Year
2011
Paper Type
Master's Thesis
College
College of Arts and Sciences
Degree Name
Master of Science in Biology (MS)
Department
Biology
First Advisor
Dr. Judith D. Ochrietor
Second Advisor
Dr. James Gelsleichter
Third Advisor
Dr. Elizabeth Stotz-Potter
Abstract
Basigin and Embigin are members of the immunoglobulin superfamily that function as cell adhesion molecules. Studies of Basigin null mice revealed reproductive sterility, increased pain sensitivity, and blindness. It is thought that the mechanism causing blindness involves misexpression of monocarboxylate transporter 1 (MCT1) in the absence of Basigin. It is known that the transmembrane domain of Basigin interacts with MCT1. In the absence of Basigin, MCT1 does not localize to the plasma membrane of expressing cells and photoreceptor function is disrupted. Studies of the Basigin null mouse brain suggest that MCT1 is properly expressed, which suggests a separate mechanism causes the increased pain sensitivity in these animals, and also that a different protein directs MCT1 to the plasma membrane of expressing cells in mouse brain. Embigin is known to interact with MCT2 in neurons and with MCT1 in erythrocytes. It is not known, however, if Embigin normally interacts with MCT1 in the mouse brain or if Embigin acts to compensate for the lack of Basigin in the Basigin null animals. Therefore, the purpose of this study was to determine if Embigin normally interacts with MCT1, 2, or 4 in the mouse brain and if so, whether the interaction is similar to that between Basigin and MCT1. Expression of Basigin, Embigin, MCT1, MCT2, and MCT4 in mouse brain was assessed via immunoblotting and immunohistochemical analyses. In addition, recombinant protein probes corresponding to the Embigin transmembrane domain were generated for ELISA binding assays using endogenous mouse brain MCTs. It was determined that the proteins in question are rather ubiquitously expressed throughout the mouse brain, and that the cell adhesion molecules Basigin and Embigin may be co-expressed in the same cells as the MCT2 and MCT4 transporter proteins. In addition, it was determined that the Embigin transmembrane domain does not interact with the MCTs. The data therefore suggest that MCTs do not require Basigin or Embigin for plasma membrane expression in mouse brain.
Suggested Citation
Little, L Nicole, "Characterization of Basigin and the Interaction Between Embigin and Monocarboxylate Transporter-1, -2, and -4 (MCT1, MCT2, MCT4) in the Mouse Brain" (2011). UNF Graduate Theses and Dissertations. 170.
https://digitalcommons.unf.edu/etd/170