Faculty Sponsor
Dr. Thomas M. Pekarek
Faculty Sponsor College
College of Arts and Sciences
Faculty Sponsor Department
Physics
Location
SOARS Virtual Conference
Presentation Website
https://unfsoars.domains.unf.edu/magnetic-properties-of-mbe-grown-la1-3y1-3sr1-3mno3-thin-films-and-superlattices/
Keywords
SOARS (Conference) (2020 : University of North Florida) -- Posters; University of North Florida. Office of Undergraduate Research; University of North Florida. Graduate School; College students – Research -- Florida – Jacksonville -- Posters; University of North Florida – Undergraduates -- Research -- Posters; University of North Florida. Department of Physics -- Research -- Posters; Biology; Physics; and Chemistry -- Research – Posters
Abstract
We have investigated the magnetic properties of thin films related to the standard CMR system La2/3Sr1/3MnO3 where Y substituted for 50% of the La atoms. These La1/3Y1/3Sr1/3MnO3 films were grown as a random alloy where La, Y, and Sr atoms randomly occupied the A-site or as a superlattice where each unit-cell-thick layer stacked along the crystallographic (001) direction contained only one of the atoms La, Y, and Sr occupying the A-site. One of the key magnetic features of La2/3Sr1/3MnO3 is a prominent ferromagnetic transition near 350 K. We find the substitution of La with Y suppresses this ferromagnetic transition in both the random alloy and the superlattice samples. In the superlattice sample we find a magnetic transition that is coincident with a metal-to-insulator transition we observe in electronic transport. In the random alloy sample, we see a similar magnetic transition but at lower temperatures where we find the sample is too insulating to measure electronic transport. We will compare our measurements on these La1/3Y1/3Sr1/3MnO3 samples with CMR thin films of La2/3Sr1/3MnO3.
Included in
Magnetic Properties of MBE Grown La1/3Y1/3Sr1/3MnO3 Thin Films and Superlattices
SOARS Virtual Conference
We have investigated the magnetic properties of thin films related to the standard CMR system La2/3Sr1/3MnO3 where Y substituted for 50% of the La atoms. These La1/3Y1/3Sr1/3MnO3 films were grown as a random alloy where La, Y, and Sr atoms randomly occupied the A-site or as a superlattice where each unit-cell-thick layer stacked along the crystallographic (001) direction contained only one of the atoms La, Y, and Sr occupying the A-site. One of the key magnetic features of La2/3Sr1/3MnO3 is a prominent ferromagnetic transition near 350 K. We find the substitution of La with Y suppresses this ferromagnetic transition in both the random alloy and the superlattice samples. In the superlattice sample we find a magnetic transition that is coincident with a metal-to-insulator transition we observe in electronic transport. In the random alloy sample, we see a similar magnetic transition but at lower temperatures where we find the sample is too insulating to measure electronic transport. We will compare our measurements on these La1/3Y1/3Sr1/3MnO3 samples with CMR thin films of La2/3Sr1/3MnO3.
https://digitalcommons.unf.edu/soars/2020/spring_2020/133