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ABSTRACT 

The scalloped hammerhead shark (Sphyrna lewini) worldwide population has been in 

sharp decline, and they are currently listed as a globally critically endangered species by the 

IUCN. This warrants a need to identify and protect critical habitats for the species, such as 

nurseries, which promote stable populations. A section of the Tolomato River, in northeastern 

Florida, has shown to host large and consistent numbers of young of year scalloped hammerhead 

sharks. This gave cause to determine whether this portion of the Atlantic Intracoastal Waterway 

(ICW) serves as a nursery habitat for the species and to understand how the sharks used the area. 

To declare the Tolomato River as a nursery habitat, three criteria needed to be met: the species 

were more commonly found in the Tolomato River as opposed to other sites, individual sharks 

stayed in the area for long periods of time (weeks or months), and the species used the habitat 

repeatedly across years. To address these criteria, a catch composition analysis, habitat 

preference study, mark-recapture analysis, and acoustic tracking were conducted. The results 

from these studies indicated that scalloped hammerhead neonates have a preference for the 

Tolomato River compared to other nearby estuaries. They additionally showed that individual 

scalloped hammerhead sharks are using the habitat for extended periods of time and the species 

utilizes the Tolomato River annually. These results indicate that the Tolomato River serves as a 

nursery habitat for the scalloped hammerhead shark. Due to the established importance of 

nursery habitats to the welfare of shark populations, the identification of nurseries is often 

required in various management plans. Thus, data from this project contributes to the 

management of the scalloped hammerhead shark, a species in need of protection.  
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INTRODUCTION  

In 1996, the reauthorization of the Magnuson-Stevens Fishery Conservation and 

Protection Act emphasized the importance of essential fish habitat (EFH) to the maintenance of 

healthy fish populations; EFH’s are areas that are necessary to the spawning, feeding, breeding, 

or growth of a marine organism (Magnuson-Stevens Fishery and Conservation Act 1996). 

Nursery habitats are considered to be EFH due to their importance in the life histories of various 

coastal shark species (Spring, 1967; Bass, 1978; Castro, 1993; Simpfendorfer & Milward, 1993; 

Hueter et al. 2005; Heupel et al. 2007; McCallister et al. 2013). These habitats are typically 

found in bays, sounds, and littoral zones (Sadowsky, 1965; Clarke, 1971; Branstetter, 1987). 

Pregnant, mature females may give birth in or adjacent to nurseries and their pups often stay in 

the area for extended periods. Some species stay in nursery habitats until they reach adulthood 

(Springer, 1967). In these habitats, there is often a surplus of food and protection from predators 

(Springer, 1967; Bass, 1978; Branstetter, 1990; Castro, 1993; McCallister et al. 2013). 

Consequently, nurseries can potentially improve the survival of juveniles and contribute to 

population stability. For these reasons, the use of nurseries has been a reproductive strategy of 

some chondrichthyan species for millions of years (Duncan and Holland, 2006).  

Nurseries are often identified in fisheries management plans (FMPs) as they are critical to 

the welfare of shark populations. Various shark species have experienced population decline in 

recent years due to exploitation (NMFS, 2006). These animals are susceptible to population 

decline due to a late sexual maturity and low fecundity (Stevens et al. 2000; Dulvey et al. 2008). 

To promote the rebuilding of these species’ populations, fishery managers protect areas of 

importance, such as nursery habitats (Bonfil, 1997; Kinney and Simpfendorfer, 2008). The 

survivorship of neonates and juveniles strongly influences the total population size of any 
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species (Heppell et al. 1999; Cortes, 2002). Unfortunately, these ecosystems are often vulnerable 

to degradation, which can ultimately impact the survival of neonates; many nurseries are in close 

proximity to human populations as they are often found in shallow water (Rountree & Able, 

1996; NMFS, 1999; Martin, 2005; Lotze et al. 2006; Jennings et al. 2008). Therefore, there is a 

need to identify these nursery habitats to develop effective conservation plans.   

Previously, McCallister et al. (2012) reported that coastal bays and estuaries in the 

northeast Florida coast may provide critical nursery habitat to several economically and 

ecologically important shark species, including the Atlantic sharpnose shark Rhizoprionodon 

terraenovae and the blacktip shark Carcharhinus limbatus. More recently, anecdotal evidence 

has suggested that the Tolomato River may represent essential fish habitat for the scalloped 

hammerhead shark Sphyrna lewini. The Tolomato River is a river system in northeast Florida, 

south of the city of Jacksonville. It runs along the Atlantic coast and leads to the St. Augustine 

inlet. This body of water is part of the intracoastal waterway (ICW), which runs from 

Massachusetts to Florida. Additionally, a portion of the Tolomato River is found within the 

bounds of the GTM Research Reserve, which is one of 29 National Estuarine Research Reserves 

in the United States. 

The scalloped hammerhead shark is a large, viviparous shark species that is found along 

continental margins and oceanic islands in the temperate and tropic zones (Compagno, 1984). 

Furthermore, this is one species of shark that utilizes nearshore nurseries throughout their range 

(Clarke, 1971; Snelson & Williams, 1981; Compagno, 1984; Branstetter, 1990; Castro, 1993; 

Simpfendorfer & Milward, 1993). There are six existing distinct population segments (DPS) of 

the scalloped hammerhead throughout the world (Miller et al. 2014). The Northwest Atlantic and 

Gulf of Mexico DPS of S. lewini is found from New Jersey to Brazil in the Western Atlantic and 
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in the Gulf of Mexico and Caribbean Sea (Compagno, 1984); this is an area that includes the 

Tolomato River. Although this DPS is not considered endangered, the population has 

experienced exploitation in the past (Hayes et al. 2009). Due to a late sexual maturity at 

approximately 15 years of age and low fecundity of 10 to 40 pups every other year, the 

population exhibits a low growth rate (Branstetter, 1987; Duncan and Holland, 2006; Piercy et 

al. 2007). As a result, the species is slow to rebuild after experiencing population decline. The 

virgin, or unfished, population was estimated to range from 142,000 to 169,000 individuals in 

1981 (Hayes et al. 2009). The population then experienced an estimated 83% decline due to 

fishing pressure by commercial, recreational, and IUU (illegal, unreported, and unregulated) 

fishing (Hayes et al. 2009; Miller et al. 2014). Since 1996, the population has begun to rebuild at 

a slow rate. Recent stock assessments in 2005 estimate that the Northwest Atlantic and Gulf of 

Mexico adult stock includes 24,850 individuals (Hayes et al. 2009). However, Hayes et al. 

(2009) estimates that the population still has a 95% probability of being overfished in the future. 

These predictions are supported by the presence of individuals from this DPS in the international 

shark fin trade. From a survey of S. lewini fins collected from the Hong Kong market, 21% 

originated from the western Atlantic (Chapman et al. 2009). Furthermore, it has been determined 

that high at-vessel fishing mortality is the largest threat to scalloped hammerhead sharks in this 

DPS (Miller et al. 2014). Hence, there is a need to protect the species and identify the areas that 

could serve as nursery habitats so that they may be incorporated into fishery management plans.  

At this point in time, the Tolomato River is not designated as EFH for the scalloped 

hammerhead shark and is not protected as such (NOAA, 2017). Protection of this site, if 

identified as a nursery, would be critical in conservation efforts for a species that is considered 

globally critically endangered by the IUCN (Rigby et al. 2019). Therefore, there is a need to 
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determine whether the Tolomato River serves as EFH. Although pilot work suggests that the 

Tolomato River may serve as a scalloped hammerhead nursery, research must be conducted to 

determine if the habitat meets the expectation of a nursery habitat as described in the literature. 

