Paper Type

Master's Thesis


College of Computing, Engineering & Construction

Degree Name

Master of Science in Civil Engineering (MSCE)


Accounting & Finance

NACO controlled Corporate Body

University of North Florida. School of Engineering

First Advisor

Dr. Thobias Sando

Second Advisor

Dr. Cigdem Akan

Third Advisor

Dr. John P. Nuszkowski

Department Chair

Dr. Osama Jadaan

College Dean

Dr. William F. Klostermeyer



Although researchers have studied the effects of platooning, most of the work done so far has focused on fuel consumption. There are a few studies that have targeted the impact of platooning on the highway operations and safety. This thesis focuses on the impact of heavy-duty vehicles (HDVs) platooning on highway characteristics. Specifically, this study aims at evaluating the effects of platooning of HDVs on capacity, safety, and CO2 emissions.

This study is based on a hypothetical model that was created using the VISSIM software. VISSIM is a powerful simulation software designed to mimic the field traffic flow conditions. For model validity, the model outputs were compared with recommended values from guidelines such as the Highway Capacity Manual (HCM) (Transportation Research Board, 2016).

VISSIM was used to obtain the simulation results regarding capacity. However, in addition to VISSIM, two other software packages were used to obtain outputs that cannot be assessed in VISSIM. MOVES and SSAM are two simulation software packages that were used for emission and safety metrics, respectively. Both software packages depended on input from VISSIM for analysis.

It was found that with the presence of HDVs in the model, the capacity, the emission of CO2, and the safety of the roadway would improve positively. A capacity of 4200 PCE/h/ln could be achieved when there are enough HDVs in platoons. Furthermore, more than 3% of the traffic flow emission of CO2 reduction is possible when 100% of the HDVs used in the model are in platoons. In addition to that, a reduction of more than 75% of the total number of conflicts might be obtained.

Furthermore, with the analysis of the full factorial method and the Design of Experiment (DOE) conducted by using Excel and Minitab respectively, it was possible to investigate the impact of the platoons’ factors on the highway parameters. Most of these factors affect the parameters significantly. However, the change in the desired speed was found to insignificantly affect the highway parameters, due to the high penetration rate.

Keywords: VISSIM, MOVES, SSAM, COM-interface, HDVs, Platooning, Number of Conflicts