Maturation and sex differences in neuromuscular characteristics of youth athletes

Document Type

Article

Publication Date

9-8-2015

Abstract

Understanding how neuromuscular factors that are associated with lower extremity injury risk, such as landing kinematics, muscle strength, and flexibility, change as children mature may enhance age-specific recommendations for injury prevention programs. The purpose of this study was to compare these factors in prepubertal, pubertal, and postpubertal male and female athletes. Subjects were classified on maturation stage (prepubertal: 16 males, 15 females, age: 9 ± 1 years; pubertal: 13 males, 12 females, age: 12 ± 3 years; postpubertal: 30 males, 27 females, age: 16 ± 2 years). Researchers measured lower extremity isometric muscle strength and flexibility and evaluated kinematics and vertical ground reaction forces (VGRFs) during a jump-landing task. Three-dimensional kinematics at initial contact (IC), joint displacements, and peak VGRF were calculated. Separate multivariate analyses of variance were performed to evaluate sex and maturation differences (α ≤ 0.05). Postpubertal females landed with less knee flexion at IC (p 0.006) and demonstrated lower knee extension strength (p 0.01) than prepubertal and pubertal females. Postpubertal males landed with less hip adduction displacement (postpubertal males 12.53 ± 6.15°, prepubertal males 18.84 ± 7.47°; p 0.04) and less peak VGRF (postpubertal males 1.53 ± 0.27% body weight [BW], prepubertal males 1.99 ± 0.32% BW; p 0.03) compared with prepubertal males. These findings suggest encouraging sagittal plane absorption and decreasing frontal plane motion at the hip, whereas maintaining quadriceps strength may be important for reducing injury risk in postpubertal athletes.

Publication Title

Journal of Strength and Conditioning Research

Volume

29

Issue

9

First Page

2465

Last Page

2473

Digital Object Identifier (DOI)

10.1519/JSC.0000000000001052

PubMed ID

26313573

ISSN

10648011

E-ISSN

15334295

Share

COinS