2015

Bottom Friction Assessment for Hydrodynamic Currents in the Lower St. Johns River

Henok Kefelegn Demissie

University of North Florida

Suggested Citation
https://digitalcommons.unf.edu/etd/570
Bottom Friction Assessment for Hydrodynamic Currents in the Lower St. Johns River

by

Henok Kefelegn Demissie

A thesis submitted to the Department of Civil Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Civil Engineering

UNIVERSITY OF NORTH FLORIDA

COLLEGE OF COMPUTING ENGINEERING AND CONSTRUCTION

May, 2015
Bottom Friction Assessment for Hydrodynamic Currents in the Lower St. Johns River is approved:

__________________________ ______________________
Dr. Peter Bacopoulos, PhD
Thesis Advisor and Committee Chair

__________________________ ______________________
Dr. William R. Dally, PhD, P.E
Committee Member

__________________________ ______________________
Dr. Nick W. Hudyma, PhD, P.E
Committee Member

Accepted for the School of Engineering:

__________________________ ______________________
Dr. Murat M. Tiryakioglu, PhD
Director of School of Engineering

Accepted for the College of Computing Engineering and Construction:

__________________________ ______________________
Dr. Mark A. Tumeo, PhD, P.E
Dean of the College of Computing Engineering and Construction

Accepted for the University:

__________________________ ______________________
Dr. John Kantner
Dean of the Graduate School
I dedicate this work and give special thanks to my loving and caring wife Mahider Hailu and my wonderful children Yonatan and Rediham for being there for me.

All of you have been my best cheerleaders.

A special feeling of gratitude to my mother and father; Alemtsehay Kassaye and Kefelegn Demissie whose words of support and encouragement ring in my ears.
ACKNOWLEDGMENTS

This thesis would not have been possible without the guidance and the help of several individuals who, in one way or another, contributed and offered their valuable assistance in the preparation and completion of this study.

First and foremost, my utmost gratitude to Dr. Don Resio, Professor and Director, Taylor Engineering Research Institute (TERI) whose sincerity and generosity I will never forget. I am sure that without Dr. Resio’s guidance and support I would have not been a student in Coastal Engineering field and TERI Program.

I would like to thank my committee chair Dr. Peter Bacopoulos, for his unselfish and unfailing support as my thesis adviser as well as the moral support and steadfast encouragement to complete this study. I also thank my committee members Dr. William Dally and Dr. Nick W Hudyma for the guidance and support. A special thank you to Dr. William Dally for providing the data used in the research.

In addition, a thank you to Mrs. Hollis, for being accommodating to my queries and for re-editing the electronic version of this thesis. I also thank Coastal Engineering students who in one way or another were assistance especially Mr. Michael Hunter Bredesen for his support.

This research was funded in part under Award No. NA10OAR4170079 from Florida Sea Grant (FSG) and the “St. Johns River Economic Impact Study: Phase 1 – Ecosystem Services Valuation” project from the St. Johns River Water Management District (SJRWMMD).

Last but not the least, my family and the one above all of us, the omnipresent God, for answering my prayers for giving me the strength to plod on despite my constitution wanting to give up and throw in the towel, thank you so much Dear Lord.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Content</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>Abstract</td>
<td>x</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2: Observation Data Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Current Measurements</td>
<td>5</td>
</tr>
<tr>
<td>Water Surface Elevation</td>
<td>16</td>
</tr>
<tr>
<td>Freshwater Inflows</td>
<td>17</td>
</tr>
<tr>
<td>Stream Flow Data</td>
<td>19</td>
</tr>
<tr>
<td>Chapter 3: Manning’s roughness coefficient</td>
<td>21</td>
</tr>
<tr>
<td>Chezy and Manning Friction Formulations</td>
<td>22</td>
</tr>
<tr>
<td>Factors Affecting Manning’s n</td>
<td>26</td>
</tr>
<tr>
<td>Directional Manning’s n</td>
<td>28</td>
</tr>
<tr>
<td>CHAPTER 4: Hydrodynamic Modeling</td>
<td>34</td>
</tr>
<tr>
<td>Shallow Water Equations</td>
<td>34</td>
</tr>
<tr>
<td>Bottom Friction Formulations in ADCIRC</td>
<td>36</td>
</tr>
<tr>
<td>ADCIRC Model Setup</td>
<td>37</td>
</tr>
<tr>
<td>Fort.14 File – Domain Mesh</td>
<td>38</td>
</tr>
<tr>
<td>Fort.15 File – Parameter File</td>
<td>40</td>
</tr>
<tr>
<td>Fort.13 File – Nodal Attribute File</td>
<td>41</td>
</tr>
<tr>
<td>Development of Directional Manning’s n</td>
<td>44</td>
</tr>
<tr>
<td>Validation of the Modified ADCIRC Model</td>
<td>50</td>
</tr>
<tr>
<td>CHAPTER 5: Results and Discussion</td>
<td>53</td>
</tr>
<tr>
<td>Hydrodynamic Model Validation</td>
<td>55</td>
</tr>
<tr>
<td>CHAPTER 6: Conclusions</td>
<td>58</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Cast station locations</td>
<td>7</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>ADCP measurements for deployment 1 and 2. AVG is the depth-averaged value of velocity magnitude for each location. STD is the standard deviation of the depth-dependent variability of velocity magnitude for each location.</td>
<td>15</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>General characteristics of the Twenty one tributaries based on flow measurements</td>
<td>19</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Factors affecting Manning's roughness coefficient</td>
<td>27</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Lists the appropriate values to be used in Eq. 3-20</td>
<td>29</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Model input files (Simulations 1, 2 and 3)</td>
<td>38</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Computation of roughness factor n_o</td>
<td>45</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Model input files (Simulations 4 and 5)</td>
<td>48</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>RMSEs and R^2 values for Day 1 and 2 simulations</td>
<td>54</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>RMSEs and R^2 values for model validation</td>
<td>56</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Lower St. Johns River domain area (Google Earth image)</td>
<td>5</td>
</tr>
<tr>
<td>2.2a</td>
<td>ADCP measurement locations, ebb tide, 06/17/2009</td>
<td>8</td>
</tr>
<tr>
<td>2.2b</td>
<td>ADCP measurement locations, flood tide, 06/17/2009</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>ADCP measurement velocity speed (Locations 01 to 25)</td>
<td>9</td>
</tr>
<tr>
<td>2.4a</td>
<td>Depth averaged velocity magnitude (Locations 01 to 25)</td>
<td>10</td>
</tr>
<tr>
<td>2.4b</td>
<td>Depth averaged velocity direction (Locations 01 to 25)</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>ADCP measurement locations, ebb tide, 06/18/2009</td>
<td>11</td>
</tr>
<tr>
<td>2.6</td>
<td>Depth averaged velocity magnitude with error bars indicating +/- standard deviations (Locations 01 to 25)</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>Depth averaged velocity magnitude with error bars indicating +/- standard deviations (Locations 26 to 43)</td>
<td>13</td>
</tr>
<tr>
<td>2.8</td>
<td>Location of fixed tide gauge instrument – Dames Point (Google Earth)</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>Plot of barometric pressure</td>
<td>17</td>
</tr>
<tr>
<td>2.10</td>
<td>Pressure data converted to tide elevation (m) relative to NAVD88</td>
<td>17</td>
</tr>
<tr>
<td>2.11</td>
<td>Locations of watershed (Bacopoulos, 2015)</td>
<td>18</td>
</tr>
<tr>
<td>2.12</td>
<td>Flow discharge at Acosta Bridge</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>The control volume from (Chow, 1959)</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Ebb and flood tide flow</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Finite element mesh for the Western North Atlantic Tidal model domain: OCEAN (Google Earth)</td>
<td>39</td>
</tr>
</tbody>
</table>
Figure 4.2: ADCIRC mesh triangulation (left) with colored elevation (right)40
Figure 4.3: Simulations 1, 2 and 3, 17-Jun-2009 ...43
Figure 4.4: Simulations 1, 2 and 3, 18-Jun-2009 ...43
Figure 4.5: Modified subroutine (Apply2DBottomFriction) ...49
Figure 4.6: Roughness factor contours for different sample flow directions. (Note: Ebb and flood direction are shown in arrows for reference only, they tend to adjust with the orientation of the river channel.) ...50
Figure 4.7: Simulations 1 to 5, Cast 01 to 25 ...51
Figure 4.8: Simulations 1 to 5, Cast 26 to 43 ...52
Figure 5.1: Validation plot, Acosta Bridge stream flow ..55
Figure 5.2: Validation plot, Dames Point Bridge water elevation56
ABSTRACT

A preexisting version of the 2D finite-element hydrodynamic model (code) ADCIRC was modified to enable assimilation of velocity data for calculation of longwave hydrodynamics of the lower St. Johns River. The data assimilation also enables model calibration and parameter estimation of directionally variant Manning’s n value using an anisotropic formulation of bottom roughness. This modified version of the ADCIRC code differs from the original ADCIRC model, as it introduces a module to provide evaluation of directional Manning’s roughness coefficient using observed velocity data for ebb and flood flow durations. The vector-based directional Manning’s n value is found by comparing the observed velocity data with the ADCIRC output from the original model dataset, depicting how the friction factor depends on flow direction. The modified ADCIRC model was calibrated for the velocity dataset and then validated with a different dataset of water surface elevation and streamflow. It is shown that the influence of the directional variability in bottom roughness is a significant factor in calibration of the model, especially given the to-and-fro nature of the tidal motions, which is contrary to present practices that ignore the temporal variability and any anisotropy in bottom roughness. This thesis makes a measured impact on how 2D hydrodynamic models (herein demonstrated with ADCIRC) are able to represent the directionality of bottom roughness in hydrodynamic simulation.
CHAPTER 1: INTRODUCTION

The role of bottom friction in modeling the tidal dynamics of shallow seas and coastal rivers is well appreciated and relatively well studied (at least for vertically integrated models). However, despite considerable theoretical, experimental, and numerical research, the representation and parameterization of frictional processes remains an uncertain feature of modeling. To date, Manning’s roughness has been described with a constant friction coefficient in time, independent of flow direction. The spatially variable Manning’s n has been used in practically all of the hydrodynamic models. These approaches assume that Manning’s n is a numerical constant. Yet, adjustment of bottom friction parameter(s) remains the primary means of calibration for most hydrodynamic models. The objective of the study is to develop a bottom friction formulation for tidal simulation that considers the directional variability in bottom roughness.

In coastal waters, tides are generally classified as astronomical tides, compound tides, or overtides. Astronomical tides result from the gravitational forces exerted by the sun and the moon. Compound tides and overtides arise from the nonlinear interactions between constituents; they are often called shallow water tides because nonlinear phenomena (e.g., bottom friction) generally become important in shallow regions. Importantly, tides are periodic in nature and promote directionally variant motions. Generally, tidal currents become stronger near the coast and play an increasingly important role in local circulation. Because of the rotating nature of the tide wave in many locations (especially inland seas and enclosed basins), ebb and flood currents follow different paths (i.e., are in different directions).
Because of complicated shoreline configuration and bottom bathymetric gradients, bottom friction is usually parameterized by spatially varying friction factors. However, these friction factors are assumed to be constant (i.e., not changing with time). Observation data suggest that the friction factors may contain some temporal variability. The roughness length of sea bottom and the roughness coefficient vary spatially and temporally if the type and sizes of roughness elements of the sea/river bottom are variable with respect to space and time. A physical explanation for modifying the friction factors (and thus the bottom stress) is that the modifications account for the presence of a steady background current or residual turbulence field which contributes to the frictional processes.

It is often suggested that energy dissipation, especially dissipation caused by bottom friction, depends strongly on topography (Doos et al., 2004). Basically there are two ways to parameterize bottom friction: linear and nonlinear. The linear parameterization is done by a bottom friction coefficient (BFC) multiplied by the velocity, while the nonlinear parameterization calculates bottom stress as a function of a BFC multiplied by the square of the velocity. This detail of the nonlinear parameterization is important because of the interaction between BFC and velocity, i.e., how the velocity depends on the BFC and how the BFC depends on the velocity (magnitude). A major breakthrough this thesis provides to the parameterization of bottom roughness is to redevelop the nonlinear parameterization so that BFC depends on the velocity in its entirety, i.e., both magnitude and direction.

This study details the redevelopment of the bottom friction formulation used within the ADCIRC model to account for directionally variant Manning’s n. The redeveloped bottom friction formulation was demonstrated to perform optimally in a validation of hydrodynamic
simulation for the lower St. Johns River. For this study, the widely used ADCIRC model was used to discretize the lower St. Johns River (LSJR) with a triangular finite element mesh. The mesh is applicable not only for solving the equations of motion, but it is also defines the surface topography and the frictional characteristics of the region. Therefore, parameters that describe frictional resistance to water can be defined on the same spatial scale at which the equations are being solved. The physical processes in the ADCIRC hydrodynamic model are described by the depth-integrated shallow water equations. These equations are widely used to describe coupled storm surge, tides, and riverine flows in the coastal ocean and adjacent floodplain. Processes that exist at the physical boundaries of the water column are parameterized, including bottom shear stress. In this thesis, bottom stress was parameterized with the standard Manning’s n coefficient and with a modified directional Manning’s n coefficient based on velocity direction of the flow. Bottom stress was analytically computed via data assimilation of current profile measurements and comparison to model results to find a relationship of the Manning’s n with the direction of the flow, where this relationship informed the bottom friction formulation on how to treat the directionality of Manning’s n, given the to-and-fro nature of ebb and flood tides in the lower St. Johns River.
CHAPTER 2: OBSERVATION DATA ANALYSIS

The study location is the lower St. Johns River (LSJR) in Florida. The St. Johns River is the longest river in the state of Florida and it is significant for commercial and recreational use. At 500 km long, it winds through or borders twelve counties, three of which are the state's largest. The drop in elevation from the headwaters to the mouth is less than 9 meters (Toth, 1993). Like most Florida waterways, the St. Johns has a very low flow rate, 0.13 m/s, and is often described as "lazy." The full extent of the St. Johns River watershed encompasses over 22,000 square km (Sucsy, 2002). The LSJR basin area is approximately 6,700 square km (Figure 2.1). The tributaries of the LSJR are varied both in size and water type. Twenty-one LSJR basin tributaries were selected for inclusion in this study. Their watersheds range in size from about 61 square km to 1478 square km. A number of small, short streams with limited drainage areas also drain directly to the river.

Currents in the LSJR are tidally dominated. Because the river is basically a constricted channel, the currents are rectilinear (or reversing), in that the water flows alternately in approximately opposite directions, with a slack water at each reversal of direction consisting of two flood and two ebb periods each day. In addition to tides, local winds and freshwater river inflows can influence water motions in the LSJR; however, at times, remote wind impacts can be a major contributor to the overall water level in the LSJR (Bacopoulos, 2009). At the river entrance, the maximum flood and ebb currents occur approximately one hour before the high and low tides at the river entrance (NOAA, 1999).
Different datasets of water levels and flow velocities have been collected by Surfbreak Engineering Sciences, Inc, (U.S. Army Corps of Engineers, USACE, 2009). Surfbreak Engineering collected the data for the USACE Jacksonville District (SAJ) in order to conduct a feasibility study of modifications of Jacksonville Harbor, with the goal of improving ship navigation in the LSJR and in the harbor. These datasets are used for the data assimilation.
performed in this study for the development of the directionally variant bottom friction formulation. Data were collected using both fixed and mobile instruments. Table 2.1 summarizes the current measurements used for the study.

The measurement included current profiles using a boat-mounted Acoustic Doppler Current Profiler (ADCP). The current profile data were collected during both ebb and flood durations. As a result, these data provide a basis for assessing the directionality of bottom roughness with regards to the rectilinear tidal motions occurring in the LSJR. Vertical profiles of current speed and direction were measured from the casting boat while at anchor, using a down-looking ADCP, and the measurement pattern as dictated in Figures 2.2a, 2.2b, 2.4a and 2.4b. Details of the mobile casting work, as executed, are provided in Table 2.1. The sampling time interval for data collection was 1 minute. The sampling depth interval for data collection was 0.5 m. Figures 2.3 and 2.5 show the depth-dependent contour plots for deployment 1 and 2 respectively. The velocity data were collected for approximately 7 minutes at each location, while there were 5–10 minutes of non-sampling time in between locations, which is why there appears to be columns of data with gaps in between each column (Figures 2.3 and 2.5). The gap within each column of data represents the measurement of the local channel bottom. The velocity measurements below the gaps within the columns were not considered in the analysis, since they do not reflect the actual condition. Velocity speeds range from 0 to 1.4 m/s. Velocity directions range from 0 to 360 degrees. In all, measurements at 43 locations were made, and an ADCP file accompanied each measurement. The position of the boat during each cast is shown in Table 2.1.
Table 2.1

Cast Station Locations

<table>
<thead>
<tr>
<th>Cast Number</th>
<th>Lat/Log</th>
<th>Date</th>
<th>Time</th>
<th>Flow Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N30°024.14',W81°24.099'</td>
<td>6/17/2009</td>
<td>7:22 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>2</td>
<td>N30°024.113',W81°25.086'</td>
<td>6/17/2009</td>
<td>7:45 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>3</td>
<td>N30°023.917',W81°25.959'</td>
<td>6/17/2009</td>
<td>8:13 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>4</td>
<td>N30°023.046',W81°25.549'</td>
<td>6/17/2009</td>
<td>8:33 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>5</td>
<td>N30°023.022',W81°27.325'</td>
<td>6/17/2009</td>
<td>9:02 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>7</td>
<td>N30°023.413',W81°31.737'</td>
<td>6/17/2009</td>
<td>9:46 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>8</td>
<td>N30°023.032',W81°33.701'</td>
<td>6/17/2009</td>
<td>10:04 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>9</td>
<td>N30°024.509',W81°35.271'</td>
<td>6/17/2009</td>
<td>10:24 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>10</td>
<td>N30°023.950',W81°37.189'</td>
<td>6/17/2009</td>
<td>10:43 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>14</td>
<td>N30°024.139',W81°24.158'</td>
<td>6/17/2009</td>
<td>2:10 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>15</td>
<td>N30°024.110',W81°25.141'</td>
<td>6/17/2009</td>
<td>2:30 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>18</td>
<td>N30°022.996',W81°27.297'</td>
<td>6/17/2009</td>
<td>3:49 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>20</td>
<td>N30°023.458',W81°29.852'</td>
<td>6/17/2009</td>
<td>4:27 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>21</td>
<td>N30°023.434',W81°30.688'</td>
<td>6/17/2009</td>
<td>4:44 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>22</td>
<td>N30°023.077',W81°33.034'</td>
<td>6/17/2009</td>
<td>5:03 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>23</td>
<td>N30°023.042',W81°33.763'</td>
<td>6/17/2009</td>
<td>5:22 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>24</td>
<td>N30°023.817',W81°34.420'</td>
<td>6/17/2009</td>
<td>5:39 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>27</td>
<td>N30°023.558',W81°29.050'</td>
<td>6/18/2009</td>
<td>9:48 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>28</td>
<td>N30°023.428',W81°30.672'</td>
<td>6/18/2009</td>
<td>10:08 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>29</td>
<td>N30°023.053',W81°33.049'</td>
<td>6/18/2009</td>
<td>10:29 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>30</td>
<td>N30°023.791',W81°34.392'</td>
<td>6/18/2009</td>
<td>10:50 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>31</td>
<td>N30°024.384',W81°36.147'</td>
<td>6/18/2009</td>
<td>11:13 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>32</td>
<td>N30°023.024',W81°37.609'</td>
<td>6/18/2009</td>
<td>11:34 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>33</td>
<td>N30°021.531',W81°36.990'</td>
<td>6/18/2009</td>
<td>11:58 AM</td>
<td>Ebb</td>
</tr>
<tr>
<td>34</td>
<td>N30°019.293',W81°37.454'</td>
<td>6/18/2009</td>
<td>12:19 PM</td>
<td>Ebb</td>
</tr>
<tr>
<td>35</td>
<td>N30°024.445',W81°35.185'</td>
<td>6/18/2009</td>
<td>3:00 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>36</td>
<td>N30°024.379',W81°36.139'</td>
<td>6/18/2009</td>
<td>3:21 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>37</td>
<td>N30°023.830',W81°37.191'</td>
<td>6/18/2009</td>
<td>3:40 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>38</td>
<td>N30°023.015',W81°37.592'</td>
<td>6/18/2009</td>
<td>4:00 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>39</td>
<td>N30°022.328',W81°37.589'</td>
<td>6/18/2009</td>
<td>4:26 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>40</td>
<td>N30°021.573',W81°36.967'</td>
<td>6/18/2009</td>
<td>5:03 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>41</td>
<td>N30°020.798',W81°37.138'</td>
<td>6/18/2009</td>
<td>5:22 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>42</td>
<td>N30°019.281',W81°37.459'</td>
<td>6/18/2009</td>
<td>5:42 PM</td>
<td>Flood</td>
</tr>
<tr>
<td>43</td>
<td>N30°018.902',W81°37.836'</td>
<td>6/18/2009</td>
<td>5:58 PM</td>
<td>Flood</td>
</tr>
</tbody>
</table>
Figure 2.2a. ADCP measurement locations, ebb tide on date 06/17/2009.

