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ABSTRACT 

Extreme flood estimation is a continuously developing field of research. Economic and community 

well-being are dependent on flood risk preventative planning, which can only be successfully 

implemented through sound flood estimating methods. Without the execution of proper flood 

prevention measures, many communities remain at risk. In addition to a new extreme flood 

estimation methodology, this research presents a new approach to establish flood estimates. 

Traditionally, more than one flood estimate per return frequency storm does not exist. This 

research produced a set of 10-, 25-, 50-, and 100-year flood estimates for the Black Creek, 

Julington Creek, Durbin Creek, Big Davis Creek, Ortega River, and Pablo Creek sub-basins in 

northeastern Florida. The flood estimates for each recurrence interval were developed using HSPF 

hydrologic modeling, statistical computations involving the use of the Log-Pearson Type III and 

Power Law distribution, and analysis of existing Federal Emergency Management Agency 

(FEMA) Flood Insurance Study (FIS) estimates. Sensitivity of parameters such as land-use change, 

precipitation frequency values (median versus 90th percentile), and rainfall distribution (uniform 

versus Synthetic Type II Modified) were assessed in the resulting extreme flows determined from 

the HSPF Model. The hydrologic modeling component presented in this research utilizes the St. 

John’s River Water Management District’s (SJRWMD) powerful Hydrologic Simulation Program 

– FORTRAN (HSPF) model. This is a new methodology as the SJRWMD’s HSPF model has 

previously never been used to estimate extreme flood flows. This methodology has the capability 

of being implemented in any sub-basin along the St. Johns River in Florida. 
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Chapter 1 INTRODUCTION 
  

Research on flood frequency and magnitude is crucial in a world where urbanization, sea level 

rise, and climate change are prevalent. Accurate flood estimation methods are a powerful tool in 

securing economical and community wellbeing. This thesis presents several methods of flood 

estimation for six sub-basins of the St. Johns River in Jacksonville, Florida. These methods include 

model simulations, statistical estimates, and comparison of existing flood estimates. A new 

methodology for flood estimation has also been established in this research using existing 

numerical models. The new methodology can be implemented to other sub-basins along the St. 

Johns River. The existing model includes hydrodynamic and hydrologic components. The 

hydrodynamic component of the model simulates water levels during low periods and during flood 

events including hurricane storm surge. Ocean tides, rainfall-driven flows, evapotranspiration, sea 

level rise, and urbanization effects may also be simulated. The hydrologic component of the water 

resource model is the focus of this research. Numerous hydrologic models have been developed. 

These models provide flow, salinity, and water-quality inputs to the main stems of the St. John’s 

River.  

This research includes the assessment of six critical sub-basins of the St. Johns River, which are 

Black Creek, Julington Creek, Durbin Creek, Big Davis Creek, Ortega River, and Pablo Creek. 

The 10-, 25-, 50-, and 100-year return frequency storms have been assessed. The assessment 

provides details of the river flows associated with the respective 10%, 4%, 2%, and 1% annual 

probability of storm occurrence, respectively. The three primary outcomes of this research are: (i) 

development of the 10-, 25-, 50-, and 100-year return frequency flood flows in the six critical sub-

basins (Black Creek, Julington Creek, Big Davis, Durbin Creek, Ortega River, and Pablo Creek) 

(ii) document a new approach to estimate extreme flood flows by developing a range of reasonable 
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flood estimates using multiple methods to account for inevitable uncertainties (iii) the development 

of a new methodology involving the modification of existing HSPF models which are capable of 

producing flood estimates in any sub-basin of the St. Johns River.  

This thesis has been organized into eight chapters. Chapter 1 encompasses an introduction to the 

research conducted. Chapter 2 discusses a detailed literature review of relevant work. Chapter 3 

introduces a project background including the project location and existing model background. 

Chapter 4 explains the model development process, inputs, and output processing. Chapter 5 

describes the statistically derived flood estimation protocol. Chapter 6 presents the results of this 

research. Chapter 7 presents a comparison of all developed results. Chapter 8 summarizes the 

conclusions of this research and provides recommendations for future research.  
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Chapter 2 LITERATURE REVIEW 
 

Existing literature was evaluated relative to (1) model simulated flood estimation, (2) statistically 

obtained flood estimates, and (3) existing documentation of flood estimates. 

2.1 Model Simulated Estimates  
 

Model simulation is a common and reliable methodology for flood estimation. Considering this 

research focuses on sub-basins of the St. Johns River, a starting point for this research involved 

the understanding of the St. John’s River Water Management District’s Water Supply Impact 

Study. In 2012, the St. Johns River Water Management District (SJRWMD) published the St. 

Johns River Water Supply Impact Study (WSIS). The SJRWMD, the South Florida Water 

Management District (SFWMD), and the Southwest Florida Water Management District 

(SWFWMD) recognized the potential harm to water resources in central Florida associated with 

continued reliance on groundwater to meet the growing need of human water consumption 

(SJRWMD, 2012). Extensive sets of data on hydrology, water quality, and biology were used to 

develop predictive computer models. These models were used to simulate the effects of 

withdrawing water from the St. Johns River and the Ocklawaha River. The ultimate finding of the 

WSIS state that “under the most likely scenario of surface water withdrawals, an appreciable 

quantity of surface water may be safely withdrawn from the St. Johns River with minimal to 

negligible environmental effects” (SJRWMD, 2012). The Hydrologic Simulation Program – 

FORTRAN (HSPF) and Better Assessment Science Integrating Point and Nonpoint Sources 

(BASINS) were the SJRWMD’s models of choice. One of the reasons for selecting HSPF and 

BASINS is due to the Environmental Protection Agency’s (EPA) sponsorship and use of these 

models for many years (SJRWMD, 2012). Surface flows and surficial groundwater flows to the 
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streams and rivers of the St. Johns River watershed are represented in the models. Although this 

model is originally aimed at determining safe water withdrawal conditions and not flood estimates, 

there are other documented instance of the use of HSPF for flood estimation.  

Research conducted by Gebremariam et al. (2014) depicts the advantages of using HSPF over 

other models. Their research is centered around evaluating the Maumee River Basin in the Great 

Lakes region of North America. Their goal was to assess the watershed flow regimes to better 

understand the nutrient runoff into downstream environments. Gebremariam et al. (2014) 

evaluated the SWAT (version 528.0), DLBRM (version 2004), and the HSPF (version 12.0) 

models in terms of (1) daily and monthly flow, (2) flood and low-flow pulse frequency, magnitude 

and duration, and (3) watershed response to extreme weather events. Gebremariam et al. (2014) 

discovered that the HSPF model slightly over-predicts the slope in their analysis of the least-

squared regression line between simulated and observed flow data. They determined that the HSPF 

model is better at predicting high flows rather than low flows. Gebremariam et al. (2014) observed 

that source-code modification for the HSPF model was challenging primarily because of lack of 

documentation related to code structure and subroutines. Gebremariam et al. (2014) observed that 

the HSPF model outperformed applications found in previous studies related to their research in 

terms of more accurate goodness-of-fit parameters. They also uncovered that the HSPF model was 

better at simulating extreme wet conditions than extreme dry conditions in the Maumee River 

Basin. Their conclusion was that the HSPF model was able to simulate average daily and monthly 

Maumee River flows with acceptable accuracy. Lastly, out of all three models assessed by 

Gebremariam et al. (2014), the HSPF model was best at simulating extreme wet events. The 

findings of Gebremariam et al. (2014) support this proposed research and the decision of 
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implementing the HSPF model to simulate extreme rainfall and flood events in the Lower St. Johns 

River Basin. 

In 2019, Yadzi et al. conducted similar research to Gebramariam et al. (2014). They conducted a 

comparative assessment of the HSPF and SWMM models in simulating the hydrology of Stroubles 

Creek in Montgomery County, Virginia. Yadzi et al. (2019) assessed the capabilities of HSPF and 

SWMM “in terms of (1) most sensitive hydrologic parameters in the watershed, (2) simulation of 

daily and monthly stream flows in comparison with observed data, (3) simulation of peak flows, 

baseflows and their respective durations, and (4) predicted runoff coefficients during storm events 

with set return periods”. Their statistical analysis results of both models showed good agreement 

between simulated and observed streamflow. Like Gebramariam et al. (2014), Yadzi et al. (2019) 

discovered HSPF predicts streamflow in wet periods better than the other investigated models. 

They observed “somewhat similar” peak flows of the SWMM and HSPF 24-hour storm 

distribution for the 100-year recurrence interval. Overall, their statistical analysis indicated that 

both HSPF and SWMM models simulate streamflow adequately although they both tended to 

underestimate stream flow. HSPF was also determined to produce a higher runoff coefficient for 

recurrence intervals that are greater than 10-years compared to SWMM (Yadzi et al., 2019). 

Although Yadzi et al. (2019) determined that HSPF tends to underestimate streamflow, both the 

findings of Yadzi et al. (2019) and Gerbramarian et al. (2014) suggest that HSPF predicts 

streamflow best in wet periods, which further encourages the implementation of HSPF in this 

research. 

2.2 Statistical Flood Estimation  

There are numerous approaches available to conduct statistical flood frequency and magnitude 

analysis. Research by Kidson and Richards (2005) goes as far as to claim that there is a “confusing 
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range of models available”. They outline the flood frequency analysis (FFA) procedure in three 

steps: (1) data choice, (2) model choice, and (3) parameter estimation procedure. Their research 

claims that the current method of FFA is dominated by a single particular approach to modeling 

which includes the use of a range of “skewed, relatively complex, and often theoretically 

unjustified probability distributions”. Kidson and Richards (2005) go on to acknowledge the large 

body of research concerning the Log-Pearson Type III (LP3), which has been the United States of 

America’s official model since 1967. However, they offer sound evidence regarding the use of a 

simpler alternative – the Power Law (PL). Kidson and Richards (2005) explain that where there 

exists less than 100 years of discharge data, a degree of extrapolation is necessary, which in turn 

requires curve-fitting to existing data. Therefore, all methods of FFA are methods of extrapolation 

(Kidson and Richards, 2005). They bring forth an apparent limitation of FFA. An assumption must 

be made about the underlying distribution generating flood events. They go on to explain that this 

information is unknown for hydrological events beyond observed record. Despite these conditions, 

in order to make predictions, models must be fitted. Kidson and Richards (2005) outline three tools 

for extending instrumented gauging record. The first tool involves rainfall-runoff modeling in 

continuous simulation. The second tool involves combining data from several regional gauges. 

The third tool involves incorporating historical and palaeoflood information into the instrumented 

record. The three main steps of model fitting are data choice, model choice, and parameter 

estimation procedure according to Kidson and Richards (2005). Regarding data choice, they 

explain that the FFA is classically performed on annual maximum discharge values. However, 

they also note that the peaks over threshold (POT) method, which includes every event over a 

given threshold, has become a cornerstone technique in FFA. Their study focuses on the variety 

of model choice in FFA. Kidson and Richards (2005) highlight simple two-parameter function 
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models such as the log normal and Gumbel extreme value, which can be fitted analytically. The 

two parameters represent location and shape (Kidson and Richards, 2005). They classify the Log-

Pearson Type III (LP3) and generalized extreme value (GEV) as three-parameter models which 

cannot be fitted analytically. Ultimately, the two-parameter functions have the advantage of being 

simpler and easier to fit than three-parameter parameter models. However, the three parameter 

models can fit a larger number of records due to its flexibility according to Kidson and Richards 

(2005). Table 1 depicts several of the common models used to fit data. Kidson and Richard (2005) 

go on to explain the parameter estimation process, which is the final step of the model fitting 

process. They highlight several methods of parameter estimation including the method of moments 

(MOM), the L-moment method, and the maximum likelihood (ML) method. A major component 

of Kidson and Richard’s (2005) research is the encouraged use of the Power Law (PL) model as 

an alternative in the model selection process of FFA. They argue that the PL is a simple alternative 

to the more complex probability models seen in Table 1. Reference Kidson and Richards 2005 

publication, Flood Frequency Analysis: Assumptions and Alternatives, for information regarding 

the variables of each equation. They demonstrate supporting evidence involving the use of the PL 

distribution in extreme natural events as well as in the field of hydrology. 

Table 1. Statistical probability models (Kidson and Richards, 2005) 

Data Fitting Model Equation 
 

Normal 𝑓(𝑥) =
1

√2𝜋𝜎𝑥2
exp [−

1

2
(
𝑥 − 𝜇𝑥
𝜎𝑥

)
2

] 

 
Log Normal 

(2-Parameter) LN2 
𝑓(𝑥) =

1

𝑥√2𝜋𝜎𝑦2
exp [−

1

2
(
ln(𝑥) − 𝜇𝑦

𝜎𝑦
)

2

] 

𝑦 = ln(𝑥) 
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Pearson Type III 𝑓(𝑥) = |𝛽|[𝛽(𝑥 − 𝜖)]𝛼−1

𝑒𝑥𝑝[−𝛽(𝑥 − 𝜖)]

𝛤(𝛼)
 

Log Pearson Type III 
(LP3) 𝑓(𝑥) = |𝛽|{𝛽[ln(𝑥) − 𝜖]}𝛼−1

𝑒𝑥𝑝{−𝛽[ln(𝑥) − 𝜖]}

𝑥𝛤(𝛼)
 

 
Exponential 

𝑓(𝑥) = 𝛽𝑒𝑥𝑝[−𝛽(𝑥 − 𝜖)]𝑝𝑑𝑓 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝{−𝛽(𝑥 − 𝜖)}𝑐𝑑𝑓 

 
 

Gumble EVI 
𝑓(𝑥) =

1

𝛼
[−

𝑥 − 𝜖

𝛼
− 𝑒𝑥𝑝 (−

𝑥 − 𝜖

𝛼
)] 𝑝𝑑𝑓 

𝐹(𝑥) = 𝑒𝑥𝑝 [−exp(−(
𝑥 − 𝜖

𝛼
)] 𝑐𝑑𝑓 

Generalized Extreme 
Value (GEV) 𝐹(𝑥) = 𝑒𝑥𝑝 {− [1 −

𝑘(𝑥 − 𝜖)

𝛼
]

1
𝑘⁄

} 𝑐𝑑𝑓 

 
 

Weibull 
𝑓(𝑥) = (

𝑘

𝛼
) (

𝑥

𝛼
)
𝑘−1

𝑒𝑥𝑝 [−(
𝑥

𝛼
)
𝑘

] 𝑝𝑑𝑓 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝 [− (
𝑥

𝛼
)
𝑘

] 𝑐𝑑𝑓 

 
 

Generalized Pareto 
(GP) 

𝑓(𝑥) = (
1

𝛼
) [1 − 𝑘

(𝑥 − 𝜖)

𝛼
]

1
𝑘⁄ −1

𝑝𝑑𝑓 

𝐹(𝑥) = 1 − [1 − 𝑘
(𝑥 − 𝜖)

𝛼
]

1
𝑘⁄

𝑐𝑑𝑓 

 
 
 

Generalized Logistic 
(GL) 

𝑓(𝑥) =
1

𝛼
[1 − 𝑘 (

𝑥 − 𝜖

𝛼
)]

(
1
𝑘
−1)

[1 + {1 − 𝑘 (
𝑥 − 𝜖

𝛼
)}

1
𝑘
]

−2

𝑝𝑑𝑓 

𝐹(𝑥) = [1 + {1 − 𝑘 (
𝑥 − 𝜖

𝛼
)}

1
𝑘
]

−1

𝑐𝑑𝑓 

Power Law (PL) 𝑓(𝑥) = 𝐶𝑥−∝ 
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Kidson and Richards (2005) conclude that the PL may be more applicable for extreme events but 

not for events around the mean annual flood. However, it is noted that the PL may be more 

effective for long records (e.g.,100 years) because the PL behavior may be visible in the gauged 

record and thus a regression relation using the data would be permitted. 