Springer (1967) first described nursery habitats as areas in which parturition occurs and where 

neonates and juveniles spend the first part of their lives in. Bass (1978) then defined the 

differences between primary and secondary nurseries. In primary nurseries, young sharks are 

born and present up to a year. Older juveniles are found in secondary nursery habitats. These 

concepts have been accepted by the scientific community, though criteria of a nursery habitat 

were not clear until Heupel et al. (2007) proposed a new definition. In order to be considered a 

nursery, a habitat should meet three criteria according to Heupel et al. (2007): the shark species 

in question must be more commonly found in that area in comparison to other sites, individual 

sharks should tend to stay in the area for long periods of time, and the habitat should be used 

repeatedly across years. A habitat must meet these criteria to be distinguished as a nursery under 

management plans. 

To address these criteria, the species composition of the Tolomato River was initially 

analyzed to determine whether the site was annually used by the species. This was followed by a 

habitat preference study, mark-recapture analysis, and acoustic tracking. The preference study 

was completed to see if the species is found more often in the Tolomato River in comparison to 

nearby habitats. The mark-recapture survey was conducted to determine the extent of time 

individual sharks utilized the area. The acoustic tracking was completed to determine if the 

sharks stay in the area for extended periods of time and to assess habitat preferences. These 

studies are needed to properly assess the Tolomato River’s status as a nursery habitat and  

determine appropriate conservation measures.  
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METHODOLOGY 

Characterization of shark fauna in the Tolomato River 

Sampling  

 Bottom longline surveys were completed in the Tolomato River (Figure 1) from the 

years of 2010 to 2019 using the methods described in McCallister et al. (2013). Longlines were 

composed of a 250-300 meter #8 braided nylon mainline, which were anchored at both ends and 

marked with buoys. The line contained 50 branchlines, each composed of a 1-meter, 90-kg test 

monofilament leader. Each branchline consisted of a size 120 stainless steel longline snap, 4/0 

swivel, and a 12/0 barbless circle hook. All hooks were baited with Atlantic Mackerel, Scomber 

scombrus. These lines were soaked for 15 minutes, as opposed to the 30-minute soak time used 

by McCallister et al. (2013), to minimize mortality of S. lewini. Set locations were haphazardly 

selected. This was based on varying weather conditions, tides, and maritime conditions present at 

the time of sampling. At each sampling site, environmental data were collected using a YSI 

Pro2030 (YSI, Inc., Yellow Springs, Ohio). This included bottom water temperature (°C), 

salinity (ppt), dissolved oxygen (mg/L), and conductivity (mS). Maximum and minimum water 

depth (m) were recorded for each set, and the mean depth was calculated.  

For each shark caught, biological data were collected. Sharks were identified to species, 

measured (cm), sexed, and weighed (kg) when possible. Length measurements included 

precaudal length (PCL), fork length (FL), and stretched total length (STL). Life stage was 

classified as young of year (YOY, Age 0), juvenile, or adult. These were determined by using 

length at maturity as described in published literature. If the individual was categorized as Age 0, 

the umbilical scar status was additionally recorded when using five possible categories: 1= 

umbilical remains present, 2 = open or fresh scar, 3= partially open, some healing, 4= well- 
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Figure 1. Map of all three study sites used to assess scalloped hammerhead 

shark presence in northeast Florida. 
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healed, scar is visible, and 5= no scar present.  

 

Data Analysis 

Based on data collected from all bottom longlines completed, catch composition was 

described. For YOY scalloped hammerhead sharks caught, correlations between all possible 

combinations of PCL, FL, and STL recorded were determined via Pearson correlation 

coefficient. Linear regressions were performed for FL to PCL, PCL to STL, and FL to STL. 

Sharks with truncated caudal fins or inaccurate measurements were excluded from these 

analyses. Average FL was then compared via a one-way ANOVA across the months of May 

through August to assess the growth of the species. Because length data was only available for 

two sharks during the month of September, this month was excluded from the analysis. Months 

were subsequently grouped into homogenous subsets based on a Tukey post-hoc test. For all 

morphometric analyses, results were considered significant if p< 0.05.   

Catch rates of  YOY S. lewini were expressed as catch per unit effort (CPUE) for each 

set. This was calculated as the number of YOY scalloped hammerhead sharks caught per 50 

hooks. Abundance trends were examined by comparing the CPUEs across months and years via 

Kruskal-Wallis nonparametric analysis because data did not meet assumptions of normality and 

homoscedasticity. Months and years were subsequently grouped into homogenous subsets as 

determined by a stepwise-stepdown post-hoc test with multiple comparisons.  

 To evaluate habitat use and preferences, a binary logistic regression model was used to 

assess the effects of environmental conditions on the presence/absence of YOY S. lewini. 

Parameters included average depth, bottom temperature, salinity, dissolved oxygen, and 

conductivity. In this analysis, only sets for which all environmental parameters were recorded 
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were used. Conditions were considered to significantly influence the probability of catching a 

scalloped hammerhead shark if p < 0.05. CPUE was additionally mapped geographically via 

ArcGIS Pro to potentially indicate areas of importance within the Tolomato River.  

 

Comparisons of S. lewini abundance in the Tolomato River and other northeast Florida estuaries 

Sampling 

 Bottom longline surveys were conducted in the Cumberland Sound/St. Marys River basin 

and Nassau Sound from 2009 to 2019 following the methods described in McCallister et al. 

(2013). Cumberland Sound can be found between Cumberland, Island, Georgia, and Amelia 

Island, Florida, at the mouth of St. Mary’s River. Nassau Sound is south of the Cumberland 

Sound and is found in Florida between Amelia Island and Big Talbot Island. Nassau Sound 

resides as a junction of the Nassau and Amelia rivers and Sister’s Creek. When including the 

Tolomato River study area, these three sites encompass all available inshore habitats, apart from 

the St. John’s river, north of St. Augustine to the Florida-Georgia border (Figure 1). The surveys 

conducted in the Cumberland and Nassau Sounds were identical to that completed in the 

Tolomato River site with a single exception; that is, soak time was 30 min in duration (the 

shorter soak time used in the Tolomato site was established to minimize mortality of S. lewini).  

    

Data Analysis  

Catch data collected from all three surveys were used to test the first criterion of nursery 

habitat identification; that is, whether the species in question (S. lewini) prefers the location in 

question (the Tolomato River) to other available habitats (Cumberland Sound/St. Marys River or 

Nassau Sound). Only sets for which all environmental parameters were recorded were used in 
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analyses. For each site, YOY scalloped hammerhead catch rates were determined and compared 

between the three sites using Kruskal-Wallis nonparametric analysis. Sites were grouped into 

homogenous subsets as determined by a post-hoc test. Catch rates were expressed as catch per 

unit effort. Initially, this was calculated as the number of sharks caught per 50 hook-hours in 

order to standardize for the difference in soak time between the sites. However, this was also 

completed with CPUE representing the number of sharks that were caught per 50 hooks. 