Figure 2.2b. ADCP measurement locations, flood tide on date 06/17/2009.
Figure 2.3. ADCP measurement velocity direction (Locations 01 to 25).
Figure 2.4a. ADCP measurement locations, ebb tide on date 06/17/2009.

Figure 2.4b. ADCP measurement locations, flood tide on date 06/18/2009.
Figure 2.5. ADCP measurement velocity direction (Locations 26 to 43).
At each measurement location, the data show that the velocity direction is oriented essentially in the same direction through the entire water column. On the other hand, there is discernible vertical structure of the velocity speed, where the vertical structure is such that velocity magnitudes are largest at and near the water surface (approximately the first 1–5 m of the vertical water column, depending on location) and decrease fairly linearly to the river bottom (varying from 8 to 18 m deep among the 43 locations).

Velocity data were plotted for the 43 locations and plotted in a depth average manner with error bars indicating +/- standard deviations (Figure 2.6 for deployment 1 and Figure 2.7 for deployment 2). Statistics were calculated for average (AVG) and standard deviation (STD) of velocity magnitude for each of the 43 locations (Tables 2.2). The overall AVG and STD values for ebb duration of deployment 1 were computed to be 0.50 and 0.39 m/s, respectively, which corresponds to an overall AVG:STD value of 78%. For ebb duration of deployment 2, overall AVG, STD and AVG:STD values were computed to be 0.60 m/s, 0.48 m/s and 80%, respectively. The overall AVG, STD and AVG:STD values are similar for ebb durations of deployments 1 and 2, which is because locations 1–13 and locations 26–34 are fairly collocated with one another (Figures 2.2 and 2.4). Nonetheless, the data for ebb durations show depth-averaged currents with speeds of 0.39–0.94 m/s near the river mouth (refer to locations 01–03 and locations 26–28) and with speeds of 0.35–0.59 m/s near downtown Jacksonville (river km 30) (refer to locations 11–13 and locations 32–34), which is representative of the tidal damping that occurs in lower reaches of the St. Johns River (Sucsy and Morris, 2002).

The overall AVG and STD values for flood duration of deployment 1 were computed to be 0.54 and 0.51 m/s, respectively, which corresponds to an overall AVG:STD
value of 94% (Tables 2.2). For flood duration of deployment 2, overall AVG, STD and AVG:STD values were computed to be 0.54 m/s, 0.41 m/s and 76%, respectively. The overall AVG, STD and AVG:STD values are different for flood durations of deployments 1 and 2, which is because locations 14–25 and locations 35–43 are in sequence along the lower 30 km of the St. Johns River (Figures 2.2 and 2.4). Nonetheless, the data for flood durations show depth-averaged currents with speeds of 0.79–1.30 m/s near the river mouth (refer to locations 14–16) and with speeds of 0.43–0.46 m/s near downtown Jacksonville (river km 30) (refer to locations 41–43), which is representative of the tidal damping that occurs in lower reaches of the St. Johns River (Sucsy and Morris, 2002).

Figure 2.6. Depth averaged velocity magnitude with error bars indicating +/- standard deviations (Locations 01 to 25).
Figure 2.7. Depth averaged velocity magnitude with error bars indicating +/- standard deviations (Locations 26 to 43).
Table 2.2

ADCP measurements for deployment 1 and 2. AVG is the depth-averaged value of velocity magnitude for each location. STD is the standard deviation of the depth-dependent variability of velocity magnitude for each location.

No.	Tide	Speed	AVG (m/s)	STD (m/s)	AVG:STD (%)
1	Ebb		0.39	0.35	89
2	Ebb		0.56	0.33	58
3	Ebb		0.70	0.44	62
4	Ebb		0.66	0.64	97
5	Ebb		0.62	0.42	68
6	Ebb		0.36	0.32	91
7	Ebb		0.68	0.33	49
8	Ebb		0.22	0.18	81
9	Ebb		0.62	0.18	30
10	Ebb		0.50	0.35	69
11	Ebb		0.41	0.36	87
12	Ebb		0.45	0.25	55
13	Ebb		0.35	0.29	84
OVERALL			0.50	0.39	78
14	Flood		0.79	0.32	40
15	Flood		0.89	0.24	27
16	Flood		1.30	0.39	30
17	Flood		1.00	0.36	37
18	Flood		0.70	0.19	28
19	Flood		0.71	0.35	49
20	Flood		0.67	0.35	52
21	Flood		0.59	0.18	30
22	Flood		0.51	0.17	32
23	Flood		0.38	0.11	30
24	Flood		0.49	0.24	49
25	Flood		0.53	0.16	30
OVERALL			0.54	0.51	94

No.	Tide	Speed	AVG (m/s)	STD (m/s)	AVG:STD (%)
26	Ebb		0.94	0.63	67
27	Ebb		0.61	0.48	79
28	Ebb		0.54	0.47	87
29	Ebb		0.48	0.45	94
30	Ebb		0.61	0.40	66
31	Ebb		0.62	0.37	77
32	Ebb		0.48	0.39	66
33	Ebb		0.59	0.39	66
34	Ebb		0.35	0.26	75
OVERALL			0.60	0.48	80
35	Flood		0.32	0.29	90
36	Flood		0.48	0.26	53
37	Flood		0.45	0.15	35
38	Flood		0.62	0.36	78
39	Flood		0.55	0.34	62
40	Flood		0.75	0.40	53
41	Flood		0.46	0.29	64
42	Flood		0.43	0.23	54
43	Flood		0.46	0.36	79
OVERALL			0.54	0.41	76
Water Surface Elevation

A fixed instrument was used to measure water elevation using a Level TROLL® 100 self-recording pressure based tide gauge near Dames Point (Figure 2.8). Measurements of atmospheric pressure were also taken using a HOBO Micro Station Self-recording barometer manufactured by the Onset Computer Corporation. The location of the barometer was N30° 18.897', W81° 27.990'. The processed data are plotted in Figure 2.9. The pressure data were converted to water elevation by subtracting the barometric pressure from the water level data as measured by the tide gauge. Figure 2.10 shows the water elevation plot relative to NAVD88. The water surface elevation data are used for hydrodynamic model validation purpose in Chapter 5.

Figure 2.8. Location of fixed tide gauge instrument – Dames Point (Google Earth).
Freshwater Inflows

The magnitude of flow in the river is a measure of the rate at which volumes of water move. Flow distributions are needed for describing the flow condition. The total flow in the river is the volume of water moving at a cross section in the river over a period of time (units of
volume divided by time). The flow generally increases proceeding downstream as tributaries join the main stem. Flow can be treated as an instantaneous quantity, but more often it is expressed as a time averaged quantity.

In general, the movement of water in the river varies in all directions longitudinally, laterally, and/or vertically in response to local forces. The predominant forces determining the total flow in the St. Johns River are the volume of water stored upstream as a result of previous season activity, the flow caused by tidal forces, the amount of inflow from tributaries, the amount of direct rainfall, and the effect of wind.

The flow in the river depends on the amount of water in storage and the relative magnitudes of inflows, outflows, and climatological forces (primarily wind and pressure). When the net freshwater inflow is positive, the duration and volume of downstream flows in the LSJR tend to increase, while the duration and volume of upstream flows tend to decrease (Anderson and Goolsby, 1973).

Graphic redacted, paper copy available upon request to home institution.

Figure 2.11. Locations of watershed (Bacopoulos, 2015).
Table 2.3

General Characteristics of the 21 Tributaries Based on Flow Measurements

<table>
<thead>
<tr>
<th>Tributary basin</th>
<th>Basin Area (km²)</th>
<th>Maximum flow (m³/s)</th>
<th>Minimum flow (m³/s)</th>
<th>Average flow (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1097.35</td>
<td>114.59</td>
<td>4.54</td>
<td>19.91</td>
</tr>
<tr>
<td>1</td>
<td>589.01</td>
<td>51.53</td>
<td>1.67</td>
<td>30.02</td>
</tr>
<tr>
<td>2</td>
<td>33.62</td>
<td>15.57</td>
<td>0.97</td>
<td>4.21</td>
</tr>
<tr>
<td>3</td>
<td>66.03</td>
<td>34.67</td>
<td>1.47</td>
<td>11.56</td>
</tr>
<tr>
<td>4</td>
<td>82.16</td>
<td>26.88</td>
<td>1.75</td>
<td>14.01</td>
</tr>
<tr>
<td>5</td>
<td>119.47</td>
<td>78.27</td>
<td>3.33</td>
<td>27.98</td>
</tr>
<tr>
<td>6</td>
<td>107.82</td>
<td>59.90</td>
<td>3.35</td>
<td>29.05</td>
</tr>
<tr>
<td>7</td>
<td>140.22</td>
<td>140.20</td>
<td>4.41</td>
<td>51.10</td>
</tr>
<tr>
<td>8</td>
<td>135.34</td>
<td>227.32</td>
<td>3.89</td>
<td>50.82</td>
</tr>
<tr>
<td>9</td>
<td>198.18</td>
<td>155.69</td>
<td>4.17</td>
<td>39.04</td>
</tr>
<tr>
<td>10</td>
<td>800.40</td>
<td>266.31</td>
<td>2.53</td>
<td>82.26</td>
</tr>
<tr>
<td>11</td>
<td>774.87</td>
<td>252.27</td>
<td>2.47</td>
<td>76.84</td>
</tr>
<tr>
<td>12</td>
<td>281.50</td>
<td>281.84</td>
<td>0.87</td>
<td>33.74</td>
</tr>
<tr>
<td>13</td>
<td>63.50</td>
<td>148.98</td>
<td>0.69</td>
<td>21.51</td>
</tr>
<tr>
<td>14</td>
<td>100.04</td>
<td>193.13</td>
<td>1.12</td>
<td>31.20</td>
</tr>
<tr>
<td>15</td>
<td>171.81</td>
<td>243.46</td>
<td>1.33</td>
<td>47.76</td>
</tr>
<tr>
<td>16</td>
<td>91.74</td>
<td>127.56</td>
<td>0.70</td>
<td>23.09</td>
</tr>
<tr>
<td>17</td>
<td>78.61</td>
<td>120.15</td>
<td>0.76</td>
<td>18.13</td>
</tr>
<tr>
<td>18</td>
<td>75.82</td>
<td>134.12</td>
<td>0.56</td>
<td>21.09</td>
</tr>
<tr>
<td>19</td>
<td>9891.97</td>
<td>186.98</td>
<td>15.64</td>
<td>54.23</td>
</tr>
<tr>
<td>20</td>
<td>2023.41</td>
<td>28.36</td>
<td>0.15</td>
<td>1.61</td>
</tr>
</tbody>
</table>

Stream Flow Data

Ninety-two days of flow data from USGS were analyzed for the duration of May 01 to August 01, 2009 at the Acosta Bridge station 2246500 (Figure 2.12). The location of USGS station is at latitude 30°19'20", longitude 81°39'56" referenced to North American Datum of 1927, Duval County, Florida, and Hydrologic Unit 03080103. It is near the center of the channel under the Acosta Bridge at Jacksonville, 2.6 mi upstream from Arlington River, and 23.0 mi upstream from mouth. The instrument used to measure the discharge is a water-stage recorder, acoustic velocity meter. It was found that 56% of the flow is Ebb for the 3 month duration. The stream flow data are used for hydrodynamic model validation purpose in Chapter 5.
Figure 2.12. Flow discharge at Acosta Bridge.
CHAPTER 3: MANNING’S ROUGHNESS COEFFICIENT

There are numerous approaches in determining the Manning roughness coefficient, \(n \), to be used for open channel flow calculations and hydrodynamic modeling process for water flow in a natural channel (Arcement, 1989). Most methods use a description of the river or stream channel and its surfaces. Tables are available that give maximum, minimum and average Manning roughness \((n) \) values for different channel descriptions (Chow, 1959). There is also an approach that uses pictures of many natural open channels with known \(n \) values that can be matched to the channel of interest (Barnes, 1967). However, confident selection of values of the Manning roughness coefficient, \(n \), usually requires considerable experience. Tables of computed \(n \) values for various channel conditions, illustrations, and stereoscopic color slides of channels for which \(n \) has been verified, are available to select an appropriate \(n \) value (Cowan, 1956). In hydrodynamic modeling, there is a need to reduce the uncertainty associated with identification of accurate Manning’s \(n \).

In river channels, the shape and area of the cross section of the flow can change along the stream, leading to non-uniform flows. On the other hand, flows that do not change over space are said to be uniform. Steady uniform flow in straight channels is a simplification of flows in the natural world, e.g., in rivers and in the ocean, although it reveals many fundamental aspects of those more complicated flows. From a physics standpoint, uniform flow occurs in a control volume when the frictional force is equal to the gravitational force. In this section, Newton’s second law is applied to steady and uniform flow down an inclined plane. Because the flow is assumed to be steady and uniform, all of the forces in the streamline direction that are exerted upon the fluid within the free body at any given time must add up to be to zero (Figure 3.1).
Writing Newton’s second law for the balance of forces on the control flow equating the downslope driving force, caused by the downslope component of the weight of the fluid in the free body, with the resistance force exerted by the bottom boundary on the lower surface. This is balanced by the frictional force \((\tau_b PL)\) exerted by the bottom boundary where \(\tau_b\) is bottom shear stress, \(P\) is the wetting perimeter and \(L\) is the length of the control flow. There are also pressure forces acting parallel to the flow direction on the upstream and downstream faces of the free body, but because by assumption of uniformity the vertical distribution of these pressure forces is the same at every cross section, they balance each other out and cause no net force on the free body.

Graphic redacted, paper copy available upon request to home institution.

Figure 3.1. The control volume from (Chow, 1959).

Chezy and Manning Friction Formulations

In general, the mean velocity of uniform flow is described by the following formula:

\[
V = CR^xS^y
\]

in which \(C\) = friction coefficient, \(R\) = hydraulic radius (m), \(S\) = the channel slope (m/m) and \(x\) and \(y\) are exponents of \(R\) and \(S\), respectively. The exponents vary with type of roughness
(laminar, turbulent, transitional, or mixed laminar-turbulent) and cross-sectional shape (arbitrary, hydraulically wide, rectangular, trapezoidal, triangular, or inherently stable).

In practice, there are two established uniform flow formulas: (1) the Chézy formula, and (2) the Manning formula. Variations of these formulas, the dimensionless Chézy and the Manning-Strickler are in current use.

The shear stress τ_b along the channel bottom is modeled as a quadratic friction law:

$$\tau_b = \rho f V^2$$...(3-2)

in which ρ = mass density, f = a type of friction factor (drag coefficient), and V = mean velocity.

The shear force developed along the wetted perimeter of a control volume of length L is:

$$F_s = \tau_b P L = \rho f V^2 P L$$...(3-3)

The weight of the water in the control volume is W. This gravitational force is resolved along the direction of motion to give:

$$F_g = W \sin \theta$$...(3-4)

Assuming a channel of small slope ($\sin \theta \approx \tan \theta = S$) and equating Eq. 3-3 and 3-4 and reduce it to:

$$f V^2 = g \left(\frac{A}{P} \right) S = g R S$$...(3-5)

where R = hydraulic radius. Solving for V:

$$V = (g/f)^{1/2} (RS)^{1/2}$$...(3-6)

$$V = C (RS)^{1/2}$$...(3-7)

in which C = Chézy coefficient, defined as follows:

$$C = (g/f)^{1/2}$$...(3-8)
Equation 3-8 is called Chézy formula and a variation of the Chézy formula may be derived by solving for bottom slope \(S \) from Eq. 3-5:

\[
S = f \frac{V^2}{gR} \tag{3-9}
\]

The Manning formula, in SI units, is:

\[
V = \frac{1}{n} R^{\frac{2}{3}} S^{\frac{1}{2}} \tag{3-10}
\]

where \(n = \) Manning's friction coefficient, friction factor, or simply Manning's \(n \), having units of \(\text{s/m}^{1/3} \). In U.S. Customary units, the Manning formula is:

\[
V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}} \tag{3-11}
\]

The factor 1.486 is required to express the original Manning equation (Eq. 3-10) in U.S. Customary units. In natural channels, the value of \(n \) may vary with stage and flow depth. This is attributed to variations in channel roughness with increasing stage, the effect of overbank flows, or morphological changes in total bottom friction as the flow rises from low stage to high stage (Simons and Richardson, 1966). Comparing Eqs. 3-7 and 3-11, the relation between Manning and Chézy and Manning’s coefficients is obtained:

\[
C = \frac{1}{n} R^{1/6} \tag{3-12}
\]

Several correlations between Manning's \(n \) and particle size (grain diameter) have been developed. Williamson (1951) correlated the Darcy-Weisbach friction factor \(f \) with relative roughness to yield the following relation (Henderson, 1966):

\[
f = 0.113 \left(\frac{k_s}{R} \right) \tag{3-13}
\]

in which \(k_s = \) grain roughness, in length units, and \(R = \) hydraulic radius, in length units. Since \(f = 8 \left(g / C^2 \right) \), Eq. 3-13 reduces to:
\[C = \left(\frac{8g}{0.113} \right)^{1/2} \left(\frac{R}{k_s} \right)^{1/6} \] ..(3-14)

In U.S. Customary units, Eq. 3-14 may be conveniently reduced to:

\[C = \frac{1.486R^{1/6}}{0.0311k_s^{1/6}} \] ...(3-15)

Comparing Eq. 3-15 with Eq. 3-12, \(n \) can be expressed in terms of boundary roughness as follows (\(k_s \) in ft):

\[n = 0.0311k_s^{1/6} \] ...(3-16)

A general expression for Manning's \(n \) in terms of relative roughness and absolute roughness is (Chow, 1959):

\[n = \left[f \left(\frac{R}{k_s} \right) \right] k_s^{1/6} \] ...(3-17)

which implies that in Eq. 3-16 the relative roughness is a constant (0.0311). Assuming that boundary roughness may be represented by the \(d_{84} \) particle size, i.e., that for which 84% of the grains (by weight) are finer, Eq. 3-16 converts to:

\[n = 0.0311d_{84}^{1/6} \] ...(3-18)

Strickler used a constant (0.0342) for the function of relative roughness \(f(R/k_s) \), and the median particle size \(d_{50} \) as the representative grain diameter, to yield:

\[n = 0.0342d_{50}^{1/6} \] ...(3-19)

Since \(d_{84} > d_{50} \), it is seen that the Strickler and Williamson equations are mutually consistent.

