that ϕ is radial projection.

7.6 Implications for Harmonics Morphisms and Milnor Fibrations

Returning to the problem outlined in § 7.1. In order for G to retract to a harmonic morphism

Milnor fibration map, we need ϕ to preserve the sphere Sm−1
ε \Kε. Since we require ϕ to be

a harmonic morphism as well, means by Proposition 7.5.1 that ϕ must be radial projection.

This means ϕ has totally geodesic fibres and hence maps radial lines in Rm \ Vf to points

in Sm−1
ε \Kε. By assumption π is also radial projection, meaning it too maps radial lines in

Rn \ {0} to points in Sn. So, in order for the diagram in § 7.1 to commute, we must have

that the map G maps radial lines in Rm \ Vf to radial lines in Rn \ {0}, meaning that G

must be homogeneous. Thus, the class of harmonic morphisms that retract to a harmonic

morphism Milnor fibration maps is strictly limited to homogeneous maps.
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Figure 7.4: What if G is not homogeneous?: ( → ↓) Following the above diagram

from the upper left, since G is assumed to be non-homogeneous, G maps at least one

radial line (green) from Rm \ VG to a non-radial curve in Rn \ {0} (green). Since π is

radial projection, it maps a non-radial line in Rn \ {0} to some subset of Sn−1. (↓→)

Since ϕ must be radial projection as well, means the radial line (green) is mapped to

a point in a submanifold of Sm−1 \K (blue) which is then mapped by the restriction

of ψ to a single point (blue) in Sn−1. This shows a breakdown in the commutativity of

the diagram outlined in §7.1
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