The United States Army Corps of Engineers (USACE) has developed an extensive manual on 

flood-runoff analysis (1994). This manual encompasses extensive information regarding problem 

definition, methodology selection, hydrologic analysis, methods for flood runoff analysis, and 

engineering applications (USACE, 1994). The USACE (1994) manual describes the data 

requirements for statistical models of streamflow frequency which include (1) homogeneous data, 

(2) spatially consistent data, and (3) a continuous time series. Regarding the distribution selection 

and parameter estimation procedure, a frequency distribution is selected based on its ability to 

model the observed data and the parameters are selected to optimize the fit of the data (USACE, 

1994). According to the manual (USACE, 1994), the steps of the numerical techniques, which will 

be implemented in this research, are as follows: (1) select the candidate frequency model, (2) 

obtain a sample, (3) use the sample to estimate the parameters of the model, (4) use the model and 

the parameters to estimate quantiles to construct the frequency curve that represents the population. 

This procedure is analogous with the procedure described by Kidson and Richards (2005). The 

USACE (1994) identifies the normal distribution, the log- normal distribution, and the Log-

Pearson Type III distribution as the three most common distributions used for the analysis of 

hydrometeorological data. 

Documentation regarding the successful implementation of the Log-Pearson Type III Distribution 

is available. Kumar (2019) conducted a flood frequency analysis in the Rapti River Basin, which 

encompasses areas of India and Nepal. The LP3 method and Gumbel Extreme Value 1 (Gumbel 
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EV1) were used to develop the discharge results of return periods ranging from 1.05 to 1,000 years 

(Kumar, 2019). The comparison between LP3 and Gumbel EV1 is of interest because the LP3 

method is one of the proposed methods for the proposed research while the Gumbel EV1 is one of 

the other viable methods mentioned by Kidson and Richards (2005) for flood frequency analysis. 

In Kumar’s (2019) research, the implementation of the LP3 method resulted in higher discharge 

values than those computed using the Gumbel EV1 method at the 50-, 100-, 200-, 500-, and 1,000- 

year return period at one location of interest, while the Gumbel EV1 method produced higher 

discharge values at the second location of interest. The Kolmogorov-Smirnov (K-S) and Anderson-

Darling (A-D) methods were used to assess the goodness-of-fit of the discharge data. Based on the 

goodness-of fit tests’ results, Kumar’s (2019) research revealed that the LP3 method is more 

appropriate and reliable than the Gumbel EV1 method for the Rapti River Basin. Another instance 

of LP3 superiority was observed in the research conducted by Saf, Dikbaş, and Yaşar (2007). Saf, 

Dikbaş, and Yaşar (2007) compared the Gumbel, Pareto, Log logistic, Pearson Type III, Log-

Pearson Type III (LP3), Log-normal with two (LN2) and three (LN3) parameters, and the 

Generalized Extreme Value distributions. Their objective was to apply and evaluate those 

probability distribution functions of the annual maximum stream-flows measured in the West 

Mediterranean river basins in Turkey. They implemented the method of moments (MOM) and 

probability weighted moments (PWM) for parameter estimation. Lastly, they applied the chi-

square and Kolmogorov-Smirnov method to assess the goodness-of-fit of their parameter 

estimation (Saf, Dikbaş, and Yaşar, 2007). After narrowing down their list to the top three best 

performing distributions, they assessed return periods ranging from 2 to 1,000,000 years using the 

LP3, LN3, and Gumbel distributions accompanied with the MOM and PWN methods. Their results 

unveiled that the LP3 distribution might be most appropriate for the West Mediterranean River 
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based on the accuracy and consistency of the goodness-of-fit tests (Saf, Dikbaş, and Yaşar, 2007). 

Considering that LP3 is the official method of the United States (Kidson and Richards, 2005) and 

the positive results of Kumar’s (2019) and Saf, Dikbaş, and Yaşar’s (2007) research regarding 

LP3, it is further evident that the LP3 method should be implemented in this research. 

Circling back to the Power Law, it is arguably one of the simplest probability distributions (Richard 

and Kidson, 2005). Alipour, Rezakhani, and Shamsai (2016) explain that the power law behaviors 

can be explained by the fractal concept. Andriani and McKelvey (2009) provide a simple example 

of the fractal concept: “A cauliflower is an obvious example. Cut off a branch; cut a smaller branch 

from the first branch; then an even smaller one; and then even another, etc. Now set them all on a 

table, in line. Each fractal subcomponent is smaller than the former; each has the same shape and 

structure. They exhibit a ‘power law effect’ because they shrink by a fixed ratio. Power laws 

underlie fractal geometry.” Like Kidson and Richards (2005), Alipour, Rezakhani, and Shamsai 

(2016) explain that these fractals have already been successfully used to describe hazardous and 

critical evets. According to Malamud and Turcotte (2006), the annual duration or partial duration 

flood series may be applied to the power law distribution. However, a major problem with using 

the annual flood series is that several floods in a given water year may be larger than the annual 

flood in another water year (Malamud and Turcotte, 2006). Therefore, the partial duration flood 

series is a practical alternative for the process. 

Kidson and Richards (2005) demonstrated success in the use of the power law in a study conducted 

in Northern Thailand. The area of interest included the caves in the Ob Luang gorge, through which 

the Mae Chaem river passes through. These caves contain trapped woody debris that has 

accumulated from extreme flood events predating instrumental records (Kidson and Richards, 

2005). After assessing large gauged floods in recent years and identifying four palaeostage 
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indicators at the highest-level flood deposits in the cave, Kidson and Richards (2005) were 

ultimately able to predict a discharge of 2420 m3 s-1 for the implied water levels. A return period 

of 84 years was assigned to that event. Flood frequency analysis was conducted using the log 

Pearson type III, Gumbel EV1, two-parameter log normal distributions for the instrumental flood 

records (Kidson and Richards, 2005). The resulting 84-year discharge estimates were 1005, 1012, 

and 1040 m3/s respectively (Kidson and Richards, 2005). The power law model was then applied 

to the gauged data using a reduced major axis (RMA) regression and the resulting 84-year 

discharge estimate was determined to be 2479 m3/s, which is similar to the original prediction 

(Kidson and Richards, 2005). In addition to the research conducted by Kidson and Richards 

(2005), Alipour, Rezakhani, and Shamsai (2016) applied the power law distribution and analyzed 

50 streamflow gauging stations within two regions of the United States. Alipour, Rezakhani, and 

Shamsai (2016) assessed region 3 (entire Florida, almost entire Alabama, Georgia, South Carolina, 

North Carolina, and part of Virginia and Mississippi) and region 8 (Mississippi, Louisiana, 

Arkansas, and Tennessee). The summer and winter months partial-duration flood series were 

analyzed separately in their research and meaningful differences between both power law fit slopes 

were observed. Their results indicate that incorporating seasonality can improve the magnitude of 

the flood estimates. Alipour, Rezakhani, and Shamsai (2016) applied the power law distribution 

to the partial-duration peak streamflow series based on supporting research by Malamud and 

Turcotte (2006). However, when the partial-duration and annual peak flood series at all hydrologic 

stations were plotted side by side, they discovered close agreement between the two (Alipour, 

Rezakhani, and Shamsai, 2016). Overall, Alipour, Rezakhani, and Shamsai (2016) observed that 

power law analysis proved to be a useful tool in characterizing flood frequency behavior. This 
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research demonstrates the appeal of implementing the Power Law for extreme flood frequency 

analysis. 

2.3 Existing Flood Estimates 

Federal Emergency Management Agency (FEMA) Flood Insurance Studies (FIS) are a reliable 

source of flood estimates across the United States. The purpose of a FIS is to develop flood-risk 

data that aids in the establishment of flood insurance rates for communities’ efforts of sound 

floodplain management (FEMA, 2014). The National Flood Insurance Act of 1968 and the Flood 

Disaster Protection Act of 1973 are the authorities for the Flood Insurance Studies (FEMA, 2014). 

Typically, an initial Consultation Coordination Officer (CC) meetings is conducted with 

representatives of the communities, FEMA, and the study contractors to discuss the scope of work 

(FEMA, 2014). The scope of study establishes the geographic areas to be assessed, incorporated 

communities, and methods agreed upon.  

The Clay County, Florida FIS implemented the Magnitude and Frequency of Flood Discharges in 

Northeast Florida (Technical Publication SJ-86-2) to conduct their hydrologic analyses and obtain 

their flood estimates. The methodology involves the determination of different return periods (T). 

Given an annual exceedance probability of a maximum event, the return period is defined as T = 

1/P, where P is the annual exceedance probability of a maximum event (Rao, 1986). The technique 

consists of applying an appropriate probability distribution and fitting it to a sample data, where 

the sample data consists of observed annual peak flows (Rao, 1986). From there, probability 

distributions such as the two-parameter Gumbel distribution and the five-parameter Wakeby 

distribution were implemented (Rao, 1986). The Log-Pearson Type III distribution was also 

recognized and used as it was recommended by the United States Water Resource Council (Rao, 

1986). 
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Contrarily, the St. Johns County Flood Insurance Study is a compilation of previously printed FIS 

reports (FEMA, 2011). The 2003 countywide analyses were conducted by the United States Army 

Corps of Engineers using the HEC-1 computer program. The methodology was deemed 

appropriate for the characteristic drainage basin conditions; however, it was determined that the 

limited history of stream gage records prevented effective statistical analysis (FEMA, 2011). The 

HEC-1 models incorporated the Natural Resources Conservation Service (NRCS) unit hydrograph 

and kinematic wave routing methods, sub-basin runoff curve numbers, lag times, stream cross 

sections, and Manning’s “n” roughness factors (FEMA, 2011). United States Geological Survey 

topographic maps, field inspection, and aerial photos were utilized. Additionally, the modified 

SCS Type II rainfall distribution was implemented into the model. Overall, only Durbin Creek and 

Sixmile Creek were adequately calibrated due to lack of sufficient stream gage data. 

Finally, another methodology that was utilized to conduct hydrologic analyses was the 

Environmental Protection Agency Stormwater Management Model (EPA SWMM5 versions 12 to 

14 (FEMA, 2013). This methodology was implemented by Duval County, Florida. The model 

applied precipitation across hydrologic units and performed hydrologic calculations, which 

account for hydrologic unit geometry, land use, and soil characteristics. The computed surface 

runoff hydrographs were routed to the dynamic hydraulic model. 
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Chapter 3 PROJECT BACKGROUND 
3.1 Study Location 

 The following sub-sections discuss the various counties contained within the study location. 

Appendix A contains an aerial depiction of the three counties encompassed in this research. A 

detailed description of the Lower St. Johns River Basin, which includes all the sub-basin of interest 

in this research, is also presented.  

3.1.2 Clay County 

Located in northeastern Florida on the St. Johns River, Clay County is bordered by Duval County, 

the City of Jacksonville, St. Johns County, Putnam County, Bradford County, and Baker County 

(FEMA, 2012). Clay County encompasses 644 square miles, including 43 square miles of water 

(FEMA, 2012). Overall, the climate is mild, subtropical with an average annual rainfall of 

approximately 52 inches (FEMA, 2012). The terrain is nearly level to gently sloping with well-

drained to poorly drained sandy soils overlain by weakly cemented, poorly drained, sandy subsoils 

(FEMA, 2012). Period flooding is caused by stream and lake overflow in low-lying areas of Clay 

County (FEMA, 2012). Large amounts of rainfall infiltrate when the antecedent rainfall has been 

low due to sandy soils in the area and the most severe flooding occurs along streams as a result of 

hurricanes (FEMA, 2012). Some flood protection measures have been installed by homeowners 

on the St. Johns River such as shoreline reinforcements in front of their homes to prevent wind 

and wave action (FEMA, 2012). Additionally, deepening in the lower reach of Governors Creek, 

dike construction between Black Creek and Lake Asbury, and a pipe culvert extending through the 

dike above the elevation of the 0.2-percent-annual-chance flood on Black Creek are also flood 

protection measures (FEMA, 2012). 
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3.1.2 St. Johns County 

Located in northeast Florida, St. Johns County is bordered by Duval County, Clay County, Putnam 

County, Flagler County, and the Atlantic Ocean shoreline (FEMA, 2011). The county comprises 

an area of 609 square miles with about 42 square miles of Atlantic Ocean shoreline (FEMA, 2011). 

Over 40% of the county’s population resides in the residential development between the coastline 

and the Intracoastal Waterway (FEMA, 2011). The county experiences a subtropical maritime 

climate and the average annual precipitation is about 52 inches (FEMA, 2011). The terrain of St. 