In streams with relatively stable boundaries, the total resistance to flow results from the interaction of many ingredients. Among them are particle size of streambed material, bank irregularity, vegetation, channel alignment, bed configuration, channel obstructions, converging or diverging streamlines, sediment characteristics, and surface waves. With the present
knowledge the quantitative effect of most of these factors is not determinable and must be estimated qualitatively. There is no exact method or procedure to estimate Manning's n. A proven set of recommendations is given below, as pertaining to the estimation of Manning's n:

- To consider the factors affecting the value of Manning's n and proceed accordingly.
- To consult a table of typical values, and to base the estimation on experience.
- To consult several pictorial collections for which the value of Manning's n has been documented with sufficient accuracy.
- To become acquainted with the appearance of typical channels for which the Manning's n values are known.

Chow (1959) presented a pictorial collection of 24 typical channels for which the Manning's n has been established. The values documented by Chow range from $n = 0.012$ (a canal lined with concrete slabs, with a very smooth surface) to $n = 0.150$ (a natural river in sand clay soil, irregular sides slopes and uneven bottom). Chow (1959) listed values of Manning's coefficient as low as $n = 0.008$ (lucite, acryclic plastic) to as high as $n = 0.200$. These values are applicable to channel flow in the turbulent regime.

Factors Affecting Manning's n

Values of Manning’s n are wide ranging. In natural stream channels, Manning’s n can range from slightly lower than 0.020 for very large rivers featuring a relatively smooth boundary to higher than 0.200 for small creeks in steep mountain streams. The various factors affecting Manning's roughness coefficient are listed in Table 3.1.

Cowan (1956) developed a methodology for estimating Manning's n based on the cumulative effect of the various factors affecting bottom roughness. Cowan's equation is:
\[n = (n_0 + n_1 + n_2 + n_3 + n_4) m_5 \]

(3-20)

where \(n_0 \) = basic n value for a straight, uniform, smooth channel, \(n_1 \) = addition to account for surface irregularities, \(n_2 \) = addition to account for variations in the size and shape of the cross section, \(n_3 \) = addition to account for obstructions, \(n_4 \) = addition to account for the effect of vegetation on flow conditions and \(m_5 \) = factor to account for channel sinuosity (meandering).

Table 3.1

<table>
<thead>
<tr>
<th>Factor</th>
<th>How it affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface roughness</td>
<td>Fine grain sizes lead to low values, while coarse grain sizes lead to high values.</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Type, height, density, and spatial distribution of vegetation have a definite role in affecting flow velocity. Values of n in vegetated channels may exceed 0.250, and in some cases, rise to 0.400 or greater.</td>
</tr>
<tr>
<td>Channel irregularities</td>
<td>Sand bars, ridges and depressions, and holes/humps in the channel bed create additional roughness in the form of local energy losses.</td>
</tr>
<tr>
<td>Channel alignment</td>
<td>Generally, a straight channel will feature a lower n, while a sinous channel will have a larger n. Sinuosity may increase channel roughness by as much as 30% (Chow, 1959).</td>
</tr>
<tr>
<td>Aggradation and degradation</td>
<td>Changes in channel morphology will increase/decrease roughness in unpredictable ways. The effect will depend on the type of material forming the bed, the width-to-depth ratio (aspect ratio), and the quantity of sediment being transported (sediment load).</td>
</tr>
<tr>
<td>Channel obstructions</td>
<td>Log jams, bridge piers, and other obstructions tend to increase channel roughness. The effect will depend on the type of obstructions, their relative size, shape, number, and spatial distribution.</td>
</tr>
<tr>
<td>Size and shape of the channel</td>
<td>Generally, smaller channels have larger roughness, while larger channels have smaller roughness. The typically higher aspect ratio of larger channels tends to decrease roughness.</td>
</tr>
<tr>
<td>Stage and discharge</td>
<td>Roughness varies with stage and discharge in largely unpredictable ways. Mean velocities vary from very low stage to very high stage in complex patterns.</td>
</tr>
<tr>
<td>Season of the year</td>
<td>For vegetated channels, or channels lined with vegetation, surface roughness increases during the growing season, and decreases during the dormant season, subject to a latitudinal effect.</td>
</tr>
<tr>
<td>Suspended load and bedload</td>
<td>Sediment transport, either as suspended load or bed load, will consume additional energy and lead to increases in overall channel friction.</td>
</tr>
</tbody>
</table>
Directional Manning’s n

In a coastal river, the direction of the flow changes with the tide (Bertin, Fortunato, and Oliveira, 2009; Dodet et al., 2013; Malhadas, Leitao, Silva, and Neves, 2009; Olabarrieta, Warner and Kumar, 2011). Tidal flows in a coastal river are caused by the water level difference between the ocean and the estuary (Figure 3.2). Historically, the mathematical treatment of water wave theory by various investigators has been carried out with the assumption of a rigid, impermeable horizontal sea bed. In nature, the actual bottom stress varies drastically, e.g., from muds, which behave as viscous fluids, to rippled porous sand beds, to rocky bottoms. The degree of bed rigidity, the porosity, and the roughness all influence the water waves to varying degrees, as considered in the correction factors to Manning’s n (Table 3.2).
Table 3.2

Appropriate values to be used in Eq. 3-20

<table>
<thead>
<tr>
<th>Corrections to Manning’s n</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Material on Channel Boundary</td>
<td></td>
</tr>
<tr>
<td>Earth</td>
<td>Sand, silt and clay boundary</td>
</tr>
<tr>
<td>Rock cut</td>
<td>Rock outcrop or rock boundary</td>
</tr>
<tr>
<td>Fine gravel</td>
<td>Gravel up to 8 mm diameter</td>
</tr>
<tr>
<td>Coarse gravel</td>
<td>Gravel of more than 8 mm diameter</td>
</tr>
<tr>
<td>Irregularity Modifier</td>
<td></td>
</tr>
<tr>
<td>Smooth</td>
<td>Best regular condition</td>
</tr>
<tr>
<td>Minor</td>
<td>Good dredged channels, slightly eroded side slopes</td>
</tr>
<tr>
<td>Moderate</td>
<td>Fair to poor dredged channels, moderately eroded slopes</td>
</tr>
<tr>
<td>Severe</td>
<td>Badly eroded channels and highly irregular or jagged surfaces of channels excavated in rock</td>
</tr>
<tr>
<td>Cross Section Modifier</td>
<td></td>
</tr>
<tr>
<td>Gradual</td>
<td>Smooth, or small variations</td>
</tr>
<tr>
<td>Alternating occasionally</td>
<td>Large and small sections alternate occasionally, occasional shifting of main flow from side to side</td>
</tr>
<tr>
<td>Alternating frequently</td>
<td>Large and small sections alternate frequently, frequent shifting of main flow from side to side</td>
</tr>
<tr>
<td>Obstructions Modifier</td>
<td></td>
</tr>
<tr>
<td>Negligible</td>
<td>(a) The extent to which the obstructions occupy or reduce the flow area, (b) the character of the obstructions (sharp-edged or angular objects induce greater turbulence than curved, smooth-surface objects), and (c) the positioning and spacing of the obstructions, transversally and longitudinally, in the channel reach under consideration</td>
</tr>
<tr>
<td>Minor</td>
<td></td>
</tr>
<tr>
<td>Appreciable</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td></td>
</tr>
<tr>
<td>Vegetation Modifier</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Turf grasses or weeds, where the flow depth is 2 to 3 times the height of the vegetation</td>
</tr>
<tr>
<td>Medium</td>
<td>Turf grasses or weeds, where the flow depth is 1 to 2 times the height of the vegetation</td>
</tr>
<tr>
<td>High</td>
<td>Turf grasses or weeds, where the flow depth is about equal to the height of the vegetation</td>
</tr>
<tr>
<td>Very high</td>
<td>Turf grasses or weeds, where the flow depth is less than one-half (1/2) the height of the vegetation</td>
</tr>
<tr>
<td>Channel sinuosity or Meandering Modifier</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Sinuosity less than 1.2</td>
</tr>
<tr>
<td>Medium</td>
<td>Sinuosity between 1.2 and 1.5</td>
</tr>
<tr>
<td>High</td>
<td>Sinuosity greater than 1.5</td>
</tr>
</tbody>
</table>
In the 16-mile stretch of the LSJR where the velocity measurements were taken, the currents exhibit mostly progressive wave characteristics, meaning that the maximum strengths of flood and ebb occur near the times of high and low water, respectively. This relationship varies along the river, depending on the distance from the mouth of the river, the water depth, and other physical factors. At the river entrance, the maximum flood and ebb currents occur approximately one hour before the high and low tides at the river entrance (NOAA, 1999).

Figure 3.2. Ebb and flood tide flow.
The horizontal velocity of a progressive water wave is given by (Dean and Dalrymple, 1991):

\[u = \frac{gak \cosh(kh+z)}{\sigma \cosh k} \cos(kx - \sigma t) \] ...(3-21)

where, \(\sigma = 2\pi/T \) is angular frequency, \(T \) is wave period, \(a \) is the amplitude of the wave, \(k = 2\pi/L \) is the wave number, \(L \) is the wave length and \(h \) is water depth. The presence of waves over the bed causes significant bed deformation and stresses (Dean and Dalrymple, 1991). Little has been done to investigate if the Manning’s \(n \) changes with time and direction of the flow due to the additional wave-induced bottom stress. Dean and Dalrymple (1991) obtained the instantaneous shear stress exerted on the bed from the Newtonian shear stress term for waves over smooth, rigid impermeable bottoms in a laminar boundary layer:

\[\tau_{xz} = \rho \sqrt{\frac{\nu}{\sigma \cosh k}} \cos(kx - \sigma t - \pi/4) \] ...(3-22)

where \(\rho = \) mass density, \(\nu \left(= \frac{\mu}{\rho} \right) \) is the kinematic viscosity, \(\mu \) is dynamic viscosity. The bed shear stress is harmonic in time and lags the free surface displacement by 45°. During ebb tide, the flow is directed downstream to the ocean and wave induced shear stress is added to the shear stress caused by the weight of the water and pressure forces. This could cause significant bed deformation and stress which eventually changes the roughness of the bottom surface, whereas during the flood tide the wave induced shear stress reduces the shear stress caused by the weight of the water and pressure forces which can also change the bottom roughness. A thorough investigation needs to be done to know exactly how the flow direction affects the bottom roughness of the sea bed for the two scenarios.
A careful analysis is also needed on the base values for the Manning’s n and whether the correction factors remain the same for different flow direction, i.e., when it is ebb and when it is flood. Values of the roughness coefficient, n, may be assigned with their corrections for conditions that exist at the time of a specific flow event, for average conditions over a range in stage, or for anticipated conditions at the time of a future event. Channel irregularities, alignment, obstructions, vegetation, and meandering increase the roughness of a channel. The value for n must be adjusted accordingly by adding or subtracting increments of roughness to the base value, n₀, for each condition that increases or decreases the roughness based on direction of the flow. The roughness coefficients apply to a longitudinal reach of channel and (or) flood plain. The evaluation of n is complicated by the depth of flow (Arcement and Schneider, 1989). If the depth of flow is shallow in relation to the size of the roughness elements, the n value can be appreciably large. The n value decreases with increasing depth, except where the channel banks are much rougher than the bed or where dense brush overhangs the low-water channel. Chow’s assumption of base value of n₀ is for a straight, uniform, smooth channel in natural materials. In reality, there is no straight, uniform and smooth natural channel.

Obstructions, such as logs, stumps, boulders, debris, pilings, and bridge piers disturb the flow pattern in the channel and increase apparent roughness. The amount of increase depends on the shape of the obstruction; the size of the obstruction in relation to that of the cross section; and the number, arrangement, and spacing of obstructions. For bottom stress of two-dimensional flows, one considers both bottom and lateral obstructions to affect the bottom roughness. The slope of channel becomes a source of obstruction during flood tide where the flow is directed upstream. The effect of obstructions on the roughness coefficient is a function of the flow
velocity. When the flow velocity is high, an obstruction exerts a sphere of influence that is much larger than the obstruction itself because the obstruction affects the flow pattern for considerable distances on each side (Arcement and Schneider, 2009).

In general, Eq. 3-20 contains different correction factors which vary in time and with the flow direction. This requires a more accurate parameterization of Manning’s n in the hydrodynamic model, such that the formulation considers time and flow direction. Although the hydrodynamic is capable to parameterize Manning’s n on a spatial basis, to date, Manning’s n is treated as an isotropic scalar, i.e., independent of the flow direction (Atkinson et al., 2015). The purpose of the next chapter (Chapter 4) is to observe directional characteristics of the Manning’s n (anisotropic) based on observation data to include the directional behavior to the modeling in order to increase the accuracy of ADCIRC hydrodynamic modeling.
CHAPTER 4: HYDRODYNAMIC MODELING

The ADCIRC (ADvanced CIRCulation) hydrodynamic model is a continuous-Galerkin, finite-element based model for coastal oceans, inlets, rivers and floodplains (Luettich and Westerink, 2006). ADCIRC solves the shallow water equations in the Reynolds averaged form by depth-integrating the more general Navier-Stokes equations (conservation of mass and conservation of momentum). For shallow water flows, the horizontal scale is much greater than the vertical scale, such that it is safe to neglect vertical accelerations as well as vertical variation of the flow velocity. ADCIRC solves the shallow water equations (Kinnmark, 1985) in the form of the generalized wave continuity equation (GWCE) (Lynch and Gray, 1979; Kolar et al., 1994). A continuous-Galerkin finite element scheme is applied over linear triangles in space and a three-level implicit scheme is used to advance the solution forward in time (Westerink et al., 2008).

Shallow Water Equations

The shallow water equations include two conservation equations; conservation of mass and momentum equations which describe fluids motion. The equation for conservation of mass entails that mass be balanced by the divergence of flux (Nathan, 2007):

\[
\frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(hu) + \frac{\partial}{\partial y}(hv) = 0
\]

\[
\text{(4-1)}
\]

where \(u, v\) are the depth averaged mean velocities in the Cartesian \(x\) and \(y\) directions respectively, \(h\) is the depth of the water column from free water surface to bottom, and \(t\) is time. The conservation of momentum entails the balance of local accelerations with advective accelerations and pressure, viscous and frictional effects:

\[
h \frac{\partial u}{\partial t} + h(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}) - \frac{h}{\rho} E \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + gh \left(\frac{dz}{dx} + \frac{dh}{dx} \right) = T_{sx} - T_{bx} - C_x
\]

\[
\text{(4-2)}
\]
where ρ is water density, g is gravitational acceleration, E is the eddy viscosity, and z is the bottom elevation. T_{bx} and T_{by} are the bottom stress terms. $T_{sx,sy}$ and C_{xy} are terms representing surface wind stress and Coriolis forcing, respectively.

ADCIRC uses a generalized slip formulation for the bottom stress terms in the governing equations (Luettich and Westerink, 2004). The bottom stress is calculated by:

$$\frac{\tau_b}{\rho_o} = K_{slip}(\vec{u} + \vec{v})$$

where ρ_o is the reference density of water, \vec{u}, \vec{v}, are the x,y components of depth averaged velocity, and K_{slip} may be a constant giving a linear slip boundary condition, or it may be calculated as,

$$K_{slip} = C_d \sqrt{u^2 + v^2}$$

resulting in a quadratic slip boundary condition on the bottom with the necessary specification of a quadratic drag coefficient C_d. In this case, the bottom stress terms in the momentum equations become:

$$\frac{\tau_b}{\rho_o} = C_d U (\vec{u} + \vec{v})$$

where $U = \sqrt{u^2 + v^2}$ is the velocity magnitude and $C_d = g n^2 / h^{1/3}$ (Luettich and Westerink, 2006a) where g is gravitational acceleration; h is the water depth; and n is the Manning’s roughness coefficient. An equivalent Manning’s n value to the drag coefficient can be calculated using a depth scale from the following equation:

$$n = \frac{h^{1/6} \sqrt{C_d}}{g^{1/2}}$$
Bottom Friction Formulations in ADCIRC

The ADCIRC model is a computational code that is compiled to simulate flow processes based on input files that describe the region of interest and its characteristics, including boundary conditions and forcing mechanisms. The critical inputs for this study are the computational mesh, surface characteristics file, and meteorological forcing files, such as wind and pressure fields. The surface characteristic of focus in this study is the spatial/nodal attribute for bottom friction. Currently, ADCIRC can employ Constant Linear, Constant Quadratic, Constant Hybrid, Varying Linear and Varying Quadratic friction formulations to parameterize bottom friction. The "Constant Linear" option should only be used for analytical cases when verifying the code, such that linear friction neglects nonlinearity and causes over-damping in deep water. For "Constant Quadratic," nonlinearity is accounted for and the value of TAU0 should be set based on the principle depth, where TAU0 is a weighting factor in the GWCE that weights the relative contribution of the primitive and wave portions of the GWCE (Kolar et al., 1994). A value of TAU0 = 0.005 is suggested for deeper water (greater than 10 m depth). For shallow water, TAU0 = 0.02 is recommended. If the domain includes both shallow and deep water, the user may want to consider the Varying Quadratic option. ADCIRC also uses the hybrid formulation to vary bottom friction automatically with depth, i.e. in deep water, the coefficient of friction does not change and a Quadratic friction formulation results and in shallow water the coefficient of friction increases as the depth decreases. Simulations were run by using the three available options on ADCIRC, Manning’s n, Quadratic and Hybrid friction formulations. Note that these friction formulations are able to be parameterized within the model on a spatially variant basis,
but they are not able to be parameterized on a directionally variant basis, like with the redeveloped friction formulation presented later in this thesis.

ADCIRC Model Setup

The source code for the ADCIRC model, along with the user’s manual and other resources are available online at http://www.adcirc.org. The development of ADCIRC is generally attributed to Luettich & Westerink (1991). Since that time, many modifications and upgrades to the model have been made and ADCIRC presently enjoys very wide use among the academic community and federal agencies such as the Army Corps of Engineers, NOAA, and the Naval Research Laboratory. In this thesis, ADCIRC was used in barotropic mode (i.e., pressure-based and neglecting any density-driven effects), where the model solves for water surface elevation and depth-integrated velocity. ADCIRC is a Fortran program which requires, at a minimum, two input files to run, fort.14 (mesh) and fort.15 (mesh parameter). In addition to these files, there are optional files that may or may not have to be present, depending upon which features the user wishes to incorporate into a particular run. In this study, the input files listed in Table 4.1 were used to run the model.
Table 4.1

Model Input Files (Simulations 1, 2 and 3)

<table>
<thead>
<tr>
<th>Input files</th>
<th>File description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fort.14</td>
<td>Triangulated mesh with 284,739 number of elements and 147,688 nodes.</td>
</tr>
<tr>
<td>File description</td>
<td>Simulation 1 (SIM1)</td>
</tr>
<tr>
<td>fort.14</td>
<td>TIME STEP = 0.50 SECONDS</td>
</tr>
<tr>
<td>fort.15</td>
<td>COLD START</td>
</tr>
<tr>
<td>File description</td>
<td>LENGTH OF SIMULATION=92 DAYS</td>
</tr>
<tr>
<td>fort.13</td>
<td>NOLIBF = 1</td>
</tr>
<tr>
<td>File description</td>
<td>mannings_n_at_sea_floor, n=0.02 (constant)</td>
</tr>
<tr>
<td>fort.19</td>
<td>Tidal elevation forcings (full tidal forcing), along the 60° West Meridian</td>
</tr>
<tr>
<td>fort.20</td>
<td>Fresh water river inflows (at 1800-sec time intervals) are applied at 21 tributary locations</td>
</tr>
<tr>
<td>fort.22</td>
<td>Meteorological inputs (winds and pressures) are updated where these forcing data are applied over the surface of the model domain</td>
</tr>
</tbody>
</table>

Fort.14 File – Domain Mesh

The foundation of an ADCIRC simulation is the model domain mesh. For the simulations performed in this study, a large domain is utilized that covers the Western Atlantic Ocean, Caribbean Sea and Gulf of Mexico waters to the west of the 60°W longitude (Figure 4.1). The large domain ensures that tide- and wind-driven hydrodynamics are accurately represented and delivered to the local domain of LSJR in the form of boundary conditions.
Figure 4.1. Finite element mesh for the Western North Atlantic Tidal model domain.

