Paper Type

Master's Thesis


College of Computing, Engineering & Construction

Degree Name

Master of Science in Computer and Information Sciences (MS)



NACO controlled Corporate Body

University of North Florida. School of Computing

First Advisor

Dr. Ching-Hua Chuan

Second Advisor

Dr. Kenneth Martin

Rights Statement

Third Advisor

Dr. Sherif Elfayoumy

Department Chair

Dr. Sherif Elfayoumy

College Dean

Dr. Mark A. Tumeo


Gesture retrieval can be defined as the process of retrieving the correct meaning of the hand movement from a pre-assembled gesture dataset. The purpose of the research discussed here is to design and implement a gesture interface system that facilitates retrieval for an American Sign Language gesture set using a mobile device. The principal challenge discussed here will be the normalization of 2D gestures generated from the mobile device interface and the 3D gestures captured from video samples into a common data structure that can be utilized by deep learning networks. This thesis covers convolutional neural networks and auto encoders which are used to transform 2D gestures into the correct form, before being classified by a convolutional neural network. The architecture and implementation of the front-end and back-end systems and each of their respective responsibilities are discussed. Lastly, this thesis covers the results of the experiment and breakdown the final classification accuracy of 83% and how this work could be further improved by using depth based videos for the 3D data.