A general linear model was also used to further determine whether site was an 

influencing factor on S. lewini abundance. Depth, salinity, conductivity, dissolved oxygen, and 

bottom temperature were used as covariates in the model to account for varying environmental 

conditions across the three sites. All potential interactions between covariates were included in 

this analysis.  Factors that were not significant were removed from the model until only 

significant variables remained. Variables were considered to be significant if p < 0.05. Once all 

factors that significantly impacted YOY scalloped hammerhead abundance were identified, these 

variables were compared among the three sites. This was done to better determine whether the 

environmental conditions were responsible for the significant difference in scalloped 

hammerhead YOY abundance among the three sites.  

 

Mark-Recapture Study 

Sampling 

A conventional tagging study was completed as part of the bottom longline survey 

conducted in the Tolomato River from 2019-2020. Weekly sampling occurred during the 

summer of 2019 and sporadically during 2020 because of sampling limitations posed by the 

COVID-19 pandemic. The longline had the same setup as the bottom longline survey of the 
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Tolomato River from 2010 to 2019, during which five sets were fished each day at haphazardly 

selected locations. For each set, biological and environmental data were collected as previously 

described. All scalloped hammerhead sharks caught were tagged with a numbered dart tag that 

was inserted into the musculature ventral to the first dorsal fin and released. Any recaptures 

made by UNF staff or individuals not affiliated with UNF (e.g., other biologists, anglers, etc.) 

were noted, and the date and location of recapture were recorded.  

 

Data Analysis  

Mark-recapture data were used to test the 2nd and 3rd criteria of nursery ground 

identification; that is, whether individual sharks tend to stay in the area for long periods of time, 

and that the species uses the area on an annual basis. Overall rate of recapture was determined. 

For each shark recaptured, time at large was recorded. Furthermore, the location of release and 

recapture sites were mapped using ArcGIS Pro, and recapture distance was determined by 

calculating the distance between the two points following the midline of the river. 

 

Acoustic Tracking 

Sampling  

 Sampling was conducted during the summer of 2020 via rod and reel fishing in which 

circle hooks were baited with mackerel and squid. This method of fishing was done to limit the 

stress put on the animals prior to tagging. Fishing locations were selected haphazardly. When a 

scalloped hammerhead shark was caught, biological data were collected as described above. If 

the shark was considered to be in a good condition, an acoustic transmitter (Innovasea V9) was 

attached to the first dorsal fin externally via a rototag; the tags that were deployed weighed 6.74 
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g and 6.94 g (Figure 2). Transmitters had an estimated battery life of 13 days and pulsed 

continuously at various acoustic frequencies (60, 63 kHz).  

 

Active Tracking   

In total, two scalloped hammerhead sharks were tracked, and a second track was 

completed for the second shark. Each shark was actively tracked from the time of capture to 

dusk. Only one shark was tracked at a time to avoid overlap of signals. Tracking started at the 

location of capture. Once the shark was released, it was manually tracked using a directional 

hydrophone (Innovasea VH110) and acoustic receiver (Innovasea VR100). The boat maintained 

a distance of at least 10 m from the sharks at all times to avoid interfering with movement 

patterns; though, this could not be guaranteed. Shark location was recorded every five minutes 

using a GPS, along with bearing and approximate distance from the boat. Depth (m) and tidal 

stage were additionally recorded at these intervals. Every 15 minutes, environmental data was 

collected via YSI Pro2030 (YSI, Inc., Yellow Springs, Ohio). This included temperature, D.O., 

conductivity, and salinity. Longer-term occurrences of the tagged sharks in the study area were 

also examined by conducting weekly surveys of transmitter detection using the omnidirectional 

hydrophone, as described recently in Rosende-Pereiro & Corgos (2018). If a tagged shark was 

detected, the VH110 directional hydrophone was used to locate the shark’s position, and the 

shark was subsequently tracked until dusk. 

 

Data Analysis  

Initially, new positional fixes representing the position of the shark for each track were 

generated using estimated distance from the boat and bearing in relation to the original  
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Figure 2. YOY S. lewini with Innovasea V9 acoustic transmitter externally attached to the first 

dorsal fin prior to active tracking. Photograph taken by Clark Morgan.  
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geographic positions recorded, which represented the location of the boat. Each track was 

mapped via ArcGIS Pro using these positional fixes, and home range analyses were conducted. 

To determine the extent of each track’s range, the total activity space was found using minimum 

convex polygon analysis via GIS. Areas outside the bounds of the river were manually removed 

from the total area. Activity area was also determined by using the 95% fixed-kernel utilization 

distribution (KUD) method with the Adehabitat package in R. 50% KUD’s were also 

determined, which represent areas of repeated use or preference (Yeiser et al. 2008). While 

minimum convex polygons are used to determine the extent of an individual’s range, the 50% 

KUD’s illustrate the use of that range. Boundaries of the KUD’s produced in R were mapped 

with GIS, and areas outside the river’s boundary were clipped manually. This was accomplished 

by reshaping the polygon by hand, moving vertices to ensure that the area did not extend onto 

land. The area used by the animals was also described by determining the linearity index (LI) for 

each track. LI is used to determine if tracks are linear or nonlinear. While linear movements 

indicate directed movements, nonlinear movements indicate reuse. To calculate LI, the distance 

between the first and last position was divided by the total distance traveled. If this value was 

equal to one, the track was linear. Values near 0 were indicative of nonlinear movement paths 

(Rechisky and Wetherbee, 2003). If the straight-line used to determine distance between the first 

and last positional fixes passed over land, the distance between the two points was found by 

following the midline of the river.   

Movement was described by rate of movement (ROM), direction of travel (upriver, 

downriver), and tidal stage. ROM was calculated by dividing the distance between successive 

positional fixes by the interval time (five minutes). Square root transformations were used so that 

ROM data could be analyzed parametrically. Average ROM was compared across the three 
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tracks using an ANOVA, and homogenous subsets were indicated by a Tukey post-hoc test. 

Direction of travel in degrees (bearing) was calculated to describe the angle of movement 

between consecutive positions. Any movement northward was categorized as upriver, and any 

movement southward was categorized as downriver. This was based on the north-south 

orientation of the river. The ROM was compared between upriver and downriver travel for all 

tracks conducted with Student t-tests. ROM and bearing were additionally compared across all 

tidal stages using an ANOVA and Kruskal-Wallis test, respectively. All tracks were grouped for 

these analyses to account for a complete tidal cycle.  

Water quality data were analyzed following relevant methods reported by Ortega et al. 

(2009). Average depth, temperature, salinity, D.O., and conductivity were compared among the 

three tracks conducted using Kruskal-Wallis tests. Then, potential preferences for each water 

quality variable were determined with the use of multiple linear regressions with bootstrapping. 

This compared the average habitat conditions (depth, temperature, salinity, D.O., and 

conductivity) recorded with the latitudinal position of the shark. This was chosen due to the 

north-south orientation of the river. Based on the R squared values generated by the models, 

tracks for the second animal were grouped. In all statistical tests, results were considered to be 

significant if p < 0.05. 

Ultimately, these data collected from these tracks were primarily used to determine 

whether neonates spend extended periods of time in the proposed nursery habitat, contributing to 

efforts to test the 2nd criterion of nursery ground identification. This was also done to further 

indicate areas of importance to the species within the Tolomato River. 
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RESULTS  

Characterization of shark fauna in the Tolomato River 

A total of 444 longline sets were completed in the Tolomato River from 2010-2019 

during the months of April-November. 618 sharks were caught, representing 10 species. Of those 

sharks caught, 248 (40.1%) were identified as scalloped hammerhead sharks. Apart from three 

individuals where life stage was not recorded, all S. lewini were categorized as YOY (Table 1). 