The finite element mesh (FEM) model developed by Bacopoulos et al. (2012) was mapped out and cutoff based on the number of inflow locations for the hydrodynamic modeling process. After defining the mesh size distribution the other key ingredient, bathymetry, or depth originated from (Bacopoulos et al., 2009) is applied. Figure 4.2 shows the triangular mesh that is used for this study which consists of 147,688 computational nodes. Note the unstructured triangulation and that it is able to efficiently represent depth variations and shoreline configuration of the river. The boundary conditions included inflow at the upstream boundary and tidal fluctuations along the open-ocean boundary, as supplied by the WNAT model domain (Figure 4.1).
Figure 4.2 ADCIRC mesh triangulation (left) with colored elevation (right). At this scale, the nodal density makes the triangulation difficult to view.

Fort.15 File – Parameter File

Once a good model mesh is completed, the fort.14 file becomes essentially static, such that it does not need to be altered from simulation to simulation. The fort.15 file, on the other hand, contains many simulation-specific parameters that may need to be adjusted with any change in the attribute file (fort.13). For a complete description of the fort.15 file, the reader is referred to the ADCIRC documentation provided at http://www.adcirc.org. Only the relevant items of the fort.15 file will be covered in this section. The fort.15 file contains many parameters
that govern how ADCIRC will be run. If it is to be run in two-dimensional or three-dimensional mode, coordinates must be specified or coordinates must be projected (x, y). There are also some important parameters that control the manner in which nonlinearity is dealt. Finite-amplitude effect was considered by setting NOLIFA to be nonzero. In addition to simply considering finite-amplitude effects, the ADCIRC model has the distinct advantage of being able to model wetting and drying effects. In other words, as the tide ebbs, some elements will become ‘dry’ as the water contact line moves away from shore. This feature of ADCIRC is turned on by setting NOLIFA to have a value of 2. The model time step was set DT=0.5 s for Simulation 1 (SIM 1) for initial run. The middle section of the fort.15 file contains information about how the model is to be forced (e.g., with tides, winds and inflows). The last major portion of the fort.15 file is to specify the required output data. All the ADCP measurement locations for the velocity data and validation data stations were listed here.

Fort.13 File – Nodal Attribute File

Nodal attributes that are constant in time but spatially variable are defined in this file. The basic file structure can be obtained from http://www.adcirc.org. Presently, ADCIRC does not have the capability to vary nodal attributes over time. To date, simulations focus on running with different spatial parameterizations of bottom roughness. The Manning’s n coefficient is typically specified as a variable spatial parameter dependent on the surface characteristics of the seabed. The nodal assignment of bottom friction attribute is usually based on data (e.g. satellite images used to define land classifications) that may be incomplete or contain data from different, inapplicable time periods (Medeiros et al., 2012). Furthermore, data is often collected on a sub-grid scale and an upscaling procedure (e.g. local spatial averaging) must be used. As a result,
even when applied spatially, the Manning’s n coefficients used in coastal ocean models often contain large amounts of uncertainty. The uncertainty in the Manning’s n coefficient on any given domain leads to uncertainties in common quantities of interest computed from the solution of a coastal ocean model (e.g. maximum water elevations and currents). Moreover, the solution of the model and thus the quantities of interest are often highly sensitive to changes in these parameters (Mayo, Butler, Dawsom, and Hoteit, 2014).

The first three simulations, i.e., those using the standard ADCIRC friction formulations (see Table 4.1), were run successfully and the results were compared to the ADCP measurements (Figure 4.3 and 4.4). The flood currents are approximately 0.6 m/s while the ebb currents are approximately 0.75 m/s. The apparent decay in tidal current with increasing duration of the deployment is because of the boat transect going upstream in the LSJR. The model is able to reproduce the greater ebb currents relative to lesser flood currents and the tidal decay with distance upstream. All the three simulations seems to fairly capture the velocity magnitude on the flood tide on both dates (deployments), whereas all the simulations over predicted in the ebb direction. Table 4.2 shows the ratios of average velocity magnitudes for both dates (deployments) to compare model-data disparity. Simulation 3 was used to calculate the average velocity magnitudes for the model. The model simulated 1.53 times larger value of the average velocity magnitude during ebb flow whereas it simulated approximately the same value of average speed during flood flow showing the model-data disparity for ebb and flood current.
Figure 4.3. Simulations 1, 2 and 3, 17-Jun-2009.

Figure 4.4. Simulations 1, 2 and 3, 18-Jun-2009.
Development of Directional Manning’s n

The major outcome of this thesis is utilization of a directionally variant Manning’s n formulation, based on assimilated data, for improved parameterization of bottom roughness in the ADCIRC model. Table 4.3 shows the scenarios run in the model. The fourth and fifth simulations consider Manning’s n to be variable with the direction of the flow and thusly with time. The numerical code of ADCIRC was modified to incorporate directional variability of bottom roughness based on the direction of the time-dependent velocity field. The crux of the directionally variant bottom roughness formulation is with the assimilation of the velocity dataset (see Chapter 2) for model calibration and parameter estimation.

From the quadratic bottom friction formulation, bottom stress can be computed using Eq. 4-5 and substituting $C_d = g n^2 / h^{1/3}$ and rearranging for τ_b:

$$\tau_b = \left(g \rho_o n^2 / h^{1/3} \right) U (\bar{u} + \bar{v})$$

where $U = \sqrt{\bar{u}^2 + \bar{v}^2}$ is the velocity magnitude. A relationship between the Manning’s n used for the model and the “true” Manning’s n can be obtained by equating the bottom stress magnitude for the model with that of the observed data. It is assumed that acceleration due to gravity, the bathymetric depth and the density remains the same for the model and observed data, which implies $\tau_b (model) = \tau_b (observed)$.

$$g \rho_o n_{model}^2 / h^{1/3} U_{model} = g \rho_o n_{data}^2 / h^{1/3} U_{data}$$

$$n_{data} = n_{model} \frac{U_{model}}{U_{data}}$$

From this, it is shown that Manning’s n varies with the flow direction and that $n_o = \frac{n_{data}}{n_{model}} = \sqrt{\frac{U_{model}}{U_{data}}}$ is the n-factor used to describe the ratio of “true” Manning’s n to the one used for the
model. Using the data assimilation described above, bottom roughness factors were computed for the two deployments of ebb and flood velocity measurements (Table 4.2). As shown, the roughness factor n_0 averages for the ebb and flood direction are 1.2107 and 1.024, respectively, which suggests that bottom roughness in the ebb flow direction (n_{ebb}) is higher by 15.4% relative to the bottom roughness in the flood flow direction (n_{flood}).

<table>
<thead>
<tr>
<th>Day</th>
<th>Flow direction</th>
<th>Average-U_{data} (m/s)</th>
<th>Average-U_{model} (m/s)</th>
<th>$U_{\text{model}}/U_{\text{data}}$ (dimensionless)</th>
<th>Average-n_0 (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-Jun-09</td>
<td>Ebb flow</td>
<td>0.4735</td>
<td>0.7382</td>
<td>1.5590</td>
<td>1.1904</td>
</tr>
<tr>
<td></td>
<td>Flood flow</td>
<td>0.7144</td>
<td>0.6435</td>
<td>0.9007</td>
<td>0.9587</td>
</tr>
<tr>
<td>18-Jun-09</td>
<td>Ebb flow</td>
<td>0.5098</td>
<td>0.7629</td>
<td>1.4965</td>
<td>1.2238</td>
</tr>
<tr>
<td></td>
<td>Flood flow</td>
<td>0.4070</td>
<td>0.5157</td>
<td>1.2670</td>
<td>1.1220</td>
</tr>
<tr>
<td>Both days</td>
<td>Ebb flow</td>
<td>0.4884</td>
<td>0.7493</td>
<td>1.5342</td>
<td>1.2107</td>
</tr>
<tr>
<td></td>
<td>Flood flow</td>
<td>0.5914</td>
<td>0.5924</td>
<td>1.002</td>
<td>1.0240</td>
</tr>
</tbody>
</table>

In order to run the vector-based Manning’s n parameterization, the source code of ADCIRC was modified. All substantive code changes are highlighted in yellow and are shown in Appendix A. The source code which needs to be modified is the subroutine entitled nodalattr.F. The nodalattr.F reads the fort.13 file and initializes time invariant attributes at each node. This subroutine manages nodal attribute data, including bottom friction, tau0, startdry, directional wind speed reduction, and etc. The concept of the directionally variant bottom friction
formulation is very similar to the surface directional wind speed reduction by how it treats the process directionally (Atkinson et al., 2015). A new attribute was created, named as directional_effective_roughness_factor, where this attribute is directional, such that there are twelve values, each representing the roughness as “seen” in twelve different compass directions at each node. The orientation of the 12 values follows the trigonometric convention, such that zero degrees represents ebb flow (where maximum Manning’s n is applied and hereafter is referred to as n_ebb), then the values proceed in counter clockwise fashion. In other words, the first value at a node is applied to flow direction in the alignment of flow towards the ocean, the sixth value at 180 degrees applies the minimum Manning’s n which hereafter is referred to as n_flood, and it varies directionally when the flow direction is between ebb and flood directions.

The time stepping loop is used to inform the bottom roughness formulation about the flow direction for all mesh nodes. As described in Table 4.2, the n_0 value is anisotropic. Figure 4.5 shows the basic modification to the nodalattr.F file by introducing a loop to calculate the direction of the flow and to assign a roughness factor n_0 for a given node at every time step. For the case of hybrid friction formulation, ADCIRC uses the hybrid bottom friction relationship to vary Cd automatically with depth according to:

\[
Cd = FMIN \left[1 + \left(\frac{HBREAK}{h} \right)^{FTHETA} \right]^{FGAMMA \ FTHETA} \hspace{1cm} (4-10)
\]

where FMIN is the minimum BFC; HBREAK is the break depth; FTHETA is a dimensionless parameter that controls how fast the BFC approaches its upper and lower limits; FGAMMA is a dimensionless parameter that controls how quickly the BFC increases as water depth decreases (Luettich and Westerink, 2006b).
The equivalent equation for Eq. 4.10 can be obtained for Manning’s n by substituting Eq. 4.10 into equation 4-7 yielding n values as a function of depth.

\[n = \frac{h^{1/6}}{\sqrt{FMIN\left[1 + \left(\frac{H_{BREAK}}{h}\right)^{FTHETA}FGAMMA_{FTHETA}g^{0.5}\right]}} \] (4-11)

To implement the assignment of \(n_0 \) nodal values, the directions of the rectilinear flow in the LSJR need to be analyzed since the alignment of the river basin is not unidirectional towards the ocean (due to the meandering nature of the channel). Matlab code was used to generate the LSJR basin roughness factor based on the local orientation of the channel. Once the nodalattr.F file was modified and ready for compilation (Appendix A), all of the changes were saved into a different source code (src) directory on the UNF high-performance computing cluster OPUS. The compilation procedure consisted of: 1) typing “make clean” (without the quotes) at the command line for the metis and work folder; 2) still being inside the work folder, typing “make adcprep”, “make adcpost” and “make padcirc” and at the command line. The makefile is set up to recognize known architecture and compile combinations (http://adcirc.org). All went successfully and the three binary files adcprep, adcpost and padcirc were generated, which are the executables used to run the ADCIRC simulation.
Table 4.3

Model Input Files (Simulations 4 and 5)

<table>
<thead>
<tr>
<th>Input files</th>
<th>File description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fort.14</td>
<td>Triangulated mesh with 284,739 number of elements and 147,688 nodes.</td>
</tr>
<tr>
<td></td>
<td>Simulation 4</td>
</tr>
<tr>
<td></td>
<td>Simulation 5</td>
</tr>
<tr>
<td></td>
<td>TIME STEP = 0.25 SECONDS</td>
</tr>
<tr>
<td></td>
<td>COLD START</td>
</tr>
<tr>
<td></td>
<td>LENGTH OF SIMULATION=92 DAYS</td>
</tr>
<tr>
<td></td>
<td>NOLIBF = 1</td>
</tr>
<tr>
<td></td>
<td>directional_effective_roughness_factor, in 12 directions</td>
</tr>
<tr>
<td></td>
<td>mannings_n_at_sea_floor, n=0.02 (constant)</td>
</tr>
<tr>
<td>fort.15</td>
<td>Simulation 4</td>
</tr>
<tr>
<td></td>
<td>Simulation 5</td>
</tr>
<tr>
<td></td>
<td>TIME STEP = 0.25 SECONDS</td>
</tr>
<tr>
<td></td>
<td>COLD START</td>
</tr>
<tr>
<td></td>
<td>LENGTH OF SIMULATION=92 DAYS</td>
</tr>
<tr>
<td></td>
<td>NOLIBF = 1</td>
</tr>
<tr>
<td></td>
<td>NOLIBF = 2, HBREAK=20, FTHETA=10, FGAMMA=0.3333</td>
</tr>
<tr>
<td></td>
<td>directional_effective_roughness_factor, in 12 directions</td>
</tr>
<tr>
<td></td>
<td>hybrid bottom friction, FFACTORMIN=0.0025</td>
</tr>
<tr>
<td>fort.13</td>
<td>Tidal elevation forcing (full tidal forcing), along the 60° West Meridian</td>
</tr>
<tr>
<td></td>
<td>Fresh water river inflows (at 1800-sec time intervals) are applied at 21 tributary locations</td>
</tr>
<tr>
<td>fort.22</td>
<td>Meteorological inputs (winds and pressures) are updated where these forcing data are applied over the surface of the model domain</td>
</tr>
</tbody>
</table>
Figure 4.5. Modified subroutine (Apply2DBottomFriction). All code changes are shown in Appendix A.
Validation of the Modified ADCIRC Model

Validation of the modified ADCIRC model was conducted with the goal of validating the new code (Figure 4.5) which was written to simulate now with a vector-based directional bottom roughness. For validation, the new code was tested by using a roughness factor of $n_0 = 1$ for the
12 directions, which is analogous to running with the original code (i.e., isotropic BFC). The result was found to match with the original simulations, implying the modified code is able to reproduce the same as the original code for the case of isotropic bottom roughness. After validation of the modified code, the model was run with spatially and temporally variable Manning’s n based on flow direction for the entire mesh. Figures 4.7 and 4.8 show the expected result that an overall increase in effective Manning’s n values in the ebb direction for SIM 4 and 5 causes a fairly uniform decrease in the velocity during ebb. This is more visible in SIM 5 when the bottom friction is increased at the shallow end of the depth range, which is due to the decrease in depth, thus resulting in a larger drag coefficient to be used in the hybrid friction formulation.

Figure 4.7. Simulations 1 to 5 (Locations 01 to 25).
Figure 4.8. Simulations 1 to 5, location 26 to 43.
CHAPTER 5: RESULTS AND DISCUSSION

The model-data disparity associated with the plots shown in Figures 4.7 and 4.8 was quantified using a root-mean-square error (RMSE) and coefficient of determination (R^2). The RMSE is a frequently used measure of the differences between values (sample and population values) predicted by a model or an estimator and the values actually observed (Chai and Draxler, 2014). The RMSE has the same units as the measured and calculated data, such that smaller values indicate better agreement between measured and calculated values. RMSE is defined as follows:

$$RMSE = \sqrt{\frac{\sum (\text{Obs}_i - \text{Sim}_i)^2}{N}}$$ \hspace{1cm} (5-1)

where Obs$_i$ relates to the historical observation data at time i, Sim$_i$ corresponds to the model data at time i, and N refers to the total number of observations available for the error estimation.

The coefficient of determination (R^2) is a measure of how well the model represents the observation data and it is defined as the ratio of the explained variation to the total variation (Legates and McCabe, 1999).

$$R^2 = \left(\frac{N \sum \text{Obs}_i \text{Sim}_i - (\sum \text{Obs}_i)(\sum \text{Sim}_i)}{\sqrt{N(\sum \text{Obs}_i^2) - (\sum \text{Obs}_i)^2} \sqrt{N(\sum \text{Sim}_i^2) - (\sum \text{Sim}_i)^2}} \right)^2$$ \hspace{1cm} (5-2)

where Obs$_i$, Sim$_i$, and N are defined as above in Eq. 5.1. Table 5.1 provides quantitative tidal performance of the various simulations. Coefficient of determination (R square) measures the variance that is explained by the model, which is the reduction of variance when using the model. R square ranges from 0 to 1; the model has strong predictive power when it is close to 1 and does not explain anything when it is close to 0.
Table 5.1

RMSEs and R^2 Values for Day 1 and 2 Simulations

<table>
<thead>
<tr>
<th>Day</th>
<th>Analyzed Data</th>
<th>Measure of Performance</th>
<th>SIM1</th>
<th>SIM2</th>
<th>SIM3</th>
<th>SIM4</th>
<th>SIM5</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-Jun-09</td>
<td>Velocity Magnitude</td>
<td>RMSE (m/sec)</td>
<td>0.2259</td>
<td>0.2335</td>
<td>0.2101</td>
<td>0.2055</td>
<td>0.1907</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R^2 (%)</td>
<td>12.97</td>
<td>10.06</td>
<td>14.16</td>
<td>22.70</td>
<td>21.22</td>
</tr>
<tr>
<td>18-Jun-09</td>
<td>Velocity Magnitude</td>
<td>RMSE (m/sec)</td>
<td>0.2356</td>
<td>0.2458</td>
<td>0.1908</td>
<td>0.2112</td>
<td>0.1886</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R^2 (%)</td>
<td>21.32</td>
<td>11.07</td>
<td>23.03</td>
<td>12.38</td>
<td>22.52</td>
</tr>
</tbody>
</table>

First, we note that the RMS errors shown in the last two columns of Table 5.1 (SIM 4 and SIM 5) are less than their corresponding simulations SIM 1 and SIM 3, demonstrating that the modified hydrodynamic model improved the simulations for both days (deployments). This is because an increase in Manning’s n values in the ebb direction has a dampening effect on the velocity magnitude which the model over-predicted during initial simulations (SIM1 and SIM3). The best-performing simulation was SIM5 with RMSE values of 0.19 m/s and R^2 values of 22%. It is notable the reduction of RMSE between SIMs 4 and 5 (as low as 0.19 m/s) and SIMs 1, 2 and 3 (as high as 0.25 m/s). Clearly, the data assimilation of the directionally variant bottom roughness formulation improves the model’s ability to reproduce velocities in the LSJR, as measured by the data. Next, the calibrated model (i.e., SIM5) was run again, with the model results compared with a different dataset, to see that the directionally variant bottom roughness formulation performs optimally for a dataset other than the measured velocities.
Hydrodynamic Model Validation

Model validation consisted of validating water surface elevations and streamflow. The importance of the model validation is to run the modified numerical code for comparison of model result to an observation dataset other than the tidal currents that were used to develop the modified numerical code. The validation period included May 01 – August 01, 2009 for streamflow data and June 16 – July 31, 2009 for water surface elevation data. Two tide gaging stations provided data for streamflow and water surface elevation near the Acosta Bridge (40 river km) and Dames Point (20 river km), respectively. Measurements of daily flows were obtained for the USGS Station 02246500 Jacksonville station (USGS, 2014) near the Acosta Bridge (http://waterdata.usgs.gov/nwis, 2015). A fixed tide gauge was used to measure water elevation near Dames Point (see Chapter 2).

Figure 5.1. Validation plot, Acosta Bridge stream flow.
Figure 5.1 and 5.2 shows time-series validation plots of the streamflow and water surface elevation at the Acosta Bridge and Dames Point, respectively. The validation results demonstrate a faithful reproduction of water levels and streamflow by the modified ADCIRC hydrodynamic model. There is a noticeable improvement in the model-data fit for SIM 5, namely in better predicting semidiurnal fluctuation in streamflow and in better predicting high water and low water of the tide.

