Faculty Sponsor
Dr. Jason T. Haraldsen
Faculty Sponsor College
College of Arts and Sciences
Faculty Sponsor Department
Physics
Location
SOARS Virtual Conference
Presentation Website
https://unfsoars.domains.unf.edu/understanding-the-spin-glass-state-through-the-magnetic-properties-of-mn-doped-znte/
Keywords
SOARS (Conference) (2020 : University of North Florida) -- Posters; University of North Florida. Office of Undergraduate Research; University of North Florida. Graduate School; College students – Research -- Florida – Jacksonville -- Posters; University of North Florida – Undergraduates -- Research -- Posters; University of North Florida. Department of Physics -- Research -- Posters; Biology; Physics; and Chemistry -- Research – Posters
Abstract
Magnetic measurements on the spin-glass behavior in the bulk II-VI diluted magnetic semiconductor (DMS) ZnMnTe were made on two crystals of concentrations x = 0.43 and 0.55 taken from the same boule. Magnetization and density functional theory studies have shown paramagnetic behavior in both samples between 30 and 400 K. Below 30 K, there is a prominent peak at Tc = 15 and 23.6 K for concentrations x = 0.43 and 0.55, respectively. The splitting of the field cooled (FC) and zero field cooled (ZFC) data below this peak is indicative of a transition to a spin-glass state at low temperature for semiconductors. Therefore, through the p− and d− orbits hybridization a magnetic exchange produces the spin-glass behavior seen in the DMS ZnMnTe.
Included in
Understanding the spin-glass state through the magnetic properties of Mn-doped ZnTe
SOARS Virtual Conference
Magnetic measurements on the spin-glass behavior in the bulk II-VI diluted magnetic semiconductor (DMS) ZnMnTe were made on two crystals of concentrations x = 0.43 and 0.55 taken from the same boule. Magnetization and density functional theory studies have shown paramagnetic behavior in both samples between 30 and 400 K. Below 30 K, there is a prominent peak at Tc = 15 and 23.6 K for concentrations x = 0.43 and 0.55, respectively. The splitting of the field cooled (FC) and zero field cooled (ZFC) data below this peak is indicative of a transition to a spin-glass state at low temperature for semiconductors. Therefore, through the p− and d− orbits hybridization a magnetic exchange produces the spin-glass behavior seen in the DMS ZnMnTe.
https://digitalcommons.unf.edu/soars/2020/spring_2020/11