Year

2021

Season

Fall

Paper Type

Master's Thesis

College

College of Computing, Engineering & Construction

Degree Name

Master of Science in Civil Engineering (MSCE)

Department

Engineering

NACO controlled Corporate Body

University of North Florida. School of Engineering

First Advisor

Dr. Thobias Sando

Second Advisor

Dr. Ramin Shabanpour

Third Advisor

Dr. Priyanka Alluri

Department Chair

Dr. Osama Jadaan

College Dean

Dr. William F. Klostermeyer

Abstract

The full utilization of connected vehicles (CVs) is highly anticipated to become a reality soon. As CVs become increasingly prevalent in our roadway network, connected technologies have enormous potential to improve safety. This study conducted a microscopic simulation to quantify the benefits of CVs in improving freeway safety along a 7.8-mile section on Florida’s Turnpike (SR-91) system. The simulation incorporated driver compliance behavior in a CV environment. The simulation was implemented via an existing VISSIM network model partially developed by the Florida Department of Transportation (FDOT). In addition, the study analyzed how CVs would assist in detour operations as a strategy for congestion management during traffic incidents on freeways. The Surrogate Safety Assessment Model (SSAM) software was used to evaluate the benefits of CVs based on time-to-collision (TTC) as the performance measure. The TTC was evaluated at various CV market penetration rates (MPRs) of 0%, 25%, 50%, 75%, and 100%. The results showed a decreasing trend of conflicts for morning and evening peak hours, especially from 25% to 100% CV MPRs. The benefits were statistically significant at a 95% confidence level for high CV MPR (above 25%). Upon an incident on the freeway, at higher CV MPRs simulations, the detour strategy seemed to reduce travel time on the freeway. Besides, the detour strategy was more helpful when the incident clearance duration lasted more than 30 minutes. Findings from this study may help the incident management process prepare for detour strategies based on the severity of the incident at hand and could explain the importance of CVs in supporting warning and management strategies for drivers to improve safety on freeways.

Keywords: Conflicts, Connected Vehicles, Driver Compliance Rate, Detour, Incident Modeling, Safety Surrogate Measures

Share

COinS