For 224 S. lewini, in which umbilical scar status was recorded, 0.89%, 11.16%, and 87.95% were 

assigned to categories 2, 3, and 4 respectively; no sharks were listed as having a 1 or 5 status.   

Morphometric data collected from 236 scalloped hammerhead sharks were used in length 

analyses. Fork lengths for these animals ranged from 29 to 45 cm. Relationships between FL and 

PCL (Figure 3), PCL and STL (Figure 4), and FL and STL (Figure 5) were all significantly 

correlated (Pearson Correlation, p= 0.000). Linear regression analyses resulted in the following: 

PCL = -0.2348 + 0.9085*FL (r2= 0.964), STL = 2.963 + 1.381*PCL (r2= 0.948), STL = 1.478 + 

1.286*FL (r2=0.959). Fork length varied significantly among the months of May through August 

(Figure 6; p= 0.002). September was excluded in this analysis as there were only two samples 

recorded for that month. Average fork length was lowest in the month of May (36.778 cm) and 

greatest in July (39.074 cm). The average fork length recorded for the months of June and 

August were not significantly different from each other, and they were grouped into the same 

homogenous subset as determined by the post-hoc test. 

The average CPUE of scalloped hammerhead sharks was 0.553 sharks 50-hooks-1 (SD = 

1.080) from 2010 to 2019. YOY S. lewini were caught consistently throughout the ten-year 

survey, but average CPUE varied significantly among years (Kruskal-Wallis, p = 0.000) Annual 

CPUE was highest in 2010 with an average CPUE of 2.729 sharks 50-hooks-1 and lowest in 2012 
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Table 1. Species composition, abundance, percent of total catch, sex, and life stage for all sharks 

caught in the Tolomato River from 2010 to 2019. Species are listed in order of overall abundance 

from most to least abundant; NS = sex unknown, NR = not recorded.  
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Figure 3.  Relationship between precaudal lengths (PCL) and fork 

lengths (FL) of YOY S. lewini caught in the Tolomato River 

between 2010-2019. Results from linear regression analysis are 

included. 
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Figure 4. Relationship between stretched total lengths (STL) and 

precaudal lengths (PCL) of YOY S. lewini caught in the Tolomato River 

between 2010-2019. Results from linear regression analysis are included. 
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Figure 5.  Relationship between stretched total lengths (STL) and fork 

lengths (FL) of YOY S. lewini caught in the Tolomato River between 

2010-2019. Results from linear regression analysis are included. 
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Figure 6. Fork lengths of YOY S. lewini caught in the Tolomato River 

during the years of 2010-2019 divided by month of capture. Months are 

grouped into homogenous subsets as determined by a Tukey post-hoc test 

with multiple comparisons following one-way ANOVA analysis (p=0.002). 

Sample size is presented. 
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with an average CPUE of 0.262 sharks 50-hooks-1 (Figure 7). Average CPUE also varied 

significantly among the months (Kruskal-Wallis, p = 0.000). Monthly CPUE increased from 

0.737 sharks 50-hooks-1 in May to a maximum of 0.796 sharks 50 hooks-1 in June (Figure 8). 

Following this peak, monthly CPUE declined until no sharks were caught in October. The 

months of May, June, and July were grouped into one homogenous subset, while all other survey 

months were grouped into the other subset. No sharks were caught during the months of April, 

October, or November.   

 Sets for which all environmental parameters were recorded were used to infer 

environmental preferences of the species (n= 350). The binary logistic regression was performed 

to determine the effects of depth, temperature, salinity, D.O., and conductivity on the probability 

of catching a YOY scalloped hammerhead shark. The model indicated good fit (Hosmer and 

Lemeshow Test; p= 0.171) and correctly classified 71.7% of cases. Increasing D.O. conditions 

(p= 0.001) were associated with a reduction in the likelihood of catching a scalloped 

hammerhead shark (Table 2). 

The CPUE of all sets completed over the ten-year survey were mapped via GIS and 

addressed visually (Figure 9). The map indicated that the majority of sets that caught scalloped 

hammerhead sharks occurred around Pine Island and within Pine Island Sound. 

 

Comparisons of S. lewini abundance in the Tolomato River and other northeast Florida estuaries 

 S. lewini catch rates were compared among sets completed in the Cumberland Sound (n= 

354), Nassau Sound (n= 327), and Tolomato River (n= 350). Catch rates (Sharks/ 50 hook-hours) 

were significantly different among the three sites (Kruskal-Wallis, p= 0.000; Figure 10). The 

Tolomato River experienced higher catch rates as opposed to the Cumberland and Nassau  
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Figure 7. The average CPUE for YOY scalloped hammerhead sharks in the 

Tolomato River per year from 2010-2019 with error bars representing SE. 

Years are grouped into homogenous subsets as determined by a post-hoc test 

with multiple comparisons following Kruskal-Wallis nonparametric analysis (p 

= 0.000). 
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Figure 8. The average CPUE for YOY scalloped hammerhead sharks in the 

Tolomato River per month from 2010-2019 with error bars representing SE. 

Months are grouped into homogenous subsets as determined by a post-hoc 

test with multiple comparisons following Kruskal-Wallis nonparametric 

analysis (p =0.000). 
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Table 2. Results of binary logistic regression model analyzing the effects of 

environmental parameters on the presence/absence of YOY scalloped hammerhead 

sharks on bottom longlines conducted from the years 2010-2019 in the Tolomato 

River.  
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Figure 9. CPUEs associated with geographic location of bottom longline sets completed in the 

Tolomato River from 2010-2019. Map completed via ArcGIS Pro. 
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Figure 10. The average CPUE (sharks per 50 hook-hours) of sets used in GLM 

analysis, with error bars representing SE. Sets completed in Cumberland Sound 

(n=354), Nassau Sound (n=327), and the Tolomato River (n=350) are 

presented. Sites are grouped into homogenous subsets as determined by a post-

hoc test with multiple comparisons following Kruskal-Wallis nonparametric 

analysis (p=0.000). 
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Sounds, which were grouped into the same homogenous subset. Kruskal-Wallis analysis resulted 

in the same outcome when the CPUE was expressed as sharks per 50 hooks (p= 0.000; Figure 

11). As a result, this unit of CPUE was used for all subsequent analyses. 

A general linear model was used to determine whether site or any other environmental 

factors influenced S. lewini abundance in the northeast region of Florida (n= 1031). Site, salinity, 

and the interaction between salinity and conductivity all had significant effects on abundance 

(Table 3). Average salinity and conductivity conditions are presented in Table 4. Among all the 

sets conducted in the northeast Florida estuaries, salinity was not significantly different between 

sets that caught at least one scalloped hammerhead shark and those that caught none (Figure 12). 

However, average salinity was significantly different among the three sites (Figure 13). 

Conversely, conductivity was significantly different between sets in which S. lewini were absent 

and present (Figure 14), and there was no significant difference in average conductivity between 

the three sites (Figure 15). 

 

Mark-Recapture Study 

 During the years of 2019 and 2020, a total of 34 scalloped hammerhead sharks were 

caught, tagged, and released in the Tolomato River. 24 sharks were tagged in 2019, while the 

remaining 10 were tagged in 2020. Three males were recaptured, resulting in a total recapture 

rate of 8.824%. All sharks were recaptured during the same year in which they were released. 

