Paper Type

Master's Thesis


College of Computing, Engineering & Construction

Degree Name

Master of Science in Civil Engineering (MSCE)



NACO controlled Corporate Body

University of North Florida. School of Engineering

First Advisor

Dr. Thobias Sando

Second Advisor

Dr. Murat Tiryakioglu

Third Advisor

Dr. Cigdem Akan

Department Chair

Dr. Murat Tiryakioglu

College Dean

Dr. Mark A. Tumeo


This study presents an analysis of detour operations as a concept of congestion management. Since a large portion of traffic delay emanates from traffic incidents, the goal of the study was to alleviate incident-induced impacts on freeways by diverting congested traffic on to adjacent roadway facilities. To balance the demand between freeway and arterial systems, optimization was required through Integrated Corridor Management (ICM). This thesis examines the justification and optimization of dynamic traffic routing strategies.

Previous studies have justified detour operations based solely on traffic simulation results. This study quantifies the impacts from freeway incidents on a parallel arterial roadway using a data-driven signal processing technique, with operating speeds adopted as a performance measure. Results show that rerouting traffic to an adjacent arterial road, due to a freeway incident, can mitigate the mobility of the corridor with a probability of up to 88% depending on the type of incident and occurrence time. Results also indicate that diverting traffic during off-peak hours, especially for minor incidents, provides minimal mobility benefits.

A secondary focus of this study explored the optimum dynamic traffic diversion, to an adjacent arterial roadway, from incident-induced freeway congestion to better utilize the freeway’s available corridor capacity. VISSIM, a microsimulation tool, was employed to simulate a freeway incident and measure the performance of detour operations. A 23 full factorial central composite design was used to establish a relationship between the performance of the detour operation and three control factors: incident duration, diversion rate, and demand level. The resulting regression equation predicts the corridor delay with over 83% accuracy. The findings of this study can potentially serve as a building block in the understanding and development of future ICM systems and incident management plans.

Included in

Engineering Commons