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Abstract 
 
The nanoscience and nanotechnology community have a common goal in better understanding the 
surfaced enhanced Raman scattering (SERS) that occurs due to laser plasmon resonance in 
conjunction with metal enhanced substrates. Metallic nanostructures, such as silver (Ag) nanorods, 
are widely used in biological and chemical sensing applications that rely on the measurement of 
subtle changes in the optical response of the nanostructures in the presence of a target agent. The 
optical response of Ag nanorods and most other metallic nanostructures is highly sensitive to 
morphology and surface chemical termination. In pristine condition, the optical properties of Ag 
nanorods and other metallic nanostructures are well documented in the literature. However, almost 
nothing is known of the structure – property effects of exposure to solvents, buffered solutions, 
and similar in real applications. This document reports on the investigation into the effects of 
dissolved gasses, which are known to corrode bulk and thin film silver (Ag), in di-ionized water 
on Ag nanorods. Through SEM, SPM, UV-Vis, and Raman Spectroscopy, characterization of rapid 
corrosion and morphological changes are observed within minutes when Ag nanorods are exposed 
to water with dissolved gases present. Conversely, almost no measurable changes are observed 
when the dissolved gases are removed from the water via boiling. The current research attempts 
in exploiting the enhancement factors of optical properties dealing with SERS. Growing substrates 
to examine in SERS by using physical vapor deposition (PVD) on corning glass depositing Ag 
nanorods will enlighten the nanoscience and nanotechnology community on these changes in 
optical properties. SPM and SEM images both show significant differences through corrosion of 
Ag on the two different types of water. The species from corrosion in regular water appears to be 
AgO, as there is no Sulphur detected by the SEM’s EDS spectrum. KFM shows clear differences 
in surface potential indicating a chemical change. UV-Vis shows a decrease in resonance and 
absorptivity after corroding. The goal of this investigation is to characterize oxidation species 
grown on the Ag nanorods when the substrate is exposed to H2O and dissolved gasses. Raman 
Spectrum shows that for a fluorescent molecule (R6G), the overall measured Raman signal 
significantly increases with oxidation due to activation of surface enhanced fluorescence. 
Statistical T-test were run on spectrum, a value of 1.83E-05 was accessed to prove the significant 
increase in signal. When oxidation occurs from substrates stored in water with dissolved gases like 
the R6G samples, the scatter in the signal also significantly increases, proven with an f-test value 
of 4.76E-05. Additionally, when a non-resonant molecule is used, like our caffeine, the scatter in 
signal significantly increases, proven by f-test value of 2.4E-02. By experimenting contrasting 
substrate-samples during Raman that were taken straight out of vacuum or stored in water, the 
community can see the indicating affect measured in Raman spectra. 

Keywords: Raman Spectroscopy, SERS, Surface Plasma Resonance (SPR), UV-Vis, SEM, 
Nanorods, Physical Vapor Deposition (PVD), Scanning Probe Microscopy (SPM), Kinetic Probe 
Force Microscopy (KFM) 
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Chapter 1. Introduction and Motivation 
 

 Surface enhanced Raman spectroscopy has become a hot topic of the 21st century. As the 

2020’s progress through the epidemic of COVID-19 with different severity of COVID strands, 

this has triggered interest by scientists in SERS because of its biosensing application for 

detecting diseases early on. By June 2020 8 million people around the world had been infected 

by COVID-19. The lifespan of this epidemic has been a little under a year now and the COVID 

virus has mutated several times and the current strand of January 2021 has become more 

contagious. [55] Can SERS contribute by applications in detecting COVID strands? 

 Throughout the 20th Century, and even early the 21st century, the nanoscience community 

is becoming larger and larger including literature being published throughout this trend. We have 

come to an era in which immense progress has been made in innovative instruments for analysis 

on the nanometer scale. These instruments have become commercially available by companies 

like Shimadzu for scientists to research with throughout the world. Their is significant room for 

further development and advancement on these nanoscale regimes of many technologies. 

Throughout the 20th century scientists have been analyzing and detecting early disease 

diagnostics by human biological fluids with Raman Spectroscopy. SERS substrates with surface 

plasmon resonance (SPR) such as silver nanorods grown on glass, has made possible detection of 
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amyloid beta for Alzheimer’s disease [56], MiR-196ain for lung cancer [60], and many more 

early-on viruses have been analyzed.  

SERS has the potential to enables time and cost efficiency over the current PCR testing to 

detect SARS-CoV-2 strand. PCR testing sometime can take hours and multiple cycles to test. 

This is where COVID-19 exposed time inefficiencies involving the PCR testing in turn resulting 

in the inability to diversify across clinical studies. [61] SERS in minutes yields a molecular 

finger print of the analyte under investigation. Not only is their room for improvement in 

polymerase chain reaction (PCR) testing involving time and cost, additionally improvements can 

be made in reliability and repeatability of testing. Reports have been made on the variability in 

results of testing the same patients. [61] 

Raman Spectroscopy does not require large amounts of capital investments compared to 

other methods available. One of the main benefits to Raman spectroscopy is it does not require 

the analyte to include labels or markers. SERS can detect the intrinsic physical properties of the 

analyte purely. Labeling biomolecules can block binding sites degrading the detecting abilities of 

the subject. Due to the portability of Raman spectroscopy and low labor and time costs versus 

other methods, Raman analysis should be the preferred in lab-on-glass method for rapidly 

detecting many viruses in real time. An example of SERS sensitivity for detection was reported 

by the University of Cambridge that detection could be achieved of as little as 10^2 EID50/mL 



11 
 

(50% egg infective dose per microliter) with a virus specificity of 90% within minutes. [62] 

Additionally, SERS spectral graphs can monitor p24 antigen in blood plasma for HIV diagnosis 

with a 97.5% sensitivity and 95% specificity. [33] 

Corrosion of Ag nanorod substrates is a huge issue concerning SERS. When substrates 

with metallic nanostructures are grown, the average diameter of each nanorod is approximately 

200 nm, with the center to center spacing between each nanorod being approximately 100 nm. 

Furthermore, when the structure and spacing is this small, surface chemical reactions and 

morphological changes happen within minutes of being exposed to regular water or even air. The 

substrates can become compromised by oxidation and corrosion rapidly [40].  

It is known in literature SERS enhancement is high when using Ag metallic nanostructure 

substrates. Studies suggest that the most likely cause for the decrease in SERS enhancement, 

while using Ag nanorods after storing these in air, is due to surface contamination of Sulfur and 

hydrocarbon fouling. [40] Before 21 days, the substrates signal to background ratio can vary by 

up to 20%. [40] Ag nanorod substrates for SERS stabilize from surface chemical changes and 

morphological changes after 21 days as shown in Figure 1. [40]  
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Figure 1:  Recent studies show (a) Raman signal with R6G absorption on Ag and Au nanorod 
substrates and (b) signal to background ratio versus time over 4 months while perishing in air. 