Days at liberty ranged from 6 to 59 days, and distance between release and recapture locations 

ranged from 1.263 to 4.396 km (Table 5). Recaptures were mapped via ArcGIS Pro (Figure 16). 

 

Acoustic Tracking 
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Figure 11. The average CPUE (sharks per 50 hooks) of sets used in GLM 

analysis, with error bars representing SE. Sets completed in Cumberland Sound 

(n=354), Nassau Sound (n=327), and the Tolomato River (n=350) are presented. 

Sites are grouped into homogenous subsets as determined by a post-hoc test with 

multiple comparisons following Kruskal-Wallis nonparametric analysis 

(p=0.000). 
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Table 3. Result of the general linear model used to determine the effects of 

site and other environmental factors on the abundance (sharks/ 50 hooks) of 

scalloped hammerhead YOYs in the northeast region of Florida (F= 54.193, 

P= 0.000, R2= 0.174).  
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Table 4. A comparison of the average salinity and conductivity conditions recorded for sets used 

in GLM analysis when at least one scalloped hammerhead YOYs were caught (Present) and for 

sets that caught no sharks (Absent). Means were compared via Mann-Whitney U tests, and the 

resulting p values are displayed. Average conditions were also compared across sites via a 

Kruskal-Wallis analysis, and the resulting p values are displayed. Numbers in parentheses are 

standard errors and sample sizes. 

 Present Absent P Cumberland Nassau Tolomato P 

Salinity (ppt) 31.262  
(±0.413, 128) 

30.293  
(±0.172, 903) 0.118 31.018  

(±0.195, 354) 
31.102  

(±0.276, 327) 
29.129  

(±0.328, 350) 0.000 

Conductivity (mS) 51.980  
(±0.774, 128) 

48.474  
(±0.282, 903) 0.000 49.414  

(±0.364, 354) 
49.394  

(±0.452, 327) 
47.931  

(±0.552, 350) 0.135 
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Figure 12.  Comparison of the average salinity conditions recorded 

for sets used in GLM analysis when at least one scalloped 

hammerhead YOY was caught (Present) and for sets that caught no 

sharks (Absent) (Mann-Whitney U, p= 0.118). Bars represent SE.    
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Figure 13. Comparison of the average salinity conditions recorded for 

sets completed in Cumberland Sound, Nassau Sound, and Tolomato 

River, which were used in GLM analysis. Sites are grouped into 

homogenous subsets as determined by a post-hoc test with multiple 

comparisons following Kruskal-Wallis nonparametric analysis 

(p=0.000). Bars represent SE.    
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Figure 14. Comparison of the average conductivity conditions 

recorded for sets used in GLM analysis when at least one scalloped 

hammerhead YOY was caught (Present) and for sets that caught no 

sharks (Absent) (Mann-Whitney U, p= 0.000). Bars represent SE.    
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Figure 15. Comparison of the average conductivity conditions recorded 

for sets completed in the Cumberland Sound, Nassau Sound, and 

Tolomato River, which were used in GLM analysis (Kruskal-Wallis, p= 

0.135). Bars represent SE. 
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Table 5.  Scalloped hammerhead sharks recaptured between the years of 2019-2020 in the 

Tolomato River. Abbreviations are as follows: M = male and YOY = young of year. 
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Figure 16. Mark-recapture data collected for three scalloped 

hammerhead YOYs between 2019-2020. Number in the white 

boxes near release location indicates days at liberty, and the number 

along the lines is the distance traveled in kilometers. 
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A total of 200 positional fixes were recorded for two male YOY scalloped hammerhead 

sharks that were actively tracked during the summer of 2020. Due to the preliminary nature of 

this research and the limited length of the tracks, full tracks were used in analysis. Data for the 

three tracks completed can be found in Table 6. The first shark (SLEW1; 360 g) was caught in 

the main channel of the Tolomato River and tracked for a total of six hours. During the track, the 

shark traveled northwards, up the river, and subsequently stayed around Pine Island (Figure 17). 

In total, the animal traveled 9.409 km during the extent of the track. The second animal 

(SLEW2; 440 g) was tracked during two different sessions for a total of 10.41 hours. During 

both tracks, the animal stayed in Pine Island Sound for the entire duration (Figure 17). During 

the first track, the animal traveled a distance of 6.632 km. The shark was tracked over 3.067 km 

during the second track. The positional fixes recorded for these tracks were used in activity space 

analysis. 

SLEW1 had the largest activity spaces as determined by minimum convex polygon 

analysis, with a 1.747 km2 home range (Table 6; Figure 18). 95% KUD for this animal was 4.159 

km2, while 50% KUD produced an area of 1.611 km2 (Table 6; Figure 19). 50% KUD indicated 

that the animals had two core areas of use, with the larger of the two being located near Pine 

Island. The second largest activity space was recorded for the first track of SLEW2 (SLEW2a), 

with a total area of 0.401 km2 (Table 6; Figure 18). This area overlapped slightly with the activity 

space generated for SLEW1. A 0.693 km2  area was produced by the 95% KUD and a 0.213 km2 

area from the 50% KUD for this track (Table 6; Figure 20). The third track (SLEW2b) produced 

the smallest activity space, with 0.046 km2 (Table 6; Figure 18). This activity space did not 

overlap with tracks SLEW1 or SLEW2a. The 95% KUD produced a 0.136 km2 area, while 50% 

KUD produced an area of 0.039 km2 (Table 6; Figure 21). 



47 

 

 

 

 

 

 

 

 

 

Table 6.  Movement and activity data collected for YOY scalloped hammerheads actively 

tracked in the Tolomato River. Abbreviations are as follows: FL= fork length, MCP= minimum 

convex polygon, UD= utilization distribution, LI= linearity index.   
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Figure 17. GIS mapping of three active tracks completed with YOY S. lewini in the Tolomato 

River during 2020.  
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Figure 18. Minimum convex polygons (MCP) created for active tracks SLEW1 (red), 

SLEW2a (blue), and SLEW2b (yellow). Mapping was completed via ArcGIS Pro.  
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Figure 19. Kernel utilization distribution (KUD) mapped via GIS for track 

SLEW1. Striped areas represent 95% KUD, and black areas represent 50% 

KUD. Mapping was completed via ArcGIS Pro. 
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Figure 20. Kernel utilization distribution mapped via GIS for track 

SLEW2a. Striped areas represent 95% KUD, and black areas represent 

50% KUD. Mapping was completed via ArcGIS Pro. 
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Figure 21. Kernel utilization distribution mapped via GIS for track SLEW2b. 

Striped areas represent 95% KUD, and black areas represent 50% KUD. 

Mapping was completed via ArcGIS Pro. 
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Movement in these areas were described by the linearity index. All linearity indexes were 

closer to 0 than 1 (Table 6). The SLEW1 track had a linearity index of 0.470, which was the 

highest of the three tracks. The linearity indexes for tracks SLEW2a and SLEW2b were 0.104 

and 0.064, respectively. Movement, in terms of ROM, was subsequently analyzed. 

Average ROM was significantly different (ANVOA, p= 0.000) among the tracks, with each track 

being put into its own homogenous subset (Figure 22). The highest average ROM was recorded 

for SLEW1 track at 26.137 m/min (Table 6). SLEW2b track had the lowest average ROM at 

13.337 m/min (Table 6). Average ROM did not differ significantly between upriver or downriver 

travel for each of the tracks (Table 7). However, average ROM was significantly different across 

the four tidal stages when tracks were combined (ANOVA, p= 0.018; Table 8). Average ROM 

was highest during high tide (25.882 m/min) and lowest during the low tide (17.177 m/min). 

