Year

2014

Season

Spring

Paper Type

Master's Thesis

College

College of Arts and Sciences

Degree Name

Master of Science in Biology (MS)

Department

Biology

NACO controlled Corporate Body

University of North Florida. Department of Biology

First Advisor

Dr. Gregory Ahearn

Second Advisor

Dr. Eric Johnson

Third Advisor

Dr. Julie Richmond

Department Chair

Dr. Daniel Moon

College Dean

Dr. Barbara Hetrick

Abstract

The mechanisms of transepithelial absorption of dietary sucrose in the American lobster, Homarus americanus, were investigated in this study to determine whether sugars can be transported across an animal gut intact or as monosaccharides following hydrolysis. Lobster intestine was isolated and mounted in a perfusion chamber to characterize the mechanisms of mucosal to serosal (MS) 14C -sucrose transport across the intestine MS fluxes were measured by adding varying concentrations of 14C-sucrose to the perfusate which resulted in a hyperbolic curve following Michaelis-Menten kinetics. The kinetic constants of the proposed sucrose transporter were KM = 15.84 ± 1.81 µM and Jmax = 2.32 ± 0.07 ρmol cm-2min-1. The accumulation of 14C-sucrose in the bath in the presence of inhibitors, phloretin, phloridzin, and trehalose was observed. Inhibitory analysis showed that phloridzin, an inhibitor of Na+-dependent mucosal glucose transport, decreased MS 14C-sucrose transport suggesting that MS 14C-sucrose radioactive flux may partially involve an SGLT-1-like transporter. Phloretin, a known inhibitor of Na+-independent basolateral glucose transport, decreased MS 14C-sucrose transport, suggesting that some 14C-sucrose radioactivity may be transported to the blood by a GLUT 2-like carrier. Decreased MS 14C-sucrose transport was also observed in the presence of trehalose, a disaccharide containing D-glucose moieties. Thin-layer chromatography (TLC) was used to identify the chemical nature of radioactively labeled sugars in the bath following transport. TLC revealed 14C-sucrose was transported across the intestine largely as an intact molecule with no 14C-glucose or 14C-fructose appearing in the serosal bath or luminal perfusate. Bath samples evaporated to dryness and resuspended disclosed only 15% volatile metabolites. Results of this study strongly suggest that disaccharide sugars can be transported intact across animal intestine and provide support for the occurrence of a disaccharide membrane transporter that has not previously been functionally characterized.

Share

COinS