Johns County is comprised of nearly level, poorly drained, sandy and loamy sediments (FEMA, 

2011). The primary soil associations are Myakka-Immokalee-St. Johns, Pomona-Tocoi-Ona, and 

Riviera-Holopaw-Winder (FEMA, 2011). The main sources of flooding occur from erosion due to 

ocean hurricane storm surges and waves and inland areas become flooded when rainfall 

accumulates in low, flat areas (FEMA, 2011). Poorly drained soil, high water table, and flat terrain 

contribute significantly to flooding issues (FEMA, 2011). Small flood control canals, pump 

stations, limited oceanfront seawalls, revetments, and ongoing beach nourishment are some of the 

limited but effective flood protection measures implemented in St. Johns County (FEMA, 2011). 

3.1.3 Duval County 

Located in the northeastern coastal region of Florida, Duval County is comprised of five (5) cities 

and two (2) major military installations (FEMA, 2013). Duval County contains the City of 

Jacksonville, the Cities of Atlantic Beach, Neptune Beach, Jacksonville Beach, and the City of 

Baldwin (FEMA, 2013). It is bordered by Nassau County, Baker County, Clay County, St. Johns 

County, and the Atlantic Ocean and it consists of 918 square miles including 144 square miles of 

water area (FEMA, 2013). Rainfall runoff causing overflow of streams, ponding, and sheet flow 

are the main causes of flooding; while, hurricane storm surge causes extreme water levels in coastal 
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and tidal regions (FEMA, 2013). Because of the flat terrain, many inland areas experience shallow 

flooding and ponding after heavy rainfall (FEMA, 2013). Additionally, strong nor’easters and 

tropical storms frequently occur in Duval County (FEMA, 2013). The Cities of Atlantic Beach, 

Jacksonville Beach, and Neptune beach are partially protected by a seawall and sections of it can 

withstand a 1-percet-annual-chance event (FEMA, 2013). Additionally, flood protection measures 

in the form of mitigation activities, including relocation and elevation of structures, have been 

implemented as flood protection measures (FEMA, 2013). 

3.1.4 The Lower St. Johns River Basin 

As previously mentioned in the literature review, the St. Johns River Water Management District 

conducted a Water Supply Impact Study (WSIS) along the St. Johns River. Appendix B depicts 

the modeled water withdrawal locations. As seen in Appendix B, the models include the following 

basins: Lower St. Johns River, Middle St. Johns River, Upper St. Johns River, Ocklawaha River, 

and other district basins. The Lower St. Johns River Basin consists of several sub-basins. These 

sub-basins are depicted as watersheds in Appendix C. The sub-basins (watersheds) in Appendix C 

are labeled using a watershed unit number. Table 2 explains the sub-basin name associated with 

each watershed unit number. The Lower St. Johns River Basin contains the sub-basins of interest 

in this research (Black Creek, Julington Creek, Durbin Creek, Big Davis Creek, Ortega River, and 

Pablo Creek). 
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Table 2. Lower St. Johns River Basin Sub-Basin Names 

Watershed Unit 
Number 

Sub-basin Name Model Area (acres) 

3A Crescent Lake 381,058 
3B Etonia Creek 228,426 
3C Black Creek 325,312 
3D Ortega River 66,927 
3E Trout River 61,361 
3F Deep Creek 88,378 
3G Sixmile Creek 81,774 
3H Julington Creek 62,324 
3I Intracoastal Waterway 66,153 
3J South Main Stem 246,438 
3K North Main Stem 155,771 

 

The Lower St. Johns River Basin (LSJRB) represents 22% of the area within the SJRWMD and it 

extends from Lake George to the mouth of the river near Jacksonville, Florida (SJRWMD, 2012). 

According to WSIS (2012), the landscape features are low and flat with surface elevations ranging 

from 200 feet to seal level.  

3.2 Hydrologic Model Background 

A detailed description of the hydrologic processes modeled is available in Chapter 3 of the WSIS 

Report. Chapter 3 describes the HSPF model input parameters, model construction, and results. In 

general, the HSPF model input parameters are either physical or empirical (SJRWMD, 2012). The 

physical parameters are watershed areas, land use, precipitation, evaporation, slope, roughness, 

and system hydraulics (SJRWMD, 2012). Several of the critical empirical parameters include 

surface storage, upper and lower zone storage, infiltration, interception storage, various 

evaporation components and active groundwater recession (SJRWMD, 2012). When a model is 

correctly developed with the inclusion of these parameters, HSPF generates time series of runoff, 

stream flow, loading rates, and concentrations of several water quality elements (SJRWMD, 2012). 

The HSPF model was calibrated by implementing an iterative process of changing parameters, 
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running simulations, checking results, and repeating until the simulated and observed data 

resemble each other (SJRWMD, 2012). Additionally, the SJRWMD (2012) developed a “common 

logic” which describes reasonable parameter value ranges for all model runs included in the district 

as part of the calibration process. 

The model was originally calibrated by the SJRWMD using specific streamflow gages per sub-

basin. Table 3 presents which United States Geologic (USGS) streamflow gages were used to 

calibrate each sub-basin of interest. The Black Creek sub-basin was calibrated with the North Fork 

gage and South Fork gage. The calibration using the North Fork gage was described as overall 

very good and the calibration using the South Fork gage was described as overall good (SJRWMD, 

2012). The 02246318 (Kirwin Rd.) Ortega River gage calibration was unsatisfactory, and 

02246300 (103rd St.) Ortega River gage calibration was overall good (SJRWMD, 2012). The Big 

Davis Creek gage 02246150 calibration was adequate and lastly, the Pablo Creek gage 02246828 

calibration was reasonable (SJRWMD, 2012). During the calibration process, the observed gage 

data was directly compared to created “synthetic” gage data produced from the model output. 

Table 3. Model Calibration Gages 

Sub-Basin Gage Name Gage ID Notes 
Black Creek North Fork near Middleburg 02246000  

South Fork Penney Farms 02245500  
Julington Creek Big Davis Creek at Bayard 02246150  
Durbin Creek Big Davis Creek at Bayard 02246150  
Big Davis Creek Big Davis Creek at Bayard 02246150  
Ortega River Ortega 103rd St. Bridge 02246300 Discontinued in 2003 

Ortega at Kirwin Rd. 02246318 Replacement gage 
Pablo Creek Pablo Creek 02246828 Discontinued in 2002 

 

As previously mentioned, one of the key requirements of the HSPF model is the incorporation of 

existing meteorological data. The SJRWMD maintains point rain gauge and Doppler radar rainfall 

datasets (SJRWMD, 2012). According to the WSIS (2012), a contractor adjusted the Doppler total 
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rainfall over long periods to match the total rainfall from the 25 separate daily and hours point rain 

gauges throughout the St. Johns River watershed, which was acquired from the National Weather 

Service (NWS). The Doppler radar data set provided only 13 years of rainfall data, whereas the 

NWS stations provided data dating back to the early 1900s. Due to the need to run long term 

simulations, the NWS rain gauge data was selected for the WSIS model. The model scenario 

simulations run from 1975 through 2008 (SJRWMD, 2012). The SJRWMD implemented the use 

of a Theissen polygon network to establish the area of influence for the NWS rain gauges. 

Appendix D depicts the Theissen polygon network that was developed by the SJRWMD.  

3.3 Model Locations 

As previously established, the six sub-basins of interest in this research are Black Creek, Julington 

Creek, Durbin Creek, Big Davis Creek, Ortega River, and Pablo Creek. The HSPF models are 

constructed by including various reaches associated within a sub-basin. This section will discuss 

the specific HSPF model reach locations that correspond with the sub-basins of interest. 

3.3.1 Black Creek 

The Black Creek sub-basin has a total of 19 reaches incorporated in its HSPF model run. The 

HSPF model view of the reaches is depicted in Figure 1. Table 4 presents the associated description 

for each reach and model area in acres. To properly assess the Black Creek sub-basin, Reach 12, 

6, and 3 were selected. Reach 12 (also referred to as Black Out in this research) is a prominent 

location because it is the outlet location of the entire sub-basin. Reach 6 (also referred to as North 

Fork) and Reach 3 (also referred to as South Fork) are also critical locations that have been 

assessed. North Fork and South Fork are two prominent creeks that flow directly into the main 

branch of Black Creek as depicted in Figure 2. 
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Table 4. Black Creek Sub-Basin Reaches 

Description Reach ID Model Area (Acres) 
Ates Creek 1 23,372 
Greens Creek 2 25,665 
South Fork 3 28,167 
Middle Black Creek 4 13,208 
Right Bull Creek 5 15,508 
Down North Fork 6 3,820 
Big Branch 7 5,580 
Peters Creek 8 12,020 
Little Black Creek 9 2,330 
Yellow Water Creek 10 42,240 
Long Branch 11 15,390 
Down Black   Creek 12 10,710 
Upper Little Black 13 15,050 
Left Bull Creek 14 13,410 
Middle 2 North Fork 15 25,050 
Middle 1 North Fork 16 10,890 
Kingsley Lake 17 2,660 
Dummy Doctors Lake Inlet 918 9,970 

 

3.3.2 Julington Creek 

The next sub-basin of interest is Julington Creek. Table 5 depict the reaches and model area (in 

acres) incorporated in the HSPF Julington Creek model. The HSPF model view of the reaches is 

depicted in Figure 3. As evident from the figure and table below, the HSPF Julington Creek model 

encompasses Dubin Creek (Reach 1) and Big Davis Creek (Reach 6), which are addressed in 

separate sections of this thesis. Therefore, the main assessment of Julington Creek is encompassed 

in the analysis of Reach 2 and Reach 5.  Figure 4 is an aerial which depicts the relationship between 

Julington Creek, Durbin Creek, and Big Davis Creek. 
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Table 5. Julington Creek Sub-Basin Reaches 

Description Reach ID Model Area (Acres) 
Durbin Creek 1 25,781 
Julington Creek 2 5,032 
Big Davis Creek (UP) 3 5,379 
Old Field Creek 4 4,176 
Julington Creek 5 6,141 
Big Davis Creek 6 1,025 

 

3.3.3 Durbin Creek 

As previously discussed in Section 3.3.2, Durbin Creek is modeled as Reach 1 of the Julington 

Creek HSPF model run. Please reference Figure 3 and Table 5 for more details on where Durbin 

Creek was incorporated into the Julington Creek model run. Refer to Figure 4 for an aerial 

depicting the relationship between Durbin Creek, Julington Creek, and Big Davis Creek. 

3.3.4 Big Davis Creek 

As previously discussed in Section 3.3.2, Big Davis Creek is modeled as Reach 6 of the Julington 

Creek HSPF model run. Please reference Figure 3 and Table 5 for more details on where Big Davis 

Creek was incorporated into the Julington Creek model run. Reference Figure 4 for an aerial 

depicting the relationship between Big Davis Creek, Julington Creek, and Durbin Creek. 

3.3.5 Ortega River 

The Ortega River sub-basin reaches and modeled area (in acres) are depicted in Table 6. The HSPF 

model view of the reaches in the Ortega River Sub-basin is depicted in Figure 5. The location of 

interest in the Ortega River sub-basin model run is Reach 3. Reach 3 represents the outlet location 

of the Ortega River, which encompasses flows from McGrits Creek and the upstream portion of 

Ortega River. Figure 6 depicts an aerial photo of the Ortega River. 
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Table 6. Ortega River Sub-Basin Reaches 

Description Reach ID Model Area (Acres) 
McGirtsCk      3d1 1 17,634 
OrtegaRivUps   3d2 2 6,967 
OrtegaRivDns   3d3 3 12,133 
WillsBranch    3d4 4 5,530 
WilliamsonCk   3d5 5 973 
ButcherPenCk   3d6 6 839 
FishingCk      3d7 7 3,376 
CedarRivUps    3d8 8 6,628 
CedarRivDnsm   3d9 9 653 
BigFishweirCk 3d10 10 2,335 

 

3.3.6 Pablo Creek 

The last sub-basin of interest is Pablo Creek. The main location of interest for this sub-basin is 

Reach 8, which depicts the outlet location of the entire Pablo Creek sub-basin. The HSPF model 

view of the reaches in the Pablo Creek sub-basin is depicted in Figure 7. Table 7 depict the 

structure of the Pablo Creek sub-basin and modeled area (in acres) in the HSPF model run. 

Reference Figure 8 for an aerial depiction of Pablo Creek. 

Table 7. Pablo Creek Sub-Basin Reaches 

Description Reach ID Model Area (Acres) 
BoxBranch 1 5,236 
Second Puncheon  2 5,420 
Pablo Creek Mid S 3 3,265 
Mill Dam Branch 4 3,227 
SawmillSlough (PU) 5 695 
Ryals Swamp 6 1,134 
Cedar Swamp Creek 7 2,947 
Pablo Creek DownS 8 2,405 
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Chapter 4 MODEL DEVELOPMENT – HSPF MODEL 
 

4.1 Procedure Overview 

As previously mentioned, the SJRWMD’s HSPF models from their Water Supply Impact Study 

were utilized for this research. In order to obtain the 10-, 25-, 50-, and 100-year flood flow 

estimates at the sub-basins of interest, the original HSPF models were modified to simulate the 

scenarios of interest. The general procedure associated with these modifications involved: 

 

The following sub-sections discuss these components of the HSPF model development procedure. 

This research used the Windows operating system version of the HSPF and BASINS software. 

The original models were compiled in a custom Linux operating system.  It is suspected that 

operating system differences may have resulted in some of the models repeatedly crashing (e.g. 

Black Creek). 

Output Processing at each Model Reach of Interest

Consideration of Rainfall Distribution when simulating Precipitation Frequency Values

Addition of Antecedent Moisture Conditions

Determination of Precipitation Frequency Values to simulate

Determination of ideal Target Dates for precipitation simulation

Selection of Land-Use scenario
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4.2 Model Scenarios 

Now that the relevant HSPF model reaches have been identified, a discussion of the model 

scenarios follows. Table 8 presents the six sub-basins and the criteria assessed for the various 

model scenarios. The primary goal of this research is to discover the 10-, 25-, 50-, and 100-year 

flood flows at the critical sub-basins (e.g. the 10%, 4%, 2%, and 1% annual exceedance 

probability). These flood flows were obtained by programming a specific rainfall event into the 

model. Therefore, the results that were obtained in this research were derived by varying the land-

use, precipitation frequency values (median versus 90th percentile), varying rainfall distributions, 

and including the addition of antecedent moisture conditions.  The following sections explain these 

model scenario components in more detail. 