Table 5.2

RMSEs and R^2 Values for Model Validation

<table>
<thead>
<tr>
<th>Duration</th>
<th>Analyzed Data</th>
<th>Measure of Performance</th>
<th>SIM1</th>
<th>SIM3</th>
<th>SIM4</th>
<th>SIM5</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/01/2009-08/01/2009</td>
<td>Stream flow (Acosta Bridge)</td>
<td>RMSE (m3/sec)</td>
<td>790.17</td>
<td>841.68</td>
<td>886.86</td>
<td>728.96</td>
</tr>
<tr>
<td>06/16/2009-07/29/2009</td>
<td>Tide level (Dame Point Bridge)</td>
<td>RMSE (m3/sec)</td>
<td>0.2356</td>
<td>0.2378</td>
<td>0.2458</td>
<td>0.1908</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R^2 (%)</td>
<td>93.84</td>
<td>91.89</td>
<td>90.17</td>
<td>93.35</td>
</tr>
</tbody>
</table>
Root-mean-square error and coefficient of determination between observations and model results were computed for both stations and presented in Table 5.2. Again, SIM5 performed optimally with RMSE of 729 m3/s for streamflow and with RMSE of 0.19 m for water surface elevations, with notable increase in model performance when compared with the original (isotropic) bottom friction formulations (i.e., SIMs 1 and 3).
CHAPTER 6: CONCLUSIONS

The two-dimensional, depth-integrated (2DDI) ADvanced CIRCulation (ADCIRC) model was updated for numerical simulation and data assimilation for hydrodynamics in the lower St. Johns River using a directionally variant bottom friction formulation. A subroutine in 2DDI ADCIRC, nodalattr.F, was updated to account for the anisotropy of bottom stress by enabling bottom roughness to vary in twelve directions. The directionally variant bottom friction formulation is guided by assimilating a velocity dataset that informs how to prescribe a vector-based Manning’s n field for the lower St. Johns River. The modified hydrodynamic model was set up to compute hydrodynamics for flood and ebb phases of the tidal cycle, where the model incorporating spatially and temporally variable bottom roughness was tested against the original ADCIRC simulation output and observational data. Naturally, the calibrated model (i.e., using the directionally variant bottom roughness formulation) performed the best when compared with the velocity dataset used in the data assimilation. Though, the directionally variant bottom roughness formulation was shown to perform optimally for two other datasets (different than the velocity dataset used for data assimilation).

The model not only predicted the tidal measurements satisfactorily, but it also provided good estimates of actual bottom roughness. The bottom roughness factors were higher for the ebb direction when compared to the friction factors obtained for flood direction, which was in accordance with the tidal current data. In this sense, the calibration technique demonstrated here has applicability for parameter estimation associated with bottom roughness. With the absence of significant progress in understanding the underlying science of bottom roughness,
comprehensive and/or data assimilation-based calibration of hydrodynamic modeling is a practical solution, as demonstrated here.

As an alternative implementation, data assimilation can be performed iteratively via successive simulations and data assimilation to produce a converging result of the Manning’s n value that represents 'the best' estimate of the actual bottom roughness. Such parameter estimation has utility in reducing the uncertainty dealing with parameterization of bottom roughness in future hydrodynamic modeling.
REFERENCES

Chai, T., and Draxler, R. R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? Geoscientific Model Development Discussions, 7, 1525-1534.

in correlation with sedimentary dynamics over an elongated tidal sandbar in the Gironde

Mayo, T., Butler, T., Dawson, C., and Hoteit, I., 2014. Data assimilation within the Advanced
Circulation (ADCIRC) modeling framework for the estimation of Manning’s friction
coefficient. Ocean Modeling, 43-58

Nathan, L. D., 2007. Hydrodynamic modeling of a hypothetical river. Louisiana State University,
Department of Civil and Environmental Engineering. Retrieved from

All substantive code changes are highlighted in yellow.

PADCIRC VERSION 46.00 xx/xx/2006

last changes in this file VERSION 46.00

Written for ADCIRC v46.00 by Jason G. Fleming.

This module manages nodal attribute data, including bottom friction, tau0, startdry, directional wind speed reduction, and etc. Will read the Nodal Attributes File (unit 13) and initialize the nodal attribute arrays.

Handling data by label rather than an integer encoding should result in increased transparency as well as ease the transition to HDF5/NetCDF i/o. The labels were chosen according to the guidelines of the CF Standard. Creating labels according to CF Standard Guidelines should enhance interoperability with other simulation frameworks.

To use a nodal attribute contained in the fort.13 file, the corresponding attribute name must appear in the fort.15 file. A list of nodal attributes is read in from the fort.15 file if the fort.15 parameter NWP > 0. This also signals ADCIRC to look for a fort.13 file.

Summary of the file format for the Nodal Attributes File:

AGRID ! user's comment line - should be a cross reference to the grid file
NumOfNodes ! number of nodes, must match NP
NAttr ! number of attributes contained in this file
do i=1, NAttr
 AttrName(i) ! nodal attribute name (see ! valid names below)
 Units(i) ! physical units (ft, m/s, none)
 ValuesPerNode(i) ! number of values at each node for a particular attribute
 DefaultVal(i) ! default value(s) for the nodal attribute
end do

C Valid labels are as follows:
C
C ADCIRC Variable: CF-Style Label:
C Tau0 "primitive_weighting_in_continuity_equation"
C StartDry "surface_submergence_state"
C Fric "quadratic_friction_coefficient_at_sea_floor"
C z0Land "surface_directional_effective_roughness_length"
C VCanopy "surface_canopy_coefficient"
C BK,BAlpha,BDelX,POAN "bridge_pilings_friction_parameters"
C GeoidOffset "sea_surface_height_above_geoid"
C "average_horizontal_eddy_viscosity_in_sea_water_wrt_depth"
C "average_horizontal_eddy_diffusivity_in_sea_water_wrt_depth"
C Tao0MinMax "min_and_max_primitive_weighting_in_continuity_equation"

C---
C
C Case 100210: Allow SWAN to handle wave refraction as a nodal attribute.
C I've placed these changes outside the #ifdef CSWAN flags because we want to be able to use the same fort.13 files for both ADCIRC and SWAN+ADCIRC runs. This way, the new nodal attribute will be processed but only applied when
C ADCIRC is coupled to SWAN.
LOGICAL :: LoadSwanWaveRefrac
LOGICAL :: FoundSwanWaveRefrac
CHARACTER(LEN=80) :: SwanWaveRefracUnits
INTEGER :: SwanWaveRefracNoOfVals
REAL(SZ) :: SwanWaveRefracDefVal
REAL(SZ),ALLOCATABLE :: SwanWaveRefrac(:)

C Corbitt 120321: Allow Advection to be Turned on Locally instead of Globally
LOGICAL :: LoadAdvectionState
LOGICAL :: FoundAdvectionState
CHARACTER(LEN=80) :: AdvectionStateUnits
INTEGER :: AdvectionStateNoOfVals
REAL(SZ) :: AdvectionStateDefVal
REAL(SZ),ALLOCATABLE :: AdvectionState(:)

C The following flags are .true. if the corresponding data are
C required for the run, according to the unit 15 control file
LOGICAL LoadTau0
LOGICAL LoadStartDry
LOGICAL LoadDirEffRLen
LOGICAL LoadCanopyCoef
LOGICAL LoadQuadraticFric
LOGICAL LoadBridgePilings
LOGICAL LoadChezy
LOGICAL LoadManningsN
LOGICAL LoadGeoidOffset
LOGICAL LoadEVM
LOGICAL LoadEVC
LOGICAL LoadTau0MinMax
LOGICAL LoadZ0b_var
LOGICAL LoadEleSlopeLim ! zc: elemental slope limiter

C The following flags are .true. if there are data with the
C corresponding label in the unit 13 file.
LOGICAL FoundTau0
LOGICAL FoundStartDry
LOGICAL FoundDirEffRLen
LOGICAL FoundCanopyCoef
LOGICAL FoundQuadraticFric
LOGICAL FoundBridgePilings
LOGICAL FoundChezy
LOGICAL FoundManningsN
LOGICAL FoundGeoidOffset
LOGICAL FoundEVM
LOGICAL FoundEVC
LOGICAL FoundTau0MinMax
LOGICAL FoundZ0b_var
LOGICAL FoundEleSlopeLim

These variables hold the strings which describe the attribute's units. These data are loaded from the file, but not used as of v46.00.

CHARACTER(len=80) Tau0Units
CHARACTER(len=80) StartDryUnits
CHARACTER(len=80) DirEffRLenUnits
CHARACTER(len=80) CanopyCoefUnits
CHARACTER(len=80) QuadraticFricUnits
CHARACTER(len=80) BridgePilingsUnits
CHARACTER(len=80) ChezyUnits
CHARACTER(len=80) ManningsNUnits
CHARACTER(len=80) GeoidOffsetUnits
CHARACTER(len=80) EVMUnits
CHARACTER(len=80) EVCUnits
CHARACTER(len=80) Tau0MinMaxUnits
CHARACTER(len=80) Z0b_varUnits
CHARACTER(len=80) EleSlopeLimUnits

These variables hold the number of values per node for each attribute.

INTEGER Tau0NoOfVals
INTEGER StartDryNoOfVals
INTEGER DirEffRLenNoOfVals
INTEGER CanopyCoefNoOfVals
INTEGER QuadraticFricNoOfVals
INTEGER BridgePilingsNoOfVals
INTEGER ChezyNoOfVals
INTEGER ManningsNNoOfVals
INTEGER GeoidOffsetNoOfVals
INTEGER EVMNoOfVals
INTEGER EVCNoOfVals
INTEGER Tau0MinMaxNoOfVals
INTEGER Z0b_varNoOfVals
INTEGER EleSlopeLimNoOfVals

These variables hold the default values for each attribute.

REAL(SZ) Tau0DefVal
REAL(SZ) StartDryDefVal
REAL(SZ) DirEffRLenDefVal(12)
REAL(SZ) CanopyCoefDefVal
REAL(SZ) QuadraticFricDefVal
REAL(SZ) BridgePilingsDefVal(4)
REAL(SZ) ChezyDefVal
REAL(SZ) ManningsNDefVal
REAL(SZ) GeoidOffsetDefVal
REAL(SZ) EVMDefVal
REAL(SZ) EVCDefVal
REAL(SZ) Tau₀MinMaxDefVal(2)
REAL(SZ) Z₀b_varDefVal
REAL(SZ) EleSlopeLimDefVal

INTEGER NumOfNodes ! number of nodes listed in unit 13 file, cf. NP
INTEGER NAttr ! number of nodal attributes in the unit 13 file

C

The following variables are inputs from the unit 15 model param. file

INTEGER NWP ! number of nodal attributes to read from file
INTEGER NoLiBF ! nonlinear bottom friction indicator
REAL(SZ) Tau₀ ! primitive continuity eqn. weight
REAL(SZ) Tau ! linear friction coefficient (1/sec)
REAL(SZ) CF ! 2DDI bottom fric. coef., effect varies based on NoLiBF
REAL(SZ) HBreak ! break depth for NOLIBF .eq. 2
REAL(SZ) FTheta ! dimless param. for NOLIBF .eq. 2
REAL(SZ) FGamma ! dimless param. for NOLIBF .eq.
REAL(SZ) ESLM ! horizontal eddy viscosity (length^2/time)
REAL(SZ) ESCL ! horizontal eddy diffusivity (length^2/time)
INTEGER IFLINBF! flag to turn on linear bottom friction
INTEGER IFNLBF ! flag to turn on nonlinear bottom friction
INTEGER IFHYBF ! flag to turn on hybrid bottom friction
REAL(SZ) BFCdLLimit ! lower limit of quadratic bottom friction
REAL(SZ) Tau₀FullDomainMin ! lower limit of tau₀ if time varying
REAL(SZ) Tau₀FullDomainMax ! upper limit of tau₀ if time varying

C

jgf48.42 Used to control the back-loaded time averaged tau₀
REAL(SZ), PARAMETER :: AlphaTau₀ = 0.25d0

C

The following variables are in puts from the unit 15 model param. file

NoLiBF

REAL(SZ), ALLOCATABLE :: S
REAL(SZ), ALLOCATABLE :: STARTDRY(:) ! 1=nodes below geoid initially dry
REAL(SZ), ALLOCATABLE :: FRIC(:) ! bottom friction coefficient
REAL(SZ), ALLOCATABLE, TARGET :: TAU0VAR(:)! primitive equation weighting
REAL(SZ), ALLOCATABLE :: Tau₀Temp(:) ! used in time varying tau₀

jjw&sb46.39.sb01: Base (original) primitive equation weighting.

C

jgf47.33 Used for time averaged tau₀
REAL(SZ), ALLOCATABLE :: LastTau₀(:)

C

jgf47.06: Added variables to trigger calculations and output of tau₀
C
jgf47.30: Added "FullDomain" or "High Res Areas Only" distinction
C
jgf47.31: Added time averaging to time varying tau₀
C
jgf48.42: Added backloaded time averaged tau₀

LOGICAL :: HighResTimeVaryingTau₀ ! .true. if Tau₀ == -3.x in fort.15
LOGICAL :: FullDomainTimeVaryingTau0 ! .true. if Tau0 == -5.x in
fort.15
LOGICAL :: OutputTau0 ! .true. if Tau0Dig2 == -1 in fort.15
LOGICAL :: TimeAveragedTau0 ! .true. if Tau0 == -6.x in fort.15
LOGICAL :: BackLoadedTimeAveragedTau0 ! .true. if Tau0 == -7.x
LOGICAL,ALLOCATABLE :: elemental_slope_limiter_active(:) ! .true. if
elemental_slope_limiter_grad_max
 ! has been exceeded, initialized as .false.
LOGICAL,ALLOCATABLE :: elemental_slope_limiter_max_exceeded(:) ! .true.
if maximum gradient has been exceeded, used for gradient warnings
REAL(SZ), ALLOCATABLE :: z0land(:,:) ! directional wind speed red. fac.
REAL(SZ), ALLOCATABLE :: vcanopy(:) ! canopy coefficient
C The following attribute contains BK(I),BALPHA(I),BDELX(I), and POAN(I)
REAL(SZ), ALLOCATABLE :: BridgePilings(:,:)
REAL(SZ), ALLOCATABLE :: Chezy(:)
REAL(SZ), ALLOCATABLE :: ManningsN(:)
REAL(SZ), ALLOCATABLE :: GeoidOffset(:)
REAL(SZ), ALLOCATABLE :: EVM(:)
REAL(SZ), ALLOCATABLE :: EVC(:)
REAL(SZ), ALLOCATABLE :: Tau0MinMax(:,:) ! (node,i); i=1(min), i=2(max)
REAL(SZ), ALLOCATABLE :: z0b_var(:) ! partially varying 3D bottom
roughness length
REAL(SZ), ALLOCATABLE :: elemental_slope_limiter_grad_max(:)
C
INTEGER i ! node loop counter
INTEGER j ! attribute values loop counter
INTEGER k ! attribute loop counter
C
CONTAINS !---
C SUBROUTINE InitNAModule

SUBROUTINE InitNAModule()
IMPLICIT NONE
C
Casey 100210: Make changes compact.
LoadSwanWaveRefrac = .FALSE.
FoundSwanWaveRefrac = .FALSE.
SwanWaveRefracNoOfVals = 1
SwanWaveRefracDefVal = 0.0D0

Corbitt 120321:
LoadAdvectionState = .FALSE.
FoundAdvectionState = .FALSE.
AdvectionStateNoOfVals = 1
AdvectionStateDefVal = 0.0D0

LoadTau0 = .FALSE.
LoadStartDry = .FALSE.
LoadDirEffRLen = .FALSE.
LoadManningsN = .FALSE.
LoadQuadraticFric = .FALSE.
LoadChezy = .FALSE.
LoadBridgePilings = .FALSE.
LoadCanopyCoef = .FALSE.
LoadGeoidOffset = .FALSE.
LoadEVM = .FALSE.
LoadEVC = .FALSE.
LoadTau0MinMax = .FALSE.
LoadZ0b_var = .FALSE.
LoadEleSlopeLim = .FALSE.

FoundTau0 = .FALSE.
FoundStartDry = .FALSE.
FoundDirEffRLen = .FALSE.
FoundManningsN = .FALSE.
FoundQuadraticFric = .FALSE.
FoundChezy = .FALSE.
FoundBridgePilings = .FALSE.
FoundCanopyCoef = .FALSE.
FoundGeoidOffset = .FALSE.
FoundEVM = .FALSE.
FoundEVC = .FALSE.
FoundTau0MinMax = .FALSE.
FoundZ0b_var = .FALSE.
FoundEleSlopeLim = .FALSE.

 Tau0NoOfVals = 1
StartDryNoOfVals = 1
DirEffRLenNoOfVals = 12
QuadraticFricNoOfVals = 1
ChezyNoOfVals = 1
ManningsNNoOfVals = 1
BridgePilingsNoOfVals = 4
CanopyCoefNoOfVals = 1
GeoidOffsetNoOfVals = 1
EVMNoOfVals = 1
EVCNoOfVals = 1
Tau0MinMaxNoOfVals = 2
Z0b_varNoOfVals = 1
EleSlopeLimNoOfVals = 1

C
Tau0DefVal = 0.0
StartDryDefVal = 0.0
DO j=1, DirEffRLenNoOfVals
 DirEffRLenDefVal(j) = 0.0
END DO
CanopyCoefDefVal = 1.0 ! jgf49.1001 default is now full wind stress
QuadraticFricDefVal = 0.0
DO j=1, BridgePilingsNoOfVals
 BridgePilingsDefVal(j) = 0.0
END DO
ChezyDefVal = 0.0
ManningsNDDefVal = 0.0
GeoidOffsetDefVal = 0.0
EVMDefVal = 0.0
EVCDefVal = 0.0
DO j=1, Tau0MinMaxNoOfVals
 Tau0DefVal = 0.0
END DO
Z0b_varDefVal = 0.001
EleSlopeLimDefVal = 0D0

C
HighResTimeVaryingTau0 = .False.
FullDomainTimeVaryingTau0 = .False.
OutputTau0 = .False.
TimeAveragedTau0 = .False.
BackLoadedTimeAveragedTau0 = .False.

C
HBREAK=1.d0
FTHETA=1.d0
FGAMMA=1.d0

C
kmd48.33bc this resets the ESLM to 0 and if using constant eddy
viscosity it eliminates what the user specified in
the input file. The InitNAModule originally come before
the read_input call but now it appears after the read_input
call.
! ESLM=0.0
ESLC=0.0
RETURN

END SUBROUTINE InitNAModule

SUBROUTINE ReadNodalAttr(NScreen, ScreenUnit, MyProc, NAbOut)
IMPLICIT NONE
INTEGER, intent(in) :: NScreen ! nonzero for debug info to screen
INTEGER, intent(in) :: ScreenUnit ! i/o for screen
INTEGER, intent(in) :: MyProc ! in parallel, only MyProc=0 i/o to screen
INTEGER, intent(in) :: NAbOut ! 1 to abb. output to unit 16

LOGICAL NAFound ! .true. if Nodal Attributes File (fort.13) exists
INTEGER ErrorIO ! zero if file opened successfully
CHARACTER(len=80) AttrName ! string where the attribute name is stored
CHARACTER(len=80) header ! string where alphanumeric file id is stored
INTEGER NumNodesNotDefault ! number of individual nodes to specify
LOGICAL SkipDataSet ! .true. if a data set in unit 13 is not needed
CHARACTER(len=80) Skipped ! data in unit 13 we do not need
INTEGER L ! line counter

REAL(sz), ALLOCATABLE :: real_loader(:)

NAFound = .False.
SkipDataSet = .False.