Literature suggests that the optical properties of metal thin film characterized by SERS is 

contributed from pinhole formations of corrosion. [43] The optical properties are not as much 

affected depending on the deposition techniques or the substrate used, but the SERS signals 

show significant degradation from when the samples are exposed to aqueous distilled water for 

relatively long periods of time. [43] Furthermore, 1 cm^2 samples exposed to distilled water for 

24 hours were nearly stripped of all silver films. [43] 

This creates irregularities for the repeatability later when detection tests are performed 

with the different substrates that have been sitting in relatively harsh environments. Herein lies 

the motivation behind this paper. This is an investigation in the corrosion and degrading issues 

with SERS biosensing substrates. This paper reports on how SERS samples exposed to regular 

water drive rapid surface corrosion, which is observed by an SPM image of topography 

differences after only 2 hours shown in Figure 2. 
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Figure 2: (Left) baseline Ag nanorods substrate straight out of vacuum topography versus (right) 
oxide perished Ag nanorods substrate after 2 hours in regular water. 

This paper focuses on investigating corrosion of Ag nanorods in water, the most common 

way they are applied in sensing applications. Understanding this will dictate if substrates in 

experiments should be used in regular or degassed water. We hypothesize that it is the dissolved 

gases in water that are driving rapid surface corrosion and formations of silver oxide on silver 

nanorods. To characterize this oxide SEM, EDS, KFM, and UV-Vis are performed. Afterward, 

SERS experiments in the results section of this paper will be performed to show the significant 

changes in signal strength due to dissolved gasses in water. This paper will suggest on creating 

more reliable, repeatable, and longer lifespan of enhanced signal for detection using SERS 

biosensing metallic nanostructure substrates.  

Chapter 2. Overview of Spectroscopy Methods 
 

 

There are many Spectroscopy analysis tools used for identifying materials and molecules. 

These tools include Raman Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), 

Near-Infrared Spectroscopy, ICP Emission, UV-Vis Spectroscopy, X-ray Fluorescence (XRF), 
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and Nuclear Magnetic Resonance (NMR) Spectroscopy. XRF and NMR in particular, focus in 

Atomic Spectroscopy to analyze chemical functional groups or specific atoms by sharp peaks in 

the spectra detected. XRF uses X-ray tubes to irradiate a sample, then the sample emits its own 

unique characteristic X-rays that are detected to understand elemental attributes. NMR uses radio 

waves onto nuclei magnetic fields for this atomic analysis. UV-Vis and FTIR are absorption 

spectroscopy using an excitation source of light, monochromatic or at different frequencies of 

light, are emitted on a sample to calculate the absorption of light by a sample. All these analyses 

are widely used and very useful in practice. Raman Spectroscopy is the main focus due to its 

ability to detect viruses. Raman uses a monochromatic laser to emit on a sample that changes the 

vibrational energy states of molecules. Raman relies on the inelastic scattering, known as Raman 

scattering, that leaves a molecular fingerprint of the specific molecule when the energy 

vibrational state is shift up or down. To understand Raman analysis, the latter of this section 

breaks the technique down into surface plasmon resonance created by the laser and surface 

enhanced Raman spectroscopy by the metallic substrates which influencing the spectral intensity. 

Surface Plasmon Resonance (SPR) 

SPR has emerged as a powerful optical detection technique to study biomolecular 

interaction in real time, food analysis, industrial gas manufacturing, and more. Due to its 

simplicity, nearly every SPR configuration uses a detection scheme consisting of a light source, 

sample, beam splitter or prism, and detector. This widely used configuration is called the 

Kretschmann configuration. In the current investigation we use a 532 nm laser which photons 

strike our silver nanorod array localized structure. This incident light strikes through the prism 

and interacts with the Ag’s electrons. The photons are absorbed by the Ag’s electrons, therefore 
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the electron field is influenced and surface plasma waves begin to oscillate on the surface of the 

Ag sample, represented in Figure 3.  

 

Figure 3: Example of the electrons surface plasmon wave when struck by incident light 

Based on Mie theory, in conjunction with these relatively larger metallic nanoparticles, the signal 

spectra is significantly enhanced. (48) Ag is used due to its intrinsic ability to sustain SPR on the 

surface because of its specific absorption of light and sustained propagation of the wave through 

the solid. The signal is amplified due to the particle size, shape, and refractive index of our Ag 

nanorods. Furthermore, the oscillations are amplified when the shape of these particles is sharper 

such as our nanorods. An example of the interaction with Au nanorod’s plasmon electron cloud 

and the coupled incident light creates the SPR as shown in Figure 4. [63] 
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Figure 4: Example Au nanorods impact on SPR 

The refractive index is another factor held accountable for enhanced SPR. In order for SPR to 

happen, the dielectric function real part is roughly negative two times the dielectric constant of 

surrounding medium. [64] When the incident light is directed towards the sample at the 

resonance angle, the photons of the light beam have a momentum equal to the momentum of the 

surface plasmons. This energy absorbed by plasmons causes a change of the reflection angle 

which yields the signal output of instrumentation such as Raman Spectrometers. 

Raman Spectroscopy 

Raman Spectroscopy is the analysis technique where a sample is exposed to a 

monochromatic, excitation laser that interacts with an analyte molecule. The sample absorbs 

most the light, but a small percentage is scattered in all directions where a CCD detector can 

acquire the data from position of sample the laser hits versus vibrational state as shown in Figure 

5. [65] 
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Figure 5: Example of the configuration used for Raman Spectroscopy  

 This incident light has an incident frequency. If the scattering frequency equals the incident 

frequency, (Vs=Vi) then this is called Rayleigh Scattering as shown in Figure 6. [49] 

 

Figure 6: Figure 6a shows Mie scattering with the diameter of the particle approaching the same 
number as the incident light wave number. 6b shows Rayleigh scattering when the diameter of 
the particle is much smaller than the wave number. 
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Approximately 1 percent of the scattering intensity occurs at different frequencies than the 

incident frequency and this is labeled the Raman scattering. These electrons have different 

vibration levels defined as specific energy differences. The Raman Spectroscopy instrument will 

detect the Raman scattering and create a spectrum which can be analyzed to provide a structural 

fingerprint indicating specific molecules. 

Furthermore, the electrons being hit by incident monochromatic light absorbs energy and 

rises to its Virtual Energy state (energy transferred = hVi) then the electron falls back to an 

energy level when losing energy. If the energy increased equals the energy lose then Rayleigh 

scattering occurs a photon emits. There are other times however, the energy is lost, and the 

electron falls back to a different vibrational level. Again, this is when the energy lost does not 

equal the energy that was absorbed from the incident photon. As a result, the photon emitted 

from the electron has a different energy than the incident photon. This gives rise to how the 

Raman scattering process occurs. 