Table 8. HSPF Model Scenarios 

Model Scenarios Black 
Creek 

Julington 
Creek 

Durbin 
Creek 

Big Davis 
Creek 

Ortega 
River 

Pablo 
Creek 

10-year flood flow X X X X X X 
25-year flood flow X X X X X X 
50-year flood flow X X X X X X 
100-year flood flow X X X X X X 

1995 land-use condition  X X X X X X 
2030 land-use condition  X X X   

Synthetic Rainfall 
Distribution 

 X X X   

Uniform Rainfall Distribution X X X X X X 
Antecedent moisture 

conditions 
X X X X X X 

  

4.2.1 Data Sources 

In addition to the varying model scenarios, this research incorporates various data sources. Real 

data and synthetic data sources were used in this research. Real data is classified as historic data. 

It is data that has occurred in real life. Real streamflow data was obtained from the United States 

Geological Survey (USGS, 2020) database. Figure 9 depicts the real gages that were used in this 
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research. The data sets obtained from these stream flow gages were used for the statistical analysis 

portion of this research. 

Synthetic streamflow data is that which has been simulated. The synthetic streamflow data was 

obtained by running the original HSPF model runs before the precipitation data was altered. The 

synthetic data was obtained from the 1995 land-use conditions model runs. For each of the real 

streamflow gages discussed, the HSPF models incorporated the corresponding synthetic gage. The 

synthetic gage flow data was obtained prior to any model alterations. The synthetic gage flow data 

was used to conduct the statistical analysis. Table 9 outlines the gages that were used in this 

research. Again, real data was obtained from the USGS database at these gage locations and 

synthetic gage data was obtained from the HSPF models at those gages as well.  

Table 9. Real USGS Gage Locations (USGS, 2020) and Corresponding HSPF Model Locations 

Number Real 
Gage ID 

Name Status Synthetic HSPF Model 
Data Available? 

1 02246000 North Fork near Middleburg Active No 
2 02245500 South Fork Penney Farms Active No 
3 02246150 Big Davis Creek at Bayard Inactive Yes 
4 02246300 Ortega 103rd St. Bridge Active Yes 
5 02246318 Ortega at Kirwin Rd. Inactive Yes 
6 02246828 Pablo Creek Inactive No 

 

4.3 Land-use  

The SJRWMD’s HSPF model was programmed to simulate land-use conditions from 1995 and 

those projected for 2030. The 1995 land-use condition is based on 1994 and 1995 color-infrared 

aerial photography of the entire SJRWMD and it has been used for many projects throughout the 

district (SJRWMD, 2012). The 2030 future condition is the SJRWMD’s “planning horizon”. The 

2030 land use condition considers population growth, residential growth areas, and increased area 

for urban land use (SJRWMD, 2012). The WSIS (2012) provides an estimate that the 1995 urban 
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land use represented 16% of the total area of the LSJRB while the projected 2030 urban land use 

cover is about 40% of the basin or more than double the 1995 coverage.  

The 1995 land-use condition was selected as the primary land-use for which each sub-basin was 

assessed at. The variation in land-use was assessed by performing the simulations at Julington 

Creek, Durbin Creek, and Big Davis Creek at both the 1995 and 2030 land-use condition. From 

there, a comparison of results provides insight into the effects that varying the land-use has on the 

resulting flood flows.   

4.4 Target Date 

To produce the 10-, 25-, 50-, and 100-year flood flows, a 10-, 25-, 50-, and 100-year frequency 

precipitation (24-hour duration) event was simulated. Thus, the simulated flood flows are rainfall 

driven. The process of simulating any given frequency precipitation event involves identifying the 

appropriate amount of rainfall to simulate on a specific date, referred to as a target date in this 

research. Before identifying the precipitation frequency values to simulate in the model, the target 

dates were determined.  

The first step in selecting the appropriate target dates is to reference the output data generated from 

the original models. To do this, the original models obtained from the SJRWMD were simulated. 

The simulated flow data output values were obtained in graphical form. From there, it is simple to 

identify the 50th percentile flood from the flood frequency curve. The 50th percentile flood is a 

standard baseline for various flood frequency analysis procedures (Malamud and Turcotte, 2006). 

This process establishes the starting flow condition for each sub-basin for the new simulations. 

Figure 10 depicts an example of an original model flood frequency curve. 

Next, an output list of the simulated flow data was obtained and organized in increasing order. 

From there, the dataset will be narrowed down to the dates on which the 50th percentile flood 
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occurred within a 15% range of accuracy. Finally, 10 target dates were selected. The 10 target 

dates were selected in varying months of the year to account for the varying rainfall conditions 

occurring throughout the seasons. This process was repeated for every sub-basin of interest. The 

simulated flow data was obtained from the outlet of each sub-basin. Therefore, 10 target dates 

were selected for each sub-basin. As previously explained, a specified amount of rainfall was 

simulated for each target date to represent the 10-, 25- 50-, and 100-year rainfall event. The 

simulated rainfall events produced the corresponding 10-, 25-, 50-, and 100-year flood events of 

interest.  

4.5 Precipitation Data 

Now that there is understanding on which specific dates the 10-, 25-, 50-, and 100-year rainfall 

event was simulated, a discussion on specifically how much rainfall to simulate follows. According 

to the WSIS (2012), the SJRWMD implemented rainfall data from one rainfall gauge per sub-

basin based on the dominant polygon from the Theissen polygon network (refer to Appendix D) 

that was developed (SJRWMD, 2012). The SJRWMD’s Theissen polygon network was used to 

determine each sub-basin’s corresponding rainfall gage. Each sub-basin of interest was be assessed 

in terms of all associated polygons. From there, all rainfall gauges that fall within the boundary of 

the sub-basin were considered. With the use of National Oceanic Atmospheric Administration 

(NOAA) Atlas 14 (NOAA, 2017), each rainfall gauge of interest was investigated. 

Since this research assessed the difference between varying precipitation frequency values and the 

resulting flood flows, the median and 90% percentile 24-hour 10-, 25-, 50-, and 100-year 

precipitation was recorded at each gage of interest (NOAA, 2005). Once the rainfall was recorded, 

the average of the rainfall per gauge was calculated in reference to the sub-basin of interest. The 

average was only determined in sub-basins which contained more than one rainfall gage. A deeper 
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explanation on the arrival of this conclusion is discussed in the results section. The median 24-

hour precipitation values were simulated on the selected target dates in the Julington Creek, Durbin 

Creek, and Big Davis Creek sub-basins to provide data to compare to the simulated flows resulting 

from the 90th percentile rainfall events. Table 10 depicts the median and 90th percentile 24-hour 

10-, 25-, 50-, and 100-year rainfall events at each sub-basins’ corresponding rainfall gage. 

Table 10. Precipitation Frequency Values (in inches) 

 

Sub-basin 

 
 

Rainfall Gage 

24-hour 90th 
Percentile Rainfall for 

each recurrence 
interval (years) 

24-hour Median 
Rainfall for each 

recurrence interval 
(years) 

10 25 50 100 10 25 50 100 
 
 

Black Creek 

Jacksonville Airport 8.07 10.8 12.9 15.6 7.05 8.86 10.4 12.2 
Glen St. Mary 7.45 9.56 11.2 13.1 6.29 7.69 8.88 10.2 
Starke 7.12 9.12 10.6 12.5 5.83 7.13 8.27 9.52 
Federal Point 7.49 9.83 11.6 13.8 6.34 7.90 9.27 10.8 
Palatka  7.25 9.40 11.0 13.0 6.19 7.60 8.83 10.2 
Average 7.48 9.74 11.5 13.6 6.34 7.84 9.13 10.6 

 
Julington Creek 

Jacksonville Beach 8.74 11.6 13.8 16.4 7.34 9.23 10.8 12.6 
St. Augustine  8.18 11.2 13.4 16.2 6.98 8.90 10.6 12.4 
Average 8.46 11.4 13.6 16.3 7.16 9.07 10.7 12.5 

 
Durbin Creek 

Jacksonville Beach 8.74 11.6 13.8 16.4 7.34 9.23 10.8 12.6 
St. Augustine  8.18 11.2 13.4 16.2 6.98 8.90 10.6 12.4 
Average 8.46 11.4 13.6 16.3 7.16 9.07 10.7 12.5 

 
Big Davis Creek 

Jacksonville Beach 8.74 11.6 13.8 16.4 7.34 9.23 10.8 12.6 
St. Augustine  8.18 11.2 13.4 16.2 6.98 8.90 10.6 12.4 
Average 8.46 11.4 13.6 16.3 7.16 9.07 10.7 12.5 

Ortega River Jacksonville Airport 8.07 10.8 12.9 15.6 7.05 8.86 10.4 12.2 
Pablo Creek Jacksonville Beach 8.74 11.6 13.8 16.4 7.34 9.23 10.8 12.6 

 

4.6 Antecedent Moisture Conditions 

The SJRWMD defines the antecedent soil moisture conditions as an indicator of watershed 

wetness and availability of soil storage prior to a storm (SJRWMD, 1985). It is known that these 

conditions have a significant effect on runoff volume and runoff rate. Three levels of antecedent 
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moisture conditions (AMC) exist: AMC-I for dry, AMC-II for normal, AMC-III for wet conditions 

(SJRWMD, 1985). Table 11 depicts the seasonal rainfall limits for these three AMCs. According 

to Schiariti (n.d.), AMC II is considered for modeling purposes because it is essentially the average 

moisture condition. Table 11 is divided into a dormant and growing season. According to the 

SJRWMD’s Technical Publication SJ90-3 (1990), the rainy season is in northeast Florida lasts 

from June to October and the dry seasons lasts from November to May (1990). It can be inferred 

that the growing season is synonymous with the rainy season and the dormant season is 

synonymous with the dry season. 

The most straightforward method to simulate antecedent moisture conditions (AMC) was to 

simulate it as daily rainfall. As depicted in Table 11, the AMC was simulated over the course of 

five days. Additionally, it was discovered in the preliminary phase of the research that the models 

performed better with the incorporation of wet antecedent moisture conditions during the dormant 

and growing months. Therefore, to summarize the AMC, 2.1 inches of rainfall over the course of 

five days was simulated before each target date.  

Table 11. Seasonal Rainfall Limits Antecedent Moisture Conditions (SJRWMD, 1985) 

AMC Total 5-Day Dormant Season Total 5-Day Growing Season 
I Less than 0.5 inches Less than 1.4 inches 
II 0.5 to 1.1 inches 1.4 to 2.1 inches 
III More than 1.1 inches More than 2.1 inches 

 

4.7 Rainfall Distribution 

When applied on an hourly basis, the rainfall data described above will represent a uniform 

distribution – each hour will receive the same amount of rainfall. For example, the average median 

10-year 24-hour rainfall in Black Creek is 6.34 inches according to Table 10. Therefore, when 

incorporating this information in the model, the 6.34 inches of rainfall will be distributed evenly 
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over a 24-hour period on the selected target dates. However, in reality, rainfall occurs in varying 

temporal distributions. Therefore, an additional rainfall distribution was also applied in a separate 

scenario. According to Suphunvorranop (1985), the Soil Conservation Service (SCS) has 

developed four types of rainfall distributions – Types I, II, III (representative of different climates 

in the United States), and Type II Modified (representative of Florida specifically). These synthetic 

rainfall distributions occur over a 24-hour time period. The SCS Modified Type II rainfall 

distribution, obtained from the Suphunvorranop (1985) and located in Appendix E, was also 

modeled to determine the effects on the flood magnitude predictions when different rainfall 

distributions are applied. It was simulated in the Julington Creek, Durbin Creek, and Big Davis 

Creek sub-basins paired with the 1995 land-use conditions, 90th percentile precipitation, and AMC.  

4.8 Output Processing 

After the original HSPF model runs were modified to incorporate the required return frequency 

precipitation, antecedent moisture conditions, varying rainfall distributions, and land-use 

conditions, the simulated flow values at each location were assessed.  

Initially, the HSPF model locations were identified based on the existing HSPF models depicted 

in Figures 1-8. The reaches of interested were established as shown in Table 12. Therefore, when 

accessing the simulated flow data through the BASINS interface, each of the relevant reaches 

were assessed per sub-basin. Once the simulated flow data was obtained, processing the data was 

simple.  

The data was organized in two columns: date and flow. The HSPF model runs simulated flow 

data from January 1, 1975 to December 31, 2008. A spreadsheet was created for every reach and 

the output simulated flow data was imported. From there, it was a matter of identifying the initial 
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target dates and recording the resulting simulated peak flow. The resulting peak flow typically 

occurred exactly on the target date and up to two days after the target date. 

Table 12. HSPF Model Reaches of Interest 

Sub-basin HSPF Model Reach of Interest 
Black Creek 3, 6, 12 
Julington Creek 2, 5 
Durbin Creek 1 
Big Davis Creek 6 
Ortega River 3 
Pablo Creek 8 

Chapter 5 STATISTICAL ANALYSIS 
5.1 Log-Pearson Type III 

The statistical Log-Pearson Type III model fit was implemented for real data and synthetic data. 

Using the synthetic streamflow data is advantageous because a longer period of record was at times 

observed compared to the real gauged streamflow data. Synthetic streamflow data was collected 

from applicable modeled gages (if available) as well as the previously discussed reaches of interest 

for each sub-basin. The Log Pearson Type III (LP3) statistical calculations were executed with the 

use of Excel 2016. The information presented in this section has been obtained from Oregon State 

University’s guidance regarding the Log-Pearson Type III Distribution (2005). 

The following equation was used to calculate the LP3 distribution: 

𝑙𝑜𝑔 𝑥 = 𝑙𝑜𝑔 𝑥̅̅ ̅̅ ̅̅ ̅ + 𝐾𝜎𝑙𝑜𝑔 𝑥   (1) 

where x is the flood discharge value of some specified probability 

log x represents the discharge values 

K is the frequency factor 

 And 𝜎 is the standard deviation of the log x values. 

The frequency factor, K, is a function of the skewness coefficient and return period.  
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The first step of the LP3 analysis involved obtaining streamflow data from the appropriate gauges. 

The annual duration flood series was analyzed. The gages of interest are the gages that were used 

to calibrate the model, which are depicted in Table 3. Synthetic gage streamflow data was obtained 

from the HSPF model output, where the gage data was available. Output data from each modeled 

reach of interest was also obtained. The real gage streamflow data was obtained from the USGS 

database. The simulated gage flow data and the specified reach flow data was obtained from 

original and unaltered HSPF model runs.  