Check to make sure that NWP is a valid number.
IF (NWP.LT.0) THEN
 IF(NSCREEN.NE.0.AND.MYPROC.EQ.0) THEN
 WRITE(ScreenUnit,9972)
 WRITE(ScreenUnit,*) 'NWP =',NWP
 WRITE(ScreenUnit,9728)
 ENDIF
WRITE(16,9728)
WRITE(16,9973)
9728 FORMAT(/,1X,'Your selection of NWP (a UNIT 15 input ', &
 'parameter) is not an allowable value')
 STOP ! We're toast.
ENDIF

C
C Check to see if there are nodal attributes to be read in. If not,
C simply return.
IF (NWP.EQ.0) THEN
 WRITE(16,231) NWP
231 FORMAT(/,5X,'NWP = ',I2,
& /,9X,'A Nodal Attributes File (unit 13)',
& /,9X,'will not be used.')
 RETURN
ENDIF

C
C Otherwise, get on with it.
WRITE(16,232) NWP
232 FORMAT(/,5X,'NWP = ',I2,
& /,9X,'Must read Nodal Attributes File (unit 13).')

C
C Determine if the Nodal Attributes File exists.
INQUIRE(FILE=TRIM(INPUTDIR)//'/'//'fort.13',EXIST=NAFound)
C
IF (.not.NAFound) THEN
 WRITE(16,1001) ! Nodal Attributes file
 WRITE(16,1011) ! was not found.
 WRITE(16,9973) ! execution terminated
 IF (NScreen.ne.0.and.MyProc.eq.0) THEN
 WRITE(ScreenUnit,1001)
 WRITE(ScreenUnit,1011)
 WRITE(ScreenUnit,9973) ! execution terminated
 ENDIF
 STOP
ENDIF

C
C Read the unit 15 control file to determine what data must be
C loaded from nodal attributes file.
WRITE(16,235) NWP
235 FORMAT(/,9X,'Need to load ',I2,' nodal attribute(s):')
DO k=1,NWP
 READ(15,*) AttrName
 WRITE(16,'(14X,A80)') AttrName
 SELECT CASE (AttrName)
 CASE("primitive_weighting_in_continuity_equation")
LoadTau0 = .True.
CASE("surface_submergence_state")
 LoadStartDry = .True.
CASE("quadratic_friction_coefficient_at_sea_floor")
 LoadQuadraticFric = .True.
CASE("surface_directional_effective_roughness_length")
 LoadDirEffRLen = .True.
CASE("surface_canopy_coefficient")
 LoadCanopyCoef = .True.
CASE("bridge_pilings_friction_parameters")
 LoadBridgePilings = .True.
CASE("manningss_n_at_sea_floor")
 LoadManningsN = .True.
CASE("chezy_friction_coefficient_at_sea_floor")
 LoadChezy = .True.
CASE("bottom_roughness_length")
 LoadZ0b_var = .True.
CASE("sea_surface_height_above_geoid")
 LoadGeoidOffset = .True.
CASE
 & ("average_horizontal_eddy_viscosity_in_sea_water_wrt_depth")
 LoadEVM = .True.
CASE
 & ("average_horizontal_eddy_diffusivity_in_sea_water_wrt_depth")
 LoadEVC = .True.
CASE
 & ("min_and_max_primitive_weighting_in_continuity_equation")
 LoadTau0MinMax = .True.
Casey 100210: Allow SWAN to handle wave refraction as a nodal attribute.
CASE("wave_refraction_in_swan")
 LoadSwanWaveRefrac = .TRUE.
Corbitt 120321: Allow advection to be turned on locally instead of globally
CASE("advection_state")
 LoadAdvectionState = .True.
CASE("elemental_slope_limiter")
 LoadEleSlopeLim = .TRUE.
CASE DEFAULT
 WRITE(16,1000) ! unit 15 Model Parameter file
 WRITE(16,1021) AttrName ! contains invalid name
 IF (NScreen.ne.0.and.MyProc.eq.0) THEN
 WRITE(ScreenUnit,1000)
 WRITE(ScreenUnit,1021) AttrName
 ENDIF
END SELECT
ENDDO
C
C Now open the nodal attributes (unit 13) file.
WRITE(16,240)
Nodal Attributes File (unit 13) was found.
Opening file.

OPEN(UNIT=13, FILE=TRIM(INPUTDIR)///''/''/fort.13',
& IOSTAT=ErrorIO)
IF (ErrorIO .GT. 0) THEN
 WRITE(16,1001) ! Nodal attribute file
 WRITE(16,1005) ! exists but can't be opened
 WRITE(16,9973) ! execution terminated
 IF (NScreen.ne.0.and.MyProc.eq.0) THEN
 WRITE(ScreenUnit,1001)
 WRITE(ScreenUnit,1005)
 WRITE(ScreenUnit,9973)
 ENDIF
 STOP ! We're toast.
ENDIF

Read each attribute name, units, number of values, and default value
READ(13,'(A80)') header
WRITE(16,250)
SELECT CASE (AttrName)
CASE("primitive_weighting_in_continuity_equation")
 FoundTau0 = .True.
 READ(13,'(A80)') Tau0Units
 READ(13,*) Tau0NoOfVals
 READ(13,*) Tau0DefVal
CASE("surface_submergence_state")
 FoundStartDry = .True.
 READ(13,'(A80)') StartDryUnits
 READ(13,*) StartDryNoOfVals
 READ(13,*) StartDryDefVal
CASE("quadratic_friction_coefficient_at_sea_floor")
 FoundQuadraticFric = .True.
 READ(13,'(A80)') QuadraticFricUnits
 READ(13,*) QuadraticFricNoOfVals
 READ(13,*) QuadraticFricDefVal
CASE("surface_directional_effective_roughness_length")
 FoundDirEffRLen = .True.
 READ(13,'(A80)') DirEffRLenUnits
 READ(13,*) DirEffRLenNoOfVals
READ(13,*)
& (DirEffRLenDefVal(j), j=1, DirEffRLenNoOfVals)
CASE("surface_canopy_coefficient")
 FoundCanopyCoef = .True.
 READ(13,'(A80)') CanopyCoefUnits
 READ(13,*) CanopyCoefNoOfVals
 READ(13,*) CanopyCoefDefVal
CASE("bridge_pilings_friction_parameters")
 FoundBridgePilings = .True.
 READ(13,'(A80)') BridgePilingsUnits
 READ(13,*) BridgePilingsNoOfVals
 READ(13,*)
& (BridgePilingsDefVal(j), j=1, BridgePilingsNoOfVals)
CASE("mannies_n_at_sea_floor")
 FoundManningsN = .True.
 READ(13,'(A80)') ManningsNUnits
 READ(13,*) ManningsNNoOfVals
 READ(13,*) ManningsNDefVal
CASE("bottom_roughness_length")
 FoundZ0b_var = .True.
 READ(13,'(A80)') Z0b_varUnits
 READ(13,*) Z0b_varNoOfVals
 READ(13,*) Z0b_varDefVal
CASE("chezy_friction_coefficient_at_sea_floor")
 FoundChezy = .True.
 READ(13,'(A80)') ChezyUnits
 READ(13,*) ChezyNoOfVals
 READ(13,*) ChezyDefVal
CASE("sea_surface_height_above_geoid")
 FoundGeoidOffset = .True.
 READ(13,'(A80)') GeoidOffsetUnits
 READ(13,*) GeoidOffsetNoOfVals
 READ(13,*) GeoidOffsetDefVal
CASE
& ("average_horizontal_eddy_viscosity_in_sea_water_wrt_depth")
 FoundEVM = .True.
 READ(13,'(A80)') EVMUnits
 READ(13,*) EVMNoOfVals
 READ(13,*) EVMDefVal
CASE
& ("average_horizontal_eddy_diffusivity_in_sea_water_wrt_depth")
 READ(13,'(A80)') EVCUnits
 READ(13,*) EVCNoOfVals
 READ(13,*) EVCDefVal
CASE
& ("min_and_max_primitive_weighting_in_continuity_equation")
 FoundTau0MinMax = .True.
 READ(13,'(A80)') Tau0MinMaxUnits
READ(13,*) Tau0MinMaxNoOfVals
READ(13,*) (Tau0MinMaxDefVal(j),j=1,Tau0MinMaxNoOfVals)

Casey 100210: Allow SWAN to handle wave refraction as a nodal attribute.
CASE("wave_refraction_in_swan")
FoundSwanWaveRefrac = .TRUE.
READ(13,'(A80)') SwanWaveRefracUnits
READ(13,*) SwanWaveRefracNoOfVals
READ(13,*) SwanWaveRefracDefVal

Corbitt 120321: Allow advection to be turned on locally instead of globally
CASE("advection_state")
FoundAdvectionState = .TRUE.
READ(13,'(A80)') AdvectionStateUnits
READ(13,*) AdvectionStateNoOfVals
READ(13,*) AdvectionStateDefVal

CASE("elemental_slope_limiter")
FoundEleSlopeLim = .TRUE.
READ(13,'(A80)') EleSlopeLimUnits
READ(13,*) EleSlopeLimNoOfVals
READ(13,*) EleSlopeLimDefVal

CASE DEFAULT
WRITE(16,1001) ! Nodal Attributes file
WRITE(16,1021) AttrName ! contains invalid name
IF (NScreen.ne.0.and.MyProc.eq.0) THEN
 WRITE(ScreenUnit,1001)
 WRITE(ScreenUnit,1021) AttrName
ENDIF
READ(13,'(A80)') Skipped ! skip the Units for the invalid name
READ(13,'(A80)') Skipped ! skip the NoOfVals for invalid name
END SELECT
END DO

C Determine if there are any attributes required by the fort.15 file
that are not in the nodal attributes file.
IF(((LoadTau0).and.(.not.FoundTau0)).or.
& ((LoadStartDry).and.(.not.FoundStartDry)).or.
& (LoadQuadraticFric).and.
& (.not.FoundQuadraticFric)).or.
& ((LoadDirEffRLen).and.
& (.not.FoundDirEffRLen)).or.
& (LoadCanopyCoef).and.
& (.not.FoundCanopyCoef)).or.
& (LoadBridgePilings).and.
& (.not.FoundBridgePilings)).or.
& (LoadManningsN).and.
& (.not.FoundManningsN)).or.
& (LoadZ0b_var).and.
& (.not.FoundZ0b_var)).or.
& ((LoadGeoidOffset).and.
& (.not.FoundGeoidOffset)).or.
& ((LoadChezy).and(.not.FoundChezy)).or.
& ((LoadEVM).and(.not.FoundEVM)).or.
& ((LoadEVC).and(.not.FoundEVC)).or.
Casey 100210: Allow SWAN to handle wave refraction as a nodal attribute.
& ((LoadSwanWaveRefrac).and(.not.FoundSwanWaveRefrac)).or.
Corbitt 120321: Allow advection to be turned on locally instead of globally
& ((LoadAdvectionState).and(.not.FoundAdvectionState)).or.
& ((LoadEleSlopeLim).and(.not.FoundEleSlopeLim)).or.
& ((LoadTau0MinMax).and(.not.FoundTau0MinMax))) THEN
WRITE(16,1111)
1111 FORMAT('ERROR: Nodal Attributes file (unit 13) does '
& 'not contain all the attributes listed in the '
& ,'model parameter file (unit 15).')
WRITE(16,9973) ! execution terminated
IF (NScreen.ne.0.and.MyProc.eq.0) THEN
WRITE(ScreenUnit,1111)
WRITE(ScreenUnit,9973) ! execution terminated
ENDIF
STOP ! We're toast.
ENDIF
C Allocate memory to hold our data.
ALLOCATE(TAU0VAR(NumOfNodes),TAU0BASE(NumOfNodes)) ! jjw&s46.39sb01
ALLOCATE(STARDDRY(NumOfNodes))
ALLOCATE(FRIC(NumOfNodes))
ALLOCATE(z01and(NumOfNodes,DirEffRLenNoOfVals))
ALLOCATE(vcanopy(NumOfNodes))
ALLOCATE(BridgePilings(NumOfNodes,BridgePilingsNoOfVals))
ALLOCATE(GeoidOffset(NumOfNodes))
ALLOCATE(Chezy(NumOfNodes))
ALLOCATE(ManningsN(NumOfNodes))
ALLOCATE(Z0b_var(NumOfNodes))
ALLOCATE(EVM(NumOfNodes))
ALLOCATE(EVC(NumOfNodes))
ALLOCATE(Tau0MinMax(NumOfNodes,Tau0MinMaxNoOfVals))
Casey 100210: Allow SWAN to handle wave refraction as a nodal attribute.
ALLOCATE(SwanWaveRefrac(NumOfNodes))
Corbitt 120321: Allow advection to be turned on locally instead of globally
ALLOCATE(AdvectionState(NumOfNodes))
ALLOCATE(elemental_slope_limiter_grad_max(NumOfNodes))
ALLOCATE(elemental_slope_limiter_active(NumOfNodes))
ALLOCATE(elemental_slope_limiter_max_exceeded(NumOfNodes))
elemental_slope_limiter_active(:) = .FALSE. !...Allocate and initialize
to keep
elemental_slope_limiter nodes
elemental_slope_limiter_max_exceeded(:) = .FALSE.
Now read each of the attributes required by the model parameter (unit 15) file and skip past the others.

```fortran
WRITE(16,270) NWP
270 FORMAT(/,9X,'Now reading ',I2,' nodal attribute(s).')
DO k=1, NAttr
   WRITE(16,280) k
280 FORMAT(/,9X,'Attribute ',I2,:) READ(13,* ) AttrName
      READ(13,*) NumNodesNotDefault
      WRITE(16,'(14X,A80)') AttrName
      SELECT CASE (AttrName)
      CASE("primitive_weighting_in_continuity_equation")
         IF (LoadTau0) THEN
            CALL LoadAttrVec(TAU0VAR, Tau0DefVal, &
                             NumNodesNotDefault, NScreen, MyProc, NAbOut)
         ELSE
            SkipDataSet = .True.
         ENDIF
      CASE("surface_submergence_state")
         IF (LoadStartDry) THEN
            CALL LoadAttrVec(STARTDRY, StartDryDefVal, &
                             NumNodesNotDefault, NScreen, MyProc, NAbOut)
         ELSE
            SkipDataSet = .True.
         ENDIF
      CASE("quadratic_friction_coefficient_at_sea_floor")
         IF (LoadQuadraticFric) THEN
            CALL LoadAttrVec(FRIC, QuadraticFricDefVal, &
                             NumNodesNotDefault, NScreen, MyProc, NAbOut)
         ELSE
            SkipDataSet = .True.
         ENDIF
      CASE("surface_directional_effective_roughness_length")
         IF (LoadDirEffRLen) THEN
            CALL LoadAttrMat(z0land, DirEffRLenNoOfVals, &
                              DirEffRLenDefVal, NumNodesNotDefault, &
                              NScreen, MyProc, NAbOut)
         ELSE
            SkipDataSet = .True.
         ENDIF
      CASE("surface_canopy_coefficient")
         IF (LoadCanopyCoef) THEN
            CALL LoadAttrVec(vcanopy, CanopyCoefDefVal, &
                              NumNodesNotDefault, NScreen, MyProc, NAbOut)
         ELSE
            SkipDataSet = .True.
         ENDIF
      END CASE
```
CASE("bridge_pilings_friction_parameters")
 IF (LoadBridgePilings) THEN
 CALL LoadAttrMat(BridgePilings, BridgePilingsNoOfVals,
 BridgePilingsDefVal, NumNodesNotDefault,
 NScreen, MyProc, NAbOut)
 ELSE
 SkipDataSet = .True.
 ENDIF
CASE("mannings_n_at_sea_floor")
 IF (LoadManningsN) THEN
 CALL LoadAttrVec(ManningsN, ManningsNDefVal,
 NumNodesNotDefault, NScreen, MyProc, NAbOut)
 ELSE
 SkipDataSet = .True.
 ENDIF
CASE("bottom_roughness_length")
 IF (LoadZ0b_var) THEN
 CALL LoadAttrVec(Z0b_var, Z0b_varDefVal,
 NumNodesNotDefault, NScreen, MyProc, NAbOut)
 ELSE
 SkipDataSet = .True.
 ENDIF
CASE("chezy_friction_coefficient_at_sea_floor")
 IF (LoadChezy) THEN
 CALL LoadAttrVec(Chezy, ChezyDefVal,
 NumNodesNotDefault, NScreen, MyProc, NAbOut)
 ELSE
 SkipDataSet = .True.
 ENDIF
CASE("sea_surface_height_above_geoid")
 IF (LoadGeoidOffset) THEN
 CALL LoadAttrVec(GeoidOffset, GeoidOffsetDefVal,
 NumNodesNotDefault, NScreen, MyProc, NAbOut)
 ELSE
 SkipDataSet = .True.
 ENDIF
CASE("average_horizontal_eddy_viscosity_in_sea_water_wrt_depth")
 IF (LoadEVM) THEN
 CALL LoadAttrVec(EVM, EVMDefVal,
 NumNodesNotDefault, NScreen, MyProc, NAbOut)
 ELSE
 SkipDataSet = .True.
 ENDIF
CASE("average_horizontal_eddy_diffusivity_in_sea_water_wrt_depth")
 IF (LoadEVC) THEN
 CALL LoadAttrVec(EVC, EVCDefVal,
& NumNodesNotDefault, NScreen, MyProc, NAbOut)
ELSE
 SkipDataSet = .True.
ENDIF
CASE
& ("min_and_max_primitive_weighting_in_continuity_equation")
IF (LoadTau0MinMax) THEN
 CALL LoadAttrMat(Tau0MinMax, Tau0MinMaxNoOfVals, &
 Tau0MinMaxDefVal, NumNodesNotDefault, &
 NScreen, MyProc, NAbOut)
ELSE
 SkipDataSet = .True.
ENDIF
Casey 100210: Allow SWAN to handle wave refraction as a nodal attribute.
CASE("wave_refraction_in_swan")
IF (LoadSwanWaveRefrac) THEN
 CALL LoadAttrVec(SwanWaveRefrac, SwanWaveRefracDefVal, &
 NumNodesNotDefault, NScreen, MyProc, NAbOut)
ELSE
 SkipDataSet = .TRUE.
ENDIF
Corbitt 120321: Allow Advection to be handled locally instead of globally.
CASE("advection_state")
IF (LoadAdvectionState) THEN
 CALL LoadAttrVec(AdvectionState, AdvectionStateDefVal, &
 NumNodesNotDefault, NScreen, MyProc, NAbOut)
ELSE
 SkipDataSet = .TRUE.
ENDIF
CASE("elemental_slope_limiter")
IF (LoadEleSlopeLim) THEN
 CALL LoadAttrVec(elemental_slope_limiter_grad_max, &
 EleSlopeLimDefVal, NumNodesNotDefault, NScreen, &
 MyProc, NAbOut)
ELSE
 SkipDataSet = .True.
ENDIF
CASE DEFAULT
SkipDataSet = .True.
WRITE(16,1001) ! Nodal Attributes file
WRITE(16,1021) AttrName ! contains invalid name
IF (NScreen.ne.0.and.MyProc.eq.0) THEN
 WRITE(ScreenUnit,1001)
 WRITE(ScreenUnit,1021) AttrName
ENDIF
END SELECT
IF (SkipDataSet) THEN
DO L=1, NumNodesNotDefault
READ(13,*), Skipped
END DO
WRITE(16,'(9X,A8)') 'Skipped.'
SkipDataSet = .False.
ELSE
WRITE(16,'(/,9X,A18,A80)') 'Finished loading ', AttrName
ENDIF
END DO

C
1000 FORMAT('ERROR: The Model Parameter File (unit 15)')
1001 FORMAT('ERROR: The Nodal Attributes File (unit 13)')
1002 FORMAT('ERROR: The legacy StartDry File (unit 12)')
1003 FORMAT('ERROR: Spatially Varying Fric. Coeff. File (unit 21)')

C
1005 FORMAT('exists but cannot be opened.')
1011 FORMAT('was not found.')
1021 FORMAT('contains invalid name: ',A80)
9972 FORMAT(///,1X,'!!!!!!!!!! INPUT ERROR !!!!!!!!!',/)
9973 FORMAT(/,1X,'!!!!! EXECUTION WILL NOW BE TERMINATED !!!!!',//)