Depending on if the frequency of scattered photon is less than the frequency of the incident 

photon this will give stokes line or anti -stokes line, shown in Figure 7 [50], observed in the 

Raman spectrum.  
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Figure 7: Raman scattering of (left) stokes scattering when vibrational energy levels shift up and 
(right) Anti-Stokes scattering when vibrational energy levels decrease. 

If the frequency of scattered photon is greater than the frequency of the incident photon then 

Anti-Stokes lines are observed in the spectrum. The Raman spectra yields a molecular 

fingerprint. Different molecules have different Raman spectra. By studying the spectra, you can 

identify rotational levels and perform qualitative analyses. Additionally, you can study the 

spectra by looking at the particular Raman lines intensities to tell you about the concentration of 

a molecule in a sample, therefore giving you quantitative analysis.  

Raman Spectroscopy is a widely established light scattering analysis used for many 

applications. Applications for Raman spectroscopy include Biomolecule sensing [24-27], single 

molecule detection [16-23, 27], detection of chemicals in water [15], Tumor Detection [14], and 

even NASA would like to try and detect signs of life on remote extraterrestrial locations using 

Raman spectroscopy. Raman has been underutilized for some time due to fluorescence 
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competition and due to the low amounts of Raman scattering from incident photons. Recently, 

Raman spectroscopy has gained notice in the nanoscience community with the evolved surface 

enhanced Raman spectroscopy (SERS). SERS has become available, with the addition of 

metallic nanostructures to the surface of substrates where the analyte resides. Normal Raman 

spectra, like the one shown in Figure 8 [66], relies on the inelastic scattering of an analyte 

molecule and sample matrix. 

 

Figure 8: Normal Raman Spectra of Fantenyl HCI 

Typical normal Raman samples need to be strongly scattering for detection limits to be 

approximately 1-10% concentration. [66] For applications involving virus detection these limits 

are orders of magnitudes to high. Some samples have small volumes where Raman Spectroscopy 

alone is inadequate for acquiring spectra. More recent application are involving samples with 

very low concentrations, or even traces. An evolved method was produced coined Surface 

Enhanced Raman Spectroscopy (SERS) to detect these small quantity samples. Unlike normal 
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Raman, SERS involves the vibrational modes of the molecule and the substrate the sample is 

absorbed upon, not solely the molecule. This attributes by the SERS substrate amplify the signal, 

in-turn opening another level for analysts to research low concentrations of samples. 

Surfaced Enhanced Raman Spectroscopy (SERS) 

Molecules with very low Raman efficiencies require improved Raman analysis such as 

SERS. The SERS effect is not completely understood and there are challenges that need to be 

discussed. Two mechanisms are believed responsible for the enhancement causes. The 

enhancement is believed to come mainly from a long-range electromagnetic effect due to optical 

properties of nanostructured metallic surfaces, a contribution 10^10. The second enhancement is 

caused from short range chemical effect due to charge transfer between the chemically absorbed 

species and the metal surfaces, a contribution of 10^2 [23]. These effects happen simultaneously.  

The Enhancement effect depends on the geometry of the particle and substrate. 

Commonly used substrates are gold and silver nanoparticles. In the current research silver 

nanorod structures are used. Three aspects are considered when creating these SERS substrates. 

The following are considered; the nanoscale roughened surfaces onto which the sample is 

absorbed, colloid suspension of the sample, and the enhanced Raman signal depends on the 

shape and the size of the nanostructures. The Ag nanorods during the following experiments are 

approximately 100 nm diameter and 200 nm in length, grown by oblique angle deposition has 

been proven through significant literature to be ideal surface amplifiers for SERS [43, 67, 68]. 

This lead to Raman gaining traction in the interest for rapid detection of pathogens like COVID-

19 strands which many recent reports are being produced. [69-71] In Chapter 4, Material 

Characterization section of this paper, we go into more of the spectroscopies used in this paper, 

but first an understanding of the substrate creation by physical vapor deposition is essential. 
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Chapter 3. Physical Vapor Deposition 
 

Physical Vapor Deposition (PVD) 

The nanofabrication community has three main choices in fabrication methods for 

nanomaterials: chemical vapor growth (CVD), physical vapor growth (PVD), and solution 

synthesis. For this investigation, neither solution synthesis nor chemical vapor synthesis will be 

used. CVD does not produce pure gold or silver nanorod surfaces because these reaction 

generally happen at higher temperatures. For solution synthesis the nanostructures are grown 

while free floating in solution, unlike the PVD which is grown on substrates. [53] Substrates 

make PVD better for Raman analysis. For solution synthesis or electrochemical methods, 

nanostructures are generally grown with capping agents to keep them from growing into bulk 

crystals. [54] An example of gold nanorods grown by solution synthesis is shown in Figure 9. 

[72] The surfaces of the capping agent will interact with the analyte you are trying to detect. 

PVD does not include chemical reactions. Instead PVD growth structure, includes sufficiently 

understood thermodynamics and surface kinetics in the bottom up evaporation-synthesis process. 

No capping agents are involved so the surfaces of the rods are ultra clean. The downside to PVD 

has been the spread in size and shape from self-assembly. 
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Figure 9: TEM image of gold Nanorod grown by solution synthesis. Aspect ratio of 25 and scale 
bar of 500 nm.  

Two main PVD techniques are used to create nanostructures, sputtering and evaporation. 

Sputtering uses gas to generate a plasma to erode the source material shown in Figure 10. [51] 
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Figure 10: Configuration representation of Sputtering deposition by Argon gas. 

This event creates gases that results in scattering and stops “line of sight” deposition onto a target 

substrate. [51, 52] PVD by evaporation to grow nanomaterials utilizes thermal, electron beam, 

ion bombardment, or laser ablation techniques sources. Of the PVD techniques, thermal 

evaporating is easy to implement, easy to scale, a low-cost system, and offers easily repeatable 

results. Thermal evaporating PVD consists of a vacuum chamber, where the source material is 

vaporized by resistive heating.  
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Figure 11: Physical Vapor Deposition Vacuum Chamber Representation. The source material is 
vaporized and travels through the chamber onto target substrate 

The source material is put under sufficient heat such that the resistivity of the basket causes 

atoms to vaporize, shown in Figure 11 [13]. The source material can sublime, from solid to 

vapor, or in most cases, evaporates from liquid to vapor after melting from solid to liquid. The 

process relies on when materials are heated, there is a finite vapor pressure over all materials. 

Before the source material can be deposited onto the sample, evacuation of the chamber gases is 

required.  

The PVD chamber typically has an inert gas inlet and outlet pumps to create the vacuum. 

The pumps consist of a rough and turbo pump, shown in Figure 12. The rough pump will create a 

suction to rid of most the gases. Once the gases go below viscous flow the turbo pump will 

suction and evacuate the chamber gases to reduce pressure to approximately 10^-2, which is 

required before vaporizing any source material. In these low pressures, is what creates idea flow 
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for molecules without scatter. The ideal flow for molecules is called the mean free path, where 

the source material has a direct line of sight and the vacuum will cause deposition in a straight 

shot onto the target sample. After achieving the low pressure in the chamber, then can the 

experiment begin proceeding with resistive heating of the sample.  