As previously mentioned, LP3 computations were conducted using real streamflow data and 

synthetic streamflow data. Table 13 depicts the real gage data sources used for LP3 computations. 

Table 14 depicts the synthetic streamflow data sources used for LP3 computations. Note that for 

the Pablo Creek Gages, the synthetic period of record is longer than the correspond real gage 

record. For all other cases, the real gages have a longer period of record than the synthetic gage 

locations since the HSPF models were designed to run from 1975 to 2008. 

Table 13. Real Gages used for Log-Pearson Type III Statistical Analysis 

Gage Name USGS Gage ID Years of Record 

North Fork USGS Gage 2246000 88 
South Fork USGS Gage 2245500 79 
Big Davis Creek Gage 2246150 37 

Ortega 103rd Street Gage 2246300 37 
Pablo Creek Gage 2246828 27 

 

Table 14. Synthetic Data used for Log-Pearson Type III Statistical Analysis 

Sub-basin HSPF Model Location Years of 
Record 

Black Creek Reach 3,6, and 12 34 
Julington Creek Reach 2 and 5 34 
Durbin Creek Reach 1 34 

Big Davis Creek Reach 6 and Big Davis Creek Gage 2246150 34 
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Ortega River Reach 3, Ortega at 103rd Street 02246300, Ortega at 
Kirwin Road Gage 2246318 

34-44 

Pablo Creek Reach 8 34 
 

From there, the maximum flow (Q) for each water year was determined. This information was then 

ranked from the largest discharge value to the smallest discharge value and each streamflow value 

was ranked from 1 to n, which is the total number of values included in the dataset. Next, the log 

of each yearly peak streamflow was obtained and defined as log(Q). The average of every Q and 

the average of every log(Q) was computed. The following computations were conducted for every 

water year: 

log(𝑄) − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(log(𝑄))2   (2) 

log(𝑄) − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(log(𝑄))3   (3) 

Next, the return period was calculated using the Weibull plotting position presented in Malamud 

and Turcotte’s (2006) research. The Weibull plotting position provides the recurrence interval in 

years with the following equation: 

𝑇 =
𝑁𝑊𝑌+1

𝑁𝐶
   (4) 

where, Nc is the rank and NWY is the number of water years in the data set. 

Next, the final calculation was completed by determining the exceedance probability of each 

discharge value with the formula: 

𝐸𝑥𝑐𝑒𝑒𝑑𝑒𝑛𝑐𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑇
   (5) 

The sum of the values computed for Eq. (2) was determined as well as the sum of the values 

computed for Eq. (3). From there, the parameter estimation step remains. The variance, standard 

deviation and skew coefficient were determined using the equations below: 

∑ ((𝑙𝑜𝑔𝑄−𝑎𝑣𝑔(𝑙𝑜𝑔𝑄))^2𝑛
𝑖

𝑛−1
   (6) 
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𝜎log𝑥 = √
∑(𝑙𝑜𝑔𝑥−log𝑥̅̅ ̅̅ ̅̅ ̅)^2

𝑛−1
   (7) 

𝑠𝑘𝑒𝑤𝑐𝑜𝑒𝑓𝑓.= 
𝑛∗∑ (log(𝑄)−𝑎𝑣𝑒𝑟𝑎𝑔𝑒(log(𝑄)))^3𝑛

1

(𝑛−1)(𝑛−2)(𝜎 log(𝑄))^3
   (8) 

An appropriate frequency factor table (Haan, 1977) was used along with the calculated skew 

coefficient to find the k-values. The k-values are a constant, which determines the symmetry of 

the flood frequency diagram. The following equation was used to calculate the 10-, 25-, 50-, and 

100-year discharges: 

log(𝑄(𝑇) = 𝑎𝑣𝑔(log(𝑄)) + [𝐾(𝑇, 𝐶𝑆)] ∗ 𝜎log(𝑄)   (9) 

5.2 Power Law 

The Power Law (PL) is the second selected statistical model for flood flow estimation in this 

research. As previously mentioned, it is a considerably simpler statistical distribution compared to 

the Log-Pearson Type III distribution. The PL distribution requires analytical fitting of two 

parameters whereas the Log-Pearson Type III distribution requires analytical fitting of three 

parameters. The first step in implementing the PL was to obtain the appropriate data. Like the Log-

Pearson Type III method, real data and synthetic data was assessed. Real gage flow data was 

obtained from the USGS database. Synthetic gage streamflow data and specific reach location flow 

data was obtained from the original HSPF model runs. Table 13 and Table 14 depict the locations 

at which the PL distribution was applied to obtain the flood frequencies of interest. 

Once the data was obtained, either a linear or nonlinear model was selected for analysis. The linear 

model involves a parameter estimation procedure based on the linear regression of the data set. To 

obtain the linear regression of the dataset, the maximum streamflow value (Q) for every given year 

of water data was sorted from largest to smallest. As mentioned by Malamus and Turcotte (2006), 

the partial duration flood series was deemed a better selection over the annual duration flood series. 
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The annual duration was selected for the data selection component of the PL analysis. Preliminary 

research results indicated that the data sets in this research respond better to the PL distribution 

when the annual duration flood series is assessed. More details regarding this are presented in 

Chapter 8. The data was assigned a ranking value, NC, which was used to determine the Weibull 

plotting position return recurrence interval, T. NC is ranked as 1, 2, 3, …, NWY and T is defined as: 

𝑇 = 
𝑁𝑊𝑌

𝑁𝐶
   (10) 

The log function was applied to all peak streamflow values and all T values. Then, a scatterplot of 

log(T) versus log(Q) was created. A linear regression trendline and R-squared value was projected 

for reference. This methodology was based on the literature review of the conducted by Malamud 

and Turcotte (2006). Figure 11 depicts an example of the log plot of T verus Q at Pablo Creek 

Reach 8. 

Recall Malamud and Turcotte’s (2006) generalized power law equation: 

𝑙𝑜𝑔𝑄[𝑇] = 𝛼 log(𝑇) + log(𝐶)   (11) 

The trendline of the scatterplot provided the initial estimate for the α and C regression coefficients. 

The α coefficient was identified as the slope of the trendline equation. The C coefficient was 

identified as the y-intercept of the trendline equation. Once these coefficients were determined, the 

discharge value of the 10-, 25-, 50-, and 100-year flood was estimated. Therefore, this 

methodology considers a linear model where the regression coefficients are estimated from the 

linear regression of the dataset.  

Additionally, a nonlinear model approach was analyzed for the PL distribution. The nonlinear 

model was assessed using the least squared method using the Solver (Microstoft Excel, 2016) plug-

in. This method produced an estimate for the nonlinearly obtained regression coefficient 

parameters, which was eventually compared to the linearly obtained regression coefficients. The 
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least squared method was implemented by first assuming an initial guess where the α and C 

coefficient are greater than 0.01. Then, the modeled Q values were calculated using the estimated 

α and C coefficient using the general PL equation: 

𝑄[𝑇] = 𝐶𝑇𝛼   (12) 

From there, the sum of squared differences was obtained using: 

𝑠𝑢𝑚𝑜𝑓𝑡ℎ𝑒𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 = (𝑠𝑢𝑚(𝑄) − 𝑠𝑢𝑚(𝑄𝑚𝑜𝑑𝑒𝑙𝑒𝑑))
2
 

Then, the Solver (Microsoft Excel, 2016) plug-in was used to minimize the sum of the squared 

differences while iterating for the most ideal values of α and C. The Generalized Reduced Gradient 

(GRG) Nonlinear was the solution method selected. Therefore, the α and C regression coefficient 

parameters were obtained using two methods (1) linear model approach graphically from the log 

plot of T versus Q and (2) by optimizing the modeled Q values using the Microsoft Excel Solver 

plug-in. Table 15 depicts the two sets of α and C regression coefficients derived from the two 

methods described at Pablo Creek Reach 8. Assessing two different methods of obtaining the α 

and C regression coefficients of the Power Law distribution proved to be beneficial because the 

two methods produced varying regression coefficients in some instances. The results of this 

research depict the varying flood estimates obtained using the regression coefficients determined 

from the linear and nonlinear models of the Power Law distribution. 

Table 15. Example of Power Law Regression Coefficients 

Method C α 
Linear Regression 1840 0.2293 
Nonlinear Regression 549.7 0.558 
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Chapter 6 RESULTS 

6.1 HSPF Model Results 

This section presents the HSPF model results conducted in this research. Each sub-section presents 

results from the Black Creek, Julington Creek, Durbin Creek, Big Davis Creek, Ortega River, and 

Pablo Creek sub-basins. Each sub-section presented outlines the results from each applicable reach 

of the HSPF model as well as any simulated gages, if present. All results are presented in cubic 

feet per second (cfs). 

6.1.1 Black Creek 

Table 16 depicts the results at Black Creek Reach 3 (South Fork), Reach 6 (North Fork), and Reach 

12 (Black Out). When assessing the 1995 land-use condition with added 90th percentile 

precipitation and antecedent moisture conditions (AMC), the Black Creek sub-basin could not 

compute flow data past the 10-year flood. When assessing the same model scenario except by 

modeling the median precipitation scenario versus 90th percentile, the model was able to produce 

results up through the 50-year flood. However, the model crashed during the 100-year flood 

simulation. Therefore, the model runs at the Black Creek sub-basin were somewhat unsuccessful. 

Chapter 8 provides a further explanation of the failed model runs in the Black Creek sub-basin. 

Table 16. Black Creek HSPF Model Results (in cfs) 

HSPF 
Model 

Location 

1995 Land-use, 90th Percentile 
Precipitation, and AMC 

1995 Land-use, Median 
Precipitation, and AMC 

10-
year 

25- 
year 

50- 
year 

100-
year 

10-
year 

25-
year 

50-
year 

100-
year 

Reach 3 8237 Crashed Crashed Crashed 6151 8872 11,138 Crashed 
Reach 6 8628 Crashed Crashed Crashed 6284 9349 11900 Crashed 
Reach 12 18063 Crashed Crashed Crashed 12257 20240 26304 Crashed 
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6.1.2 Julington Creek 

Table 17 depicts the HSPF model runs in the Julington Creek sub-basin. The two main reaches of 

the Julington Creek sub-basin were Reach 2 (the sub-basin outlet location) and Reach 5 (an 

upstream portion of Julington Creek). Four different model scenarios were assessed at Julington 

Creek. The model scenarios varied in precipitation, rainfall distribution, and land-use. Each model 

included antecedent moisture conditions. Overall, the HSPF model was successful in simulating 

each of the scenarios. The variety in results produced from the varying model scenarios provided 

valuable insight regarding the sensitivity of model parameter selection. This will be discussed in 

further detail in Chapter 7.  

Table 17. Julington Creek HSPF Model Results (in cfs) 

 
HSPF Model 

Location 

1995 Land-use, 90th Percentile 
Precipitation, and AMC 

1995 Land-use, Median 
Precipitation, and AMC 

10-  
year 

25-  
year 

50- 
year 

100-
year 

10-  
year 

25- 
year 

50- 
year 

100-
year 

Reach 2 1541 2454 3367 4676 1195 1709 2206 2886 
Reach 5 472 806 993 1441 340 541 734 905 

         
 
 

HSPF Model 
Location 

1995 Land-use, 90th Percentile 
Precipitation, Type II Modified 

Distribution, AMC 

 
2030 Land-use, 90th Percentile 

Precipitation, and AMC 
10- 

year 
25- 

year 
50- 

year 
100- 
year 

10- 
year 

25- 
year 

50- 
year 

100- 
year 

Reach 2 1721 2807 3752 4980 2396 3682 4785 6290 
Reach 5 544 869 1154 1605 715 1026 1348 1761 

 

6.1.3 Durbin Creek 

Table 18 depicts the model simulations in the Durbin Creek sub-basin. As previously discussed, 

the Durbin Creek sub-basin was included in Julington Creek HSPF model. Durbin Creek was 

identified as Reach 1. The same model scenarios that were assessed in Julington Creek were also 

assessed in Durbin Creek. The model runs were successful. The variety in results produced from 
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the varying model scenarios provided valuable insight regarding the sensitivity of model parameter 

selection. This will be discussed in further detail in Chapter 7.  

Table 18. Durbin Creek HSPF Model Results (in cfs) 

 
HSPF Model 

Location 

1995 Land-use, 90th Percentile 
Precipitation, and AMC 

1995 Land-use, Median 
Precipitation, and AMC 

10-  
year 

25-  
year 

50- 
year 

100-
year 

10-  
year 

25- 
year 

50- 
year 

100-
year 

Reach 1 1077 1540 2116 3053 835 1164 1407 1801 
         
 
 

HSPF Model 
Location 

1995 Land-use, 90th Percentile 
Precipitation, Type II Modified 

Distribution, AMC 

 
2030 Land-use, 90th Percentile 

Precipitation, and AMC 
10- 

year 
25- 

year 
50- 

year 
100- 
year 

10- 
year 

25- 
year 

50- 
year 

100- 
year 

Reach 1 1145 1829 2425 3426 1508 2251 2997 4056 
 

6.1.4 Big Davis Creek 

Table 19 depicts the HSPF model results at Big Davis Creek. As previously mentioned, Big Davis 

Creek was modeled within the Julington Creek HSPF model. Big Davis Creek was identified as 

Reach 6. As also previously mentioned, the Big Davis USGS gage was used to calibrate the 

Julington Creek model, which includes the Dubin Creek and Big Davis Creek sub-basins. The 

HSPF model also includes a Big Davis Creek gage location, which is referred to as a synthetic 

gage. This synthetic gage corresponds to the real Big Davis Creek gage; however, the flow data is 

synthetic since it is simulated. Even though the Big Davis Creek gage was used to calibrate 

multiple sub-basins, the Big Davis Creek synthetic gage results are depicted here in the Big Davis 

Creek model simulation results. 
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Table 19. Big Davis HSPF Model Results (in cfs) 

 
HSPF Model 

Location 

1995 Land-use, 90th Percentile 
Precipitation, and AMC 

1995 Land-use, Median 
Precipitation, and AMC 

10-  
year 

25-  
year 

50- 
year 

100-
year 

10-  
year 

25- 
year 

50- 
year 

100-
year 

Reach 6 389 691 879 1042 290 440 606 805 
Big Davis Gage Synth 336 583 842 1098 256 378 510 715 

         
 
 

HSPF Model 
Location 

1995 Land-use, 90th Percentile 
Precipitation, Type II Modified 

Distribution, AMC 

 
2030 Land-use, 90th Percentile 

Precipitation, and AMC 
10- 

year 
25- 

year 
50- 

year 
100- 
year 

10- 
year 

25- 
year 

50- 
year 

100- 
year 

Reach 6 398 766 950 1116 796 1047 1207 1424 
Big Davis Gage Synth 333 634 911 1164 620 1039 1261 1553 

 

6.1.5 Ortega River 

Table 20 depicts HSPF model simulations conducted in the Ortega River sub-basin. Reach 3 was 

identified as the downstream portion of the Ortega River which drains into the St. Johns River. As 

previously discussed, the 103rd Street USGS gage and the Kirwin Rd. USGS gage were used to 

calibrate the Ortega River sub-basin. Both gages were also simulated in the Ortega River sub-

basin. Therefore, synthetic gage data was available in this sub-basin. The 1995 land-use, 90th 

percentile precipitation, and antecedent moisture conditions scenario was the only scenario 

assessed in the Ortega River sub-basin and quality results were produced.  