Bearing additionally was significantly different among the tidal stages despite average bearing 

indicating a southwards trajectory during each tidal stage (Kruskal-Wallis, p= 0.035; Table 8).  

Environmental conditions recorded for the three tracks are displayed in Table 9. Average 

depth, temperature, salinity, D.O., and conductivity varied significantly among the three tracks 

(p= 0.000 for each factor; Table 10). The three tracks were put into separate homogenous groups 

for each environmental parameter with the exception of temperature. For this factor, SLEW2a 

and SLEW2b were put into the same subset. Preferences for water quality variables were 

indicated by multiple linear regression with bootstrapping. Temperature had a significant effect 

on the latitudinal position of SLEW1 during the track (p= 0.049; Table 11). For SLEW2, 

dissolved oxygen concentration (p= 0.047) influenced the latitudinal position of the animal 

during the track (Table 12).  
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Figure 22. Comparison of average ROM (m/min) across three active 

tracks, with error bars representing SE (ANOVA, p= 0.000). Tracks are 

grouped into homogenous subsets according to a Tukey post-hoc test.  
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Table 7.  Rate of movement (m/min) compared between upriver and 

downriver movement via student t-tests for tracks SLEW1, SLEW2a, and 

SLEW2b. P values are presented.  
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Table 8.  Comparison of movement parameters recorded during the tidal stages. Rate of 

movement compared via a one-way ANOVA, and bearing was compared via Kruskal-Wallis 

analysis. P values from each test are presented.  
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Table 9.  Mean, minimum, and maximum environmental conditions recorded during complete 

active tracks of SLEW1 and SLEW2.  
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Table 10.  Comparison of environmental conditions recorded during active tracks. P 

values indicate results of Kruskal-Wallis test. Homogenous subsets as determined by 

post-hoc analysis are indicated via superscripts.  
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Table 11.  Multiple linear regression model indicating the influence of environmental 

parameters on the latitudinal location of SLEW1 during active track. 
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Table 12.  Multiple linear regression model indicating the influence of environmental parameters 

on the latitudinal location of SLEW2 during active tracks. 
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DISCUSSION  

 The goal of this study was to determine whether the Tolomato River serves as a nursery 

habitat for the scalloped hammerhead shark. By following the recommendations of Heupel et al. 

(2007), various studies were completed to verify whether the habitat exhibits characteristics 

typically associated with nurseries. Catch data from a ten-year survey were analyzed to assess S. 

lewini presence and annual fidelity to the river. S. lewini abundance was then compared across 

three study sites in northeast Florida to determine preference for the Tolomato River. Site fidelity 

of individual animals was analyzed via a mark-recapture survey, which was conducted over two 

years. This was concluded with the active acoustic tracks of two sharks to further understand 

habitat use. Results from these studies were critical in declaring the Tolomato River as a nursery. 

From 2010-2019, 40.1% of the sharks caught in the Tolomato River were identified as 

scalloped hammerhead sharks. Of these, 98.79% were categorized as YOY’s; the life history 

stage of the remaining S. lewini were not recorded. Life history stage was based upon umbilical 

scar status and morphometric analyses, which revealed several insights about the Tolomato 

River’s S. lewini population. Based on observations of 224 individuals, 99.11% of scalloped 

hammerhead sharks caught had either partly healed (3) or well-healed (4) umbilical scars. 

Duncan and Holland (2006), utilizing comparable categories, reported that umbilical wounds 

reached umbilical scar status category 3 by a mean of 4 ± 2.3 days after birth. Scar status did not 

reach category 4 until a mean of 10 ± 3.6 days after birth. Based on these observations and the 

lack of mature S. lewini in the Tolomato River, it is likely that the YOYs caught during the 

survey were pupped outside of the study area and moved into the nursery habitat following 

parturition. The life history stage of the scalloped hammerhead sharks caught during this survey 

was confirmed via morphometric data.  
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Regarding morphometrics, relationships between PCL, FL, and STL were all highly 

correlated, indicating that the record of one length could theoretically be used to calculate others 

for YOY S. lewini in the future. Fork lengths recorded for 236 scalloped hammerhead sharks 

from the Tolomato River ranged from 29-45 cm. Plotting these fork lengths by month did not 

reveal any clear trends in growth, though the range in length data was consistent with expected 

measurements for first year animals (Piercy et al. 2007; Cuevas-Gómez et al. 2020). The range of 

STL of S. lewini caught in the Tolomato River (38.7-60.5 cm) fell within the lengths recorded 

for neonates and YOYs (35.5-93 cm STL) in a scalloped hammerhead nursery in the Gulf of 

Mexico (Cuevas-Gómez et al. 2020). As a result, all S. lewini caught at this site, for which life 

history stage was recorded, were considered YOY individuals. This large presence of YOY 

scalloped hammerhead sharks suggests that the habitat serves some importance to the species. 

These results further indicate that only first year sharks use the Tolomato River, which supports 

the notion that this site serves as a primary nursery according to the definition proposed by Bass 

(1978). These results were further supported by annual and monthly trends of S. lewini 

abundance.  

Analysis of annual average CPUE showed that the catch of this species has been 

consistent across the years of the bottom longline survey from 2010 to 2019. This indicates that 

the species is present in this habitat on an annual basis, satisfying the third criterion of a nursery 

habitat. This is expected of nursery habitats as these environments are thought to be more 

productive relative to other habitats, thus contributing in greater quantities to the reproductive 

population (Beck et al. 2001). This is expected to result in natal philopatry, which is indicated by 

the annual use of the habitat (Beck et al. 2001). Evidence for natal philopatry in sharks has been 

described by Feldheim et al. (2014), in which mature female lemon sharks Negaprion 
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brevirostris returned to their birthplace to pup. Additional evidence that the Tolomato River 

serves as a nursery habitat comes from trends in monthly abundance. 

During a given year, the abundance of scalloped hammerhead sharks was highest in the 

months of May, June, and July. The months of May and June are known as the time of 

parturition in scalloped hammerhead sharks in the northern hemisphere (Hazin et al. 2000). Thus, 

if the Tolomato River was to serve as a nursery habitat, an increase in scalloped hammerhead 

neonates and YOYs would be expected during these months as this coincides with the time when 

mature individuals start to pup. This is consistent with monthly trends observed in other 

scalloped hammerhead nurseries. In Cape Canaveral, Florida, the majority of neonates were 

caught nearshore in late May to late June when assessing a S. lewini nursery (Adams & Paperno, 

2007). This was additionally observed in a nursery habitat in the Gulf of Mexico, where neonates 

and YOYs were most commonly found from the months of May through August (Cuevas-

Gómez et al. 2020). Likewise, the highest catch rates of this species were recorded during July in 

Kāne’ohe Bay, Hawaii, a well-documented scalloped hammerhead shark nursery (Duncan & 

Holland, 2006). Following this peak in abundance, S. lewini catch rates then declined in the 

Tolomato River in August, and catch rates remained low in September. This initial decline in 

catch rates may be due to high mortality rates. For example, high scalloped hammerhead shark 

densities in the river could result in competition for resources (Clarke, 1971; Lowe, 2002). 