 

Figure 12: Representation of a PVD configuration with a quartz sensor for deposition rate  

Thermal energy is supplied by passing a large current through a thermally tolerant basket, for 

example tungsten, which is holding the source material. These vaporized atoms travel through a 

low-pressure space where the flux of atoms rise until they hit the downward facing target sample, 

where the atoms condense and forms a film sample. A quartz crystal sensor enables control of 

source material vaporization rate, shown in Figure 12. This quartz microbalance uses vibrational 

frequency to detect rate. The microbalance contains a crystal perpendicular to the flux and when 

mass is added by deposition the vibration frequency will change as well. This rate control can be 
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coupled with a movable shield to allow specific film thickness deposition on the target sample. 

Due to the pure nature of these metal films, many applications for coating have stemmed from 

this method [4-12]. Besides coating materials, PVD is used in the application of growing 

nanorods to create surface enhanced Raman spectroscopy (SERS). 

Oblique Angle Deposition 

Over the last century there has been sufficient progress in the nanofabrication technology 

of PVD, two advanced methods, GLAD [2,3] and OAD [1] in particular, have shown significant 

promise for growing nanorods. For the current experiments PVD is the fabrication method where 

synthesis of silver (Ag) nanorods occur on an oblique angle glass slide by evaporation in a 

vacuum.  

 

Figure 13: Representation of Ag nanorods from an TESCAN SEM 
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These syntheses of Ag on the glass slide are nanorods growing at approximately the 100 nm 

range dimensions shown in Figure 13. This angle introduces a geometric shadowing effect where 

the Ag nanorods can grow uniformly. Geometric shadowing happens when adatoms diffuse to 

the target surface at low temperature and such a high deposition rates that adatoms start to grow 

on top of each other creating islands. Once islands start to form, due to shadowing of these 

islands, adatoms only start to land on top of adatoms until you for rod growth only, shown in 

Figure 14.  

 

Figure 14: Geometric shadowing process of nanorod growth 
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Thermodynamics in PVD Growth Nanorod Structures 

An easy example to help visualize this scale of nanorods is to picture hair on a single 

strand of human hair. This is the scale this nanoscience community works in, which tends to be 

under 100 nanometers. To understand the thermodynamics in nanostructure crystal growth from 

PVD, starting with the fundamentals of crystal growth in general will yield better results in 

grasping this concept. Crystals grow in continuous shapes mostly due to their atoms organized, 

repeating patterns. Crystalline structural growth depends on how the atomic pattern is arranged. 

If the atoms pattern arrangement is cubic, then the crystal tends to grow in a cube shape. Another 

example of cubic lattice is Silver, with a face centered cubic (FCC). FCC structures have atoms 

covering 74 percent volume in their lattice, which makes up for the highest close packed of all 

crystal lattice structures.  

In any case, a phase change has to occur that is thermodynamically desirable. In this case, 

phase change is born from a solution or vapor. The source material vaporizes and travels across 

the vacuum chamber onto the target sample. Here the adatom can integrate into a crimp or 

irregularity in the surface or nucleate a new layer.  

In order for the nanostructures to grow into rod-like structures the chamber of PVD must 

be in a non-equilibrium state. PVD is always in a state of supersaturation. Furthermore, the 

adatoms final location depends on diffusion barriers and thermal energy. If an adatom has 

insufficient energy, the likelihood of mobility is decreased. [13, 73] Based off the Kossel model, 

it is three time more likely for an adatom to step or diffuse to another monolayer instead of 

making a multi-layer jump. Therefore, once the nanorods is formed, the probability of growth is 

high. [13,73,74] If the deposition rate during PVD is high, the adatom that hits the target surface 

can be hit by another adatom before it diffuses. Two adatoms form a dimer, which creates a 
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much higher diffusion barrier to overcome. [13] The mobility of a dimer is therefore restricted. 

High deposition rate gives rise to surface roughness through an abundance of 3D morphing and 

nanorods. [13] 

A second means of increasing surface roughness is to lower the temperature in the 

vacuum. By lowering the temperature in the vacuum, this lowers the thermal mobility of adatoms 

which in turn the diffusion barrier kinetically dampens the adatom from movement. [13,73] 

Again, this results in higher introduction of 3-dimensional growth of nanorod structures. 

Silver as the Source Material for Nanorods Growth 

In PVD, three main challenges exist in the fabrication of silver nanorods. In this work we 

will discuss (1) how does surface diffusion participate in the formation of Ag nanorods and the 

diameters of these nanorods? We will need to look into the deposition rate and temperature, as 

the surface diffusion relies on these factors. We would like to create nanorods with the smallest 

diameter possible, therefore a closed form theory will be indicative in how these two factors 

associate with one another. (2) At the same time, it is necessary to understand the 

nanofabrication of such nanorods to create a sufficient spacing between nanorods. If the columns 

are grown too close to each other they will coalesce, where separate columns will not grow. 

Further, we will need to control the spread of nanorods to not having a big distance from each 

other, so the adatom do not start to form on the side of the columns which would increase the 

diameter of the rods. (3) We will need to find a way that silver does not corrode in harsh 

environment for SERS. 

The Corrosion of Silver 
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All metals can corrode. In the nanoscale realm, with decreased surface area and harsh 

environments, corrosion contamination can happen in minutes even with noble metals like silver. 

Corrosion in metals happen by electrochemical reactions when the metal comes in contact with 

its surrounding environment specifically atmospheric gases. Based on the environment, this will 

depend on the corrosion form and rate of deterioration. For SERS samples, the corrosion of 

silver presents a problem in itself. When Ag nanostructures is exposed to harsh environments, 

which can be as simple as storing in air, hydrogen sulfide can corrode the Ag substrate. In less 

than a day of Ag exposed in these environments, AgS will begin to form a black coating on the 

outside surface. [40] These corroding contaminates of Ag can diminish results for Raman 

spectra.  

Similarly, discussed previously, Ag nanostructures stored in liquids, even distilled water, 

will corrode in a matter of minutes after the AgO forms. [43] A method will be discussed in the 

latter sections of this work to eliminate corroding for relatively long periods of time of silver by 

preventing contact of the harmful atoms. One of the more advanced methods in PVD for creating 

these Ag nanorods is used for the current experiment by Oblique Angle Deposition (OAD). 

These OAD nanorods are part of the prevention procedure discussed later. 

Many research efforts and large sums of funding have been conducted in the past decades 

to strive to improve technology or invent technology by studying nanomaterial in the 100 nm 

range. More recently, nanomaterials in the 10 nm range have been of interest. The nanomaterials 

in the 10 nm range is the focus due to the potential to impact nanotechnologies that are relevant 

in current societal problems. One of today’s societal problems include understanding the SERS 

phenomena and why it enhances signals by 10^11. Enhancing Raman signal can be induced by 
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creating metallic nanorods for SERS substrates. OAD is a method to fabricate Ag nanorods for 

SERS samples. 