Table 20. Ortega River HSPF Model Results (in cfs) 

HSPF Model Location 1995 Land-use, 90th Percentile Precipitation, and AMC 
10-year 25-year 50-year 100-year 

Reach 3 3293 4756 5978 7485 
103rd St. Gage Synthetic 2152 3107 3642 4285 

Kirwin Rd. Gage Synthetic 3206 4654 5567 6693 
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6.1.6 Pablo Creek 

Table 21 depicts the HSPF model results obtained at Reach 8. Reach 8 is the location of the Pablo 

Creek sub-basin outlet into the Jacksonville, Florida intracoastal waterway. The 1995 land-use, 

90th percentile precipitation, and antecedent moisture condition scenario was simulated in this sub-

basin. Quality results were produced in this model simulations.  

Table 21. Pablo Creek HSPF Model Results (in cfs) 

HSPF Model Location 1995 Land-use, 90th Percentile Precipitation, and AMC 
10-year 25-year 50-year 100-year 

Reach 8 2088 2685 3041 3479 
 

6.2 Log-Pearson Type III Results 

This section presents the results of the Log-Pearson Type III (LP3) distribution statistical 

computations. The following sub-sections present the results from the Black Creek, Julington 

Creek, Durbin Creek, Big Davis Creek, Ortega River, and Pablo Creek sub-basins. The LP3 results 

were obtained from computations using simulated HSPF reach location flow data, simulated USGS 

flow gage data, and real USGS gage flow data, if available.  

6.2.1 Black Creek 

Table 22 depicts the LP3 results in the Black Creek sub-basin. The results were obtained for Reach 

3 (South Fork), Reach 6 (North Fork), Reach 12 (Black Out), and the two real USGS gages at 

South and North Fork. There were no synthetic gage locations in the HSPF model from which to 

extract synthetic gage data to conduct LP3 computations. 
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Table 22. Black Creek Log-Pearson Type III Results (in cfs) 

Location Log-Pearson Type III 
10-year 25-year 50-year 100-year 

Reach 3 6269 8258 9935 11778 
South Fork Real Gage 6036 8370 10257 12239 

Reach 6 8797 11580 13682 15779 
North Fork Real Gage 8372 11495 13952 16476 

Reach 12 12606 14313 15335 16180 
 

6.2.2 Julington Creek 

Table 23 depicts the LP3 computations conducted using synthetic reach location data obtained 

from the HSPF model. Reach 2 and 5 are the main reaches within the Julington Creek sub-basin, 

where reach 2 is the sub-basin outlet location into the St. Johns River and Reach 5 is an upstream 

location of Julington Creek. 

Table 23. Julington Creek Log-Pearson Type III Results (in cfs) 

Location Log-Pearson Type III 
10-year 25-year 50-year 100-year 

Reach 2 1695 2225 2648 3091 
Reach 5 652 937 1200 1511 

 

6.2.3 Durbin Creek 

Table 24 depicts the LP3 computation results conducted in the Dubrin Creek sub-basin.  

Table 24. Durbin Creek Log-Pearson Type III Results (in cfs) 

Location Log-Pearson Type III 
10-year 25-year 50-year 100-year 

Reach 1 1061 1414 1689 1967 
 

6.2.4 Big Davis Creek 

Table 25 depicts the LP3 computation results conducted in the Big Davis Creek sub-basin. As 

previously mentioned, the Big Davis Creek sub-basin is included in the Julington Creek sub-basin 

HSPF model. The real Big Davis Creek USGS gage was used to calibrate the entire basin. 
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However, the gage results are presented here in the Big Davis Creek sub-basin results. LP3 

computations were conducted at Reach 6, using real gage data obtained from the USGS database, 

and using the synthetic gage data extracted from the HSPF model.  

Table 25. Big Davis Creek Log Pearson Type III Results (in cfs) 

Location Log-Pearson Type III 
10-year 25-year 50-year 100-year 

Reach 6 694 930 1120 1320 
Big Davis Gage Real 441 596 718 842 

Big Davis Gage Synth 656 917 1140 1388 
 

6.2.5 Ortega River 

Table 26 depicts the LP3 computation results in the Ortega River sub-basin. Results were obtained 

using flow data from Reach 3, which represents the outlet location of the Ortega River into the St. 

Johns River. As previously mentioned, the Ortega River sub-basin HSPF model was calibrated 

using the real 103rd St. Gage and Kirwin Rd. gage. The Kirwin Rd. gage has a short period of 

record, so the calibration was not successful, and the model calibration ultimately depended on the 

103rd St. gage. Therefore, LP3 computations were conducted using real gage data at 103rd St. and 

not Kirwin Rd. gage. Synthetic gage data was available for 103rd St. and Kirwin Rd., so LP3 

computations were conducted using that data as well. 

Table 26. Ortega River Log-Pearson Type III Results (in cfs) 
Location Log-Pearson Type III 

10-year 25-year 50-year 100-year 
Reach 3 5766 6841 7628 8400 

103rd St. Gage Real 2128 3173 4124 5239 
103rd St. Gage Synth 1969 2468 2828 3174 

Kirwin Rd. Gage Synth 2771 3558 4149 4736 
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6.2.6 Pablo Creek 

Lastly, Table 27 depicts the LP3 computations conducted in the Pablo Creek sub-basin. The results 

shown were obtained using data from the HSPF model Reach 8, which represents the outlet 

location of the entire Pablo Creek sub-basin into the Jacksonville, Florida intracoastal waterway, 

and the real Pablo Creek gage that was originally used to calibrate the HSPF model.  

Table 27. Pablo Creek Log-Pearson Type III Results (in cfs) 

Location Log-Pearson Type III 
10-year 25-year 50-year 100-year 

Reach 8 1973 2646 3200 3798 
Pablo Creek Real Gage 1006 1300 1515 1725 

 

6.3 Power Law Results 

This section presents the results of the Power Law (PL) distribution statistical computations. The 

following sub-sections present the results from the Black Creek, Julington Creek, Durbin Creek, 

Big Davis Creek, Ortega River, and Pablo Creek sub-basins. The PL results were obtained from 

computations using simulated HSPF reach location flow data, simulated USGS flow gage data, 

and real USGS gage flow data, if available.  

6.3.1 Black Creek 
Table 28 depicts the PL results in the Black Creek sub-basin using the linear regression approach. 

Table 29 depicts the results using the Microsoft Excel Solver plug-in approach. The results were 

obtained for Reach 3 (South Fork), Reach 6 (North Fork), Reach 12 (Black Out), and the two real 

USGS gages at South and North Fork. There were no synthetic gage locations in the HSPF model 

from which to extract synthetic gage data to conduct PL computations. 
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Table 28. Black Creek Power Law (Linear Regression) Results (in cfs) 

Location Power Law – Linear Regression 
10-year 25-year 50-year 100-year 

Reach 3 6,907 11,589 17,143 25,357 
South Fork Real Gage 6,247 12,865 22,218 38,371 

Reach 6 9,817 19,549 32,917 55,424 
North Fork Real Gage 9,750 20,523 36,039 63,285 

Reach 12 13,658 21,192 29,545 41,191 
 

Table 29. Black Creek Power Law (Nonlinear Regression) Results (in cfs) 

Location Power Law – Nonlinear Regression 
10-year 25-year 50-year 100-year 

Reach 3 6,312 9,619 13,229 18,194 
South Fork Real Gage 5,185 8,113 11,382 15,970 

Reach 6 7,935 12,144 16,755 23,118 
North Fork Real Gage 7,206 11,441 16,231 23,026 

Reach 12 12,260 16,982 21,728 27,801 
 

6.3.2 Julington Creek 

Table 30 depicts the PL results in the Julington Creek sub-basin using the linear regression 

approach. Table 31 depicts the PL results using the Microsoft Excel Solver plug-in approach. The 

PL computations were conducted using synthetic reach location data obtained from the HSPF 

model. Reach 2 and 5 are the main reaches within the Julington Creek sub-basin, where Reach 2 

is the sub-basin outlet location into the St. Johns River and Reach 5 is an upstream location of 

Julington Creek. 

Table 30. Julington Creek Power Law (Linear Regression) Results (in cfs) 

Location Power Law – Linear Regression 
10-year 25-year 50-year 100-year 

Reach 2 1,867 3,352 5,219 8,125 
Reach 5 738 1,411 2,304 3,762 
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Table 31. Julington Creek Power Law (Nonlinear Regression) Results (in cfs) 

Location Power Law – Nonlinear Regression 
10-year 25-year 50-year 100-year 

Reach 2 1,759 2,932 4,317 6,355 
Reach 5 661 1,104 1,627 2,398 

 

6.3.3 Durbin Creek 

Table 32 depicts the PL results in the Durbin Creek sub-basin using the linear regression approach. 

Table 33 depicts the PL results using the Microsoft Excel Solver plug-in approach.  

Table 32. Durbin Creek Power Law (Linear Regression) Results (in cfs) 

Location Power Law – Linear Regression 
10-year 25-year 50-year 100-year 

Reach 1 1,208 2,453 4,193 7,166 
 

Table 33. Durbin Creek Power Law (Nonlinear Regression) Results (in cfs) 

Location Power Law – Nonlinear Regression 
10-year 25-year 50-year 100-year 

Reach 1 841 1,727 2,977 5,131 
6.3.4 Big Davis Creek 

Table 34 depicts the PL results in the Big Davis Creek sub-basin using the linear regression 

approach. Table 35 depicts the PL results using the Microsoft Excel Solver plug-in approach. As 

previously mentioned, the Big Davis Creek sub-basin is included in the Julington Creek sub-basin 

HSPF model. The real Big Davis Creek USGS gage was used to calibrate the entire basin. 

However, the gage results are presented here in the Big Davis Creek sub-basin results. PL 

computations were conducted at Reach 6, using real gage data obtained from the USGS database, 

and using the synthetic gage data extracted from the HSPF model. 
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Table 34. Big Davis Creek Power Law (Linear Regression) Results (in cfs) 

Location Power Law – Linear Regression 
10-year 25-year 50-year 100-year 

Reach 6 790 1,528 2,516 4,143 
Big Davis Gage Real 495 1,031 1,795 3,127 

Big Davis Gage Synth. 747 1,501 2,546 4,316 
 

Table 35. Big Davis Creek Power Law (Nonlinear Regression) Results (in cfs) 

Location Power Law – Nonlinear Regression 
10-year 25-year 50-year 100-year 

Reach 6 674 1,079 1,541 2,199 
Big Davis Gage Real 411 675 983 1,431 

Big Davis Gage Synth. 642 1,067 1,568 2,304 
 

6.3.5 Ortega River 

Table 36 depicts the PL results in the Ortega River sub-basin using the linear regression approach. 

Table 37 depicts the PL results using the Microsoft Excel Solver plug-in approach. Results were 

obtained using flow data from Reach 3, which represents the outlet location of the Ortega River 

into the St. Johns River. As previously mentioned, the Ortega River sub-basin HSPF model was 

calibrated using the real 103rd St. Gage and Kirwin Rd. gage. The Kirwin Rd. gage has a short 

period of record, so the calibration was not successful, and the model calibration ultimately 

depended on the 103rd St. gage. Therefore, PL computations were conducted using real gage data 

at 103rd St. and not Kirwin Rd. gage. Synthetic gage data was available for 103rd St. and Kirwin 

Rd., so PL computations were conducted using that data as well. 

Table 36. Ortega River Power Law (Linear Regression) Results (in cfs) 

Location Power Law – Linear Regression 
10-year 25-year 50-year 100-year 

Reach 3 6,148 8,940 11,868 15,754 
103rd St. Gage Real 2,174 4,441 7,625 13,092 
103rd St. Gage Synth 1,983 3,052 4,229 5,860 

Kirwin Rd. Gage Synth 2,789 4,378 6,159 8,664 
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Table 37. Ortega River Power Law (Nonlinear Regression) Results (in cfs) 

Location Power Law – Nonlinear Regression 
10-year 25-year 50-year 100-year 

Reach 3 5,623 7,509 9,346 11,633 
103rd St. Gage Real 1,897 3,223 4,812 7,184 
103rd St. Gage Synth 1,838 2,755 3,740 5,079 

Kirwin Rd. Gage Synth 2,563 3,877 5,301 7,249 
 

6.3.6 Pablo Creek 

Table 38 depicts the PL results in the Pablo Creek sub-basin using the linear regression approach. 

Table 39 depicts the PL results using the Microsoft Excel Solver plug-in approach. The results 

shown were obtained using data from the HSPF model Reach 8, which represents the outlet 

location of the entire Pablo Creek sub-basin into the Jacksonville, Florida intracoastal waterway, 

and the real Pablo Creek gage that was originally used to calibrate the HSPF model.  

