Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes

Document Type


Publication Date



Background: Identifying human protein-phenotype relationships has attracted researchers in bioinformatics and biomedical natural language processing due to its importance in uncovering rare and complex diseases. Since experimental validation of protein-phenotype associations is prohibitive, automated tools capable of accurately extracting these associations from the biomedical text are in high demand. However, while the manual annotation of protein-phenotype co-mentions required for training such models is highly resource-consuming, extracting millions of unlabeled co-mentions is straightforward. Results: In this study, we propose a novel deep semi-supervised ensemble framework that combines deep neural networks, semi-supervised, and ensemble learning for classifying human protein-phenotype co-mentions with the help of unlabeled data. This framework allows the ability to incorporate an extensive collection of unlabeled sentence-level co-mentions of human proteins and phenotypes with a small labeled dataset to enhance overall performance. We develop PPPredSS, a prototype of our proposed semi-supervised framework that combines sophisticated language models, convolutional networks, and recurrent networks. Our experimental results demonstrate that the proposed approach provides a new state-of-the-art performance in classifying human protein-phenotype co-mentions by outperforming other supervised and semi-supervised counterparts. Furthermore, we highlight the utility of PPPredSS in powering a curation assistant system through case studies involving a group of biologists. Conclusions: This article presents a novel approach for human protein-phenotype co-mention classification based on deep, semi-supervised, and ensemble learning. The insights and findings from this work have implications for biomedical researchers, biocurators, and the text mining community working on biomedical relationship extraction.

Publication Title

BMC Bioinformatics





Digital Object Identifier (DOI)