Chapter 4. Materials Characterization 

 

Scanning Electron Microscopy (SEM) 

SEM works with a configuration of an electron gun that supplies a voltage through a 

tungsten filament onto a thermionic cathode which shoots an electron beam into a vacuum 

chamber. This beam accelerates through an anode, a set of condenser lenses, and an objective 

lens in a vacuum chamber which guides the electrons by electromagnetic fields into the sample 

chamber as shown in Figure 15. [75] 

 

Figure 15: The image is a representation of the configuration for a Scanning Electron 
Microscope (SEM).  
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The beam then strikes the sample, on the positively charged sample stage again guiding 

the negatively charged beam of electrons, and data is collected through the EDS X-ray detector, 

backscatter detector, and secondary detector. When the beam strikes the sample emits secondary 

electrons off the surface which yield desired surface images created by the secondary detector. 

The beam then penetrates deeper where the sample emits off the surface and within the sample 

back scatter electrons which is how the backscatter detector creates images. At the same time, 

some of the back scatter electrons get trapped in the sample which is where x-rays are emitted 

and can be captured for elemental analysis by an energy dispersive spectroscopy (EDS) detector 

as shown in Figure 16. [76] 

 

Figure 16: The image is a representation of the sample-electron interaction from the incoming 
electron beam. 

Scanning Probe Microscopy (SPM) 

SPM is a surface analysis technique with various modes to characterize mechanical 

properties such as electrochemical reaction, adhesion force, young’s modulus, and several other 
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properties. Two modes of particular interest are the contact mode for surface topography and 

Kinetic Force Probe Microscopy (KFM) for surface potential. The contact mode runs a 

nanometer size probe that physically comes in contact with a sample raster scanning a localized 

area of a sample as shown in Figure 17. [47] 

 

Figure 17: The cantilever tip traces and retraces a localized section of the sample in contact 
mode to obtain topographical images. 

The contact mode creates an image by the SPM’s laser detecting deflections of the cantilever 

which is discussed in the latter of this section. Contact mode is later discussed in the 

experimental section of this paper to show the surface topographical differences between the 

sample out of vacuum versus the sample that has perished in non-degassed water for 2 hours. 

  KFM mode yields the electric potential in voltage (V). During KFM the SPM supplies a 

small current for the conductive tip which when scanning the sample can analyze the difference 

in potential between the probe and the sample. A representative image between the cantilever 

and sample during KFM mode is shown in Figure 18 [47] for ease of visualization. 
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Figure 18: The image is to represent the interaction of the SPM cantilever conductive tip and the 
sample surface to obtain electric potential of a sample. 

KFM mode is of interest to see how the surface potential of the sample material changes with a 

vacuum sample versus an oxide sample.  

The SPM head contains the cantilever holder, the sample stage, laser, detector, and 

scanner shown in Figure 19. [47] 

 

Figure 19: The SPM head and internal components. 
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The laser is how the SPM acquires topographical images. The laser beam is split with a beam 

splitter that directs the beam onto the top of the cantilever which then bounces onto another 

mirror which finally hits the position sensitive detector. The Piezoelectric scanner raster scans 

the sample stage in the X, Y, and Z axes to keep a desired interaction with the cantilevers probe 

shown in Figure 20. [77] This allows the probe to trace and retrace a localized sample section 

relatively quickly using contact or KFM modes.  

 

Figure 20: The typical internal components inside an SPM head. 

Chapter 4. Experiment Methods 
 

After nearly 30 years of laboratory scale research, metallic nanostructures are finally poised 

to propel existing and new technologies to meet critical needs in society [28-31]. One such current 

need is the sensitive, rapid, and low-cost detection of the SARS-CoV-2 virus, which is responsible 

for the devastating Covid-19 illness [32-33]. Classical detection techniques rely on the replication 
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of the viral RNA and are expensive and slow [34]. In the literature, sensors that rely on the unique 

optical properties of metallic nanostructures have been widely demonstrated to be rapid and 

potentially inexpensive at scale [35-38]. These optical sensors typically rely on the plasmonic 

properties of noble metal nanostructures, like silver nanorods or nanoparticles. The plasmonic 

properties of these nanostructures derive from a combination of length-scales less than 100nm and 

appropriate electronic work functions [39]. The functionality of these nanostructures as sensors 

relies heavily on the surfaces of the metallic nanostructures and binding or proximity of the 

targeted material to the surfaces [40]. The changes that happen within minutes to the surfaces in 

the presence of the targeted material are measured using optical ultra-violet visible spectroscopy 

(UV-Vis) or Raman spectroscopy [41].  

Unlike in ideal laboratory conditions, the conditions experienced by these nanostructures 

in sensing applications are diverse and not well studied. In biological sensing applications, many 

different materials, like phosphate buffered saline, are required to maintain appropriate biological 

conditions [42]. The effects of these new materials on the morphological and chemical structures 

of metallic nanostructures has not been the topic of sufficient investigation in the literature. As 

such, observed differences and claims of detection of biological materials, like SARS-CoV-2, may 

be observations of changes to the metallic nanostructures caused by buffers and additives rather 

than the target molecule itself. For example, an extensive review of the literature shows that there 

has been no investigation into the effects of something as simple as the presence of dissolved gases 

in the water used in sensing experiments with metallic nanostructures like silver nanorods. 

However, it is well known in the literature and industry that dissolved oxygen in water can rapidly 

corrode silver [43].  
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In this technical document, a representative study, the authors demonstrate that significant 

differences exist in the optical reflection and Raman signals of rhodamine-6G (R6G) absorbed 

onto the surfaces of silver nanorods when the samples were exposed to di-ionized water versus the 

same water that had been degassed via boiling. Through investigation using scanning electron 

microscopy (SEM), post operation and in-situ UV-Vis spectroscopy, scanning probe microscopy 

(SPM), and Raman spectroscopy the authors determine that significant chemical and 

morphological changes occur when silver nanorods are exposed to water that has not been 

degassed, compared to negligible measured changes when they have been exposed to appropriately 

degassed water.  

Prior to presenting the results we will briefly describe the experiments performed in this 

investigation. The experiments involve the fabrication of Ag nanorods using glancing angle 

physical vapor deposition (GLAD PVD), preparation of components and materials used in the 

study, and then the characterizations carried out using SEM, SPM, UV-Vis spectroscopy, and 

Raman spectroscopy.  