Table 38. Pablo Creek Power Law (Linear Regression) Results (in cfs) 

Location Power Law – Linear Regression 
10-year 25-year 50-year 100-year 

Reach 8 3,120 3,849 4,512 5,289 
Pablo Creek Real Gage 1,183 2,391 4,071 6,931 

 

Table 39. Pablo Creek Power Law (Nonlinear) Results (in cfs) 

Location Power Law – Nonlinear Regression 
10-year 25-year 50-year 100-year 

Reach 8 1,986 3,311 4,875 7,176 
Pablo Creek Real Gage 1,002 1,669 2,456 3,614 

 

6.4 Existing Flood Insurance Studies 

This section outlines the results of the existing Flood Insurance Studies. FEMA Flood Insurance 

Studies (FIS) were obtained from each sub-basin. The FEMA FIS flood estimates were adjusted 

accordingly to represent the modeled drainage basin area. In short, the HSPF modeled drainage 

basin area did not match the FEMA FIS drainage basin area from which the results were obtained. 
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Therefore, a simple extrapolation was conducted to standardize the FEMA FIS estimates’ drainage 

basin area to match the drainage basin area of the HSPF modeled locations. The original Black 

Creek FEMA FIS flood estimates were obtained from the Clay County FEMA FIS (2014). The 

original Julington Creek, Durbin Creek, and Big Davis Creek FEMA FIS flood estimates were 

obtained from the St. Johns County FEMA FIS (2011). The original FEMA FIS flood estimates at 

Ortega River and Pablo Creek were obtained from the Duval County FEMA FIS (2014). 

6.4.1 Black Creek 

Table 40 depicts the results of the adjusted FEMA FIS flow estimates. The results obtained from 

the FEMA FIS were based on a 137 square mile drainage area for Reach 3 and the South Fork 

gage and a 167 square mile square mile drainage basin for Reach 6 and the North Fork gage. 

Conversely, the modeled area of the Reach 3 in HSPF is 120.63 square miles and 156.35 square 

miles for Reach 6. The FEMA FIS estimates at Reach 3 and Reach 6 were reduced by a percentage 

which represents the modeled drainage area to the FIS drainage area. Therefore, since the modeled 

area of Reach 3 and Reach 6 was approximately 88% and 94% of the discharge area covered at 

those locations in the FEMA FIS, the FEMA FIS estimates were reduced by 88% and 94%, 

respectively. It was important to reduce the FEMA FIS estimates so that the comparison was based 

on the same drainage area between the modeled estimates and the FEMA FIS estimates. The 

FEMA FIS estimates for the gages were not actually adjusted since the drainage area of location 

of the modeled gages was not disclosed. Therefore, it was assumed that the drainage area at the 

location of the modeled gage matched the drainage area at the gage location in the FEMA FIS and 

no adjustment was made to the flood estimates.  
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Table 40. Black Creek Adjusted FEMA FIS Estimates (in cfs) 

Location Adjusted FEMA FIS Estimates 
10-year 25-year 50-year 100-year 

Reach 3 8,277 12,296 15,145 18,755 
South Fork Real Gage 9,400 13,964 17,200 21,300 

Reach 6 8,714 12,084 14,817 16,977 
North Fork Real Gage 9,000 12,392 15,640 18,030 

Reach 12 20,853 30,242 37,194 44,814 
 

6.4.2 Julington Creek 

Table 41 depicts the adjusted FEMA FIS flow estimates for Reach 2 and Reach 5 of the Julington 

Creek sub-basin. The St. Johns County FEMA FIS contained an estimate for what was determined 

to be Reach 2 and 5 which had a drainage area of 28 square miles and 10 square miles, respectively. 

The HSPF modeled locations for Reach 2 and 5 have a drainage area of 27.46 square miles and 

9.60 square miles, respectively. The same approach for adjusting the FEMA FIS estimates was 

conducted as described for the Black Creek sub-basin.  

Table 41. Julington Creek Adjusted FEMA FIS Estimates (in cfs) 

Location Adjusted FEMA FIS Estimates 
10-year 25-year 50-year 100-year 

Reach 2 2,547 3,284 3,828 4,429 
Reach 5 2,210 2,552 3,101 3,409 

 

6.4.3 Durbin Creek 

Table 42 depicts the adjusted FEMA FIS flow estimates for Reach 1 of the Durbin sub-basin. The 

St. Johns County FEMA FIS presented an estimate for what was determined to be the real-life 

equivalent of the HSPF modeled Reach 1. That flood estimate was based on a 45 square mile 

drainage area. The HSPF modeled Reach 1 consists of a 40.28 square mile drainage area. The same 

approach for adjusting the FEMA FIS estimates was conducted as described for the Black Creek 

sub-basin.  
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Table 42. Durbin Creek Adjusted FEMA FIS Estimates (in cfs) 

Location Adjusted FEMA FIS Estimates 
10-year 25-year 50-year 100-year 

Reach 1 2,720 3,850 4,643 5,637 
 

6.4.4 Big Davis Creek 

Table 43 depicts the adjusted FEMA FIS flow estimates for Reach 6 and the real USGS gage of 

the Big Davis sub-basin. The St. Johns County FEMA FIS estimates at Reach 6 were based on a 

drainage area of 14 square miles. The HSPF modeled Reach 6 consists of 10.0 square miles. The 

same approach for adjusting the FEMA FIS estimates was conducted as described for the Black 

Creek sub-basin. The flood estimates for the real gage were not adjusted because they were 

obtained directly from the FEMA FIS and no comparison to modeled drainage area was applicable. 

Table 43. Big Davis Creek Adjusted FEMA FIS Estimates (in cfs) 

Location Adjusted FEMA FIS Estimate 
10-year 25-year 50-year 100-year 

Reach 6 471 609 887 1,120 
Big Davis Real Gage 1,120 1,548 1,870 2,210 

 

6.4.5 Ortega River 

Table 44 depicts the adjusted FEMA FIS flow estimates for Reach 3, real USGS 103rd St. gage, 

and synthetic Kirwin Rd. gage of the Ortega River sub-basin. The modeled Reach 3 area was 57.40 

square miles compared to FEMA’s drainage area of 57 square miles. The same approach for 

adjusting the FEMA FIS estimates was conducted as described for the Black Creek sub-basin.  The 

flood estimates for the real gage were not adjusted because it was obtained directly from the FEMA 

FIS and no comparison to modeled drainage area were applicable. The FEMA FIS estimates for 

the synthetic gage were also not adjusted because it was assumed that the modeled drainage area 

was the same as the drainage area in the FIS estimate.  
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Table 44. Ortega River Adjusted FEMA FIS Estimates (in cfs) 

Location Adjusted FEMA FIS Estimate 
10-year 25-year 50-year 100-year 

Reach 3 2,773 4,116 5,105 6,190 
103rd St. Gage Real 1,626 2,460 3,111 3,729 

Kirwin Rd. Gage Synth 2,739 4,222 5,396 6,420 
6.4.6 Pablo Creek 

Table 45 depicts the adjusted FEMA FIS flow estimates for Reach 8 and the real USGS Pablo 

Creek gage of the Pablo Creek sub-basin. The modeled Reach 8 area was 38.01 square miles 

compared to FEMA’s drainage area of 46 square miles. The same approach for adjusting the 

FEMA FIS estimates was conducted as described for the Black Creek sub-basin. The flood 

estimates for the real gage were not adjusted because they were obtained directly from the FEMA 

FIS and no comparison to modeled drainage area was applicable.  

Table 45. Pablo Creek Adjust FEMA FIS Estimates (in cfs) 

Location Adjusted FEMA FIS Estimate 
10-year 25-year 50-year 100-year 

Reach 8 3,882 5,890 7,516 8,800 
Pablo Creek Real Gage 3,830 4,905 6,032 7,059 
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Chapter 7 COMPARISON OF RESULTS 

This section presents a comparison of the results obtained from the various flood estimation 

methods conducted in this research. HSPF modeling, statistically derived estimates using the Log-

Pearson Type III (LP3) and Power Law (PL) distributions, and analysis of existing FEMA Flood 

Insurance Studies (FIS) were the three methods conducted. This discussion is based on the results 

presented in the previous section. Before there is a comparison of the results obtained from the 

different methods, a discussion of the comparison of specific HSPF model scenarios will be 

discussed. As previously portrayed in Table 8, different modeling scenarios in the Julington Creek, 

Durbin Creek, and Big Davis Creek sub-basin were simulated to assess the model performance 

when land-use, rainfall quantity, and rainfall distribution were varied. 

The difference between rainfall quantity was assessed by running two versions of the 1995 HSPF 

model run. One version of the 1995 model run included the simulation of the median precipitation 

frequency estimate values based on the rainfall gages within the sub-basins. Another version of 

the 1995 model runs included the addition of the 90th percentile precipitation frequency values 

based on the associated rainfall gages within the sub-basins. Both model scenarios included the 

antecedent moisture conditions. Table 46 depicts the percent difference between the flood 

estimates obtained including the 90th percentile and median precipitation frequency values at 

Reach 1, 2, 5, 6, and the synthetic Big Davis gage. The percent difference between the two 

scenarios increases as the return frequency flood increases. From this information, it can be 

deduced that simulating 90th percentile precipitation frequency values compared to the median 

precipitation frequency values results in significantly higher flood flow estimates, which are closer 

to the adjusted FEMA FIS estimates.  
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Table 46. Percent Difference between varying Precipitation Frequency Values 

 
HSPF Model Location 

Percent Difference between 1995 HSPF Median PREC and 1995 
HSPF 90% PREC 

10-year 25-year 50-year 100-year 
Reach 1 (Durbin) 25 28 40 52 

Reach 2 (Julington) 25 36 42 47 
Reach 5 (Julington) 32 39 30 46 
Reach 6 (Big Davis) 29 44 37 26 

Big Davis Gage Synth 27 43 49 42 
Average 28 38 40 43 

 

The difference in flood flow results based on simulation of two different rainfall distributions was 

assessed in this research. First, the 1995 land-use condition paired with the addition of the 90th 

percentile precipitation frequency values representing a uniform rainfall distribution and 

antecedent moisture conditions were simulated. Then, the 1995 land-use condition paired with the 

addition of the 90th percentile precipitation frequency values representing a Synthetic Type II 

Modified for Florida rainfall distribution and antecedent moisture conditions were simulated.  

Table 47 depicts the percent difference between the resulting flood flows at Reach 1, 2, 5, 6, and 

the synthetic Big Davis Gage when the uniform distribution is applied to the precipitation 

frequency values versus the Synthetic Type II Modified distribution is applied. Overall, the 

average percent difference between the HSPF model locations does not increase significantly as 

the return interval of the flood increases. Compared to the percent differences obtained when 

varying the precipitation frequency values, the variation of rainfall distributions does not produce 

drastic differences in flood flow estimates. 
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Table 47. Percent Difference between varying Rainfall Distributions 

 
HSPF Model Location 

Percent Difference between 1995 HSPF 90% PREC 
Uniform and Synthetic Rainfall Distribution 

10-year 25-year 50-year 100-year 
Reach 1 (Durbin) 6 17 14 12 

Reach 2 (Julington) 11 13 11 6 
Reach 5 (Julington) 14 7 15 11 
Reach 6 (Big Davis) 2 10 8 7 

Big Davis Gage Synth 1 8 8 6 
Average 7 11 11 8 

 

Lastly, the variation of land-use was assessed in the Durbin Creek, Julington Creek, and Big Davis 

Creek sub-basins. The land-use variation was assessed by simulating the 1995 land-use condition 

versus the 2030 land-use condition with the inclusion of the 90th percentile precipitation frequency 

values and antecedent moisture conditions. Table 48 depicts the percent difference between the 

flood flows when the 1995 land-use is simulated versus the 2030 land-use. The average percent 

difference between all the model locations decreased as the return frequency flood increased from 

the 10-year to the 100-year flood. The difference between the simulation of the two land-use 

conditions caused a percent difference between the 10-year flood values of about 50%, which is 

highly significant. This information could be used to deduce that the simulation of the 2030 land-

use condition would consistently produce higher flood flows across the watershed.   

Table 48. Percent Difference between varying Land-Use Conditions 

 
HSPF Model Location 

Percent Difference between 1995 HSPF 90% PREC 
and 2030 HSPF 90% PREC 

10-year 25-year 50-year 100-year 
Reach 1 (Durbin) 33 38 34 28 

Reach 2 (Julington) 43 40 35 29 
Reach 5 (Julington) 41 24 30 20 
Reach 6 (Big Davis) 69 41 31 31 

Big Davis Gage Synth 59 56 40 34 
Average 49 40 34 29 
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Finally, a comparison of each method was assessed. Each sub-basin was organized by reach 

location for an accurate comparison of results. The results in the Black Creek sub-basin were 

grouped by comparing all flood estimates at Reach 3 and the South Fork Gage grouped together, 

Reach 6 and the North Fork gage grouped together, and Reach 12 individually. The results in the 

Julington Creek sub-basin were assessed by comparing all the flood estimates at Reach 2 and 5 

individually. The results in the Durbin Creek sub-basin were assessed by comparing all flood 

estimates in Reach 1. The results in the Big Davis Creek sub-basin were assessed by comparing 

all results in Reach 6 (Big Davis Creek). The real and synthetic Big Davis gage estimates were 

grouped together for comparison. The Big Davis Gage results were not combined with the Reach 

6 results because Big Davis gage is not exclusive to Reach 6. As previously mentioned, the Big 

Davis gage was used to calibrate Julington Creek, Durbin Creek, and Big Davis Creek. Therefore, 

it is believed that the flood estimates obtained from the real and synthetic Big Davis gage should 

be compared separately of Reach 6. The results in the Ortega River sub-basin were assessed by 

comparing all flood estimates at Reach 3 individually, comparing the real and synthetic gage 

results at the 103rd St. Gage grouped together, and the synthetic Kirwin Rd. gage results separately. 

Lastly, the results in the Pablo Creek sub-basin were compared by grouping Reach 8 and the real 

gage together. Appendix F contains plots of each sub-basins’ comparable reach location results 

mentioned above. As previously mentioned, there are instances where the years of record at the 

gaged location are higher than the years of record at the synthetic gaged and reach locations. The 

results were compared to each other regardless of the years of record. It is well established that the 

flood estimates are most accurate when a long period of record exists. However, considering the 

variation between the years of record for the data sets analyzed in this research, separating the 

results by years of record and comparing results based on that constraint would have resulted in 
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fewer comparable locations. Therefore, the results were compared to each other regardless of the 

years of record at the appropriate comparable locations. The comparison plots depict the 10-, 25-, 

50-, and 100-year return frequency flood on the x-axis and the estimated discharge in cubic feet 

per second on the y-axis. Each plot contains a legend, which outlines each method presented on 

the graph.   