C
RETURN

CEND SUBROUTINE ReadNodalAttr

C---

SUBROUTINE LoadAttrVec(AttributeData, Default, NumNodesNotDef, &
NScreen, MyProc, NAbOut)
IMPLICIT NONE
REAL(SZ), intent(out), dimension(NumOfNodes) :: AttributeData
REAL(SZ), intent(in):: Default ! default value for all nodes
INTEGER, intent(in) :: NumNodesNotDef ! number of nodes specified in
file
INTEGER, intent(in) :: NScreen ! 1 for debug info to screen (unit 6)
INTEGER, intent(in) :: MyProc ! in parallel, only MyProc=0 i/o to
screen
INTEGER, intent(in) :: NAbOut ! 1 to abbrev. output to unit 16
INTEGER NodeNum ! node number listed in the file

Set all values to user-specified default values.
IF (NABOUT.EQ.0) WRITE(16,1001) Default
DO i=1, NumOfNodes
 AttributeData(i) = Default
END DO

IF (NABOUT.EQ.0) WRITE(16,1005)
DO i=1, NumNodesNotDef
 READ(13,*) NodeNum, AttributeData(NodeNum)
 IF (NABOUT.EQ.0)
 & WRITE(16,1010) NodeNum, AttributeData(NodeNum)
END DO

1001 FORMAT(/,10X,'Set all nodes to the default value of ',E16.8,/)
1005 FORMAT(/,10X,'Now setting the following nodes to these values:',
 & /,10X,'NODE',5X,'DATA',5X/)
1010 FORMAT(7X,I8,6X,E16.8)

RETURN

--
END SUBROUTINE LoadAttrVec
--

--
SUBROUTINE LoadAttrMat(AttributeData, NumCol, Default,
& NumNodesNotDef, NScreen, MyProc, NAbOut)
IMPLICIT NONE
INTEGER, intent(in) :: NumCol ! number of columns in the matrix
REAL(SZ), intent(out),
& dimension(NumOfNodes,NumCol) :: AttributeData
REAL(SZ), intent(in), dimension(NumCol) :: Default ! default values
INTEGER, intent(in) :: NumNodesNotDef ! number of nodes spec. in file
INTEGER, intent(in) :: NScreen ! 1 for debug info to screen (unit 6)
INTEGER, intent(in) :: MyProc ! in parallel, only MyProc=0 i/o to
screen
INTEGER, intent(in) :: NAbOut ! 1 to abbrev. output to unit 16

C INTEGER NodeNum ! node number listed in the file
C
C Set all nodes to user-specified default values.
IF (NABOUT.EQ.0) WRITE(16,1001)
DO i=1, NumOfNodes
 DO j=1, NumCol
 AttributeData(i,j)=Default(j)
 END DO
END DO
END DO
C
IF (NABOUT.EQ.0) WRITE(16,1005)
DO i=1, NumNodesNotDef
 READ(13,*) NodeNum, (AttributeData(NodeNum,j),j=1,NumCol)
 IF (NABOUT.EQ.0) WRITE(16,1010) NodeNum,
 & (AttributeData(NodeNum,j),j=1,NumCol)
END DO
C 1001 FORMAT(/,10X,'Set all nodes to the default values of ',/,
 & 99E16.8,/)
1005 FORMAT(/,10X,'Now setting the following nodes to these values:',
 & /,10X,'NODE',5X,'DATA',5X/)
1010 FORMAT(7X,I6,6X,12(1X,E16.8))
C RETURN
C ---
END SUBROUTINE LoadAttrMat
C ---
C
SUBROUTINE InitNodalAttr(DP, NP, G, NScreen, ScreenUnit,
& MyProc, NAbOut)
USE GLOBAL, ONLY : C3D, C2DDI
USE GLOBAL_3DVS, ONLY : Z0B
IMPLICIT NONE
INTEGER, intent(in) :: NP ! number of nodes in the grid file
REAL(SZ), intent(in), dimension(NP) :: DP ! array of bathymetric depths
REAL(SZ), intent(in):: G ! gravitational acceleration
INTEGER, intent(in) :: NScreen ! nonzero for debug info to screen
&
INTEGER, intent(in) :: ScreenUnit ! i/o for debug info to screen
INTEGER, intent(in) :: MyProc ! in parallel, only MyProc=0 i/o to screen
INTEGER, intent(in) :: NAbOut ! 1 to abbrev. output to unit 16
INTEGER Tau0Dig1 ! determines the tau0 scheme
INTEGER Tau0Dig2 ! determines whether tau0 is being output

IF (Tau0.lt.0) THEN
 Tau0Dig1 = INT(Tau0) ! jgf47.30 truncate the fractional part
 Tau0Dig2 = INT((Tau0 - REAL(Tau0Dig1))*10.0d0 - 0.5d0)
ELSE
 Tau0Dig1 = 0
 Tau0Dig2 = 0
ENDIF

C ERROR CHECK: If a nodal attributes file is being used, check to see that the number of nodes in the nodal attribute file is the same as the number of nodes in the grid file.
IF (NWP.NE.0.AND.NumOfNodes.NE.NP) THEN
 IF(NSCREEN.NE.0.AND.MYPROC.EQ.0)
 WRITE(ScreenUnit,9900)
 WRITE(16,9900)
 9900 FORMAT(///,1X,'!!!!!!!!!! FATAL ERROR !!!!!!!!',
 //,1X,'The number of nodes in the grid file (unit 14) and'
 & ,/1X,'the nodal attributes file (unit 13) must match.',
 & ,/1X,'!!!!!! EXECUTION WILL NOW BE TERMINATED !!!!!!!!',//)
 STOP ! We're toast.
ENDIF

C ERROR CHECK: If Chezy, Manning's or Quadratic friction was loaded from the nodal attributes file, NOLIBF must be 1.
IF ((LoadChezy.or.LoadManningsN.or.LoadQuadraticFric).and.
 & NoliBF.ne.1) THEN
 IF(NSCREEN.NE.0.AND.MYPROC.EQ.0)
 WRITE(ScreenUnit,9800)
 WRITE(16,9800)
 9800 FORMAT(///,1X,'!!!!!!!!!! FATAL ERROR !!!!!!!!',
 & ,/1X,'Nonlinear bottom friction coefficients were loaded'
 & ,/1X,'from the nodal attributes file (unit 13), so '
 & ,/1X,'NOLIBF must be set to 1. It is set to ',i2,' in',
 & ,/1X,'the model parameter (unit 15) file.',
 & ,/1X,'!!!!!! EXECUTION WILL NOW BE TERMINATED !!!!!!!!',//)
 STOP ! We're toast.
ENDIF

C ERROR CHECK: If Tau0=-3.x or -6.x in fort.15, then tau0 MUST be loaded from nodal attributes file.
IF (((Tau0Dig1.eq.-3).or.(Tau0Dig1.eq.-6))
 & .and.(.not.LoadTau0)) THEN
IF(NSCREEN.NE.0.AND.MYPROC.EQ.0) WRITE(ScreenUnit,9700) Tau0
WRITE(16,9700)

9700 FORMAT(/,1X,'!!!!!!!!!! FATAL ERROR !!!!!!!!',
& /,1X,'Spatially and temporally varying tau0 was '
& /,1X,'specified in the fort.15 file with Tau0=',E9.2,
& /,1X,'but the base value was not specified in the '
& /,1X,'nodal attributes file (unit 13). Please ',
& /,1X,'load the base value using',
& /,1X,'primitive_weighting_in_continuity_equation.',
& /,1X,'!!!!!! EXECUTION WILL NOW BE TERMINATED !!!!!!!',//)
STOP ! We're toast.
ENDIF

C
C I N I S T A R T D R Y
IF (.not.LoadStartDry) THEN
IF (NWP.eq.0) THEN
ALLOCATE(STARTDRY(NP))
ENDIF
DO I=1, NP
 STARTDRY(I) = 0.0D0
ENDDO
ENDIF

C
C I N I T A U 0
IF (NWP.eq.0) THEN
ALLOCATE(TAU0VAR(NP),TAU0BASE(NP))
ALLOCATE(Tau0MinMax(NP,Tau0MinMaxNoOfVals))
ENDIF

C
C jgf46.25 If input tau0 is positive, set all nodes to that value.
IF (.not.LoadTau0) THEN
IF (Tau0.ge.0) THEN
DO I=1,NP
 Tau0Var(I)=Tau0
END DO
WRITE(16,7) Tau0
7 FORMAT(/,5X,
& 'A SPATIALLY CONSTANT WEIGHTING COEFFICIENT (Tau0)'
& '/,5X,' WILL BE USED IN THE GENERALIZED WAVE',
& 'CONTINUITY EQUATION.',
& '/,5X,' Tau0 = ',E15.8,2X,'1/sec',/)
ELSE
 ! jgf47.30.TODO: This logging needs to be cleaned up.
ENDIF

C
C If input tau0 is negative, set value using hardcoded scheme
C based on depth
DO I=1, NP
 Tau0Var(I)=Tau0NodalValue(Tau0,DP(I))
ENDDO
IF(Tau0.eq.-2) THEN
 WRITE(16,6) ! spatially vary tau0 according to hard coded
 scheme
 WRITE(16,62) ! description of scheme
 62 FORMAT(//,5X,'IF DEPTH > 200 Tau0 = 0.005',
 & /,5X,'IF 200 > DEPTH > 1 Tau0 = 1/DEPTH ',
 & /,5X,'IF 1 > DEPTH Tau0 = 1.0 ')
 ENDF
ENDIF
IF (.not.((Tau0Dig1.eq.-3) .or. (Tau0Dig1.eq.-5))) THEN
 WRITE(16,6) ! spatially vary tau0 according to hard coded
 scheme
 WRITE(16,61) ! description of scheme
 61 FORMAT(//,5X,' IF DEPTH GE 10 > TAU0 = 0.005',
 & /,5X,' IF DEPTH LT 10 > TAU0 = 0.020',/)
ENDIF
ENDIF
C
C jgf46.27 If we have already loaded the tau0 values directly from
C the nodal attributes file, check to see if the default value was
C negative. If so, this indicates that nodal values of tau0 that
C were not explicitly set in the nodal attributes file should be set
C according to one of the hard-coded tau0 schemes.
IF (LoadTau0.and.Tau0DefVal.lt.0) THEN
 DO I=1,NP
 IF (Tau0Var(I).lt.0) THEN
 Tau0Var(I)=Tau0NodalValue(Tau0DefVal,DP(I))
 ENDIF
 ENDDO
ENDIF
C
C jgf47.06 Activate time varying tau0 and output tau0 if these options
C were selected.
C
C jgf47.30 Use Joannes' scheme for steady Tau0 in deep water and
C other coarsely gridded areas, and time varying Tau0 in high
C resolution areas.
IF ((Tau0Dig1.eq.-3).or.(Tau0Dig1.eq.-6)
 & .or. (Tau0Dig1.eq.-7)) THEN
 HighResTimeVaryingTau0 = .True.
 DO I=1, NP
 Tau0Base(I) = Tau0Var(I)
 ENDDO
ENDIF
C jgf47.11 Also allow the min and max tau0 to be set from the fort.15,
C bypassing the use of the fort.13 file for this purpose.
C jgf47.30 Changed to emphasize full domain time varying tau0
 IF (Tau0Dig1.eq.-5) THEN
 FullDomainTimeVaryingTau0 = .True.
 IF (.not.LoadTau0MinMax) THEN
 DO I=1, NP
 Tau0MinMax(I,1) = Tau0FullDomainMin
 Tau0MinMax(I,2) = Tau0FullDomainMax
 ENDDO
 ENDFD
 ENDFD

C jgf47.30: Output of tau0 is now activated by having a 0.1 fraction
C for tau0
 IF (Tau0Dig2.eq.-1) THEN
 OutputTau0 = .True.
 ENDFD

C jjw&sb46.38.sb01 If tau0 is loaded from nodal attributes file and
C Tau0 is -3, time-varing tau0 optimizer will be applied in timestep.F
 IF (HighResTimeVaryingTau0 .or. FullDomainTimeVaryingTau0) THEN
 ALLOCATE(Tau0Temp(NP))
 WRITE(16,8) ! jgf47.30.TODO: This logging should be consolidated.
 ENDFD

 FORMAT(/,5X,'A SPATIALLY TEMPORALLY VARIABLE OPTIMIZED '
 & ,/5X,'WEIGHTING COEFFICIENT (Tau0) WILL BE USED '
 & ,/5X,'IN THE GENERALIZED WAVE CONTINUITY EQUATION.'),/)

C jgf47.33 Enable time averaging of tau0 if requested.
 IF (Tau0Dig1.eq.-6) THEN
 TimeAveragedTau0 = .true.
 ENDFD

C jgf48.42 Enable back loaded time averaging of tau0 if requested.
 IF (Tau0Dig1.eq.-7) THEN
 BackLoadedTimeAveragedTau0 = .true.
 ENDFD

C jgf48.46 Allocate array to hold previous value tau0 for use in
C time averaging, if necessary.
 IF (TimeAveragedTau0 .or. BackLoadedTimeAveragedTau0) THEN
 ALLOCATE(LastTau0(NP))
 DO I=1, NP
 LastTau0(I) = Tau0Base(I)
 ENDDO
 ENDFD
C INIT BOTTOM FRICTION
IF(NOLIBF.EQ.0) THEN
 IFNLBF=0
 IFLINBF=1
 IFHYBF=0
ENDIF
IF(NOLIBF.EQ.1) THEN
 IFNLBF=1
 IFLINBF=0
 IFHYBF=0
ENDIF
IF(NOLIBF.EQ.2) THEN
 IFNLBF=0
 IFLINBF=0
 IFHYBF=1
ENDIF
C
C Initialize bottom friction if it was not loaded from unit 13.
IF(C2DDI) THEN
 (.not.LoadChezy)) THEN
 IF (NoLiBF.eq.0) CF=Tau
 C If a nodal attributes file was read, FRIC was allocated there.
 IF (NWP.eq.0) THEN
 ALLOCATE(FRIC(NP))
 ENDIF
 DO I=1,NP
 FRIC(I)=CF
 END DO
 ENDIF
ENDIF
C
C jgf47.04 If a depth-dependent friction parameterization is used, the
C value from the fort.15 file is used as a floor for the
C minimum equivalent quadratic friction value.
IF (LoadManningsN) THEN
 BFCdLLimit = CF
ENDIF
ENDIF
C
C IF(C3D) THEN
C Initialize 3D bottom roughness if it was not loaded from unit 13.
 IF((.not.LoadZ0b_var)) THEN
 C If a nodal attributes file was read, Z0b_var was allocated there.
 IF (NWP.eq.0) THEN
 ALLOCATE(Z0b_var(NP))
 ALLOCATE(FRIC(NP))
 ENDIF
DO I=1,NP
 Z0b_var(I)=Z0B
 FRIC(I)=CF
END DO
ENDIF

C jgf47.04 If a depth-dependent friction parameterization is used, the value
C from the fort.15 file is used as a floor for the minimum equivalent quartic
C friction value.
 IF (LoadZ0b_var.OR.LoadManningsN) THEN
 BFCdLimit = CF
 ENDIF
ENDIF

C Initialize bridge pilings.
C
 IF (LoadBridgePilings) THEN
 DO I=1, NP
 IF (BridgePilings(I,1).ne.0) THEN ! only for nodes w/piers
 BridgePilings(I,3) = 4.d0 * BridgePilings(I,3) / BridgePilings(I,4)
 ENDIF
 END DO
 ENDIF

C INIT EDDY VISCOSITY & DIFFUSIVITY
 IF (.not.LoadEVM) THEN
 IF (NWP.eq.0) THEN
 ALLOCATE(EVM(NP))
 ENDIF
 DO I=1,NP
 EVM(I)=ESLM
 END DO
 ENDIF
 IF (.not.LoadEVC.and.ESLC.ne.0) THEN
 IF (NWP.eq.0) THEN
 ALLOCATE(EVC(NP))
 ENDIF
 DO I=1,NP
 EVC(I)=ESLC
 END DO
 ENDIF

C RETURN
END SUBROUTINE InitNodalAttr
FUNCTION Tau0NodalValue

jgf46.27 Function to calculate tau0 based on the scheme selection and the depth. This assumes that Scheme is negative.

REAL(SZ) FUNCTION Tau0NodalValue(Scheme, Depth)
IMPLICIT NONE
REAL(SZ) Scheme
REAL(SZ) Depth

IF (Scheme.eq.-2.d0) THEN
 Smootly varying tau0 with depth.
 IF(Depth.GE.200.) Tau0NodalValue=0.005
 IF((Depth.LT.200.).AND.(Depth.GE.1.)) THEN
 Tau0NodalValue=1./Depth
 ENDIF
 IF(Depth.LT.1.) Tau0NodalValue=1.0
ELSE
 Abrupt variation in tau0 with depth.
 IF(Depth.LE.10.) Tau0NodalValue=0.020d0
 IF(Depth.GT.10.) Tau0NodalValue=0.005d0
ENDIF

END FUNCTION Tau0NodalValue

SUBROUTINE CalculateTimeVaryingTau0

jgf47.08 Subroutine to calculate a new tau0 value. Called from GWCE_New in timestep.F each time the GWCE matrix is reset (i.e., upon startup and whenever wetting and/or drying occurs in any subdomain. Based on Casey050711.

SUBROUTINE CalculateTimeVaryingTau0(TK, NNeigh, NeiTab, NP)
IMPLICIT NONE
REAL(SZ), intent(in) :: TK(:) ! bottom friction
INTEGER, intent(in) :: NNeigh(:) ! number of neighbor nodes
INTEGER, intent(in) :: NeiTab(:, :) ! table of neighbor nodes
INTEGER, intent(in) :: NP ! number of nodes in the domain
REAL(SZ) CaseySum ! sum of tau0temp values around a particular node

...
Casey 050711: Made changes for averaged variable Tau0.
cjjw46.39: sb01: "high/low LIMITED" variable G.
!jgf47.30: Distinction between fulldomain and hi res only
IF (FullDomainTimeVaryingTau0) THEN
 DO i = 1, NP
 Tau0Temp(i)=Tau0MinMax(i,1)+1.5*TK(i)
 IF (Tau0Temp(i).lt.Tau0MinMax(i,1)) THEN
 Tau0Temp(i)=Tau0MinMax(i,1)
 ENDIF
 IF(Tau0Temp(i).gt.Tau0MinMax(i,2)) THEN
 Tau0Temp(i)=Tau0MinMax(i,2)
 ENDIF
 ENDDO
ENDIF
IF (HighResTimeVaryingTau0) THEN
 DO i = 1, NP
 IF(Tau0Base(i).lt.0.025) THEN
 Tau0Temp(i)=Tau0Base(i) ! not time varying
 ELSE
 Tau0Temp(i)=Tau0Base(i)+1.5*TK(i) ! time varying
 IF (Tau0Temp(i).gt.0.2) Tau0Temp(i)=0.2 ! ceiling
 ENDIF
 ENDDO
ENDIF
! smoothing
DO I=1, NP
 CaseySum = 0.0
 DO J=1,NNeigh(I)
 CaseySum = CaseySum + Tau0Temp(NeiTab(I,J))
 ENDDO
 TAU0VAR(I) = CaseySum / NNeigh(I)
ENDDO
C
C jgf47.33 Perform time averaging of tau0 if requested.
IF (TimeAveragedTau0) THEN
 DO I=1, NP
 TAU0VAR(I) = 0.5d0*TAU0VAR(I) + 0.5d0*LastTau0(I)
 LastTau0(I) = TAU0VAR(I)
 ENDDO
ENDIF
C
C jgf48.42 Perform backloaded time averaging of tau0 if requested.
IF (BackLoadedTimeAveragedTau0) THEN
 DO I=1, NP
 TAU0VAR(I) = AlphaTau0*TAU0VAR(I)
 & + (1.d0-Alp&haTau0)*LastTau0(I)
 LastTau0(I) = TAU0VAR(I)
S U B R O U T I N E

A P P L Y 2 D B O T T O M F R I C T I O N

jgf46.00 Subroutine to apply 2D bottom friction from turbulent viscous effects as well as bridge pilings. This is used in the time stepping loop.

sb46.28sb02 Lower limit of Cd was added as an argument.
jgf47.04 Argument for lower limit of Cd was removed; this value is now specified by the user in fort.15.