Nanorod fabrication  

Silver nanorods are grown using a PVD technique called glancing angle deposition. These 

nanorods were created in a custom-built high vacuum chamber by thermal evaporation 

[40,45,46] shown in Figure 21. 
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Figure 21: PVD System configuration with the custom-built high vacuum chamber on the top 
left 

The vacuum chamber is a stainless-steel cylinder with a diameter of 30cm and a height of 20cm 

shown in Figure 22.  
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Figure 22: Close up of the Vacuum chamber 

First, corning glass slides the Ag nanorods are grown on need to go through a thorough cleaning 

process. The slides are cleaned sequentially by sonication in acetone, ethanol, and di-ionized 

water for five minutes at each stage. The cleaned slides are then dried under a gentle flow of high 
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purity nitrogen. The slides are then mounted on a substrate holder at the top of the vacuum 

chamber after drying shown in Figure 23.  

 

Figure 23: The corning glass fixture after Ag nanorods have been grown. 
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The thermal evaporation source is about 25 cm from the slides, at the bottom of the chamber. To 

achieve a glancing angle condition, the slides are angled at an incident angle of 87° relative to 

the source normal. To extract excess adsorbed water from the container, a mechanical roughing 

pump and a turbomolecular pump are used to evacuate the chamber until a vacuum of 5 x 10-5 

Torr is achieved and sustained for an hour. Evaporation is carried out using 99.99 percent Ag 

pellets from a tungsten boat (Kurt J. Lesker Co.). The deposition rate is regulated to 10 A/s +/- 2 

A/s for a total film thickness of 500 nm using a quartz crystal microbalance. After that, the 

samples are held under low to medium vacuum and only extracted before the next experiment. 

Degassing of Water  

A Millipore device produces high-purity deionized water, half of which is degassed by 

boiling. To degas, the water is put in a vacuum-sealed glass, Mason Jar-like, container, removed 

during boiling, and heated to rapid boiling on a laboratory hot plate. The water is brought to a 

boil for 15 minutes before being sealed with the vacuum tight lid. The sealed jar is then allowed 

to cool to room temperature naturally. It has been shown with the Dissolved Oxygen Meter the 

DI tap contains about 6 ppm of dissolved oxygen while this boiling process can provide water 

with as little as 1 ppm of dissolved oxygen [44]. 

Scanning Electron Microscopy  

A Tescan Mira scanning electron microscope with an Oxford energy dispersive 

spectroscopy system is used for SEM (EDS) shown in Figure 24. 
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Figure 24: Tescan Mira3 SEM used to obtain sample images and EDS spectrum 

Secondary electrons and x-ray photons are detected at magnifications up to 100k X with beam 

voltages of 10kV and working lengths of 10mm to model samples. Ag nanorod samples are 

imaged directly after being removed from vacuum and after being exposed to degassed and non-

degassed water, followed by drying in a gentle nitrogen flow. 

Scanning Probe Microscopy  
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The Shimadzu SPM-9700 HT is used for SPM. A 10 micron scanner attachment, fiber 

optic light source, and a high magnification CCD optical microscope unit are included in the 

SPM configuration shown in Figure 25. 

 

Figure 25: Shimadzu’s SPM 9700-HT used for topographical observations and KFM analysis. 

SPM was carried out on specimens grown on 12.7 x 12.7 mm corning glass substrates with 

evaporated silver nanorod films as shown in Figure 26.  
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Figure 26: Ag glass sample sitting on the 10 micron scanner. 

The raster scanning frequency was set to 1.00 Hz, and the pixel size was set to 256 x 256. The 

samples were first taken out of vacuum and imaged right away. The samples were then exposed 

to non-degassed water for two hours before being dried under a gentle flow of dry nitrogen and 

observed. The sample surfaces' topographical maps were created using contact mode. Second, 

the SPM was used in Kelvin Probe Force Microscopy (KFM) mode to examine surface potentials 
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and detect chemical changes on the surface. KFM is a noncontact variant of SPM in which the 

probe is placed at a constant height above the sample and a voltage bias is applied, allowing the 

surface to be mapped locally. Kinetic Probe Force Microscopy provides information on the 

specimen material's local electric surface potential. 

UV-Vis  

A Shimadzu UV-3600 with an integrating sphere attachment is used for UV-Vis 

spectroscopy as shown in Figure 27. 

 

Figure 27: Shimadzu UV-Vis 3600-Plus. 
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The baseline for reflection mode was a freshly evaporated silver film about 500 nm thick on 

cleaned Corning glass. The scans are performed at a gradual speed between 350 and 800 

nanometers, with a step size of 1.0 nanometers and a slit width of 2.0 nanometers. After drying 

the samples in a gentle flow of dry nitrogen, samples that had been exposed to degassed and non-

degassed water for fixed periods of time were calculated. In-situ tests are carried out on Ag 

nanorods that have been stored within polycarbonate cuvettes. A 500 nm silver film is deposited 

onto the inner back side of a polycarbonate cuvette as a baseline, and the cuvette is sealed with 

degassed water to prevent the fresh film from corroding too quickly. The cuvettes are masked 

with Kapton tape to avoid deposition onto the other internal or external sides of the cuvette, 

which is discarded after deposition. Following that, cuvettes with Ag nanorods accumulated on 

the interior back side are weighed directly after being filled with degassed or non-degassed 

vapor. Then, at predetermined times, measurements are taken to detect time-dependent variations 

in reflective spectra. 

Raman Spectroscopy  

Raman spectroscopy was conducted on Ag nanorod samples sensitized in an aqueous 

solution of 10-5 M R6G. R6G solution was made by mixing a sufficient volume of R6G powder 

into degassed and non-degassed water and actively stirring for one hour. To keep air from 

dissolving into the mixture, the degassed solution was made by swirling the mixing solution 

when under light vacuum. The samples were immersed in the solutions for 12 hours before being 

rinsed five times with degassed deionized water and dried under a gentle nitrogen flow. A Horiba 

T64000 Raman Spectrometer with microscope functionality and a liquid nitrogen cooled CCD 

detector was used. A 10 X Olympus objective was used to focus the 532 nm laser to a ~10 μm 

spot on the surface of the sample. The laser power is limited to ten watts. The spectrometer's 
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entry slit is set to 200 m. With 25 accumulations per spectrum, the accumulation period is set to 

1 second. For each measurement, 10 scans are taken over a spectral array of 250 to 2250 

wavenumbers. 

Chapter 5. Results 
 

One of the characteristics that attract research in the nanometer scale is material properties 

change from the bulk material. An example of optical characteristics changing is when gold is in 

bulk material it tends to be a shiny yellow color, while in the nanoparticle range, golds changes 

color. Nanotechnology helps the ability for a material like cloth to become less wet and dirty or a 

frying pan to become stick resistant. The goal of this investigation is to measure oxidation and 

sulfurization on air exposed nanoscale samples, 𝐻20 exposed nanoscale samples, and 𝐻20 

degassed exposed nanoscale samples, then see how these measures affect spectra in Raman 

spectroscopy. 

Results  

First, we present the morphological and chemical changes of the Ag nanorods after 

exposure for 168 hours to air, degassed water, and non-degassed water, Figure 28.  
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Figure 28: SEM image of Ag nanorods after exposure to (A) air, (B) degassed di-ionized water, 
and (C) non-degassed di-ionized water for 168 hours. The scale bars are 500 nm.  