After plotting the results of each method assessed in each sub-basin’s critical locations, the normal 

distribution was applied to the results. The normal distribution is characterized by a bell-shaped 

curve, which is obtained by computing the mean and standard deviation of the data set (Smantary 

and Sahoo, 2020). The normal distribution bell curves portray how variable and dispersed the data 

sets are. Appendix G contains the normal distribution bell curves for each sub-basin. The bell 

curves were creating by obtaining the mean and standard deviation for each data set. Three 

standard deviations were added to and subtracted from the mean. They were assessed in 0.1 

increments for a smoother curve. Therefore, the x-axis represents ± 3 standard deviations from the 

mean in 0.1 increments. The y-axis represents the probability that a number falls at or above a 

given value of the normal distribution (Kyd, 2006). The Microsoft Excel NORMDIST(x, mean, 

standard_dev, cumulative) function was used where “x” is the value of interest, “mean” is the 

average of the distribution, “standard_dev” is the standard deviation of the distribution, and a 

cumulate input of “FALSE” returns the probability that “x” will occur (Kyd, 2006). Because the 

standard deviation of the flood estimates was so large for several locations, when three standard 

deviations were subtracted from the mean a negative number was obtained. Negative flood flows 

are evidently not possible, therefore, a question of the practicality of the normal distribution arises. 

Overall, the normal distribution bell curves portray a strong presence of a normal distribution in 

the flood frequency estimates. 
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Chapter 8 CONCLUSIONS AND RECOMMENDATIONS 

This thesis presents a multi-method approach to flood frequency estimation. The 10-, 25-, 50-, and 

100-year flood estimates were developed in Black Creek, Julington Creek, Durbin Creek, Big 

Davis Creek, Ortega River, and Pablo Creek sub-basins. The flood estimates were developed by 

modifying the St. John’s River Water Management District’s (SJRWMD) HSPF model, 

conducting statistical Log-Pearson Type III and Power Law calculations, and by analyzing the 

Federal Emergency Management Agency’s (FEMA) Flood Insurance Studies (FIS). The results 

obtained from these methods were then compared to each other and statistically fit to a normal 

distribution.  

This research benefits the basins that are experiencing rapid development and for those that are 

lacking existing data. In recent research conducted by Brody et al. (2007), coastal communities in 

Florida have been identified as increasingly vulnerable as flooding risks are growing. Brody et al. 

(2007) estimated that Florida suffered $2.5 billion in losses from 1990 to 2003 and they determined 

that Florida is ranked as the state with the highest risk for flooding. Duval and Clay county are 

high flood risk areas with one or more occurrences each year (Florida Division of Emergency 

Management, 2018). As seen in Table 49, the direct economic losses for buildings in Clay and 

Duval county are predicted to be as high as between $42M and $114M (Florida Division of 

Emergency Management, Appendix E, 2018). With this information in mind, it is evident that 

flooding in Duval and Clay county are predicted to be highly devastating not only to the economy 

but to communities and individuals. Therefore, the need for accurate flood modeling is crucial to 

the prediction of flood magnitudes – which ultimately defines the damages that communities 

should expect to foresee in the worst of scenarios.  
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Table 49. Direct Flood-Related Economic Losses in Clay and Duval County (FDEM, 2018) 

Direct Economic Loss for Buildings, by County, by Return Period (in dollars) 
County 100-Year Flood 500-Year Flood 

Clay $25,311,000.00 $42,068,000.00 
Duval $59,076,000.00 $114,236,000.00 

 

The modification of the SJRWMD’s HSPF model produced mostly solid flood frequency estimates 

in the sub-basins of interest. The resulting peak flood flows in each model run typically occurred 

one to two days after the Target Date that was modified. However, the resulting peak flow occurred 

directly on the Target Date in several model runs. It is believed that when the peak flow occurred 

on the Target Date, the daily timestep of the model was potentially smoothing the peak to some 

degree. Since the original HSPF models were created by various individuals at the SJRWMD, 

there is a possibility that there are slight differences in modeling approaches between sub-basins. 

The Black Creek sub-basin naturally produces higher flow rates compared to the other basins that 

were studied. Because the Black Creek sub-basin contains naturally higher flow rates, the 

simulation of additional precipitation frequency values resulted in the model crashing consistently. 

An attempt at expanding the HSPF model capacity was made. However, it was unsuccessful. 

Suggestions by the SJRWMD were also taken into consideration to expand the model capacity but 

those were also unsuccessful. Like the observation made by Gebremariam et al. (2014), source-

code modification for the HSPF model was challenging primarily because of lack of 

documentation related to code structure and subroutines. The most complete set of flood estimates 

obtained in the Black Creek sub-basin were the 10- to 50-year flood estimates using the 1995 land-

use condition, median precipitation frequency values, uniform rainfall distribution, and antecedent 

moisture conditions. Simply attempting to simulate the 90th percentile precipitation frequency 

values crashed the model on the 25-year flood frequency run. An attempt at running the 2030 land-

use with additional precipitation values was not even executed because of the prior model crashes. 
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Additionally, the HSPF model runs were generally lower than the FEMA FIS estimates. Therefore, 

there is potential for additional research to be conducted regarding the expansion of the HSPF 

model’s capability to simulate higher flood flows. 

The model runs in the Julington Creek, Durbin Creek, and Big Davis Creek sub-basins produced 

satisfactory results. These land-use variation, variation of precipitation frequency values, and 

variation of rainfall distribution was assessed. Overall, the 2030 land-use paired with the 90th 

percentile precipitation frequency, uniform rainfall distribution, and antecedent moisture 

conditions produced the highest flood flows; however, these relatively high flood flow values were 

still lower than the adjusted FEMA FIS estimates for those locations. Although the 2030 land-use 

runs were successfully simulated in these basins and produced relatively high flood flows, because 

of the complications involved in running the 2030 land-use runs in the Black Creek sub-basin, the 

1995 land-use became the default for the remainder of the sub-basins. It is also important to note 

that the mouth of Julington Creek is more strongly tidally influenced and could even be influenced 

by storm surge, which makes hydrologic modeling in those locations more challenging. 

The Ortega River and Pablo Creek sub-basin HSPF models ran well. The 1995 land-use, 90th 

percentile precipitation frequency values, uniform distribution, and antecedent moisture conditions 

were considered in the model runs. However, it would be beneficial to assess the 2030 land-use 

condition paired with the 90th percentile precipitation frequency values and Type II Modified 

rainfall distribution for all sub-basins where it was not assessed. This combination of parameters 

yields the highest flood flows. Additionally, it is important to note that the ten chosen target dates, 

which received the simulation of precipitation frequency values, were selected from various 

seasons. The consideration of ten target dates from the wet season alone may have produced higher 

average flood flows due to the wetter starting conditions. Ortega River and Pablo Creek are also 
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more heavily tidally influenced at the mouth and could experience a greater deal of storm surge, 

which poses additional challenges to the hydrologic modeling process. Additionally, it was 

previously observed that the FEMA FIS drainage areas were usually larger than the drainage areas 

in the HSPF models. A possible reason for the difference in area is the consideration of tidal 

influence. The hydrologic HSPF models do not consider the tidal areas of each sub-basin. The tidal 

areas of the project locations were instead modeled in the hydrodynamic portion of the model 

(mentioned earlier in this thesis), which is not part of this research.  

In a case study conducted by Ninov et al. (2008), the results of their HSPF modeling for flood 

assessment yielded flood flows that were 130% higher than the historical flood flows, while the 

modeled annual, seasonal, and low flows were approximately 25% to 33% less than the observed 

respectively. This case study provides a perspective on the variety of results that can be obtained 

with the use of the HSPF model. This is an interesting perspective to consider. The research of 

Ninov et al. (2008) produced flood flows that were too high while the results of the HSPF flood 

modeling presented in this research appears to be too low compared to FEMA FIS estimates. 

However, the results of the HSPF model simulations cannot be concretely proven and serve only 

as estimates.  

The Log-Pearson Type III (LP3) statistical computations were successful. There trends found in 

the data were conclusive and expected. This was the expected outcome of the LP3 results as it is a 

common method for flood frequency estimation. 

The Power Law (PL) statistical computations were mostly successful. The PL derived flood 

estimates were typically much higher than the LP3 results and the HSPF modeled results. The PL 

derived flood estimates were even higher than the adjusted FEMA FIS estimates at times. The PL 

distributions produced more reasonable estimates for the 10- and 25-year flood estimates. The PL 
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distribution seemed to massively overestimate the 50- and 100-year flood flows. The PL was 

selected because of the praise it received in various research studies for being a simple and 

effective method. However, there was certainly a caveat that the PL performs best with a larger 

data set (Kidson and Richards, 2005). Therefore, it can be deduced that the 34- to 44-year data sets 

obtained from the HSPF model were not adequately large enough. Although there were two data 

sets (USGS North Fork Gage and USGS South Fork Gage) that contained 88 and 79 years of real 

data, the PL distribution seemed to overestimate the flood flows at those locations in comparison 

to the FEMA FIS. The difference in computing the PL distribution regression coefficients using 

the Linear Regression model and Nonlinear Regression model also produced varying results. It 

was evident that the data sets were better suited for one method over the other in certain cases.  

The use of the FEMA FIS estimates proved to be an asset as the estimates were derived by qualified 

professionals. There is a degree of validity in comparing the methodologies assessed in this 

research to the FEMA FIS estimates. However, it has also been established that the FEMA FIS 

estimates were all obtained using varying methods. This raises a question regarding the 

consistency of the FEMA FIS estimates. It was evident in this research that different 

methodologies can at times produce widely varying flood flows. As previously established, the 

FEMA FIS estimates are either based on hydrologic modeling or statistical estimates. Research 

conducted by Okoli et al. (2019), compared statistical and hydrological methods for the estimation 

of design floods based on 10,000 years of synthetically generated weather and discharge data. 

Although their hydrologic modeling did not reflect any real applications and was intended as a 

baseline for discussion for comparison of results, their ultimate findings suggest that more than 

one flood estimate should be obtained and the maximum value (within reason) should be selected 

to minimize the likelihood of underestimating the design flood (Okoli, 2019). These findings are 



77 
 

in line with conclusions presented in this research thesis. The establishment of extreme flood 

estimates based on one methodology is outdated and involves higher risk in the development of 

planning measures for flood protection.  

In addition to the several HSPF modeling recommendations proposed above, there are two more 

recommendations for further research. Firstly, it may be beneficial to consider a third statistical 

distribution in addition to the LP3 and PL distributions. This would aid in gaining additional 

understanding of the variety of flood estimates that may be obtained using different statistical 

distributions. As discussed in the previous section, normal distribution bell curves were created to 

understand the mean and standard deviation of the results of all the methods assessed in this 

research at each location of interest. A second recommendation for further research involves the 

implementation of a different statistical distribution to effectively compare the results of this 

research. Although the implementation of the normal distribution resulted in a mostly reasonable 

set of bell curves, several bell curves depicted negative flood flows. Negative flood flows are 

physically impossible; however, they were present when computing ±3 standard deviations (a 

foundational step of the normal distribution) from the mean in certain locations. Therefore, it is 

recommended that a different distribution is assessed to compare the flood estimates obtained from 

the different flood flow estimation methods presented in this research. In a survey conducted by 

the World Meteorological Organization (1989), the Extreme Value Type 1 (EV1) and log-normal 

distributions are the most used for the analysis of extreme floods. The selection of the most 

appropriate statistical distribution for flood frequency analysis is frequently a challenging task and 

the decision is frequently subjective or historical (World Meteorological Organization, 1989). 

Therefore, it can be concluded that there is no true correct distribution. There is only the best fitting 

distribution that is often discovered through trial and error.  
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In conclusion, this research has developed a new methodology for producing flood estimates. The 

modification of the St. Johns River Water Management District’s HSPF model to estimate flood 

estimates is a brand-new methodology. Several of the HSPF models need to be expanded for sub-

basins where the extreme flood flows exceed the model flow capacity. However, reasonable flood 

estimates can still be obtained from this new methodology in every sub-basin belonging to the St. 

Johns River. Current existing flood flow estimates are typically established as a one-value estimate 

per return frequency as seen in the FEMA Flood Insurance Studies. Additionally, the selected 

methodologies from which their (FEMA FIS) estimates were obtained are not always consistent. 

It is suggested that future extreme flood estimation procedures include the assessment of multiple 

methodologies to minimize the risk of underestimating design floods. This research is unique in 

producing a set of estimates for the 10-, 25-, 50-, and 100-year floods for the Black Creek, 

Julington Creek, Durbin Creek, Big Davis Creek, Ortega River, and Pablo Creek sub-basins based 

on hydrologic modeling, statistical analysis, and comparison to existing flood estimates.
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FIGURES 

 

Figure 1. Black Creek HSPF Model View (USGS and EPA, 2012) 

 

Figure 2. Black Creek Aerial Photo (Google Earth Pro, 2020)  
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Figure 3. Julington Creek HSPF Model View (USGS and EPA, 2012) 

 

Figure 4. Julington Creek, Dubin Creek, Big Davis Creek Aerial Photo (Google Earth Pro, 2020) 



81 
 

 

 

Figure 5. Ortega River HSPF Model View (USGS and EPA, 2012) 

 

Figure 6. Ortega River Aerial Photo (Google Earth Pro, 2020) 



82 
 

 

 

Figure 7. Pablo Creek HSPF Model View (USGS and EPA, 2012) 

 

Figure 8. Pablo Creek Aerial Photo (Google Earth Pro, 2020) 
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Figure 9. Real USGS Gage Locations (USGS, National Water Information System: Mapper, 2020) 
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Figure 10. HSPF Return Frequency Curve (USGS and EPA, 2012) 

 

 

Figure 11. Pablo Creek Power Law Linear Regression 
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APPENDIX A 

 

 

Source: Google Earth Pro (2020) 
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APPENDIX B 

 

Source: Water Supply Impact Study (2012) 
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APPENDIX C 

 

Source: Water Supply Impact Study (2012) 
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APPENDIX D 

 

Source: Water Supply Impact Study (2012) 
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