Declines in scalloped hammerhead shark abundance were partially attributed to starvation-

induced mortality, as supported by weight loss, in Kāne’ohe Bay nursery (Duncan & Holland, 

2006). Therefore, it is possible that this may account for the lower catch rates at the end of the 

summer season. From the months of October to April, the species was absent in the river. Similar 

trends were found by Heupel (2007) in which juvenile blacktip sharks left summer nursery areas 
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in the Gulf of Mexico as water temperatures declined. Winter declines in population size were 

also recorded for Kāne’ohe Bay, and hammerheads were expected to only reside in the nursery 

for 3-4 months before emigrating (Clarke, 1971). As the trends observed in the Tolomato River 

are comparable to those recorded in known nursery habitats, this analysis further supports that 

the Tolomato River serves as EFH for the species.  

 To better understand environmental preferences of this population, environmental data 

collected throughout the ten-year study were analyzed. The binary linear regression model 

indicated that the probability of catching a YOY scalloped hammerhead shark increased with 

lower D.O. conditions. Scalloped hammerhead sharks have been observed in low oxygen 

environments (Jorgensen et al. 2009). Seeking low D.O. regimes may allow YOYs to inhabit 

locations inaccessible to potential predators (Schlaff et al. 2014).  

Environmental preferences may explain the higher catch rates surrounding Pine Island 

Sound, in the river. Mapping CPUE geographically highlighted this location as an area of 

importance, as the majority of scalloped hammerhead catches occurred there. Pine Island Sound 

is located toward the natural end of the Tolomato River; farther north, the river is replaced by a 

channel which was completely dredged by 1912 for the ICW (Parkman, 1983). The importance 

of Pine Island Sound will be further explored below.  

Nurseries observed for the scalloped hammerhead shark have been generally described as 

relatively shallow inshore habitats, such as bays and estuaries, with temperatures upwards of 20 

°C (Clark, 1971; NOAA, 2015). Several habitats in northeast Florida meet this description. 

Therefore, it was important to verify the Tolomato River’s importance to S. lewini.  The catch of 

S. lewini was significantly greater than that recorded in either the Nassau or Cumberland Sounds. 

Average CPUE (sharks 50-hooks-1) recorded for the Tolomato River was 14.6 times greater than 
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that of Nassau Sound and 38.6 times greater than the Cumberland Sound. Differences were even 

larger when CPUE accounted for soak time, in which Tolomato sets soak for 15 minutes rather 

than the standard 30-minutes soak. The general linear model additionally supported these results 

by indicating that site was a significant factor in determining scalloped hammerhead abundance 

across all the sets conducted in northeast Florida. The model additionally designated salinity and 

its interaction with conductivity as variables that influenced S. lewini abundance. In order to 

determine if either salinity or conductivity conditions accounted for the larger numbers of 

scalloped hammerhead sharks in the Tolomato River, additional analyses were completed.  

Further analysis revealed that there was no significant difference in salinity when 

grouping all sets used in GLM analysis by the presence and absence of S. lewini. However, 

salinity did differ significantly between sites. This suggests that although salinity varied across 

the three sites, it did not account for the larger numbers of scalloped hammerhead sharks found 

in the Tolomato River. Furthermore, average salinity conditions were lower in the Tolomato 

River in comparison to those recorded in the Cumberland and Nassau Sounds. Therefore, it is 

unlikely that the salinity conditions in the Tolomato River caused the larger numbers recorded as 

scalloped hammerhead sharks are known to prefer salinities of 28-36 ppt, and S. lewini 

abundance has been shown to increase with salinity (Castro, 1993; Adams & Paperno, 2007; 

Ward-Paige et al. 2014).  In contrast, conductivity did vary significantly between sets that caught 

S. lewini and ones that did not. Though, average conductivity conditions did not differ 

significantly among the three study sites. This shows that conductivity influenced S. lewini 

abundance regardless of location. Based on these analyses, it is clear that site was the leading 

cause of differences in S. lewini abundance and abiotic factors did not appear to influence the 

species preference for the Tolomato River. Thus, biotic differences could account for the higher  
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numbers of S. lewini in the Tolomato River.  

Nurseries have been described as having a smaller population of predators present when 

compared to nearby habitat (Heupel, 2007). For example, fewer large sharks were recorded in 

Kāne’ohe Bay nursery relative to the surrounding open-water habitat (Crow et al. 1996). The 

Tolomato River does have fewer potential predators of scalloped hammerhead YOYs, when 

compared to the Nassau and Cumberland Sounds. Juvenile and adult sharks account for 7.61% of 

the sharks caught in the Tolomato River from 2010-2019. In comparison, 52.99% and 68.18% of 

the sharks caught on bottom longline surveys in the Nassau Sound (2012-2018) and Cumberland 

Sound (2012-2018) were categorized as either juveniles or adults (Morgan, 2018). Thus, the 

smaller frequency of large sharks in the Tolomato River may account for the greater abundance 

of YOY S. lewini. Ultimately, the species was more commonly found in the Tolomato River in 

comparison to other, available habitat in the region. This, thereby, satisfies the first criterion of a 

nursery habitat.  

The mark-recapture study was completed over 2019 and 2020 in order to address both the 

second and third criteria of nursery habitat identification. From a total of 34 sharks tagged and 

released in the river, three were recaptured (8.82%). This recapture rate is greater than that  

recorded for this species in the Kāne’ohe Bay nursery (3.7%), but less than that recorded in the 

Rewa Delta, Fiji (12.69%), which was also identified as critical habitat for S. lewini (Duncan & 

Holland, 2006; Marie et al. 2017). Furthermore, all sharks were recaptured in the Tolomato River 

during the same year in which they were released. The time at liberty recorded for these 

recaptured sharks (6-59 days) fell within the range recorded for scalloped hammerhead sharks in 

the Kāne’ohe Bay nursery (14 min-324 days; Duncan & Holland, 2006). Additionally, all 

recaptures occurred at the site of release, which further mirrored the study completed by Duncan 
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and Holland (2006). It is important to note that one of the sharks in this study was released and 

recaptured, ten days later, in the Pine Island Sound, further indicating the area as important 

habitat. The other two sharks were recaptured by recreational fishermen off a pier on the river. 

These results support the second criterion of a nursery habitat; that individual sharks tend to stay 

in the area for extended periods of time. The lack of second year recaptures further supports the 

notion that the site is a primary nursery, in which only first-year sharks are found.  

Sharks were additionally shown to stay in the Tolomato River for extended periods of 

time via acoustic tracking. During all three tracks conducted, the animals remained within the 

Tolomato River, thus further supporting the second criterion of a nursery habitat. However, due 

to the limited number and duration of the tracks, all additional analyses should be treated as 

preliminary findings. It is likely that the stress of capture and tagging influenced the animals’ 

behavior post release. Support for these assumptions comes from a comparison of average ROM 

(m/min) between the first and second tracks completed for SLEW2. These tracks were completed 

8 days apart, and the average ROM recorded during the second track was significantly slower 

than the first. Therefore, major trends among the three tracks rather than individual preferences 

were thought to more accurately represent S. lewini movement in the Tolomato River. 