The time of 168 hours is chosen to get visible changes in morphology. No appreciable difference 

is observable between the samples stored in air or degassed water. However, the sample stored in 

non-degassed water exhibits significant coarsening and loss of nanorod morphology. Additional 

microscopy was performed on sets after one hour and 12 hours and visible morphology changes, 

not shown here, which shows similar but less obvious differences. In passing, we note that EDS 

was also performed on the samples of Figure 28. Although the results cannot be directly 

interpreted due to beam penetration differences with varying density and chemical composition, 

qualitative results indicate an insignificant difference in oxygen between samples in air and 

degassed water and a significant increase in the non-degassed sample. From the regular water 

EDS spectrum shown in Figure 29, we see approximately 20 weighted percent of oxygen and no 

identifiable sulfur peaks. 
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Figure 29: SEM spectrum of Ag nanorods after exposure to non-degassed di-ionized water for 
168 hours. 



51 
 

From the degassed water EDS spectrum shown in Figure 30, we see again approximately 20 

weighted percent of oxygen and no identifiable sulfur peaks. This indicates that the primary 

species of corrosion is oxidation and not sulphurization as in air. 

 

 
Figure 30: SEM spectrum of Ag nanorods after exposure to degassed di-ionized water for 168 
hours. 
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We present the changes in optical response caused by the exposure to the varied 

conditions, Figure 31. Samples exposed to air for 12 hours are observed to have multiple 

absorption peaks and a strong absorption, owing to surface plasmon resonance excitation, 

centered around ~400nm. Likewise, after exposure to degassed di-ionized water, labeled DG 

H2O in Figure 31, the intensity of absorption decreases but peak locations are unchanged. 

Alternatively, after exposure to non-degassed water for 12 hours, labeled H2O in Figure 31, the 

Ag nanorods do not exhibit any of the secondary peaks and there is a significant decrease in the 

intensity of and blue shift of the main resonance peak. Surface plasmon resonance is considered 

to be the dominating factor in most sensing applications using Ag nanorods, and the decrease in 

resonance peak is expected to result in a decrease in sensing activity [44].  

 

Figure 31: UV-Vis reflection spectra for Ag nanorod samples exposed to varied conditions for 
12 hours.  

Next, we present the results of a time resolved in-situ experiment measuring the optical 

reflectance of Ag nanorods deposited inside a cuvette exposed to non-degassed water, Figure 32. 
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Scans are taken every 10 minutes over the course of one hour, progressing in the direction of the 

arrow on Figure 32. It is noted that even within only one hour there is an observable change in 

reflective spectrum. This is significant as the area of decrease overlaps with the commonly used 

Raman laser lines of 473nm and 524nm, which may lead to changes in measured Raman signals.  

 

Figure 32: Time resolved UV-Vis reflection spectra for a Ag nanorod sample exposed to non-
degassed di-ionized water. Spectra are taken every 10 minutes over one hour and progress in the 
direction of the arrow.  

Raman spectroscopy is also performed and presented in Figure 33, 34, and 35 to correlate 

changes in the morphology, optical response, and performance as a sensor. 9 spectra each were 

measured on a sample exposed to non-degassed R6G solution for 12 hours, labeled H2O in 

Figure 33, and a second sample in degassed R6G solution for 12 hours, labeled DG H2O in 

Figure 33.  
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Figure 33: Raman spectra of Ag nanorods sensitized with R6G solution in non-degassed de-
ionized water, labeled H2O, and degassed water, labeled DG H2O. 

While the overall Raman signal is stronger for the same in non-degassed solution, shown in 

Table 1, the measured peak to background ratios of both groups of measurements do not have 

statistically significant variation which is shown in Table 2.  
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Table 1: Raw Peak counts used for the background ratio from the R6G regular and degassed 
water samples 

Raw Peaks Used for Ratio R6G Regular H2O R6G DO H2O 

 11319.00 7756.25 

 10989.40 8032.75 

 10847.00 8479.13 

 14593.00 8174.75 

 11428.40 7842.25 

 10897.60 8340.50 

 14090.90 8066.25 

 10389.30 8874.75 

 15772.30 8378.75 

Average 13063.30 8216.15 

Standard Deviation 1893.20 345.32 
 

We hypothesize that the corrosion of the Ag nanorods is primarily in the form of oxidation, 

which has been demonstrated to produce significant increases in metal-enhanced fluorescence in 

the literature. Further, the spread of spectral intensities from the non-degassed sample is 

approximately double that of the degassed sample shown in Table 2. 

Table 2: Peak to background ratio from the R6G regular and degassed water samples 

Peak to Background Ratio R6G Regular H2O R6G DO H2O 
 1.13 1.13 

 1.13 1.13 

 1.14 1.15 

 1.10 1.13 

 1.13 1.14 

 1.13 1.14 

 1.10 1.14 

 1.13 1.14 

 1.10 1.14 

Average 1.12 1.14 

Standard Deviation 0.02 0.01 

Std. Dev. % (Scatter)  1.79% 0.88% 
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Spectral scatter and non-repeatability have been observed and discussed in detail for Raman 

spectroscopy using nanostructured substrates in the literature [41]. Hypothesized to be intrinsic to 

the non-periodic structure of the Ag nanorods grown from PVD, a significant contribution from 

rapid corrosion has likely been overlooked.  

 Another batch of specimens were run with caffeine as the analyte. 6 spectra each were 

measured on a sample exposed to non-degassed caffeine solution for 12 hours, labeled regular 

H2O in Figure 34, and a second sample in degassed caffeine solution for 12 hours, labeled 

Deoxygenated (DO) H2O in Figure 35.  

 

Figure 34: Raman spectra of Ag nanorods sensitized with Caffeine solution in regular non-
degassed de-ionized water, labeled Reg H2O. 
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Figure 35: Raman spectra of Ag nanorods sensitized with caffeine solution in deoxygenated 
water, labeled DO H2O. 

A non-resonant molecule loses nearly 50% of signal when regular water is used and corrodes the 

sample compared to degassed water by results shown in Table 3.  

Table 3: Raw Peak counts used for the background ratio from the caffeine regular and 
deoxygenated water samples 

Raw Peaks Used for Ratio Caffeine Regular H2O Caffeine DO H2O 
 1045.94 1645.48 
 335.65 1688.65 
 513.03 1423.13 
 1519.45 887.097 
 1264.35 1325.94 
 734.23 2488 

Average 902.11 1656.86 
Standard Deviation 454.63 631.40 
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In both data sets from R6G and the caffeine measurements corrosion plays a drastic significance 

in the increase of scatter shown in Table 4. This indicates that the presence of dissolved gases in 

water used for SERS substrate sensitization is significant and critical to real world applications. 

