Faculty Sponsor

Dr. Thomas M. Pekarek

Faculty Sponsor College

College of Arts and Sciences

Faculty Sponsor Department

Physics

Location

SOARS Virtual Conference

Presentation Website

https://unfsoars.domains.unf.edu/magnetic-properties-of-mbe-grown-la1-3y1-3sr1-3mno3-thin-films-and-superlattices/

Keywords

SOARS (Conference) (2020 : University of North Florida) -- Posters; University of North Florida. Office of Undergraduate Research; University of North Florida. Graduate School; College students – Research -- Florida – Jacksonville -- Posters; University of North Florida – Undergraduates -- Research -- Posters; University of North Florida. Department of Physics -- Research -- Posters; Biology; Physics; and Chemistry -- Research – Posters

Abstract

We have investigated the magnetic properties of thin films related to the standard CMR system La2/3Sr1/3MnO3 where Y substituted for 50% of the La atoms. These La1/3Y1/3Sr1/3MnO3 films were grown as a random alloy where La, Y, and Sr atoms randomly occupied the A-site or as a superlattice where each unit-cell-thick layer stacked along the crystallographic (001) direction contained only one of the atoms La, Y, and Sr occupying the A-site. One of the key magnetic features of La2/3Sr1/3MnO3 is a prominent ferromagnetic transition near 350 K. We find the substitution of La with Y suppresses this ferromagnetic transition in both the random alloy and the superlattice samples. In the superlattice sample we find a magnetic transition that is coincident with a metal-to-insulator transition we observe in electronic transport. In the random alloy sample, we see a similar magnetic transition but at lower temperatures where we find the sample is too insulating to measure electronic transport. We will compare our measurements on these La1/3Y1/3Sr1/3MnO3 samples with CMR thin films of La2/3Sr1/3MnO3.

Included in

Physics Commons

Share

COinS
 
Apr 8th, 12:00 AM Apr 8th, 12:00 AM

Magnetic Properties of MBE Grown La1/3Y1/3Sr1/3MnO3 Thin Films and Superlattices

SOARS Virtual Conference

We have investigated the magnetic properties of thin films related to the standard CMR system La2/3Sr1/3MnO3 where Y substituted for 50% of the La atoms. These La1/3Y1/3Sr1/3MnO3 films were grown as a random alloy where La, Y, and Sr atoms randomly occupied the A-site or as a superlattice where each unit-cell-thick layer stacked along the crystallographic (001) direction contained only one of the atoms La, Y, and Sr occupying the A-site. One of the key magnetic features of La2/3Sr1/3MnO3 is a prominent ferromagnetic transition near 350 K. We find the substitution of La with Y suppresses this ferromagnetic transition in both the random alloy and the superlattice samples. In the superlattice sample we find a magnetic transition that is coincident with a metal-to-insulator transition we observe in electronic transport. In the random alloy sample, we see a similar magnetic transition but at lower temperatures where we find the sample is too insulating to measure electronic transport. We will compare our measurements on these La1/3Y1/3Sr1/3MnO3 samples with CMR thin films of La2/3Sr1/3MnO3.

https://digitalcommons.unf.edu/soars/2020/spring_2020/133

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.