SUBROUTINE Apply2DBottomFriction(NodeNumber, UU1, VV1, DP, ETA2, G, IFNLFA, NP, TK)
USE SIZES
IMPLICIT NONE
INTEGER, intent(in) :: NodeNumber ! index of node under consideration
INTEGER, intent(in) :: NP ! number of nodes in grid
REAL(SZ), intent(in), dimension(NP) :: UU1 ! x-dir velocities
REAL(SZ), intent(in), dimension(NP) :: VV1 ! y-dir velocities
REAL(SZ), intent(in), dimension(NP) :: DP ! bathymetric depths
REAL(SZ), intent(in), dimension(NP) :: ETA2 ! water surf. elevations
REAL(SZ), intent(in) :: G ! gravitational constant
INTEGER, intent(in) :: IFNLFA ! nonlin. finite amp. flag
REAL(SZ), intent(inout), dimension(NP) :: TK! depth avg. fric.

REAL(SZ) UV1 ! velocity magnitude (speed)
REAL(SZ) H1 ! total depth
REAL(SZ) Fr
REAL(SZ) FricBP
REAL(SZ) BK ! BK(1) is pier shape factor
REAL(SZ) BALPHA! BALPHA(2) is constriction fraction
REAL(SZ) BDELX ! BDELX(3) is effective delx
REAL(SZ) n01 ! ManningsN factor for a particular node, for particular direction
REAL(SZ) angle ! Flow direction
INTEGER iflowdir ! code for wind direction

compute direction that the flow is coming from
if((UU1(I).eq.0).and.(VV1(I).eq.0))then
 angle=0.d0
else
 angle=atan2(VV1(I),UU1(I))
endif
angle=360.*angle/(2*3.141592654d0)
iflowdir=0
if((angle.gt.-15.).and.(angle.le.15)) iflowdir=1
if((angle.gt.15.).and.(angle.le.45)) iflowdir=2
if((angle.gt.45.).and.(angle.le.75)) iflowdir=3
if((angle.gt.75.).and.(angle.le.105)) iflowdir=4
if((angle.gt.105.).and.(angle.le.135)) iflowdir=5
if((angle.gt.135.).and.(angle.le.165)) iflowdir=6
if((angle.gt.165.).and.(angle.le.180)) iflowdir=7
if((angle.gt.-45.).and.(angle.le.-15)) iflowdir=12
if((angle.gt.-75.).and.(angle.le.-45)) iflowdir=11
if((angle.gt.-105.).and.(angle.le.-75)) iflowdir=10
if((angle.gt.-135.).and.(angle.le.-105)) iflowdir=9
if((angle.gt.-165.).and.(angle.le.-135)) iflowdir=8
if((angle.ge.-180.).and.(angle.le.-165)) iflowdir=7

define roughness from values
n01=z0land(NodeNumber,iflowdir)

Step 0. Convert Manning's N to Cd, if necessary.
IF (LoadManningsN) THEN
 DO I=1, NP
 FRIC(I)=g*n01*ManningsN(I)**2.d0
 /((DP(I)+IFNLFA*ETA2(I))**(1.d0/3.d0)) ! sb46.28sb02
 IF(FRIC(I).LT.BFCdLLimit) THEN
 FRIC(I) = BFCdLLimit
 ENDIF
 ENDDO
ENDIF

... Convert Chezy to Cd, if necessary.
IF (LoadChezy) THEN
 DO I=1,NP
 FRIC(I)=G/(Chezy(I)**2)
 END DO
ENDIF

Step 1. Apply friction arising from turbulent viscous interaction
with the sea floor.
DO I=1, NP
 UVI=SQRT(UU1(I)*UU1(I)+VV1(I)*VV1(I))
 H1=DP(I)+IFNLFA*ETA2(I)
 TK(I)= FRIC(I)* (IFLINBF + ! linear
 & (UV1/H1) * (IFNLBF ! nonlinear
 & + IFHYBF*(n01**2)*(1+(HBREAK/H1)**FTHETA)**(FGAMMA/FTHETA))) ! hybrid
END DO

C Step 2. Apply friction arising from flow interaction with bridge pilings, if required.
IF (LoadBridgePilings) THEN
 DO I=1, NP
 UVI=SQRT(UU1(I)*UU1(I)+VV1(I)*VV1(I))
 H1=DP(I)+IFNLFA*ETA2(I)
 Fr=UV1*UV1/(G*H1)
 BK = BridgePilings(I,1)
 BALPHA = BridgePilings(I,2)
 BDELX = BridgePilings(I,3)
 FricBP=(H1/BDELX)*BK*(BK+5.d0*Fr*Fr-0.6d0)
 & *(BALPHA+15.d0*BALPHA**4)
 TK(I)=TK(I)+FricBP*UV1/H1
 END DO
ENDIF

RETURN

END SUBROUTINE Apply2DBottomFriction

--
S U B R O U T I N E
C A P P L Y 3 D B O T T O M F R I C T I O N
C--
C jgf46.00 Subroutine to apply 3D bottom friction from turbulent viscous effects as well as bridge pilings. This is used in the time stepping loop.
C--
SUBROUTINE Apply3DBottomFriction(Q, SIGMA, DP, ETA2, G, IFNLFA, NP, TK, NFEN)
USE SIZES
USE GLOBAL_3DVS, ONLY : Z0B
IMPLICIT NONE
INTEGER, intent(in) :: NP, NFEN ! number of nodes in grid
Horizontal and Vertical
COMPLEX(SZ), intent(in), dimension(NP,NFEN) :: Q ! x-dir velocities
REAL(SZ), intent(in), dimension(NFEN) :: SIGMA ! x-dir velocities
REAL(SZ), intent(in), dimension(NP) :: DP ! bathymetric depths
REAL(SZ), intent(in), dimension(NP) :: ETA2 ! water surf. elevations
REAL(SZ), intent(in) :: G ! gravitational constant
INTEGER, intent(in) :: IFNLFA ! nonlin. finite amp. flag
REAL(SZ), intent(inout), dimension(NP) :: TK! depth avg. fric.

C
INTEGER NH
REAL(SZ) Z0B1 ! velocity magnitude (speed)
REAL(SZ) UV1 ! velocity magnitude (speed)
REAL(SZ) H1 ! total depth
REAL(SZ) Fr
REAL(SZ) FricBP
REAL(SZ) BK ! BK(1) is pier shape factor
REAL(SZ) BALPHA! BALPHA(2) is constriction fraction
REAL(SZ) BDELX ! BDELX(3) is effective delx

C Determine the bottom roughness length either from fort.15, from Manning's n
C or as read in from nodal attributes
DO NH=1,NP
 H1=DP(NH)+IFNLFA*ETA2(NH)
 IF (LoadZ0B_var) THEN
 Z0B1 = Z0B_var(NH)
 ELSEIF (LoadManningsN) THEN
 Z0B1 = (H1)* exp(-(1.0D0+
 & ((0.41D0*(H1)**(1.0D0/6.0D0))/
 & (ManningsN(NH)*sqrt(g))))
 ELSE
 Z0B1 = Z0B
 ENDIF
FRIC(NH)= (1.D0 / ((1.D0/0.41D0) *
 & LOG((ABS(((SIGMA(2)-SIGMA(1))/2.d0) *(H1)) + Z0B1)/Z0B1)
 &))**2.D0
TK(NH)= FRIC(NH) * ABS(Q(NH,1))

IF (LoadBridgePilings) THEN
 Fr=ABS(Q(NH,1))*ABS(Q(NH,1))/(G*H1)
 BK = BridgePilings(I,1)
 BALPHA = BridgePilings(I,2)
 BDELX = BridgePilings(I,3)
 FricBP=(H1/BDELX)*BK*(BK+5.d0*Fr*Fr-0.6d0)
 & *(BALPHA+15.d0*BALPHA**4)
 TK(I)=TK(I)+FricBP*ABS(Q(NH,1))/H1
ENDIF
ENDDO
RETURN
C--
C SUBROUTINE
C APPLY DIRECTIONAL WIND REDUCTION
C--
C
C jgf46.00 Subroutine to calculate the land wind reduction factor
C based on a table of directional wind drag values. Originally
C written into the hstart.F file by jjw in jjw-42.06j. This is used
C in hstart.F and timestep.F.
C
C jgf49.1001 Extracted the application of the canopy coefficient and
C placed in the ApplyCanopyCoefficient subroutine.
C--
SUBROUTINE ApplyDirectionalWindReduction(NodeNumber, WindDragCo,
 & WindMag, BathymetricDepth, Elevation, CutOffDepth, G,
 & WindX, WindY)
USE SIZES
IMPLICIT NONE
INTEGER, intent(in) :: NodeNumber ! index of node under consideration
REAL(SZ), intent(in) :: WindDragCo ! wind drag coefficient
REAL(SZ), intent(in) :: WindMag ! wind magnitude
REAL(SZ), intent(in) :: BathymetricDepth ! a.k.a. dp(i),depth below
geoid
REAL(SZ), intent(in) :: Elevation ! a.k.a. eta2(i)
REAL(SZ), intent(in) :: CutOffDepth! a.k.a. h0, user-spec. min. depth
REAL(SZ), intent(in) :: G ! gravitational constant
REAL(SZ), intent(inout) :: WindX ! x-dir component of wind velocity
REAL(SZ), intent(inout) :: WindY ! x-dir component of wind velocity
REAL(SZ) z0m ! marine roughness coefficient based on Garratt's
formul
REAL(SZ) angle ! direction wind is coming from
INTEGER idir ! code for wind direction
REAL(SZ) z0l ! drag for a particular node, for particular direction
REAL(SZ) TotalDepth ! bathymetric depth + sea surface elevation
REAL(SZ) fr ! land wind reduction factor
C
C compute marine roughness coefficient based on Garratt's formula
C z0m=(0.018d0/G)*WindDragCo*WindMag**2.d0
C
C compute direction that the wind is coming from
if((WindX.eq.0).and.(WindY.eq.0)) then
 angle=0.d0
else
 angle=atan2(WindY,WindX)
endif
angle=360.*angle/(2*3.141592654d0)
if((angle.gt.-15.).and.(angle.le.15)) idir=1
if((angle.gt.15.).and.(angle.le.45)) idir=2
if((angle.gt.45.).and.(angle.le.75)) idir=3
if((angle.gt.75.).and.(angle.le.105)) idir=4
if((angle.gt.105.).and.(angle.le.135)) idir=5
if((angle.gt.135.).and.(angle.le.165)) idir=6
if((angle.gt.165.).and.(angle.le.180)) idir=7
if((angle.gt.-45.).and.(angle.le.-15)) idir=12
if((angle.gt.-75.).and.(angle.le.-45)) idir=11
if((angle.gt.-105.).and.(angle.le.-75)) idir=10
if((angle.gt.-135.).and.(angle.le.-105)) idir=9
if((angle.gt.-165.).and.(angle.le.-135)) idir=8
if((angle.ge.-180.).and.(angle.le.-165)) idir=7
C
C define land roughness from usace values
z0l=z0land(NodeNumber,idir)
C
C reset z0l depending on situation
if(z0l.le.0.006) then
 c coe set their value to a marine value -> reset to correct marine value
 z0l=z0m
else
 c coe set their value to a land value -> proceed with checking this value
 TotalDepth = BathymetricDepth + Elevation
 if((TotalDepth.gt.2*CutOffDepth).and.
 (BathymetricDepth.lt.20)) then
 c compute adjusted z0l to account for overland flooding - do this only
 c in the case where the water column is greater than twice h0 and
 c you are not in a river (I assume that rivers are deeper than 20m
 c and have z0l>0.006)
 z0l=z0l-TotalDepth/30. ! correction for overland flooding
 endif
endif
C
C compute land wind reduction factor
if(z0l.gt.0.0001) then
 fr=(z0m/z0l)**0.0706d0
else
 fr=1.000d0
endif
if(fr.gt.1.0000d0) fr=1.0000d0
adjust time interpolated wind field
WindX = fr*WindX
WindY = fr*WindY

RETURN
--
END SUBROUTINE ApplyDirectionalWindReduction

--
SUBROUTINE ApplyCanopyCoefficient(NodeNumber, WindX, WindY)
IMPLICIT NONE
INTEGER, intent(in) :: NodeNumber ! index of node under consideration
REAL(SZ), intent(inout) :: WindX ! x-dir component of wind velocity
REAL(SZ), intent(inout) :: WindY ! x-dir component of wind velocity

WindX = vcanopy(NodeNumber)*WindX
WindY = vcanopy(NodeNumber)*WindY

RETURN
--
END SUBROUTINE ApplyCanopyCoefficient

--
SUBROUTINE ReadLegacyStartDryFile(NP, NScreen, ScreenUnit, MyProc, NAbOut)

jgf46.00 Subroutine to load up the legacy startdry file (unit 12). This is just a cut-and-paste from the section of the
READ_INPUT subroutine that did the same thing. This subroutine is
never called. It is vestigial and listed here purely as reference
material.

SUBROUTINE ReadLegacyStartDryFile(NP, NScreen, ScreenUnit, &
 MyProc, NAbOut)
IMPLICIT NONE

INTEGER, intent(in) :: NP ! number of nodes in grid file
INTEGER, intent(in) :: NScreen ! nonzero for debug info to screen
INTEGER, intent(in) :: ScreenUnit ! i/o for debug info to screen
INTEGER, intent(in) :: MyProc ! in parallel, only MyProc=0 i/o to screen

INTEGER, intent(in) :: NAbOut ! 1 to abbrev. output to unit 16

INTEGER JKI ! node number from file
INTEGER NE2 ! number of elements, according to fort.12 file
INTEGER NP2 ! number of nodes, according to fort.12 file

CHARACTER(len=80) AGRID2 ! users comment/description line
REAL(SZ) DUM1, DUM2 ! data that we want to skip

OPEN(12,FILE=TRIM(INPUTDIR),//'//'//'fort.12')

C... READ STARTDRY INFORMATION FROM UNIT 12
READ(12,'(A80)') AGRID2
WRITE(16,2038) AGRID2

2038 FORMAT(5X,'STARTDRY FILE IDENTIFICATION : ',A80,/) READ(12,*) NE2,NP2

C... CHECK THAT NE2 AND NP2 MATCH WITH GRID FILE
IF((NE2.NE.NE).OR.(NP2.NE.NP)) THEN
 IF(NP2.NE.NP) THEN
 IF(NSCREEN.NE.0.AND.MYPROC.EQ.0) WRITE(ScreenUnit,9900)
 WRITE(16,9900)
 ENDIF
ENDIF

C... READ IN STARTDRY CODE VALUES
DO I=1,NP
 READ(12,*) JKI,DUM1,DUM2,STARTDRY(JKI)
 IF(JKI.NE.I) THEN
 IF(NSCREEN.NE.0.AND.MYPROC.EQ.0) WRITE(ScreenUnit,99805)
 WRITE(16,99805)
 ENDIF
END DO

C
SUBROUTINE ReadLegacyBottomFrictionFile(NP, NScreen, ScreenUnit, & MyProc, NAbOut)
IMPLICIT NONE
INTEGER, intent(in) :: NP ! number of nodes in grid file
INTEGER, intent(in) :: NScreen ! nonzero for debug info to screen
INTEGER, intent(in) :: ScreenUnit ! i/o for debug info to screen
INTEGER, intent(in) :: MyProc ! in parallel, only MyProc=0 i/o to screen
INTEGER, intent(in) :: NAbOut ! 1 to abbrev. output to unit 16
CHARACTER(len=80) AFRIC ! user's comment/description line
INTEGER NHG ! node number from file

OPEN(21,FILE=TRIM(INPUTDIR)//'/'//'fort.21')
READ(21,'(A80)') AFRIC
DO I=1,NP
 READ(21,*) NHG,FRIC(NHG)
 IF(NHG.NE.I) THEN
 IF(NSCREEN.NE.0.AND.MYPROC.EQ.0) WRITE(ScreenUnit,99803)
 WRITE(16,99803)
 99803 FORMAT(////,1X,'!!!!!!!!!! WARNING - FATAL ',&
 'INPUT ERROR !!!!!!!!!!','//,1X, &
 'YOUR NODAL FRICTION NUMBERING IS NOT SEQUENTIAL ',&
 '/,1X,'CHECK YOUR UNIT 21 INPUT FILE CAREFULLY','//,1X, &
 '!!!!!! EXECUTION WILL NOW BE TERMINATED !!!!!!',//)
 STOP
 ENDIF
ENDDO
END DO
WRITE(16,3601) AFRIC
3601 FORMAT(//,5X,'FRICION FILE IDENTIFICATN : ',A80,/)
IF(NABOUT.NE.1) THEN
 WRITE(16,2080)
2080 FORMAT(/,10X,'NODE',5X,'BOTTOM FRICION FRIC',5X,/)
 DO I=1,NP
 WRITE(16,2087) I,FRIC(I)
2087 FORMAT(7X,I6,6X,E17.10)
 END DO
ELSE
 WRITE(16,3504)
3504 FORMAT(/,5X,'NODAL BOTTOM FRICION VALUES ARE AVAILABLE',
& /,6X,' IN UNIT 21 INPUT FILE')
ENDIF

CRETURN
C---
END SUBROUTINE ReadLegacyBottomFrictionFile
C---
C---

C---
END MODULE NodalAttributes
C---
C---
VITA

Personal Information

Name: Henok Kefelegn Demissie

Education

B.Sc., Civil Engineering, 2004, Addis Ababa University, Addis Ababa, Ethiopia
M.Sc., Civil/Structural Engineering, 2007, Addis Ababa University, Addis Ababa, Ethiopia
M.Sc., Civil/Coastal Engineering, 2015, University of North Florida, Jacksonville, Florida

Honors and Awards

- Delores A. Auzenne Fellowship, State-funded Scholarship 2014-2015
- Taylor Engineering Endowed Professorship Scholarship 2013-2015
- Super Volunteer Award, Jacksonville African Community Organization (JACO) 2014

Association Memberships

- National Society of Leadership and Success and Coasts
- Oceans, Ports and Rivers Institute (COPRI)
- American Society of Civil Engineers

Professional Experience

University of North Florida Jacksonville, Florida

- Graduate Research Assistant September 2013- present
Inspection Depot Jacksonville, Florida

- Quality Assurance Representative March 2012- August 2013
 - Audited Uniform Mitigation Verification Inspection reports, managed disputes
 - Developed Training materials (www.ciaconnect.com/education/course-categories)

Alfred Talke Logistic Service Qatar Doha, Qatar

- Project Engineer September 2010-April 2011
 - Coordinated all technical activities on assigned projects
 - Monitored work for compliance to applicable codes, accepted engineering practices and standards

Iberdrola Engineering and Construction Qatar Doha, Qatar

- Civil Supervisor April 2007-June 2010
 - Inspected entire integrated underground systems scope, concrete foundations
 - Supervised Inspectors and ensured they are fully familiarized with project requirements
 - Ensured design requirements are met in compliance with drawings, specifications and applicable codes
 - Monitored and verified all testing within the discipline
 - Worked in close cooperation with the Completions Group, closed punch list items

Professional Presentation

- This thesis “Bottom Friction Assessment for Hydrodynamic Currents in the Lower St. Johns River ” was presented to professional audience, at the 2015 ADCIRC users group meeting, National Weather Service Climate Prediction Center, College Park, Maryland, 03/31/2015