Table 4: Peak to background ratio from the caffeine regular and deoxygenated water samples 

Peak to background ratio Caffeine Regular H2O Caffeine DO H2O 
 1.74 1.45 
 1.68 1.62 
 2.17 1.54 
 1.44 1.73 
 1.27 1.62 
 1.59 1.53 

Average 1.65 1.58 
Standard Deviation 0.31 0.10 

Std. Dev. % (Scatter)  18.79% 6.33% 
 

Finally, we present SPM measurements of the samples. Five sample were measured using 

the SPM in contact mode. The first set of samples were measured immediately after removal 

from vacuum and represent a clean baseline. Next, the measurements were repeated with a set of 

five samples that were submerged in non-degassed water for two hours. A representative 

comparison of the topographies is shown in Figure 36, where the baseline sample is on the left 

and the submerged sample is on the right. It is evident from the topographical images that even 

brief exposure to water with dissolved gases results in rapid and dramatic morphological changes 

to the surfaces. 
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Figure 36: Left: Baseline Ag nanorods topography correlative to the SEM imaging A in Figure 
28. Right: Local imaging of topography for Ag Oxidized Nanorods after sitting in water for 2 
hours. 

The same samples were analyzed on the SPM using KFM to determine if the surfaces 

have chemically changed from the baseline state. The baseline, Figure 37 left, shows the 

potential measured on clean Ag surfaces without significant oxidation or corrosion. The tips of 

the nanorods are clearly evident in the potential plot. After soaking in the non-degassed water for 

two hours the average surface potential, shown on the right of Figure 37, increases to greater 

than 3.0V and there is no evidence for the presence of fine nanorod tips. Based on the measured 

change in surface potential, the authors hypothesize that the surfaces of the nanorods have 

undergone oxidation in the non-degassed water. This hypothesis will be tested with future 

transmission electron microscopy (TEM) analyses. 
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Figure 37: Left: Ag nanorods surface potential contour map taken immediately after removal from 
vacuum. Right: Ag nanorod surface potential contour map taken after submersion in non-degassed 
water for two hours.  

Chapter 6. Conclusion and Future Work 
 

Conclusion 

 This document reports on the corrosion of Ag nanorods by dissolved gasses present in de-

ionized water, which is commonly used in many nanomaterial sensing experiments without any 

consideration. Through SEM, UV-Vis reflection, Raman, and SPM characterization it is evident 

that dissolved gasses in water cause significant corrosion in Ag nanorods, leading to significant 

morphological and optical response changes on the timescale of hours. SERS experiments were 

performed, and it is demonstrated that the resonant state of the molecule and the fluorescent 

action lead to significant differences. A fluorescent molecule is observed to have greater raw 

SERS signal but significantly higher relative spot to spot deviation in signal. These results 

motivate further investigation into the underlying mechanisms dominating observed spectral 

changes in nanostructured metals when they are used as biological sensors. Decoupling of 
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spectral changes caused by experimental artifact and unanticipated mechanisms is essential to 

improving these sensing technologies. A non-resonant molecule loses nearly 50% of signal when 

regular water is used compared to degassed water. This indicates that the presence of dissolved 

gases in water used for SERS substrate sensitization is significant and critical to real world 

applications. 

After looking at the results between our fluorescent R6G molecule and our non-resonant 

caffeine molecules, the data suggests when performing SERS analysis, the use of DO water is 

beneficial. For a resonant molecule, like glycoprotein found in SARS-CoV-2, you may not want 

to using DO water, so oxidation can occur on your samples to activate metal enhanced 

fluorescence, which in-turn increases Raman raw count signal intensity, seen in our R6G results 

from Table 1. However, oxidation introduces statistically significant scatter for both resonant and 

non-resonant molecule being analyzed. Therefore, when using DO water with our substrate-

sample detecting resonant molecules you still have raw count peaks, shown in Table 1, with 

significantly less scatter as shown in Tables 1 and Table 2. When using DO water with our 

substrate-sample detecting non-resonant molecules, like our caffeine, the data indicates 

significantly higher raw count of Raman signal, shown in Table 3 and Table 4, and significantly 

less scatter shown in Table 4. Theoretically, in the future, research can be conducted with 

instrumentation to better understand how to control oxidation for Raman samples, which would 

likely help optimize results for SERS analysis. 

Future Work 

With more time and resources, there are two good ways to characterize the substrate 

SERS phenomenon and oxidation species, (1) by Grazing Incidence X-Ray Diffractometry 

(GIXRD) and (2) by examination with Transmission Electron Microscopy (TEM). In GIXRD, 
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the thin film sample stage, monochromator, and suction pump are all part of this customized 

system. The penetration of incident X-rays onto the substrate sample is restricted as much as 

possible, grazing off the surface, by using the defined incidence angle, parallel X-ray 

diffractometry process, resulting in low background, thin film X-ray diffraction patterns which 

will report oxidation species. 

TEM uses an electron elimination source beam that creates the image of a specimen. In 

the case of TEM, the sample analyzed is typically is thin films where the electron being 

accelerated towards the sample are transmitted through the sample, rather than the similar SEM 

where this has a thicker sample and the electrons bounce off the sample to the detector. The 

electrons beam targeting the sample in TEM are of short wavelengths therefore enabling ease of 

transmission through the sample. These short-wavelength electrons are then scattered by 

different structural properties of the sample which can then be captured by the detector to create 

a high resolution picture of the ultra thin sample. The detector will additionally allow for 

understanding of morphologic, crystallographic, and compositional aspects of the specimen. 

TEM uses high velocity electrons through a vacuum chamber to clear the disruptive air 

molecules which allows for resolutions of the less than 10 nanometer scale images of specimen. 

The TEM gives the power to visualize atoms and analyze oxidation species to further understand 

the corrosion of Ag nanorods of SERS substrates. With TEM we will analyze with two different 

mechanisms, HR Imaging and Electron Energy Loss Spectroscopy (EELS). 

 We'll use high-resolution imagery to see how the thickness of the film that forms on the 

surface affects the local surface morphology. We'll search for improvements in surface 

roughness of a few nanometers that could lead to increased analyte adhesion and surface area 

due to oxidation. Increased surface roughness and more area for the analyte to attach to are likely 
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duel and confounding results of reduced EM output due to the oxide layer, but also increased 

surface roughness and more area for the analyte to attach to. 

 We'll also use EELS (electron energy loss spectroscopy) to assess the chemical 

composition of the very thin surface layers selected area diffraction (SAD) to describe the 

crystalline structure at the surface. We'll also look for a thin organic film on the top, which may 

indicate organic contaminants in the water. Which also eliminates the possibility that some of the 

Sulphur compounds in the water are causing degradation at the same time. We'll also look at 

whether oxidation can be advantageous. Will the oxide, for example, act as an inert shielding 

coating on the nanorods to prevent Sulphur or other atmospheric compounds from corroding 

them? XPS and AES are two other approaches we considered but opted against. Both of these 

techniques necessitate baking the specimen, which alters the structure and can allow any of the 

attached materials to escape to the surface. 
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