All three tracks had linearity indexes closer to zero than to one, suggesting the majority 

of the tracks exhibited reuse of space rather than linear movements. The first track (SLEW1) had 

the highest LI (0.470), which accurately represents the track. For the majority of the active track, 

the animal traveled upriver through the main channel. The track was stopped at dusk after the 

animal had moved back downriver and entered Pine Island Sound. In comparison, the second 

animal (SLEW2) spent the entirety of both tracks in Pine Island Sound. For both tracks, low LI 

values (0.104 and 0.064) indicated movements associated with reuse. These values were more 
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consistent with LIs recorded for YOYs in other nursery habitats. LI values ranged from 0.01-

0.37 for bull sharks in the Indian River Lagoon nursery (Curtis et al 2013).  

Total activity spaces for each track reflected these trends; combined area of both 

SLEW2a and SLEW2b tracks was smaller than the activity space associated with track SLEW1. 

Average total activity space (0.731 km2) recorded in this study was slightly smaller than that 

recorded in other studies. In Kāne’ohe Bay, average total activity spaces of 1.26 ± 1.12 km2 

(Holland et al. 1993) and 1.41 ± 0.41 km2 (Lowe, 2002) have been recorded for S. lewini in the 

nursery. In a coastal nursery in Jalisco, Mexico, the average home range of YOY scalloped 

hammerhead sharks was 2.8 ± 1.9 km2 (Rosende-Pereiro & Corgos, 2018).  These differences are 

likely due to the shorter duration of the active tracks completed during this study. This was 

additionally seen for the 50% KUD calculated. In this study, the average area determined for the 

50% KUD was 0.62 km2. This is comparatively smaller than 50% KUD recorded for S. lewini in 

nursery studies completed by Lowe (1.31 ± 0.65 km2 ; 2002) and Rosende-Pereiro and Corgos 

(1.50 ± 1.29 km2; 2018). Despite these inconsistencies with previous research, 50% KUDs did 

indicate core areas of use and preferred habitat within the Tolomato River. 

For each of the three tracks, 50% KUDs highlighted areas surrounding Pine Island in the 

Tolomato River. This supports the notion that the waters surrounding Pine Island serves as the 

core of the nursery habitat. Noticeably, larger numbers of scalloped hammerhead sharks have 

been caught in this area over the ten-year bottom longline survey. These active tracks also show 

that individuals spend long periods of time within this specific area. This is similar to patterns 

recorded for juvenile lemon sharks and blacktip sharks, which showed small areas of core use in 

their nursery habitats (Morrissey & Gruber, 1993; Heupel et al. 2004). Sharks of various species 

have been recorded to select microhabitats within nursery areas based on a variety of both biotic 
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and abiotic factors (Heithaus, 2007). Furthermore, in previous studies, both scalloped 

hammerhead sharks in Kāne’ohe Bay and sandbar sharks C. plumbeus in the Delaware Bay made 

long distance trips, though they tended to reuse core areas in their nurseries (Rechisky & 

Wetherbee, 2003; Duncan & Holland, 2006). Similar trends were observed with the track 

recorded for SLEW1. Thus, Pine Island Sound likely serves as the core of the nursery habitat. 

Analyzing the movement and environmental parameters recorded during the three tracks 

were not as informative about habitat preferences. ROM did not vary between upriver and 

downriver travel for any of the tracks. Though, ROM did differ significantly between the four 

tidal stages, with the highest average ROM being recorded during high tide and lowest during 

low tide. Tidal flow has shown significant effects on shark movements of other species. Juvenile 

bull sharks in a Florida estuary were suspected to use tides to conserve energy; it was also 

hypothesized that movements could be an indirect result of prey movement (Ortega et al. 2009). 

Bearing of travel was significantly different among the four tidal stages; however, for each stage, 

the average bearing indicated a southward trajectory thereby limiting the assumptions that can be 

made for tidal influence on direction of movement. Limitations were also found when analyzing 

the effects of environmental parameters on shark location.  

Abiotic factors can affect digestion and osmoregulation in elasmobranchs, and movement 

within a habitat may be the result of physiological requirements (Schlaff et al. 2014). Therefore, 

the potential effects of environmental conditions on the spatial ecology of the tracked animals 

were assessed. All environmental parameters did vary significantly between the three tracks, and 

each track was put into its own homogenous subset for each factor, with a single exception of 

temperature. For temperature, tracks SLEW2a and SLEW2b were put into the same homogenous 

subset. This likely indicates the differences recorded in environmental parameters among the 
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three tracks were due to the conditions present at the day and time of the track, rather than 

representing preferences of the species. For the SLEW1 track, which showed the greatest 

latitudinal change, temperature was shown to significantly influence the latitudinal position of 

the animal. However, there was only a range of 0.6 °C recorded during the track. Therefore, it is 

unlikely that temperature alone was the direct cause of latitudinal changes. Movement of this 

animal could be the response to other factors not covered in this study, such as biological ones. 

Though, it is important to note that the temperatures recorded during the track (30.1-30.7 °C) 

were slightly higher than the preferred temperatures recorded for the species (26-30 °C; Castro, 

1993). 

Data collected from tracks SLEW2a and SLEW2b were combined for the multiple linear 

regression based on analysis of the R-squared values generated, which was greater when tracks 

were combined, and to potentially infer habitat preferences of the individual shark. From the 

analysis, D.O. was identified as a factor that influenced the animal’s position. During the two 

tracks, there was a difference of 0.010 (SLEW2a) and 0.003 (SLEW2b) decimal degrees in 

latitude between the northmost and southmost locations recorded during the tracks. Thus, the 

animal did not cover large latitudinal distances during either track as it remained within the Pine 

Island Sound on both occasions. Furthermore, the range of D.O. conditions recorded did not 

overlap between the two tracks and varied significantly. This likely indicates that the animal was 

not seeking certain D.O. regimes. Ultimately, a greater sample size and longer active tracks 

would be needed to better address the effect of environmental parameters on the localized 

movements of scalloped hammerhead sharks in the Tolomato River.  

Results from these analyses indicate that the Tolomato River is a primary nursery habitat 

for the scalloped hammerhead shark, and Pine Island Sound serves as the core of the nursery. 
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Such findings conflict with previous work from Adams and Paperno (2007), which indicated that 

nearshore habitats such as beaches are more important in providing nursery habitats for scalloped 

hammerheads on the Atlantic coast of Florida. Though both beach and estuarine habitats were 

sampled during the study, their results indicated that the scalloped hammerheads were not using 

estuaries as nursery grounds (Adams and Paperno, 2007). The identification of the Tolomato 

River as a nursery habitat indicates that the species is not limited to beaches on the Atlantic coast 

of Florida. This information ultimately aids in the management and conservation of the species 

in the Northwest Atlantic and Gulf of Mexico.  

Before effective management strategies can be put in place, information must be 

collected regarding habitat use. Boundaries of nurseries must be identified to help inform 

designations of EFH. Gaining this knowledge is critical to developing practical policies to 

protect these habitats. This is specifically important for the scalloped hammerhead shark. Adults 

of this species are very mobile and known to make extensive migrations (Maguire et al. 2006), 

therefore it is more prudent to protect nursery habitats were YOYs are predictably found. Thus, 

protection of their nurseries could potentially increase recruit survival, leading to larger 

population sizes. The results from this study not only indicate that the Tolomato River serves as 

a nursery habitat, but it also expands upon the knowledge of what type of habitats are used as 

nurseries by the scalloped hammerhead shark on Florida’s eastern coast. Overall, the 

identification of this habitat as a nursery, and thereby EFH, aids in the conservation of a species 

in need of protection throughout its range.  
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